Science.gov

Sample records for acid hybridization reactions

  1. Amplified detection of nucleic acid by G-quadruplex based hybridization chain reaction.

    PubMed

    Dong, Juan; Cui, Xin; Deng, Yun; Tang, Zhuo

    2012-01-01

    A protein-free, isothermal, self-amplified nucleic acid sensing system which was a G-quadruplex integrated hybridization chain reaction (GQ-HCR) system was developed. The G-quadruplex was closed two-thirds in the loop and one-third in the stem of one of the GQ-HCR hairpin probes. In the absence of the target molecule, the GQ-HCR probes stayed as inactive meta-stable hairpin structures and the G-quadruplex was inert. Reversely, the GQ-HCR probes could be cross-opened to start a hybridization chain reaction and the closed G-quadruplex could be released to be free when the GQ-HCR probes came across the target molecule. The GQ-HCR nucleic acid sensing system could detect as low as 7.5 nM ssDNA or RNA by the colorimetric method and 4 nM ssDNA by the fluorometric method. Less than 10 copies of dsDNA template could also be detected when PCR was combined with the GQ-HCR system (PCR+GQ-HCR). Because of these advantages, the GQ-HCR system was also studied for application in visual chip detection to obtain a satisfactory repeatable and specific result.

  2. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification.

    PubMed

    Ying, Na; Ju, Chuanjing; Li, Zhongyi; Liu, Wensen; Wan, Jiayu

    2017-03-01

    In this study, a new lateral flow nucleic acid biosensor (LFNAB) using hybridization chain reaction (HCR) for signal amplification was developed for visual detection of nucleic acids with high sensitivity and low cost. A "sandwich-type" detection strategy was employed in our design. The sandwich system of capture probe (CP)/target DNA/reporter probe (RP)-HCR complexes was fabricated as the sensing platform. As the initiator strand, reporter probe propagated a chain reaction of hybridization events between the two hairpin probes modified with biotin, and determined whether long nicked DNA polymers were formed. The biotin-labeled double-strand DNA polymers then introduced numerous Streptavidin (SA)-labeled gold nanoparticles (AuNPs) on the lateral flow device. The CP/target DNA/RP-HCR complexes were captured on the test zone by the specific reaction between anti-Fam monoclonal antibody (anti-Fam mAb) on the test zone and Fam of the complexes. The accumulation of AuNPs on the test zone of the biosensor enabled the visual detection of specific sequences. The detection limit of specific DNA was as low as 1.76pM, which was about 2 orders lower than that of the LFNAB without HCR amplification. And the detection limit of Salmonella was 3×10(3)cfumL(-1). In conclusion, this visual detection system, HCR-LFNAB, is suitable for non-specialist personnel and point-of-care (POC) diagnosis in low-resource settings.

  3. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    PubMed

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1 pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate.

  4. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging.

    PubMed

    Wu, Zhan; Liu, Gao-Qin; Yang, Xiao-Li; Jiang, Jian-Hui

    2015-06-03

    Efficient approaches for intracellular delivery of nucleic acid reagents to achieve sensitive detection and regulation of gene and protein expressions are essential for chemistry and biology. We develop a novel electrostatic DNA nanoassembly that, for the first time, realizes hybridization chain reaction (HCR), a target-initiated alternating hybridization reaction between two hairpin probes, for signal amplification in living cells. The DNA nanoassembly has a designed structure with a core gold nanoparticle, a cationic peptide interlayer, and an electrostatically assembled outer layer of fluorophore-labeled hairpin DNA probes. It is shown to have high efficiency for cellular delivery of DNA probes via a unique endocytosis-independent mechanism that confers a significant advantage of overcoming endosomal entrapment. Moreover, electrostatic assembly of DNA probes enables target-initialized release of the probes from the nanoassembly via HCR. This intracellular HCR offers efficient signal amplification and enables ultrasensitive fluorescence activation imaging of mRNA expression with a picomolar detection limit. The results imply that the developed nanoassembly may provide an invaluable platform in low-abundance biomarker discovery and regulation for cell biology and theranostics.

  5. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification.

    PubMed

    Wang, Wen-Jing; Li, Jing-Jing; Rui, Kai; Gai, Pan-Pan; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-03-03

    We report an electrochemical sensor for telomerase activity detection based on spherical nucleic acids gold nanoparticles (SNAs AuNPs) triggered mimic-hybridization chain reaction (mimic-HCR) enzyme-free dual signal amplification. In the detection strategy, SNAs AuNPs and two hairpin probes were employed. SNAs AuNPs as the primary amplification element, not only hybridized with the telomeric repeats on the electrode to amplify signal but also initiated the subsequent secondary amplification, mimic-hybridization chain reaction of two hairpin probes. If the cells' extracts were positive for telomerase activity, SNAs AuNPs could be captured on the electrode. The carried initiators could trigger an alternative hybridization reaction of two hairpin probes that yielded nicked double helices. The signal was further amplified enzyme-free by numerous hexaammineruthenium(III) chloride ([Ru(NH3)6](3+), RuHex) inserting into double-helix DNA long chain by electrostatic interaction, each of which could generate an electrochemical signal at appropriate potential. With this method, a detection limit of down to 2 HeLa cells and a dynamic range of 10-10,000 cells were achieved. Telomerase activities of different cell lines were also successfully evaluated.

  6. Assessment of methods for covalent binding of nucleic acids to magnetic beads, Dynabeads, and the characteristics of the bound nucleic acids in hybridization reactions.

    PubMed Central

    Lund, V; Schmid, R; Rickwood, D; Hornes, E

    1988-01-01

    Dynabeads are magnetic monosized beads with high stability, high uniformity, unique paramagnetic properties, low particle-particle interaction, and high dispersibility. Different reactive groups; hydroxyl, carboxyl and amino groups can be attached to the surface. Several methods for covalent attachment of DNA or oligonucleotides to the beads were investigated. Best coupling yields were obtained by carbodiimide-mediated end-attachment of 5'-phosphate and 5'-NH2 modified nucleic acids to respectively amino and carboxyl beads. The carboxyl beads showed a low degree of non-specific binding, while a better yield of end-attached nucleic acids was obtained using the amino beads. The DNA-beads worked efficiently in hybridization experiments, and the kinetics of hybridization approach those of solution hybridization. PMID:3205723

  7. Facile "one-pot" synthesis of poly(methacrylic acid)-based hybrid monolith via thiol-ene click reaction for hydrophilic interaction chromatography.

    PubMed

    Lv, Xumei; Tan, Wangming; Chen, Ye; Chen, Yingzhuang; Ma, Ming; Chen, Bo; Yao, Shouzhuo

    2016-07-08

    A novel sol-gel "one-pot" approach in tandem with a radical-mediated thiol-ene reaction for the synthesis of a methacrylic acid-based hybrid monolith was developed. The polymerization monomers, tetramethoxysilane (TMOS) and 3-mercaptopropyl trimethoxysilane (MPTS), were hydrolyzed in high-concentration methacrylic acid solution that also served as a hydrophilic functional monomer. The resulting solution was then mixed with initiator (2, 2'-azobis (2-methylpropionamide) dihydrochloride) and porogen (urea, polyethylene glycol 20,000) in a capillary column and polymerized in water bath. The column had a uniform porous structure and a good permeability. The evaluation of the monolith was performed by separation of small molecules including nucleosides, phenols, amides, bases and Triton X-100. The calibration curves for uridine, inosine, adenosine and cytidine were determined. All the calibration curves exhibited good linear regressions (R(2)≥0.995) within the test ranges of 0.5-40μg/mL for four nucleosides. Additionaliy, atypical hydrophilic mechanism was proved by elution order from low to high according to polarity retention time increased with increases in the content of the organic solvent in the mobile phase. Further studies indicated that hydrogen bond and electrostatic interactions existed between the polar analytes and the stationary phase. This was the mechanism of retention. The excellent separation of the BSA digest showed good hydrophility of the column and indicated the potential in separation of complex biological samples.

  8. Signal enhancement for gene detection based on a redox reaction of [Fe(CN)(6)](4-) mediated by ferrocene at the terminal of a peptide nucleic acid as a probe with hybridization-amenable conformational flexibility.

    PubMed

    Aoki, Hiroshi; Tao, Hiroaki

    2008-07-01

    Electrochemically enhanced DNA detection was demonstrated by utilizing the couple of a synthesized ferrocene-terminated peptide nucleic acid (PNA) with a cysteine anchor and a sacrificial electron donor [Fe(CN)(6)](4-). DNA detection sensors were prepared by modifying a gold electrode surface with a mixed monolayer of the probe PNA and 11-hydroxy-1-undecanethiol (11-HUT), protecting [Fe(CN)(6)](4-) from any unexpected redox reaction. Before hybridization, the terminal ferrocene moiety of the probe was subject to a redox reaction due to the flexible probe structure and, in the presence of [Fe(CN)(6)](4-), the observed current was amplified based on regeneration of the ferrocene moiety. Hybridization decreased the redox current of the ferrocene. This occurred because hybridization rigidified the probe structure: the ferrocene moiety was then removed from the electrode surface, and the redox reaction of [Fe(CN)(6)](4-) was again prevented. The change in the anodic current before and after hybridization was enhanced 1.75-fold by using the electron donor [Fe(CN)(6)](4-). Sequence-specific detection of the complementary target DNA was also demonstrated.

  9. Optimizing the specificity of nucleic acid hybridization

    NASA Astrophysics Data System (ADS)

    Zhang, David Yu; Chen, Sherry Xi; Yin, Peng

    2012-03-01

    The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg2+ to 47 mM Mg2+, and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.

  10. Optimizing the specificity of nucleic acid hybridization.

    PubMed

    Zhang, David Yu; Chen, Sherry Xi; Yin, Peng

    2012-01-22

    The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.

  11. Fluorescent hybridization probes for nucleic acid detection.

    PubMed

    Guo, Jia; Ju, Jingyue; Turro, Nicholas J

    2012-04-01

    Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.

  12. Nucleic acid in-situ hybridization detection of infectious agents

    NASA Astrophysics Data System (ADS)

    Thompson, Curtis T.

    2000-04-01

    Limitations of traditional culture methods and newer polymerase chain reaction (PCR)-based methods for detection and speciation of infectious agents demonstrate the need for more rapid and better diagnostics. Nucleic acid hybridization is a detection technology that has gained wide acceptance in cancer and prenatal cytogenetics. Using a modification of the nucleic acid hybridization technique known as fluorescence in-situ hybridization, infectious agents can be detected in a variety of specimens with high sensitivity and specificity. The specimens derive from all types of human and animal sources including body fluids, tissue aspirates and biopsy material. Nucleic acid hybridization can be performed in less than one hour. The result can be interpreted either using traditional fluorescence microscopy or automated platforms such as micro arrays. This paper demonstrates proof of concept for nucleic acid hybridization detection of different infectious agents. Interpretation within a cytologic and histologic context is possible with fluorescence microscopic analysis, thereby providing confirmatory evidence of hybridization. With careful probe selection, nucleic acid hybridization promises to be a highly sensitive and specific practical diagnostic alternative to culture, traditional staining methods, immunohistochemistry and complicated nucleic acid amplification tests.

  13. Reactions of Sweet Corn Hybrids to Prevalent Diseases and Herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This 27-year summary is of University of Illinois sweet corn nurseries from 1984 to 2010, and includes the reactions of 800 hybrids to eight diseases and three herbicides. Commercially-available and pre-commercial hybrids included 547 shrunken-2 hybrids (317 yellow, 152 bi-color, and 78 white), 117 ...

  14. Development of a Simple Adjustable Zinc Acid/Base Hybrid Catalyst for C-C and C-O Bond-Forming and C-C Bond-Cleavage Reactions.

    PubMed

    Yamashita, Yasuhiro; Minami, Kodai; Saito, Yuki; Kobayashi, Shū

    2016-09-06

    A newly designed zinc Lewis acid/base hybrid catalyst was developed. By adjusting the Lewis acidity of the zinc center, aldol-type additions of 2-picolylamine Schiff base to aldehydes proceeded smoothly to afford syn-aldol adduct equivalents, trans-N,O-acetal adducts, in high yields with high selectivities. NMR experiments, including microchanneled cell for synthesis monitoring (MICCS) NMR analysis, revealed that anti-aldol adducts were formed at the initial stage of the reactions under kinetic control, but the final products were the trans-(syn)-N,O-acetal adducts that were produced through a retro-aldol process under thermodynamic control. In the whole reaction process, the zinc catalyst played three important roles: i) promotion of the aldol process (C-C bond formation), ii) cyclization process to the N,O-acetal product (C-O bond formation), and iii) retro-aldol process from the anti-aldol adduct to the syn-aldol adduct (C-C bond cleavage and C-C bond formation).

  15. Multiplexed miRNA northern blots via hybridization chain reaction.

    PubMed

    Schwarzkopf, Maayan; Pierce, Niles A

    2016-09-06

    Northern blots enable detection of a target RNA of interest in a biological sample using standard benchtop equipment. miRNAs are the most challenging targets as they must be detected with a single short nucleic acid probe. With existing approaches, it is cumbersome to perform multiplexed blots in which several RNAs are detected simultaneously, impeding the study of interacting regulatory elements. Here, we address this shortcoming by demonstrating multiplexed northern blotting based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger chain reactions in which fluorophore-labeled DNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability of HCR allows multiple amplifiers to operate simultaneously and independently within a blot, enabling straightforward multiplexing. We demonstrate simultaneous detection of three endogenous miRNAs in total RNA extracted from 293T and HeLa cells. For a given target, HCR signal scales linearly with target abundance, enabling relative and absolute quantitation. Using non-radioactive HCR, sensitive and selective miRNA detection is achieved using 2'OMe-RNA probes. The HCR northern blot protocol takes ∼1.5 days independent of the number of target RNAs.

  16. Kit for detecting nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2001-01-01

    A kit is provided for detecting a target nucleic acid sequence in a sample, the kit comprising: a first hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the first hybridization probe including a first complexing agent for forming a binding pair with a second complexing agent; and a second hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the first hybridization probe does not selectively hybridize, the second hybridization probe including a detectable marker; a third hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the third hybridization probe including the same detectable marker as the second hybridization probe; and a fourth hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the third hybridization probe does not selectively hybridize, the fourth hybridization probe including the first complexing agent for forming a binding pair with the second complexing agent; wherein the first and second hybridization probes are capable of simultaneously hybridizing to the target sequence and the third and fourth hybridization probes are capable of simultaneously hybridizing to the target sequence, the detectable marker is not present on the first or fourth hybridization probes and the first, second, third, and fourth hybridization probes each include a competitive nucleic acid sequence which is sufficiently complementary to a third portion of the target sequence that the competitive sequences of the first, second, third, and fourth hybridization probes compete with each other to hybridize to the third portion of the

  17. Gold nanoparticles-graphene hybrids as active catalysts for Suzuki reaction

    SciTech Connect

    Li, Yang; Fan, Xiaobin; Qi, Junjie; Ji, Junyi; Wang, Shulan; Zhang, Guoliang; Zhang, Fengbao

    2010-10-15

    Graphene was successfully modified with gold nanoparticles in a facile route by reducing chloroauric acid in the presence of sodium dodecyl sulfate, which is used as both a surfactant and reducing agent. The gold nanoparticles-graphene hybrids were characterized by high-resolution transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and energy X-ray spectroscopy. We demonstrate for the first time that the gold nanoparticles-graphene hybrids can act as efficient catalysts for the Suzuki reaction in water under aerobic conditions. The catalytic activity of gold nanoparticles-graphene hybrids was influenced by the size of the gold nanoparticles.

  18. Stratospheric Reactions of Peroxynitric Acid.

    DTIC Science & Technology

    1981-04-23

    was always at least 10 times greater than the HOONO2 concentration at the time of the 03 addition. Because of the small absorption coefficient [ Herzberg ...and J. N. Pitts, Jr., Pressure and temperature dependence of the unimolecular decomposition of HO2N02, J. Chem. Phys., 68, 4505, 1978. Herzberg ... Gerhard , Infrared and Raman Spectra, Vol. II, van Nostrand Reinhold Company, 1945, p. 286. Howard, C. J., Kinetics of the reaction of HO2 with NO2, J. Chem

  19. Design and Synthesis of Novel Isoxazole Tethered Quinone-Amino Acid Hybrids

    PubMed Central

    Ravi Kumar, P.; Sambaiah, M.; Kandula, Venu; Payili, Nagaraju; Jaya Shree, A.; Yennam, Satyanarayana

    2014-01-01

    A new series of isoxazole tethered quinone-amino acid hybrids has been designed and synthesized involving 1,3-dipolar cycloaddition reaction followed by an oxidation reaction using cerium ammonium nitrate (CAN). Using this method, for the first time various isoxazole tethered quinone-phenyl alanine and quinone-alanine hybrids were synthesized from simple commercially available 4-bromobenzyl bromide, propargyl bromide, and 2,5-dimethoxybenzaldehyde in good yield. PMID:25709839

  20. The hydrothermal reaction kinetics of aspartic acid

    NASA Astrophysics Data System (ADS)

    Cox, Jenny S.; Seward, Terry M.

    2007-02-01

    Experimental data on the hydrothermal reaction kinetics of aspartic acid were acquired using a custom-built spectrophotometric reaction cell which permits in situ observation under hydrothermal conditions. The results of this study indicate that the reaction kinetics of dilute aspartic acid solutions are significantly different depending on the presence or absence of catalytic surfaces such as standard metal alloys. The spectroscopic data presented here represent the first direct observations, in situ and in real time, of an amino acid reacting in a hydrothermal solution. Quantitative kinetic information, including rate constants, concentration versus time profiles, and calculations of the individual component spectra, was obtained from the data using a chemometric approach based on factor analysis/principle component analysis which treats the rate expressions simultaneously as a system of differential algebraic equations (DAE) of index 1. Identification of the products was confirmed where possible by high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction kinetics of aspartic acid under hydrothermal conditions was observed to be highly complex, in contrast to previous studies which indicated almost exclusively deamination. At lower temperatures (120-170 °C), several different reaction pathways were observed, including decarboxylation and polymerization, and the catalytic effects of reactor surfaces on the aspartic acid system were clearly demonstrated. At higher temperatures (above 170 °C), aspartic acid exhibited highly complex behaviour, with evidence indicating that it can simultaneously dimerize and cyclize, deaminate (by up to two pathways), and decarboxylate (by up to two pathways). These higher temperature kinetics were not fully resolvable in a quantitative manner due to the complexity of the system and the constraints of UV spectroscopy. The results of this study provide strong evidence that the reaction

  1. Nonenzymatic catalytic signal amplification for nucleic acid hybridization assays

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2006-01-01

    Devices, methods, and kits for amplifying the signal from hybridization reactions between nucleic acid probes and their cognate targets are presented. The devices provide partially-duplexed, immobilized probe complexes, spatially separate from and separately addressable from immobilized docking strands. Cognate target acts catalytically to transfer probe from the site of probe complex immobilization to the site of immobilized docking strand, generating a detectable signal. The methods and kits of the present invention may be used to identify the presence of cognate target in a fluid sample.

  2. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.

    PubMed

    Ya'aini, Nazlina; Amin, Nor Aishah Saidina; Asmadi, Mohd

    2012-07-01

    Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid.

  3. Hybrid discrete/continuum algorithms for stochastic reaction networks

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; ...

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less

  4. Hybrid discrete/continuum algorithms for stochastic reaction networks

    SciTech Connect

    Safta, Cosmin Sargsyan, Khachik Debusschere, Bert Najm, Habib N.

    2015-01-15

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker–Planck equation. The Fokker–Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. The performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.

  5. Hybrid discrete/continuum algorithms for stochastic reaction networks

    SciTech Connect

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.

  6. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester... identified generically as carboxylic acid, substituted alkylstannylene ester, reaction products...

  7. Formose reaction controlled by boronic acid compounds

    PubMed Central

    Imai, Toru; Michitaka, Tomohiro

    2016-01-01

    Formose reactions were carried out in the presence of low molecular weight and macromolecular boronic acid compounds, i.e., sodium phenylboronate (SPB) and a copolymer of sodium 4-vinylphenylboronate with sodium 4-styrenesulfonate (pVPB/NaSS), respectively. The boronic acid compounds provided different selectivities; sugars of a small carbon number were formed favorably in the presence of SPB, whereas sugar alcohols of a larger carbon number were formed preferably in the presence of pVPB/NaSS. PMID:28144337

  8. Hybridization and sequencing of nucleic acids using base pair mismatches

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  9. Catalytic performance of hybrid nanocatalyst for levulinic acid production from glucose

    NASA Astrophysics Data System (ADS)

    Ya'aini, Nazlina; Amin, Nor Aishah Saidina

    2012-11-01

    Levulinic acid is one of the potential and versatile biomass-derived chemicals. Product analysis via HPLC revealed that the heterogeneous dehydration of glucose over hybrid nanocatalyst exhibited better performance compared to single catalyst. Hybrid nanocatalyst containing H-Y zeolite and CrCl3 could substitute homogenous acid catalyst for attaining high levulinic acid yield. Different CrC3 and H-Y zeolite weight ratios of 1:1, 1:2 and 2:1 were prepared according to the wetness impregnation method. The hybrid catalyst with a 1:1 weight ratio performed better compared to others with the highest levulinic acid yield reported (93.5%) at 140 °C, 180 min reaction time, 0.1 g catalyst loading and 0.1 g glucose feed. Characterization results revealed that properties such as surface area, mesoporosity and acidic strength of the catalyst have significant effects on glucose dehydration for levulinic acid production.

  10. Hybrid Multiscale Simulation of a Mixing-Controlled Reaction

    NASA Astrophysics Data System (ADS)

    Yang, X.; Scheibe, T. D.; Schuchardt, K.; Agarwal, K.; Chase, J.; Palmer, B. J.; Tartakovsky, A. M.; Elsethagen, T.

    2014-12-01

    Continuum scale models have been used to study subsurface flow, transport, and reactions for many years but lack the capability to resolve fine-grained processes. Recently, pore-scale models, which operate at scales of individual soil grains, have been developed to more accurately model and study pore-scale phenomena, such as mineral precipitation and dissolution reactions, microbially-mediated surface reactions, and other complex processes. However, these highly-resolved models are prohibitively expensive for modeling domains of sizes relevant to practical problems. To broaden the utility of pore-scale models for larger domains, we developed a hybrid multiscale model that initially simulates the full domain at the continuum scale and applies a pore-scale model only to areas of high reactivity. Python script components provide loose coupling between the pore- and continuum-scale codes into a single hybrid multiscale model implemented in the SWIFT parallel scripting language. We consider an irreversible homogenous bimolecular reaction (two solutes reacting to form a third solute) in a 2D test problem. This presentation is focused on the approach used for multiscale coupling between pore- and continuum-scale models, application to a realistic test problem, and implications of the results for predictive simulation of mixing-controlled reactions in porous media. Our results and analysis demonstrate that loose coupling provides a feasible, efficient and scalable approach for multiscale subsurface simulations.

  11. Gallic Acid, Ellagic Acid and Pyrogallol Reaction with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Jaén, J. A.; González, L.; Vargas, A.; Olave, G.

    2003-06-01

    The reaction between gallic acid, ellagic acid and pyrogallol with metallic iron was studied using infrared and Mössbauer spectroscopy. Most hydrolysable tannins with interesting anticorrosive or inhibition properties are structurally related to these compounds, thus they may be used as models for the study of hydrolysable tannins and related polyphenols. The interaction was followed up to 3 months. Results indicated two different behaviors. At polyphenol concentrations higher than 1% iron converts to sparingly soluble and amorphous ferric (and ferrous) polyphenolate complexes. At lower concentrations (0.1%), the hydrolysis reactions are dominant, resulting in the formation of oxyhydroxides, which can be further reduced to compounds like magnetite by the polyphenols.

  12. Hybrid multiscale simulation of a mixing-controlled reaction

    NASA Astrophysics Data System (ADS)

    Scheibe, Timothy D.; Schuchardt, Karen; Agarwal, Khushbu; Chase, Jared; Yang, Xiaofan; Palmer, Bruce J.; Tartakovsky, Alexandre M.; Elsethagen, Todd; Redden, George

    2015-09-01

    Continuum-scale models, which employ a porous medium conceptualization to represent properties and processes averaged over a large number of solid grains and pore spaces, are widely used to study subsurface flow and reactive transport. Recently, pore-scale models, which explicitly resolve individual soil grains and pores, have been developed to more accurately model and study pore-scale phenomena, such as mineral precipitation and dissolution reactions, microbially-mediated surface reactions, and other complex processes. However, these highly-resolved models are prohibitively expensive for modeling domains of sizes relevant to practical problems. To broaden the utility of pore-scale models for larger domains, we developed a hybrid multiscale model that initially simulates the full domain at the continuum scale and applies a pore-scale model only to areas of high reactivity. Since the location and number of pore-scale model regions in the model varies as the reactions proceed, an adaptive script defines the number and location of pore regions within each continuum iteration and initializes pore-scale simulations from macroscale information. Another script communicates information from the pore-scale simulation results back to the continuum scale. These components provide loose coupling between the pore- and continuum-scale codes into a single hybrid multiscale model implemented within the SWIFT workflow environment. In this paper, we consider an irreversible homogeneous bimolecular reaction (two solutes reacting to form a third solute) in a 2D test problem. This paper is focused on the approach used for multiscale coupling between pore- and continuum-scale models, application to a realistic test problem, and implications of the results for predictive simulation of mixing-controlled reactions in porous media. Our results and analysis demonstrate that the hybrid multiscale method provides a feasible approach for increasing the accuracy of subsurface reactive transport

  13. CHLORINATION OF AMINO ACIDS: REACTION PATHWAYS AND REACTION RATES.

    PubMed

    How, Zuo Tong; Linge, Kathryn; Busetti, Francesco; Joll, Cynthia A

    2017-03-15

    Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected by-products. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modelling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4x104 M-1 s-1) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9x102 M-1 s-1), although some N-monochlorovaline degraded into isobutyraldehyde (1.0x10-4 s-1). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3x10-4 s-1) and N-chloroisobutyraldimine (1.2x10-4 s-1). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odour threshold concentration, resulting in aesthetic challenges and an unknown health risk.

  14. Continuously tunable nucleic acid hybridization probes.

    PubMed

    Wu, Lucia R; Wang, Juexiao Sherry; Fang, John Z; Evans, Emily R; Pinto, Alessandro; Pekker, Irena; Boykin, Richard; Ngouenet, Celine; Webster, Philippa J; Beechem, Joseph; Zhang, David Yu

    2015-12-01

    In silico-designed nucleic acid probes and primers often do not achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. We present a novel, on-the-fly method of tuning probe affinity and selectivity by adjusting the stoichiometry of auxiliary species, which allows for independent and decoupled adjustment of the hybridization yield for different probes in multiplexed assays. Using this method, we achieved near-continuous tuning of probe effective free energy. To demonstrate our approach, we enforced uniform capture efficiency of 31 DNA molecules (GC content, 0-100%), maximized the signal difference for 11 pairs of single-nucleotide variants and performed tunable hybrid capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples.

  15. Interactive fluorophore and quencher pairs for labeling fluorescent nucleic acid hybridization probes.

    PubMed

    Marras, Salvatore A E

    2008-03-01

    The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.

  16. Investigating Students' Reasoning about Acid-Base Reactions

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Kouyoumdjian, Hovig; Underwood, Sonia M.

    2016-01-01

    Acid-base chemistry is central to a wide range of reactions. If students are able to understand how and why acid-base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid-base reactions based on their description of…

  17. Niflumic acid and cutaneous reactions in children

    PubMed Central

    Menniti-Ippolito, F; Sagliocca, L; Da Cas, R; Saggiomo, G; Di, N; Traversa, G; the, S

    2001-01-01

    In a case control study of adverse drug reactions in children, the odds ratio of developing a serious mucocutaneous event among users of niflumic acid, adjusted for concomitant use of all other drugs, was 4.9 (95% CI 1.9 to 12.8). Given the availability of safer analgesics and antipyretics, there is no indication, in our opinion, that requires the prescription of substances which bear an increased risk.

 PMID:11316692

  18. Niflumic acid and cutaneous reactions in children.

    PubMed

    Menniti-Ippolito, F; Sagliocca, L; Da Cas, R; Saggiomo, G; Di Nardo, R; Traversa, G

    2001-05-01

    In a case control study of adverse drug reactions in children, the odds ratio of developing a serious mucocutaneous event among users of niflumic acid, adjusted for concomitant use of all other drugs, was 4.9 (95% CI 1.9 to 12.8). Given the availability of safer analgesics and antipyretics, there is no indication, in our opinion, that requires the prescription of substances which bear an increased risk.

  19. A DNA origami nanorobot controlled by nucleic acid hybridization.

    PubMed

    Torelli, Emanuela; Marini, Monica; Palmano, Sabrina; Piantanida, Luca; Polano, Cesare; Scarpellini, Alice; Lazzarino, Marco; Firrao, Giuseppe

    2014-07-23

    A prototype for a DNA origami nanorobot is designed, produced, and tested. The cylindrical nanorobot (diameter of 14 nm and length of 48 nm) with a switchable flap, is able to respond to an external stimulus and reacts by a physical switch from a disarmed to an armed configuration able to deliver a cellular compatible message. In the tested design the robot weapon is a nucleic acid fully contained in the inner of the tube and linked to a single point of the internal face of the flap. Upon actuation the nanorobot moves the flap extracting the nucleic acid that assembles into a hemin/G-quadruplex horseradish peroxidase mimicking DNAzyme catalyzing a colorimetric reaction or chemiluminescence generation. The actuation switch is triggered by an external nucleic acid (target) that interacts with a complementary nucleic acid that is beard externally by the nanorobot (probe). Hybridization of probe and target produces a localized structural change that results in flap opening. The flap movement is studied on a two-dimensional prototype origami using Förster resonance energy transfer and is shown to be triggered by a variety of targets, including natural RNAs. The nanorobot has potential for in vivo biosensing and intelligent delivery of biological activators.

  20. Visual, base-specific detection of nucleic acid hybridization using polymerization-based amplification.

    PubMed

    Hansen, Ryan R; Johnson, Leah M; Bowman, Christopher N

    2009-03-15

    Polymerization-based signal amplification offers sensitive visualization of biotinylated biomolecules functionalized to glass microarrays in a manner suitable for point-of-care use. Here we report using this method for visual detection of multiplexed nucleic acid hybridizations from complex media and develop an application toward point mutation detection and single nucleotide polymorphism (SNP) typing. Primer extension reactions were employed to label selectively and universally all complementary surface DNA hybrids with photoinitiators, permitting simultaneous and dynamic photopolymerization from positive sites to 0.5-nM target concentrations. Dramatic improvements in signal ratios between complementary and mismatched hybrids enabled visual discrimination of single base differences in KRAS codon-12 biomarkers.

  1. Effective and site-specific phosphoramidation reaction for universally labeling nucleic acids.

    PubMed

    Su, Yu-Chih; Chen, Hsing-Yin; Ko, Ni Chien; Hwang, Chi-Ching; Wu, Min Hui; Wang, Li-Fang; Wang, Yun-Ming; Chang, Sheng-Nan; Wang, Eng-Chi; Wang, Tzu-Pin

    2014-03-15

    Here we report efficient and selective postsynthesis labeling strategies, based on an advanced phosphoramidation reaction, for nucleic acids of either synthetic or enzyme-catalyzed origin. The reactions provided phosphorimidazolide intermediates of DNA or RNA which, whether reacted in one pot (one-step) or purified (two-step), were directly or indirectly phosphoramidated with label molecules. The acquired fluorophore-labeled nucleic acids, prepared from the phosphoramidation reactions, demonstrated labeling efficacy by their F/N ratio values (number of fluorophores per molecule of nucleic acid) of 0.02-1.2 which are comparable or better than conventional postsynthesis fluorescent labeling methods for DNA and RNA. Yet, PCR and UV melting studies of the one-step phosphoramidation-prepared FITC-labeled DNA indicated that the reaction might facilitate nonspecific hybridization in nucleic acids. Intrinsic hybridization specificity of nucleic acids was, however, conserved in the two-step phosphoramidation reaction. The reaction of site-specific labeling nucleic acids at the 5'-end was supported by fluorescence quenching and UV melting studies of fluorophore-labeled DNA. The two-step phosphoramidation-based, effective, and site-specific labeling method has the potential to expedite critical research including visualization, quantification, structural determination, localization, and distribution of nucleic acids in vivo and in vitro.

  2. The chlorate-iodine-nitrous acid clock reaction.

    PubMed

    Sant'Anna, Rafaela T P; Faria, Roberto B

    2014-01-01

    A new clock reaction based on chlorate, iodine and nitrous acid is presented. The induction period of this new clock reaction decreases when the initial concentrations of chlorate, nitrous acid and perchloric acid increase, but it is independent on the initial iodine concentration. The proposed mechanism is based on the LLKE autocatalytic mechanism for the chlorite-iodide reaction and the initial reaction between chlorate and nitrous acid to produce nitrate and chlorite. This new clock reaction opens the possibility for a new family of oscillating reactions containing chlorate or nitrous acid, which in both cases has not been observed until now.

  3. The Chlorate-Iodine-Nitrous Acid Clock Reaction

    PubMed Central

    Sant'Anna, Rafaela T. P.; Faria, Roberto B.

    2014-01-01

    A new clock reaction based on chlorate, iodine and nitrous acid is presented. The induction period of this new clock reaction decreases when the initial concentrations of chlorate, nitrous acid and perchloric acid increase, but it is independent on the initial iodine concentration. The proposed mechanism is based on the LLKE autocatalytic mechanism for the chlorite-iodide reaction and the initial reaction between chlorate and nitrous acid to produce nitrate and chlorite. This new clock reaction opens the possibility for a new family of oscillating reactions containing chlorate or nitrous acid, which in both cases has not been observed until now. PMID:25313803

  4. Designing and Applying Proximity-Dependent Hybridization Chain Reaction.

    PubMed

    Koos, Björn; Söderberg, Ola

    2016-08-01

    Proximity-dependent hybridization chain reaction (proxHCR) is a novel technique for detection of protein interaction, post-translational modifications (PTMs), or protein expression. The method is based upon antibodies targeting the proteins of interest that are covalently conjugated to DNA oligonucleotides, which enables the induction of a hybridization chain reaction (HCR) to generate a fluorescent signal visible under a microscope. In contrast to the in situ proximity ligation assay (in situ PLA), which is another method that utilizes antibody-DNA conjugates to detect protein interactions, proxHCR does not require enzymatic steps. This makes proxHCR an inexpensive alternative to in situ PLA. Another potential advantage might be that proxHCR could more readily be adapted for use in automated staining procedures and in point-of-care devices, as all reagents can be stored at room temperature. This unit describes how the oligonucleotide system for proxHCR can be designed and a protocol for how to perform proxHCR is presented. © 2016 by John Wiley & Sons, Inc.

  5. Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne-Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral Brønsted Acid.

    PubMed

    Terada, Masahiro; Ota, Yusuke; Li, Feng; Toda, Yasunori; Kondoh, Azusa

    2016-08-31

    Catalytic enantioselective syntheses enable a practical approach to enantioenriched molecules. While most of these syntheses have been accomplished by reaction at the prochiral sp(2)-hybridized carbon atom, little attention has been paid to enantioselective nucleophilic substitution at the sp(3)-hybridized carbon atom. In particular, substitution at the chiral sp(3)-hybridized carbon atom of racemic electrophiles has been rarely exploited. To establish an unprecedented enantioselective substitution reaction of racemic electrophiles, enantioconvergent Nicholas reaction of an alkyne-dicobalt complex derived from racemic propargylic alcohol was developed using a chiral phosphoric acid catalyst. In the present enantioconvergent process, both enantiomers of the racemic alcohol were transformed efficiently to a variety of thioethers with high enantioselectivity. The key to achieving success is dynamic kinetic asymmetric transformation (DYKAT) of enantiomeric cationic intermediates generated via dehydroxylation of the starting racemic alcohol under the influence of the chiral phosphoric acid catalyst. The present fascinating DYKAT involves the efficient racemization of these enantiomeric intermediates and effective resolution of these enantiomers through utilization of the chiral conjugate base of the phosphoric acid.

  6. A modified protocol for the detection of three different mRNAs with a new-generation in situ hybridization chain reaction on frozen sections.

    PubMed

    Sui, Qian-Qian; Zhu, Jiao; Li, Xiangnan; Knight, Gillian E; He, Cheng; Burnstock, Geoffrey; Yuan, Hongbin; Xiang, Zhenghua

    2016-12-01

    A new multiple fluorescence in situ hybridization method based on hybridization chain reaction was recently reported, enabling simultaneous mapping of multiple target mRNAs within intact zebrafish and mouse embryos. With this approach, DNA probes complementary to target mRNAs trigger chain reactions in which metastable fluorophore-labeled DNA hairpins self-assemble into fluorescent amplification polymers. The formation of the specific polymers enhances greatly the sensitivity of multiple fluorescence in situ hybridization. In this study we describe the optimal parameters (hybridization chain reaction time and temperature, hairpin and salt concentration) for multiple fluorescence in situ hybridization via amplification of hybridization chain reaction for frozen tissue sections. The combined use of fluorescence in situ hybridization and immunofluorescence, together with other control experiments (sense probe, neutralization and competition, RNase treatment, and anti-sense probe without initiator) confirmed the high specificity of the fluorescence in situ hybridization used in this study. Two sets of three different mRNAs for oxytocin, vasopressin and somatostatin or oxytocin, vasopressin and thyrotropin releasing hormone were successfully visualized via this new method. We believe that this modified protocol for multiple fluorescence in situ hybridization via hybridization chain reaction would allow researchers to visualize multiple target nucleic acids in the future.

  7. Hybrid isolation of micro vibrations induced by reaction wheels

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung

    2016-02-01

    As the technology for precision satellite payloads continues to advance, the requirements for the pointing stability of the satellites are becoming extremely high. In many situations, even small amplitude disturbances generated by the onboard components may cause serious degradation in the performance of high precision payloads. In such situations, vibration isolators can be installed to reduce the vibration transmission. In this work, a hybrid vibration isolator comprising passive and active components is proposed to provide an effective solution to the vibration problems caused by the reaction wheel disturbances. Firstly, mathematical modeling and experimental study of a single axis vibration isolator having high damping and high roll-off rate for the high frequency region and active components that enhance isolation performance for narrow frequency bands are presented. This concept is then extended to multi-axis by forming Stewart platform and the performance is experimentally verified. The tests on a flexible testbed show effective vibration isolation by the proposed vibration isolator.

  8. Hybrids of Nucleic Acids and Carbon Nanotubes for Nanobiotechnology

    PubMed Central

    Umemura, Kazuo

    2015-01-01

    Recent progress in the combination of nucleic acids and carbon nanotubes (CNTs) has been briefly reviewed here. Since discovering the hybridization phenomenon of DNA molecules and CNTs in 2003, a large amount of fundamental and applied research has been carried out. Among thousands of papers published since 2003, approximately 240 papers focused on biological applications were selected and categorized based on the types of nucleic acids used, but not the types of CNTs. This survey revealed that the hybridization phenomenon is strongly affected by various factors, such as DNA sequences, and for this reason, fundamental studies on the hybridization phenomenon are important. Additionally, many research groups have proposed numerous practical applications, such as nanobiosensors. The goal of this review is to provide perspective on biological applications using hybrids of nucleic acids and CNTs. PMID:28347014

  9. What controls the hybridization thermodynamics of spherical nucleic acids?

    PubMed

    Randeria, Pratik S; Jones, Matthew R; Kohlstedt, Kevin L; Banga, Resham J; Olvera de la Cruz, Monica; Schatz, George C; Mirkin, Chad A

    2015-03-18

    The hybridization of free oligonucleotides to densely packed, oriented arrays of DNA modifying the surfaces of spherical nucleic acid (SNA)-gold nanoparticle conjugates occurs with negative cooperativity; i.e., each binding event destabilizes subsequent binding events. DNA hybridization is thus an ever-changing function of the number of strands already hybridized to the particle. Thermodynamic quantification of this behavior reveals a 3 orders of magnitude decrease in the binding constant for the capture of a free oligonucleotide by an SNA conjugate as the fraction of pre-hybridized strands increases from 0 to ∼30%. Increasing the number of pre-hybridized strands imparts an increasing enthalpic penalty to hybridization that makes binding more difficult, while simultaneously decreasing the entropic penalty to hybridization, which makes binding more favorable. Hybridization of free DNA to an SNA is thus governed by both an electrostatic barrier as the SNA accumulates charge with additional binding events and an effect consistent with allostery, where hybridization at certain sites on an SNA modify the binding affinity at a distal site through conformational changes to the remaining single strands. Leveraging these insights allows for the design of conjugates that hybridize free strands with significantly higher efficiencies, some of which approach 100%.

  10. Fast hybridization solution for the detection of immobilized nucleic acids.

    PubMed

    Yang, T T; Kain, S R

    1995-03-01

    We have developed a fast hybridization solution, termed ExpressHyb, for the rapid and sensitive detection of nucleic acids immobilized on membrane supports. This solution reduces typical hybridization times of 12-24 h to as little as 1 h while simultaneously increasing the sensitivity of detection in many applications. Using ExpressHyb, human beta-actin mRNA was detected on a human multiple tissue Northern (MTN) blot following a 30-min hybridization, with optimal detection occurring with a 1-h hybridization interval. The moderately abundant human glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA was detected using similar hybridization conditions and yielded improved signal-to-background characteristics relative to overnight hybridizations in conventional solutions. ExpressHyb can be used with either 32P- or digoxigenin-labeled probes and works effectively with both cDNA and oligonucleotide probes. For non-isotopic detection in particular, ExpressHyb reduces the nonspecific background commonly encountered with this technique. In cDNA library screening, ExpressHyb was found to both reduce the time required for effective hybridizations and to increase the number of positive colonies obtained relative to conventional overnight procedures. Taken together, these results illustrate the broad capability of ExpressHyb Hybridization Solution to improve nucleic acid detection in a variety of important techniques.

  11. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  12. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    SciTech Connect

    Nan, Alexandrina Bunge, Alexander; Turcu, Rodica

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  13. Multicomponent cascade reactions of unprotected carbohydrates and amino acids.

    PubMed

    Voigt, Benjamin; Linke, Michael; Mahrwald, Rainer

    2015-06-05

    Herein an operationally simple multicomponent reaction of unprotected carbohydrates with amino acids and isonitriles is presented. By the extension of this Ugi-type reaction to an unprotected disaccharide a novel glycopeptide structure was accessible.

  14. Integrating DNA strand displacement circuitry to the nonlinear hybridization chain reaction.

    PubMed

    Zhang, Zhuo; Fan, Tsz Wing; Hsing, I-Ming

    2017-02-23

    Programmable and modular attributes of DNA molecules allow one to develop versatile sensing platforms that can be operated isothermally and enzyme-free. In this work, we present an approach to integrate upstream DNA strand displacement circuits that can be turned on by a sequence-specific microRNA analyte with a downstream nonlinear hybridization chain reaction for a cascading hyperbranched nucleic acid assembly. This system provides a two-step amplification strategy for highly sensitive detection of the miRNA analyte, conducive for multiplexed detection. Multiple miRNA analytes were tested with our integrated circuitry using the same downstream signal amplification setting, showing the decoupling of nonlinear self-assembly with the analyte sequence. Compared with the reported methods, our signal amplification approach provides an additional control module for higher-order DNA self-assembly and could be developed into a promising platform for the detection of critical nucleic-acid based biomarkers.

  15. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  16. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions

    EPA Science Inventory

    Magnetite-sulfonic acid (NanocatFe-OSO3H), prepared by wet-impregnation method, serves as a magnetically retrievable sustainable catalyst for the Ritter reaction which can be used in several reaction cycles without any loss of activity.

  17. [Preparation of organic-inorganic hybrid boronate affinity monolith via thiol-ene click reaction for specific capture of glycoproteins].

    PubMed

    Yang, Fan; Mao, Jie; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2013-06-01

    A novel strategy for the preparation of the organic-inorganic hybrid boronate affinity monolith was developed via the "thiol-ene" click reaction. A thiol group-modified silica monolith was first synthesized via the sol-gel process by the in situ co-condensation with tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) as precursors. Then 3-acrylamidophenylboronic acid (AAPBA) was covalently immobilized on the hybrid monolith via the "thiol-ene" click reaction to form AAPBA-silica hybrid affinity monolith. The reaction conditions for the preparation of AAPBA-silica hybrid affinity monolith were optimized, including the ratio of TMOS to MPTMS, the contents of poly(ethylene glycol) (PEG) and methanol. The morphology and mechanical stability of the boronate affinity monolith were characterized and evaluated by scanning electron microscopy and Fourier-transform infrared spectroscopy. The obtained boronate affinity hybrid monolith exhibited excellent specificity toward the nucleosides containing cis-diols under neutral conditions. It was further applied to the specific capture of the glycoproteins ovalbumin and horseradish peroxidase. The method is novel and reliable, which has a great potential for the preparation of different kinds of the boronate affinity monoliths.

  18. Kinetics of haloacetic acid reactions with Fe(0).

    PubMed

    Zhang, Li; Arnold, William A; Hozalski, Raymond M

    2004-12-15

    Detailed kinetic studies of the reactions of haloacetic acids (HAAs) with Fe(0) were performed in longitudinally mixed batch reactors. The reactions of tribromoacetic acid (TBAA), bromodichloroacetic acid, and chlorodibromoacetic acid were mass transfer limited, with corrected mass transfer coefficients of 3.7-3.9 x 10(-4) m/s. The reactions of trichloroacetic acid (TCAA), dichloroacetic acid (DCAA), chloroacetic acid (CAA), and bromoacetic acid (BAA) were reaction limited. Bromochloroacetic acid (BCAA) and dibromoacetic acid (DBAA) were partially reaction limited. For the reaction limited species and partially reaction limited species, intra- and interspecies competition effects were observed. A Langmuir-Hinshelwood-Hougen-Watson kinetic model incorporating a mass transfer term was adopted to account for these effects. The lumped kinetic parameters for the HAAs ranged from 0.04 to 248 microM min(-1) for an iron loading of 0.3 g of Fe/125 mL and followed the trend DBAA > BCAA > TCAA > BAA > DCAA. The adsorption parameters ranged from 0.0007 to 0.0065 microM(-1). The effect of dissolved oxygen (DO) on the reaction of TBAA or BAA with Fe(0) was also investigated. No significant effect of DO on the reaction rate of TBAA, which is a mass transfer limited species, was observed. A lag phase, however, was observed for the reaction of BAA, which is a reaction limited species, until the DO was depleted. Simulations were performed to investigate the potential significance of the reactions of HAAs with Fe(0) in water distribution systems.

  19. Effect of inclusion complex on nitrous acid reaction with flavonoids

    NASA Astrophysics Data System (ADS)

    Khalafi, Lida; Rafiee, Mohammad; Sedaghat, Sajjad

    2011-10-01

    The kinetic of the nitrous acid reactions with quercetin and catechin has been studied using spectrophotometric method in aqueous solution. The results show that these antioxidants participate in oxidation reactions with nitrous acid which is derived from protonation of nitrite ion in mild acidic conditions. Corresponding o-quinones as relatively stable products were detected by spectrophotometric techniques. pH dependence of the reactions has been examined and the rate constants of reactions were obtained by non-linear fitting of kinetic profiles. The effect of β-cyclodextrin on the oxidation pathway was another object of this study. It is shown that β-cyclodextrin has an inhibitory effect on the oxidation reaction. The rate constants of oxidation reactions for complexed forms and their stability constants were obtained based on changes in the reaction rates as a function of β-cyclodextrin concentration.

  20. Caged molecular beacons: controlling nucleic acid hybridization with light.

    PubMed

    Wang, Chunming; Zhu, Zhi; Song, Yanling; Lin, Hui; Yang, Chaoyong James; Tan, Weihong

    2011-05-28

    We have constructed a novel class of light-activatable caged molecular beacons (cMBs) that are caged by locking two stems with a photo-labile biomolecular interaction or covalent bond. With the cMBs, the nucleic acid hybridization process can be easily controlled with light, which offers the possibility for a high spatiotemporal resolution study of intracellular mRNAs.

  1. Hybrid metal/organo relay catalysis enables enynes to be latent dienes for asymmetric Diels-Alder reaction.

    PubMed

    Han, Zhi-Yong; Chen, Dian-Feng; Wang, Ya-Yi; Guo, Rui; Wang, Pu-Sheng; Wang, Chao; Gong, Liu-Zhu

    2012-04-18

    The hybrid Au(I)/Brønsted acid binary catalyst system enables enynes to serve as latent 1,3-silyloxydienes capable of participating in the first cascade hydrosiloxylation of an enynyl silanol/asymmetric Diels-Alder reaction. A variety of polycyclic compounds bearing multistereogenic centers were obtained in high yields and excellent enantioselectivities from the relay catalytic cascade reaction between (2-(but-3-en-1-ynyl)phenyl) silanols and quinones catalyzed by the combined achiral gold complex and chiral N-triflyl phosphoramide.

  2. Nucleic acid hybridization with RNA immobilized on filter paper.

    NASA Technical Reports Server (NTRS)

    Saxinger, W. C.; Ponnamperuma, C.; Gillespie, D.

    1972-01-01

    RNA has been immobilized in a manner suitable for use in molecular hybridization experiments with dissolved RNA or DNA by a nonaqueous solid-phase reaction with carbonyldiimidazole and RNA 'dry coated' on cellulose or, preferably, on previously activated phosphocellulose filters. Immobilization of RNA does not appear to alter its chemical character or cause it to acquire affinity for unspecific RNA or DNA. The versatility and efficiency of this method make it potentially attractive for use in routine analytical or preparative hybridization experiments, among other applications.

  3. Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction

    ERIC Educational Resources Information Center

    Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi

    2016-01-01

    A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…

  4. Probing the transition state for nucleic acid hybridization using phi-value analysis.

    PubMed

    Kim, Jandi; Shin, Jong-Shik

    2010-04-27

    Genetic regulation by noncoding RNA elements such as microRNA and small interfering RNA (siRNA) involves hybridization of a short single-stranded RNA with a complementary segment in a target mRNA. The physical basis of the hybridization process between the structured nucleic acids is not well understood primarily because of the lack of information about the transition-state structure. Here we use transition-state theory, inspired by phi-value analysis in protein folding studies, to provide quantitative analysis of the relationship between changes in the secondary structure stability and the activation free energy. Time course monitoring of the hybridization reaction was performed under pseudo-steady-state conditions using a single fluorophore. The phi-value analysis indicates that the native secondary structure remains intact in the transition state. The nativelike transition state was confirmed via examination of the salt dependence of the hybridization kinetics, indicating that the number of sodium ions associated with the transition state was not substantially affected by changes in the native secondary structure. These results propose that hybridization between structured nucleic acids undergoes a transition state leading to formation of a nucleation complex and then is followed by sequential displacement of preexisting base pairings involving successive small energy barriers. The proposed mechanism might provide new insight into physical processes during small RNA-mediated gene silencing, which is essential to selection of a target mRNA segment for siRNA design.

  5. A collagen-poly(lactic acid-co-ɛ-caprolactone) hybrid scaffold for bladder tissue regeneration.

    PubMed

    Engelhardt, Eva-Maria; Micol, Lionel A; Houis, Stephanie; Wurm, Florian M; Hilborn, Jöns; Hubbell, Jeffrey A; Frey, Peter

    2011-06-01

    Scaffold materials should favor cell attachment and proliferation, and provide designable 3D structures with appropriate mechanical strength. Collagen matrices have proven to be beneficial scaffolds for tissue regeneration. However, apart from small intestinal submucosa, they offer a limited mechanical strength even if crosslinking can enhance their mechanical properties. A more cell-friendly way to increase material strength is to combine synthetic polymer meshes with plastic compressed collagen gels. This work describes the potential of plastic compressed collagen-poly(lactic acid-co-ɛ-caprolactone) (PLAC) hybrids as scaffolds for bladder tissue regeneration. Human bladder smooth muscle and urothelial cells were cultured on and inside collagen-PLAC hybrids in vitro. Scaffolds were analyzed by electron microscopy, histology, immunohistochemistry, and AlamarBlue assay. Both cell types proliferated in and on the hybrid, forming dense cell layers on top after two weeks. Furthermore, hybrids were implanted subcutaneously in the backs of nude mice. Host cell infiltration, scaffold degradation, and the presence of the seeded bladder cells were analyzed. Hybrids showed a lower inflammatory reaction in vivo than PLAC meshes alone, and first signs of polymer degradation were visible at six months. Collagen-PLAC hybrids have potential for bladder tissue regeneration, as they show efficient cell seeding, proliferation, and good mechanical properties.

  6. Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels

    PubMed Central

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-01-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g. cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three dimensional (2D and 3D) culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications. PMID:23419055

  7. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  8. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  9. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  10. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  11. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  12. Design and analysis of linear cascade DNA hybridization chain reactions using DNA hairpins

    NASA Astrophysics Data System (ADS)

    Bui, Hieu; Garg, Sudhanshu; Miao, Vincent; Song, Tianqi; Mokhtar, Reem; Reif, John

    2017-01-01

    DNA self-assembly has been employed non-conventionally to construct nanoscale structures and dynamic nanoscale machines. The technique of hybridization chain reactions by triggered self-assembly has been shown to form various interesting nanoscale structures ranging from simple linear DNA oligomers to dendritic DNA structures. Inspired by earlier triggered self-assembly works, we present a system for controlled self-assembly of linear cascade DNA hybridization chain reactions using nine distinct DNA hairpins. NUPACK is employed to assist in designing DNA sequences and Matlab has been used to simulate DNA hairpin interactions. Gel electrophoresis and ensemble fluorescence reaction kinetics data indicate strong evidence of linear cascade DNA hybridization chain reactions. The half-time completion of the proposed linear cascade reactions indicates a linear dependency on the number of hairpins.

  13. Fragmentation reactions of deprotonated peptides containing aspartic acid

    NASA Astrophysics Data System (ADS)

    Harrison, Alex G.; Young, Alex B.

    2006-09-01

    The fragmentation reactions of deprotonated peptides containing aspartic acid have been elucidated using MS2 and MS3 experiments and accurate mass measurements where necessary. The disposition of labile (N and O bonded) hydrogens in the fragmentation products has been studied by exchanging the labile hydrogens for deuterium whereby the [MD]- ion is formed on electrospray ionization. [alpha]-Aspartyl and [beta]-aspartyl dipeptides give very similar fragment ion spectra on collisional activation, involving for both species primarily formation of the y1 ion and loss of H2O from [MH]- followed by further fragmentation, thus precluding the distinction of the isomeric species by negative ion tandem mass spectrometry. Dipeptides of sequence HXxxAspOH give characteristic spectra different from the [alpha]- and [beta]-isomers. For larger peptides containing aspartic acid a common fragmentation reaction involves nominal cleavage of the NC bond N-terminal to the aspartic acid residue to form a c ion (deprotonated amino acid amide (c1) or peptide amide (cn)) and the complimentary product involving elimination of a neutral amino acid amide or peptide amide. When aspartic acid is in the C-terminal position this fragmentation reaction occurs from the [MH]- ion while when the aspartic acid is not in the C-terminal position the fragmentation reaction occurs mainly from the [MHH2O]- ion. The products of this NC bond cleavage reaction serve to identify the position of the aspartic acid residue in the peptide.

  14. Iminodicarboxylic acids in the Murchison meteorite: Evidence of Strecker reactions

    NASA Astrophysics Data System (ADS)

    Lerner, Narcinda R.; Cooper, George W.

    2005-06-01

    α-Amino acids and α-hydroxy acids are well known constituents of several carbonaceous meteorites. One proposed mechanism of their formation is the reactions of CN -, NH 3, aldehydes and ketones in aqueous solution, a Strecker-like synthesis. Iminodicarboxylic acids, relatively unusual in molecular structure, are significant by-products of laboratory Strecker syntheses of α-amino acids. It is therefore notable that an analogous suite of imino acids has not been reported in CM2 chondrites where amino and hydroxy acids are abundant. In this work, aqueous extracts of the Murchison meteorite were examined for the presence of imino acids; GC-MS and HPLC molecular analyses revealed a complex suite of such acids. With the exception of one of the seven-carbon members, all of the C4 through C7 imino acids were observed in Murchison. These observations suggest that the Strecker synthesis made, at least, some contribution to the formation of extraterrestrial amino acids.

  15. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  16. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  17. Imino Acids in the Murchison Meteorite: Evidence of Strecker Reactions

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cooper, G. W.

    2003-01-01

    Both alpha-amino acids and alpha-hydroxy acids occur in aqueous extracts of the Murchison carbonaceous meteorite. The Strecker-cyanohydrin reaction, the reaction of carbonyl compounds, cyanide, and ammonia to produce amino and hydroxy acids, has been proposed as a source of such organic acids in meteorites. Such syntheses are consistent with the suggestion that interstellar precursors of meteoritic organic compounds accreted on the meteorite parent body together with other ices. Subsequent internal heating of the parent body melted these ices and led to the formation of larger compounds in synthetic reactions during aqueous alteration, which probably occurred at temperatures between 273K and 298K. In the laboratory, imino acids are observed as important by-products of the Strecker synthesis.

  18. Nucleic acid hybridization-an alternative tool in diagnostic microbiology.

    PubMed

    Pettersson, U; Hyypiä, T

    1985-09-01

    The use of radioimmunoossays (RIAs) and enzyme-linked immunosorbent assays (ELISAs) has revolutionized diagnostic microbiology. Their high specificity and sensitivity make them versatile, they are simple to carry out either for direct detection of microorganisms in specimens or for serological diagnosis, and they can easily and reliably be standardized. Monoclonal antibodies have further improved these immunoassays. However, the development of simple and highly sensitive detection methods for nucleic acids has nevertheless promoted an interest also in diagnostic methods based on nucleic acid hybridization. Here Ulf Pettersson and Timo Hyypiä discuss methods which are likely to become a useful complement to the immunoassays in the near future.

  19. Marangoni instability in the iodate–arsenous acid reaction front

    SciTech Connect

    Pópity-Tóth, Éva; Pótári, Gábor; Erdős, István; Tóth, Ágota; Horváth, Dezső

    2014-07-28

    Horizontally propagating chemical fronts leading to the formation of a single stable convection roll are investigated in the iodate–arsenous acid reaction with arsenous acid stoichiometrically limiting, leaving the surface active iodine present in the product mixture. In sufficiently thin solution layers with open upper surface, the contribution of Marangoni instability is significantly enhanced. Acting in the same direction as buoyancy driven instability, it distorts the entire tilted reaction front that becomes 50% more elongated. The corresponding three-dimensional calculations based on the empirical rate-law of the reaction corroborate the experimental findings.

  20. HRSSA – Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    SciTech Connect

    Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong

    2016-07-15

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  1. p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution.

    PubMed

    Zhang, Hongye; Xie, Yun; Liu, Zhimin; Tao, Ranting; Sun, Zhenyu; Ding, Kunlun; An, Guimin

    2009-10-15

    Monodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was demonstrated that the diameters of the resultant TiO2 spheres could be tuned in the range of 380-800 nm by changing the APA:TTIP molar ratio (1:3 to 3:1) and water content (1-3 v/v%) in the reaction medium, and that increasing the APA:TTIP molar ratio led to larger TiO2 hybrid spheres while increasing the water content decreased their size. The loading content of APA in the hybrid spheres could reach 20 wt.% as they were prepared with the APA:TTIP ratio of 3:1. The possible formation mechanism of the hybrid spheres was also investigated. It was found that APA slowed down the hydrolysis rate of the titanium precursor so that resulted in the formation of the TiO2 spheres. In addition, the APA present in TiO2 spheres acted as a reducing agent to in situ convert HAuCl4 into metallic Au on the surface of the TiO2 spheres. The catalytic activity of the resultant Au/APA-TiO2 composite was examined using transfer hydrogenation of phenylacetone with 2-propanol, and it was indicated that the catalyst displayed high efficiency for this reaction.

  2. Synthesis and conformational analysis of hybrid α/β-dipeptides incorporating S-glycosyl-β(2,2)-amino acids.

    PubMed

    García-González, Iván; Mata, Lara; Corzana, Francisco; Jiménez-Osés, Gonzalo; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2015-01-12

    We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α-amino acid attached to a quaternary glyco-β-amino acid. In particular, we combined a S-glycosylated β(2,2)-amino acid and two different types of α-amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β-dipeptides. The key step in the synthesis involved the ring-opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur-containing nucleophile by using 1-thio-β-D-glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time-averaged restraints (MD-tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β-amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α-amino acids due to the presence of CH-π interactions between the phenyl or indole ring and the methyl groups of the β-amino acid unit.

  3. Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions.

    PubMed

    Song, Jinliang; Zhou, Baowen; Zhou, Huacong; Wu, Lingqiao; Meng, Qinglei; Liu, Zhimin; Han, Buxing

    2015-08-03

    The utilization of compounds from natural sources to prepare functional materials is of great importance. Herein, we describe for the first time the preparation of organic-inorganic hybrid catalysts by using natural phytic acid as building block. Zirconium phosphonate (Zr-PhyA) was synthesized by reaction of phytic acid and ZrCl4 and was obtained as a mesoporous material with pore sizes centered around 8.5 nm. Zr-PhyA was used to catalyze the mild and selective Meerwein-Ponndorf-Verley (MPV) reduction of various carbonyl compounds, e.g., of levulinic acid and its esters into γ-valerolactone. Further studies indicated that both Zr and phosphate groups contribute significantly to the excellent performance of Zr-PhyA.

  4. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  5. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  6. Bipolar lead-acid battery for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Saakes, M.; Woortmeijer, R.; Schmal, D.

    Within the framework of the European project bipolar lead-acid power source (BILAPS), a new production route is being developed for the bipolar lead-acid battery. The performance targets are 500 W kg -1, 30 Wh kg -1 and 100 000 power-assist life cycles (PALCs). The operation voltage of the battery can be, according to the requirements, 12, 36 V or any other voltage. Tests with recently developed 4 and 12 V prototypes, each of 30 Ah capacity have demonstrated that the PALC can be operated using 10 C discharge and 9 C charge peaks. The tests show no overvoltage or undervoltage problems during three successive test periods of 16 h with 8 h rest in between. The temperature stabilizes during these tests at 40-45 °C using a thermal-management system. The bipolar lead acid battery is operated at an initial 50% state-of-charge. During the tests, the individual cell voltages display only very small differences. Tests are now in progress to improve further the battery-management system, which has been developed at the cell level, during the period no PALCs are run in order to improve the hybrid behaviour of the battery. The successful tests show the feasibility of operating the bipolar lead-acid battery in a hybrid mode. The costs of the system are estimated to be much lower than those for nickel-metal-hydride or Li-ion based high-power systems. An additional advantage of the lead-acid system is that recycling of lead-acid batteries is well established.

  7. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures.

    PubMed

    Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D; Lu, Dongping; Saraf, Laxmikant V; Engelhard, Mark; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L; Liu, Jun

    2014-01-01

    Lithium-sulphur batteries have high theoretical energy density and potentially low cost, but significant challenges such as severe capacity degradation prevent its widespread adoption. Here we report a new design of lithium-sulphur battery using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on lithium. Lithiated graphite placed in front of the lithium metal functions as an artificial, self-regulated solid electrolyte interface layer to actively control the electrochemical reactions and minimize the deleterious side reactions, leading to significant performance improvements. Lithium-sulphur cells incorporating this hybrid anodes deliver capacities of >800 mAh g(-1) for 400 cycles at a high rate of 1,737 mA g(-1), with only 11% capacity fade and a Coulombic efficiency >99%. This simple hybrid concept may also provide scientific strategies for protecting metal anodes in other energy-storage devices.

  8. Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid.

    PubMed

    Su, Chia-Hung

    2013-02-01

    The catalytic performance and recoverability of several homogeneous acid catalysts (hydrochloric, sulfuric, and nitric acids) for the esterification of enzyme-hydrolyzed free fatty acid (FFA) and methanol were studied. Although all tested catalysts drove the reaction to a high yield, hydrochloric acid was the only catalyst that could be considerably recovered and reused. The kinetics of the esterification reaction catalyzed by hydrochloric acid was investigated under varying catalyst loading (0.1-1M), reaction temperature (303-343K), and methanol/FFA molar ratio (1:1-20:1). In addition, a pseudo-homogeneous kinetic model incorporating the above factors was developed. A good agreement (r(2)=0.98) between the experimental and calculated data was obtained, thus proving the reliability of the model. Furthermore, the reusability of hydrochloric acid in FFA esterification can be predicted by the developed model. The recoverable hydrochloric acid achieved high yields of FFA esterification within five times of reuse.

  9. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    SciTech Connect

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  10. Dissolution, speciation, and reaction of acetaldehyde in cold sulfuric acid

    NASA Astrophysics Data System (ADS)

    Michelsen, Rebecca R.; Ashbourn, Samantha F. M.; Iraci, Laura T.

    2004-12-01

    The uptake of gas-phase acetaldehyde [CH3CHO, ethanal] by aqueous sulfuric acid solutions was studied under upper tropospheric/lower stratospheric (UT/LS) conditions. The solubility of acetaldehyde was found to be low, between 2 × 102 M atm-1 and 1.5 × 105 M atm-1 under the ranges of temperature (211-241 K) and acid composition (39-76 weight percent, wt%, H2SO4) studied. Under most conditions, acetaldehyde showed simple solubility behavior when exposed to sulfuric acid. Under moderately acidic conditions (usually 47 wt% H2SO4), evidence of reaction was observed. Enhancement of uptake at long times was occasionally detected in conjunction with reaction. The source of these behaviors and the effect of acetaldehyde speciation on solubility are discussed. Implications for the uptake of oxygenated organic compounds by tropospheric aerosols are considered.

  11. Improved DNA hybridization parameters by Twisted Intercalating Nucleic Acid (TINA).

    PubMed

    Schneider, Uffe Vest

    2012-01-01

    This thesis establishes oligonucleotide design rules and applications of a novel group of DNA stabilizing molecules collectively called Twisted Intercalating Nucleic Acid - TINA. Three peer-reviewed publications form the basis for the thesis. One publication describes an improved and rapid method for determination of DNA melting points and two publications describe the effects of positioning TINA molecules in parallel triplex helix and antiparallel duplex helix forming DNA structures. The third publication establishes that TINA molecules containing oligonucleotides improve an antiparallel duplex hybridization based capture assay's analytical sensitivity compared to conventionel DNA oligonucleotides. Clinical microbiology is traditionally based on pathogenic microorganisms' culture and serological tests. The introduction of DNA target amplification methods like PCR has improved the analytical sensitivity and total turn around time involved in clinical diagnostics of infections. Due to the relatively weak hybridization between the two strands of double stranded DNA, a number of nucleic acid stabilizing molecules have been developed to improve the sensitivity of DNA based diagnostics through superior binding properties. A short introduction is given to Watson-Crick and Hoogsteen based DNA binding and the derived DNA structures. A number of other nucleic acid stabilizing molecules are described. The stabilizing effect of TINA molecules on different DNA structures is discussed and considered in relation to other nucleic acid stabilizing molecules and in relation to future use of TINA containing oligonucleotides in clinical diagnostics and therapy. In conclusion, design of TINA modified oligonucleotides for antiparallel duplex helixes and parallel triplex helixes follows simple purpose dependent rules. TINA molecules are well suited for improving multiplex PCR assays and can be used as part of novel technologies. Future research should test whether combinations of TINA

  12. Wang-Landau Reaction Ensemble Method: Simulation of Weak Polyelectrolytes and General Acid-Base Reactions.

    PubMed

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-02-14

    We present a novel method for the study of weak polyelectrolytes and general acid-base reactions in molecular dynamics and Monte Carlo simulations. The approach combines the advantages of the reaction ensemble and the Wang-Landau sampling method. Deprotonation and protonation reactions are simulated explicitly with the help of the reaction ensemble method, while the accurate sampling of the corresponding phase space is achieved by the Wang-Landau approach. The combination of both techniques provides a sufficient statistical accuracy such that meaningful estimates for the density of states and the partition sum can be obtained. With regard to these estimates, several thermodynamic observables like the heat capacity or reaction free energies can be calculated. We demonstrate that the computation times for the calculation of titration curves with a high statistical accuracy can be significantly decreased when compared to the original reaction ensemble method. The applicability of our approach is validated by the study of weak polyelectrolytes and their thermodynamic properties.

  13. Kinetic-spectrophotometric determination of ascorbic acid by inhibition of the hydrochloric acid-bromate reaction

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Rezaei, B.; Movahedinia, H.

    2002-10-01

    A new analytical method was developed for the determination of ascorbic acid in fruit juice and pharmaceuticals. The method is based on its inhibition effect on the reaction between hydrochloric acid and bromate. The decolourisation of Methyl Orange by the reaction products was used to monitor the reaction spectrophotometrically at 510 nm. The linearity range of the calibration graph depends on bromate concentration. The variable affecting the rate of the reaction was investigated. The method is simple, rapid, relatively sensitive and precise. The limit of detection is 7.6×10 -6 M and calibration rang is 8×10 -6-1.2×10 -3 M ascorbic acid. The relative standard deviation of seven replication determinations of 8×10 -6 and 2×10 -5 M ascorbic acid was 2.8 and 1.7%, respectively. The influence of potential interfering substance was studied. The method was successfully applied for the determination of ascorbic acid in pharmaceuticals.

  14. Deoxyribonucleic Acid Polymerase of Rous Sarcoma Virus: Reaction Conditions and Analysis of the Reaction Product Nucleic Acids

    PubMed Central

    Bishop, D. H. L.; Ruprecht, Ruth; Simpson, R. W.; Spiegelman, S.

    1971-01-01

    Reaction conditions for Rous sarcoma virus ribonucleic acid (RNA)-instructed deoxyribonucleic acid (DNA) polymerase activity are described whereby the viral RNA is relatively protected from endogenous or added nuclease activity. Three analyses of reaction product nucleic acids (3H-RNA, 32P-DNA) were compared, namely, gel electrophoresis, Cs2SO4 gradient centrifugation, and hydroxyapatite column chromatography. It was found that hydroxyapatite analysis could be misleading unless the state of the template RNA was monitored concomitantly with the DNA analysis. Gel electrophoresis and Cs2SO4 gradient centrifugation gave comparable results. It was concluded that analyses of the product of reverse transcriptase reactions should not only refer to the template RNA and product DNA species, but also be performed with virus or viral RNA which do not have or obtain nicks in the 60S RNA. Otherwise, interpretation of the results would have the ambiguity of potential artifacts caused by those degraded RNA molecules. PMID:4332143

  15. Dissociative attachment reactions of electrons with strong acid molecules

    SciTech Connect

    Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J.

    1986-06-15

    Using the flowing afterglow/Langmuir probe (FALP) technique, we have determined (at variously 300 and 570 K) the dissociative attachment coefficients ..beta.. for the reactions of electrons with the common acids HNO/sub 3/ (producing NO/sup -//sub 2/) and H/sub 2/SO/sub 4/ (HSO/sup -//sub 4/), the superacids FSO/sub 3/H (FSO/sup -//sub 3/), CF/sub 3/SO/sub 3/H (CF/sub 3/SO/sup -//sub 3/), ClSO/sub 3/H (ClSO/sup -//sub 3/,Cl/sup -/), the acid anhydride (CF/sub 3/SO/sub 2/)/sub 2/O (CF/sub 3/SO/sup -//sub 3/), and the halogen halides HBr (Br/sup -/) and HI (I/sup -/). The anions formed in the reactions are those given in the parentheses. The reactions with HF and HCl were investigated, but did not occur at a measurable rate since they are very endothermic. Dissociative attachment is rapid for the common acids, the superacids, and the anhydride, the measured ..beta.. being appreciable fractions of the theoretical maximum ..beta.. for such reactions, ..beta../sub max/. The HI reaction is very fast ( ..beta..approx...beta../sub max/) but the HBr reaction occurs much more slowly because it is significantly endothermic. The data indicate that the extreme acidity of the (Bronsted-type) superacids has its equivalence in the very efficient gas-phase dissociative attachment which these species undergo when reacting with free electrons. The anions of the superacids generated in these reactions, notably FSO/sup -//sub 3/ and CF/sub 3/SO/sup -//sub 3/, are very stable (unreactive) implying exceptionally large electron affinities for the FSO/sub 3/ and CF/sub 3/SO/sub 3/ radicals.

  16. Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis.

    PubMed

    Liu, Zhongshan; Liu, Jing; Liu, Zheyi; Wang, Hongwei; Ou, Junjie; Ye, Mingliang; Zou, Hanfa

    2017-01-16

    The vinyl-functionalized hybrid monolithic columns (75 and 150μm i.d.) were prepared via sol-gel chemistry of tetramethoxysilane (TMOS) and vinyltrimethoxysilane (VTMS). The content of accessible vinyl groups was further improved after the monolithic column was post-treated with vinyldimethylethoxysilane (VDMES). The surface properties of monolithic columns were tailored via thiol-ene click reaction by using 1-octadecanethiol, sodium 3-mercapto-1-propanesulfonate and 2,2'-(ethylenedioxy)diethanethiol/vinylphosphonic acid, respectively. The preparing octadecyl-functionalized monolithic columns were adopted for proteomics analysis in cLC-MS/MS. A 37-cm-long×75-μm-i.d. monolithic column could identify 3918 unique peptides and 1067 unique proteins in the tryptic digest of proteins from HeLa cells. When a 90-cm-long×75-μm-i.d. monolithic column was used, the numbers of unique peptides and proteins were increased by 82% and 32%, respectively. Furthermore, strong cation exchange (SCX) monolithic columns (4cm in length×150μm i.d.) were also prepared and coupled with the 37-cm-long×75-μm-i.d. octadecyl-functionalized monolithic column for two-dimensional SCX-RPLC-MS/MS analysis, which could identify 17114 unique peptides and 3211 unique proteins.

  17. Universal Dynamic DNA Assembly-Programmed Surface Hybridization Effect for Single-Step, Reusable, and Amplified Electrochemical Nucleic Acid Biosensing.

    PubMed

    Liu, Shufeng; Fang, Li; Wang, Yanqun; Wang, Li

    2017-03-07

    The traditional sensitive electrochemical biosensors are commonly confronted with the cumbersome interface operation and washing procedures and the inclusion of extra exogenous reagents, which impose the challenge on the detection simplicity, reliability, and reusability. Herein, we present the proof-of-principle of a unique biosensor architecture based on dynamic DNA assembly programmed surface hybridization, which confers the single-step, reusable, and enzyme-free amplified electrochemical nucleic acid analysis. To demonstrate the fabrication universality three dynamic DNA assembly strategies including DNA-fueled target recycling, catalytic hairpin DNA assembly, and hybridization chain reaction were flexibly harnessed to convey the homogeneous target recognition and amplification events into various DNA scaffolds for the autonomous proximity-based surface hybridization. The current biosensor architecture features generalizability, simplicity, low cost, high sensitivity, and specificity over the traditional nucleic acid-related amplified biosensors. The lowest detection limit of 50 aM toward target DNA could be achieved by hybridization chain reaction-programmed surface hybridization. The reliable working ability for both homogeneous solution and heterogeneous inteface facilitates the target analysis with a robust reliability and reproducibility, also making it to be readily extended for the integration with the kinds of detecting platforms. Thus, it may hold great potential for the biosensor fabrication served for the point-of-care applications in resource constrained regions.

  18. Reactions of Thiocyanate Ions with Acid: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1984-01-01

    Background information, procedures, and typical results are provided for a three-part experiment involving reactions of potassium thiocynate (KNCS) with sulfuric acid. The experiment represents the final stage of structured work prior to students' research projects during their final year. (JM)

  19. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  20. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  1. Change of monochloroacetic acid to biodegradable organic acids by hydrothermal reaction.

    PubMed

    Kim, Kyoungrean; Fujita, Masafumi; Daimon, Hiroyuki; Fujie, Koichi

    2004-04-30

    The feasibility of biodegradability improvement induced from the structural conversion of refractory pollutants by hydrothermal reaction was investigated. Monochloroacetic acid (MCAA) was selected as a preliminary material represented for linear hydrocarbon structured refractory pollutants. Under the tested conditions, MCAA was partially destructed and then converted to biodegradable reaction products by hydrolysis, dehydration and thermal decomposition. The identified products were glycolic acid, citric acid and formic acid. Total organic carbon (TOC) reduction during the structural conversion did not exceed 24%, except the results at the reaction conditions of 350 degrees C and 17 MPa. However, Produced biodegradable organic acids were reduced by thermal decomposition with increasing reaction temperature and time. At the reaction temperature of 250 and 300 degrees C, biodegradability (BOD/COD(Cr)) was reached at 0.51 in 6.9 min and 0.52 in 7.4 min despite the presence of dissociated chlorine ions. The detachment of recalcitrant chlorine ion from MCAA and the production of biodegradable organic acids by hydrothermal reaction were directly related to the biodegradability improvement of reaction products.

  2. Carbohydrate-steroid conjugation by Ugi reaction: one-pot synthesis of triple sugar/pseudo-peptide/spirostane hybrids.

    PubMed

    Rivera, Daniel G; Pérez-Labrada, Karell; Lambert, Liudmila; Dörner, Simon; Westermann, Bernhard; Wessjohann, Ludger A

    2012-10-01

    The one-pot synthesis of novel molecular chimeras incorporating sugar, pseudo-peptide, and steroidal moieties is described. For this, a new carbohydrate-steroid conjugation approach based on the Ugi four-component reaction was implemented for the ligation of glucose and chacotriose to spirostanic steroids. The approach proved wide substrate scope, as both mono and oligosaccharides functionalized with amino, carboxy, and isocyano groups were conjugated to steroidal substrates in an efficient, multicomponent manner. Two alternative strategies based on the hydrazoic acid variant of the Ugi reaction were employed for the synthesis of tetrazole-based chacotriose-diosgenin conjugates resembling naturally occurring spirostan saponins. This is the first time that triple sugar/pseudo-peptide/steroid hybrids are produced, thus opening up an avenue of opportunities for applications in drug discovery and biological chemistry.

  3. Template directed reactions of 2-aminoadenylic acid derivatives

    NASA Technical Reports Server (NTRS)

    Webb, T. R.; Orgel, L. E.

    1982-01-01

    The template-directed oligomerization of activated derivatives of 2-aminoadenylic acid (paA) on polyuridylic acid (poly(U)) in aqueous buffers was studied. The reaction differs from that of adenylic acid (pA) under identical conditions, in that only di- and tri-nucleotides are observed as substantial products rather than a longer sequence of oligomers. The reaction of paA also differs from that of pA in that it does not require Mg (2+), and is less susceptible to increased temperature. The relevance of these observations to the chemical evolution of polynucleotide replication is discussed. Improved syntheses of paA and its diphosphate are reported.

  4. Meta-DNA: synthetic biology via DNA nanostructures and hybridization reactions

    PubMed Central

    Chandran, Harish; Gopalkrishnan, Nikhil; Yurke, Bernard; Reif, John

    2012-01-01

    Can a wide range of complex biochemical behaviour arise from repeated applications of a highly reduced class of interactions? In particular, can the range of DNA manipulations achieved by protein enzymes be simulated via simple DNA hybridization chemistry? In this work, we develop a biochemical system which we call meta-DNA (abbreviated as mDNA), based on strands of DNA as the only component molecules. Various enzymatic manipulations of these mDNA molecules are simulated via toehold-mediated DNA strand displacement reactions. We provide a formal model to describe the required properties and operations of our mDNA, and show that our proposed DNA nanostructures and hybridization reactions provide these properties and functionality. Our meta-nucleotides are designed to form flexible linear assemblies (single-stranded mDNA (ssmDNA)) analogous to single-stranded DNA. We describe various isothermal hybridization reactions that manipulate our mDNA in powerful ways analogous to DNA–DNA reactions and the action of various enzymes on DNA. These operations on mDNA include (i) hybridization of ssmDNA into a double-stranded mDNA (dsmDNA) and heat denaturation of a dsmDNA into its component ssmDNA, (ii) strand displacement of one ssmDNA by another, (iii) restriction cuts on the backbones of ssmDNA and dsmDNA, (iv) polymerization reactions that extend ssmDNA on a template to form a complete dsmDNA, (v) synthesis of mDNA sequences via mDNA polymerase chain reaction, (vi) isothermal denaturation of a dsmDNA into its component ssmDNA, and (vii) an isothermal replicator reaction that exponentially amplifies ssmDNA strands and may be modified to allow for mutations. PMID:22237679

  5. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    NASA Astrophysics Data System (ADS)

    Silva Mojica, Ernesto

    Porous materials comprising polymeric and inorganic segments have attracted interest from the scientific community due to their unique properties and functionalities. The physical and chemical characteristics of these materials can be effectively exploited for adsorption applications. This dissertation covers the experimental techniques for fabrication of poly(vinyl alcohol) (PVA) and silica (SiO2) porous supports, and their functionalization with polyamines for developing adsorbents with potential applications in separation of CO2 and catalysis of organic reactions. The supports were synthesized by processes involving (i) covalent cross-linking of PVA, (ii) hydrolysis and poly-condensation of silica precursors (i,e,. sol-gel synthesis), and formation of porous structures via (iii) direct templating and (iv) phase inversion techniques. Their physical structure was controlled by the proper combination of the preparation procedures, which resulted in micro-structured porous materials in the form of micro-particles, membranes, and pellets. Their adsorption characteristics were tailored by functionalization with polyethyleneimine (PEI), and their physicochemical properties were characterized by vibrational spectroscopy (FTIR, UV-vis), microscopy (SEM), calorimetry (TGA, DSC), and adsorption techniques (BET, step-switch adsorption). Spectroscopic investigations of the interfacial cross-linking reactions of PEI and PVA with glutaraldehyde (GA) revealed that PEI catalyzes the cross-linking reactions of PVA in absence of external acid catalysts. In-situ IR spectroscopy coupled with a focal plane array (FPA) image detector allowed the characterization of a gradient interface on a PEI/PVA composite membrane and the investigation of the cross-linking reactions as a function of time and position. The results served as a basis to postulate possible intermediates, and propose the reaction mechanisms. The formulation of amine-functionalized CO2 capture sorbents was based on the

  6. A Gallium Oxide-Graphene Oxide Hybrid Composite for Enhanced Photocatalytic Reaction

    PubMed Central

    Kim, Seungdu; Han, Kook In; Lee, In Gyu; Park, Won Kyu; Yoon, Yeojoon; Yoo, Chan Sei; Yang, Woo Seok; Hwang, Wan Sik

    2016-01-01

    Hybrid composites (HCs) made up of gallium oxide (GaO) and graphene oxide (GO) were investigated with the intent of enhancing a photocatalytic reaction under ultraviolet (UV) radiation. The material properties of both GaO and GO were preserved, even after the formation of the HCs. The incorporation of the GO into the GaO significantly enhanced the photocatalytic reaction, as indicated by the amount of methylene blue (MB) degradation. The improvements in the reaction were discussed in terms of increased surface area and the retarded recombination of generated charged carriers. PMID:28335255

  7. Highly specific and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection.

    PubMed

    Huang, Yong; Zhang, Yan-Li; Xu, Xiangmin; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2009-02-25

    This paper developed a novel electrochemical genotyping strategy based on gap ligation reaction with surface hybridization detection. This strategy utilized homogeneous enzymatic reactions to generate molecular beacon-structured allele-specific products that could be cooperatively annealed to capture probes stably immobilized on the surface via disulfide anchors, thus allowing ultrasensitive surface hybridization detection of the allele-specific products through redox tags in close proximity to the electrode. Such a unique biphasic architecture provided a universal methodology for incorporating enzymatic discrimination reactions in electrochemical genotyping with desirable reproducibility, high efficiency and no interferences from interficial steric hindrance. The developed technique was demonstrated to show intrinsic high sensitivity for direct genomic analysis, and excellent specificity with discriminativity of single nucleotide variations.

  8. Tuning Lipase Reaction for Production of Fatty Acids from Oil.

    PubMed

    Odaneth, Annamma A; Vadgama, Rajeshkumar N; Bhat, Anuradha D; Lali, Arvind M

    2016-10-01

    Fats or oils are split partially or completely to obtain fatty acids that find wide applications in oleo-chemical industries. Lipase-mediated complete splitting (hydrolysis) of oils is a green process having great potential to replace the traditional methods of oil splitting. However, cost of lipases, mechanistic kinetic equilibrium and associated operational limitations prove to be deterrents for scale up of the enzymatic oil splitting process. In the present study, we demonstrate the use of immobilised 1,3-regioselective lipase (HyLIP) for complete hydrolysis of oil in monophasic reaction medium. Incorporation of a polar organic solvent (tert-butanol, 1:5, v/v) homogenises the oil-water mixture and contributes positively towards complete hydrolysis. The monophasic oil hydrolysis reaction with optimised water concentration (0.05 %, v/v) gave Free Fatty Acid (FFA) yield of 88 % (HyLIP and Novozym-435) and 66 % (TLIM and RMIM). Smart reaction engineering and modification of the reaction intermediates to favourable substrate lead to ∼99 % degree of hydrolysis of triglycerides with ∼90 % FFA yield using 1,3-regioselective lipase. The present work becomes basic platform for developing technologies for synthesis of fatty acids, monoglycerides, diglycerides and glycerol.

  9. Thermochemistry for silicic acid formation reaction: Prediction of new reaction pathway

    NASA Astrophysics Data System (ADS)

    Mondal, Bhaskar; Ghosh, Deepanwita; Das, Abhijit K.

    2009-08-01

    Reaction between SiO 2 and water has been studied extensively using ab initio methods. The mechanism for formation of metasilicic acid SiO(OH) 2 and orthosilicic acid Si(OH) 4 has been explored and a new pathway for formation of Si(OH) 4 is predicted. Heats of reaction ( ΔrH298∘) and heats of formation ( ΔfH298∘) at 298 K for the related reactions and species calculated at two different theoretical levels G3B3 and G3MP2B3 agree well with the literature values. It is found that when SiO 2 reacts simultaneously with two water molecules, the thermodynamic as well as kinetic feasibility of the process is much greater than that when SiO 2 reacts with one molecule of water.

  10. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1997-04-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided. 7 figs.

  11. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1997-01-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided.

  12. Phosphoric Acid-Mediated Synthesis of Vinyl Sulfones through Decarboxylative Coupling Reactions of Sodium Sulfinates with Phenylpropiolic Acids.

    PubMed

    Rong, Guangwei; Mao, Jincheng; Yan, Hong; Zheng, Yang; Zhang, Guoqi

    2015-08-07

    A novel phosphoric acid -mediated synthesis of vinyl sulfones through decarboxylative coupling reactions of sodium sulfinates with phenylpropiolic acids is described. This transformation is efficient and environmentally friendly.

  13. Heterogeneous atmospheric reactions - Sulfuric acid aerosols as tropospheric sinks

    NASA Technical Reports Server (NTRS)

    Baldwin, A. C.; Golden, D. M.

    1979-01-01

    The reaction probabilities of various atmospheric species incident on a bulk sulfuric acid surface are measured in order to determine the role of sulfuric acid aerosols as pollutant sinks. Reaction products and unreacted starting materials leaving a Knudsen cell flow reactor after collision at 300 K with a H2SO4 surface or a soot surface were detected by mass spectrometry. Significant collision reaction probabilities are observed on a H2SO4 surface for H2O2, HNO3, HO2NO2, ClONO2, N2O5, H2O and NH3, and on soot for NH3. Estimates of the contribution of heterogeneous reactions to pollutant removal under atmospheric conditions indicate that while aerosol removal in the stratosphere is insignificant (loss rate constants approximately 10 to the -10th/sec), heterogeneous reactions may be the dominant loss process for several tropospheric species (loss rate constant approximately 10 to the -5th/sec, comparable to photolysis rate constants).

  14. Reaction of acetaldehyde with 5-aminolevulinic acid via dihydropyrazine derivative.

    PubMed

    Suzuki, Toshinori; Yasuhara, Naoki; Ueda, Takashi; Inukai, Michiyo; Mio, Mitsunobu

    2015-01-01

    When a solution of 5-aminolevulinic acid (ALA) was incubated with acetaldehyde at neutral pH, a product was generated. This product was identified as 3-ethylpyrazine-2,5-dipropanoic acid (ETPY). ETPY was stable at neutral pH. It has been reported that ALA dimerizes at neutral pH generating 3,6-dihydropyrazine-2,5-dipropanoic acid (DHPY), and subsequently resulting in pyrazine-2,5-dipropanoic acid (PY) by autoxidation. In the present reaction, DHPY generated from ALA reacted with acetaldehyde, resulting in ETPY. Preadministration of ALA 3 min prior to acetaldehyde injection supressed the toxicity of acetaldehyde in male mice. These results suggest that ALA may be useful as a scavenger for acetaldehyde.

  15. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions.

  16. Photodegradation of lipopolysaccharides and the inhibition of macrophage activation by anthraquinone-boronic acid hybrids.

    PubMed

    Takahashi, Daisuke; Miura, Takuya; Toshima, Kazunobu

    2012-08-07

    Target-selective photodegradation of 3-deoxy-D-manno-2-octulopyranosonic acid (KDO) was achieved without additives and under neutral conditions using a designed anthraquinone-boronic acid hybrid and long wavelength UV light irradiation. The hybrid can photodegrade lipopolysaccharides (LPS) and inhibit macrophage activation induced by LPS.

  17. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  18. Mechanism of arylboronic acid-catalyzed amidation reaction between carboxylic acids and amines.

    PubMed

    Wang, Chen; Yu, Hai-Zhu; Fu, Yao; Guo, Qing-Xiang

    2013-04-07

    Arylboronic acids were found to be efficient catalysts for the amidation reactions between carboxylic acids and amines. Theoretical calculations have been carried out to investigate the mechanism of this catalytic process. It is found that the formation of the acyloxyboronic acid intermediates from the carboxylic acid and the arylboronic acid is kinetically facile but thermodynamically unfavorable. Removal of water (as experimentally accomplished by using molecular sieves) is therefore essential for overall transformation. Subsequently C-N bond formation between the acyloxyboronic acid intermediates and the amine occurs readily to generate the desired amide product. The cleavage of the C-O bond of the tetracoordinate acyl boronate intermediates is the rate-determining step in this process. Our analysis indicates that the mono(acyloxy)boronic acid is the key intermediate. The high catalytic activity of ortho-iodophenylboronic acid is attributed to the steric effect as well as the orbital interaction between the iodine atom and the boron atom.

  19. Metal-Carbon Hybrid Electrocatalysts Derived from Ion-Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction.

    PubMed

    Zhou, Yucheng; Zhou, Weijia; Hou, Dongman; Li, Guoqiang; Wan, Jinquan; Feng, Chunhua; Tang, Zhenghua; Chen, Shaowei

    2016-05-01

    Transition metal-carbon hybrids have been proposed as efficient electrocatalysts for hydrogen evolution reaction (HER) in acidic media. Herein, effective HER electrocatalysts based on metal-carbon composites are prepared by controlled pyrolysis of resin containing a variety of heavy metals. For the first time, Cr2 O3 nanoparticles of 3-6 nm in diameter homogeneously dispersed in the resulting porous carbon framework (Cr-C hybrid) is synthesized as efficient HER electrocatalyst. Electrochemical measurements show that Cr-C hybrids display a high HER activity with an onset potential of -49 mV (vs reversible hydrogen electrode), a Tafel slope of 90 mV dec(-1) , a large catalytic current density of 10 mA cm(-2) at -123 mV, and the prominent electrochemical durability. X-ray photoelectron spectroscopic measurements confirm that electron transfer occurs from Cr2 O3 into carbon, which is consistent with the reported metal@carbon systems. The obtained correlation between metals and HER activities may be exploited as a rational guideline in the design and engineering of HER electrocatalysts.

  20. Serum uric acid levels during leprosy reaction episodes

    PubMed Central

    Alves-Junior, Eduardo R.; Arruda, Talita A.; Lopes, Jose C.; Fontes, Cor J.F.

    2016-01-01

    Background. Leprosy reactions are acute inflammatory episodes that occur mainly in the multibacillary forms of the disease. The reactions are classified as type 1 (reverse reaction) or type 2 (erythema nodosum leprosum). Leprosy-associated oxidative stress has been widely demonstrated. Several recent studies have shown uric acid (UA) to have antioxidative effects under pathologic conditions. The objective of this study was to assess serum levels of UA in patients with leprosy reactions, with the aim of monitoring their levels before and after treatment, compared with levels in leprosy patients without reactions. Methods. The study included patients aged 18–69 years assisted at a leprosy treatment reference center in the Central Region of Brazil. Patients who were pregnant; were using immunosuppressant drugs or immunobiologicals; or had an autoimmune disease, human immunodeficiency virus infection, acquired immune deficiency syndrome, or tuberculosis were excluded. Upon recruitment, all individuals were clinically assessed for skin lesions and neural or systemic impairment. Some patients had already completed treatment for leprosy, while others were still undergoing treatment or had initiated treatment after being admitted. The treatment of the reactional episode was started only after the initial evaluation. Laboratory assessments were performed upon admission (baseline) and at approximately 30 and 60 days (time points 1 and 2, respectively). Results. A total of 123 leprosy patients were recruited between June 2012 and June 2015; among them, 56, 42, and 25 presented with type 1, type 2, and no reactions, respectively. Serum UA levels were significantly reduced in patients with type 2 leprosy reactions compared with patients in the control group and remained lower in the two subsequent assessments, after initiation of anti-reaction treatments, with similar values to those recorded before the treatment. Discussion. The decreased serum UA levels in patients with

  1. Identification of Actinobacillus actinomycetemcomitans by leukotoxin gene-specific hybridization and polymerase chain reaction assays.

    PubMed Central

    Tønjum, T; Haas, R

    1993-01-01

    Eleven strains of Actinobacillus actinomycetemcomitans isolated from cases of systemic infections, local abscesses, and periodontitis were identified by genetic assays using the leukotoxin gene as the target. We have developed a polymerase chain reaction (PCR) assay, based on the leukotoxin structural gene of this pathogen, which clearly identified all tested strains of A. actinomycetemcomitans and separated them from the closely related Haemophilus aphrophilus as well as other bacterial species. Furthermore, DNA-DNA hybridization was performed with the cloned partial leukotoxin structural gene (lktA) as a probe, which again clearly distinguished A. actinomycetemcomitans from H. aphrophilus, parts of the normal oral flora, and species harboring RTX (repeats in toxin) family-related cytotoxins. The PCR fragment amplified from the leukotoxin structural gene gave results similar to those given by the cloned leukotoxin gene when used as a probe in hybridization experiments. The hybridization and PCR assays described here are fundamental improvements for the identification of A. actinomycetemcomitans. Images PMID:8349764

  2. Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Turki, Thouraya; Othmani, Masseoud; Bantignies, Jean-Louis; Bouzouita, Khaled

    2014-01-01

    Hydroxyapatites were prepared in the presence of different amounts of phosphonoformic acid (PFA) via the hydrothermal method. The obtained powders were characterized through chemical analysis, XRD, IR, 31P MAS-NMR, TEM, and TG-TDA. The XRD showed that the PFA did not affect the apatite composition. Indeed, only a reduction of the crystallite size was noted. After grafting of PFA, the IR spectroscopy revealed the appearance of new bands belonging to HPO42- and carboxylate groups of the apatite and organic moiety, respectively. Moreover, the 31P MAS-NMR spectra exhibited a peak with a low intensity assigned to the terminal phosphonate group of the organic moiety in addition to that of the apatite. Based on these results, a reaction mechanism involving the surface hydroxyl groups (tbnd Casbnd OH) of the apatite and the carboxyl group of the acid was proposed.

  3. Heterogeneous Reaction of HO2 Radical with Dicarboxylic Acid Particles

    NASA Astrophysics Data System (ADS)

    Taketani, F.; Kanaya, Y.

    2010-12-01

    HOx(OH+ HO2) radical plays a central role in the tropospheric chemistry. Recently, the heterogeneous loss of HO2 by aerosol particles is a potentially important HOx sink in the troposphere suggested from observation study. However, there have been few studies for loss of HO2 by aerosols. In this study, we measured the HO2 uptake coefficients for four dicarboxylic acids (succinic acid, glutaric acid, adipic acid, and pimelic acid) aerosol particles under ambient conditions (760Torr and 296K) using an aerosol flow tube(AFT) coupled with a chemical conversion /laser-induced fluorescence(CC/LIF) technique. The CC/LIF technique enabled experiments to be performed at almost the same HO2 radical concentration as that in the atmosphere(-10^8 molecules/cm^3). In this system, the effect of the self-reaction of HO2 in the gas phase can be neglected. HO2 radicals were injected into the AFT through a vertically movable Pyrex tube. Injector position dependent profiles of LIF intensity were measured as a function of aerosol concentration at 30% and 70% of relative humilities (RH). Determined HO2 uptake coefficients by succinic acid, glutaric acid, adipic acid, and pimelic acid aerosol particles at 30% RH were 0.05 +/- 0.02, 0.07 +/- 0.03, 0.02 +/- 0.01, and 0.06 +/- 0.03, respectively, while the uptake coefficients by those particles at 70% RH were 0.13 +/- 0.05, 0.13 +/- 0.03, 0.06 +/- 0.01, and 0.11 +/- 0.03, respectively. These results suggest that compositions and relative humidity are significant to the HO2 uptake. We will discuss the potential HO2 loss processes.

  4. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz [Livermore, CA

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  5. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  6. Ultrafast Dynamics of Plasmon-Exciton Interaction of Ag Nanowire- Graphene Hybrids for Surface Catalytic Reactions

    PubMed Central

    Ding, Qianqian; Shi, Ying; Chen, Maodu; Li, Hui; Yang, Xianzhong; Qu, Yingqi; Liang, Wenjie; Sun, Mengtao

    2016-01-01

    Using the ultrafast pump-probe transient absorption spectroscopy, the femtosecond-resolved plasmon-exciton interaction of graphene-Ag nanowire hybrids is experimentally investigated, in the VIS-NIR region. The plasmonic lifetime of Ag nanowire is about 150 ± 7 femtosecond (fs). For a single layer of graphene, the fast dynamic process at 275 ± 77 fs is due to the excitation of graphene excitons, and the slow process at 1.4 ± 0.3 picosecond (ps) is due to the plasmonic hot electron interaction with phonons of graphene. For the graphene-Ag nanowire hybrids, the time scale of the plasmon-induced hot electron transferring to graphene is 534 ± 108 fs, and the metal plasmon enhanced graphene plasmon is about 3.2 ± 0.8 ps in the VIS region. The graphene-Ag nanowire hybrids can be used for plasmon-driven chemical reactions. This graphene-mediated surface-enhanced Raman scattering substrate significantly increases the probability and efficiency of surface catalytic reactions co-driven by graphene-Ag nanowire hybridization, in comparison with reactions individually driven by monolayer graphene or single Ag nanowire. This implies that the graphene-Ag nanowire hybrids can not only lead to a significant accumulation of high-density hot electrons, but also significantly increase the plasmon-to-electron conversion efficiency, due to strong plasmon-exciton coupling. PMID:27601199

  7. Ultrafast Dynamics of Plasmon-Exciton Interaction of Ag Nanowire- Graphene Hybrids for Surface Catalytic Reactions

    NASA Astrophysics Data System (ADS)

    Ding, Qianqian; Shi, Ying; Chen, Maodu; Li, Hui; Yang, Xianzhong; Qu, Yingqi; Liang, Wenjie; Sun, Mengtao

    2016-09-01

    Using the ultrafast pump-probe transient absorption spectroscopy, the femtosecond-resolved plasmon-exciton interaction of graphene-Ag nanowire hybrids is experimentally investigated, in the VIS-NIR region. The plasmonic lifetime of Ag nanowire is about 150 ± 7 femtosecond (fs). For a single layer of graphene, the fast dynamic process at 275 ± 77 fs is due to the excitation of graphene excitons, and the slow process at 1.4 ± 0.3 picosecond (ps) is due to the plasmonic hot electron interaction with phonons of graphene. For the graphene-Ag nanowire hybrids, the time scale of the plasmon-induced hot electron transferring to graphene is 534 ± 108 fs, and the metal plasmon enhanced graphene plasmon is about 3.2 ± 0.8 ps in the VIS region. The graphene-Ag nanowire hybrids can be used for plasmon-driven chemical reactions. This graphene-mediated surface-enhanced Raman scattering substrate significantly increases the probability and efficiency of surface catalytic reactions co-driven by graphene-Ag nanowire hybridization, in comparison with reactions individually driven by monolayer graphene or single Ag nanowire. This implies that the graphene-Ag nanowire hybrids can not only lead to a significant accumulation of high-density hot electrons, but also significantly increase the plasmon-to-electron conversion efficiency, due to strong plasmon-exciton coupling.

  8. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  9. Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics

    SciTech Connect

    Strehl, Robert; Ilie, Silvana

    2015-12-21

    In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.

  10. REACTION OF AMINO-ACIDS AND PEPTIDE BONDS WITH FORMALDEHYDE AS MEASURED BY CHANGES IN THE ULTRA-VIOLET SPECTRA,

    DTIC Science & Technology

    AMINO ACIDS , CHEMICAL REACTIONS), (*PEPTIDES, CHEMICAL REACTIONS), (*FORMALDEHYDE, CHEMICAL REACTIONS), (*ULTRAVIOLET SPECTROSCOPY, PROTEINS), ABSORPTION SPECTRA, CHEMICAL BONDS, AMIDES, CHEMICAL EQUILIBRIUM, REACTION KINETICS

  11. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic)....

  12. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic)....

  13. Accelerated stochastic and hybrid methods for spatial simulations of reaction diffusion systems

    NASA Astrophysics Data System (ADS)

    Rossinelli, Diego; Bayati, Basil; Koumoutsakos, Petros

    2008-01-01

    Spatial distributions characterize the evolution of reaction-diffusion models of several physical, chemical, and biological systems. We present two novel algorithms for the efficient simulation of these models: Spatial τ-Leaping ( Sτ-Leaping), employing a unified acceleration of the stochastic simulation of reaction and diffusion, and Hybrid τ-Leaping ( Hτ-Leaping), combining a deterministic diffusion approximation with a τ-Leaping acceleration of the stochastic reactions. The algorithms are validated by solving Fisher's equation and used to explore the role of the number of particles in pattern formation. The results indicate that the present algorithms have a nearly constant time complexity with respect to the number of events (reaction and diffusion), unlike the exact stochastic simulation algorithm which scales linearly.

  14. Laboratory measurements of heterogeneous reactions on sulfuric acid surfaces

    NASA Technical Reports Server (NTRS)

    Williams, Leah R.; Manion, Jeffrey A.; Golden, David M.; Tolbert, Margaret A.

    1994-01-01

    Increasing evidence from field, modeling, and laboratory studies suggests that heterogeneous reactions on stratospheric sulfate aerosol particles may contribute to global ozone depletion. Using a Knudsen cell reactor technique, the authors have studied the uptake, reactivity, and solubility of several trace atmospheric species on cold sulfuric acid surfaces representative of stratospheric aerosol particles. The results suggest that the heterogeneous conversion of N2O5 to HNO3 is fast enough to significantly affect the partitioning of nitrogen species in the global stratosphere and thus contribute to global ozone depletion. The hydrolysis of ClONO2 is slower and unlikely to be important under normal conditions at midlatitudes. The solubilities of HCl and HNO3 in sulfuric acid down to 200 K were found to be quite low. For HCl, this means that little HCl is available for reaction on the surfaces of stratospheric sulfate aerosol particles. The low solubility of HNO3 means that this product of heterogeneous reactions will enter the gas phase, and the denitrification observed in polar regions is unlikely to occur in the global stratosphere.

  15. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl amino substituted triazine...

  16. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl amino substituted triazine...

  17. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl amino substituted triazine...

  18. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine...

  19. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl amino substituted triazine...

  20. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  1. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  2. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  3. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  4. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  5. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  6. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  7. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  8. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  9. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction products with... Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... generically as fatty acid, reaction products with alkanolamine (PMN P-03-461) is subject to reporting...

  10. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  11. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  12. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  13. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  14. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  15. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  16. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  17. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  18. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  19. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  20. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  1. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  2. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  3. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction products with... Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... generically as fatty acid, reaction products with alkanolamine (PMN P-03-461) is subject to reporting...

  4. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  5. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  6. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  7. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  8. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  9. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm.

    PubMed

    Ohrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas

    2010-11-01

    One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes.

  10. Crystalline hybrid solid materials of palladium and decamethylcucurbit[5]uril as recoverable precatalysts for Heck cross-coupling reactions.

    PubMed

    Li, Hongfang; Lü, Jian; Lin, Jingxiang; Huang, Yuanbiao; Cao, Minna; Cao, Rong

    2013-11-11

    A series of MPdMe10 CB[5] (M=Li, Na, K, Rb, and Cs; Me10 CB[5]=decamethylcucurbit[5]uril) hybrid solid materials have been successfully synthesized for the first time through a simple diffusion method. These as-prepared hybrid solids have been applied as phosphine-free precatalysts for Heck cross-coupling reactions with excellent catalytic performance and good recyclability. In the processes of the catalytic reactions, the activated Pd(II) species were released from the crystalline hybrid precatalysts and transformed into catalytically active Pd nanoparticles, which have been demonstrated as key to carry on the catalytic reactions for the recoverable precatalysts MPdMe10 CB[5] (M=K, Rb, and Cs). It has also been rationalized that the introduction of different alkali metals afforded crystalline hybrid precatalysts with different crystal structures, which are responsible for their diversified stability and reusability presented in Heck reactions.

  11. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  12. Electrostatic surface plasmon resonance: Direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches

    PubMed Central

    Heaton, Richard J.; Peterson, Alexander W.; Georgiadis, Rosina M.

    2001-01-01

    We demonstrate that in situ optical surface plasmon resonance spectroscopy can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The dc field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered single-stranded DNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential-induced changes in the shape of the surface plasmon resonance curve, we account for the full curve rather than simply the shift in the resonance minimum. PMID:11259682

  13. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate.

    PubMed

    Peskin, A V; Winterbourn, C C

    2001-03-01

    Thiol oxidation by hypochlorous acid and chloramines is a favorable reaction and may be responsible for alterations in regulatory or signaling pathways in cells exposed to neutrophil oxidants. In order to establish the mechanism for such changes, it is necessary to appreciate whether these oxidants are selective for different thiols as compared with other scavengers. We have measured rate constants for reactions of amino acid chloramines with a range of thiols, methionine, and ascorbate, using a combination of stopped-flow and competitive kinetics. For HOCl, rate constants are too fast to measure directly by our system and values relative to reduced glutathione were determined by competition with methionine. For taurine chloramine, the rate constants for reaction with 5-thio-2-nitrobenzoic acid, GSH, methionine, and ascorbate at pH 7.4 were 970, 115, 39, and 13 M(-1) s(-1), respectively. Values for 10 thiols varied by a factor of 20 and showed an inverse relationship to the pK(a) of the thiol group. Rate constants for chloramines of glycine and N-alpha-acetyl-lysine also showed these relationships. Rates increased with decreasing pH, suggesting a mechanism involving acid catalysis. For hypochlorous acid, rates of reaction with 5-thio-2-nitrobenzoic acid, GSH, cysteine, and most of the other thiols were very similar. Relative reactivities varied by less than 5 and there was no dependence on thiol pK(a). Chloramines have the potential to be selective for different cellular thiols depending on their pK(a). For HOCl to be selective, other factors must be important, or its reactions could be secondary to chloramine formation.

  14. Contribution to the chemistry of the Belousov-Zhabotinsky reaction. Products of the Ferriin-Bromomalonic acid and the Ferriin-Malonic acid reactions.

    PubMed

    Hegedüs, Laszló; Försterling, Horst-Dieter; Onel, Lavinia; Wittmann, Maria; Noszticzius, Zoltan

    2006-11-30

    In the present mechanistic schemes of the ferroin-catalyzed oscillatory Belousov-Zhabotinsky (BZ) reaction the oxidation of the organic substrates (bromomalonic or malonic acid) by ferriin (the oxidized form of the catalyst) plays an important role. As the organic products of these reactions were not yet identified experimentally, they were studied here by an HPLC technique. It was found that the main organic oxidation product of bromomalonic acid is bromo-ethene-tricarboxylic acid (BrEETRA), the same compound that is formed when bromomalonic acid is oxidized by Ce4+ (another catalyst of the BZ reaction). Formation of BrEETRA is explained here by a new mechanism that is more realistic than the one suggested earlier. To find any oxidation product of malonic acid in the ferriin-malonic acid reaction was not successful, however. Neither ethane-tetracarboxylic acid (ETA) nor malonyl malonate (MAMA), the usual products of the Ce4+- malonic acid reaction, nor any other organic acid, not even CO2, was found as a product of the reaction. We propose that malonic acid is not oxidized in the ferriin-malonic acid reaction, and it plays only the role of a complex forming catalyst in a process where Fe3+ oxidizes mostly its phenantroline ligand.

  15. Nucleic acid amplification: Alternative methods of polymerase chain reaction

    PubMed Central

    Fakruddin, Md; Mannan, Khanjada Shahnewaj Bin; Chowdhury, Abhijit; Mazumdar, Reaz Mohammad; Hossain, Md. Nur; Islam, Sumaiya; Chowdhury, Md. Alimuddin

    2013-01-01

    Nucleic acid amplification is a valuable molecular tool not only in basic research but also in application oriented fields, such as clinical medicine development, infectious diseases diagnosis, gene cloning and industrial quality control. A comperehensive review of the literature on the principles, applications, challenges and prospects of different alternative methods of polymerase chain reaction (PCR) was performed. PCR was the first nucleic acid amplification method. With the advancement of research, a no of alternative nucleic acid amplification methods has been developed such as loop mediated isothermal amplification, nucleic acid sequence based amplification, strand displacement amplification, multiple displacement amplification. Most of the alternative methods are isothermal obviating the need for thermal cyclers. Though principles of most of the alternate methods are relatively complex than that of PCR, they offer better applicability and sensitivity in cases where PCR has limitations. Most of the alternate methods still have to prove themselves through extensive validation studies and are not available in commercial form; they pose the potentiality to be used as replacements of PCR. Continuous research is going on in different parts of the world to make these methods viable technically and economically. PMID:24302831

  16. Nucleic acid amplification: Alternative methods of polymerase chain reaction.

    PubMed

    Fakruddin, Md; Mannan, Khanjada Shahnewaj Bin; Chowdhury, Abhijit; Mazumdar, Reaz Mohammad; Hossain, Md Nur; Islam, Sumaiya; Chowdhury, Md Alimuddin

    2013-10-01

    Nucleic acid amplification is a valuable molecular tool not only in basic research but also in application oriented fields, such as clinical medicine development, infectious diseases diagnosis, gene cloning and industrial quality control. A comperehensive review of the literature on the principles, applications, challenges and prospects of different alternative methods of polymerase chain reaction (PCR) was performed. PCR was the first nucleic acid amplification method. With the advancement of research, a no of alternative nucleic acid amplification methods has been developed such as loop mediated isothermal amplification, nucleic acid sequence based amplification, strand displacement amplification, multiple displacement amplification. Most of the alternative methods are isothermal obviating the need for thermal cyclers. Though principles of most of the alternate methods are relatively complex than that of PCR, they offer better applicability and sensitivity in cases where PCR has limitations. Most of the alternate methods still have to prove themselves through extensive validation studies and are not available in commercial form; they pose the potentiality to be used as replacements of PCR. Continuous research is going on in different parts of the world to make these methods viable technically and economically.

  17. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.

    PubMed

    Kumar, S Naresh

    2011-12-28

    Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.

  18. Enhancement of the Hydrogen Evolution Reaction from Ni-MoS2 Hybrid Nanoclusters

    PubMed Central

    2016-01-01

    This report focuses on a novel strategy for the preparation of transition metal–MoS2 hybrid nanoclusters based on a one-step, dual-target magnetron sputtering, and gas condensation process demonstrated for Ni-MoS2. Aberration-corrected STEM images coupled with EDX analysis confirms the presence of Ni and MoS2 in the hybrid nanoclusters (average diameter = 5.0 nm, Mo:S ratio = 1:1.8 ± 0.1). The Ni-MoS2 nanoclusters display a 100 mV shift in the hydrogen evolution reaction (HER) onset potential and an almost 3-fold increase in exchange current density compared with the undoped MoS2 nanoclusters, the latter effect in agreement with reported DFT calculations. This activity is only reached after air exposure of the Ni-MoS2 hybrid nanoclusters, suggested by XPS measurements to originate from a Ni dopant atoms oxidation state conversion from metallic to 2+ characteristic of the NiO species active to the HER. Anodic stripping voltammetry (ASV) experiments on the Ni-MoS2 hybrid nanoclusters confirm the presence of Ni-doped edge sites and reveal distinctive electrochemical features associated with both doped Mo-edge and doped S-edge sites which correlate with both their thermodynamic stability and relative abundance. PMID:27818842

  19. Diagnosis of feline herpesvirus infection by immunohistochemistry, polymerase chain reaction, and in situ hybridization.

    PubMed

    Suchy, A; Bauder, B; Gelbmann, W; Löhr, C V; Teifke, J P; Weissenböck, H

    2000-03-01

    An adult domestic shorthair cat had severe chemosis due to purulent and necrotizing blepharitis and conjunctivitis. Purulent rhinitis, necrotizing glossitis, and dermatitis were also diagnosed. The cat was positive for feline immunodeficiency virus and feline leukemia virus. Histologically, intranuclear Cowdry type A inclusions were found within numerous epithelial cells adjacent to the lesions in skin, conjunctiva, and tongue. Electron microscopic examination revealed herpesviral particles within the lesions. Paraffin-embedded skin and tongue tissues were processed in a polymerase chain reaction, using primers to amplify a 306-bp region of the thymidine kinase gene of feline herpesvirus type 1, resulting in a distinct amplification product of the predicted size. The distribution of feline herpesvirus was demonstrated by immunohistochemistry and nonradioactive in situ hybridization. Positive immunostaining was found in nuclei and cytoplasm of numerous epithelial cells within and next to the lesions, whereas in situ hybridization, performed with a digoxigenin-labeled double-stranded DNA probe, revealed hybridization signal only in nuclei of intact epithelial cells. Neither immunohistochemistry nor in situ hybridization showed feline herpesvirus type 1 in tissues of lungs, liver, spleen, intestine, or brain.

  20. Presence of human immunodeficiency virus nucleic acids in wastewater and their detection by polymerase chain reaction.

    PubMed Central

    Ansari, S A; Farrah, S R; Chaudhry, G R

    1992-01-01

    The human immunodeficiency virus type 1 (HIV-1) released by infected individuals or present in human and hospital wastes can potentially cause contamination problems. The presence of HIV-1 was investigated in 16 environmental samples, including raw wastewater, sludge, final effluent, soil, and pond water, collected from different locations. A method was developed to extract total nucleic acids in intact form directly from the raw samples or from the viral concentrates of the raw samples. The isolated nucleic acids were analyzed for the presence of HIV-1 by using in vitro amplification of the target sequences by the polymerase chain reaction (PCR) method. HIV-1-specific proviral DNA and viral RNA were detected in the extracted nucleic acids obtained from three wastewater samples by this method. The specificity of the PCR-amplified products was determined by Southern blot hybridization with an HIV-1-specific oligonucleotide probe, SK19. The isolated nucleic acids from wastewater samples were also screened for the presence of poliovirus type 1, representing a commonly found enteric virus, and simian immunodeficiency virus, representing, presumably, rare viruses. While poliovirus type 1 viral RNA was found in all of the wastewater samples, none of the samples yielded a simian immunodeficiency virus-specific product. No PCR-amplified product was yielded when wastewater samples were directly used for the detection of HIV-1 and poliovirus type 1. The wastewater constituents appeared to be inhibitory to the enzymes reverse transcriptase and DNA polymerase.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:1476440

  1. Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons.

    PubMed

    Li, Xu; Morgenroth, Eberhard; Raskin, Lutgarde

    2008-12-01

    The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.

  2. Design, Synthesis and Microbiological Evaluation of Ampicillin Tetramic acid Hybrid Antibiotics

    PubMed Central

    Cherian, Philip T.; Deshpande, Aditi; Cheramie, Martin N.; Bruhn, David F.; Hurdle, Julian G.; Lee, Richard E.

    2016-01-01

    Exploiting iron-uptake pathways by conjugating β-lactam antibiotics with iron-chelators such as catechol and hydroxamic acid is a proven strategy to overcome permeability-related resistance in Gram-negative bacteria. Since naturally occurring iron chelating tetramic acids have not been previously examined for this purpose, an exploratory series of novel ampicillin-tetramic acid hybrids that structurally resemble ureidopenicillins was designed and synthesized. The new analogs were evaluated for the ability to chelate iron and their MIC activities determined against a representative panel of clinically significant bacterial pathogens. The tetramic acid β-lactam hybrids demonstrated a high affinity to iron in the order of 10−30 M3. The hybrids were less active against Gram-positive bacteria. However, against Gram-negative bacteria, their activity was species dependent with several hybrids displaying improved activity over ampicillin against wild-type Pseudomonas aeruginosa. The anti-Gram-negative activities of the hybrids improved in the presence of clavulanic acid revealing that the tetramic acid moiety did not provide added protection against β-lactamases. Additionally, the hybrids were found to be efflux pump substrates as their activities markedly improved against pump-inactivated strains. Unlike the catechol and hydroxamic acid siderophore β-lactam conjugates, the activities of the hybrids did not improve under iron-deficient conditions. These results suggest that the tetramic acid hybrids gain permeability via different membrane receptors, or they are out competed by native bacterial siderophores with stronger affinities for iron. This study provides a foundation for the further exploitation of the tetramic acid moiety to achieve novel β-lactam anti-Gram-negative agents, providing that efflux and β-lactamase mediated resistance is addressed. PMID:27189120

  3. Enzymatic hybridization of α-lipoic acid with bioactive compounds in ionic solvents.

    PubMed

    Papadopoulou, Athena A; Katsoura, Maria H; Chatzikonstantinou, Alexandra; Kyriakou, Eleni; Polydera, Angeliki C; Tzakos, Andreas G; Stamatis, Haralambos

    2013-05-01

    The lipase-catalyzed molecular hybridization of α-lipoic acid (LA) with bioactive compounds pyridoxine, tyrosol and tyramine was performed in ionic solvents and deep eutectic solvents. The biocatalytic reactions were catalyzed by Candida antarctica lipase B immobilized onto various functionalized multi-walled carbon nanotubes (f-CNTs-CaLB), as well as by commercial Novozym 435. The use of f-CNTs-CaLB leads, in most cases, to higher conversion yields as compared to Novozym 435. The nature and ion composition of ionic solvents affect the performance of the biocatalytic process. The highest conversion yield was observed in (mtoa)NTf2. The high enzyme stability and the relatively low solubility of substrates in specific media account for the improved biocatalytic synthesis of molecular hybrids of LA. Principal component analysis was used to screen for potential lipoxygenase inhibitors. In vitro studies showed that the synthesized compounds exhibit up to 10-fold increased inhibitory activity on lipoxygenase mediated lipid peroxidation as compared to parent molecules.

  4. The Effect of Hetrogeneous Reactions on Model Performance for Nitrous Acid

    EPA Science Inventory

    Recent studies suggest that emissions, heterogeneous reactions, and surface photolysis of adsorbed nitric acid may produce additional nitrous acid in the atmosphere. The effects of these sources on nitrous acid formation are evaluated using the Community Multiscale Air Quality m...

  5. Investigation of Embedded Si/C System Exposed to a Hybrid Reaction of Centrifugal-Assisted Thermite Method

    PubMed Central

    Mahmoodian, Reza; Yahya, Rosiyah; Dabbagh, Ali; Hamdi, Mohd; Hassan, Mohsen A.

    2015-01-01

    A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD) as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite. PMID:26641651

  6. Clamped Hybridization Chain Reactions for the Self-Assembly of Patterned DNA Hydrogels.

    PubMed

    Wang, Jianbang; Chao, Jie; Liu, Huajie; Su, Shao; Wang, Lianhui; Huang, Wei; Willner, Itamar; Fan, Chunhai

    2017-02-13

    DNA hydrogels hold great potential for biological and biomedical applications owing to their programmable nature and macroscopic sizes. However, most previous studies involve spontaneous and homogenous gelation procedures in solution, which often lack precise control. A clamped hybridization chain reaction (C-HCR)-based strategy has been developed to guide DNA self-assembly to form macroscopic hydrogels. Analogous to catalysts in chemical synthesis or seeds in crystal growth, we introduced DNA initiators to induce the gelation process, including crosslinked self-assembly and clamped hybridization in three dimensions with spatial and temporal control. The formed hydrogels show superior mechanical properties. The use of printed, surface-confined DNA initiators was also demonstrated for fabricating 2D hydrogel patterns without relying on external confinements. This simple method can be used to construct DNA hydrogels with defined geometry, composition, and order for various bioapplications.

  7. Hyperbranched Hybridization Chain Reaction for Triggered Signal Amplification and Concatenated Logic Circuits.

    PubMed

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying; Wang, Zonghua

    2015-07-06

    A hyper-branched hybridization chain reaction (HB-HCR) is presented herein, which consists of only six species that can metastably coexist until the introduction of an initiator DNA to trigger a cascade of hybridization events, leading to the self-sustained assembly of hyper-branched and nicked double-stranded DNA structures. The system can readily achieve ultrasensitive detection of target DNA. Moreover, the HB-HCR principle is successfully applied to construct three-input concatenated logic circuits with excellent specificity and extended to design a security-mimicking keypad lock system. Significantly, the HB-HCR-based keypad lock can alarm immediately if the "password" is incorrect. Overall, the proposed HB-HCR with high amplification efficiency is simple, homogeneous, fast, robust, and low-cost, and holds great promise in the development of biosensing, in the programmable assembly of DNA architectures, and in molecular logic operations.

  8. Acid activated montmorillonite as catalysts in methyl esterification reactions of lauric acid.

    PubMed

    Zatta, Leandro; Ramos, Luiz Pereira; Wypych, Fernando

    2012-01-01

    The catalytic activity of acid activated montmorillonite in the esterification of free fatty acids (FFA) is reported. Standard Montmorillonite (MMT) type STx-1 provided by the Clay Mineral Society repository was activated using phosphoric, nitric and sulphuric acids under different conditions and the resulting materials were characterized and evaluated as catalysts in the methyl esterification of lauric acid. Blank reactions carried out in the absence of any added catalyst presented conversions of 32.64, 69.79 and 79.23%, for alcohol:lauric acid molar ratios of 60:1, 12:1 and 6:1, respectively. In the presence of the untreated clay and using molar ratios of 12:1 and 6:1 with 12% of catalyst, conversions of 70.92 and 82.30% were obtained, respectively. For the acid activated clays, conversions up to 93.08% of lauric acid to methyl laurate were obtained, much higher than those observed for the thermal conversion or using untreated montmorillonite. Relative good correlations were observed between the catalytic activity and the development of acid sites and textural properties of the resulting materials. Therefore, a simple acid activation was able to improve the catalytic activity and produce clay catalysts that are environmental friendly, cost effective, noncorrosive and reusable.

  9. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  10. Conversion of waste cellulose to ethanol. Phase II. Reaction kinetics with phosphoric acid

    SciTech Connect

    Moeller, M.B.; Isbell, R.E.

    1982-05-01

    Waste cellulosic material can be hydrolyzed in dilute acid solution to produce fermentable sugars which can then be converted into ethanol. A laboratory investigation was made of the feasibility of using phosphoric acid as the hydrolysis catalyst. The hydrolysis reaction with phosphoric acid solutions was compared with the reaction employing the more conventional dilute sulfuric acid catalyst. The purpose of this research was to examine the hydrolysis step in a proposed process for the conversion of cellulose (from wood, newspapers, municipal solid waste, or other sources) into ethanol - by which a potentially valuable co-product, DICAL (dicalcium phosphate), might be made and sold with or without the lignin content as a fertilizer. The pertinent reaction kinetics for the acid catalyzed production of glucose from cellulose consists of consecutive, pseudo-first order reactions. The first reaction forms glucose by hydrolyzing the cellulose polymer and a subsequent reaction decomposes the glucose. The maximum theoretical yield depends on the ratio of the rate constants for these two reactions. The rate constants of both reactions were measured in a series of experiments studying temperature and concentration effects. The results suggest that the glucose decomposition reaction is similar with the two acids but that the cellulose hydrolysis reaction mechanism with phosphoric acid may be different than with sulfuric acid. The studies show phosphoric acid is unpromising and much inferior to sulfuric acid as the catalytic agent. Under the conditions studied, 0.8 wt % sulfuric acid gives a greater yield of glucose than 8.0 wt % phosphoric acid.

  11. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.

    PubMed

    He, Nan; Li, Zhen Hua

    2016-04-21

    Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals.

  12. Design and analysis of hybrid thrust magnetic bearing for magnetically suspended reaction wheel

    NASA Astrophysics Data System (ADS)

    Han, Bangcheng

    2008-10-01

    Introduced the structure of a magnetic bearing reaction wheel for stabilization of spacecraft attitude, its rotation speed is from -5000rpm to 5000rpm (rating angular momentum is 20Nms). The main scope of this paper is to calculate and analyze the performance and parameters of the hybrid thrust magnetic bearing with permanent magnet bias for the magnetic bearing momentum wheel. Its magnetic force, current stiffness, and position stiffness are derived by using the equivalent magnetic circuit and their non-linearity are shown by the curves of force-current-position characteristic. The ranges of bearing capacity is obtained.

  13. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on

  14. Lead-acid batteries in micro-hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Albers, Joern; Meissner, Eberhard; Shirazi, Sepehr

    More and more vehicles hit the European automotive market, which comprise some type of micro-hybrid functionality to improve fuel efficiency and reduce emissions. Most carmakers already offer at least one of their vehicles with an optional engine start/stop system, while some other models are sold with micro-hybrid functions implemented by default. But these car concepts show a wide variety in detail-the term "micro-hybrid" may mean a completely different functionality in one vehicle model compared to another. Accordingly, also the battery technologies are not the same. There is a wide variety of batteries from standard flooded and enhanced flooded to AGM which all are claimed to be "best choice" for micro-hybrid applications. A technical comparison of micro-hybrid cars available on the European market has been performed. Different classes of cars with different characteristics have been identified. Depending on the scope and characteristics of micro-hybrid functions, as well as on operational strategies implemented by the vehicle makers, the battery operating duties differ significantly between these classes of vehicles. Additional laboratory investigations have been carried out to develop an understanding of effects observed in batteries operated in micro-hybrid vehicles pursuing different strategies, to identify limitations for applications of different battery technologies.

  15. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    SciTech Connect

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.

  16. Reaction of Thymidine with Hypobromous Acid in Phosphate Buffer.

    PubMed

    Suzuki, Toshinori; Kitabatake, Akihiko; Koide, Yuki

    2016-01-01

    When thymidine was treated with hypobromous acid (HOBr) in 100 mM phosphate buffer at pH 7.2, two major product peaks appeared in the HPLC chromatogram. The products in each peak were identified by NMR and MS as two isomers of 5-hydroxy-5,6-dihydrothymidine-6-phosphate (a novel compound) and two isomers of 5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol) with comparable yields. 5-Hydroxy-5,6-dihydrothymidine-6-phosphate was relatively stable, and decomposed with a half-life of 32 h at pH 7.2 and 37°C generating thymidine glycol. The results suggest that 5-hydroxy-5,6-dihydrothymidine-6-phosphate in addition to thymidine glycol may have importance for mutagenesis by the reaction of HOBr with thymine residues in nucleotides and DNA.

  17. Radical-generating coordination complexes as tools for rapid and effective fragmentation and fluorescent labeling of nucleic acids for microchip hybridization.

    SciTech Connect

    Kelly, J. J.; Chernov, B. K.; Tovstanovsky, I.; Mirzabekov, A. D.; Bavykin, S. G.; Biochip Technology Center; Northwestern Univ.; Engelhardt Inst. of Molecular Biology

    2002-12-15

    DNA microchip technology is a rapid, high-throughput method for nucleic acid hybridization reactions. This technology requires random fragmentation and fluorescent labeling of target nucleic acids prior to hybridization. Radical-generating coordination complexes, such as 1,10-phenanthroline-Cu(II) (OP-Cu) and Fe(II)-EDTA (Fe-EDTA), have been commonly used as sequence nonspecific 'chemical nucleases' to introduce single-strand breaks in nucleic acids. Here we describe a new method based on these radical-generating complexes for random fragmentation and labeling of both single- and double-stranded forms of RNA and DNA. Nucleic acids labeled with the OP-Cu and the Fe-EDTA protocols revealed high hybridization specificity in hybridization with DNA microchips containing oligonucleotide probes selected for identification of 16S rRNA sequences of the Bacillus group microorganisms.We also demonstrated cDNA- and cRNA-labeling and fragmentation with this method. Both the OP-Cu and Fe-EDTA fragmentation and labeling procedures are quick and inexpensive compared to other commonly used methods. A column-based version of the described method does not require centrifugation and therefore is promising for the automation of sample preparations in DNA microchip technology as well as in other nucleic acid hybridization studies.

  18. Deoxyribonucleic acid-ribonucleic acid hybridization studies on the L-Arabinose operon of Escherichia coli B-r.

    PubMed

    Wilcox, G; Singer, J; Heffernan, L

    1971-10-01

    An increase in the rate of synthesis of ara-specific messenger ribonucleic acid as measured by deoxyribonucleic acid-ribonucleic acid hybridization has been detected in the induced wild-type (ara(+)) strain of Escherichia coli B/r as compared with the uninduced control, thus providing evidence that regulation of the positively controlled l-arabinose operon is at the level of transcription.

  19. Wollastonite hybridizing stearic acid as thermal energy storage material

    NASA Astrophysics Data System (ADS)

    Xu, Dawei; Yang, Huaming

    2014-11-01

    This paper reported on the preparation of a novel stearic acid (SA)/wollastonite (W) composite as a form-stable phase change material (PCM) for thermal energy-storage (TES) by vacuum impregnation, and especially investigated the effect of the size grade of W on the thermal properties of the SA/W composite. Samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser particle-size analysis, and differential scanning calorimetry (DSC). Natural W (Wr) was classified into four size grades by wet screening. The results indicate that no chemical reaction took place between SA and W, and the SA load in the SA/W composite increased with an increase in the length/diameter (L/D) ratio of the W. The SA/W composite with a W L/D ratio of 22.5 exhibited latent heats of melting and freezing of 58.64 J/g and 56.95 J/g, respectively, which was higher than those of the composite incorporating natural W. We believe that the as-prepared form-stable PCM composite could provide a potential means of TES for the concentrated solar power.

  20. Functionalization of Carbon Nanotubes via Electrophilic Substitution Reaction in Polyphosphoric Acid

    DTIC Science & Technology

    2006-07-26

    1 Title of proposed research: Functionalization of Carbon Nanotubes via Electrophilic Substitution Reaction in Polyphosphoric Acid Proposer: Jong...Choi, J.-Y.; Tan, L.-S.; Baek, J.-B. “Functionalization of carbon nanotubes via electrophilic substitution reaction in polyphosphoric acid” AFOSR...2006 4. TITLE AND SUBTITLE Functionalization of carbon nanotubes via electrophilic substitution reaction in polyphosphoric acid 5a. CONTRACT

  1. Cassava interspecific hybrids with increased protein content and improved amino acid profiles.

    PubMed

    Gomes, P T C; Nassar, N M A

    2013-04-12

    Cassava (Manihot esculenta) is a principal food for large populations of poor people in the tropics and subtropics. Its edible roots are poor in protein and lack several essential amino acids. Interspecific hybrids may acquire high protein characteristics from wild species. We analyzed 19 hybrids of M. esculenta with its wild relative, M. oligantha, for crude protein, amino acid profile, and total cyanide. Some hybrids produced roots with high protein content of up to 5.7%, while the common cultivar that we examined had just 2.3% crude protein. The essential amino acids alanine, phenylalanine, and valine were detected in the hybrids. The sulfur-containing amino acids cysteine and methionine were found at relatively high concentrations in the roots of 4 hybrids. The proportion of lysine in one hybrid was 20 times higher than in the common cultivar. The levels of total cyanide ranged from 19.73 to 172.56 mg/kg and most of the roots analyzed were classified as "non-toxic" and "low toxic". Furthermore, 2 progenies showed reasonable levels of cyanide, but higher protein content and amino acid profile more advantageous than the common cassava.

  2. Hybridization chain reaction-based instantaneous derivatization technology for chemiluminescence detection of specific DNA sequences.

    PubMed

    Wang, Xin; Lau, Choiwan; Kai, Masaaki; Lu, Jianzhong

    2013-05-07

    We propose here a new amplifying strategy that uses hybridization chain reaction (HCR) to detect specific sequences of DNA, where stable DNA monomers assemble on the magnetic beads only upon exposure to a target DNA. Briefly, in the HCR process, two complementary stable species of hairpins coexist in solution until the introduction of initiator reporter strands triggers a cascade of hybridization events that yield nicked double helices analogous to alternating copolymers. Moreover, a "sandwich-type" detection strategy is employed in our design. Magnetic beads, which are functionalized with capture DNA, are reacted with the target, and sandwiched with the above nicked double helices. Then, chemiluminescence (CL) detection proceeds via an instantaneous derivatization reaction between a specific CL reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG), and the guanine nucleotides within the target DNA, reporter strands and DNA monomers for the generation of light. Our results clearly show that the amplification detection of specific sequences of DNA achieves a better performance (e.g. wide linear response range, low detection limit, and high specificity) as compared to the traditional sandwich type (capture/target/reporter) assays. Upon modification, the approach presented could be extended to detect other types of targets. We believe that this simple technique is promising for improving medical diagnosis and treatment.

  3. Next-Generation in Situ Hybridization Chain Reaction: Higher Gain, Lower Cost, Greater Durability

    PubMed Central

    2014-01-01

    Hybridization chain reaction (HCR) provides multiplexed, isothermal, enzyme-free, molecular signal amplification in diverse settings. Within intact vertebrate embryos, where signal-to-background is at a premium, HCR in situ amplification enables simultaneous mapping of multiple target mRNAs, addressing a longstanding challenge in the biological sciences. With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The properties of HCR lead to straightforward multiplexing, deep sample penetration, high signal-to-background, and sharp subcellular signal localization within fixed whole-mount zebrafish embryos, a standard model system for the study of vertebrate development. However, RNA reagents are expensive and vulnerable to enzymatic degradation. Moreover, the stringent hybridization conditions used to destabilize nonspecific hairpin binding also reduce the energetic driving force for HCR polymerization, creating a trade-off between minimization of background and maximization of signal. Here, we eliminate this trade-off by demonstrating that low background levels can be achieved using permissive in situ amplification conditions (0% formamide, room temperature) and engineer next-generation DNA HCR amplifiers that maximize the free energy benefit per polymerization step while preserving the kinetic trapping property that underlies conditional polymerization, dramatically increasing signal gain, reducing reagent cost, and improving reagent durability. PMID:24712299

  4. Fast and stable redox reactions of MnO₂/CNT hybrid electrodes for dynamically stretchable pseudocapacitors.

    PubMed

    Gu, Taoli; Wei, Bingqing

    2015-07-21

    Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics.

  5. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability.

    PubMed

    Choi, Harry M T; Beck, Victor A; Pierce, Niles A

    2014-05-27

    Hybridization chain reaction (HCR) provides multiplexed, isothermal, enzyme-free, molecular signal amplification in diverse settings. Within intact vertebrate embryos, where signal-to-background is at a premium, HCR in situ amplification enables simultaneous mapping of multiple target mRNAs, addressing a longstanding challenge in the biological sciences. With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The properties of HCR lead to straightforward multiplexing, deep sample penetration, high signal-to-background, and sharp subcellular signal localization within fixed whole-mount zebrafish embryos, a standard model system for the study of vertebrate development. However, RNA reagents are expensive and vulnerable to enzymatic degradation. Moreover, the stringent hybridization conditions used to destabilize nonspecific hairpin binding also reduce the energetic driving force for HCR polymerization, creating a trade-off between minimization of background and maximization of signal. Here, we eliminate this trade-off by demonstrating that low background levels can be achieved using permissive in situ amplification conditions (0% formamide, room temperature) and engineer next-generation DNA HCR amplifiers that maximize the free energy benefit per polymerization step while preserving the kinetic trapping property that underlies conditional polymerization, dramatically increasing signal gain, reducing reagent cost, and improving reagent durability.

  6. Immobilization of denatured DNA to macroporous supports: II. Steric and kinetic parameters of heterogeneous hybridization reactions.

    PubMed

    Bünemann, H

    1982-11-25

    The accessibility of immobilized DNA has been shown to depend more crucially on the method of immobilization than on the type of support used for fixation. When sonicated denatured DNA is coupled via diazotization or via cyanogen bromide reaction to solid Sephadex G-25 and Cellex 410 or to macroporous Sephacryl S-500 and Sepharose C1-6B its accessibility varies from 100 to 24 percent. Generally the loss of accessibility is linked to a depression of the melting temperature of DNA helices formed on the support. This correlation shows a characteristic course for a particular coupling method. DNA coupled under denaturing conditions may become totally inaccessible when only 3 percent of its bases are involved in the covalent linkage. Kinetic experiments with sonicated E.coli DNA have shown that the rate constants for renaturation or hybridization reactions are very similar for DNA immobilized by different methods to solid or macroporous supports. Generally the second order rate constant for a heterogeneous reaction (between mobile and immobilized DNA) is about one order of magnitude smaller than that of the analogous homogeneous reaction (in solution).

  7. Immobilization of denatured DNA to macroporous supports: II. Steric and kinetic parameters of heterogeneous hybridization reactions.

    PubMed Central

    Bünemann, H

    1982-01-01

    The accessibility of immobilized DNA has been shown to depend more crucially on the method of immobilization than on the type of support used for fixation. When sonicated denatured DNA is coupled via diazotization or via cyanogen bromide reaction to solid Sephadex G-25 and Cellex 410 or to macroporous Sephacryl S-500 and Sepharose C1-6B its accessibility varies from 100 to 24 percent. Generally the loss of accessibility is linked to a depression of the melting temperature of DNA helices formed on the support. This correlation shows a characteristic course for a particular coupling method. DNA coupled under denaturing conditions may become totally inaccessible when only 3 percent of its bases are involved in the covalent linkage. Kinetic experiments with sonicated E.coli DNA have shown that the rate constants for renaturation or hybridization reactions are very similar for DNA immobilized by different methods to solid or macroporous supports. Generally the second order rate constant for a heterogeneous reaction (between mobile and immobilized DNA) is about one order of magnitude smaller than that of the analogous homogeneous reaction (in solution). PMID:6185922

  8. Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction.

    PubMed

    Baker, Laura M S; Baker, Paul R S; Golin-Bisello, Franca; Schopfer, Francisco J; Fink, Mitchell; Woodcock, Steven R; Branchaud, Bruce P; Radi, Rafael; Freeman, Bruce A

    2007-10-19

    Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.

  9. Layered materials with coexisting acidic and basic sites for catalytic one-pot reaction sequences.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-06-17

    Acidic montmorillonite-immobilized primary amines (H-mont-NH(2)) were found to be excellent acid-base bifunctional catalysts for one-pot reaction sequences, which are the first materials with coexisting acid and base sites active for acid-base tamdem reactions. For example, tandem deacetalization-Knoevenagel condensation proceeded successfully with the H-mont-NH(2), affording the corresponding condensation product in a quantitative yield. The acidity of the H-mont-NH(2) was strongly influenced by the preparation solvent, and the base-catalyzed reactions were enhanced by interlayer acid sites.

  10. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    NASA Astrophysics Data System (ADS)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  11. Pyrrolidinyl peptide nucleic acid homologues: effect of ring size on hybridization properties.

    PubMed

    Mansawat, Woraluk; Vilaivan, Chotima; Balázs, Árpád; Aitken, David J; Vilaivan, Tirayut

    2012-03-16

    The effect of ring size of four- to six-membered cyclic β-amino acid on the hybridization properties of pyrrolidinyl peptide nucleic acid with an alternating α/β peptide backbone is reported. The cyclobutane derivatives (acbcPNA) show the highest T(m) and excellent specificity with cDNA and RNA.

  12. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  13. A computational study of ultrafast acid dissociation and acid-base neutralization reactions. I. The model

    NASA Astrophysics Data System (ADS)

    Maurer, Patrick; Thomas, Vibin; Rivard, Ugo; Iftimie, Radu

    2010-07-01

    Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Brønsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa≅1) as a model for excited-state HPTS∗ (pKa≅1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.

  14. High School Forum: "Invitations to Enquiry": The Calcite/Acid Reaction.

    ERIC Educational Resources Information Center

    Herron, J. Dudley, Ed.; Driscoll, D. R.

    1979-01-01

    Describes a high school chemistry experiment which involves the reaction between calcite and hydrochloric and sulfuric acids. This reaction can be carried out as a projected demonstration and on an individual basis. (HM)

  15. Understanding Nitrilotris(methylenephosphonic acid) reactions with ferric hydroxide.

    PubMed

    Martínez, Rodrigo Javier; Farrell, James

    2017-05-01

    Phosphonate compounds are used in a wide variety of industrial and agricultural applications, and are commonly found in surface and ground waters. Adsorption to ferric hydroxide can have a significant effect on the transport and fate of phosphonate compounds in the environment. This research used density functional theory modeling to investigate the adsorption mechanisms of nitrilotris(methylenephosphonic acid) (NTMP) on ferric hydroxide. Standard Gibbs free energies of reaction (ΔGr(o)) and reaction activation barriers (Ea) were calculated for different possible adsorption mechanisms. Physical adsorption of NTMP to ferric hydroxide was promoted by negative charge assisted hydrogen bonding, and had ΔGr(o) ranging from -2.7 to -7.4 kcal/mol. NTMP was found to form three different types of inner sphere complexes, monodentate, bidentate mononuclear and bidentate binuclear. For the monodentate complexes, ΔGr(o) ranged from -8.0 to -13.7 kcal/mol, for the bidentate complexes ΔGr(o) ranged from -15.3 to -28.9 kcal/mol. Complexation with Ca(2+) decreased the energy for physical adsorption but increased the binding energies for mono- and bidentate complexes. Complexation with Ca(2+) also allowed formation of a tridentate ternary surface complex, whereby the Ca(2+) ion formed a bridge between three FeO(-) and three PO(-) groups. Physical adsorption had Ea = 0, but mono- and bidentate complex formation had Ea values ranging from 36 to 53 kcal/mol. Formation of tridentate ternary surface complexes involving Ca(2+) had the lowest activation barriers of 8 and 10 kcal/mol. The different activation barriers for different modes of adsorption may explain previous experimental observations of unusual kinetic behavior for adsorption and desorption of NTMP.

  16. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  17. A General Strategy for Nanohybrids Synthesis via Coupled Competitive Reactions Controlled in a Hybrid Process

    PubMed Central

    Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun

    2015-01-01

    A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesis can be realized by the hybrid process, which enables us to investigate nanohybrid formation at each stage through their solution color changes and TEM images. By adjusting the bi-channel solvents and kinetic parameters of each stage, the primary components of alloyed cores and the second components of transition metal doping ZnO or Al2O3 as surface coatings can be successively formed. The core alloying and shell gradient-doping strategy can efficiently eliminate the crystal lattice mismatch in different components. Consequently, varieties of gradient core-shell nanohybrids can be synthesized using CoM, FeM, AuM, AgM (M = Zn or Al) alloys as cores and transition metal gradient-doping ZnO or Al2O3 as shells, endowing these nanohybrids with unique magnetic and optical properties (e.g., high temperature ferromagnetic property and enhanced blue emission). PMID:25818342

  18. Kinetic Studies on the Reaction between Dicyanocobinamide and Hypochlorous Acid

    PubMed Central

    Maitra, Dhiman; Ali, Iyad; Abdulridha, Rasha M.; Shaeib, Faten; Khan, Sana N.; Saed, Ghassan M.; Pennathur, Subramaniam; Abu-Soud, Husam M.

    2014-01-01

    Hypochlorous acid (HOCl) is a potent oxidant generated by myeloperoxidase (MPO), which is an abundant enzyme used for defense against microbes. We examined the potential role of HOCl in corrin ring destruction and subsequent formation of cyanogen chloride (CNCl) from dicyanocobinamide ((CN)2-Cbi). Stopped-flow analysis revealed that the reaction consists of at least three observable steps, including at least two sequential transient intermediates prior to corrin ring destruction. The first two steps were attributed to sequential replacement of the two cyanide ligands with hypochlorite, while the third step was the destruction of the corrin ring. The formation of (OCl)(CN)-Cbi and its conversion to (OCl)2-Cbi was fitted to a first order rate equation with second order rate constants of 0.002 and 0.0002 µM−1s−1, respectively. The significantly lower rate of the second step compared to the first suggests that the replacement of the first cyanide molecule by hypochlorite causes an alteration in the ligand trans effects changing the affinity and/or accessibility of Co toward hypochlorite. Plots of the apparent rate constants as a function of HOCl concentration for all the three steps were linear with Y-intercepts close to zero, indicating that HOCl binds in an irreversible one-step mechanism. Collectively, these results illustrate functional differences in the corrin ring environments toward binding of diatomic ligands. PMID:25375773

  19. A plasmonic colorimetric strategy for visual miRNA detection based on hybridization chain reaction

    PubMed Central

    Miao, Jie; Wang, Jingsheng; Guo, Jinyang; Gao, Huiguang; Han, Kun; Jiang, Chengmin; Miao, Peng

    2016-01-01

    In this work, a novel colorimetric strategy for miRNA analysis is proposed based on hybridization chain reaction (HCR)-mediated localized surface plasmon resonance (LSPR) variation of silver nanoparticles (AgNPs). miRNA in the sample to be tested is able to release HCR initiator from a solid interface to AgNPs colloid system by toehold exchange-mediated strand displacement, which then triggers the consumption of fuel strands with single-stranded tails for HCR. The final produced long nicked double-stranded DNA loses the ability to protect AgNPs from salt-induced aggregation. The stability variation of the colloid system can then be monitored by recording corresponding UV-vis spectrum and initial miRNA level is thus determined. This sensing system involves only four DNA strands which is quite simple. The practical utility is confirmed to be excellent by employing different biological samples. PMID:27534372

  20. A plasmonic colorimetric strategy for visual miRNA detection based on hybridization chain reaction

    NASA Astrophysics Data System (ADS)

    Miao, Jie; Wang, Jingsheng; Guo, Jinyang; Gao, Huiguang; Han, Kun; Jiang, Chengmin; Miao, Peng

    2016-08-01

    In this work, a novel colorimetric strategy for miRNA analysis is proposed based on hybridization chain reaction (HCR)-mediated localized surface plasmon resonance (LSPR) variation of silver nanoparticles (AgNPs). miRNA in the sample to be tested is able to release HCR initiator from a solid interface to AgNPs colloid system by toehold exchange-mediated strand displacement, which then triggers the consumption of fuel strands with single-stranded tails for HCR. The final produced long nicked double-stranded DNA loses the ability to protect AgNPs from salt-induced aggregation. The stability variation of the colloid system can then be monitored by recording corresponding UV-vis spectrum and initial miRNA level is thus determined. This sensing system involves only four DNA strands which is quite simple. The practical utility is confirmed to be excellent by employing different biological samples.

  1. Reprogrammable multiplexed detection of circulating oncomiRs using hybridization chain reaction.

    PubMed

    Rana, Muhit; Balcioglu, Mustafa; Kovach, Maya; Hizir, Mustafa Salih; Robertson, Neil M; Khan, Irfan; Yigit, Mehmet V

    2016-02-28

    In this study, we have coupled the DNA polymerization capability of hybridization chain reaction (HCR) with the plasmonic properties of gold nanoparticles to develop a reprogrammable and multiplexed detection of three circulating oncomiRs (miR-10b, miR-21 and miR-141) dysregulated in various disease states of breast cancer. We have demonstrated that by simply changing the initiator (label-free short single stranded DNA) content of the HCR, while keeping everything else unchanged, the same nanoparticle assembly can be reprogrammed for the detection of the target oncomiRs individually or simultaneously in all possible combinations. We have shown that as little as 20 femtomoles of each oncomiR can be detected visually without using any analytical instrument. Furthermore, we demonstrated that the target oncomiR can be detected in an RNA pool isolated from a liquid biopsy mimic of breast cancer.

  2. Estimating biofilm reaction kinetics using hybrid mechanistic-neural network rate function model.

    PubMed

    Kumar, B Shiva; Venkateswarlu, Ch

    2012-01-01

    This work describes an alternative method for estimation of reaction rate of a biofilm process without using a model equation. A first principles model of the biofilm process is integrated with artificial neural networks to derive a hybrid mechanistic-neural network rate function model (HMNNRFM), and this combined model structure is used to estimate the complex kinetics of the biofilm process as a consequence of the validation of its steady state solution. The performance of the proposed methodology is studied with the aid of the experimental data of an anaerobic fixed bed biofilm reactor. The statistical significance of the method is also analyzed by means of the coefficient of determination (R2) and model efficiency (ME). The results demonstrate the effectiveness of HMNNRFM for estimating the complex kinetics of the biofilm process involved in the treatment of industry wastewater.

  3. Metal-organic organopolymeric hybrid framework by reversible [2+2] cycloaddition reaction.

    PubMed

    Park, In-Hyeok; Chanthapally, Anjana; Zhang, Zhenjie; Lee, Shim Sung; Zaworotko, Michael J; Vittal, Jagadese J

    2014-01-07

    Organic polymers are usually amorphous or possess very low crystallinity. The metal complexes of organic polymeric ligands are also difficult to crystallize by traditional methods because of their poor solubilities and their 3D structures can not be determined by single-crystal X-ray crystallography owing to a lack of single crystals. Herein, we report the crystal structure of a 1D Zn(II) coordination polymer fused with an organic polymer ligand made in situ by a [2+2] cycloaddition reaction of a six-fold interpenetrated metal-organic framework. It is also shown that this organic polymer ligand can be depolymerized in a single-crystal-to-single-crystal (SCSC) fashion by heating. This strategy could potentially be extended to make a range of monocrystalline metal organopolymeric complexes and metal-organic organopolymeric hybrid materials. Such monocrystalline metal complexes of organic polymers have hitherto been inaccessible for materials researchers.

  4. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide

    PubMed Central

    Fang, Si-Ling; Chou, Tsu-Chin; Samireddi, Satyanarayana; Chen, Kuei-Hsien; Chen, Li-Chyong

    2017-01-01

    Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer–Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP2 crystal phase is formed which enhances the electrochemical activity.

  5. Synthesis of hybrid hydrazino peptides: protected vs unprotected chiral α-hydrazino acids.

    PubMed

    Suć, Josipa; Jerić, Ivanka

    2015-01-01

    Peptidomimetics based on hydrazino derivatives of α-amino acids represent an important class of peptidic foldamers with promising biological activities, like protease inhibition and antimicrobial activity. However, the lack of straightforward method for the synthesis of optically pure hydrazino acids and efficient incorporation of hydrazino building blocks into peptide sequence hamper wider exploitation of hydrazino peptidomimetics. Here we described the utility of N (α)-benzyl protected and unprotected hydrazino derivatives of natural α-amino acids in synthesis of peptidomimetics. While incorporation of N (α)-benzyl-hydrazino acids into peptide chain and deprotection of benzyl moiety proceeded with difficulties, unprotected hydrazino acids allowed fast and simple construction of hybrid peptidomimetics.

  6. [Influencing factors and reaction mechanism of chloroacetic acid reduction by cast iron].

    PubMed

    Tang, Shun; Yang, Hong-Wei; Wang, Xiao-Mao; Xie, Yue-Feng

    2014-03-01

    The chloroacetic acids are ubiquitous present as a class of trace chlorinated organic pollutants in surface and drinking water. Most of chloroacetic acids are known or suspected carcinogens and, when at high concentrations, are of great concern to human health. In order to economically remove chloroacetic acids, the degradation of chloroacetic acids by cast iron was investigated. Moreover, the effect of iron style, pretreatment process, shocking mode and dissolved oxygen on chloroacetic acids reduced by cast iron was discussed. Compared to iron source and acid pretreatment, mass transfer was more important to chloroacetic acid removal. Dichloroacetic acid (DCAA) and monochloroacetic acid (MCAA) were the main products of anoxic and oxic degradation of trichloroacetic acid (TCAA) by cast iron during the researched reaction time, respectively. With longtitudinal shock, the reaction kinetics of chloroaectic acid removal by cast iron conformed well to the pseudo first order reaction. The anoxic reaction constants of TCAA, DCAA and MCAA were 0.46 h(-1), 0.03 h(-1) and 0, and their oxic constants were 1.24 h(-1), 0.79 h(-1) and 0.28 h(-1), respectively. The removal mechanisms of chloroacetic acids were different under various oxygen concentrations, including sequential hydrogenolysis for anoxic reaction and sequential hydrogenolysis and direct transformation possible for oxic reaction, respectively.

  7. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism.

    PubMed

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits.

  8. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism

    PubMed Central

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  9. Acid-free aza Diels-Alder reaction of Danishefsky's diene with imines.

    PubMed

    Yuan, Yu; Li, Xin; Ding, Kuiling

    2002-09-19

    [reaction: see text] A highly efficient aza Diels-Alder reaction of Danishefsky's diene with imines was found to occur in methanol in the absence of any acids at room temperature to give corresponding 2-substituted dihydro-4-pyridone derivatives in high yields. This reaction can be also carried out in a three-component one-pot reaction manner. The reaction was found to proceed through a Mannich-type condensation mechanism.

  10. Synthesis and properties of poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite

    SciTech Connect

    Preda, N.; Rusen, E.; Musuc, A.; Enculescu, M.; Matei, E.; Marculescu, B.; Fruth, V.; Enculescu, I.

    2010-08-15

    The synthesis of a new hybrid composite based on PbS nanoparticles and poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid) [P(MMA-AMPSA)] copolymer is reported. The chemical synthesis consists in two steps: (i) a surfactant-free emulsion copolymerization between methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid and (ii) the generation of PbS particles in the presence of the P(MMA-AMPSA) latex, from the reaction between lead nitrate and thiourea. The composite was studied by scanning electron microscopy (SEM), X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The microstructure observed using SEM proves that the PbS nanoparticles are well dispersed in the copolymer matrix. The X-ray diffraction measurements demonstrate that the PbS nanoparticles have a cubic rock salt structure. It was also found that the inorganic semiconductor nanoparticles improve the thermal stability of the copolymer matrix.

  11. Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

    PubMed Central

    Stergiou, Anastasios; Pagona, Georgia

    2014-01-01

    Summary Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor–acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor–acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor–acceptor graphene-based hybrids, will be discussed. PMID:25247140

  12. Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth.

    PubMed

    Prochaska, Krystyna; Staszak, Katarzyna; Woźniak-Budych, Marta Joanna; Regel-Rosocka, Magdalena; Adamczak, Michalina; Wiśniewski, Maciej; Staniewski, Jacek

    2014-09-01

    A novel approach based on a hybrid system allowing nanofiltration, bipolar electrodialysis and reactive extraction, was proposed to remove fumaric acid from fermentation broth left after bioconversion of glycerol. The fumaric salts can be concentrated in the nanofiltration process to a high yield (80-95% depending on pressure), fumaric acid can be selectively separated from other fermentation components, as well as sodium fumarate can be conversed into the acid form in bipolar electrodialysis process (stack consists of bipolar and anion-exchange membranes). Reactive extraction with quaternary ammonium chloride (Aliquat 336) or alkylphosphine oxides (Cyanex 923) solutions (yield between 60% and 98%) was applied as the final step for fumaric acid recovery from aqueous streams after the membrane techniques. The hybrid system permitting nanofiltration, bipolar electrodialysis and reactive extraction was found effective for recovery of fumaric acid from the fermentation broth.

  13. Interactions of hybrid gold-tannic acid nanoparticles with human serum albumin.

    PubMed

    Sekowski, Szymon; Tomaszewska, Emilia; Soliwoda, Katarzyna; Celichowski, Grzegorz; Grobelny, Jaroslaw

    2017-01-01

    Nanoparticles present a wide spectrum of chemical, biological, and physical properties which result in their usage in many branches of science. We present an investigation of the interaction between human serum albumin and hybrid gold-tannic acid nanoparticles synthesized via a chemical reduction method. The results obtained demonstrate that tannic acid can be a very effective reducing and stabilizing agent and allows monodisperse hybrid gold nanomaterial to be obtained. The synthesized hybrid gold-tannic acid nanoparticles strongly interact with human serum albumin by formation of protein-corona complexes. The strength of the interaction with albumin depends on the number of tannic acid molecules on the surface of the nanoparticles and the presence of citric acid. Nanoparticles of large size and rich in tannic acid react more strongly with the protein [K SV = (8.00 ± 0.2) × 10(5) M(-1)] compared with smaller ones [K SV = (6.83 ± 0.5) × 10(4) M(-1)] containing citric acid and low concentration of tannic acid.

  14. Synthesis and utilization of chitin humic acid hybrid as sorbent for Cr(III)

    NASA Astrophysics Data System (ADS)

    Santosa, Sri Juari; Siswanta, Dwi; Sudiono, Sri; Sehol, Muhamad

    2007-11-01

    New types of hybrid material have been synthesized by using four different methods of immobilization of humic acid (HA) on chitin. The most stable hybrid material toward the change of medium acidity was then utilized as sorbent for Cr(III). The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, using the recommended procedure of International Humic Substances Society (IHSS), while the chitin was isolated from crab shell waste through deproteination using 3.5% (w/v) NaOH and followed by removal of inorganic impurities using 1 M HCl. The four methods of immobilization of HA on chitin were (i) Method A: chitin powder (4 g) was gently poured into the stirred solution of 0.4 g HA in 40 mL of 0.01 M NaOH. After overnight stirring, the solid was separated, washed with water, and dried in oven at 70 °C. (ii) Method B: gelatinous chitin (40 g) in 250 mL of 0.5 M HCl was reacted with HA (4 g) in 500 mL of 0.5 M NaOH and aged for 24 h. The product was washed with water and dried. (iii) Method C: HA powder (0.5 g) was mixed with the stirred gel of chitin (2.5 g) in 60 mL of CaCl 2 saturated methanol and the mixture was then washed with the mixed solution of 25 mL of 2 M sodium citrate and ethylene glycol 1:1. The solid was separated, washed with water, and dried. (iv) Method D: the solution of HA (0.056 g) in 10 mL of 0.01 M NaOH was reacted with the gel of chitin (0.2 g) in 10 mL of CaCl 2 saturated methanol. After 24 h stirring, the solid was separated from the reaction medium, washed with the mixed solution of 2 M sodium citrate and ethylene glycol 1:1, and followed by washing with water and drying. Parameters investigated in this study consisted of the stability test of the immobilized HA, as well as the rate constant ( k1), capacity ( b), and energy ( E) of sorption as well as the rate constant of desorption ( k-1). The k1 and k-1 were determined according to a kinetic model of first order sorption reaching equilibrium, while the b and E

  15. Ultrasensitive colorimetric detection of circulating tumor DNA using hybridization chain reaction and the pivot of triplex DNA

    NASA Astrophysics Data System (ADS)

    Li, Ruimin; Zou, Li; Luo, Yanwei; Zhang, Manjun; Ling, Liansheng

    2017-03-01

    This work presents an amplified colorimetric biosensor for circulating tumor DNA (ctDNA), which associates the hybridization chain reaction (HCR) amplification with G-Quadruplex DNAzymes activity through triplex DNA formation. In the presence of ctDNA, HCR occurs. The resulting HCR products are specially recognized by one sequence to include one GGG repeat and the other containing three GGG repeats, through the synergetic effect of triplex DNA and asymmetrically split G-Quadruplex forming. Such design takes advantage of the amplification property of HCR and the high peroxidase-like catalytic activity of asymmetrically split G-Quadruplex DNAzymes by means of triplex DNA formation, which produces color signals in the presence of ctDNA. Nevertheless, in the absence of ctDNA, no HCR happens. Thus, no triplex DNA and G-Quadruplex structure is formed, producing a negligible background. The colorimetric sensing platform is successfully applied in complex biological environments such as human blood plasma for ctDNA detection, with a detection limit corresponding to 0.1 pM. This study unambiguously uses triplex DNA forming as the pivot to integrate nucleic acid amplification and DNAzymes for producing a highly sensitive signal with low background.

  16. Ultrasensitive colorimetric detection of circulating tumor DNA using hybridization chain reaction and the pivot of triplex DNA

    PubMed Central

    Li, Ruimin; Zou, Li; Luo, Yanwei; Zhang, Manjun; Ling, Liansheng

    2017-01-01

    This work presents an amplified colorimetric biosensor for circulating tumor DNA (ctDNA), which associates the hybridization chain reaction (HCR) amplification with G-Quadruplex DNAzymes activity through triplex DNA formation. In the presence of ctDNA, HCR occurs. The resulting HCR products are specially recognized by one sequence to include one GGG repeat and the other containing three GGG repeats, through the synergetic effect of triplex DNA and asymmetrically split G-Quadruplex forming. Such design takes advantage of the amplification property of HCR and the high peroxidase-like catalytic activity of asymmetrically split G-Quadruplex DNAzymes by means of triplex DNA formation, which produces color signals in the presence of ctDNA. Nevertheless, in the absence of ctDNA, no HCR happens. Thus, no triplex DNA and G-Quadruplex structure is formed, producing a negligible background. The colorimetric sensing platform is successfully applied in complex biological environments such as human blood plasma for ctDNA detection, with a detection limit corresponding to 0.1 pM. This study unambiguously uses triplex DNA forming as the pivot to integrate nucleic acid amplification and DNAzymes for producing a highly sensitive signal with low background. PMID:28276503

  17. Students' Understanding of Acid, Base and Salt Reactions in Qualitative Analysis.

    ERIC Educational Resources Information Center

    Tan, Kim-Chwee Daniel; Goh, Ngoh-Khang; Chia, Lian-Sai; Treagust, David F.

    2003-01-01

    Uses a two-tier, multiple-choice diagnostic instrument to determine (n=915) grade 10 students' understanding of the acid, base, and salt reactions involved in basic qualitative analysis. Reports that many students did not understand the formation of precipitates and the complex salts, acid/salt-base reactions, and thermal decomposition involved in…

  18. Synthesis of cyclopropyl-substituted furans by brønsted Acid promoted cascade reactions.

    PubMed

    Clark, J Stephen; Romiti, Filippo; Hogg, Kirsten F; Hamid, Malai Haniti S A; Richter, Sven C; Boyer, Alistair; Redman, Joanna C; Farrugia, Louis J

    2015-05-04

    Chloroacetic acid promotes an efficient and diastereoselective intramolecular cascade reaction of electron-deficient ynenones to deliver products featuring a 2,3,5-trisubstituted furan bearing a fused cyclopropyl substituent at the 5-position. Synthetically relevant polycyclic building blocks featuring rings of various sizes and heteroatoms have been synthesized in high yield using this mild acid-catalyzed reaction.

  19. Combinatorial analysis of mRNA expression patterns in mouse embryos using hybridization chain reaction.

    PubMed

    Huss, David; Choi, Harry M T; Readhead, Carol; Fraser, Scott E; Pierce, Niles A; Lansford, Rusty

    2015-03-02

    Multiplexed fluorescent hybridization chain reaction (HCR) and advanced imaging techniques can be used to evaluate combinatorial gene expression patterns in whole mouse embryos with unprecedented spatial resolution. Using HCR, DNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled DNA HCR hairpins self-assemble into tethered fluorescent amplification polymers. Each target mRNA is detected by a probe set containing one or more DNA probes, with each probe carrying two HCR initiators. For multiplexed experiments, probe sets for different target mRNAs carry orthogonal initiators that trigger orthogonal DNA HCR amplification cascades labeled by spectrally distinct fluorophores. As a result, in situ amplification is performed for all targets simultaneously, and the duration of the experiment is independent of the number of target mRNAs. We have used multiplexed fluorescent in situ HCR and advanced imaging technologies to address questions of cell heterogeneity and tissue complexity in craniofacial patterning and anterior neural development. In the sample protocol presented here, we detect three different mRNA targets: Tg(egfp), encoding the enhanced green fluorescent protein (GFP) transgene (typically used as a control); Twist1, encoding a transcription factor involved in cell lineage determination and differentiation; and Pax2, encoding a transcription factor expressed in the mid-hindbrain region of the mouse embryo.

  20. Hybrid quantum/classical path integral approach for simulation of hydrogen transfer reactions in enzymes.

    PubMed

    Wang, Qian; Hammes-Schiffer, Sharon

    2006-11-14

    A hybrid quantum/classical path integral Monte Carlo (QC-PIMC) method for calculating the quantum free energy barrier for hydrogen transfer reactions in condensed phases is presented. In this approach, the classical potential of mean force along a collective reaction coordinate is calculated using umbrella sampling techniques in conjunction with molecular dynamics trajectories propagated according to a mapping potential. The quantum contribution is determined for each configuration along the classical trajectory with path integral Monte Carlo calculations in which the beads move according to an effective mapping potential. This type of path integral calculation does not utilize the centroid constraint and can lead to more efficient sampling of the relevant region of conformational space than free-particle path integral sampling. The QC-PIMC method is computationally practical for large systems because the path integral sampling for the quantum nuclei is performed separately from the classical molecular dynamics sampling of the entire system. The utility of the QC-PIMC method is illustrated by an application to hydride transfer in the enzyme dihydrofolate reductase. A comparison of this method to the quantized classical path and grid-based methods for this system is presented.

  1. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    DOE PAGES

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; ...

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore » of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.« less

  2. Hybrid charged-particle guide for studying (n, charged particle) reactions

    SciTech Connect

    Haight, R.C.; White, R.M.; Zinkle, S.J.

    1982-08-25

    Charged-particle transport systems consisting of magnetic quadrupole lenses have been employed in recent years in the study of (n, charged particle) reactions. We have completed a new transport system that is based both on magnetic lenses as well as electrostatic fields. The magnetic focusing of this charged-particle guide is provided by six magnetic quadrupole lenses arranged in a CDCCDC sequence (in the vertical plane). The electrostatic field is produced by a wire at high voltage which stretches the length of the guide and is physically at the center of the magnetic axis. The magnetic lenses are used for charged particles above 5 MeV; the electrostatic guide is used for lower energies. This hybrid system possesses the excellent focusing and background rejection properties of other magnetic systems. For low energy charged-particles, the electrostatic transport avoids the narrow band-passes in charged-particle energy which are a problem with purely magnetic transport systems. This system is installed at the LLNL Cyclograaff facility for the study of (n, charged particle) reactions at neutron energies up to 35 MeV.

  3. Image Charge Method for Reaction Fields in a Hybrid Ion-Channel Model

    SciTech Connect

    Xu, Zhenli; Cai, Wei; Cheng, Xiaolin

    2011-01-01

    A multiple-image method is proposed to approximate the reaction-field potential of a source charge inside a finite length cylinder due to the electric polarization of the surrounding membrane and bulk water. When applied to a hybrid ion-channel model, this method allows a fast and accurate treatment of the electrostatic interactions of protein with membrane and solvent. To treat the channel/membrane interface boundary conditions of the electric potential, an optimization approach is used to derive image charges by fitting the reaction-field potential expressed in terms of cylindric harmonics. Meanwhile, additional image charges are introduced to satisfy the boundary conditions at the planar membrane interfaces. In the end, we convert the electrostatic interaction problem in a complex inhomogeneous system of ion channel/membrane/water into one in a homogeneous free space embedded with discrete charges (the source charge and image charges). The accuracy of this method is then validated numerically in calculating the solvation self-energy of a point charge.

  4. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    PubMed Central

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  5. A bio-inspired sensor coupled with a bio-bar code and hybridization chain reaction for Hg(2+) assay.

    PubMed

    Xu, Huifeng; Zhu, Xi; Ye, Hongzhi; Yu, Lishuang; Chen, Guonan; Chi, Yuwu; Liu, Xianxiang

    2015-10-18

    In this article, a bio-inspired DNA sensor is developed, which is coupled with a bio-bar code and hybridization chain reaction. This bio-inspired sensor has a high sensitivity toward Hg(2+), and has been used to assay Hg(2+) in the extraction of Bauhinia championi with good satisfaction.

  6. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  7. Enzyme-free and isothermal detection of microRNA based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction signal amplification.

    PubMed

    Oishi, Motoi

    2015-05-01

    An enzyme-free and isothermal microRNA (miRNA) detection method has been developed based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction (HCR) on magnetic beads (MBs). The click-chemical ligation between an azide-modified probe DNA and a dibenzocyclooctyne-modified probe DNA occurred through the hybridization of target miRNA (miR-141). HCR on MBs was performed by the addition of DNA hairpin monomers (H1 and H2). After magnetic separation and denaturation/rehybridization of HCR products ([H1/H2] n ), the resulting HCR products were analyzed by the fluorescence emitted from an intercalative dye, allowing amplification of the fluorescent signal. The proposed assay had a limit of detection of 0.55 fmol, which was 230-fold more sensitive than that of the HCR on the MBs coupled with a conventional sandwich hybridization assay (without click-chemical ligation) (limit of detection 127 fmol). Additionally, the proposed assay could discriminate between miR-141 and other miR-200 family members. In contrast to quantitative reverse transcription polymerase chain reaction techniques using enzymes and thermal cycling, this is an enzyme-free assay that can be conducted under isothermal conditions and can specifically detect miR-141 in fetal bovine serum.

  8. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product...

  9. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product...

  10. 40 CFR 721.10428 - Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with 1-piperazineethanamine. 721.10428 Section 721.10428 Protection of Environment..., reaction products with 1-piperazineethanamine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as fatty acids, C18-unsatd., dimers, reaction products...

  11. 40 CFR 721.10428 - Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with 1-piperazineethanamine. 721.10428 Section 721.10428 Protection of Environment..., reaction products with 1-piperazineethanamine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as fatty acids, C18-unsatd., dimers, reaction products...

  12. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product...

  13. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product...

  14. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product...

  15. Proton exchange in acid-base complexes induced by reaction coordinates with heavy atom motions

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-06-01

    We extend previous work on nitric acid-ammonia and nitric acid-alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid-strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are <400 cm-1. This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm-1. Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  16. Biomimetic growth of gallic acid-ZnO hybrid assemblies and their applications

    NASA Astrophysics Data System (ADS)

    Sarker, Nazmul H.; Barnaby, Stacey N.; Fath, Karl R.; Frayne, Stephen H.; Nakatsuka, Nako; Banerjee, Ipsita A.

    2012-03-01

    In this study, we probed the biomimetic formation of gallic acid (GA)-ZnO nanoparticle hybrids. It was found that the morphologies formed were dependent upon pH values, resulting in GA-ZnO hybrids of varying shapes such as micro or nanoplates or fibers. The formed supramolecular GA-ZnO hybrids were found to be luminescent as indicated by confocal microscopy and were utilized for the photocatalytic degradation of the organic dye methylene blue. We also explored the bactericidal effects of the hybrids on Staphylococcus aureus ( S. aureus) as well as Escherichia Coli ( E. Coli). Thus, we have developed a new class of shape-controlled nanohybrid assemblies via mild, green synthetic methods that may be utilized for photocatalytic degradation for environmental remediation as well as for antibacterial applications.

  17. Reaction of folic acid with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ellison, Mark D.; Chorney, Matthew

    2016-10-01

    The oxygen-containing functional groups on oxidized single-walled carbon nanotubes (SWNTs) are used to covalently bond folic acid molecules to the SWNTs. Infrared spectroscopy confirms intact molecular binding to the SWNTs through the formation of an amide bond between a carboxylic acid group on an SWNT and the primary amine group of folic acid. The folic acid-functionalized SWNTs are readily dispersible in water and phosphate-buffered saline, and the dispersions are stable for a period of two weeks or longer. These folic acid-functionalized SWNTs offer potential for use as biocompatible SWNTs.

  18. Organo-niobate Ionic Liquids: Synthesis, Characterization and Application as Acid Catalyst in Pechmann Reactions

    PubMed Central

    Soares, Valerio C. D.; Alves, Melquizedeque B.; Souza, Ernesto R.; Pinto, Ivana O.; Rubim, Joel C.; Andrade, Carlos Kleber Z.; Suarez, Paulo A. Z.

    2007-01-01

    The combinations of 1-butyl-3-methylimidazolium chloride with NbCl5 yielded ionic mixtures with different melting point temperatures and acidity depending on the niobium molar fraction. The mixtures were characterized by thermal (DSC) and spectroscopic (FT-IR and 1H NMR) analysis. The Pechmann reactions of different phenols with ethylacetoacetate, producing coumarins, was used as model to evaluate the catalytic behavior of these mixtures as acid Lewis catalyst. These reactions were carried out using acidic mixtures of 60 mol%.

  19. 40 CFR 721.10429 - Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and tall-oil...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with 1-piperazineethanamine and tall-oil fatty acids. 721.10429 Section 721.10429... Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and tall-oil fatty acids... identified as fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and...

  20. 40 CFR 721.10429 - Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and tall-oil...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with 1-piperazineethanamine and tall-oil fatty acids. 721.10429 Section 721.10429... Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and tall-oil fatty acids... identified as fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and...

  1. Chiral BINOL-derived phosphoric acids: privileged Brønsted acid organocatalysts for C-C bond formation reactions.

    PubMed

    Zamfir, Alexandru; Schenker, Sebastian; Freund, Matthias; Tsogoeva, Svetlana B

    2010-12-07

    BINOL-derived phosphoric acids have emerged during the last five years as powerful chiral Brønsted acid catalysts in many enantioselective processes. The most successful transformations carried out with chiral BINOL phosphates include C-C bond formation reactions. The recent advances have been reviewed in this article with a focus being placed on hydrocyanations, aldol-type, Mannich, Friedel-Crafts, aza-ene-type, Diels-Alder, as well as cascade and multi-component reactions.

  2. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  3. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  4. [Experimental and kinetic modeling of acid/base and redox reactions over oxide catalysts

    SciTech Connect

    Not Available

    1993-01-01

    The research has involved the characterization of catalyst acidity, [sup 2]D NMR studies of Bronsted acid sites, and kinetic, calorimetric, and spectroscopic studies of methylamine synthesis and related reactions over acid catalysts. Approach of this work was to explore quantitative correlations between factors that control the generation, type, strength, and catalytic properties of acid sites on zeolite catalysts. Microcalorimetry, thermogravimetric analysis, IR spectroscopy, and NMR spectroscopy have provided information about the nature and strength of acid sites in zeolites. This was vital in understanding the catalytic cycles involved in methylamine synthesis and related reactions over zeolite catalysts.

  5. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  6. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  7. The effects of phytic acid on the Maillard reaction and the formation of acrylamide.

    PubMed

    Wang, Huan; Zhou, Yamin; Ma, Jimei; Zhou, Yuanyuan; Jiang, Hong

    2013-11-01

    Phytic acid, myo-inositol hexaphosphoric acid, exists in substantial (1-5%) amounts in edible plant seeds. In this study the effects of phytic acid on the Maillard reaction and the formation of acrylamide were investigated. Both phytic acid and phosphate enhanced browning in glucose/β-alanine system, but phytic acid was less effective than phosphate. Higher pH favoured the catalytic activities for both of them. The influence of the types of sugar and amino acid on the reaction was also examined. Browning was suppressed by the addition of calcium and magnesium ions, but an additive effect was observed for ferrous ions and phytic acid in glucose/β-alanine solution at pH 8.0. Both phytic acid and phosphate promoted the polymerisation of the reaction intermediates. The kinetics of Maillard reaction was first-ordered reaction in the presence of phytic acid. Phytic acid was less effective than phosphate in the formation of acrylamide. When potato slices were treated with sodium phytate and calcium chloride successively, the formation of acrylamide was greatly suppressed.

  8. Spectrophotometric method for determination and kinetics of amino acids through their reaction with syringaldehyde

    NASA Astrophysics Data System (ADS)

    Medien, H. A. A.

    1998-02-01

    A spectrophotometric method is described for the determination of amino acids. The method is based on the reaction between amino acids and syringaldehyde at pH 9.0, by which a color is developed with maximum absorption at 420 nm in aqueous methyl alcohol. The absorption of the product obeys Beer's law within the concentration range of 0.025-0.5 mM of original amino acid. The kinetics of the reaction follows overall second order kinetics, first order in each of the reactants. The rates of the reaction were investigated as a function of pH of the reaction medium and structure of the amino compounds. Logarithms of the second-order rate constants increased with amino acid anion concentration as the pH was increased. The mechanisms of the reaction have been discussed.

  9. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization.

    PubMed

    Yu, Xu; Zhang, Zhi-Ling; Zheng, Si-Yang

    2015-04-15

    A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant color change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays.

  10. A simple, rapid method of nucleic acid extraction without tissue homogenization for detecting viroids by hybridization and RT-PCR.

    PubMed

    Nakahara, K; Hataya, T; Uyeda, I

    1999-01-01

    A simple, rapid method of nucleic acid extraction on a microcentrifuge tube scale for detecting viroids is presented. Five distinct citrus viroids (CVds), chrysanthemum stunt viroid (CSVd), hop stunt viroid (HSVd), hop latent viroid (HLVd) and potato spindle tuber viroid (PSTVd) were detected in their natural host plants by hybridization using cRNA probes and reverse transcription-polymerase chain reaction (RT-PCR). Nucleic acids (NA) were liberated from tissues by incubation in a buffer containing potassium ethyl xanthogenate (PEX) without tissue homogenization, and then precipitated with ethanol (NA-PEX). All the viroids except CVd-IV could be detected clearly in NA-PEX by hybridization. HSVd, HLVd and PSTVd could also be detected in NA-PEX by RT-PCR. Although CVds and CSVd could not be detected in NA-PEX by RT-PCR, they were detected after further purification: differential precipitation with 2-butoxyethanol and HCl treatment followed by ethanol-precipitation. In addition, PCR in the presence of tetramethylammonium chloride specifically amplified the cDNA of all five distinct CVds under the same temperature and cycle conditions. Since all the viroids could be detected in NA liberated by PEX, the amount of NA extracted by the method described here is sufficient for detecting viroids, enabling the processing of a large number of samples.

  11. Conversion of waste cellulose to ethanol. Phase 2: Reaction kinetics with phosphoric acid

    NASA Astrophysics Data System (ADS)

    Moeller, M. B.; Isbell, R. E.

    1982-05-01

    Waste cellulosic material can be hydrolyzed in dilute acid solution to produce fermentable sugars which can then be converted into ethanol. A laboratory investigation was made of the feasibility of using phosphoric acid as the hydrolysis catalyst. The hydrolysis reaction with phosphoric acid solutions was compared with the reaction employing the more conventional dilute sulfuric acid catalyst. The purpose of this research was to examine the hydrolysis step in a proposed process for the conversion of cellulose (from wood, newspapers, municipal solid waste, or other sources) into ethanol - by which a potentially valuable co-product, DICAL (dicalcium phosphate), might be made and sold with or without the lignin content as a fertilizer. The pertinent reaction kinetics for the acid catalyzed production of glucose from cellulose consists of consecutive, pseudo-first order reactions.

  12. Carbocations as Lewis acid catalysts in Diels-Alder and Michael addition reactions.

    PubMed

    Bah, Juho; Franzén, Johan

    2014-01-20

    In general, Lewis acid catalysts are metal-based compounds that owe their reactivity to a low-lying empty orbital. However, one potential Lewis acid that has received negligible attention as a catalyst is the carbocation. We have demonstrated the potential of the carbocation as a highly powerful Lewis acid catalyst for organic reactions. The stable and easily available triphenylmethyl (trityl) cation was found to be a highly efficient catalyst for the Diels-Alder reaction for a range of substrates. Catalyst loadings as low as 500 ppm, excellent yields, and good endo/exo selectivities were achieved. Furthermore, by changing the electronic properties of the substituents on the tritylium ion, the Lewis acidity of the catalyst could be tuned to control the outcome of the reaction. The ability of this carbocation as a Lewis acid catalyst was also further extended to the Michael reaction.

  13. [Fatty acids profile characterization of white maize hybrids grown in Venezuela].

    PubMed

    Alezones, Jesús; Avila, Manuel; Chassaigne, Alberto; Barrientos, Venancio

    2010-12-01

    In Venezuela, white corn is the most important crop regarding production, harvest area and consumption. One of its main by-products is corn oil, whose positive effect on health caused by the high content of unsaturated fatty acids has been widely recognized. In order to characterize the fatty acids profile of twelve white grained maize hybrids extensively grown in Venezuela, and the effect that divergent localities has on this profile, three semi commercial scale trials where established in Portuguesa, Yaracuy and Guárico states. Proportions of the main fatty acids in the raw oil of the different grain samples were determined using gas chromatography. Significant differences (p < 0,01) between hybrids were found for arachidic, palmitic, stearic, oleic, gadoleic and linoleic acids; non significant differences were found for linolenic acid. Significant differences between localities were found for all the fatty acids evaluated. High and significant correlations between fatty acids content were found; the most important relations were: linoleic-oleic (Rho = -0,98**), arachidic-palmitic (Rho = -0,61**), linoleic-stearic (Rho = -0,61**) and oleic-stearic (Rho = 0,58**). Corn produced in Venezuela presents lower levels of linoleic and higher levels of palmitic, stearic and oleic acids than the levels found in temperate corn. These differences involve significant changes in the nutritional properties of Venezuelan corn oil that should be considered in the development of new cultivars and industrial processes for oil production.

  14. Permeabilization of mycolic-acid-containing actinomycetes for in situ hybridization with fluorescently labelled oligonucleotide probes.

    PubMed

    Macnaughton, S J; O'Donnell, A G; Embley, T M

    1994-10-01

    The application of whole-cell hybridization using labelled oligonucleotide probes in microbial systematics and ecology is limited by difficulties in permeabilizing many Gram-positive organisms. In this investigation paraformaldehyde treatment, acid methanolysis and acid hydrolysis were evaluated as a means of permeabilizing mycolic-acid-containing actinomycetes prior to hybridization with a fluorescently labelled oligonucleotide probe designed to bind to a conserved sequence of bacterial 16S rRNA. Methods were evaluated on stationary-phase cultures of Gordona bronchialis, Mycobacterium fortuitum, Nocardia asteroides, N. brasiliensis, Rhodococcus equi, R. erythropolis, R. fascians, R. rhodochrous and Tsukamurella paurometabola, none of which could be probed following 4% (w/v) paraformaldehyde fixation. For comparison and to test the general applicability of mild acid pretreatments, Bacillus subtilis, Lactobacillus plantarum, Escherichia coli and Pseudomonas putida were also studied. The data showed that most of the mycolic-acid-containing organisms were successfully permeabilized by mild acid hydrolysis in 1 M HCl at 37 degrees C. Cells were treated for different lengths of time. In general, the mycolic-acid-containing organisms required between 30 and 50 min hydrolysis, whereas B. subtilis, E. coli and P. putida were rendered permeable in only 10 min. Interestingly, L. plantarum could not be permeabilized using acid hydrolysis even after 60 min exposure to 1 M HCl.

  15. Asymmetric Lewis acid organocatalysis of the Diels-Alder reaction by a silylated C-H acid.

    PubMed

    Gatzenmeier, Tim; van Gemmeren, Manuel; Xie, Youwei; Höfler, Denis; Leutzsch, Markus; List, Benjamin

    2016-02-26

    Silylium ion equivalents have shown promise as Lewis acid catalysts for a range of important C-C bond-forming reactions. Here we describe chiral C-H acids that upon in situ silylation, generate silylium-carbanion pairs, which are extremely active Lewis acid catalysts for enantioselective Diels-Alder reactions of cinnamates with cyclopentadiene. Enantiomeric ratios of up to 97:3 and diastereomeric ratios of more than 20:1 are observed across a diverse set of substitution patterns with 1 mole percent (mol %) of C-H acid catalyst and 10 mol % of a silylating reagent. The results show promise for broad applications of such C-H acid-derived silylium ion equivalents in asymmetric Lewis acid catalysis.

  16. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis.

  17. Ultrasensitive Multiplexed Immunoassay for Tumor Biomarkers Based on DNA Hybridization Chain Reaction Amplifying Signal.

    PubMed

    Guo, Jinjin; Wang, Junchun; Zhao, Junqing; Guo, Zilin; Zhang, Yuzhong

    2016-03-23

    In this work, a novel electrochemical immunoassay protocol has been reported for simultaneous determination of multiple tumor biomarkers based on DNA hybridization chain reaction (HCR) for signal amplification. Alpha-fetoprotein (AFP) and prostate specific antigen (PSA) were selected as model biomarkers. The immunoassay protocol contained primary antibodies immobilized on gold nanoparticles (Au NPs), secondary antibodies conjugated with DNA concatemer from HCR of primer, auxiliary probe, and signal probe labeled with signal molecules (methyleneblue (MB) and ferrocene (Fc)). In the presence of target biomarkers, the sandwich immunocomplex was formed between the primary antibodies and secondary antibodies bioconjugates carrying numerous signal molecules. As a result, two well-resolved reduction peaks, one was at -0.35 V (corresponding to MB) and other was at 0.33 V (corresponding to Fc; both vs SCE), were obtained in differential pulse voltammetry, and peak currents changed were related to the level of biomarkers. Under optimal conditions, the electrochemical immunoassay exhibited a wide linear response range (0.5 pg mL(-1) to 50 ng mL(-1)) and low detection limits (PSA, 0.17 pg mL(-1); AFP, 0.25 pg mL(-1)) (at S/N = 3). In addition, the immunoassay was evaluated by analyzing simulate human serum sample, and the recoveries obtained were within 99.4-107.6% for PSA and 97.9-108.2% for AFP, indicating the immnuoassay could be applied to the simultaneous detection of AFP and PSA in human serum samples.

  18. Salmonellae in fish feces analyzed by in situ hybridization and quantitative polymerase chain reaction.

    PubMed

    Sha, Qiong; Forstner, Michael R J; Bonner, Timothy H; Hahn, Dittmar

    2013-09-01

    The potential of fish to transfer salmonellae from heterogeneous aquatic biofilms into feces was assessed in controlled aquarium studies with Suckermouth Catfish Hypostomus plecostomus and with biofilms inoculated with salmonellae. Neither the presence of catfish nor inoculation with salmonellae had detectable effects on the abundance of the microbial community. Densities of the microbial community were about 10(5) cells/mL in the water during a 1-week period, whereas densities of the microbial community increased 10-fold (10(6) to 10(7) cells/mg) in catfish feces during the same period. Salmonellae were detected by both quantitative polymerase chain reaction (qPCR) and situ hybridization in water samples immediately after inoculation, in numbers of about 10(4) cells/mL, representing up to 20% of the cells of the microbial community. Numbers decreased by three orders of magnitude within the first 3 d of the study, which represented only 0.01% of the community, and became undetectable after day 5. In catfish feces, numbers of Salmonella initially increased to up to 6% of the cells of the community but then declined. These results suggest that Salmonella are not biomagnified during gut passage, and thus, fish only provide a means for the translocation of this pathogen.

  19. Quinone- and nitroreductase reactions of Thermotoga maritima peroxiredoxin-nitroreductase hybrid enzyme.

    PubMed

    Anusevičius, Žilvinas; Misevičienė, Lina; Šarlauskas, Jonas; Rouhier, Nicolas; Jacquot, Jean-Pierre; Čėnas, Narimantas

    2012-12-01

    Thermotoga maritima peroxiredoxin-nitroreductase hybrid enzyme (Prx-NR) consists of a FMN-containing nitroreductase (NR) domain fused to a peroxiredoxin (Prx) domain. These domains seem to function independently as no electron transfer occurs between them. The reduction of quinones and nitroaromatics by NR proceeded in a two-electron manner, and follows a 'ping-pong' scheme with sometimes pronounced inhibition by quinone substrate. The comparison of steady- and presteady-state kinetic data shows that in most cases, the oxidative half-reaction may be rate-limiting in the catalytic cycle of NR. The enzyme was inhibited by dicumarol, a classical inhibitor of oxygen-insensitive nitroreductases. The reduction of quinones and nitroaromatic compounds by Prx-NR was characterized by the linear dependence of their reactivity (logk(cat)/K(m)) on their single-electron reduction potentials E(7)(1), while the reactivity of quinones markedly exceeded the one with nitroaromatics. It shows that NR lacks the specificity for the particular structure of these oxidants, except their single-electron accepting potency and the rate of electron self-exchange. It points to the possibility of a single-electron transfer step in a net two-electron reduction of quinones and nitroaromatics by T. maritima Prx-NR, and to a significant diversity of the structures of flavoenzymes which may perform the two-electron reduction of quinones and nitroaromatics.

  20. Molecular hybridization between rat liver deoxyribonucleic acid and complementary ribonucleic acid

    PubMed Central

    Melli, Marialuisa; Bishop, J. O.

    1970-01-01

    RNA (cRNA) was synthesized in vitro on a template of rat liver DNA and its hybridization with rat liver DNA was studied by using the nitrocellulose-filter method. Sonication of the DNA diminished its apparent capacity to hybridize with RNA by about 50%. This is not due to cross-linkage of DNA molecules, because it could be shown that less than 2% of the sonicated DNA was cross-linked. The effect is due instead to the small size of the sonicated DNA molecules. Below a single-stranded molecular weight of 5×105 the DNA showed a progressive loss of capacity to hybridize with decrease in molecular weight. Evidence is presented suggesting that the apparently diminished capacity of the DNA to hybridize is due to loss of hybridized DNA from the membrane filters. When cRNA at concentrations of up to 25μg/ml is annealed with sonicated total DNA, an apparent hybridization saturation value is found at which about 2.5% of the DNA is hybridized with RNA. Increasing the cRNA concentration tenfold brought about the hybridization of a second component of the DNA approximately equal in amount to the first. The renaturation of rat liver DNA was studied by measuring the fall in the extinction at 260nm and two different components of renaturation were observed within the reiterated fraction of DNA. By hybridizing cRNA with different fractions of rat DNA the two components of the hybridization curve are shown to correspond to the two components of the renaturation curve. The conclusion is drawn that at a cRNA concentration of 250μg/ml most of the reiterated fraction of rat liver DNA is hybridized after annealing for 16h under standard conditions (0.30m-sodium chloride–30mm-sodium citrate at 65°C). Even with such a high cRNA concentration little or no hybridization of the slowly renaturing DNA fraction occurs. It is suggested that the most highly reiterated DNA component is poorly transcribed in vitro. PMID:5493851

  1. Local sustained delivery of acetylsalicylic acid via hybrid stent with biodegradable nanofibers reduces adhesion of blood cells and promotes reendothelialization of the denuded artery.

    PubMed

    Lee, Cheng-Hung; Lin, Yu-Huang; Chang, Shang-Hung; Tai, Chun-Der; Liu, Shih-Jung; Chu, Yen; Wang, Chao-Jan; Hsu, Ming-Yi; Chang, Hung; Chang, Gwo-Jyh; Hung, Kuo-Chun; Hsieh, Ming-Jer; Lin, Fen-Chiung; Hsieh, I-Chang; Wen, Ming-Shien; Huang, Yenlin

    2014-01-01

    Incomplete endothelialization, blood cell adhesion to vascular stents, and inflammation of arteries can result in acute stent thromboses. The systemic administration of acetylsalicylic acid decreases endothelial dysfunction, potentially reducing thrombus, enhancing vasodilatation, and inhibiting the progression of atherosclerosis; but, this is weakened by upper gastrointestinal bleeding. This study proposes a hybrid stent with biodegradable nanofibers, for the local, sustained delivery of acetylsalicylic acid to injured artery walls. Biodegradable nanofibers are prepared by first dissolving poly(D,L)-lactide-co-glycolide and acetylsalicylic acid in 1,1,1,3,3,3-hexafluoro-2-propanol. The solution is then electrospun into nanofibrous tubes, which are then mounted onto commercially available bare-metal stents. In vitro release rates of pharmaceuticals from nanofibers are characterized using an elution method, and a highperformance liquid chromatography assay. The experimental results suggest that biodegradable nanofibers release high concentrations of acetylsalicylic acid for three weeks. The in vivo efficacy of local delivery of acetylsalicylic acid in reducing platelet and monocyte adhesion, and the minimum tissue inflammatory reaction caused by the hybrid stents in treating denuded rabbit arteries, are documented. The proposed hybrid stent, with biodegradable acetylsalicylic acid-loaded nanofibers, substantially contributed to local, sustained delivery of drugs to promote re-endothelialization and reduce thrombogenicity in the injured artery. The stents may have potential applications in the local delivery of cardiovascular drugs. Furthermore, the use of hybrid stents with acetylsalicylic acid-loaded nanofibers that have high drug loadings may provide insight into the treatment of patients with high risk of acute stent thromboses.

  2. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were

  3. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  4. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  5. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  6. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  7. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  8. A theoretical investigation of the atmospherically important reaction between chlorine atoms and formic acid: determination of the reaction mechanism and calculation of the rate coefficient at different temperatures

    NASA Astrophysics Data System (ADS)

    Ng, Maggie; Mok, Daniel K. W.; Lee, Edmond P. F.; Dyke, John M.

    2015-07-01

    The Cl + HCOOH reaction is important in the atmosphere, as the chlorine (Cl) atom is an important oxidant, especially in the marine boundary layer, and formic acid (HCOOH) is one of the most abundant organic acids in the troposphere. The reaction surfaces of the two H abstraction channels were computed by second-order unrestricted Møller-Plesset perturbation theory (UMP2) and density functional theory (DFT) calculations. Relative electronic energies were improved to the RCCSD(T)/CBS and UCCSD(T)-F12/CBS levels. The barrier of the C-H hydrogen abstraction channel was found to be lower by about 10 kcal mol-1. Rate coefficients (k) of this channel were calculated at different temperatures at various variational transition state theory (VTST) levels including tunnelling. For single-level direct dynamics VTST calculations, the computed k (2.5 × 10-13 cm3 molecule-1 s-1) using the BMK (Boese and Martin meta hybrid) functional at the highest level (ICVT/SCT) agrees the best with experimental values at 298 K (1.8 and 2.0 × 10-13 cm3 molecule-1 s-1). For dual-level direct dynamics calculations (RCCSD(T)/CBS//MP2 MEP), an adjusted barrier height of 3.1 kcal mol-1 is required to match the ICVT/SCT k with the experimental values. The computed rate coefficients of the Cl + HCOOH reaction is reported for the first time with a temperature range of 200-1500 K. The implications of the results obtained to atmospheric chemistry are discussed.

  9. Phosphoric acid impurities in phosphoric acid fuel cell electrolytes. 2: Effects on the oxygen reduction reaction at platinum electrodes

    SciTech Connect

    Sugishima, Noboru; Hinatsu, J.T.; Foulkes, F.R. . Dept. of Chemical Engineering and Applied Chemistry)

    1994-12-01

    The effects of phosphorus acid additions on the oxygen reduction reaction at platinum electrodes in concentrated phosphoric acid were studied. The oxygen reduction currents decreased, and the Tafel slopes became more negative upon the addition of small concentrations of phosphorus acid. In addition,the phosphorus acid oxidation current tended to complete with the oxygen reduction current. These effects became more pronounced at higher phosphorus acid concentrations and at higher temperatures. Upon the addition of phosphorus acid the number of electrons involved in the oxygen reduction reaction decreased from a value close to four to a value approaching two, suggesting promotion of a two-electron reduction to peroxide. Therefore, in studies of the electrochemical reduction of oxygen in hot concentrated phosphoric acid or in fuel cell systems using hot concentrated phosphoric acid as electrolyte, it is recommended that precautions be taken against the inadvertent formation of the phosphorus acid. The removal of phosphorus acid from concentrated phosphoric acid by repeated potential cycling at 100 mV/s between + 0.5 and +1.50 V (vs. dynamic hydrogen electrode) was demonstrated.

  10. Microwave-assisted reaction of glycosylamine with aspartic acid.

    PubMed

    Real-Fernández, Feliciana; Nuti, Francesca; Bonache, M Angeles; Boccalini, Marco; Chimichi, Stefano; Chelli, Mario; Papini, Anna Maria

    2010-07-01

    The synthesis of N-protected glycosyl amino acids from amines has been investigated and it was found that, under microwave conditions, glycosylamines could be hydrolyzed leading to new products containing a glycosyl ester linkage. The efficiency of the microwave-induced glycosylation of aspartic acid was studied comparing the microwave activity between amide and ester bond formation. Different sugar moieties have been employed to demonstrate the simple and reproducible coupling methodology. New glycosyl ester compounds were further characterized by NMR spectroscopy.

  11. Au-ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhi; Zeng, Deqian; Zhang, Kun; Lu, Aolin; Wang, Laisen; Peng, Dong-Liang

    2013-12-01

    The preparation of noble metal-semiconductor hybrid nanocrystals with controlled morphologies has received intensive interest in recent years. In this study, facile one-pot reactions have been developed for the synthesis of Au-ZnO hybrid nanocrystals with different interesting morphologies, including petal-like and urchin-like nanoflowers, nanomultipods and nanopyramids. In the synthesis strategy, oleylamine-containing solution serves as the reaction medium, and the in situ generated Au seeds play an important role in the subsequently induced growth of ZnO nanocrystals. With the aid of several surfactants, hybrid nanocrystals with different morphologies that have considerable influences on their optical and photocatalytic activities are readily achieved. Through high-resolution transmission electron microscopy measurements, an observed common orientation relationship between ZnO and Au is that ZnO nanocrystals prefer to grow with their polar {001} facets on the {111} facets of Au nanocrystals, and well-defined interfaces are evident. Surface plasmon resonance bands of Au with different positions are observed in the UV-vis spectra, and the UV and visible emissions of ZnO are found to be dramatically reduced. Finally, the as-prepared Au-ZnO nanocrystals exhibit excellent photocatalytic activity for the photodegradation of rhodamine B compared with pure ZnO nanocrystals. The Au-ZnO hybrid nanopyramids show the highest catalytic efficiency, which is correlated with the exposed crystal facets, crystallinity and the formation of hybrid nanostructures. The as-prepared Au-ZnO hybrid nanocrystals are expected to find diverse potential applications in the fields such as photocatalysis, solar energy conversion, sensing and biological detection.The preparation of noble metal-semiconductor hybrid nanocrystals with controlled morphologies has received intensive interest in recent years. In this study, facile one-pot reactions have been developed for the synthesis of Au

  12. Use of Hybridization Chain Reaction-Fluorescent In Situ Hybridization To Track Gene Expression by Both Partners during Initiation of Symbiosis

    PubMed Central

    Nikolakakis, K.; Lehnert, E.

    2015-01-01

    The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps required to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simultaneously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized, transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population. Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue responses to colonization. PMID:25956763

  13. Cascade dearomatization of N-substituted tryptophols via Lewis acid-catalyzed Michael reactions.

    PubMed

    Liu, Chuan; Zhang, Wei; Dai, Li-Xin; You, Shu-Li

    2012-09-21

    Lewis acid-catalyzed cascade dearomatization of N-substituted tryptophols via Michael addition reaction was developed. The generality of the method has been demonstrated by the synthesis of versatile furoindoline derivatives with a quaternary carbon center in good yields.

  14. A Mini-Review on Solid Acid Catalysts for Esterification Reactions

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Hansora, Dharmesh; Usmani, Ghayas A.

    2016-10-01

    This paper presents an overview of research pertaining to solid acid catalysts for esterification reactions. Prominence has been given to the literatures that have been appeared during the last two decades. A variety of reactions catalyzed by solid acid catalysts have been tabulated according to their broad classification; industrially important reactions have been outlined. Examples, where the use of various solid acid catalysts have led to an improvement in the selectivity of the desired products, have also been discussed. Various catalyzed esterification reactions using different approaches and previous kinetic studies have been reviewed. Types, preparation and synthesis of various solid acid catalysts have been reviewed and discussed. Suggestions have been summarized for their implementation in future work.

  15. Envisioning an enzymatic Diels-Alder reaction by in situ acid-base catalyzed diene generation.

    PubMed

    Linder, Mats; Johansson, Adam Johannes; Manta, Bianca; Olsson, Philip; Brinck, Tore

    2012-06-07

    We present and evaluate a new and potentially efficient route for enzyme-mediated Diels-Alder reactions, utilizing general acid-base catalysis. The viability of employing the active site of ketosteroid isomerase is demonstrated.

  16. Examination of Organic Reactions in UT/LS Aerosols: Temperature Dependence in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Michelsen, R. R.

    2004-12-01

    Sulfuric acid has been used for decades as an industrial catalyst for organic reactions, but its parallel role in atmospheric aerosols is relatively unexplored, despite identification of a wide array of organic compounds in particles. Several recent studies have demonstrated possible reactions in acidic particles, generally involving carbonyl groups (C=O) and leading to the formation of larger molecules. Reactions of oxygenated organic compounds in acidic solution are most often studied near room temperature, while the sulfate particles of the upper troposphere and lower stratosphere are significantly colder. Our studies of ethanal (acetaldehyde) suggest that reactivity in ~50 wt% H2SO4 solutions may be enhanced at lower temperatures, contrary to expectations. We will present temperature-dependent results of acid catalyzed condensation reactions, leading to formation of higher molecular weight products. Implications for aerosol composition and reactivity will be discussed.

  17. Kinetics of Acid Reactions: Making Sense of Associated Concepts

    ERIC Educational Resources Information Center

    Tan, Kim Chwee Daniel; Treagust, David F.; Chandrasegaran, A. L.; Mocerino, Mauro

    2010-01-01

    In chemical kinetics, in addition to the concepts related to kinetics, stoichiometry, chemical equilibrium and the characteristics of the reactants are often involved when comparing the rates of different reactions, making such comparisons very challenging for students at all levels, as well as for pre-service science teachers. Consequently, four…

  18. Enhancing the specificity and efficiency of polymerase chain reaction using polyethyleneimine-based derivatives and hybrid nanocomposites

    PubMed Central

    Tong, Weiwei; Cao, Xueyan; Wen, Shihui; Guo, Rui; Shen, Mingwu; Wang, Jianhua; Shi, Xiangyang

    2012-01-01

    There is a general necessity to improve the specificity and efficiency of the polymerase chain reaction (PCR), and exploring the PCR-enhancing mechanism still remains a great challenge. In this paper we report the use of branched polyethyleneimine (PEI)-based derivatives and hybrid nanocomposites as a novel class of enhancers to improve the specificity and efficiency of a nonspecific PCR system. We show that the surface-charge polarity of PEI and PEI derivatives plays a major role in their effectiveness to enhance the PCR. Positively charged amine-terminated pristine PEI, partially (50%) acetylated PEI (PEI-Ac50), and completely acetylated PEI (PEI-Ac) are able to improve PCR efficiency and specificity with an optimum concentration order of PEI < PEI-Ac50 < PEI-Ac, whereas negatively charged carboxyl-terminated PEI (PEI-SAH; SAH denotes succinamic acid groups) and neutralized PEI modified with both polyethylene glycol (PEG) and acetyl (Ac) groups (PEI-PEG-Ac) are unable to improve PCR specificity and efficiency even at concentrations three orders of magnitude higher than that of PEI. Our data clearly suggests that the PCR-enhancing effect is primarily based on the interaction between the PCR components and the PEI derivatives, where electrostatic interaction plays a major role in concentrating the PCR components locally on the backbones of the branched PEI. In addition, multiwalled carbon nanotubes modified with PEI and PEI-stabilized gold nanoparticles are also able to improve the PCR specificity and efficiency with an optimum PEI concentration less than that of the PEI alone, indicating that the inorganic component of the nanocomposites may help improve the interaction between PEI and the PCR components. The developed PEI-based derivatives or nanocomposites may be used as efficient additives to enhance other PCR systems for different biomedical applications. PMID:22393296

  19. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  20. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  1. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  2. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  3. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  4. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  5. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  6. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  7. Reaction Kinetics of Monomeric Anthocyanin Conversion to Polymeric Pigments and Their Significance to Color in Interspecific Hybrid Wines.

    PubMed

    Burtch, Claire E; Mansfield, Anna Katharine; Manns, David C

    2017-02-15

    The color stability of red wines produced from interspecific hybrid grapes, which is partially dependent on anthocyanin diglucosides, is not well understood. In this study, the rate of decrease of monomeric anthocyanins as they polymerized to polymeric pigments due to the presence of excess catechin and acetaldehyde was measured in model wine using HPLC. Colorimetry was used to measure L*, a*, and b* values, hue angle, and change in color (ΔE). Concentrations of individual diglucosides decreased more slowly than monoglucosides. When monoglucosides and diglucosides were combined, the reaction rate of monoglucosides was slower than that of monoglucosides alone. Hue angles described transitions from red to red-orange, orange, or orange-yellow as anthocyanin-specific changes occurred. The evolution in color represents dynamic reactions between anthocyanins, catechin, and acetaldehyde. Consequently, wines containing high concentrations of diglucosides, such as those produced from interspecific hybrid grapes, will form less polymeric pigment than wines containing primarily monoglucosides.

  8. A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy.

    PubMed

    Kaderli, S; Boulocher, C; Pillet, E; Watrelot-Virieux, D; Rougemont, A L; Roger, T; Viguier, E; Gurny, R; Scapozza, L; Jordan, O

    2015-04-10

    A conventional therapy for the treatment of osteoarthrosis is intra-articular injection of hyaluronic acid, which requires repeated, frequent injections. To extend the viscosupplementation effect of hyaluronic acid, we propose to associate it with another biopolymer in the form of a hybrid hydrogel. Chitosan was chosen because of its structural similarity to synovial glycosaminoglycans, its anti-inflammatory effects and its ability to promote cartilage growth. To avoid polyelectrolyte aggregation and obtain transparent, homogeneous gels, chitosan was reacetylated to a 50% degree, and different salts and formulation buffers were investigated. The biocompatibility of the hybrid gels was tested in vitro on human arthrosic synoviocytes, and in vivo assessments were made 1 week after subcutaneous injection in rats and 1 month after intra-articular injection in rabbits. Hyaluronic acid-chitosan polyelectrolyte complexes were prevented by cationic complexation of the negative charges of hyaluronic acid. The different salts tested were found to alter the viscosity and thermal degradation of the gels. Good biocompatibility was observed in rats, although the calcium-containing formulation induced calcium deposits after 1 week. The sodium chloride formulation was further tested in rabbits and did not show acute clinical signs of pain or inflammation. Hybrid HA-Cs hydrogels may be a valuable alternative viscosupplementation agent.

  9. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    SciTech Connect

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  10. Graphene/sulfur hybrid nanosheets from a space-confined "sauna" reaction for high-performance lithium-sulfur batteries.

    PubMed

    Fei, Linfeng; Li, Xiaogang; Bi, Wentuan; Zhuo, Zhiwen; Wei, Wenfei; Sun, Li; Lu, Wei; Wu, Xiaojun; Xie, Keyu; Wu, Changzheng; Chan, Helen L W; Wang, Yu

    2015-10-21

    A space-confined "sauna" reaction system is introduced for the simultaneous reduction and functionalization of graphene oxide to unique graphene-sulfur hybrid nanosheets, in which thin layers of amorphous sulfur are tightly anchored on the graphene sheet via strong chemical bonding. Upon being used as the cathode material in lithium-sulfur batteries, the as-synthesized composite shows an excellent electrochemical performance.

  11. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-05

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere.

  12. Atmospheric chemistry of hydrazoic acid (HN3): UV absorption spectrum, HO reaction rate, and reactions of the N3 radical.

    PubMed

    Orlando, John J; Tyndall, Geoffrey S; Betterton, Eric A; Lowry, Joe; Stegall, Steve T

    2005-03-15

    Processes related to the tropospheric lifetime and fate of hydrazoic acid, HN3, have been studied. The ultraviolet absorption spectrum of HN3 is shown to possess a maximum near 262 nm with a tail extending to at least 360 nm. The photolysis quantum yield for HN3 is shown to be approximately 1 at 351 nm. Using the measured spectrum and assuming unity quantum yield throughout the actinic region, a diurnally averaged photolysis lifetime near the earth's surface of 2-3 days is estimated. Using a relative rate method, the rate coefficient for reaction of HO with HN3 was found to be (3.9 +/-0.8) x 10(-12) cm3 molecule(-1) s(-1), substantially larger than the only previous measurement. The atmospheric HN3 lifetime with respect to HO oxidation is thus about 2-3 days, assuming a diurnally averaged [HO] of 10(6) molecule cm(-3). Reactions of N3, the product of the reaction of HO with HN3, were studied in an environmental chamber using an FTIR spectrometer for end-product analysis. The N3 radical reacts efficiently with NO, producing N2O with 100% yield. Reaction of N3 with NO2 appears to generate both NO and N2O, although the rate coefficient for this reaction is slower than that for reaction with NO. No evidence for reaction of N3 with CO was observed, in contrast to previous literature data. Reaction of N3 with O2 was found to be extremely slow, k < 6 x 10(-20) cm3 molecule(-1) s(-1), although this upper limit does not necessarily rule out its occurrence in the atmosphere. Finally, the rate coefficient for reaction of Cl with HN3 was measured using a relative rate method, k = (1.0+/-0.2) x 10(-12) cm3 molecule(-1) s(-1).

  13. CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF PRODUCTS FROM THE REACTION OF DIMETHYLARSINIC ACID WITH HYDROGEN SULFIDE

    EPA Science Inventory

    The reaction of dimethylarsinic acid (DMAV) with hydrogen sulfide (H2S) is of biological significance and may be implicated in the overall toxicity and carcinogenicity of arsenic. The course of the reaction in aqueous phase was monitored and an initial product, dimethylthioarsin...

  14. Acid-Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols

    ERIC Educational Resources Information Center

    Goodney, David E.

    2006-01-01

    Examples of acid-base reactions from Robert Boyle's "The Sceptical Chemist" are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe the same reaction that can be done quite simply with a chemical equation. Reading or hearing the words, however, enriches the student's…

  15. Effect of acid or alkaline catalyst and of different capping agents on the optical properties of CdS nanoparticles incorporated within a diureasil hybrid matrix

    NASA Astrophysics Data System (ADS)

    Gonçalves, Luis F. F. F.; Silva, Carlos J. R.; Kanodarwala, Fehmida K.; Stride, John A.; Pereira, Mario R.

    2015-11-01

    CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol-gel process. Both alkaline and acidic catalysis of the sol-gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.

  16. Amorphous Molybdenum Sulfide on Graphene-Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts.

    PubMed

    Pham, Kien-Cuong; Chang, Yung-Huang; McPhail, David S; Mattevi, Cecilia; Wee, Andrew T S; Chua, Daniel H C

    2016-03-09

    In this study, we report on the deposition of amorphous molybdenum sulfide (MoSx, with x ≈ 3) on a high specific surface area conductive support of Graphene-Carbon Nanotube hybrids (GCNT) as the Hydrogen Evolution Reaction (HER) catalysts. We found that the high surface area GCNT electrode could support the deposition of MoSx at much higher loadings compared with simple porous carbon paper or flat graphite paper. The morphological study showed that MoSx was successfully deposited on and was in good contact with the GCNT support. Other physical characterization techniques suggested the amorphous nature of the deposited MoSx. With a typical catalyst loading of 3 mg cm(-2), an overpotential of 141 mV was required to obtain a current density of 10 mA cm(-2). A Tafel slope of 41 mV decade(-1) was demonstrated. Both measures placed the MoSx-deposited GCNT electrode among the best performing molybdenum sulfide-based HER catalysts reported to date. The electrode showed a good stability with only a 25 mV increase in overpotential required for a current density of 10 mA cm(-2), after undergoing 500 potential sweeps with vigorous bubbling present. The current density obtained at -0.5 V vs SHE (Standard Hydrogen Electrode potential) decreased less than 10% after the stability test. The deposition of MoSx on high specific surface area conductive electrodes demonstrated to be an efficient method to maximize the catalytic performance toward HER.

  17. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  18. Supercritical hydrogenation and acid-catalysed reactions "without gases".

    PubMed

    Hyde, Jason R; Poliakoff, Martyn

    2004-07-07

    The high temperature catalytic decomposition of HCO2H and HCO2Et are used to generate the high pressure H2 and the supercritical fluids needed for micro-scale hydrogenation of organic compounds; our approach overcomes the problems and limitations of handling high pressure gases on a small-scale and opens the way to the widespread use of continuous supercritical reactions in the laboratory.

  19. Hierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization.

    PubMed

    Tan, Wui Siew; Lewis, Christina L; Horelik, Nicholas E; Pregibon, Daniel C; Doyle, Patrick S; Yi, Hyunmin

    2008-11-04

    We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and consist of spatially discrete regions containing encoded identity information, an internal control, and capture DNAs. For the hybridization-based assembly, partially disassembled TMVs were programmed with linker DNAs that contain sequences complementary to both the virus 5' end and a selected capture DNA. Fluorescence microscopy, atomic force microscopy (AFM), and confocal microscopy results clearly indicate facile assembly of TMV nanotemplates onto microparticles with high spatial and sequence selectivity. We anticipate that our hybridization-based assembly strategy could be employed to create multifunctional viral-synthetic hybrid materials in a rapid and high-throughput manner. Additionally, we believe that these viral-synthetic hybrid microparticles may find broad applications in high capacity, multiplexed target sensing.

  20. The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.

    PubMed

    Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

  1. Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction.

    PubMed

    Yamagiwa, Noriyuki; Qin, Hongbo; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2005-09-28

    The full details of a catalytic asymmetric aza-Michael reaction of methoxylamine promoted by rare earth-alkali metal heterobimetallic complexes are described, demonstrating the effectiveness of Lewis acid-Lewis acid cooperative catalysis. First, enones were used as substrates, and the 1,4-adducts were obtained in good yield (57-98%) and high ee (81-96%). Catalyst loading was successfully reduced to 0.3-3 mol % with enones. To broaden the substrate scope of the reaction to carboxylic acid derivatives, alpha,beta-unsaturated N-acylpyrroles were used as monodentate, carboxylic acid derivatives. With beta-alkyl-substituted N-acylpyrroles, the reaction proceeded smoothly and the products were obtained in high yield and good ee. Transformation of the 1,4-adducts from enones and alpha,beta-unsaturated N-acylpyrroles afforded corresponding chiral aziridines and beta-amino acids. Detailed mechanistic studies, including kinetics, NMR analysis, nonlinear effects, and rare earth metal effects, are also described. The Lewis acid-Lewis acid cooperative mechanism, including the substrate coordination mode, is discussed in detail.

  2. Reaction of sorghum hybrids to anthracnose, grain mold and grain weathering in Burleson County, Texas, 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty commercial hybrids were evaluated for resistance against anthracnose, caused by Colletotrichum sublineolum and grain mold or grain weathering caused by a number of fungal species at the Texas A&M University Agricultural Experiment Station in College Station (Burleson County). Six hybrids wer...

  3. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    PubMed Central

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  4. Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction.

    PubMed Central

    Steger, G

    1994-01-01

    A program is described which calculates the thermal stability and the denaturation behaviour of double-stranded DNAs and RNAs up to a length of 1000 base pairs. The algorithm is based on recursive generation of conditional and a priori probabilities for base stacking. Output of the program may be compared directly to experimental results; thus the program may be used to optimize the nucleic acid fragments, the primers and the experimental conditions prior to experiments like polymerase chain reactions, temperature-gradient gel electrophoresis, denaturing-gradient gel electrophoresis and hybridizations. The program is available in three versions; the first version runs interactively on VAXstations producing graphics output directly, the second is implemented as part of the HUSAR package at GENIUSnet, the third runs on any computer producing text output which serves as input to available graphics programs. Images PMID:8052531

  5. Brønsted acid catalyzed asymmetric aldol reaction: a complementary approach to enamine catalysis.

    PubMed

    Pousse, Guillaume; Le Cavelier, Fabien; Humphreys, Luke; Rouden, Jacques; Blanchet, Jérôme

    2010-08-20

    A syn-enantioselective aldol reaction has been developed using Brønsted acid catalysis based on H(8)-BINOL-derived phosphoric acids. This method affords an efficient synthesis of various beta-hydroxy ketones, some of which could not be synthesized using enamine organocatalysis.

  6. Reactions in glass ionomer cements: V. Effect of incorporating tartaric acid in the cement liquid.

    PubMed

    Crisp, S; Wilson, A D

    1976-01-01

    A description is give of the effect on the ASPA cement reaction of tartaric acid incorporated in the cement liquid. Tartaric acid acts as an accelerator that aids in the extraction of ions from the aluminosilicate glass and facilitates their binding to the polyanion chains. Postgelation hardening is significantly increased. Working time is unaffected possibly because cations are initially present as complexes.

  7. A Comparative Study of French and Turkish Students' Ideas on Acid-Base Reactions

    ERIC Educational Resources Information Center

    Cokelez, Aytekin

    2010-01-01

    The goal of this comparative study was to determine the knowledge that French and Turkish upper secondary-school students (grades 11 and 12) acquire on the concept of acid-base reactions. Following an examination of the relevant curricula and textbooks in the two countries, 528 students answered six written questions about the acid-base concept.…

  8. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  9. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  10. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  11. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  12. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  13. Reaction mechanisms of riboflavin triplet state with nucleic acid bases.

    PubMed

    Lin, Weizhen; Lu, Changyuan; Du, Fuqiang; Shao, Zhiyong; Han, Zhenhui; Tu, Tiecheng; Yao, Side; Lin, Nianyun

    2006-04-01

    ESR and laser flash photolysis studies have determined a reasonable order of reactivity of nucleotides with triplet riboflavin (3Rb*) for the first time. ESR detection of triplet state reactivity of Rb with nucleoside, polynucleotide and DNA has been obtained simultaneously. In addition, ESR spin elimination measurement of the reactivity of 3Rb* with nucleotides in good accord with laser flash photolysis determination of the corresponding rate constants offers a simple and reliable method to detect the reactivities of nucleic acids and its components with photoexcited flavins. Kinetic, ESR and thermodynamic studies have demonstrated that Rb should be a strong endogenous photosensitizer capable of oxidizing all nucleic acid bases, and preferentially two purine nucleotides with high rate constants.

  14. Heterogeneous kinetics, products, and mechanisms of ferulic acid particles in the reaction with NO3 radicals

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Zhang, Peng; Wen, Xiaoying; Wu, Bin

    2017-03-01

    Methoxyphenols, as an important component of wood burning, are produced by lignin pyrolysis and considered to be the potential tracers for wood smoke emissions. In this work, the heterogeneous reaction between ferulic acid particles and NO3 radicals was investigated. Six products including oxalic acid, 4-vinylguaiacol, vanillin, 5-nitrovanillin, 5-nitroferulic acid, and caffeic acid were confirmed by gas chromatography-mass spectrometry (GC-MS). In addition, the reaction mechanisms were proposed and the main pathways were NO3 electrophilic addition to olefin and the meta-position to the hydroxyl group. The uptake coefficient of NO3 radicals on ferulic acid particles was 0.17 ± 0.02 and the effective rate constant under experimental conditions was (1.71 ± 0.08) × 10-12 cm3 molecule-1 s-1. The results indicate that ferulic acid degradation by NO3 can be an important sink at night.

  15. [Study of Reaction Dynamics between Bovine Serum Albumin and Folic Acid by Stopped-Flow/Fluorescence].

    PubMed

    Ye, San-xian; Luo, Yun-jing; Qiao, Shu-liang; Li, Li; Liu, Cai-hong; Shi, Jian-long; An, Xue-jing

    2016-01-01

    As a kind of coenzyme of one-carbon enzymes in vivo, folic acid belongs to B vitamins, which can interact with other vitamins and has great significance for converting among amino acids, dividing growth of cells and protein synthesis reactions. Half-life, concentration and reaction rate constant of drugs are important parameters in pharmacokinetic study. In this paper, by utilizing fluorescence spectrophotometer and stopped-flow spectrum analyzer, reaction kinetic parameters between bovine serum albumin(BSA) and folic acid in a bionic system have been investigated, which provide references for parameters of drug metabolism related to folic acid. By using Stern-Volmer equation dealing with fluorescence quenching experiments data, we concluded that under 25, 30, and 37 degrees C, the static quenching constants of folic acid to intrinsic fluorescence from bovine serum albumin were 2.455 x 10(10), 4.900 x 10(10) and 6.427 x 10(10) L x mol(-1) x s(-1) respectively; The results of kinetic reaction rate have shown that the reaction rate of BSA and folic acid are greater than 100 mol x L(-1) x s(-1) at different temperatures, pH and buffering media, illustrating that the quenching mechanism between BSA and folic acid is to form composite static quenching process. Reaction concentration of bovine serum albumin and its initial concentration were equal to the secondary reaction formula, and the correlation coefficient was 0.998 7, while the half-life (t1/2) was 0.059 s at physiological temperature. With the increase of folic acid concentration, the apparent rate constant of this reaction had a linear increasing trend, the BSA fluorescence quenching rate constant catalyzed by folic acid was 3.174 x 10(5) mol x L(-1) x s(-1). Furthermore, with different buffer, the apparent rate constant and reaction rate constant of BSA interacting with folic acid were detected to explore the influence on the reaction under physiological medium, which is of great significance to determine the

  16. On the reaction of iron oxides and oxyhydroxides with tannic and phosphoric acid and their mixtures

    NASA Astrophysics Data System (ADS)

    Beltrán, J. J.; Novegil, F. J.; García, K. E.; Barrero, C. A.

    2010-01-01

    The actions of tannic acid, phosphoric acid and their mixture on lepidocrocite, goethite, superparamagnetic goethite, akaganeite, magnetite, hematite and maghemite for 1 day and 1 month were explored. It was found that these acids form iron tannates and phosphates. Lepidocrocite and magnetite were the iron phases more easily transformed with the mixture of the acids after 1 month of reaction, whereas hematite was the most resistant phase. In the case of goethite, our results suggest that in order to understand properly the action of these acids, we have to take into account its stoichiometry, surface area and degree of crystallinity.

  17. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  18. Feasibility Study of Two Candidate Reaction Wheel/thruster Hybrid Control Architecture Designs for the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Macala, Glenn A.; Lee, Allan Y.; Wang, Eric K.

    2012-01-01

    As the first spacecraft to achieve orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended mission through 2017. Cassini carries a set of three "fixed" reaction wheels and a backup reaction wheel (reaction wheel #4) is mounted on top of an articulable platform. If necessary, this platform could be articulated to orient the backup reaction wheel with the degraded wheel. The reaction wheels are used primarily for attitude control when precise and stable pointing of a science instrument such as the narrow angle camera is required. In 2001-02, reaction wheel #3 exhibited signs of bearing cage instability. As a result, reaction wheel #4 was articulated to align with reaction wheel #3. Beginning in July 2003, Cassini was controlled using wheel #1, #2, and #4. From their first use in the spring of 2000 until today, reaction wheels #1 and #2 have accumulated more than3.5 billions revolutions each. As such, in spite of very carefully management of the wheel spin rates by the mission operation team, there are some observed increases in the drag torque of the wheels' bearings. Hence, the mission operations team must prepare for the contingency scenario in which the reaction wheel #1 (in addition to wheel #3) had degraded. In this hypothetical fault scenario, the two remaining reaction wheels (#2 and #4) will not be able to provide precise and stable three-axis control of the spacecraft. In this study, we evaluate the feasibility of controlling Cassini using the two remaining reaction wheels and four thrusters to meet the science pointing requirements for two key science operational modes: the Optical Remote Sensing and Downlink, Fields, Particles, & Waves operation modes. The performance (e.g., pointing control error, pointing stability, hydrazine consumption rate, etc.) of the hybrid controllers in both operations scenarios will be compared with those achieved

  19. Luminescent molecular hybrid system derived from 2-furancarboxylic acid and silylated monomer coordinated to rare earth ions

    NASA Astrophysics Data System (ADS)

    Sui, Yu-Long; Yan, Bing

    2006-04-01

    In this study, silica-based organic-inorganic hybrids were prepared by the sol-gel method. Tetraethoxysilane (abbreviated as TEOS) and a kind of monomer (abbreviated as FA-APES) derived from modified 2-furancarboxylic acid (abbreviated as FA) with (3-aminopropyl)triethoxysilane (abbreviated as APES) were used as the inorganic and organic fragments, respectively. Coordination reaction between lanthanides (europium and terbium ions) and sbnd C dbnd O group of the monomer happened simultaneously. And after days of aging process the resultant materials showed characteristic luminescence of lanthanides. The enhancement of luminescence can be seen by the comparison with simply doped lanthanide hybrid systems. And it can be explained by the coordination ability of the organic counterpart. IR, NMR, UV-vis absorption, low-temperature phosphorescence spectroscopy and fluorescence spectroscopy were applied to characterize and the above spectroscopic data revealed that the triplet state energy of organic ligand matches with the emissive energy level of lanthanides (especially of Tb 3+).

  20. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  1. Syntheses of Papyracillic Acids: Application of the Tandem Chain Extension-Acylation Reaction

    PubMed Central

    Mazzone, Jennifer R.; Zercher, Charles K.

    2012-01-01

    A synthetic approach to the papyracillic acid family of natural products has been developed. The spiroacetal core is rapidly assembled through an unprecedented zinc carbenoid-mediated tandem chain extension-acylation reaction. Subsequent functional group manipulation provided access to papyracillic acid B and 4-epi-papyracillic acid C. The successful preparation of these molecules resulted in the clarification of structural assignments of members of this family of natural products. PMID:23013246

  2. Sulfonic acid-functionalized hybrid organic-inorganic proton exchange membranes synthesized by sol-gel using 3-mercaptopropyl trimethoxysilane (MPTMS)

    NASA Astrophysics Data System (ADS)

    Mosa, J.; Durán, A.; Aparicio, M.

    2015-11-01

    Organic/inorganic hybrid membranes based on (3-glycidoxypropyl) trimethoxysilane (GPTMS) and 3-mercaptopropyl trimethoxysilane (MPTMS) have been prepared by sol-gel method and organic polymerisation, as candidate materials for proton exchange membranes in direct alcohol fuel cell (DMFC) applications. The -SH groups of MPTMS are oxidized to sulfonic acid groups, which are attributed to enhance the proton conductivity of hybrid membranes. FTIR, XPS and contact angle were used to characterize and confirm the hybrid structure and oxidation reaction progress. Membranes characterization also includes ion exchange capacity, water uptake, methanol permeability and proton conductivity to confirm their applicability in fuel cells. All the membranes were homogeneous and thermally and chemically resistant. In particular, the hybrid membranes demonstrated proton conductivities as high as 0.16 S cm-1 at high temperature, while exhibiting a low methanol permeability as compared to Nafion®. These results are associated with proton conducting paths through the silica pseudo-PEO network in which sulfonic acid groups work as proton donor.

  3. Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids.

    PubMed

    Fontenete, Silvia; Silvia, Fontenete; Barros, Joana; Joana, Barros; Madureira, Pedro; Pedro, Madureira; Figueiredo, Céu; Céu, Figueiredo; Wengel, Jesper; Jesper, Wengel; Azevedo, Nuno Filipe; Filipe, Azevedo Nuno

    2015-05-01

    In the past few years, several researchers have focused their attention on nucleic acid mimics due to the increasing necessity of developing a more robust recognition of DNA or RNA sequences. Fluorescence in situ hybridization (FISH) is an example of a method where the use of these novel nucleic acid monomers might be crucial to the success of the analysis. To achieve the expected accuracy in detection, FISH probes should have high binding affinity towards their complementary strands and discriminate effectively the noncomplementary strands. In this study, we investigate the effect of different chemical modifications in fluorescent probes on their ability to successfully detect the complementary target and discriminate the mismatched base pairs by FISH. To our knowledge, this paper presents the first study where this analysis is performed with different types of FISH probes directly in biological targets, Helicobacter pylori and Helicobacter acinonychis. This is also the first study where unlocked nucleic acids (UNA) were used as chemistry modification in oligonucleotides for FISH methodologies. The effectiveness in detecting the specific target and in mismatch discrimination appears to be improved using locked nucleic acids (LNA)/2'-O-methyl RNA (2'OMe) or peptide nucleic acid (PNA) in comparison to LNA/DNA, LNA/UNA, or DNA probes. Further, the use of LNA modifications together with 2'OMe monomers allowed the use of shorter fluorescent probes and increased the range of hybridization temperatures at which FISH would work.

  4. Kinetics of the reaction between ozone and phenolic acids present in agro-industrial wastewaters.

    PubMed

    Beltran-Heredia, J; Torregrosa, J; Dominguez, J R; Peres, J A

    2001-03-01

    The kinetics of the ozonation of three phenolic acids is investigated from ozone absorption experiments in a semi-continuous reactor. After the evaluation of stoichiometric ratios for the individual reactions between ozone and each phenolic acid, the oxidation of p-hydroxybenzoic acid by ozone is performed in a first stage. The influence of the operating variables on the degradation process is established, and the application of a mass transfer with chemical reaction model based on the film theory leads to the determination of the reaction orders and kinetic rate constants. The experimental absorption rates obtained agree well with those calculated theoretically. In the second stage, a mixture of ferulic acid (4-hydroxy-3-methoxycinnamic acid), beta-resorcylic acid (2,4-dihydroxybenzoic acid) and p-hydroxybenzoic acid is ozonated under different experimental conditions. The kinetic study is performed by means of a competitive method that takes p-hydroxybenzoic acid as reference compound. The application of this model allows to determine the kinetic rate constants for each compound, which are correlated as a function of pH and temperature. The results obtained support that the kinetic regime of absorption is fast and pseudo-first order with respect to ozone, a condition required by the competitive method used.

  5. Cross-coupling reactions of aryl pivalates with boronic acids.

    PubMed

    Quasdorf, Kyle W; Tian, Xia; Garg, Neil K

    2008-11-05

    The first cross-coupling of acylated phenol derivatives has been achieved. In the presence of an air-stable Ni(II) complex, readily accessible aryl pivalates participate in the Suzuki-Miyaura coupling with arylboronic acids. The process is tolerant of considerable variation in each of the cross-coupling components. In addition, a one-pot acylation/cross-coupling sequence has been developed. The potential to utilize an aryl pivalate as a directing group has also been demonstrated, along with the ability to sequentially cross-couple an aryl bromide followed by an aryl pivalate, using palladium and nickel catalysis, respectively.

  6. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    PubMed

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions.

  7. Reaction of methanol with chlorate ions in acid solution containing Hg{sup +2} by NMR

    SciTech Connect

    Ernst, W.R.; Indu, B.; Crump, B.; Gelbaum, L.T.

    1996-05-01

    The reaction rate of methanol was measured in solutions of sodium chlorate and sulfuric acid at several levels of temperature and concentration, in the presence of mercuric nitrate. The progress of the reaction was monitored by proton NMR signals corresponding to methanol and formic acid. Chlorine dioxide formation was suppressed by adding mercuric nitrate, which was shown earlier to catalyze the disproportionation of the intermediate species, chlorous acid, and sequester chloride ions. The reaction is first order in methanol and chlorate concentration and in the Hammett acidity function. The reaction of formic acid, sodium chlorate and sulfuric acid was also studied using the same technique. Formic acid was stable and did not react with chlorate at a measurable rate, even at concentrations and temperatures of a commercial process. This study related to commercial processes that produce chlorine dioxide by reducing chlorate ions with methanol. Chlorine dioxide is an oxidizing chemical that is used in water purification and is replacing chlorine in many chemical bleaching processes because of environmental concerns.

  8. Hydrodynamic instability in the open system of the iodate-arsenous acid reaction.

    PubMed

    Pópity-Tóth, Éva; Pimienta, Véronique; Horváth, Dezső; Tóth, Ágota

    2013-10-28

    Hydrodynamic instability arising in horizontally propagating vertical chemical fronts leading to the formation of a single stable convection roll is investigated experimentally in the iodate-arsenous acid reaction for various stoichiometry. In the presence of a free surface, the tilted reaction front becomes more elongated due to the evaporation of the surface active iodine and the decrease in the surface tension during the reaction. The experimental conditions are then identified where Marangoni instability represents the driving force for the distortion of the reaction front at the surface.

  9. Activation of stratospheric chlorine by reactions in liquid sulphuric acid

    SciTech Connect

    Cox, R.A.; MacKenzie, A.R. ); Mueller, R.H.; Peter, Th.; Crutzen, P.J. )

    1994-06-22

    The authors discuss activation mechanisms for chlorine compounds in the stratosphere, based on laboratory measurements for the solubility and reaction rates of HOCl and HCl in H[sub 2]SO[sub 4] solutions, as found on aerosols in the stratosphere. Their interest is in the impact of the large increase in aerosol loading in the stratosphere in the winter on 1991-92 due to the Mt. Pinatubo eruption. While laboratory data is not available for the temperature range close to 190 K, they argue that should the solubility and hydrolysis rates be high enough, this excess aerosol density could have contributed a significant additional amount of reactive chlorine to the stratosphere.

  10. DNA‐Accelerated Catalysis of Carbene‐Transfer Reactions by a DNA/Cationic Iron Porphyrin Hybrid

    PubMed Central

    Rioz‐Martínez, Ana; Oelerich, Jens; Ségaud, Nathalie

    2016-01-01

    Abstract A novel DNA‐based hybrid catalyst comprised of salmon testes DNA and an iron(III) complex of a cationic meso‐tetrakis(N‐alkylpyridyl)porphyrin was developed. When the N‐methyl substituents were placed at the ortho position with respect to the porphyrin ring, high reactivity in catalytic carbene‐transfer reactions was observed under mild conditions, as demonstrated in the catalytic enantioselective cyclopropanation of styrene derivatives with ethyl diazoacetate (EDA) as the carbene precursor. A remarkable feature of this catalytic system is the large DNA‐induced rate acceleration observed in this reaction and the related dimerization of EDA. It is proposed that high effective molarity of all components of the reaction in or near the DNA is one of the key contributors to this unique reactivity. This study demonstrates that the concept of DNA‐based asymmetric catalysis can be expanded into the realm of organometallic chemistry. PMID:27730731

  11. The suppression of the N-nitrosating reaction by chlorogenic acid.

    PubMed Central

    Kono, Y; Shibata, H; Kodama, Y; Sawa, Y

    1995-01-01

    N-Nitrosation of a model aromatic amine (2,3-diamino-naphthalene) by the N-nitrosating agent produced by nitrite in acidic solution was inhibited by a polyphenol, chlorogenic acid, which is an ester of caffeic acid quinic acid. Caffeic acid also inhibited the N-nitrosation, but quinic acid did not. 1,2-Benzenediols and 3,4-dihydroxybenzoic acid had inhibitory activities. Chlorogenic acid, caffeic acid, 1,2-benzenediols and 3,4-dihydroxybenzoic acid were able to scavenge the stable free radical, 1,1-diphenyl-2-picrylhydrazyl. Chlorogenic acid was found to be nitrated by acidic nitrite. The kinetic studies and the nitration observed only by bubbling of nitric oxide plus nitrogen dioxide gases indicated that the nitrating agent was nitrogen sesquioxide. The observations showed that the mechanism by which chlorogenic acid inhibited N-nitrosation of 2,3-diamino-naphthalene is due to its ability to scavenge the nitrosating agent, nitrogen sesquioxide. Chlorogenic acid may be effective not only in protecting against oxidative damage but also in inhibiting potentially mutagenic and carcinogenic reactions in vivo. PMID:8554543

  12. Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-01-30

    A facile approach based on thiol-methacrylate Michael addition click reaction was developed for construction of porous hybrid monolithic materials. Three hybrid monoliths were prepared via thiol-methacrylate click polymerization by using methacrylate-polyhedral oligomeric silsesquioxane (POSS) (cage mixture, n=8, 10, 12, POSS-MA) and three multi-thiol crosslinkers, 1,6-hexanedithiol (HDT), trimethylolpropane tris(3-mercaptopropionate) (TPTM) and pentaerythritol tetrakis(3-mercaptopropionate) (PTM), respectively, in the presence of porogenic solvents (n-propanol and PEG 200) and a catalyst (dimethylphenylphosphine, DMPP). The obtained monoliths possessed high thermal and chemical stabilities. Besides, they all exhibited high column efficiencies and excellent separation abilities in capillary liquid chromatography (cLC). The highest column efficiency could reach ca. 195,000N/m for butylbenzene on the monolith prepared with POSS-MA and TPTM (monolith POSS-TPTM) in reversed-phase (RP) mode at 0.64mm/s. Good chromatographic performance were all achieved in the separations of polycyclic aromatic hydrocarbons (PAHs), phenols, anilines, EPA 610 as well as bovine serum albumin (BSA) digest. The high column efficiencies in the range of 51,400-117,000N/m (achieved on the monolith POSS-PTM in RP mode) convincingly demonstrated the high separation abilities of these thiol-methacrylate based hybrid monoliths. All the results demonstrated the feasibility of the phosphines catalyzed thiol-methacrylate Michael addition click reaction in fabrication of monolithic columns with high efficiency for cLC applications.

  13. Aptamer-based organic-silica hybrid affinity monolith prepared via "thiol-ene" click reaction for extraction of thrombin.

    PubMed

    Wang, Zheng; Zhao, Jin-cheng; Lian, Hong-zhen; Chen, Hong-yuan

    2015-06-01

    A novel strategy for preparing aptamer-based organic-silica hybrid monolithic column was developed via "thiol-ene" click chemistry. Due to the large specific surface area of the hybrid matrix and the simplicity, rapidness and high efficiency of "thiol-ene" click reaction, the average coverage density of aptamer on the organic-silica hybrid monolith reached 420 pmol μL(-1). Human α-thrombin can be captured on the prepared affinity monolithic column with high specificity and eluted by NaClO4 solution. N-p-tosyl-Gly-Pro-Arg p-nitroanilide acetate was used as the sensitive chromogenic substrate of thrombin. The thrombin enriched by this affinity column was detected with a detection of limit of 0.01 μM by spectrophotometry. Furthermore, the extraction recovery of thrombin at 0.15 μM in human serum was 91.8% with a relative standard deviation of 4.0%. These results indicated that "thiol-ene" click chemistry provided a promising technique to immobilize aptamer on organic-inorganic hybrid monolith and the easily-assembled affinity monolithic material could be used to realize highly selective recognition of trace proteins.

  14. Ultrasonic and densimetric titration applied for acid-base reactions.

    PubMed

    Burakowski, Andrzej; Gliński, Jacek

    2014-01-01

    Classical acoustic acid-base titration was monitored using sound speed and density measurements. Plots of these parameters, as well as of the adiabatic compressibility coefficient calculated from them, exhibit changes with the volume of added titrant. Compressibility changes can be explained and quantitatively predicted theoretically in terms of Pasynski theory of non-compressible hydrates combined with that of the additivity of the hydration numbers with the amount and type of ions and molecules present in solution. It also seems that this development could be applied in chemical engineering for monitoring the course of chemical processes, since the applied experimental methods can be carried out almost independently on the medium under test (harmful, aggressive, etc.).

  15. Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    NASA Astrophysics Data System (ADS)

    Kunst, S. R.; Cardoso, H. R. P.; Oliveira, C. T.; Santana, J. A.; Sarmento, V. H. V.; Muller, I. L.; Malfatti, C. F.

    2014-04-01

    The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane-poly (methyl methacrylate) (PMMA) hybrid film prepared by sol-gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane-PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase and irregular surface coverage.

  16. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Chen, Minmin; Wang, Lei; Liang, Chanjuan; Zhou, Qing; Huang, Xiaohua

    2012-05-01

    Interactive effects of cadmium (Cd(2+)) and acid rain on photosynthetic light reaction in soybean seedlings were investigated under hydroponic conditions. Single treatment with Cd(2+) or acid rain and the combined treatment decreased the content of chlorophyll, Hill reaction rate, the activity of Mg(2+)-ATPase, maximal photochemical efficiency and maximal quantum yield, increased initial fluorescence and damaged the chloroplast structure in soybean seedlings. In the combined treatment, the change in the photosynthetic parameters and the damage of chloroplast structure were stronger than those of any single pollution. Meanwhile, Cd(2+) and acid rain had the interactive effects on the test indices in soybean seedlings. The results indicated that the combined pollution of Cd(2+) and acid rain aggravated the toxic effect of the single pollution of Cd(2+) or acid rain on the photosynthetic parameters due to the serious damage to the chloroplast structure.

  17. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    NASA Astrophysics Data System (ADS)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  18. Switching the BZ reaction with a strong-acid-free gel.

    PubMed

    Hara, Yusuke; Yamaguchi, Yoshinori; Mayama, Hiroyuki

    2014-01-16

    In the present study, a novel gel with a semi-interpenetrating polymer network (semi-IPN) that undergo the Belousov-Zhabotinsky (BZ) reaction without the addition of a strong acid (HNO3 or H2SO4) was developed. The required concentrations of the BZ substrates, sodium bromate (NaBrO3) and malonic acid (MA), under these conditions were higher than under the normal BZ reaction conditions, involving the addition of a strong acid. The period of the BZ reaction with the novel gel (semi-IPN BZ gel) decreased with increasing concentrations of NaBrO3 and MA. Moreover, the connection of the semi-IPN BZ gel to a conventional BZ gel facilitated the reaction in the latter through the propagation of the intermediates from the former to the latter. The BZ reaction stopped when the conventional BZ gel was disconnected from the semi-IPN BZ gel. These results demonstrate that the BZ reaction in the conventional BZ gel underwent on-off switching, controlled by its attachment to the semi-IPN BZ gel. This on-off switching mechanism would be valuable in controlling actuators and robots without strong acids.

  19. Organic/inorganic hybrid amine and sulfonic acid tethered silica materials: Synthesis, characterization and application

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Christopher

    The major goals of this thesis were to: (1) create a site-isolated aminosilica material with higher amine loadings than previously reported isolation methods, (2) use spectroscopic, reactivity, and catalytic (olefin polymerization precatalysts) probes to determine isolation of amine groups on these organic/inorganic hybrid materials, (3) synthesize an organic/inorganic hybrid material capable of activating Group 4 olefin polymerization precatalysts, and (4) synthesize a high amine loaded organic/inorganic hybrid material capable of reversibly capturing CO2 in a simulated flue gas stream. The underlying motivation of this research involved the synthesis and design of novel amine and sulfonic acid materials. Traditional routes to synthesize aminosilicas have led to the formation of a high loading of multiple types of amine sites on the silica surface. Part of this research involved the creation of a new aminosilica material via a protection/deprotection method designed to prevent multiple sites, while maintaining a relatively high loading. As a characterization technique, fluorescence spectroscopy of pyrene-based fluorophores loaded on traditional aminosilicas and site-isolated aminosilicas was used to probe the degree of site-isolation obtained with these methods. Also, this protection/deprotection method was compared to other reported isolation techniques with heterogeneous Group 4 constrained-geometry inspired catalysts (CGCs). It was determined that the degree of separation of the amine sites could be controlled with protection/deprotection methods. Furthermore, an increase in the reactivity of the amines and the catalytic activity of CGCs built off of the amines was determined for aminosilicas synthesized by a protection/deprotection method. The second part of this work involved developing organic/inorganic hybrid materials as heterogeneous Bronsted acidic cocatalysts for activation of olefin polymerization precatalysts. This was the first reported organic

  20. Improved constrained optimization method for reaction-path determination in the generalized hybrid orbital quantum mechanical/molecular mechanical calculations

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoon; Re, Suyong; Sugita, Yuji; Ten-no, Seiichiro

    2013-01-01

    The nudged elastic band (NEB) and string methods are widely used to obtain the reaction path of chemical reactions and phase transitions. In these methods, however, it is difficult to define an accurate Lagrangian to generate the conservative forces. On the other hand, the constrained optimization with locally updated planes (CO-LUP) scheme defines target function properly and suitable for micro-iteration optimizations in quantum mechanical/molecular mechanical (QM/MM) systems, which uses the efficient second order QM optimization. However, the method does have problems of inaccurate estimation of reactions and inappropriate accumulation of images around the energy minimum. We introduce three modifications into the CO-LUP scheme to overcome these problems: (1) An improved tangent estimation of the reaction path, which is used in the NEB method, (2) redistribution of images using an energy-weighted interpolation before updating local tangents, and (3) reduction of the number of constraints, in particular translation/rotation constraints, for improved convergence. First, we test the method on the isomerization of alanine dipeptide without QM/MM calculation, showing that the method is comparable to the string method both in accuracy and efficiency. Next, we apply the method for defining the reaction paths of the rearrangement reaction catalyzed by chorismate mutase (CM) and of the phosphoryl transfer reaction catalyzed by cAMP-dependent protein kinase (PKA) using generalized hybrid orbital QM/MM calculations. The reaction energy barrier of CM is in high agreement with the experimental value. The path of PKA reveals that the enzyme reaction is associative and there is a late transfer of the substrate proton to Asp 166, which is in agreement with the recently published result using the NEB method.

  1. Thermochemical study of the reactions of acid-base interaction in an aqueous solution of α-aminobutyric acid

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Skvortsov, I. A.; Korchagina, A. S.

    2017-01-01

    The heat effects of the interaction between a solution of α-aminobutyric acid and solutions of HNO3 and KOH are measured by means of calorimetry in different ranges of pH at 298.15 K and values of ionic strength of 0.25, 0.5, and 0.75 (KNO3). The heat effects of the stepwise dissociation of the amino acid are determined. Standard thermodynamic characteristics (Δr H 0, Δr G 0, and Δr S 0) of the reactions of acid-base interaction in aqueous solutions of α-aminobutyric acid are calculated. The connection between the thermodynamic characteristics of the dissociation of the amino acid and the structure of this compound is considered.

  2. Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides.

    PubMed

    Wang, Qing-Chi; Zhao, Xia; Pu, Jiang-Hua; Luan, Xiao-Hong

    2016-06-05

    Monosaccharide composition analysis is important for structural characterization of polysaccharides. To investigate the influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of polysaccharides, we chose alginate, starch, chitosan and chondroitin sulfate as representative of acidic, neutral, basic and complex polysaccharides to compare the release degree of monosaccharides under different hydrolytic conditions. The hydrolysis stability of 10 monosaccharide standards was also explored. Results showed that the basic sugars were hard to release but stable, the acidic sugars (uronic acids) were easy to release but unstable, and the release and stability of neutral sugars were in between acidic and basic sugars. In addition, the hydrolysis process was applied to monosaccharide composition analysis of Hippocampus trimaculatus polysaccharide and the appropriate hydrolytic condition was accorded with that of the above four polysaccharides. Thus, different hydrolytic conditions should be used for the monosaccharide composition analysis of polysaccharides based on their structural characteristics.

  3. Engineering hybrid between nickel oxide and nickel cobaltate to achieve exceptionally high activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Cui, Zhentao; Wang, Shuguang; Zhang, Yihe; Cao, Minhua

    2014-12-01

    The porous NiO/NiCo2O4 nanotubes are prepared via a coaxial electrospinning technique followed by an annealing treatment. The resultant NiO/NiCo2O4 hybrid is developed as a highly efficient electrocatalyst, which exhibits significantly enhanced electrocatalytic activity, long-term operation stability, and tolerance to crossover effect compared to NiO nanofibers, NiCo2O4 nanofibers and commercial Pt(20%)/C for oxygen reduction reactions (ORR) in alkaline environment. The excellent electrocatalytic performance may be attributed to the unique microstructures of the porous NiO/NiCo2O4 nanotubes, such as heterogeneous hybrid structure, open porous tubular structure, and the well dispersity of the two components. Moreover, the promising and straightforward coaxial electrospinning proves itself to be an efficient pathway for the preparation of nanomaterials with tubular architectures and it can be used for large-scale production of catalysts in fuel cells.

  4. Synthetic Antenna Functioning As Light Harvester in the Whole Visible Region for Enhanced Hybrid Photosynthetic Reaction Centers.

    PubMed

    Hassan Omar, Omar; la Gatta, Simona; Tangorra, Rocco Roberto; Milano, Francesco; Ragni, Roberta; Operamolla, Alessandra; Argazzi, Roberto; Chiorboli, Claudio; Agostiano, Angela; Trotta, Massimo; Farinola, Gianluca M

    2016-07-20

    The photosynthetic reaction center (RC) from the Rhodobacter sphaeroides bacterium has been covalently bioconjugated with a NIR-emitting fluorophore (AE800) whose synthesis was specifically tailored to act as artificial antenna harvesting light in the entire visible region. AE800 has a broad absorption spectrum with peaks centered in the absorption gaps of the RC and its emission overlaps the most intense RC absorption bands, ensuring a consistent increase of the protein optical cross section. The covalent hybrid AE800-RC is stable and fully functional. The energy collected by the artificial antenna is transferred to the protein via FRET mechanism, and the hybrid system outperforms by a noteworthy 30% the overall photochemical activity of the native protein under the entire range of visible light. This improvement in the optical characteristic of the photoenzyme demonstrates the effectiveness of the bioconjugation approach as a suitable route to new biohybrid materials for energy conversion, photocatalysis, and biosensing.

  5. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    NASA Astrophysics Data System (ADS)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  6. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  7. Reaction of gamma-tocopherol with hypochlorous acid.

    PubMed

    Nguyen, Quyen; Southwell-Keely, Peter T

    2007-03-01

    In addition to being a very good antioxidant, gamma-tocopherol is also an excellent electrophile trap. This is a study of the reactivity of gamma-tocopherol with hypochlorous acid/hypochlorite, a potential biological foe that is both an oxidant and an electrophile. Aqueous sodium hypochlorite (1.72 mmol; pH 7.4) was stirred with gamma-tocopherol (0.12 mmol) in hexane for 2 min at room temperature. The following products were isolated: gamma-tocopheryl quinone (0.6%), tocored (10%), 3-chloro-gamma-tocopheryl quinone (14%), an ether dimer of 3-chloro-gamma-tocopheryl quinone (0.4%), two isomers of 5-(5-gamma-tocopheryl)-gamma-tocopherol (3 and 2% respectively), 5-chloro-gamma-tocopherol (14%) and two chlorinated dimers (14 and 24% respectively) which were identified as diastereomers of (3R,10R)-11a-chloro-2,3,9,10-tetrahydro-3,5,6,10,12,13-hexamethyl-3,10-bis[(4R,8R)-4,8,12-trimethyltridecyl]-1H-pyrano(3,2a)-8H-pyrano(3,2g)-dibenzofuran-14(7aH)(14aH)-one. The chlorinated dimers, 5-chloro-gamma-tocopherol, 3-chloro-gamma-tocopheryl quinone and its ether dimer are new compounds.

  8. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  9. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  10. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  11. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  12. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  13. An Investigation of Solid-State Amidization and Imidization Reactions in Vapor Deposited Poly (amic acid)

    SciTech Connect

    Anthamatten, M; Letts, S A; Day, K; Cook, R C; Gies, A P; Hamilton, T P; Nonidez, W K

    2004-06-28

    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FT-IR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of films at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments reveal that, upon vapor deposition, poly(amic acid) oligomers form that have a number-average molecular weight of about 1500 Daltons. Between 100 - 130 C these chains undergo additional condensation reaction to form slightly higher molecular weight oligomers. Calorimetry measurements show that this reaction is exothermic ({Delta}H {approx} -30 J/g) with an activation energy of about 120 kJ/mol. Experimental reaction enthalpies are compared to results from ab initio molecular modeling calculations to estimate the number of amide groups formed. At higher temperatures (150 - 300 C) imidization of amide linkages occurs as an endothermic reaction ({Delta}H {approx} +120 J/g) with an activation energy of about 130 kJ/mol. Solid-state kinetics were found to depend on reaction conversion as well as the processing conditions used to deposit films.

  14. Investigation and application of multiple reactions between molybdoniobium heteropoly acid and di- or trimethylthionines

    SciTech Connect

    Mirzoyam, F.B.; Karapetyan, A.A.

    1986-03-01

    This paper presents the results of the study and use of reactions of molybdoniobic acid (MNA) with di- and trimethylthiones (DMT and TMT, respectively). It was found that light absorption of acetone solutions of the products of outer-sphere interaction between MNA and DMT or TMT enabled the determination of optimum acidity for MNA formation. Reaction between TMT and MNA gives two different compounds containing two and five associated dye cations, different in molar extinction coefficient and optimum reaction acidity (pH 0.05-0.25 and 0.35-0.90). Formation of the 6th and 8th molybdenum series with an identical composition of the outer sphere is shown. A highly sensitive photometric method for determining niobium has been developed.

  15. Characterization of the esterification reaction in high free fatty acid oils

    NASA Astrophysics Data System (ADS)

    Altic, Lucas Eli Porter

    Energy and vegetable oil prices have caused many biodiesel producers to turn to waste cooking oils as feedstocks. These oils contain high levels of free fatty acids (FFAs) which make them difficult or impossible to convert to biodiesel by conventional production methods. Esterification is required for ultra-high FFA feedstocks such as Brown Grease. In addition, ultrasonic irradiation has the potential to improve the kinetics of the esterification reaction. 2-level, multi-factor DOE experiments were conducted to characterize the esterification reaction in ultra-high FFA oils as well as determine whether ultrasonic irradiation gives any benefit besides energy input. The study determined that sulfuric acid content had the greatest effect followed by temperature and water content (inhibited reaction). Methanol content had no effect in the range studied. A small interaction term existed between sulfuric acid and temperature. The study also concluded that sonication did not give any additional benefit over energy input.

  16. New method for spectrophotometric determination of quinones and barbituric acid through their reaction. A kinetic study

    NASA Astrophysics Data System (ADS)

    Medien, H. A. A.

    1996-11-01

    A new and sensitive spectrophotometric method is described for the determination of p-benzoquinone, p-chloranil and 1.4-naphthoquinone. The method is based on the reaction between quinones and barbituric acid, by which a color is developed with maximum absorption between 485 and 555 nm in 50% methyl alcohol-water mixture. The absorption of the product obeys Beer's law within the concentration range 0.025-05 mM of orginal quinone. The kinetics of the reaction between p-benzoquinone and barbituric acid was studied in a range of methyl alcohol-water mixtures. The reaction follows overall second order kinetics, first order in each of the reactants. The rate increases with increasing dielectric constant. The method was applied for determination of barbituric acid with p-benzoquinone in the concentration range of 0.025-0.345 mM. Other barbiturates do not interfere.

  17. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    USGS Publications Warehouse

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  18. Evaluation of three-dimensional microchannel glass biochips for multiplexed nucleic acid fluorescence hybridization assays.

    PubMed

    Benoit, V; Steel, A; Torres, M; Yu, Y Y; Yang, H; Cooper, J

    2001-06-01

    Three-dimensional, flow-through microchannel glass substrates have a potential for enhanced performance, including increased sensitivity and dynamic range, over traditional planar substrates used in medium-density microarray platforms. This paper presents a methodology for the implementation of multiplexed nucleic acid hybridization fluorescence assays on microchannel glass substrates. Fluorescence detection was achieved, in a first instance, using conventional low-magnification microscope objective lenses, as imaging optics whose depth-of-field characteristics match the thickness of the microchannel glass chip. The optical properties of microchannel glass were shown, through experimental results and simulations, to be compatible with the quantitative detection of heterogeneous hybridization events taking place along the microchannel sidewalls, with detection limits for oligonucleotide targets in the low-attomole range.

  19. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin.

    PubMed

    Münchow, Eliseu A; Ferreira, Ana Cláudia A; Machado, Raissa M M; Ramos, Tatiana S; Rodrigues-Junior, Sinval A; Zanchi, Cesar H

    2014-01-01

    Composite resins may undergo wear by the action of chemical substances (e.g., saliva, alcohol, bacterial acids) of the oral environment, which may affect the material's structure and surface properties. This study evaluated the effect of acidic substances on the surface properties of a micro-hybrid composite resin (Filtek Z-250). Eighty specimens were prepared, and baseline hardness and surface roughness (KMN0 and Ra0, respectively) were measured. The specimens were subjected to sorption (SO) and solubility (SL) tests according to ISO 4049:2009, but using different storage solutions: deionized water; 75/25 vol% ethanol/water solution; lactic acid; propionic acid; and acetic acid. The acids were used in two concentrations: PA and 0.02 N. pH was measured for all solutions and final hardness (KMN1) and surface roughness (Ra1) were measured. Data were analyzed with paired t-tests and one-way ANOVA and Tukey's test (a=5%). All solutions decreased hardness and increased the Ra values, except for the specimens stored in water and 0.02 N lactic acid, which maintained the hardness. All solutions produced similar SO and SL phenomena, except for the 0.02 N lactic acid, which caused lower solubility than the other solutions. Ethanol showed the highest pH (6.6) and the 0.02 N lactic acid the lowest one (2.5). The solutions affected negatively the surface properties of the composite resin; in addition, an acidic pH did not seem to be a significant factor that intensifies the surface degradation phenomena.

  20. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.

    PubMed

    Boatright, William L

    2016-04-01

    The effect of oxygen on the two separate one-electron reactions involved in the oxidation of ascorbic acid was investigated. The rate of ascorbate radical (Asc(-)) formation (and stability) was strongly dependent on the presence of oxygen. A product of ascorbic acid oxidation was measurable levels of hydrogen peroxide, as high as 32.5 μM from 100 μM ascorbic acid. Evidence for a feedback mechanism where hydrogen peroxide generated during the oxidation of ascorbic acid accelerates further oxidation of ascorbic acid is also presented. The second one-electron oxidation reaction of ascorbic acid leading to the disappearance of Asc(-) was also strongly inhibited in samples flushed with argon. In the range of 0.05-1.2 mM ascorbic acid, maximum levels of measurable hydrogen peroxide were achieved with an initial concentration of 0.2 mM ascorbic acid. Hydrogen peroxide generation was greatly diminished at ascorbic acid levels of 0.8 mM or above.

  1. Miniature reaction chamber and devices incorporating same

    DOEpatents

    Mathies, Richard A.; Woolley, Adam T.

    2000-10-17

    The present invention generally relates to miniaturized devices for carrying out and controlling chemical reactions and analyses. In particular, the present invention provides devices which have miniature temperature controlled reaction chambers for carrying out a variety of synthetic and diagnostic applications, such as PCR amplification, nucleic acid hybridization, chemical labeling, nucleic acid fragmentation and the like.

  2. Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid.

    PubMed

    Momiyama, Norie; Tabuse, Hideaki; Noda, Hirofumi; Yamanaka, Masahiro; Fujinami, Takeshi; Yamanishi, Katsunori; Izumiseki, Atsuto; Funayama, Kosuke; Egawa, Fuyuki; Okada, Shino; Adachi, Hiroaki; Terada, Masahiro

    2016-09-07

    A chiral Brønsted acid containing two different acidic sites, chiral carboxylic acid-monophosphoric acid 1a, was designed to be a new and effective concept in catalytic asymmetric hetero-Diels-Alder reactions of azopyridinecarboxylate with amidodienes. The multipoint hydrogen-bonding interactions among the carboxylic acid, monophosphoric acid, azopyridinecarboxylate, and amidodiene achieved high catalytic and chiral efficiency, producing substituted 1,2,3,6-tetrahydropyridazines with excellent stereocontrol in a single step. This constitutes the first example of regio-, diastereo-, and enantioselective azo-hetero-Diels-Alder reactions by chiral Brønsted acid catalysis.

  3. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil,...

  4. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil,...

  5. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil,...

  6. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil,...

  7. Variability in fatty acid and triacylglycerol composition of the oil of coconut (Cocos nucifera L.) hybrids and their parentals.

    PubMed

    Laureles, Lucita R; Rodriguez, Felicito M; Reaño, Consorcia E; Santos, Gerardo A; Laurena, Antonio C; Mendoza, Evelyn Mae Tecson

    2002-03-13

    The fatty acid profiles and triacylglycerol (TAG) compositions of oils from the solid endosperm of different Philippine coconut hybrids and their parentals were determined by using gas chromatography (GC) and high-performance liquid chromatography (HPLC). In general, varietal differences in fatty acid composition were observed. Lauric acid (C12) content was significantly higher in the hybrids PCA 15-8 (50.45%) and PCA 15-9 (50.26%) by about 3.16% points as compared to other hybrids, and higher in Tacunan Green Dwarf (50.50%) among the parentals. Among the fatty acids, lauric acid exhibited the least variation. In general, none of the hybrids had higher fatty acid content than their parentals. The HPLC chromatogram of triacylglycerols (TAG) showed 8 major peaks which differ in carbon number (CN) by two: identified as TAG CN 30, 32, 34, 36, 38, 40, 42, and 44. TAGs CN 30 (4.08%) and CN 34 (19.20%) were found to be significantly higher in PCA 15-9 than in the other hybrids. CN 36 was highest (21.94-23.66%) in all hybrids and parentals. The TAG CNs varied significantly among hybrids and parents, i.e., in CN 30, 32, and 34, which are high in medium chain triacylglycerols (MCTs), and in CN 30 (for parentals only), 40, 42, and 44 (the latter two for parentals only), and none in CN 36. MCTs calculated for two hybrids and their parents ranged from 13.81% to 20.55%.

  8. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs.

    PubMed

    Massey, Melissa; Ancona, Mario G; Medintz, Igor L; Algar, W Russ

    2015-12-01

    Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved Förster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated "sweet spot" for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective

  9. Transition-metal-free cascade reaction of α-halo-N-tosylhydrazones, indoles and arylboronic acids.

    PubMed

    Wu, Guojiao; Deng, Yifan; Luo, Haiqing; Zhou, Junliang; Li, Tianjiao; Zhang, Yan; Wang, Jianbo

    2016-04-18

    α-Halo-N-tosylhydrazones are employed as reagents for the formation of multiple carbon-carbon bonds in the three-component reactions. In this transformation, a strategy has been designed to generate the diazo intermediate by using a nucleophile to react with the azoalkene intermediate generated in situ from the α-halo-N-tosylhydrazone. The diazo intermediate thus generated further undergoes transition-metal-free C-C bond forming reaction with arylboronic acids.

  10. Experimental Evidence of Localized Oscillations in the Photosensitive Chlorine Dioxide-Iodine-Malonic Acid Reaction

    NASA Astrophysics Data System (ADS)

    Míguez, David G.; Alonso, Sergio; Muñuzuri, Alberto P.; Sagués, Francesc

    2006-10-01

    The interaction between Hopf and Turing modes has been the subject of active research in recent years. We present here experimental evidence of the existence of mixed Turing-Hopf modes in a two-dimensional system. Using the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) and external constant background illumination as a control parameter, standing spots oscillating in amplitude and with hexagonal ordering were observed. Numerical simulations in the Lengyel-Epstein model for the CDIMA reaction confirmed the results.

  11. Enantioselective aldol reaction between isatins and cyclohexanone catalyzed by amino acid sulphonamides.

    PubMed

    Wang, Jun; Liu, Qi; Hao, Qing; Sun, Yanhua; Luo, Yiming; Yang, Hua

    2015-04-01

    Sulphonamides derived from primary α-amino acid were successfully applied to catalyze the aldol reaction between isatin and cyclohexanone under neat conditions. More interestingly, molecular sieves, as privileged additives, were found to play a vital role in achieving high enantioselectivity. Consequently, high yields (up to 99%) along with good enantioselectivities (up to 92% ee) and diastereoselectivities (up to 95:5 dr) were obtained. In addition, this reaction was also conveniently scaled up, demonstrating the applicability of this protocol.

  12. Intramolecular Diels–Alder Reactions of Cycloalkenones: Stereoselectivity, Lewis Acid Acceleration, and Halogen Substituent Effects

    PubMed Central

    2015-01-01

    The intramolecular Diels–Alder reactions of cycloalkenones and terminal dienes occur with high endo stereoselectivity, both thermally and under Lewis-acidic conditions. Through computations, we show that steric repulsion and tether conformation govern the selectivity of the reaction, and incorporation of either BF3 or α-halogenation increases the rate of cycloaddition. With a longer tether, isomerization from a terminal diene to the more stable internal diene results in a more facile cycloaddition. PMID:24410341

  13. Organocatalytic Enantioselective Aza-Friedel-Crafts Reaction of Cyclic Ketimines with Pyrroles using Imidazolinephosphoric Acid Catalysts.

    PubMed

    Nakamura, Shuichi; Matsuda, Nazumi; Ohara, Mutsuyo

    2016-07-04

    Organocatalytic enantioselective aza-Friedel-Crafts reactions of cyclic ketimines with pyrroles or indoles were catalyzed by imidazoline/phosphoric acid catalysts. The reaction was applied to various 3H-indol-3-ones to afford products in excellent yields and enantioselectivities. The chiral catalysts can be recovered by a single separation step using column chromatography and are reusable without further purification. Based on the experimental investigations, a possible transition state has been proposed to explain the origin of the asymmetric induction.

  14. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  15. Synthesis and anti-tumor activity evaluation of gallic acid-mangiferin hybrid molecule.

    PubMed

    Hu, Xiang-yu; Deng, Jia-gang; Wang, Lin; Yuan, Ye-fei

    2013-12-01

    To improve the anti-tumor effects of gallic acid and mangiferin, a gallic acid-mangiferin hybrid molecule (GAMA) was synthesized from gallic acid with mangiferin in the presence of ionic liquid ChC1(choline chloride)·2SnC12. Chemical and spectroscopic methods, such as (1)H and (13)C NMR spectroscopy, and HR-ESIMS were used for the structure identification of GA-MA. Using the cell counting kit-8 (CCK-8) assay, the in vitro anti-tumor effects were compared between GA-MA, gallic acid and mangiferin on human hepatoma HepG2, human nasopharyngeal carcinoma CNE, human lung cancer NCI-H460, human ovarian cancer SK-OV-3, and human cervical cancer Hela cells. The results showed that the half inhibitory concentration (IC50) of GA-MA on HepG2, CNE, NCI-H460, SK-OV-3, and Hela cells was significantly lower than that of gallic acid or mangiferin. This showed that GA-MA has a better in vitro anti-tumor effect than gallic acid and mangi-ferin.

  16. A high power spiral wound lead-acid battery for hybrid electric vehicles

    SciTech Connect

    Olson, J.B.; Sexton, E.D.

    1997-12-01

    Optima Batteries, Inc. is currently in development of a high power (660 W/kg) spiral wound lead-acid 6V battery with a nominal capacity of 15 Ah. Its exceptional power and excellent thermal characteristics make it a promising choice for hybrid electric vehicle applications. The hybrid electric vehicle presents a new and unique challenge for energy storage systems. The batteries require high power for acceleration and hill climbing and good charge acceptance for regenerative braking and overall energy efficiency. Since the on board auxiliary power unit results in much lower demands for battery energy capacity, lead-acid batteries fit quite well into these performance requirements. Many of the remaining challenges involve the development of battery management systems which must function to maintain the battery pack at peak performance and achieve an economical cycle life. Related to the issue of battery management is information about conditions that may cause damage or unbalance of the pack. Experiments are described investigating the effects of extreme cell reversal on battery capacity and cycle life. The results demonstrate the amazing robustness of the lead-acid battery for tolerating over discharge.

  17. Application of locked nucleic acid-based probes in fluorescence in situ hybridization.

    PubMed

    Fontenete, Sílvia; Carvalho, Daniel; Guimarães, Nuno; Madureira, Pedro; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2016-07-01

    Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2'-O-methyl (2'-OMe) RNA modifications have on the probe that is targeting microorganisms is unknown. In this study, the melting and hybridization efficiency properties of 18 different probes in regards to their use in FISH for the detection of the 16S rRNA of Helicobacter pylori were compared. For the same sequence and target, probe length and the type of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2'-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall, these results have significant implications for the design and applications of LNA probes for the detection of microorganisms.

  18. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-03-24

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. 14 figs.

  19. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration.

  20. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    PubMed Central

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-01-01

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516

  1. ortho-Lithium/magnesium carboxylate-driven aromatic nucleophilic substitution reactions on unprotected naphthoic acids.

    PubMed

    Aissaoui, Regadia; Nourry, Arnaud; Coquel, Ariane; Dao, Thi Thanh Hà; Derdour, Aicha; Helesbeux, Jean-Jacques; Duval, Olivier; Castanet, Anne-Sophie; Mortier, Jacques

    2012-01-06

    Substitution of an ortho-fluoro or methoxy group in 1- and 2-naphthoic acids furnishing substituted naphthoic acids occurs in good to excellent yields upon reaction with alkyl/vinyl/aryl organolithium and Grignard reagents, in the absence of a metal catalyst without the need to protect the carboxyl (CO(2)H) group. This novel nucleophilic aromatic substitution is presumed to proceed via a precoordination of the organometallic with the substrate, followed by an addition/elimination.

  2. Determination of free fatty acids and triglycerides by gas chromatography using selective esterification reactions.

    PubMed

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-01-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography-flame ionization detection, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  3. Chiral phosphoric acid catalyzed enantioselective 1,3-dipolar cycloaddition reaction of azlactones.

    PubMed

    Zhang, Zhenhua; Sun, Wangsheng; Zhu, Gongming; Yang, Junxian; Zhang, Ming; Hong, Liang; Wang, Rui

    2016-01-25

    The first chiral phosphoric acid catalyzed highly diastereo- and enantioselective 1,3-dipolar cycloaddition reaction of azlactones and methyleneindolinones was disclosed. By using a BINOL-derived chiral phosphoric acid as the catalyst, azlactones were activated as chiral anti N-protonated 1,3-dipoles to react with methyleneindolinones to yield biologically important 3,3'-pyrrolidonyl spirooxindole scaffolds in high yields, with good-to-excellent diastereo- and enantioselectivity.

  4. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.

    PubMed

    Jiang, Deshou; Chiaro, Christopher; Maddali, Pranav; Prabhu, K Sandeep; Peterson, Devin G

    2009-11-11

    The chemistry and fate of hydroxycinnamic acids (ferulic, p-coumeric, caffeic, sinapic, and cinnamic acid) in a glucose/glycine simulated baking model (10% moisture at 200 degrees C for 15 min) were investigated. Liquid chromatography-mass spectrometry analysis of glucose/glycine and glucose/glycine/hydroxycinnamic acid model systems confirmed the phenolics reacted with Maillard intermediates; two main reaction product adducts were reported. On the basis of isotopomeric analysis, LC-MS, and NMR spectroscopy, structures of two ferulic acid-Maillard reaction products were identified as 6-(4-hydroxy-3-methoxyphenyl)-5-(hydroxymethyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (adduct I) and 2-(6-(furan-2-yl)-7-(4-hydroxy-3-methoxyphenyl)-1-methyl-3-oxo-2,5-diazabicyclo[2.2.2]oct-5-en-2-yl)acetic acid (adduct II). In addition, a pyrazinone-type Maillard product, 2-(5-(furan-2-yl)-6-methyl-2-oxopyrazin-1(2H)-yl) acetic acid (IIa), was identified as an intermediate for reaction product adduct II, whereas 3-deoxy-2-hexosulose was identified as an intermediate of adduct I. Both adducts I and II were suggested to be generated by pericyclic reaction mechanisms. Quantitative gas chromatography (GC) analysis and liquid chromatography (LC) also indicated that the addition of ferulic acid to a glucose/glycine model significantly reduced the generation of select Maillard-type aroma compounds, such as furfurals, methylpyrazines, 2-acetylfuran, 2-acetylpyridine, 2-acetylpyrrole, and cyclotene as well as inhibited color development in these Maillard models. In addition, adducts I and II suppressed the bacterial lipopolysaccharide (LPS)-mediated expression of two prototypical pro-inflammatory genes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, in an in vitro murine macrophage model; ferulic acid reported negligible activity.

  5. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    SciTech Connect

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  6. The dietary branched chain amino acid requirements of hybrid striped bass(Morone chrysops x M. saxatilis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The requirements for branched chain amino acids (BCAAs) are unknown in hybrid striped bass and necessary for formulating efficient and nutritious diets. Moreover, the dietary balance among these three amino acids can substantially influence the performance of meat animals fed those diets. The diet...

  7. Study of the ammonia (gas)-sulfuric acid (aerosol) reaction rate

    SciTech Connect

    McMurry, P.H.; Takano, H.; Anderson, G.R.

    1983-06-01

    An experimental study of the reaction rate between monodisperse sulfuric acid aerosols and ammonia gas is described. Reactions took place in a laminar flow reactor at 24/sup 0/C and 6% relative humidity, and reaction products were sampled from the core of the flow so that reaction times were well defined. For the data reported here, the reaction time was 5.0 +/- 0.5 s, ammonia concentrations ranged from 13 to 63 ppb, and particle sizes ranged from 0.03 to 0.2 ..mu..m. The extent of reaction was determined by comparing the hygroscopic and deliquescent properties of the product aerosols with known properties of aerosols consisting of internal mixtures of sulfuric acid and ammonium sulfate. It was found that the average fraction of ammonia-aerosol collisions that resulted in chemical reaction during neutralization decreased from 0.40 +/- 0.10 for 0.058-..mu..m particles to 0.18 +/- 0.03 for 0.10-..mu..m particles. Differential mobility analyzers were used for generating the monodisperse aerosols and also for measuring the hygroscopic and deliquescent properties of the product aerosols.

  8. Reduction of carbadox mediated by reaction of Mn(III) with oxalic acid.

    PubMed

    Chen, Wan-Ru; Liu, Cun; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2013-02-05

    Manganese(III) geocomponents are commonly found in the soil environment, yet their roles in many biogeochemical processes remain unknown. In this study, we demonstrated that Mn(III) generated from the reaction of MnO(2) and oxalic acid caused rapid and extensive decompositions of a quinoxaline-di-N-oxide antibiotics, viz carbadox. The reaction occurred primarily at the quinoxaline-di-N-oxide moiety resulting in the removal of one -O from N1-oxide and formation of desoxycarbadox. The reaction rate was accelerated by increasing amounts of Mn(III), carbadox and oxalate. The critical step in the overall reaction was the formation of a quinoxaline-di-N-oxide/Mn(III)/oxalate ternary complex in which Mn(III) functioned as the central complexing cation and electron conduit in which the arrangement of ligands facilitated electron transfer from oxalate to carbadox. In the complex, the C-C bond in oxalate was cleaved to create CO(2)(-•) radicals, followed by electron transfer to carbadox through the Mn(III) center. This proposed reaction mechanism is supported by the reaction products formed, reaction kinetics, and quantum mechanical calculations. The results obtained from this study suggest that naturally occurring Mn(III)-oxalic acid complexes could reductively decompose certain organic compounds in the environment such as the antibiotic quinoxaline-di-N-oxide.

  9. Effect of Fungicides on the Reaction of Sorghum Hybrids to Anthracnose in Burleson County, Texas, 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of three fungicides to control grain mold/weathering and anthracnose on two sorghum hybrids NC+7R34 and Warner W851-DR was conducted during the 2012 growing season. Three fungicides Headline, Quilt Xcel, and Topguard were used. On May 26, plots were inoculated by putting 10 Colletotrichum ...

  10. A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Sadaei, Hossein Javedani; Abdullah, Abdul Hanan; Lee, Malrey; Isnin, Ismail Fauzi

    2015-08-01

    Currently, there are many studies have conducted on developing security of the digital image in order to protect such data while they are sending on the internet. This work aims to propose a new approach based on a hybrid model of the Tinkerbell chaotic map, deoxyribonucleic acid (DNA) and cellular automata (CA). DNA rules, DNA sequence XOR operator and CA rules are used simultaneously to encrypt the plain-image pixels. To determine rule number in DNA sequence and also CA, a 2-dimension Tinkerbell chaotic map is employed. Experimental results and computer simulations, both confirm that the proposed scheme not only demonstrates outstanding encryption, but also resists various typical attacks.

  11. Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered Hybridization Chain Reaction.

    PubMed

    Shuai, Hong-Lei; Wu, Xu; Huang, Ke-Jing; Zhai, Zi-Bo

    2017-03-30

    An ultrasensitive sandwich-type electrochemical biosensor for DNA detection is developed based on spherical silicon dioxide/molybdenum selenide (SiO2@MoSe2) and graphene oxide-gold nanoparticles (GO-AuNPs) hybrids as carrier triggered Hybridization Chain Reaction (HCR) coupling with multi-signal amplification. The proposed sensoring assay utilizes a spherical SiO2@MoSe2/AuNPs as sensing platform and GO-AuNPs hybrids as carriers to supply vast binding sites. H2O2+HQ system is used for DNA detection and HCR as the signal and selectivity enhancer. The sensor is designed in sandwich type to increase the specificity. As a result, the present biosensor exhibits a good dynamic range from 0.1fM to 100pM with a low detection limit of 0.068fM (S/N=3). This work shows a considerable potential for quantitative detection of DNA in early clinical diagnostics.

  12. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination.

    PubMed

    Goldman, Johnathan M; Zhang, Li Ang; Manna, Arunava; Armitage, Bruce A; Ly, Danith H; Schneider, James W

    2013-07-08

    Hybridization analysis of short DNA and RNA targets presents many challenges for detection. The commonly employed sandwich hybridization approach cannot be implemented for these short targets due to insufficient probe-target binding strengths for unmodified DNA probes. Here, we present a method capable of rapid and stable sandwich hybridization detection for 22 nucleotide DNA and RNA targets. Stable hybridization is achieved using an n-alkylated, polyethylene glycol γ-carbon modified peptide nucleic acid (γPNA) amphiphile. The γPNA's exceptionally high affinity enables stable hybridization of a second DNA-based probe to the remaining bases of the short target. Upon hybridization of both probes, an electrophoretic mobility shift is measured via interaction of the n-alkane modification on the γPNA with capillary electrophoresis running buffer containing nonionic surfactant micelles. We find that sandwich hybridization of both probes is stable under multiple binding configurations and demonstrate single base mismatch discrimination. The binding strength of both probes is also stabilized via coaxial stacking on adjacent hybridization to targets. We conclude with a discussion on the implementation of the proposed sandwich hybridization assay as a high-throughput microRNA detection method.

  13. Hybrid approach for including electronic and nuclear quantum effects in molecular dynamics simulations of hydrogen transfer reactions in enzymes

    NASA Astrophysics Data System (ADS)

    Billeter, Salomon R.; Webb, Simon P.; Iordanov, Tzvetelin; Agarwal, Pratul K.; Hammes-Schiffer, Sharon

    2001-04-01

    A hybrid approach for simulating proton and hydride transfer reactions in enzymes is presented. The electronic quantum effects are incorporated with an empirical valence bond approach. The nuclear quantum effects of the transferring hydrogen are included with a mixed quantum/classical molecular dynamics method in which the hydrogen nucleus is described as a multidimensional vibrational wave function. The free energy profiles are obtained as functions of a collective reaction coordinate. A perturbation formula is derived to incorporate the vibrationally adiabatic nuclear quantum effects into the free energy profiles. The dynamical effects are studied with the molecular dynamics with quantum transitions (MDQT) surface hopping method, which incorporates nonadiabatic transitions among the adiabatic hydrogen vibrational states. The MDQT method is combined with a reactive flux approach to calculate the transmission coefficient and to investigate the real-time dynamics of reactive trajectories. This hybrid approach includes nuclear quantum effects such as zero point energy, hydrogen tunneling, and excited vibrational states, as well as the dynamics of the complete enzyme and solvent. The nuclear quantum effects are incorporated during the generation of the free energy profiles and dynamical trajectories rather than subsequently added as corrections. Moreover, this methodology provides detailed mechanistic information at the molecular level and allows the calculation of rates and kinetic isotope effects. An initial application of this approach to the enzyme liver alcohol dehydrogenase is also presented.

  14. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay.

  15. Kinetic resolution of acids in acylation reactions in the presence of chiral tertiary amines

    SciTech Connect

    Potapov, V.M.; Dem'yanovich, V.M.; Khlebnikov, V.A.

    1988-07-10

    Asymmetric synthesis has now become an important method for the production of optically active compounds, and its most attractive form is asymmetric catalysis. This work was devoted to an investigation into asymmetric catalysis with chiral tertiary amines in acylation reactions. During the acylation of alcohols and amines by the action of racemic 2-phenylpropionic and 2-methyl-3-phenylpropionic acids in the presence of S-nicotine the initial acids are resolved kinetically. The (R)-2-phenylpropionic acid obtained in this way had an optical purity of 0.5-1.5%.

  16. Bifunctional acid base catalyzed reactions in zeolites from the HSAB viewpoint

    NASA Astrophysics Data System (ADS)

    Hemelsoet, K.; Lesthaeghe, D.; Speybroeck, V. Van; Waroquier, M.

    2006-02-01

    The applicability of the hard and soft acids and bases principle is investigated for the interaction of 5T zeolite clusters with probe molecules such as chloromethane, methanol and olefins. The reactions are intermediately hard-hard and, therefore, mainly charge-controlled. This is confirmed by the success of the atomic charges and the electrostatic interaction energy at the acid site as correct descriptors of regio-selectivity and reactivity sequences. Both acid and basic reactive sites can be clearly indicated using frontier orbitals. Moreover, an excellent correlation is found between the activation hardnesses and the energy barriers at the absolute zero.

  17. Chlorogenic acid-arabinose hybrid domains in coffee melanoidins: Evidences from a model system.

    PubMed

    Moreira, Ana S P; Coimbra, Manuel A; Nunes, Fernando M; Passos, Cláudia P; Santos, Sónia A O; Silvestre, Armando J D; Silva, André M N; Rangel, Maria; Domingues, M Rosário M

    2015-10-15

    Arabinose from arabinogalactan side chains was hypothesized as a possible binding site for chlorogenic acids in coffee melanoidins. To investigate this hypothesis, a mixture of 5-O-caffeoylquinic acid (5-CQA), the most abundant chlorogenic acid in green coffee beans, and (α1 → 5)-L-arabinotriose, structurally related to arabinogalactan side chains, was submitted to dry thermal treatments. The compounds formed during thermal processing were identified by electrospray ionization mass spectrometry (ESI-MS) and characterized by tandem MS (ESI-MS(n)). Compounds composed by one or two CQAs covalently linked with pentose (Pent) residues (1-12) were identified, along with compounds bearing a sugar moiety but composed exclusively by the quinic or caffeic acid moiety of CQAs. The presence of isomers was demonstrated by liquid chromatography online coupled to ESI-MS and ESI-MS(n). Pent1-2CQA were identified in coffee samples. These results give evidence for a diversity of chlorogenic acid-arabinose hybrids formed during roasting, opening new perspectives for their identification in melanoidin structures.

  18. Permanganate oxidation of α-amino acids: kinetic correlations for the nonautocatalytic and autocatalytic reaction pathways.

    PubMed

    Perez-Benito, Joaquin F

    2011-09-08

    The reactions of permanganate ion with seven α-amino acids in aqueous KH(2)PO(4)/K(2)HPO(4) buffers have been followed spectrophotometrically at two different wavelengths: 526 nm (decay of MnO(4)(-)) and 418 nm (formation of colloidal MnO(2)). All of the reactions studied were autocatalyzed by colloidal MnO(2), with the contribution of the autocatalytic reaction pathway decreasing in the order glycine > l-threonine > l-alanine > l-glutamic acid > l-leucine > l-isoleucine > l-valine. The rate constants corresponding to the nonautocatalytic and autocatalytic pathways were obtained by means of either a differential rate law or an integrated one, the latter requiring the use of an iterative method for its implementation. The activation parameters for the two pathways were determined and analyzed to obtain statistically significant correlations for the series of reactions studied. The activation enthalpy of the nonautocatalytic pathway showed a strong, positive dependence on the standard Gibbs energy for the dissociation of the protonated amino group of the α-amino acid. Linear enthalpy-entropy correlations were found for both pathways, leading to isokinetic temperatures of 370 ± 21 K (nonautocatalytic) and 364 ± 28 K (autocatalytic). Mechanisms in agreement with the experimental data are proposed for the two reaction pathways.

  19. Is there a redox reaction between Cu(II) and gallic acid?

    PubMed

    Severino, Joyce Ferreira; Goodman, Bernard A; Reichenauer, Thomas G; Pirker, Katharina F

    2011-02-01

    Interactions between transition metal ions and polyphenols can result in complexation, redox or polymerization, but the relative importance of these reactions is unclear. The present paper reports results from the reaction of gallic acid (GA) with Cu(II) using electron paramagnetic resonance (EPR) and UV/visible spectroscopy for various relative concentrations and pH values. Reduction of Cu(II) by GA does not occur under strongly acidic or strongly alkaline conditions. Di- or polymerization reactions between Cu(II) and carboxylate groups of GA dominate the results at acidic pH, whereas mononuclear complexes increase in importance at higher pH and GA concentrations. There was no evidence for any redox reaction between Cu(II) and GA and free radical formation from GA at high pH was shown to be the consequence of auto-oxidation, which was inhibited by Cu(II). Serious questions are thus raised about the existence of the frequently assumed redox reactions between Cu(II) and polyphenols.

  20. Reactions on sulphuric acid aerosol and on polar stratospheric clouds in the Antarctic stratosphere

    SciTech Connect

    Wolff, E.W.; Mulvaney, R.

    1991-06-01

    Heterogeneous chemistry producing active chlorine has been identified as crucial to Antarctic ozone depletion. Most attention has focused on reactions on solid polar stratospheric cloud (PSC) particles, although there is still no satisfactory understanding of the microchemical incorporation of HCl in PSCs. The alternative mechanism involving sulphuric acid aerosol as the reaction surface has been considered at lower latitudes, but its role in the special conditions of the polar stratosphere has been largely ignored. Recent data from the Antarctic stratosphere have suggested the HCl is present in sulphuric acid aerosol that remains liquid even at the lowest stratospheric temperatures. The available laboratory data show that cold, relatively dilute, sulphuric acid is particularly able to take up HCl that is available for reaction provided the aerosol remains liquid. Fast heterogeneous reaction rates compared to those at mid-latitudes will produce active chlorine rapidly. Since the aerosol is present with significant surface area throughout the lower stratosphere, it should be very effective for heterogeneous reaction once temperatures drop. These surfaces, rather than PSCs, could host the initial conversion of Cl to its active form over the Antarctic.

  1. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  2. Total synthesis of (±)-epithuriferic acid methyl ester via Diels-Alder reaction.

    PubMed

    Koprowski, Marek; Bałczewski, Piotr; Owsianik, Krzysztof; Różycka-Sokołowska, Ewa; Marciniak, Bernard

    2016-02-07

    In this paper, we have described the first total synthesis of (±)-epithuriferic acid methyl ester from non-natural sources, in four steps (20% overall yield). The key step involves the Diels-Alder reaction of isobenzofuran with methyl 3-(dimethoxyphosphoryl)acrylate which is controlled by "ortho" regio- and endo stereoselectivities due to the COOMe group.

  3. Zeolite-directed cascade reactions: cycliacyarylation versus decarboxyarylation of alpha,beta-unsaturated carboxylic acids.

    PubMed

    Chassaing, Stefan; Kumarraja, Mayilvasagam; Pale, Patrick; Sommer, Jean

    2007-09-27

    The interaction of alpha,beta-unsaturated carboxylic acids with benzene derivatives was investigated in H-zeolites and led to two distinct but competing processes, cycliacyarylation and decarboxyarylation. Interestingly, H-USY selectively induced the cycliacyarylation cascade reaction, whereas H-ZSM5 selectively promoted the decarboxyarylation cascade.

  4. Gasoline compositions containing reaction products of fatty acid esters and amines as carburetor detergents

    SciTech Connect

    Schlicht, R.C.; Herbstman, S.; Levin, M.D.; Sung, R.L.

    1988-03-08

    A motor fuel composition is described comprising (a) a major portion of a fuel consisting essentially of a hydrocarbon boiling in the gasoline boiling range; and (b) a minor effective amount of, as detergent additive, a reaction product of C/sub 6/-C/sub 20/ fatty acid and a mono- or di-(hydroxy hydrocarbyl) amine.

  5. A novel fluorescence detection method for in situ hybridization, based on the alkaline phosphatase-fast red reaction.

    PubMed

    Speel, E J; Schutte, B; Wiegant, J; Ramaekers, F C; Hopman, A H

    1992-09-01

    We have used naphthol-ASMX-phosphate and Fast Red TR in combination with alkaline phosphatase (APase) to produce fluorescent precipitated reaction products in a non-radioactive in situ hybridization (ISH) method. To obtain optimal and discrete localization of the strongly red fluorescent ISH signals, the enzyme precipitation procedure was optimized. The optimal reaction time and the concentrations of substrate and capture agent were determined. Furthermore, polyvinyl alcohol (PVA) was used to increase the viscosity of the reaction mixture and thus to reduce diffusion of the reaction product. Our results show that the APase-Fast Red detection method has at least the same sensitivity as currently observed in other immunofluorescent detection systems. A single copy DNA sequence of 15.8 KB could be localized with high efficiency in metaphase spreads and in interphase nuclei. Double labeling procedures, in which the FITC- and azo-dye fluorescence are combined, are also feasible. The red fluorescent ISH signals showed hardly any fading as compared with FITC fluorescence on exposure to either light from the mercury-arc lamp or laser light. Therefore, these red fluorescent signals with a virtually permanent character allow a better analysis and three-dimensional localization of such cytochemically detected genomic fractions by means of confocal scanning laser microscopy as compared with the use of FITC, TRITC, or Texas Red as label.

  6. A cytometric bead assay for sensitive DNA detection based on enzyme-free signal amplification of hybridization chain reaction.

    PubMed

    Ren, Wei; Liu, Hongmei; Yang, Wenxia; Fan, Yunlong; Yang, Lang; Wang, Yucong; Liu, Chenghui; Li, Zhengping

    2013-11-15

    A versatile flow cytometric bead assay (CBA) is developed for sensitive DNA detection by integrating the advantages of hybridization chain reaction (HCR) for enzyme-free signal amplification, flow cytometry for robust and rapid signal readout as well as magnetic beads (MBs) for facile separation. In this HCR-CBA, a biotinylated hairpin DNA (Bio-H1) is firstly immobilized on streptavidin-functionalized MBs. Upon the addition of target DNA, each target would hybridize with one Bio-H1 to open its hairpin structure and subsequently initiate a cascade of hybridization events between two species of fluorescent DNA hairpin probes (H1*/H2*) to form a nicked double helical DNA structure, resulting in amplified accumulation of numerous fluorophores on the MBs. Finally, the fluorescent MBs are directly analyzed by flow cytometry. This technique enables quantitative analysis of the HCR products anchored on the MBs as a function of target DNA concentration, and analysis of each sample can be completed within few minutes. Therefore, the HCR-CBA approach provides a practical DNA assay with greatly improved sensitivity. The detection limit of a model DNA target is 0.5 pM (3σ), which is about 3 orders of magnitude lower compared with traditional hybridization methods without HCR. Furthermore, the signal of complementary target can be clearly distinguished from that of single-base mismatched sequences, indicating the high specificity of the HCR-CBA. Moreover, this strategy is also successfully applied to the DNA analysis in complex biological samples, showing great potential in gene analysis and disease diagnosis in clinical samples.

  7. Spiral wound valve-regulated lead-acid batteries for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Soria, M. L.; Trinidad, F.; Lacadena, J. M.; Valenciano, J.; Arce, G.

    Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. This paper updates work carried out to develop spiral wound valve-regulated lead-acid (VRLA) batteries for vehicles with different hybridisation degrees, ranging from stop-start to mild hybrid applications. Former work on design optimisation and active material formulations has been implemented in two spiral wound VRLA batteries, rated 12 V 50 Ah and 6 V 24 Ah, and these two products are currently being tested both in benches and in vehicles with different hybridisation degrees within a demonstration project funded by the Advanced Lead Acid Battery Consortium and in collaboration with several European vehicle and electrical component manufacturers.

  8. Particle-rod hybrids: growth of arachidic acid molecular rods from capped cadmium selenide nanoparticles.

    PubMed

    Chen, Dongzhong; Wang, Ruomiao; Arachchige, Indika; Mao, Guangzhao; Brock, Stephanie L

    2004-12-22

    This communication describes a spin-coating method to nucleate organic molecular rods of uniform size from an inorganic nanoparticle at a solid surface. The particle-rod hybrid structure spontaneously forms when a film is spin coated from a mixed 2-propanol solution of arachidic acid (AA) and nanoparticles of cadmium selenide capped by mercaptoundecanoic acid (MUA-CdSe) on graphite. AFM images show that MUA-CdSe nanoparticles nucleate single crystalline rods of AA with a cross section of a single unit cell of the C-form. The solution-based process potentially allows the precise tuning of the wetting profile of the solution on the surface-attached nanoparticle, which provides the reservoir for the growth of the single crystalline rods. The results suggest that nanoparticles can be regarded as nanoseeds for the nucleation of guest crystals. It should be possible to further functionalize the AA rods by electrostatic complexation with metal or organic ions.

  9. Geminal Brønsted Acid Ionic Liquids as Catalysts for the Mannich Reaction in Water

    PubMed Central

    He, Leqin; Qin, Shenjun; Chang, Tao; Sun, Yuzhuang; Zhao, Jiquan

    2014-01-01

    Quaternary ammonium geminal Brønsted acid ionic liquids (GBAILs) based on zwitterionic 1,2-bis[N-methyl-N-(3-sulfopropyl)-alkylammonium]ethane (where the carbon number of the alkyl chain is 4, 8, 10, 12, 14, 16, or 18) and p-toluenesulfonic acid monohydrate were synthesized. The catalytic ionic liquids were applied in three-component Mannich reactions with an aldehyde, ketone, and amine at 25 °C in water. The effects of the type and amount of catalyst and reaction time as well as the scope of the reaction were investigated. Results showed that GBAIL-C14 has excellent catalytic activity and fair reusability. The catalytic procedure was simple, and the catalyst could be recycled seven times via a simple separation process without noticeable decreases in catalytic activity. PMID:24837832

  10. Study of the chemical mechanisms of the reaction of neutralization of calcium hydroxide by phosphoric acid

    NASA Astrophysics Data System (ADS)

    Elgadi, M.; Mejdoubi, E.; Elansari, L. L.; Essaddek, A.; Abouricha, S.; Lamhamdi, A.

    2005-03-01

    Calcium phosphates reported in this study, are prepared following an acido-basic reaction between phosphoric acid and calcium hydroxide. These phosphates are the brushite, tricalcium phosphate, hydroxyapatite and oxygenated apatite. The follow-up of the reaction by infra-red spectroscopy of absorption showed that the alkaline pH of calcium hydroxide solution, favours the formation of carbonated apatite, at the start of the reaction. Following the addition of phosphoric acid, the pH becomes increasingly favourable to the formation of the desired phase. The insertion of molecular oxygen in the apatitic tunnel is carried out by the use of hydrogen peroxide. The molecular oxygen rate in the apatite is then determined by volumetric analysis.

  11. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    PubMed

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3·SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst.

  12. Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction.

    PubMed

    Wang, Jie; Cheng, Bo; Li, Jie; Zhang, Zhaoyue; Hong, Weiyao; Chen, Xing; Chen, Peng R

    2015-04-27

    We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium-mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N-(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell-surface glycans. This conversion chemically mimics the enzymatic de-N-acetylation of N-acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell-surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell-surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.

  13. Synthesis and characterization of polyacids from palm acid oil and sunflower oil via addition reaction.

    PubMed

    Zeimaran, Ehsan; Kadir, Mohammed Rafiq Abdul; Nor, Hussin Mohd; Kamarul, Tunku; Djordjevic, Ivan

    2013-12-15

    In this study aliphatic polyacids were synthesized using palm acid oil (PAO) and sunflower oil (SFO) via addition reaction technique. The synthesized materials were characterized using Fourier-transform infra-red (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) and thermo-gravimetric analysis (TGA). Mixing formic acid and hydrogen peroxide with PAO or SFO at the ratio 3:10:1 produced the lowest iodine value of 10.57 and 9.24 respectively, indicating the increase in epoxidization of both oils. Adding adipic acid to the epoxidized oils at a ratio of 1:10 increases the acid values of SFO and PAO to 11.22 and 6.73 respectively. The existence of multi-acid groups present in synthesized polyacid was confirmed by MALD-ToF-MS. This feature indicates a possible value to the biomaterials development.

  14. Reaction kinetics of waste sulfuric acid using H2O2 catalytic oxidation.

    PubMed

    Wang, Jiade; Hong, Binxun; Tong, Xinyang; Qiu, Shufeng

    2016-12-01

    The process of recovering waste sulfuric acids using H2O2 catalytic oxidation is studied in this paper. Activated carbon was used as catalyst. Main operating parameters, such as temperature, feed rate of H2O2, and catalyst dosage, have effects on the removal of impurities from waste sulfuric acids. The reaction kinetics of H2O2 catalytic oxidation on impurities are discussed. At a temperature of 90°C, H2O2 feeding rate of 50 g (kg waste acid)(-1) per hour, and catalyst dosage of 0.2 wt% (waste acid weight), the removal efficiencies of COD and chrominance were both more than 99%, the recovery ratio of sulfuric acid was more than 95%, and the utilization ratio of H2O2 was 88.57%.

  15. The role of acid catalysis in the Baeyer-Villiger reaction. A theoretical study.

    PubMed

    Bach, Robert D

    2012-08-17

    Quantum mechanical calculations at the B3LYP/6-311+G(d,p) level have examined the overall mechanism of the Baeyer-Villiger (BV) reaction with peroxyacetic acid. A series of reactions that include both the addition step and the subsequent alkyl group migration step included ketones, acetone, t-butyl methyl ketone, acetophenone, cyclohexyl methyl ketone, and cyclohexyl phenyl ketone. The combined data suggested that the first step for addition of the peroxyacetic acid oxidation catalyst to the ketone carbonyl to produce the Criegee or tetrahedral intermediate is rate-limiting and has activation barriers that range from 38 to 41 kcal/mol without the aid of a catalyst. The rate of addition is markedly reduced by the catalytic action of a COOH functionality acting as a donor-acceptor group affecting both its proton transfer to the ketone C═O oxygen in concert with transfer of the OOH proton to the carboxylic acid carbonyl. The second or alkyl group migration step has a much reduced activation barrier, and its rate is not markedly influenced by acid catalysis. The rate of both steps in the BV reaction is greatly influenced by the catalytic action of very strong acids.

  16. Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica.

    PubMed

    Wang, Y P; Sonntag, K; Rudloff, E

    2003-05-01

    PEG-induced asymmetric somatic hybridization between Brassica napus and Crambe abyssinica was carried out. C. abyssinica is an annual cruciferous oil crop with a high content of erucic acid in the seed oil valuable for technical purposes. UV-irradiated mesophyll protoplasts of C. abyssinica cv 'Carmen' and cv 'Galactica' were fused with hypocotyl protoplasts of different genotypes of B. napus cv 'Maplus' and breeding line '11502'. Shoot regeneration frequency varied between 6.1% and 20.8% among the different doses of UV-irradiation, ranging from 0.05 J/cm(2) to 0.30 J/cm(2). In total, 124 shoots were regenerated, of which 20 asymmetric somatic hybrids were obtained and verified by nuclear DNA content and AFLP analysis. AFLP data showed that some of the characteristic bands from C. abyssinica were present in the hybrids. Cytological analysis of these hybrids showed that 9 out of 20 asymmetric hybrids had 38 chromosomes, the others contained 40-78 chromosomes, having additional chromosomes between 2 and 40 beyond the 38 expected for B. napus. The investigation into the fertility of asymmetric somatic hybrids indicated that the fertility increased with increasing UV-doses ranging from 0.05 J/cm(2) to 0.15 J/cm(2). All of the hybrids were cultured to full maturity, and could be fertilized and set seeds after self-pollination or backcrosses with B. napus. An analysis of fatty acid composition in the seeds was conducted and found to contain significantly greater amounts of erucic acid than B. napus. This study indicates that UV-irradiation could be used as a tool to produce asymmetric somatic hybrids and to promote the fertility of the hybrids.

  17. Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Sodeau, J.; Oriordan, B.

    2003-04-01

    CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.

  18. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide.

    PubMed

    Cuevasanta, Ernesto; Lange, Mike; Bonanata, Jenner; Coitiño, E Laura; Ferrer-Sueta, Gerardo; Filipovic, Milos R; Alvarez, Beatriz

    2015-11-06

    Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS(-), is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS(-) toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS(-) is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes.

  19. Kinetics of liquid-solid reactions in naphthenic acid conversion and Kraft pulping

    NASA Astrophysics Data System (ADS)

    Yang, Ling

    Two liquid-solid reactions, in which the morphology of the solid changes as the reactions proceeds, were examined. One is the NA conversion in oil by decarboxylation on metal oxides and carbonates, and the other is the Kraft pulping in which lignin removal by delignification reaction. In the study of the NA conversion, CaO was chosen as the catalyst for the kinetic study from the tested catalysts based on NA conversion. Two reaction mixtures, carrier oil plus commercial naphthenic acids and heavy vacuum gas oil (HVGO) from Athabasca bitumen, were applied in the kinetic study. The influence of TAN, temperature, and catalyst loading on the NA conversion and decarboxylation were studied systematically. The results showed that the removal rate of TAN and the decarboxylation of NA were both independent of the concentration of NA over the range studied, and significantly dependent on reaction temperature. The data from analyzing the spent catalyst demonstrated that calcium naphthenate was an intermediate of the decarboxylation reaction of NA, and the decomposition of calcium naphthenate was a rate-determining step. In the study on the delignification of the Kraft pulping, a new mechanism was proposed for the heterogeneous delignification reaction during the Kraft pulping process. In particular, the chemical reaction mechanism took into account the heterogeneous nature of Kraft pulping. Lignin reacted in parallel with sodium hydroxide and sodium sulfide. The mechanism consists of three key kinetic steps: (1) adsorption of hydroxide and hydrosulfide ions on lignin; (2) surface reaction on the solid surface to produce degraded lignin products; and (3) desorption of degradation products from the solid surface. The most important step for the delignification process is the surface reaction, rather than the reactions occurring in the liquid phase. A kinetic model has, thus, been developed based on the proposed mechanism. The derived kinetic model showed that the mechanism

  20. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    PubMed Central

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-01-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst. PMID:26938568

  1. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    PubMed

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  2. Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water

    SciTech Connect

    Caratzoulas, Stavros; Courtney, Timothy; Vlachos, Dionisios G.

    2011-01-01

    We use the conversion of protonated glycerol to acrolein for a case study of the mechanism of acid-catalyzed dehydration of polyols in aqueous environments. We employ hybrid Quamtum Mechanics/Molecular Mechanics Molecular Dynamics (QM/MM MD) simulations with biased sampling and perform free energy calculations for the elementary steps of the reaction. We investigate the effects of solvent dynamics and in particular the role of quantum mechanical water in the dehydration mechanism. We present results supporting a mechanism that proceeds via water-mediated proton transfers and thus through an enol intermediate. We find that the first dehydration may take place by two, low-energy pathways requiring, respectively, 20.9 and 18.8 kcal/mol of activation free energy. The second dehydration requires 19.9 kcal/mol of activation free energy while for the overall reaction we compute a free energy change of -8 kcal/mol.

  3. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    PubMed

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  4. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure?

    PubMed

    Pattison, David I; Hawkins, Clare L; Davies, Michael J

    2007-08-28

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.

  5. Effect of Backbone Design on Hybridization Thermodynamics of Oligo-nucleic Acids: A Coarse-Grained Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Ghobadi, Ahmadreza F.; Jayaraman, Arthi

    DNA hybridization is the basis of various bio-nano technologies, such as DNA origami and assembly of DNA-functionalized nanoparticles. A hybridized double stranded (ds) DNA is formed when complementary nucleobases on hybridizing strands exhibit specific and directional hydrogen bonds through canonical Watson-Crick base-pairing interactions. In recent years, the need for cheaper alternatives and significant synthetic advances have driven design of DNA mimics with new backbone chemistries. However, a fundamental understanding of how these backbone modifications in the oligo-nucleic acids impact the hybridization and melting behavior of the duplex is still lacking. In this talk, we present our recent findings on impact of varying backbone chemistry on hybridization of oligo-nucleic acid duplexes. We use coarse-grained molecular dynamics simulations to isolate the effect of strand flexibility, electrostatic interactions and nucleobase spacing on the melting curves for duplexes with various strand sequences and concentrations. Since conjugation of oligo-nucleic acids with polymers serve as building blocks for thermo-responsive polymer networks and gels, we also present the effect of such conjugation on hybridization thermodynamics and polymer conformation.

  6. Relative Reaction Rates of Sulfamic Acid and Hydroxylamine with Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-03-28

    This report describes a study of comparative reaction rates where the reductant is in excess, as in the 1B bank in the Purex process. The results of this work apply to planned plant tests to partially substitute HAN for the ferrous sulfamate reductant in the Purex 1B bank.

  7. Water-catalyzed gas-phase reaction of formic acid with hydroxyl radical: A computational investigation

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Maeda, Satoshi; Ohno, Koichi

    2009-02-01

    The reaction of formic acid with hydroxyl radical, which is considered to be relevant to atmospheric chemistry, has been extensively studied. A water-catalyzed process of this reaction is computationally studied here for the first time. The scaled hypersphere search method was used for global exploration of pre-reaction complexes. Calculations were performed at high level of theory, such as CCSD(T)/cc-pVTZ//B3LYP/6-311+G(2df, 2p) and CCSD(T)/cc-pVTZ//MP2/aug-cc-pVDZ. It is found that the water-catalyzed process of this reaction is more kinetically favorable than its non-catalytic process. Such catalytic process may also be of interest for atmospheric chemistry, like the non-catalytic one.

  8. Salinomycin Hydroxamic Acids: Synthesis, Structure, and Biological Activity of Polyether Ionophore Hybrids.

    PubMed

    Borgström, Björn; Huang, Xiaoli; Chygorin, Eduard; Oredsson, Stina; Strand, Daniel

    2016-06-09

    The polyether ionophore salinomycin has recently gained attention due to its exceptional ability to selectively reduce the proportion of cancer stem cells within a number of cancer cell lines. Efficient single step strategies for the preparation of hydroxamic acid hybrids of this compound varying in N- and O-alkylation are presented. The parent hydroxamic acid, salinomycin-NHOH, forms both inclusion complexes and well-defined electroneutral complexes with potassium and sodium cations via 1,3-coordination by the hydroxamic acid moiety to the metal ion. A crystal structure of an cationic sodium complex with a noncoordinating anion corroborates this finding and, moreover, reveals a novel type of hydrogen bond network that stabilizes the head-to-tail conformation that encapsulates the cation analogously to the native structure. The hydroxamic acid derivatives display down to single digit micromolar activity against cancer cells but unlike salinomycin selective reduction of ALDH(+) cells, a phenotype associated with cancer stem cells was not observed. Mechanistic implications are discussed.

  9. Synthesis of organic-inorganic hybrid sols with nano silica particles and organoalkoxysilanes for transparent and high-thermal-resistance coating films using sol-gel reaction.

    PubMed

    Na, Moonkyong; Park, Hoyyul; Ahn, Myeongsang; Lee, Hyeonhwa; Chung, Ildoo

    2010-10-01

    Organic-inorganic hybrid sols were synthesized from nano silica particles dispersed in water and from organoalkoxysilanes, using the sol-gel reaction. This work focuses on the effects of the three multifunctional organoalkoxysilanes dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS), and tetramethoxysilane (TMOS) to form a transparent and high-thermal-resistance coating film. The stability of the hybrid sol was evaluated as a function of the reaction time for 10 d through the variation of the viscosity. The viscosity of the silica/DMDMS and silica/MTMS sol was slightly increased for 10 d. The multifunctional organoalkoxysilanes formed dense silica networks through hydrolysis and condensation reaction, which enhanced the thermal resistance of the coating films. No thermal degradation of the silica/DMDMS sample occurred up to 600 degrees C, and none of the silica/MTMS and silica/TMOS samples occurred either up to 700 degrees C. The organic-inorganic hybrid sols were coated on the glass substrate using a spin-coating procedure. The organic-inorganic hybrid sols formed flat coating films without cracks. The transmittance of the hybrid sol coating films using MTMS and DMDMS was shown to be over 90%. The transmittance of the silica/TMOS sol coating film reacted for 10 d abruptly decreased due to faster gelation. The silica/DMDMS and silica/MTMS hybrid sols formed smooth coating films while the surface roughness of the silica/TMOS coating film markedly increased when the hybrid sol reacted for 10 d. The increase of the surface roughness of the silica/TMOS coating film can be attributed to the degradation of the stability of the hybrid sol and to the loss of transmittance of the coating film. It was confirmed in this study that the use of organic-inorganic hybrid sol can yield transparent and high-thermal-resistance coating films.

  10. Enzymatic Kolbe-Schmitt reaction to form salicylic acid from phenol: enzymatic characterization and gene identification of a novel enzyme, Trichosporon moniliiforme salicylic acid decarboxylase.

    PubMed

    Kirimura, Kohtaro; Gunji, Hiroaki; Wakayama, Rumiko; Hattori, Takasumi; Ishii, Yoshitaka

    2010-04-02

    Salicylic acid decarboxylase (Sdc) can produce salicylic acid from phenol; it was found in the yeast Trichosporon moniliiforme WU-0401 and was for the first time enzymatically characterized, with the sdc gene heterologously expressed. Sdc catalyzed both reactions: decarboxylation of salicylic acid to phenol and the carboxylation of phenol to form salicylic acid without any byproducts. Both reactions were detected without the addition of any cofactors and occurred even in the presence of oxygen, suggesting that this Sdc is reversible, nonoxidative, and oxygen insensitive. Therefore, it is readily applicable in the selective production of salicylic acid from phenol, the enzymatic Kolbe-Schmitt reaction. The deduced amino acid sequence of the gene, sdc, encoding Sdc comprises 350 amino acid residues corresponding to a 40-kDa protein. The recombinant Escherichia coli BL21(DE3) expressing sdc converted phenol to salicylic acid with a 27% (mol/mol) yield at 30 degrees C for 9h.

  11. Heterogeneous Reactions of ClONO2, HCl, and HOCl on Liquid Sulfuric Acid Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1994-01-01

    The heterogeneous reactions of ClONO2 + H2O yields HNO3 + HOCl (1), ClONO2 + HCl yields C12 + HNO3 (2), and HOCl + HCl yields Cl2 + H2O (3) on liquid sulfuric acid surfaces have been studied using a fast flow reactor coupled to a quadrupole mass spectrometer. The main objectives of the study are to investigate: (a) the temperature dependence of these reactions at a fixed H2O partial pressure typical of the lower stratosphere (that is, by changing temperature at a constant water partial pressure, the H2SO4 content of the surfaces is also changed), (b) the relative importance or competition between reactions 1 and 2, and (c) the effect of HNO3 on the reaction probabilities due to the formation of a H2SO4/HNO3/H2O ternary system. The measurements show that all the reactions depend markedly on temperature at a fixed H2O partial pressure: they proceed efficiently at temperatures near 200 K and much slower at temperatures near 220 K. The reaction probability (gamma(sub 1)) for ClONO2 hydrolysis approaches 0.01 at temperatures below 200 K, whereas the values for gamma(sub 2) and gamma(sub 3) are on the order of a few tenths at 200 K. Although detailed mechanisms for these reactions are still unknown, the present data indicate that the competition between ClONO2 hydrolysis and ClONO2 reaction with HCl may depend on temperature (or H2SO4 Wt %): in the presence of gaseous HCl at stratospheric concentrations, reaction 2 is dominant at lower temperatures (less than 200 K), but reaction 1 becomes important at temperatures above 210 K. Furthermore, reaction probability measurements performed on the H2SO4/HNO3/ H2O ternary solutions do not exhibit noticeable deviation from those performed on the H2SO4/H2O binary system, suggesting little effect of HNO3 in sulfate aerosols on the ClONO2 and HOCl reactions with HCl. The results reveal that significant reductions in the chlorine-containing reservoir species (such as ClONO2 and HCl) can take place on stratospheric sulfate aerosols at

  12. Development of SSR Markers Linked to Low Hydrocyanic Acid Content in Sorghum-Sudan Grass Hybrid Based on BSA Method.

    PubMed

    Xiao-Xia, Yu; Zhi-Hua, Liu; Zhuo, Yu; Yue, Shi; Xiao-Yu, Li

    2016-01-01

    Sorghum-Sudan grass hybrid containing high hydrocyanic acid content can cause hydrocyanic acid poisoning to the livestock and limit the popularization of this forage crop. Molecular markers associated with low hydrocyanic acid content can speed up the process of identification of genotypes with low hydrocyanic acid content. In the present study, 11 polymorphic SSR primers were screened and used for bulked segregant analysis and single marker analysis. Three SSR markers Xtxp7230, Xtxp7375 and Bnlg667960 associated with low hydrocyanic acid content were rapidly identified by BSA. In single marker analysis, six markers Xtxp7230, Xtxp7375, Bnlg667960, Xtxp67-11, Xtxp295-7 and Xtxp12-9 were linked to low hydrocyanic acid content, which explained the proportion of phenotypic variation from 7.6 % to 41.2 %. The markers identified by BSA were also verified by single marker analysis. The three SSR marker bands were then cloned and sequenced for sequence homology analysis in NCBI. It is the first report on the development of molecular markers associated with low hydrocyanic acid content in sorghum- Sudan grass hybrid. These markers will be useful for genetic improvement of low hydrocyanic acid sorghum-Sudan grass hybrid by marker-assisted breeding.

  13. Exposing the hidden complexity of stoichiometric and catalytic metathesis reactions by elucidation of Mg-Zn hybrids

    PubMed Central

    Hevia, Eva; Chua, Jonathan Z.; García-Álvarez, Pablo; Kennedy, Alan R.; McCall, Matthew D.

    2010-01-01

    Studying seemingly simple metathesis reactions between ZnCl2 and tBuMgCl has, surprisingly, revealed a much more complex chemistry involving mixed magnesium-zinc compounds that could be regarded as Mg-Zn hybrids. Thus, the reaction of equimolar amounts of ZnCl2 and tBuMgCl reveals the formation of the unprecedented mixed Mg-Zn complex [(THF)4Mg(μ-Cl)2Zn(tBu)(Cl)] (1), as a result of the co-complexation of the two anticipated exchange products of the metathesis. This magnesium zincate adopts a contacted ion-pair structure, closely related to Knochel’s pioneering “Turbo” Grignard reagents. Furthermore, a second coproduct identified in this reaction is the solvent-separated mixed magnesium-zinc chloride complex [{Mg(THF)6}2+{Zn2Cl6}2-] (3) that critically diminishes the amount of ZnCl2 available for the intended metathesis reaction to take place. In another surprising result, when the reaction is carried out by using an excess of 3 M equivalents of the Grignard reagent (closer to the catalytic conditions employed by synthetic chemists), solvent-separated magnesium trialkyl zincate [{Mg2Cl3(THF)6}+{Zn(tBu)3}-] (4) is obtained that can be viewed as a model for the active species involved in the increasingly important organic transformations of Grignard reagents catalysed by ZnCl2. Furthermore, preliminary reactivity studies reveal that complex 4 can be used as an effective new reagent for direct Zn-I exchange reactions that allow the preparation and structural identification of the magnesium tris(aryl) zincate [{Mg2Cl3(THF)6}+{Zn(p-Tol)3}-] (5) that represents the first example of complete 3-fold activation of a zincate in a Zn-I exchange reaction which, in turn, can efficiently be used as a precursor for Negishi cross-coupling reactions. PMID:20212145

  14. Preparation of polyhedral oligomeric silsesquioxane-based hybrid monolith by ring-opening polymerization and post-functionalization via thiol-ene click reaction.

    PubMed

    Liu, Zhongshan; Ou, Junjie; Lin, Hui; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2014-05-16

    A polyhedral oligomeric silsesquioxane (POSS) hybrid monolith was simply prepared by using octaglycidyldimethylsilyl POSS (POSS-epoxy) and cystamine dihydrochloride as monomers via ring-opening polymerization. The effects of composition of prepolymerization solution and polycondensation temperature on the morphology and permeability of monolithic column were investigated in detail. The obtained POSS hybrid monolithic column showed 3D skeleton morphology and exhibited high column efficiency of ∼71,000 plates per meter in reversed-phase mechanism. Owing to this POSS hybrid monolith essentially possessing a great number of disulfide bonds, the monolith surface would expose thiol groups after reduction with dithiothreitol (DTT), which supplied active sites to functionalize with various alkene monomers via thiol-ene click reaction. The results indicated that the reduction with DTT could not destroy the 3D skeleton of hybrid monolith. Both stearyl methylacrylate (SMA) and benzyl methacrylate (BMA) were selected to functionalize the hybrid monolithic columns for reversed-phase liquid chromatography (RPLC), while [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide (MSA) was used to modify the hybrid monolithic column in hydrophilic interaction chromatography (HILIC). These modified hybrid monolithic columns could be successfully applied for separation of small molecules with high efficiency. It is demonstrated that thiol-ene click reaction supplies a facile way to introduce various functional groups to the hybrid monolith possessing thiol groups. Furthermore, due to good permeability of the resulting hybrid monoliths, we also prepared long hybrid monolithic columns in narrow-bore capillaries. The highest column efficiency reached to ∼70,000 plates using a 1-m-long column of 75μm i.d. with a peak capacity of 147 for isocratic chromatography, indicating potential application in separation and analysis of complex biosamples.

  15. Drug Reaction With Eosinophilia and Systemic Symptoms Induced by Valproic Acid: A Case Report

    PubMed Central

    Darban, Mahboubeh; Bagheri, Bahador

    2016-01-01

    Introduction Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare but life-threatening reaction to drugs such as carbamazepine and allopurinol. The condition is characterized by skin rashes, fever, hematological disturbances, lymphadenopathy, and organ failure, most probably hepatic dysfunction. To date, only a few cases of valproate-induced DRESS syndrome have been reported. Case Presentation We report on the case of a 60-year-old man who had been treated with valproic acid some time before being referred to Kowsar Hospital, Semnan, Iran in December 2015. He was given valproic acid 1000 mg PO, and after 20 days, he had developed widespread rashes, fever, esophagitis, cervical lymphadenopathy, and tender hepatomegaly. Laboratory results at Kowsar showed a drop in hemoglobin, in addition to lymphocytosis, thrombocytopenia, and elevated serum transaminases. DRESS was diagnosed, and corticosteroid therapy was initiated. Administration of the culprit drug to the patient was also stopped. Intravenous immunoglobulin (IVIG) improved the general condition of the patient. Conclusions Only a small number of case reports have described valproic acid-induced DRESS syndrome; therefore, the condition is difficult to prevent. Rechallenge with valproic acid should be avoided in patients with a history of reaction to the drug. PMID:28144463

  16. Light activates the reaction of bacteriorhodopsin aspartic acid-115 with dicyclohexylcarbodiimide

    SciTech Connect

    Renthal, R.; Cothran, M.; Espinoza, B.; Wall, K.A.; Bernard, M.

    1985-07-30

    Conditions for a light-induced reaction between the carboxyl-modifying reagent N,N'-dicyclohexylcarbodiimide (DCCD) and bacteriorhodopsin in Triton X-100 micelles were previously reported. The authors have now located the DCCD site in the bacteriorhodopsin amino acid sequence. ( UC)DCCD-bacteriorhodopsin was cleaved with CNBr. The resulting peptides were purified by gel filtration and reverse-phase high-performance liquid chromatography (HPLC). One major UC peptide (50%) and two minor fractions were obtained. Amino acid analysis and sequence analysis showed that the major fraction contained residues 69-118. This region includes six carboxyl side chains. The major UC peptide was also subjected to pepsin hydrolysis. HPLC analysis of the product gave only a single major radioactive subfragment. Amino acid analysis of the peptic peptide showed that it contained residues 110-118. The only carboxyl side chain in this region is Asp-115. Thus, the authors conclude that Asp-115 is the major DCCD site. The light sensitivity of this reaction suggests that Asp-115 becomes more exposed or that its environment becomes more acidic during proton pumping. The DCCD reaction blue-shifts the retinal chromophore. Such a result would be expected if Asp-115 is the negative point charge predicted to be near the cyclohexene ring of retinal.

  17. Methanol oxidation and hydrogen reactions on NiZr in acid solution

    NASA Astrophysics Data System (ADS)

    Hays, C. C.; Manoharan, R.; Goodenough, J. B.

    The electrochemical properties of a Ni 50Zr 50 (at.%) alloy have been investigated by cyclic voltammetry and steady-state polarization measurements. The alloy forms a passivating oxyhydroxide film that makes it electrochemically stable in an acid solution. The oxyhydroxide film is shown to be an electrocatalyst for the methanol oxidation reaction (MOR). The reaction proceeds at surface O 2- ions neighboring a Ni 3+ ion of a thicker passivating film; electron transfer from the surface to the electrode occurs diffusively by the nickel atoms of the film. A reaction pathway is presented that accounts for the observation of an optimum thickness for the passivating film. The NiZr alloy was also found to catalyze both hydrogen-oxidation and proton-reduction reactions (HOR and PRR) if it has a thinner surface oxyhydroxide film. The alloy appears to form mixed NiZrH and NiZrH 3- x hydrides on cycling negative of the normal hydrogen potential. The activity of the hydrogen-oxidation reaction on a hydride surface was found to increase in the presence of streaming hydrogen gas and also with increasing negative initial potential. Although the hydride is unstable in acid, it may be an attractive candidate for use as a rechargeable negative electrode in an alkaline metal/air or nickel-metal hydride secondary battery.

  18. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2-deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  19. Polycarboxylic acids as network modifiers for water durability improvement of inorganic-organic hybrid tin-silico-phosphate low-melting glasses

    SciTech Connect

    Menaa, Bouzid . E-mail: bouzidmenaa@noncry.kuicr.kyoto-u.ac.jp; Mizuno, Megumi; Takahashi, Masahide . E-mail: masahide@noncry.kuicr.kyoto-u.ac.jp; Tokuda, Yomei; Yoko, Toshinobu

    2006-02-15

    We investigated the water durability of the inorganic-organic hybrid tin-silico-phosphate glasses Me{sub 2}SiO-SnO-P{sub 2}O{sub 5} (Me designs the organic methyl group) doped with organic acids (salicylic acid (SA), tartaric acid (TA), citric acid (Canada) and butane tetracarboxylic acid (BTCA)) containing one or more of carboxylic groups per molecule. The structure, thermal properties and durability of the final glasses obtained via a non-aqueous acid-base reaction were discussed owing to the nature and the concentration of the acid added. {sup 29}Si magic angle spinning (MAS) NMR and {sup 31}P MAS NMR spectra, respectively, showed clearly a modification of the network in the host glass matrix of the Me{sub 2}SiO-SnO-P{sub 2}O{sub 5} system. The polycondensation enhancement to form -P-O-Si-O-P- linkages (PSP) and the increase of the Q {sup 2} unit (two bridging oxygens per phosphorus atom) over the Q {sup 3} unit (three bridging oxygens per phosphorus atom) as a function of the acid in the order SAacids containing a large number of carboxylic groups per molecule. The presence of carboxylic groups of the acid acting as network modifier may retard the movement of water molecules through the glasses due to the steric hindrance strengthening the PSP connections in a chain-like structure.

  20. Click with a boronic acid handle: a neighboring group-assisted click reaction that allows ready secondary functionalization.

    PubMed

    Draganov, Alexander B; Wang, Ke; Holmes, Jalisa; Damera, Krishna; Wang, Danzhu; Dai, Chaofeng; Wang, Binghe

    2015-10-21

    The feasibility of a neighboring boronic acid-facilitated facile condensation of an aldehyde is described. This reaction is bio-orthogonal, complete at room temperature within minutes, and suitable for bioconjugation chemistry. The boronic acid group serves the dual purpose of catalyzing the condensation reaction and being a handle for secondary functionalization.

  1. A palladium-nanoparticle and silicon-nanowire-array hybrid: a platform for catalytic heterogeneous reactions.

    PubMed

    Yamada, Yoichi M A; Yuyama, Yoshinari; Sato, Takuma; Fujikawa, Shigenori; Uozumi, Yasuhiro

    2014-01-03

    We report the development of a silicon nanowire array-stabilized palladium nanoparticle catalyst, SiNA-Pd. Its use in the palladium-catalyzed Mizoroki-Heck reaction, the hydrogenation of an alkene, the hydrogenolysis of nitrobenzene, the hydrosilylation of an α,β-unsaturated ketone, and the C-H bond functionalization reactions of thiophenes and indoles achieved a quantitative production with high reusability. The catalytic activity reached several hundred-mol ppb of palladium, reaching a TON of 2 000 000.

  2. Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems

    SciTech Connect

    Wolf, Elizabeth Skubak; Anderson, David F.

    2015-01-21

    Stochastic models are often used to help understand the behavior of intracellular biochemical processes. The most common such models are continuous time Markov chains (CTMCs). Parametric sensitivities, which are derivatives of expectations of model output quantities with respect to model parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities. The new hybrid methods combine elements from the three main classes of procedures for sensitivity estimation and have a number of desirable qualities. First, the new methods are unbiased for a broad class of problems. Second, the methods are applicable to nearly any physically relevant biochemical CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities. The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an expectation into separate parts and handling each in an efficient manner.

  3. Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems.

    PubMed

    Wolf, Elizabeth Skubak; Anderson, David F

    2015-01-21

    Stochastic models are often used to help understand the behavior of intracellular biochemical processes. The most common such models are continuous time Markov chains (CTMCs). Parametric sensitivities, which are derivatives of expectations of model output quantities with respect to model parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities. The new hybrid methods combine elements from the three main classes of procedures for sensitivity estimation and have a number of desirable qualities. First, the new methods are unbiased for a broad class of problems. Second, the methods are applicable to nearly any physically relevant biochemical CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities. The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an expectation into separate parts and handling each in an efficient manner.

  4. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    SciTech Connect

    Vale, D.; Rauscher, T.; Paar, N. E-mail: Thomas.Rauscher@unibas.ch

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for {sup 56}Fe and {sup 208}Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(ν-bar {sub e},e{sup +})n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of ν{sub e}- and ν-bar {sub e}-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ({sup 208}Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  5. Pitchfork and winged-cusp singularities in iodate-arsenous acid reaction

    NASA Astrophysics Data System (ADS)

    Li, Ru-Sheng

    1994-09-01

    The iodate-arsenous acid reaction was reported to be able to exhibit hysteresis bistability, including mushrooms and isolas, in a continuous flow stirred tank reactor (CSTR) when an additional flow of solvent is introduced [N. Ganapathisubramanian and K. Showalter, J. Chem. Phys. 80, 4177 (1984)]. Based on their kinetic data and the empirical rate law, it is shown that the reaction may also exhibit pitchfork-type and winged cusp-type singularities if additional flows of the reactants are introduced to the CSTR.

  6. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    PubMed

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  7. Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone.

    PubMed

    Athira, C; Sunoj, Raghavan B

    2016-12-20

    Metallic salts as well as protic additives are widely employed in transition metal catalyzed C-H bond functionalization reactions to improve the efficiency of catalytic protocols. In one such example, ZnCl2 and pivalic acid are used as additives in a palladium catalyzed synthesis of isoxazolone from a readily available benzohydroxamic acid under one pot conditions. In this article, we present some important mechanistic insights into the role of ZnCl2 and pivalic acid, gained by using density functional theory (M06) computations. Two interesting modes of action of ZnCl2 are identified in various catalytic steps involved in the formation of isoxazolone. The conventional Lewis acid coordination wherein zinc chloride (ZnCl2·(DMA)) binds to the carbonyl group is found to be more favored in the C-H activation step. However, the participation of a hetero-bimetallic Pd-Zn species is preferred in reductive elimination leading to Caryl-N bond formation. Pivalic acid helps in relay proton transfer in C-H bond activation through a cyclometallation deprotonation (CMD) process. The explicit inclusion of ZnCl2 and solvent N,N-dimethyl acetamide (DMA) stabilizes the transition state and also helps reduce the activation barrier for the C-H bond activation step. The electronic communication between the two metal species is playing a crucial role in stabilizing the Caryl-N bond formation transition state through a Pd-Zn hetero-bimetallic interaction.

  8. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    PubMed

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO < CH3CHO < CH3COCH3 (the highest yield being 10(-4) times lower than the initial ˙CH2OO˙ concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  9. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    SciTech Connect

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    2013-08-08

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  10. Facile and straightforward synthesis of superparamagnetic reduced graphene oxide-Fe3O4 hybrid composite by a solvothermal reaction.

    PubMed

    Liu, Yue-Wen; Guan, Meng-Xue; Feng, Lan; Deng, Shun-Liu; Bao, Jian-Feng; Xie, Su-Yuan; Chen, Zhong; Huang, Rong-Bin; Zheng, Lan-Sun

    2013-01-18

    A superparamagnetic reduced graphene oxide-Fe(3)O(4) hybrid composite (rGO-Fe(3)O(4)) was prepared via a facile and straightforward method through the solvothermal reaction of iron (III) acetylacetonate (Fe(acac)(3)) and graphene oxide (GO) in ethylenediamine (EDA) and water. By this method, chemical reduction of GO as well as the formation of Fe(3)O(4) nanoparticles (NPs) can be achieved in one step. The Fe(3)O(4) NPs are firmly deposited on the surfaces of rGO, avoiding their reassembly to graphite. The rGO sheets prevent the agglomeration of Fe(3)O(4) NPs and enable a uniform dispersion of these metal oxide particles. The size distribution and coverage density of Fe(3)O(4) NPs deposited on rGO can be controlled by varying the initial mass ratio of GO and iron precursor, Fe(acac)(3). With an initial mass ratio of GO and Fe(acac)(3) of 5:5, the surfaces of rGO sheets are densely covered by spherical Fe(3)O(4) NPs with an average size of 19.9 nm. The magnetic-functionalized rGO hybrid exhibits a good magnetic property and the specific saturation magnetization (M(s)) is 13.2 emu g(-1). The adsorption test of methylene blue from aqueous solution demonstrates the potential application of this rGO-Fe(3)O(4) hybrid composite in removing organic dyes from polluted water.

  11. An acidic layered clay is combined with a basic layered clay for one-pot sequential reactions.

    PubMed

    Motokura, Ken; Fujita, Noriaki; Mori, Kohsuke; Mizugaki, Tomoo; Ebitani, Kohki; Kaneda, Kiyotomi

    2005-07-13

    A Ti4+-exchanged montmorillonite (Ti4+-mont) and a hydrotalcite (HT) are strong solid Brønsted acid and base, and these two clay catalysts could be used in a single reactor without neutralization of active sites. Because the Ti4+-mont have active acid site in the narrow interlayers, the base sites of large HT particles show no interaction with the acid sites. A variety of acid and base reactions, such as esterification, acetalization, deacetalization, aldol reaction, Michael reaction, and epoxidation, proceeded using both the Ti4+-mont and the HT in a single reactor.

  12. Effect of backbone chemistry on hybridization thermodynamics of oligonucleic acids: a coarse-grained molecular dynamics simulation study.

    PubMed

    Ghobadi, Ahmadreza F; Jayaraman, Arthi

    2016-02-28

    In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.

  13. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty...

  14. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty...

  15. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty...

  16. 40 CFR 721.10363 - Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4′ -methylenebis...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-oxiranylmethyl ester, reaction products with 4,4â² -methylenebis (cyclohexanamine) (generic). 721.10363 Section... Substances § 721.10363 Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4..., reaction products with 4,4′ -methylenebis (cyclohexanamine) (PMN P-10-47) is subject to reporting...

  17. 40 CFR 721.10363 - Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4′ -methylenebis...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-oxiranylmethyl ester, reaction products with 4,4â² -methylenebis (cyclohexanamine) (generic). 721.10363 Section... Substances § 721.10363 Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4..., reaction products with 4,4′ -methylenebis (cyclohexanamine) (PMN P-10-47) is subject to reporting...

  18. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty...

  19. 40 CFR 721.10363 - Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4′ -methylenebis...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-oxiranylmethyl ester, reaction products with 4,4â² -methylenebis (cyclohexanamine) (generic). 721.10363 Section... Substances § 721.10363 Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4..., reaction products with 4,4′ -methylenebis (cyclohexanamine) (PMN P-10-47) is subject to reporting...

  20. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long-Chain Alkenes.

    PubMed

    Passananti, Monica; Kong, Lingdong; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; Chen, Jianmin; Donaldson, D James; George, Christian

    2016-08-22

    The heterogeneous reaction between SO2 and unsaturated compounds results in the efficient production of organosulfates for several fatty acids and long-chain alkenes. The presence of an acid group, the physical state of the reactants (solid or liquid), the nature of the double bond (cis, trans, terminal), and the use of light irradiation all have an impact on the reaction rate. The reaction was investigated using different set-ups (coated flow tube, aerosol flow tube, and diffuse reflectance infrared Fourier transform cell). The reaction products were identified by high-resolution mass spectrometry and the impact of this reaction on organosulfate formation in the atmosphere is discussed.

  1. Luminol encapsulated liposome as a signal generator for the detection of specific antigen-antibody reactions and nucleotide hybridization.

    PubMed

    Rakthong, Pakavadee; Intaramat, Akarin; Ratanabanangkoon, Kavi

    2010-01-01

    Liposomes prepared with biotinylated phospholipids and luminol entrapped were shown to be of 187 nm in size, 59% of which were unilamellar and with 43% luminol trapping efficiency. Liposome prepared from biotinylated phospholipids with a longer hydrophilic PEG2000 spacer, but not with the shorter hydrophobic caproyl one, bound efficiently and specifically with immobilized streptavidin in a microplate assay. The interactions of dinitrophenol and tobramycin with their respective antibodies, and the hybridization of 20-mers oligonucleotides were studied using the liposome as a signal generator. These reactions were shown to be specific with limits of detection of 0.58 microM, 0.96 microM and 18 nM, respectively.

  2. Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction.

    PubMed

    Xuan, Feng; Hsing, I-Ming

    2014-07-16

    We present a nonlinear hybridization chain reaction (HCR) system in which a trigger DNA initiates self-sustained assembly of quenched double-stranded substrates into fluorescent dendritic nanostructures. During the process, an increasing number of originally sequestered trigger sequences labeled with fluorescent reporters are freed up from quenched substrates, leading to chain-branching growth of the assembled DNA dendrimers and an exponential increase in the fluorescence intensity. The triggered assembly behavior was examined by PAGE analysis, and the morphologies of the grown dendrimers were verified by AFM imaging. The exponential kinetics of the fluorescence accumulation was also confirmed by time-dependent fluorescence spectroscopy. This method adopts a simple sequence design strategy, the concept of which could be adapted to program assembly systems with higher-order growth kinetics.

  3. Interfacial engineering of MoS2/TiO2 hybrids for enhanced electrocatalytic hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Song, Xiaolin; Chen, Guifeng; Guan, Lixiu; Zhang, Hui; Tao, Junguang

    2016-09-01

    Herein, we show that the synergistic effect between MoS2 and TiO2 enhances the hydrogen evolution reaction (HER) performance of their hybrids, which is tunable via interface engineering. Among several interfaces, MoS2/TiO2-H complexes exhibit the best HER activity. The observed Tafel slope of 66.9 mV/dec is well in range of previous literature reports, suggesting a Volmer-Heyrovsky mechanism. Enhanced activities were attributed to abundant active sites at the interfaces, as well as improved charge transfer efficiency. Our results emphasize the roles that interfaces play in enhancing the HER activities of MoS2-based heterogeneous catalysts.

  4. Use of hybrid discrete cellular models for identification of macroscopic nutrient loss in reaction-diffusion models of tissues.

    PubMed

    Aristotelous, Andreas C; Haider, Mansoor A

    2014-08-01

    Macroscopic models accounting for cellular effects in natural or engineered tissues may involve unknown constitutive terms that are highly dependent on interactions at the scale of individual cells. Hybrid discrete models, which represent cells individually, were used to develop and apply techniques for modeling diffusive nutrient transport and cellular uptake to identify a nonlinear nutrient loss term in a macroscopic reaction-diffusion model of the system. Flexible and robust numerical methods were used, based on discontinuous Galerkin finite elements in space and a Crank-Nicolson temporal discretization. Scales were bridged via averaging operations over a complete set of subdomains yielding data for identification of a macroscopic nutrient loss term that was accurately captured via a fifth-order polynomial. Accuracy of the identified macroscopic model was demonstrated by direct, quantitative comparisons of the tissue and cellular scale models in terms of three error norms computed on a mesoscale mesh.

  5. Detection of HTLV-1 by polymerase chain reaction in situ hybridization in adult T-cell leukemia/lymphoma.

    PubMed

    Setoyama, M; Kerdel, F A; Elgart, G; Kanzaki, T; Byrnes, J J

    1998-03-01

    A method for nonradioactive polymerase chain reaction in situ hybridization was developed and used to determine the distribution of human T-lymphotropic virus type I (HTLV-I) proviral DNA in paraffin-embedded surgical specimens of adult T-cell leukemia/lymphoma (ATLL). As controls, we used biopsy samples of five cases of mycosis fungoides, cells of an HTLV-I-infected cell line (MT2), as well as HTLV-1-negative cells (YAS). We successfully detected the amplicon of the HTLV-1 tax sequence in the nuclei of the cutaneous infiltrating lymphoid cells in 90% (9/10) of ATLL cases. Studies also revealed the existence of HTLV-1 provirus DNA in nuclei of sweat gland epithelial cells and vascular endothelial cells as well as lymphoid cells in ATLL patients. Mycosis fungoides and YAS cells were negative for the HTLV-I tax sequence, but MT2 cells were strongly positive. The results indicated that this technique was more sensitive in detecting intracellular amplicons than was the previous in situ hybridization method. Through its use, we were able to easily determine the distribution of HTLV-I-positive cells among the various cells and tissues of paraffin-embedded archival materials.

  6. Sensitive electrochemical determination of miRNAs based on a sandwich assay onto magnetic microcarriers and hybridization chain reaction amplification.

    PubMed

    Torrente-Rodríguez, R M; Campuzano, S; Montiel, V Ruiz-Valdepeñas; Montoya, J J; Pingarrón, J M

    2016-12-15

    A novel electrochemical approach for determination of miRNAs involving a sandwich hybridization assay onto streptavidin-magnetic beads (Strep-MBs), hybridization chain reaction (HCR) amplification and amperometric detection at disposable screen-printed carbon electrodes is reported. Using miRNA-21 as the target analyte, a dynamic linear range from 0.2 to 5.0nM with a 60pM (1.5fmol in 25μL) detection limit was obtained. The achieved sensitivity is 24-fold higher than a non-HCR amplification approach involving conventional sandwich type assay onto MBs. Moreover, the whole assay time lasted 1h 45min which is remarkably shorter than other reported methodologies. The methodology exhibited full selectivity against other non-complementary miRNAs as well as an acceptable discrimination between homologous miRNA family members. The applicability of this novel approach was demonstrated by determining mature miRNA-21 in total RNA (RNAt) extracted from tumor cells and human tissues.

  7. Determination of nitrite via reaction with pyridine-4-carboxylic acid hydrazide

    SciTech Connect

    Verma, K.K.; Tyagi, P.

    1985-06-01

    Nitrite is determined by its reaction with a measured but excessive amount of pyridine-4-carboxylic acid hydrazide in acid medium (when the two substances react in a 1:1 molar ratio) and evaluation of the surplus hydrazide by titration with chloramine-T in the presence of acidified potassium bromide, the end-point being shown by the decolorization of the methyl red indicator. Nitrate, copper(II), mercury(II), etc. are found not to interfere, and the determination of nitrite in the presence of diazotized aromatic amines is demonstrated. 11 references, 2 tables.

  8. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  9. Ultrasensitive non enzymatic multiple immunosensor for tumor markers detection by coupling DNA hybridization chain reaction with intercalated molecules.

    PubMed

    Guo, Jinjin; Wang, Junchun; Zhang, Junjun; Zhang, Wenjuan; Zhang, Yuzhong

    2017-04-15

    In this study, we tried coupling the small signal molecules that could intercalate into DNA double helix with hybridization chain reaction (HCR) technique to fabricate a multiple immunosensor. Doxorubicin hydrochloride (DXH) and methylene blue (MB) were used as signal molecules and alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) were selected as model biomarkers. The immunosensor mainly consists of three parts as follows: First, two different primary antibodies (Ab1) immobilized on the surface of gold nanoparticles (Au NPs); Second, secondary antibodies (Ab2) conjugated with DNA primer; Third, long DNA concatemers from HCR were used as a carrier to intercalate amounts of signal molecules (DXH or MB). A sandwich immunocomplex was formed among primary antibodies, target biomarkers and secondary antibodies conjugated with DNA primer via specific recognition reaction. Afterwards, DNA concatemers intercalating amounts of DXH or MB were linked to DNA primer via DNA hybridization. Square wave voltammetry (SWV) was employed to record the response signals from electroactive molecules DXH and MB, and two distinguishable signals were obtained, which peak potentials were at about -0.30V (corresponding to MB) and -0.70V (corresponding to DXH, both vs SCE), respectively. The signal intensities of MB and DXH were linearly related to the logarithm of biomarkers concentration in the range of 0.05pgmL(-1)-25ngmL(-1), and the limit of detection were 0.03pgmL(-1) for CEA and 0.02pgmL(-1) for AFP (at S/N=3), respectively. Furthermore, the immunosensor exhibited a sensitive electrochemical response to biomarkers in human serum samples and the results obtained were in accordance with reference method, indicating the immunosensor can be applied to real sample analysis in clinic diagnosis.

  10. Colorimetric detection of mercury ion based on unmodified gold nanoparticles and target-triggered hybridization chain reaction amplification

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Yang, Xiaohan; Yang, Xiaohai; Liu, Pei; Wang, Kemin; Huang, Jin; Liu, Jianbo; Song, Chunxia; Wang, Jingjing

    2015-02-01

    A novel unmodified gold nanoparticles (AuNPs)-based colorimetric strategy for label-free, specific and sensitive mercury ion (Hg2+) detection was demonstrated by using thymine-Hg2+-thymine (T-Hg2+-T) recognition mechanism and hybridization chain reaction (HCR) amplification strategy. In this protocol, a structure-switching probe (H0) was designed to recognize Hg2+ and then propagated a chain reaction of hybridization events between two other hairpin probes (H1 and H2). In the absence of Hg2+, all hairpin probes could stably coexist in solution, the exposed sticky ends of hairpin probes were capable of stabilizing AuNPs. As a result, salt-induced AuNPs aggregation could be effectively prevented. In the presence of Hg2+, thymine bases of H0 could specifically interact with Hg2+ to form stable T-Hg2+-T complex. Consequently, the hairpin structure of H0 probe was changed. As H1/H2 probes were added, the HCR process could be triggered and nicked double-helixes were formed. Since it was difficult for the formed nicked double-helixes to inhibit salt-induced AuNPs aggregation, a red-to-blue color change was observed in the colloid solution as the salt concentration increased. With the elegant amplification effect of HCR, a detection limit of around 30 nM was achieved (S/N = 3), which was about 1-2 orders of magnitudes lower than that of previous unmodified AuNPs-based colorimetric methods. By using the T-Hg2+-T recognition mechanism, high selectivity was also obtained. As an unmodified AuNPs-based colorimetric strategy, the system was simple in design, convenient in operation, and eliminated the requirements of separation processes, chemical modifications, and sophisticated instrumentations.

  11. A hybrid Li-air battery with buckypaper air cathode and sulfuric acid electrolyte

    SciTech Connect

    Li, YF; Huang, K; Xing, YC

    2012-10-30

    We demonstrate a type of carbon nanotube based buckypaper cathode in a hybrid electrolyte Li-air battery (HyLAB) that showed outstanding discharging performances. The HyLAB has sulfuric acid as the catholyte and a large active electrode area (10 cm(2)). The active cathode layer was made from a buckypaper with 5 wt.% Pt supported on carbon nanotubes (Pt/CNTs) for oxygen reduction and evolution. A similar cathode was constructed with a catalyst of 5 wt.% Pt supported on carbon black (Pt/CB). It is demonstrated that sulfuric acid can achieve high discharging current densities while maintaining relatively high cell potentials. The cell with Pt/CNTs showed a much better performance than with Pt/CB at high current densities. The HyLAB with Pt/CNTs achieved a discharging capacity of 306 mAh/g and a cell voltage of 3.15 V at 0.2 mA/cm(2). The corresponding specific energy is 1067 Wh/kg based on the total weight of the sulfuric acid. Slow decrease in performance was observed, but it can be recovered by refilling the cell with new electrolyte after continuous discharging of more than 75 h. A charge-discharge experiment at 0.2 mA/cm(2) showed that the cell was rechargeable with a capacity of more than 300 mAh/g. (c) 2012 Elsevier Ltd. All rights reserved.

  12. Rheological, microstructural, and in vitro characterization of hybrid chitosan-polylactic acid/hydroxyapatite composites.

    PubMed

    Araújo, A B A; Lemos, A F; Ferreira, J M F

    2009-03-15

    In this work, hybrid chitosan/hydroxyapatite composites material were developed and characterized. The polymer matrix was first dissolved in polylactic acid, and then hydroxyapatite (HA) was added as filler material. The effects of the added amounts of a crosslinking agent (genipin) and of the concentrations of lactic acid, and of the presence of HA powder on the evolution of rheological properties were evaluated. A significant decrease of gelation time with increasing amounts of crosslinking agent was observed, the effect being even more pronounced in the presence of HA. The chitosan matrix and the composites with a chitosan/HA weight ratio of 2/5 were characterized using microstructural analysis and in vitro tests. The formation of large pore sizes in the chitosan-based scaffolds was favored by low concentrations of lactic acid and genipin. The in vitro tests in synthetic body fluid revealed an extensive formation of an apatitic layer onto the surface of the chitosan/HA composite scaffolds crosslinked with genipin.

  13. Nanoleakage in Hybrid Layer and Acid-Base Resistant Zone at the Adhesive/Dentin Interface.

    PubMed

    Nikaido, Toru; Nurrohman, Hamid; Takagaki, Tomohiro; Sadr, Alireza; Ichinose, Shizuko; Tagami, Junji

    2015-10-01

    The aim of interfacial nanoleakage evaluation is to gain a better understanding of degradation of the adhesive-dentin interface. The acid-base resistant zone (ABRZ) is recognized at the bonded interface under the hybrid layer (HL) in self-etch adhesive systems after an acid-base challenge. The purpose of this study was to evaluate nanoleakage in HL and ABRZ using three self-etch adhesives; Clearfil SE Bond (SEB), Clearfil SE One (SEO), and G-Bond Plus (GBP). One of the three adhesives was applied on the ground dentin surface and light cured. The specimens were longitudinally divided into two halves. One half remained as the control group. The others were immersed in ammoniacal silver nitrate solution, followed by photo developing solution under fluorescent light. Following this, the specimens were subjected to acid-base challenges with an artificial demineralization solution (pH4.5) and sodium hypochlorite, and prepared in accordance with common procedures for transmission electron microscopy (TEM) examination. The TEM images revealed silver depositions in HL and ABRZ due to nanoleakage in all the adhesives; however, the extent of nanoleakage was material dependent. Funnel-shaped erosion beneath the ABRZ was observed only in the all-in-one adhesive systems; SEO and GBP, but not in the two-step self-etch adhesive system; SEB.

  14. Development and operation of a hybrid acid-alkaline advanced water electrolysis cell

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Zwanziger, M.

    A hybrid acid-alkaline water electrolysis cell has been developed for hydrogen production. The cell is based on the use of an acidic solution at the cathode and a basic solution at the anode to reduce the minimum theoretical voltage for water decomposition from the thermoneutral potential of 1.47 V to close to 1.4 V at 25 C and 1 atm. The pH differential is maintained by the removal of OH ions from the cathode section and water removal from the anode section, which can be driven by heat energy. A practical cell has been built using a solid polymer electrolyte in which, however, the cathodic compartment is not acidic but neutral. Tests with a platinum black cathode catalyst and a platinum-iridium anode catalyst have resulted in steady-state water hydrolysis at an applied voltage of 0.9 V, and a V-I diagram with a considerably lower slope than that of a conventional cell has been obtained at 90 C.

  15. Reaction of isoprene on thin sulfuric acid films: kinetics, uptake, and product analysis.

    PubMed

    Connelly, Brandon M; Tolbert, Margaret A

    2010-06-15

    A high vacuum Knudsen flow reactor was used to determine the reactive uptake coefficient, gamma, of isoprene on sulfuric acid films as a function of sulfuric acid weight percent, temperature, and relative humidity. No discernible dependence was observed for gamma over the range of temperatures (220 - 265 K) and pressures (10(-7) Torr -10(-4) Torr) studied. However, the uptake coefficient increased with increased sulfuric acid concentration between the range of 78 wt % (gamma(i) approximately 10(-4)) and 93 wt % (gamma(i) approximately 10(-3)). In addition to the Knudsen Cell, a bulk study was conducted between 60 and 85 wt % H(2)SO(4) to quantify uptake at lower acid concentrations and to determine reaction products. After exposing sulfuric acid to gaseous isoprene the condensed phase products were extracted and analyzed using gas chromatography/mass spectrometry (GC/MS). Isoprene was observed to polymerize in the sulfuric acid and form yellow/red colored monoterpenes and cyclic sesquiterpenes. Finally, addition of water to the 85 wt % sulfuric acid/isoprene product mixture released these terpenes from the condensed phase into the gas phase. Together these experiments imply that direct isoprene uptake will not produce significant SOA; however, terpene production from the small uptake may be relevant for ultrafine particles and could affect growth and nucleation.

  16. Muonium reactions with chloroacetic acid in water: Contrasts with H atoms and hydrated electrons

    NASA Astrophysics Data System (ADS)

    Stadlbauer, John M.; Venkateswaran, Krishnan; Walker, David C.

    1997-09-01

    Muonium atoms react with chloroacetic acid and chloroacetate ions in dilute aqueous solution with rate constants of 2.3 × 10 6 and 9.1 × 10 5 dm 3 mol -1 s -1 respectively. These are compared with the reactions of 1H atoms (and e aq-) and discussed in terms of a pair of competing kinetic isotope effects. Muonium reacts at least eight times faster than H overall, and probably 28 times faster in forming Cl -. It behaves as a nucleophile, thus resembling e aq- more than H, in reacting faster with the acid than the anion. Muonium's reactions must be governed to a considerable extent by quantum-mechanical effects arising from its very small mass.

  17. Revisiting the Kinetics and Mechanism of the Tetrathionate-Hypochlorous Acid Reaction in Nearly Neutral Medium

    NASA Astrophysics Data System (ADS)

    Varga, Dénes; Horváth, Attila K.

    2009-11-01

    The tetrathionate-hypochlorous acid reaction has been investigated in nearly neutral medium at I = 0.5 M ionic strength and T = 25.0 ± 0.1 °C in dihydrogen-phosphate-hydrogen-phosphate buffer by UV-vis spectrophotometry. In excess of hypochlorous acid, the stoichiometry was found to be S4O62- + 7HOCl + 3H2O → 4SO42- + 7Cl- + 13H+, but in excess of tetrathionate colloidal sulfur precipitates. On the basis of the simultaneous evaluation of the kinetic curves, a nine-step kinetic model with four fitted and five fixed rate coefficients is proposed. Analogous oxidation reactions of tetrathionate are also compared and discussed.

  18. Origin of fatty acid synthesis - Thermodynamics and kinetics of reaction pathways

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1991-01-01

    The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, an alternative pathway of primitive fatty acid synthesis is proposed that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy. Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.

  19. Rapid generation of molecular complexity in the Lewis or Brønsted acid-mediated reactions of methylenecyclopropanes.

    PubMed

    Shi, Min; Lu, Jian-Mei; Wei, Yin; Shao, Li-Xiong

    2012-04-17

    Although they are highly strained, methylenecyclopropanes (MCPs) are readily accessible molecules that have served as useful building blocks in organic synthesis. MCPs can undergo a variety of ring-opening reactions because the release of cyclopropyl ring strain (40 kcal/mol) can provide a thermodynamic driving force for reactions and the π-character of the bonds within the cyclopropane can afford the kinetic opportunity to initiate the ring-opening. Since the 1970s, the chemistry of MCPs has been widely explored in the presence of transition metal catalysts, but less attention had been paid to the Lewis or Brønsted acid mediated chemistry of MCPs. During the past decade, significant developments have also been made in the Lewis or Brønsted acid mediated reactions of MCPs. This Account describes chemistry developed in our laboratory and by other researchers. Lewis and Brønsted acids can be used as catalysts or reagents in the reactions of MCPs with a variety of substrates, and substituents on the terminal methylene or on the cyclopropyl ring of MCPs significantly affect the reaction pathways. During the past decade, we and other researchers have found interesting transformations based on this chemistry. These new reactions include the ring expansion of MCPs, cycloaddition reactions of MCPs with aldehydes and imines, cycloaddition reactions of MCPs with nitriles in the presence of strong Brønsted acid, radical reactions of MCPs with 1,3-dicarbonyl compounds, intramolecular Friedel-Crafts reactions of MCPs with arenes, acylation reactions of MCPs, and the reaction of MCPs with 1,1,3-triarylprop-2-yn-1-ols or their methyl ethers. These Lewis or Brønsted acid mediated reactions of MCPs can produce a variety of new compounds such as cyclobutanones, indenes, tetrahydrofurans, and tetrahydroquinolines. Finally, we have also carried out computational studies to explain the mechanism of the Brønsted acid mediated reactions of MCPs with acetonitrile.

  20. An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry

    PubMed Central

    Golon, Agnieszka; Kropf, Christian; Vockenroth, Inga; Kuhnert, Nikolai

    2014-01-01

    Thermal treatment of food changes its chemical composition drastically with the formation of “so-called” Maillard reaction products, being responsible for the sensory properties of food, along with detrimental and beneficial health effects. In this contribution, we will describe the reactivity of several amino acids, including arginine, lysine, aspartic acid, tyrosine, serine and cysteine, with carbohydrates. The analytical strategy employed involves high and ultra-high resolution mass spectrometry followed by chemometric-type data analysis. The different reactivity of amino acids towards carbohydrates has been observed with cysteine and serine, resulting in complex MS spectra with thousands of detectable reaction products. Several compounds have been tentatively identified, including caramelization reaction products, adducts of amino acids with carbohydrates, their dehydration and hydration products, disproportionation products and aromatic compounds based on molecular formula considerations. PMID:28234331