Science.gov

Sample records for acid hybridization technology

  1. Hybrid microelectronic technology

    NASA Astrophysics Data System (ADS)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  2. Hybrid propulsion technology program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  3. Hybrid Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Jensen, G. E.; Holzman, A. L.

    1990-01-01

    Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data.

  4. Hybrid Fuel Cell Technology Overview

    SciTech Connect

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  5. Hybrid Microwave Technology

    SciTech Connect

    Wicks, G.G.

    2001-03-07

    A team associated with a Federal Laboratory, academia, and industry has been actively developing new microwave technology for treatment and remediation of a variety of potentially hazardous materials for almost a decade. This collaboration has resulted in unique equipment and processes with potential applicability to many fields, including disposition of electronic circuitry and components, medical wastes, radioactive materials and recycling of used tires.

  6. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  7. Hybrid Tank Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have accomplished great advances in pressure vessel technology by applying high-performance composite materials as an over-wrap to metal-lined pressure vessels. These composite over-wrapped pressure vessels (COPVs) are used in many areas, from air tanks for firefighters and compressed natural gas tanks for automobiles, to pressurant tanks for aerospace launch vehicles and propellant tanks for satellites and deep-space exploration vehicles. NASA and commercial industry are continually striving to find new ways to make high-performance pressure vessels safer and more reliable. While COPVs are much lighter than all-metal pressure vessels, the composite material, typically graphite fibers with an epoxy matrix resin, is vulnerable to impact damage. Carbon fiber is most frequently used for the high-performance COPV applications because of its high strength-to-weight characteristics. Other fibers have been used, but with limitations. For example, fiberglass is inexpensive but much heavier than carbon. Aramid fibers are impact resistant but have less strength than carbon and their performance tends to deteriorate.

  8. Nucleic acid in-situ hybridization detection of infectious agents

    NASA Astrophysics Data System (ADS)

    Thompson, Curtis T.

    2000-04-01

    Limitations of traditional culture methods and newer polymerase chain reaction (PCR)-based methods for detection and speciation of infectious agents demonstrate the need for more rapid and better diagnostics. Nucleic acid hybridization is a detection technology that has gained wide acceptance in cancer and prenatal cytogenetics. Using a modification of the nucleic acid hybridization technique known as fluorescence in-situ hybridization, infectious agents can be detected in a variety of specimens with high sensitivity and specificity. The specimens derive from all types of human and animal sources including body fluids, tissue aspirates and biopsy material. Nucleic acid hybridization can be performed in less than one hour. The result can be interpreted either using traditional fluorescence microscopy or automated platforms such as micro arrays. This paper demonstrates proof of concept for nucleic acid hybridization detection of different infectious agents. Interpretation within a cytologic and histologic context is possible with fluorescence microscopic analysis, thereby providing confirmatory evidence of hybridization. With careful probe selection, nucleic acid hybridization promises to be a highly sensitive and specific practical diagnostic alternative to culture, traditional staining methods, immunohistochemistry and complicated nucleic acid amplification tests.

  9. Quantum technologies with hybrid systems

    PubMed Central

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  10. Base-acid hybrid water electrolysis.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Fei; Wang, Yonggang; Xia, Yongyao

    2016-02-21

    A base-acid hybrid electrolytic system with a low onset voltage of 0.78 V for water electrolysis was developed by using a ceramic Li-ion exchange membrane to separate the oxygen-evolving reaction (OER) in a basic electrolyte solution containing the Li-ion and hydrogen-evolving reaction (HER) in an acidic electrolyte solution. PMID:26804323

  11. Kit for detecting nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2001-01-01

    A kit is provided for detecting a target nucleic acid sequence in a sample, the kit comprising: a first hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the first hybridization probe including a first complexing agent for forming a binding pair with a second complexing agent; and a second hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the first hybridization probe does not selectively hybridize, the second hybridization probe including a detectable marker; a third hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the third hybridization probe including the same detectable marker as the second hybridization probe; and a fourth hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the third hybridization probe does not selectively hybridize, the fourth hybridization probe including the first complexing agent for forming a binding pair with the second complexing agent; wherein the first and second hybridization probes are capable of simultaneously hybridizing to the target sequence and the third and fourth hybridization probes are capable of simultaneously hybridizing to the target sequence, the detectable marker is not present on the first or fourth hybridization probes and the first, second, third, and fourth hybridization probes each include a competitive nucleic acid sequence which is sufficiently complementary to a third portion of the target sequence that the competitive sequences of the first, second, third, and fourth hybridization probes compete with each other to hybridize to the third portion of the

  12. Technological options for acid rain control

    SciTech Connect

    Princiotta, F.T.; Sedman, C.B.

    1993-01-01

    The paper discusses technological options for acid rain control. Compliance with Title IV of the Clean Air Act Amendments of 1990 will require careful scrutiny of a number of issues before selecting control options to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions. One key consideration is the effect of fuel switching or control technology upon the existing dust collector, with additional air toxics legislation looming ahead. A number of likely SO2 and NOx retrofit technologies and estimated costs are presented, along with results of retrofit case studies. New hybrid particulate controls are also being developed to meet future requirements.

  13. Hybrid optomechanics for Quantum Technologies

    NASA Astrophysics Data System (ADS)

    Rogers, B.; Lo Gullo, N.; De Chiara, G.; Palma, G. M.; Paternostro, M.

    2014-06-01

    We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matterlike system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical nonlocality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering devices, possibly empowered by the use of quantum and optimal control techniques. The results that we discuss are instrumental to the promotion of hybrid optomechanical devices as promising experimental platforms for the study of nonclassicality at the genuine mesoscopic level.

  14. Hybrid Brains - Biology, Technology Merger

    NASA Astrophysics Data System (ADS)

    Warwick, Kevin

    In this paper an attempt has been made to take a look at how the use of implant and electrode technology can now be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking the human brain directly with a computer. An overview of some of the latest developments in the field of Brain to Computer Interfacing is also given in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that have been and are being undertaken and reported on, as opposed to those speculated, simulated or proposed as future projects. Related areas are discussed briefly only in the context of their contribution to the studies being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is made directly with the cerebral cortex and/or nervous system.

  15. Hybridization and sequencing of nucleic acids using base pair mismatches

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  16. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect

    Not Available

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  17. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect

    Not Available

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  18. Hybrid power technology for remote military facilities

    SciTech Connect

    Chapman, R.N.

    1996-09-01

    The Department of Defense (DoD) operates hundreds of test, evaluation, and training facilities across the US and abroad. Due to the nature of their missions, these facilities are often remote and isolated from the utility grid. The preferred choice for power at these facilities has historically been manned diesel generators. The DoD Photovoltaic Review Committee, estimates that on the order of 350 million gallons of diesel fuel is burned each year to generate the 2000 GWh of electricity required to operate these remote military facilities. Other federal agencies, including the National Park Service and the USDA Forest Service use diesel generators for remote power needs as well. The generation of power diesel generators is both expensive and detrimental to the environment. The augmentation of power from diesel generators with power processing and battery energy storage enhances the efficiency and utilization of the generator resulting in lower fuel consumption and lower generator run- time in proportion to the amount of renewables added. The hybrid technology can both reduce the cost of power and reduce environmental degradation at remote DoD facilities. This paper describes the expected performance and economics of photovoltaic/diesel hybrid systems. Capabilities and status of systems now being installed at DoD facilities are presented along with financing mechanisms available within DoD.

  19. Hybrid Propulsion Technology Program, phase 1. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The study program was contracted to evaluate concepts of hybrid propulsion, select the most optimum, and prepare a conceptual design package. Further, this study required preparation of a technology definition package to identify hybrid propulsion enabling technologies and planning to acquire that technology in Phase 2 and demonstrate that technology in Phase 3. Researchers evaluated two design philosophies for Hybrid Rocket Booster (HRB) selection. The first is an ASRM modified hybrid wherein as many components/designs as possible were used from the present Advanced Solid Rocket Motor (ASRM) design. The second was an entirely new hybrid optimized booster using ASRM criteria as a point of departure, i.e., diameter, thrust time curve, launch facilities, and external tank attach points. Researchers selected the new design based on the logic of optimizing a hybrid booster to provide NASA with a next generation vehicle in lieu of an interim advancement over the ASRM. The enabling technologies for hybrid propulsion are applicable to either and vehicle design may be selected at a downstream point (Phase 3) at NASA's discretion. The completion of these studies resulted in ranking the various concepts of boosters from the RSRM to a turbopump fed (TF) hybrid. The scoring resulting from the Figure of Merit (FOM) scoring system clearly shows a natural growth path where the turbopump fed solid liquid staged combustion hybrid provides maximized payload and the highest safety, reliability, and low life cycle costing.

  20. Chemically modified nucleic acids as immunodetectable probes in hybridization experiments.

    PubMed Central

    Tchen, P; Fuchs, R P; Sage, E; Leng, M

    1984-01-01

    Guanine residues in nucleic acids can be modified by treatment with N-acetoxy-N-2-acetylaminofluorene and its 7-iodo derivative in an in vitro nonenzymatic reaction. The modified nucleic acids (ribo or deoxyribo, single or double stranded) are recognized by specific antibodies. They can be immunoprecipitated or used as probes in hybridization experiments and detected by immunochemical techniques. Images PMID:6374657

  1. Advancements in electric and hybrid electric vehicle technology

    SciTech Connect

    1994-12-31

    Contents of this volume include: Influence of Battery Characteristics on Traction Drive Performance; Chassis Design for a Small Electric City Car; Thermal Comfort of Electric Vehicles; Power Quality Problems at Electric Vehicle`s Charging Station; The Development and Performance of the AMPhibian Hybrid Electric Vehicle; The Selection of Lead-Acid Batteries for Use in Hybrid Electric Vehicles; and more.

  2. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    SciTech Connect

    Nan, Alexandrina Bunge, Alexander; Turcu, Rodica

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  3. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  4. The theory of the deoxyribonucleic acid - ribonucleic acid hybridization reaction.

    PubMed Central

    Thomou, H; Katsanos, N A

    1976-01-01

    A general equation is derived describing data of DNA-RNA hybridization in the presence of a competing self-annealing reaction of RNA. The well known double-reciprocal relation and the Scatchard equation are shown to be limiting cases of this general equation. Some new hybridization data at various temperatures are presented and analysed by using the new equation. The results can only be explained if we assume that the behavior of DNA towards single RNA molecules is the same as that towards the annealed form, (RNA12. The variation of the equilibrium constant of the hybridization reaction with temperature is small, indicating a small heat of reaction. The maximum amount of hybridized RNA at equilibrium appears to be independent of temperature. PMID:1275887

  5. Electric and hybrid vehicle technologies. Quarterly report, 1 January-31 March 1998

    SciTech Connect

    1998-03-01

    This report discusses electric and hybrid vehicle technologies. Specific topics include: (1) hybrid electric bus, (2) hybrid vehicle turbogenerator, (3) emissions study, (4) electric vehicles, (5) flywheels, (6) hybrid propulsion, (7) electric generators, and (8) charging systems.

  6. Hybrid Propulsion Technology Program, phase 1. Volume 2: Technical discussion

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Information on hybrid propulsion system concepts is given largely in the form of outlines, charts and graphs. Included are the concept definition, trade study data generation, concept evaluation and selection, conceptual design definition, and technology definition.

  7. Lead-acid batteries in micro-hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Albers, Joern; Meissner, Eberhard; Shirazi, Sepehr

    More and more vehicles hit the European automotive market, which comprise some type of micro-hybrid functionality to improve fuel efficiency and reduce emissions. Most carmakers already offer at least one of their vehicles with an optional engine start/stop system, while some other models are sold with micro-hybrid functions implemented by default. But these car concepts show a wide variety in detail-the term "micro-hybrid" may mean a completely different functionality in one vehicle model compared to another. Accordingly, also the battery technologies are not the same. There is a wide variety of batteries from standard flooded and enhanced flooded to AGM which all are claimed to be "best choice" for micro-hybrid applications. A technical comparison of micro-hybrid cars available on the European market has been performed. Different classes of cars with different characteristics have been identified. Depending on the scope and characteristics of micro-hybrid functions, as well as on operational strategies implemented by the vehicle makers, the battery operating duties differ significantly between these classes of vehicles. Additional laboratory investigations have been carried out to develop an understanding of effects observed in batteries operated in micro-hybrid vehicles pursuing different strategies, to identify limitations for applications of different battery technologies.

  8. Photoinitiator Nucleotide for Quantifying Nucleic Acid Hybridization

    PubMed Central

    Johnson, Leah M.; Hansen, Ryan R.; Urban, Milan; Kuchta, Robert D.; Bowman, Christopher N.

    2010-01-01

    This first report of a photoinitiator-nucleotide conjugate demonstrates a novel approach for sensitive, rapid and visual detection of DNA hybridization events. This approach holds potential for various DNA labeling schemes and for applications benefiting from selective DNA-based polymerization initiators. Here, we demonstrate covalent, enzymatic incorporation of an eosin-photoinitiator 2′-deoxyuridine-5′-triphosphate (EITC-dUTP) conjugate into surface-immobilized DNA hybrids. Subsequent radical chain photoinitiation from these sites using an acrylamide/bis-acrylamide formulation yields a dynamic detection range between 500pM and 50nM of DNA target. Increasing EITC-nucleotide surface densities leads to an increase in surface-based polymer film heights until achieving a film height plateau of 280nm ±20nm at 610 ±70 EITC-nucleotides/μm2. Film heights of 10–20 nm were obtained from eosin surface densities of approximately 20 EITC-nucleotides/μm2 while below the detection limit of ~10 EITC-nucleotides/μm2, no detectable films were formed. This unique threshold behavior is utilized for instrument-free, visual quantification of target DNA concentration ranges. PMID:20337438

  9. Electric field directed nucleic acid hybridization on microchips.

    PubMed Central

    Edman, C F; Raymond, D E; Wu, D J; Tu, E; Sosnowski, R G; Butler, W F; Nerenberg, M; Heller, M J

    1997-01-01

    Selection and adjustment of proper physical parameters enables rapid DNA transport, site selective concentration, and accelerated hybridization reactions to be carried out on active microelectronic arrays. These physical parameters include DC current, voltage, solution conductivity and buffer species. Generally, at any given current and voltage level, the transport or mobility of DNA is inversely proportional to electrolyte or buffer conductivity. However, only a subset of buffer species produce both rapid transport, site specific concentration and accelerated hybridization. These buffers include zwitterionic and low conductivity species such as: d- and l-histidine; 1- and 3-methylhistidines; carnosine; imidazole; pyridine; and collidine. In contrast, buffers such as glycine, beta-alanine and gamma-amino-butyric acid (GABA) produce rapid transport and site selective concentration but do not facilitate hybridization. Our results suggest that the ability of these buffers (histidine, etc.) to facilitate hybridization appears linked to their ability to provide electric field concentration of DNA; to buffer acidic conditions present at the anode; and in this process acquire a net positive charge which then shields or diminishes repulsion between the DNA strands, thus promoting hybridization. PMID:9396795

  10. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    PubMed

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system. PMID:24179097

  11. Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels

    PubMed Central

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-01-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g. cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three dimensional (2D and 3D) culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications. PMID:23419055

  12. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels.

    PubMed

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-04-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g., cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three-dimensional culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications. PMID:23419055

  13. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-01-01

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships. PMID:25429559

  14. Hybrid propulsion technology program. Volume 2: Technology definition package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.

  15. Hybrid collectors using thin-film technology

    SciTech Connect

    Platz, R.; Fischer, D.; Zufferey, M.A.; Selvan, J.A.A.; Shah, A.; Haller, A.

    1997-12-31

    Amorphous silicon (a-Si:H) based solar cells are highly interesting in the context of hybrid (i.e., photovoltaic/thermal) solar energy conversion. First, their large area capability and the variety of possible substrate materials permit one to apply a-Si:H PV modules directly on the surface of conventional heat collectors at low cost. Further, the low temperature coefficient of a-Si:H cells (0.1%/K) allows operation of a-Si:H solar modules at temperatures as high as 100 C without substantial power loss. The authors focus on the thermal performance of such hybrid collectors based on a-Si:H cells, with emphasis on a ZnO coat on top of the solar cell. ZnO can be tuned to absorb the infrared part of the sunlight and, at the same time, its emission coefficient for heat-radiation is nearly as low as that of optimized selective surfaces used in thermal collectors. The authors propose a collector structure with a high potential for the thermal conversion efficiency while maintaining a high electrical conversion efficiency.

  16. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    Discussed are acid rain control options available to the electric utility industry. They include coal switching, flue gas desulfurization, and such emerging lower cost technologies as Limestone Injection Multistage Burners (LIMB) and Advanced Silicate (ADVACATE), both developed ...

  17. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  18. Hybrid Vehicle Technologies and their potential for reducing oil use

    NASA Astrophysics Data System (ADS)

    German, John

    2006-04-01

    Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.

  19. Robust Cooling of High Heat Fluxes Using Hybrid Loop Technology

    NASA Astrophysics Data System (ADS)

    Zuo, Jon; Park, Chanwoo; Sarraf, David; Paris, Anthony

    2005-02-01

    This paper discusses the development of an advanced hybrid loop technology that incorporates elements from both passive and active loop technologies. The result is a simple yet high performance cooling technology that can be used to remove high heat fluxes from large heat input areas. Operating principles and test results of prototype hybrid loops are discussed. Prototype hybrid loops have been demonstrated to remove heat fluxes in excess of 350W/cm2 from heat input areas over 4cm2 with evaporator thermal resistances between 0.008 and 0.065°C/W/cm2. Also importantly, this performance was achieved without the need to actively adjust or control the flows in the loops, even when the heat inputs varied between 0 and 350W/cm2. These performance characteristics represent substantial improvements over state of the art heat pipes, loop heat pipes and spray cooling devices. The hybrid loop technology was demonstrated to operate effectively at all orientations.

  20. Introducing the First Hybrid Doctoral Program in Educational Technology

    ERIC Educational Resources Information Center

    Koehler, Matthew J.; Zellner, Andrea L.; Roseth, Cary J.; Dickson, Robin K.; Dickson, W. Patrick; Bell, John

    2013-01-01

    In 2010 Michigan State University launched the first hybrid doctoral program in Educational Technology. This 5-year program blends face-to-face and online components to engage experienced, working education professionals in doctoral study. In this paper, we describe the design and evolution of the program as well as the response from students. We…

  1. Hybrid fuel formulation and technology development

    NASA Technical Reports Server (NTRS)

    Dean, D. L.

    1995-01-01

    The objective was to develop an improved hybrid fuel with higher regression rate, a regression rate expression exponent close to 0.5, lower cost, and higher density. The approach was to formulate candidate fuels based on promising concepts, perform thermomechanical analyses to select the most promising candidates, develop laboratory processes to fabricate fuel grains as needed, fabricate fuel grains and test in a small lab-scale motor, select the best candidate, and then scale up and validate performance in a 2500 lbf scale, 11-inch diameter motor. The characteristics of a high performance fuel have been verified in 11-inch motor testing. The advanced fuel exhibits a 15% increase in density over an all hydrocarbon formulation accompanied by a 50% increase in regression rate, which when multiplied by the increase in density yields a 70% increase in fuel mass flow rate; has a significantly lower oxidizer-to-fuel (O/F) ratio requirement at 1.5; has a significantly decreased axial regression rate variation making for more uniform propellant flow throughout motor operation; is very clean burning; extinguishes cleanly and quickly; and burns with a high combustion efficiency.

  2. Flexible Hybrid Friction Stir Joining Technology

    SciTech Connect

    2008-12-01

    This factsheet describes a research project whose goal is to advance the friction stir welding (FSW) process as a manufacturing technology that can be deployed for on-site construction of large, complex and typically thick-sectioned structures made of high performance and high-temperature materials. This would transform FSW from a specialty joining process into one with pervasive application potential across a number of industrial sectors where the payoff of energy reduction, environmental and economic benefits would be significant.

  3. Bipolar lead-acid battery for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Saakes, M.; Woortmeijer, R.; Schmal, D.

    Within the framework of the European project bipolar lead-acid power source (BILAPS), a new production route is being developed for the bipolar lead-acid battery. The performance targets are 500 W kg -1, 30 Wh kg -1 and 100 000 power-assist life cycles (PALCs). The operation voltage of the battery can be, according to the requirements, 12, 36 V or any other voltage. Tests with recently developed 4 and 12 V prototypes, each of 30 Ah capacity have demonstrated that the PALC can be operated using 10 C discharge and 9 C charge peaks. The tests show no overvoltage or undervoltage problems during three successive test periods of 16 h with 8 h rest in between. The temperature stabilizes during these tests at 40-45 °C using a thermal-management system. The bipolar lead acid battery is operated at an initial 50% state-of-charge. During the tests, the individual cell voltages display only very small differences. Tests are now in progress to improve further the battery-management system, which has been developed at the cell level, during the period no PALCs are run in order to improve the hybrid behaviour of the battery. The successful tests show the feasibility of operating the bipolar lead-acid battery in a hybrid mode. The costs of the system are estimated to be much lower than those for nickel-metal-hydride or Li-ion based high-power systems. An additional advantage of the lead-acid system is that recycling of lead-acid batteries is well established.

  4. Nonenzymatic catalytic signal amplification for nucleic acid hybridization assays

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2006-01-01

    Devices, methods, and kits for amplifying the signal from hybridization reactions between nucleic acid probes and their cognate targets are presented. The devices provide partially-duplexed, immobilized probe complexes, spatially separate from and separately addressable from immobilized docking strands. Cognate target acts catalytically to transfer probe from the site of probe complex immobilization to the site of immobilized docking strand, generating a detectable signal. The methods and kits of the present invention may be used to identify the presence of cognate target in a fluid sample.

  5. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  6. Hybrid propulsion technology program. Volume 1: Conceptional design package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  7. Hybrid propulsion technology program: Phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Schuler, A. L.; Wiley, D. R.

    1989-01-01

    The program objectives of developing hybrid propulsion technology (HPT) to enable its application for manned and unmanned high thrust, high performance space launch vehicles are examined. The studies indicate that the hybrid propulsion (HP) is very attractive, especially when applied to large boosters for programs such as the Advanced Launch System (ALS) and the second generation Space Shuttle. Some of the advantages of HP are identified. Space launch vehicles using HP are less costly than those flying today because their propellant and insulation costs are much less and there are fewer operational restraints due to reduced safety requirements. Boosters using HP have safety features that are highly desirable, particularly for manned flights. HP systems will have a clean exhaust and high performance. Boosters using HP readily integrate with launch vehicles and their launch operations, because they are very compact for the amount of energy contained. Hybrid propulsion will increase the probability of mission success. In order to properly develop the technologies of HP, preliminary HP concepts are evaluated. System analyses and trade studies were performed to identify technologies applicable to HP.

  8. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    The paper discusses technological options for acid rain control. Compliance with Title IV of the Clean Air Act Amendments of 1990 will require careful scrutiny of a number of issues before selecting control options to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions...

  9. BNL Citric Acid Technology: Pilot Scale Demonstration

    SciTech Connect

    FRANCIS, A J; DODGE,; J, C; GILLOW, J B; FORRESTER, K E

    1999-09-24

    The objective of this project is to remove toxic metals such as lead and cadmium from incinerator ash using the Citric Acid Process developed at Brookhaven National Laboratory. In this process toxic metals in bottom ash from the incineration of municipal solid waste were first extracted with citric acid followed by biodegradation of the citric acid-metal extract by the bacterium Pseudomonas fluorescens for metals recovery. The ash contained the following metals: Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, Sr, Ti, and Zn. Optimization of the Citric Acid Process parameters which included citric acid molarity, contact time, the impact of mixing aggressiveness during extraction and pretreatment showed lead and cadmium removal from incinerator ash of >90%. Seeding the treated ash with P. fluorescens resulted in the removal of residual citric acid and biostabilization of any leachable lead, thus allowing it to pass EPA?s Toxicity Characteristic Leaching Procedure. Biodegradation of the citric acid extract removed >99% of the lead from the extract as well as other metals such as Al, Ca, Cu, Fe, Mg, Mn, Ti, and Zn. Speciation of the bioprecipitated lead by Extended X-ray Absorption Fine Structure at the National Synchrotron Light Source showed that the lead is predominantly associated with the phosphate and carboxyl functional groups in a stable form. Citric acid was completely recovered (>99%) from the extract by sulfide precipitation technique and the extraction efficiency of recovered citric acid is similar to that of the fresh citric acid. Recycling of the citric acid should result in considerable savings in the overall treatment cost. We have shown the potential application of this technology to remove and recover the metal contaminants from incinerator ash as well as from other heavy metal bearing wastes (i.e., electric arc furnace dust from steel industry) or soils. Information developed from this project is being applied to demonstrate the remediation of

  10. Internalization of Locked Nucleic Acids/DNA Hybrid Oligomers into Escherichia coli.

    PubMed

    Traglia, German M; Sala, Carol Davies; Fuxman Bass, Juan I; Soler-Bistué, Alfonso J C; Zorreguieta, Angeles; Ramírez, María Soledad; Tolmasky, Marcelo E

    2012-10-01

    Delivery inside the cells is essential for practical application of antisense technologies. The hybrid locked nucleic acid (LNA)/DNA CAAGTACTGTTCCACCA (LNA residues are underlined) was labeled by conjugation to Alexa Fluor 488 (fLNA/DNA) and tested to determine its ability to penetrate Escherichia coli cells and reach the cytoplasm. Flow cytometry analysis showed that the fLNA/DNA was associated with 14% of cells from a stationary phase culture, while association with a labeled isosequential oligodeoxynucleotide was negligible. Laser scanning confocal microscopy confirmed that the fLNA/DNA was located inside the cytoplasm. PMID:23515318

  11. Effect of Backbone Design on Hybridization Thermodynamics of Oligo-nucleic Acids: A Coarse-Grained Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Ghobadi, Ahmadreza F.; Jayaraman, Arthi

    DNA hybridization is the basis of various bio-nano technologies, such as DNA origami and assembly of DNA-functionalized nanoparticles. A hybridized double stranded (ds) DNA is formed when complementary nucleobases on hybridizing strands exhibit specific and directional hydrogen bonds through canonical Watson-Crick base-pairing interactions. In recent years, the need for cheaper alternatives and significant synthetic advances have driven design of DNA mimics with new backbone chemistries. However, a fundamental understanding of how these backbone modifications in the oligo-nucleic acids impact the hybridization and melting behavior of the duplex is still lacking. In this talk, we present our recent findings on impact of varying backbone chemistry on hybridization of oligo-nucleic acid duplexes. We use coarse-grained molecular dynamics simulations to isolate the effect of strand flexibility, electrostatic interactions and nucleobase spacing on the melting curves for duplexes with various strand sequences and concentrations. Since conjugation of oligo-nucleic acids with polymers serve as building blocks for thermo-responsive polymer networks and gels, we also present the effect of such conjugation on hybridization thermodynamics and polymer conformation.

  12. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1997-01-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided.

  13. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1997-04-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided. 7 figs.

  14. "Inosaminoacids": novel inositol-amino acid hybrid structures accessed by microbial arene oxidation.

    PubMed

    Pilgrim, Sarah; Kociok-Köhn, Gabriele; Lloyd, Matthew D; Lewis, Simon E

    2011-04-28

    Microbial 1,2-dihydroxylation of sodium benzoate permits the rapid construction of novel inositol-amino acid hybrid structures. Both β- and γ-amino acids are accessible by means of an acylnitroso Diels-Alder cycloaddition. PMID:21409268

  15. Creatinyl amino acids: new hybrid compounds with neuroprotective activity.

    PubMed

    Burov, Sergey; Leko, Maria; Dorosh, Marina; Dobrodumov, Anatoliy; Veselkina, Olga

    2011-09-01

    Prolonged oral creatine administration resulted in remarkable neuroprotection in experimental models of brain stroke. However, because of its polar nature creatine has poor ability to penetrate the blood-brain barrier (BBB) without specific creatine transporter (CRT). Thus, synthesis of hydrophobic derivatives capable of crossing the BBB by alternative pathway is of great importance for the treatment of acute and chronic neurological diseases including stroke, traumatic brain injury and hereditary CRT deficiency. Here we describe synthesis of new hybrid compounds-creatinyl amino acids, their neuroprotective activity in vivo and stability to degradation in different media. The title compounds were synthesized by guanidinylation of corresponding sarcosyl peptides or direct creatine attachment using isobutyl chloroformate method. Addition of lipophilic counterion (p-toluenesulfonate) ensures efficient creatine dissolution in DMF with simultaneous protection of guanidino group towards intramolecular cyclization. It excludes the application of expensive guanidinylating reagents, permits to simplify synthetic procedure and adapt it to large-scale production. The biological activity of creatinyl amino acids was tested in vivo on ischemic stroke and NaNO(2) -induced hypoxia models. One of the most effective compounds-creatinyl-glycine ethyl ester increases life span of experimental animals more than two times in hypoxia model and has neuroprotective action in brain stroke model when applied both before and after ischemia. These data evidenced that creatinyl amino acids can represent promising candidates for the development of new drugs useful in stroke treatment. PMID:21644247

  16. A Storable, Hybrid Mars Ascent Vehicle Technology Demonstrator for the 2020 Launch Opportunity

    NASA Astrophysics Data System (ADS)

    Chandler, A. A.; Karabeyoglu, M. A.; Cantwell, B. J.; Reeve, R.; Goldstein, B. G.; Hubbard, G. S.

    2012-06-01

    A Phoenix sized mission including a reduced payload, two-stage, hybrid Mars Ascent Vehicle technology demonstrator is proposed for the 2020 opportunity. The hybrid MAV is storable on Mars and would retire risk for a Mars Sample Return campaign.

  17. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  18. Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Duffy, Kirsten P.; Provenza, Andrew J.; Loyselle, Patricia L.; Choi, Benjamin B.; Morrison, Carlos R.; Lowe, Angela M.

    2015-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years.

  19. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  20. Adenovirus Type 2-Simian Virus 40 Hybrid Population: Evidence for a Hybrid Deoxyribonucleic Acid Molecule and the Absence of Adenovirus-Encapsidated Circular Simian Virus 40 Deoxyribonucleic Acid

    PubMed Central

    Crumpacker, Clyde S.; Levin, Myron J.; Wiese, William H.; Lewis, Andrew M.; Rowe, Wallace P.

    1970-01-01

    The deoxyribonucleic acid (DNA) from the adenovirus-encapsidated particles of the adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid population plaque variant (Ad2++ HEY), known to yield SV40 virus with high efficiency, was studied by equilibrium density centrifugation followed by ribonucleic acid-DNA hybridization employing virus-specific complementary ribonucleic acids synthesized in vitro. These techniques establish linkage between the Ad2 and SV40 components in the adenovirus-encapsidated particles of this population. The linkage is alkali-resistant and presumably covalent; thus, the Ad2 DNA and SV40 DNA are present in a hybrid molecule. Velocity centrifugation studies in alkaline sucrose gradients eliminated the possibility that supercoiled circular SV40 DNA is present in the adenovirus capsids. The DNA obtained from the adenovirus-encapsidated particles of the Ad2++ HEY population appears to consist of nonhybrid Ad2 DNA and Ad2-SV40 hybrid DNA molecules. PMID:4322081

  1. Polymer waveguide based hybrid opto-electric integration technology

    NASA Astrophysics Data System (ADS)

    Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin

    2014-10-01

    While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.

  2. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  3. COMPARISON OF COMPARATIVE GENOMIC HYBRIDIZATIONS TECHNOLOGIES ACROSS MICROARRAY PLATFORMS

    EPA Science Inventory

    Comparative Genomic Hybridization (CGH) measures DNA copy number differences between a reference genome and a test genome. The DNA samples are differentially labeled and hybridized to an immobilized substrate. In early CGH experiments, the DNA targets were hybridized to metaphase...

  4. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology.

    PubMed

    Shim, Jin-Hyung; Kim, Jong Young; Park, Min; Park, Jaesung; Cho, Dong-Woo

    2011-09-01

    Natural biomaterials such as hyaluronic acid, gelatin and collagen provide excellent environments for tissue regeneration. Furthermore, gel-state natural biomaterials are advantageous for encapsulating cells and growth factors. In cell printing technology, hydrogel which contains cells was printed directly to form three-dimensional (3D) structures for tissue or organ regeneration using various types of printers. However, maintaining the 3D shape of the printed structure, which is made only of the hydrogel, is very difficult due to its weak mechanical properties. In this study, we developed a hybrid scaffold consisting of synthetic biomaterials and natural hydrogel using a multi-head deposition system, which is useful in solid freeform fabrication technology. The hydrogel was intentionally infused into the space between the lines of a synthetic biomaterial-based scaffold. The cellular efficacy of the hybrid scaffold was validated using rat primary hepatocytes and a mouse pre-osteoblast MC3T3-E1 cell line. In addition, the collagen hydrogel, which encapsulates cells, was dispensed and the viability of the cells observed. We demonstrated superior effects of the hybrid scaffold on cell adhesion and proliferation and showed the high viability of dispensed cells. PMID:21725147

  5. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  6. Multiobjective optimization of hybrid regenerative life support technologies. Topic D: Technology Assessment

    NASA Technical Reports Server (NTRS)

    Manousiouthakis, Vasilios

    1995-01-01

    We developed simple mathematical models for many of the technologies constituting the water reclamation system in a space station. These models were employed for subsystem optimization and for the evaluation of the performance of individual water reclamation technologies, by quantifying their operational 'cost' as a linear function of weight, volume, and power consumption. Then we performed preliminary investigations on the performance improvements attainable by simple hybrid systems involving parallel combinations of technologies. We are developing a software tool for synthesizing a hybrid water recovery system (WRS) for long term space missions. As conceptual framework, we are employing the state space approach. Given a number of available technologies and the mission specifications, the state space approach would help design flowsheets featuring optimal process configurations, including those that feature stream connections in parallel, series, or recycles. We visualize this software tool to function as follows: given the mission duration, the crew size, water quality specifications, and the cost coefficients, the software will synthesize a water recovery system for the space station. It should require minimal user intervention. The following tasks need to be solved for achieving this goal: (1) formulate a problem statement that will be used to evaluate the advantages of a hybrid WRS over a single technology WBS; (2) model several WRS technologies that can be employed in the space station; (3) propose a recycling network design methodology (since the WRS synthesis task is a recycling network design problem, it is essential to employ a systematic method in synthesizing this network); (4) develop a software implementation for this design methodology, design a hybrid system using this software, and compare the resulting WRS with a base-case WRS; and (5) create a user-friendly interface for this software tool.

  7. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids.

    PubMed

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  8. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids

    PubMed Central

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  9. Hybrid propulsion technology program: Phase 1, volume 1

    NASA Technical Reports Server (NTRS)

    Schuler, A. L.; Wiley, D. R.

    1989-01-01

    A number of booster propulsion system concepts are being considered for the next generation of manned and unmanned space launch vehicles. The one propulsion system concept that has potential for reducing costs with increased safety, reliability, and performance is hybrid propulsion (HP). A HP system may be thought of as a liquid propulsion system with solid fuel or a solid propulsion system with a liquid oxidizer. The liquid propulsion features that are most attractive are the higher specific impulse, clean exhaust, separated propellants, and oxidizer loading just prior to launch. The most attractive solid propulsion features includes low life cycle costs, no rotating machinery, compact size, and a robust case. In addition, a HP system has a robust LO2 tank; provides thrust control for ignition, to alleviate flight loads, and for thrust termination; and uses an inert grain that is not sensitive to anomalies such as cracks, voids, and separations. The object is to develop the technology to enable the application of HP to manned and unmanned space launch vehicles. This program will identify the necessary technology, acquire that technology, and demonstrate that technology. This volume is the executive summary.

  10. Gibberellic Acid-induced Phase Change in Hedera helix as Studied by Deoxyribonucleic Acid-Ribonucleic Acid Hybridization 1

    PubMed Central

    Rogler, Charles E.; Dahmus, Michael E.

    1974-01-01

    Applications of gibberellic acid to the mature form of Hedera helix induce morphological reversions to the juvenile form of growth. The juvenile forms produced are stable with time and differ dramatically from the mature in phenotype. DNA-RNA hybridization techniques have been used to study the RNA populations of juvenile, mature and gibberellic acid-treated mature apices. Hybridization competition experiments using RNA extracted by a hot phenol technique and uniformly labeled in vitro with 3H dimethylsulfate show no qualitative differences between the species of RNA present in juvenile and mature apices. However, differences are observed in the frequency distribution of RNA species using both uniformly labeled or pulse-labeled RNA as a reference. RNA extracted from gibberellic acid-treated mature buds was a less effective competitor than control mature RNA and the difference observed was comparable to that observed between mature and juvenile RNA. These results indicate that at least part of the molecular basis of phase change and gibberellic acid action may involve an alteration in the rate of transcription of certain genes in the apices of the mature form. RNA extracted using the hot phenol procedure contained a fraction of rapidly labeled RNA which was not extractable with cold phenol. When RNA extracted only with cold phenol was used in competition experiments sequences unique to the juvenile were detected and sequences unique to the mature were not detected. Implications of these results in relation to possible post-transcriptional control mechanisms are discussed. PMID:16658844

  11. Mfold web server for nucleic acid folding and hybridization prediction

    PubMed Central

    Zuker, Michael

    2003-01-01

    The abbreviated name, ‘mfold web server’, describes a number of closely related software applications available on the World Wide Web (WWW) for the prediction of the secondary structure of single stranded nucleic acids. The objective of this web server is to provide easy access to RNA and DNA folding and hybridization software to the scientific community at large. By making use of universally available web GUIs (Graphical User Interfaces), the server circumvents the problem of portability of this software. Detailed output, in the form of structure plots with or without reliability information, single strand frequency plots and ‘energy dot plots’, are available for the folding of single sequences. A variety of ‘bulk’ servers give less information, but in a shorter time and for up to hundreds of sequences at once. The portal for the mfold web server is http://www.bioinfo.rpi.edu/applications/mfold. This URL will be referred to as ‘MFOLDROOT’. PMID:12824337

  12. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm

    PubMed Central

    Öhrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas

    2010-01-01

    One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes. PMID:20864443

  13. Synthesis and Monolayer Behaviors of Novel Hybrid Corynomycolic Acids Containing Semifluoroalkyl Groups.

    PubMed

    Kawase, Tokuzo; Tamaki, Kazuki; Oida, Tatsuo

    2016-01-01

    In this work, novel hybrid-type corynomycolic acids [hybrid-OH and hybrid-COOH, with semifluoroalkyl groups (Rf-(CH2)n-: Rf = C4F9, n = 6 and Rf = C6F13, n = 3) located on the carbon atoms attached to the hydroxyl and carboxylic acid groups (C-OH and C-COOH), respectively] were successfully synthesized. The behaviors and formation of hybrid corynomycolic acid monolayers at the air-water interface were investigated by surface tension and surface pressure-area (π-A) measurements to clarify the effects of the Rf chain length, position of the semifluoroalkyl group, and surfactant molecule stereochemistry. Compared to dialkyl corynomycolic acid, both the critical micelle concentration (CMC) and the surface tension at the CMC (γCMC) of hybrid corynomycolic acids were reduced by the presence of the Rf group. With respect to the surface tension versus log concentration (γ vs. log C) isotherms, all syn-isomers of the hybrid-OH and hybrid-COOH acids showed two break points, while the anti-isomers showed only one break point. These different isotherms can be explained in terms of the steric repulsion between the two hydrophilic groups (OH and COO(-)), which depend on the stereochemistry of the surfactant. No effect of the location of the semifluoroalkyl group was observed. With respect to the formation of a monolayer film, four parameters-the lift-off area (AL), zero-pressure molecular area (A0), maximum of the Gibbs elastic modulus [EG (max)], and monolayer collapse pressure (πc)-were measured. Both AL and A0 of all hybrid corynomycolic acids were larger than the corresponding dialkyl acids due to the bulky and rigid Rf groups. Interestingly, syn- and anti-hybrids had almost identical isotherms on compression, although the values of πc of anti-hybrids were higher than those of syn-isomers. In addition, the values of EG (max) of hybrid-COOHs were slightly larger than those of the corresponding hybrid-OHs. Using the nascent soap method (agent-in-oil method), we found that

  14. Photodegradation and inhibition of drug-resistant influenza virus neuraminidase using anthraquinone-sialic acid hybrids.

    PubMed

    Aoki, Yusuke; Tanimoto, Shuho; Takahashi, Daisuke; Toshima, Kazunobu

    2013-02-11

    The anthraquinone-sialic acid hybrids designed effectively degraded not only non-drug-resistant neuraminidase but also drug-resistant neuraminidase, which is an important target of anti-influenza therapy. Degradation was achieved using long-wavelength UV radiation in the absence of any additives and under neutral conditions. Moreover, the hybrids efficiently inhibited neuraminidase activities upon photo-irradiation. PMID:23282898

  15. Catalytic performance of hybrid nanocatalyst for levulinic acid production from glucose

    NASA Astrophysics Data System (ADS)

    Ya'aini, Nazlina; Amin, Nor Aishah Saidina

    2012-11-01

    Levulinic acid is one of the potential and versatile biomass-derived chemicals. Product analysis via HPLC revealed that the heterogeneous dehydration of glucose over hybrid nanocatalyst exhibited better performance compared to single catalyst. Hybrid nanocatalyst containing H-Y zeolite and CrCl3 could substitute homogenous acid catalyst for attaining high levulinic acid yield. Different CrC3 and H-Y zeolite weight ratios of 1:1, 1:2 and 2:1 were prepared according to the wetness impregnation method. The hybrid catalyst with a 1:1 weight ratio performed better compared to others with the highest levulinic acid yield reported (93.5%) at 140 °C, 180 min reaction time, 0.1 g catalyst loading and 0.1 g glucose feed. Characterization results revealed that properties such as surface area, mesoporosity and acidic strength of the catalyst have significant effects on glucose dehydration for levulinic acid production.

  16. Phagocytosis of hybrid molecular nanosomal compositions containing oxidized dextrans conjugated with isonicotinic acid hydrazide by macrophages.

    PubMed

    Shkurupy, V A; Arkhipov, S A; Troitsky, A V; Luzgina, N G; Zaikovskaja, M V; Ufimceva, E G; Iljine, D A; Akhramenko, E S; Gulyaeva, E P; Bistrova, T N

    2009-12-01

    We studied phagocytic activity of macrophages towards hybrid molecular nanosomal compositions consisting of 150-800-nm nanoliposomes containing oxidized dextrans with a molecular weight of 35 and 60 kDa obtained by chemical ("permanganate") and radiochemical oxidation of dextran conjugated with isonicotinic acid hydrazide (dextrazides, intracellular prolonged antituberculous drugs). Phagocytic activity of macrophages towards hybrid molecular nanosomal compositions containing dextrazides obtained by chemical oxidation of dextrans is higher than activity towards hybrid molecular nanosomal compositions containing dextrazides prepared by radiochemical oxidation and depends on the size of hybrid molecular nanosomal compositions and molecular weight of oxidized dextrans. PMID:21116494

  17. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.

    PubMed

    Ya'aini, Nazlina; Amin, Nor Aishah Saidina; Asmadi, Mohd

    2012-07-01

    Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid. PMID:22609656

  18. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    SciTech Connect

    Miyasato, Matt; Impllitti, Joseph; Pascal, Amar

    2015-07-31

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce these negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of all

  19. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  20. Nucleic acid hybridization with RNA immobilized on filter paper.

    NASA Technical Reports Server (NTRS)

    Saxinger, W. C.; Ponnamperuma, C.; Gillespie, D.

    1972-01-01

    RNA has been immobilized in a manner suitable for use in molecular hybridization experiments with dissolved RNA or DNA by a nonaqueous solid-phase reaction with carbonyldiimidazole and RNA 'dry coated' on cellulose or, preferably, on previously activated phosphocellulose filters. Immobilization of RNA does not appear to alter its chemical character or cause it to acquire affinity for unspecific RNA or DNA. The versatility and efficiency of this method make it potentially attractive for use in routine analytical or preparative hybridization experiments, among other applications.

  1. 40 CFR 1037.615 - Hybrid vehicles and other advanced technologies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Hybrid vehicles and other advanced technologies. 1037.615 Section 1037.615 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance Provisions § 1037.615 Hybrid vehicles...

  2. 40 CFR 1037.615 - Hybrid vehicles and other advanced technologies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Hybrid vehicles and other advanced technologies. 1037.615 Section 1037.615 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance Provisions § 1037.615 Hybrid vehicles...

  3. 40 CFR 1037.615 - Hybrid vehicles and other advanced technologies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Hybrid vehicles and other advanced technologies. 1037.615 Section 1037.615 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance Provisions § 1037.615 Hybrid vehicles...

  4. Novel multiterabit optical router based on hybrid switching technologies

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zeng, QingJi; Ouyang, Yong; Liu, Jimin; Luo, Xuan; Huang, Xuejun

    2002-07-01

    Internet backbone network is undergoing a large-scale transformation from the current complex, static and multi-layer electronic-based architecture to the emerging simplified, and dynamic and one-layer photonic-based architecture. The explosive growth in the Internet, multi-media services, and IP router links are demanding the next generation Internet that can accommodate the entire traffic in a cost-effective manner. There is a consensus in current industries that IP over WDM integration technologies will be viable for the next generation of the optical Internet where the simplified flat network architecture can facilitate the networking performance and the networking management. In this paper, we firstly propose a novel node architecture-Terabit Optical Router (TOR) for building the next generation optical Internet and analyses each key function unit of TOR including multi-granularity electrical-optical hybrid switching fabrics, unified control plane unit and so on. Secondly, we give the unified routing definition of multi-layer in TOR and present control plane software structure with emphasis on multi-layer routing issues. Thirdly we describe our cost vs. performance analysis for various application of TOR. According to our calculation, we can get a cost reduction of more than 60 percent by using the TOR. Finally, we reach conclusions that TORs rather than OBS/OPS-based optical routers or big fat router, a cost effective multi-granularity switching and routing technique, are feasible to build the next generation Internet in the coming 5-10 years.

  5. Design and Synthesis of Novel Isoxazole Tethered Quinone-Amino Acid Hybrids

    PubMed Central

    Ravi Kumar, P.; Sambaiah, M.; Kandula, Venu; Payili, Nagaraju; Jaya Shree, A.; Yennam, Satyanarayana

    2014-01-01

    A new series of isoxazole tethered quinone-amino acid hybrids has been designed and synthesized involving 1,3-dipolar cycloaddition reaction followed by an oxidation reaction using cerium ammonium nitrate (CAN). Using this method, for the first time various isoxazole tethered quinone-phenyl alanine and quinone-alanine hybrids were synthesized from simple commercially available 4-bromobenzyl bromide, propargyl bromide, and 2,5-dimethoxybenzaldehyde in good yield. PMID:25709839

  6. Electric and hybrid electric vehicle technologies. Quarterly report, 1 April--30 June 1998

    SciTech Connect

    1998-06-30

    This document contains a quarterly report on various aspects of research and testing being conducted concerning electric and hybrid electric vehicles technologies under cooperative agreement MDA972-93-1-0027.

  7. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism.

    PubMed

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  8. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism

    PubMed Central

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  9. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    NASA Astrophysics Data System (ADS)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  10. Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth.

    PubMed

    Prochaska, Krystyna; Staszak, Katarzyna; Woźniak-Budych, Marta Joanna; Regel-Rosocka, Magdalena; Adamczak, Michalina; Wiśniewski, Maciej; Staniewski, Jacek

    2014-09-01

    A novel approach based on a hybrid system allowing nanofiltration, bipolar electrodialysis and reactive extraction, was proposed to remove fumaric acid from fermentation broth left after bioconversion of glycerol. The fumaric salts can be concentrated in the nanofiltration process to a high yield (80-95% depending on pressure), fumaric acid can be selectively separated from other fermentation components, as well as sodium fumarate can be conversed into the acid form in bipolar electrodialysis process (stack consists of bipolar and anion-exchange membranes). Reactive extraction with quaternary ammonium chloride (Aliquat 336) or alkylphosphine oxides (Cyanex 923) solutions (yield between 60% and 98%) was applied as the final step for fumaric acid recovery from aqueous streams after the membrane techniques. The hybrid system permitting nanofiltration, bipolar electrodialysis and reactive extraction was found effective for recovery of fumaric acid from the fermentation broth. PMID:24983693

  11. Sequence-specific purification of nucleic acids by PNA-controlled hybrid selection.

    PubMed

    Orum, H; Nielsen, P E; Jørgensen, M; Larsson, C; Stanley, C; Koch, T

    1995-09-01

    Using an oligohistidine peptide nucleic acids (oligohistidine-PNA) chimera, we have developed a rapid hybrid selection method that allows efficient, sequence-specific purification of a target nucleic acid. The method exploits two fundamental features of PNA. First, that PNA binds with high affinity and specificity to its complementary nucleic acid. Second, that amino acids are easily attached to the PNA oligomer during synthesis. We show that a (His)6-PNA chimera exhibits strong binding to chelated Ni2+ ions without compromising its native PNA hybridization properties. We further show that these characteristics allow the (His)6-PNA/DNA complex to be purified by the well-established method of metal ion affinity chromatography using a Ni(2+)-NTA (nitrilotriactic acid) resin. Specificity and efficiency are the touchstones of any nucleic acid purification scheme. We show that the specificity of the (His)6-PNA selection approach is such that oligonucleotides differing by only a single nucleotide can be selectively purified. We also show that large RNAs (2224 nucleotides) can be captured with high efficiency by using multiple (His)6-PNA probes. PNA can hybridize to nucleic acids in low-salt concentrations that destabilize native nucleic acid structures. We demonstrate that this property of PNA can be utilized to purify an oligonucleotide in which the target sequence forms part of an intramolecular stem/loop structure. PMID:7495562

  12. Hybrid propulsion technology program: Phase 1, volume 4

    NASA Technical Reports Server (NTRS)

    Claflin, S. E.; Beckman, A. W.

    1989-01-01

    The use of a liquid oxidizer-solid fuel hybrid propellant combination in booster rocket motors appears extremely attractive due to the integration of the best features of liquid and solid propulsion systems. The hybrid rocket combines the high performance, clean exhaust, and safety of liquid propellant engines with the low cost and simplicity of solid propellant motors. Additionally, the hybrid rocket has unique advantages such as an inert fuel grain and a relative insensitivity to fuel grain and oxidizer injection anomalies. The advantages mark the hybrid rocket as a potential replacement or alternative for current and future solid propellant booster systems. The issues are addressed and recommendations are made concerning oxidizer feed systems, injectors, and ignition systems as related to hybrid rocket propulsion. Early in the program a baseline hybrid configuration was established in which liquid oxygen would be injected through ports in a solid fuel whose composition is based on hydroxyl terminated polybutadiene (HTPB). Liquid oxygen remained the recommended oxidizer and thus all of the injector concepts which were evaluated assumed only liquid would be used as the oxidizer.

  13. ADVANCES IN CONTROL TECHNOLOGY FOR ACID DEPOSITION

    EPA Science Inventory

    Causes and effects of acid deposition are the subject of widespread discussion both in the U.S. and Europe. Two major concerns are the acidification of lakes and streams, and forest damage. The proposed mechanism for acidification of lakes and streams is the deposition of acidic ...

  14. Studies towards the development of chemically synthesized non-radioactive biotinylated nucleic acid hybridization probes.

    PubMed Central

    Al-Hakim, A H; Hull, R

    1986-01-01

    Non-radioactive nucleic acid hybridization probes have been constructed in which the reporter group is long chain biotin chemically linked to a basic macromolecule (histone H1, cytochrome C or polyethyleneimine). The modified basic macromolecule which carries many biotin residues can, in turn, be covalently linked to nucleic acids (DNA) via the bifunctional cross-linking reagents, glutaraldehyde, 1,2,7,8-diepoxyoctane, bis (succinimidyl) suberate or bis (sulfonosuccinimidyl) suberate. This provides a very sensitive probe by which as little as between 10-50fg of target DNA can be visualized using dot-blot hybridization procedures in conjunction with avidin or streptavidin enzyme conjugates. PMID:3027670

  15. Bioactivity in silica/poly(γ-glutamic acid) sol-gel hybrids through calcium chelation.

    PubMed

    Valliant, Esther M; Romer, Frederik; Wang, Daming; McPhail, David S; Smith, Mark E; Hanna, John V; Jones, Julian R

    2013-08-01

    Bioactive glasses and inorganic/organic hybrids have great potential as biomedical implant materials. Sol-gel hybrids with interpenetrating networks of silica and biodegradable polymers can combine the bioactive properties of a glass with the toughness of a polymer. However, traditional calcium sources such as calcium nitrate and calcium chloride are unsuitable for hybrids. In this study calcium was incorporated by chelation to the polymer component. The calcium salt form of poly(γ-glutamic acid) (γCaPGA) was synthesized for use as both a calcium source and as the biodegradable toughening component of the hybrids. Hybrids of 40wt.% γCaPGA were successfully formed and had fine scale integration of Ca and Si ions, according to secondary ion mass spectrometry imaging, indicating a homogeneous distribution of organic and inorganic components. (29)Si magic angle spinning nuclear magnetic resonance data demonstrated that the network connectivity was unaltered with changing polymer molecular weight, as there was no perturbation to the overall Si speciation and silica network formation. Upon immersion in simulated body fluid a hydroxycarbonate apatite surface layer formed on the hybrids within 1week. The polymer molecular weight (Mw 30-120kDa) affected the mechanical properties of the resulting hybrids, but all hybrids had large strains to failure, >26%, and compressive strengths, in excess of 300MPa. The large strain to failure values showed that γCaPGA hybrids exhibited non-brittle behaviour whilst also incorporating calcium. Thus calcium incorporation by chelation to the polymer component is justified as a novel approach in hybrids for biomedical materials. PMID:23632373

  16. Potential of hybrid sensing technology to monitor soil ecosystems

    NASA Astrophysics Data System (ADS)

    De Cesare, Fabrizio; Macagnano, Antonella

    2013-04-01

    To study and monitor environments, a plethora of sensors in last decades have been proposed and claimed to be as the most specific, sensitive, reliable, durable, affordable or whatever. However, they rarely take into account probable interactions of compounds of interest with other substances (i.e. molecules, matrices, surfaces, etc.) occurring in the environments where the analytes are present (although some corrections due to a few interfering compounds have been sometimes carried out), then, generating misinterpretations of results (e.g. overestimation or underestimation) or incorrect evaluation of effects (e.g. about toxicity and disease diagnoses). Another quite rare evaluation in the detection of analytes in environments concerns the partition of substances of interest into different phases, as well as adsorption/desorption and absorption/release events, thus often leading to misinterpretations of results. That issue is of outmost importance in complex multiphasic environments, such as soil, where these phenomena commonly occur. An improvement in sensor applications to environmental monitoring, as concerns the competition and interference of other compounds in measurements, has been the development of electronic noses. The electronic nose (E-nose) is a sensing technology, where the presence of arrays of several suitable but unspecific sensors for volatiles and gases can deal with this problem, since the different features of sensors, despite overlapping responses to different compounds, are then evaluated in post-measurement data processing analyses (namely multivariate analyses) and integrated into a chemical image reproducing the fingerprint of the sample headspace or atmosphere (i.e. the odour), such as occurs in the olfactory system of mammalians. E-noses in the last decade have been extensively used to monitor volatile and gaseous analytes and odours in several contexts and environments. In the last 5 years, a very few groups have applied this technology

  17. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review.

    PubMed

    Milchert, Eugeniusz; Malarczyk, Kornelia; Kłos, Marlena

    2015-01-01

    The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained. PMID:26633342

  18. Photoluminescence and quantum yields of organic/inorganic hybrids prepared through formic acid solvolysis

    NASA Astrophysics Data System (ADS)

    Fu, Lianshe; Sá Ferreira, R. A.; Fernandes, M.; Nunes, S. C.; de Zea Bermudez, V.; Hungerford, Graham; Rocha, J.; Carlos, L. D.

    2008-03-01

    Three undoped di-urea cross-linked poly(oxyethylene) (POE)/siloxane hybrid matrices, classed as di-ureasils, incorporating POE segments with different lengths were prepared through the carboxylic acid solvolysis sol-gel method using formic acid. The resulting hybrids were characterized by X-ray diffraction, Fourier transform mid-infrared spectroscopy, 29Si and cross-polarization 13C magic-angle spinning nuclear magnetic resonance and photoluminescence spectroscopy. The hybrids' structure is essentially independent of the polymer chain length and the materials are room temperature white-light emitters with emission quantum yields of ˜10 ± 1% and lifetime average values between 2 and 4 ns. For the di-ureasil host with short polymer chains the solvolysis method favours the increase of the PL quantum yields relatively to conventional sol-gel route.

  19. Hybrid Literacy Texts and Practices in Technology-Intensive Environments

    ERIC Educational Resources Information Center

    Ware, Paige D.; Warschauer, Mark

    2005-01-01

    US youths' lives are increasingly divided between the academic requirements of school and immersion in new media and culture outside school. Educators can help bridge in-school and out-of-school literacy practices by encouraging students to engage with hybrid texts that draw on multiple modes of representation. In this paper, we analyze the…

  20. 275/sup 0/C thick-film hybrid microcircuitry fabrication technology

    SciTech Connect

    Bonn, P.A.; Palmer, D.W.

    1980-07-01

    High-temperature electronics is needed for geothermal well-logging tools, jet engine monitors, nuclear reactor instruments, and fossil fuel exploration and production systems. The step-by-step fabrication technology of thick-film hybrids useful for at least 1000 hours at 275/sup 0/C is described. Hybrid technology, qualified to standard military specifications, was modified both in materials and fabrication processes to achieve this high-temperature operation. In addition to documenting this Sandia-developed technology, various alternate approaches are described to increase the versatility and applicability of these methods.

  1. Enantiomer separation of acidic chiral compounds on a quinine-silica/zirconia hybrid monolith by capillary electrochromatography.

    PubMed

    Tran, Le Ngoc; Park, Jung Hag

    2015-05-29

    A weak anion-exchanger chiral selector, quinine-incorporated silica/zirconia hybrid monolithic (QUI-S/ZHM) capillary column was prepared by sol-gel technology. The performance of the QUI-S/ZHM column was investigated for enantioresolution of a set of acidic chiral drugs and dinitrobenzoyl (DNB)-amino acids by capillary electrochromatography in aqueous organic mobile phases composed of acetonitrile (ACN) and triethylammonium acetate (TEAA) buffer. Effects of several parameters including the ACN content, concentration and pH of the mobile phase on the chiral separation were examined. Baseline resolutions of all the compounds were obtained in the mobile phase consisting of 70:30 ACN/TEAA (10mM, pH 6) under applied voltage of -10kV at 25°C within 20min. PMID:25892638

  2. MULTIPOLLUTANT MERCURY AND ACID GASES CONTROL TECHNOLOGY

    EPA Science Inventory

    Plans are to continue testing for acid gas, mercury and NOx removal on baseline CFB operation with lime slurry, then use modified lime hydrates and slurries, and modified calcium silicates as additives for enhanced mercury and SO2 removal. Also, data from a coal-fired utility b...

  3. Nucleic Acid Hybridization Studies within the Genus Cucurbita

    PubMed Central

    Goldberg, Robert B.; Bemis, William P.; Siegel, Albert

    1972-01-01

    The DNAs of Cucurbita species were examined by several methods. All Cucurbita DNAs have a similar CsCl isopycnic banding pattern consisting of a major band at 1.695 g/cc and a well separated satellite band at 1.707 g/cc. Compared to other plant and animal genera, Cucurbita species have a large genomic proportion of rDNA; this value ranging from 1.4% to 3.1%. The genomic proportion of rDNA was found not to be useful as a characteristic indicating degree of relatedness of the various Cucurbita species. However, Cucurbita DNAs can be distinguished by the extent to which their repetitive sequences cross-hybridize to each other and an assessment of species relationships can be made on this basis. PMID:17248582

  4. Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Turki, Thouraya; Othmani, Masseoud; Bantignies, Jean-Louis; Bouzouita, Khaled

    2014-01-01

    Hydroxyapatites were prepared in the presence of different amounts of phosphonoformic acid (PFA) via the hydrothermal method. The obtained powders were characterized through chemical analysis, XRD, IR, 31P MAS-NMR, TEM, and TG-TDA. The XRD showed that the PFA did not affect the apatite composition. Indeed, only a reduction of the crystallite size was noted. After grafting of PFA, the IR spectroscopy revealed the appearance of new bands belonging to HPO42- and carboxylate groups of the apatite and organic moiety, respectively. Moreover, the 31P MAS-NMR spectra exhibited a peak with a low intensity assigned to the terminal phosphonate group of the organic moiety in addition to that of the apatite. Based on these results, a reaction mechanism involving the surface hydroxyl groups (tbnd Casbnd OH) of the apatite and the carboxyl group of the acid was proposed.

  5. Hybrid metrology solution for 1X node technology

    NASA Astrophysics Data System (ADS)

    Vaid, Alok; Elia, Alexander; Kelling, Mark; Allgair, John; Hartig, Carsten; Ebersbach, Peter; McLellan, Erin; Sendelbach, Matthew; Saleh, Nedal; Rana, Narender; Kawada, Hiroki; Ikegami, Toru; Ikeno, Masahiko; Kawasaki, Takahiro; Bozdog, Cornel; Kim, Helen; Arnon, Elad; Koret, Roy; Turovets, Igor

    2012-03-01

    The accelerated pace of the semiconductor industry in recent years is putting a strain on existing dimensional metrology equipments (such as CDSEM, AFM, Scatterometry) to keep up with ever-increasing metrology challenges. However, a revolution appears to be forming with the recent advent of Hybrid Metrology (HM) - a practice of combining measurements from multiple equipment types in order to enable or improve measurement performance. In this paper we extend our previous work on HM to measure advanced 1X node layers - EUV and Negative Tone Develop (NTD) resist as well as 3D etch structures such as FinFETs. We study the issue of data quality and matching between toolsets involved in hybridization, and propose a unique optimization methodology to overcome these effects. We demonstrate measurement improvement for these advanced structures using HM by verifying the data with reference tools (AFM, XSEM, TEM). We also study enhanced OCD models for litho structures by modeling Line-edge roughness (LER) and validate its impact on profile accuracy. Finally, we investigate hybrid calibration of CDSEM to measure in-die resist line height by Pattern Top Roughness (PTR) methodology.

  6. F117-PW-100 hybrid ball bearing ceramic technology insertion

    SciTech Connect

    Miner, J.R.; Dell, J.; Galbato, A.T.; Ragen, M.A.

    1996-04-01

    Results of an Advanced Research Projects Agency (ARPA) sponsored project to demonstrate the operational benefits of incorporating advanced structural ceramic ball elements into the F117-PW-100 aircraft gas turbine engine high rotor thrust bearings is described. This program consists of design, fabrication, and experimental evaluation of candidate hybrid ball bearing designs in Pratt and Whitney and MRC Bearings test facilities. The bearing design criteria and development test conditions utilized for the project are compatible with the requirements of the F117-PW-100 engine system application. Two hybrid bearing designs were produced by analytically varying internal geometry features such as M-50 race curvatures and contact angles to optimize for the modulus of elasticity of the ceramic balls. CERBEC grade NBD 200 silicon nitride ceramic balls (1 1/8 in. size) demonstrated integrity and a quadruple rolling contact fatigue life improvement versus state-of-the-art M-50 steel balls in single ball test rigs. Thermal performance data obtained in full-scale bearing rig performance testing with 178 mm size hybrid and all-steel baseline bearings will be fabricated for full-scale bearing rig endurance tests to be conducted in 1995--1996 as a prerequisite to validation in operating F117-PW-100 engines in 1996--1997.

  7. Advanced bipolar lead-acid battery for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Saakes, Michel; Kleijnen, Christian; Schmal, Dick; ten Have, Peter

    A large size 80 V bipolar lead acid battery was constructed and tested successfully with a drive cycle especially developed for a HEV. The bipolar battery was made using the bipolar plate developed at TNO and an optimised paste developed by Centurion. An empirical model was derived for calculating the Ragone plot from the results from a small size 12 V bipolar lead-acid battery. This resulted in a specific power of 340 W/kg for the 80 V module. The Ragone plot was calculated at t=5 and t=10 s after the discharge started for current densities varying from 0.02 to 1.2 A/cm 2. A further development of the bipolar lead-acid battery will result in a specific power of 500 W/kg or more. From the economic analysis we estimate that the price of this high power battery will be in the order of 500 US$/kWh. This price is substantially lower than for comparable high power battery systems. This makes it an acceptable candidate future for HEV.

  8. Microfluidic platform for isolating nucleic acid targets using sequence specific hybridization

    PubMed Central

    Wang, Jingjing; Morabito, Kenneth; Tang, Jay X.; Tripathi, Anubhav

    2013-01-01

    The separation of target nucleic acid sequences from biological samples has emerged as a significant process in today's diagnostics and detection strategies. In addition to the possible clinical applications, the fundamental understanding of target and sequence specific hybridization on surface modified magnetic beads is of high value. In this paper, we describe a novel microfluidic platform that utilizes a mobile magnetic field in static microfluidic channels, where single stranded DNA (ssDNA) molecules are isolated via nucleic acid hybridization. We first established efficient isolation of biotinylated capture probe (BP) using streptavidin-coated magnetic beads. Subsequently, we investigated the hybridization of target ssDNA with BP bound to beads and explained these hybridization kinetics using a dual-species kinetic model. The number of hybridized target ssDNA molecules was determined to be about 6.5 times less than that of BP on the bead surface, due to steric hindrance effects. The hybridization of target ssDNA with non-complementary BP bound to bead was also examined, and non-specific hybridization was found to be insignificant. Finally, we demonstrated highly efficient capture and isolation of target ssDNA in the presence of non-target ssDNA, where as low as 1% target ssDNA can be detected from mixture. The microfluidic method described in this paper is significantly relevant and is broadly applicable, especially towards point-of-care biological diagnostic platforms that require binding and separation of known target biomolecules, such as RNA, ssDNA, or protein. PMID:24404041

  9. Technology reinvestment project`s focus area: Electric and hybrid tactical and commercial vehicles

    SciTech Connect

    1994-11-01

    The publication contains the transparencies from the Technology Reinvestment Projects`s (TRP`s) workshops held in Chicago, IL and Austin, TX in November, 1994. It includes general sessions on TRP, Technology Development, Regional Technology Alliances, and Manufacturing Education and Training, as well as the break out session on Electric and Hybrid Tactical and Commercial Vehicles. Also included are registration forms for both workshops.

  10. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    SciTech Connect

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  11. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  12. Hybrid bearing technology for advanced turbomachinery: Rolling contact fatigue testing

    SciTech Connect

    Dill, J.F.

    1996-01-01

    The purpose of this paper is to describe the basic structure and results to date of a major ARPA funded effort to provide a tribological performance database on ceramic bearing materials and their interaction with standard bearing steels. Program efforts include studies of material physical properties, machining characteristics, and tribological performance. The majority of the testing completed to date focuses on rolling contact fatigue testing of the ceramic materials, including efforts to arrive at optimum approaches to evaluating ceramic/steel hybrid combinations in rolling contact fatigue.

  13. Development of low cost custom hybrid microcircuit technology

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1981-01-01

    Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.

  14. Heteropoly Acid/Nitrogen Functionalized Onion-like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions.

    PubMed

    Liu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng

    2016-02-18

    A novel heteropoly acid (HPA)/nitrogen functionalized onion-like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and acid-base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity. PMID:26606266

  15. A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy.

    PubMed

    Kaderli, S; Boulocher, C; Pillet, E; Watrelot-Virieux, D; Rougemont, A L; Roger, T; Viguier, E; Gurny, R; Scapozza, L; Jordan, O

    2015-04-10

    A conventional therapy for the treatment of osteoarthrosis is intra-articular injection of hyaluronic acid, which requires repeated, frequent injections. To extend the viscosupplementation effect of hyaluronic acid, we propose to associate it with another biopolymer in the form of a hybrid hydrogel. Chitosan was chosen because of its structural similarity to synovial glycosaminoglycans, its anti-inflammatory effects and its ability to promote cartilage growth. To avoid polyelectrolyte aggregation and obtain transparent, homogeneous gels, chitosan was reacetylated to a 50% degree, and different salts and formulation buffers were investigated. The biocompatibility of the hybrid gels was tested in vitro on human arthrosic synoviocytes, and in vivo assessments were made 1 week after subcutaneous injection in rats and 1 month after intra-articular injection in rabbits. Hyaluronic acid-chitosan polyelectrolyte complexes were prevented by cationic complexation of the negative charges of hyaluronic acid. The different salts tested were found to alter the viscosity and thermal degradation of the gels. Good biocompatibility was observed in rats, although the calcium-containing formulation induced calcium deposits after 1 week. The sodium chloride formulation was further tested in rabbits and did not show acute clinical signs of pain or inflammation. Hybrid HA-Cs hydrogels may be a valuable alternative viscosupplementation agent. PMID:25666331

  16. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  17. HybridPLAY: A New Technology to Foster Outdoors Physical Activity, Verbal Communication and Teamwork.

    PubMed

    Díaz, Diego José; Boj, Clara; Portalés, Cristina

    2016-01-01

    This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds). HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.). Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity. PMID:27120601

  18. Development of DEMO-FNS tokamak for fusion and hybrid technologies

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-07-01

    The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.

  19. HybridPLAY: A New Technology to Foster Outdoors Physical Activity, Verbal Communication and Teamwork

    PubMed Central

    Díaz, Diego José; Boj, Clara; Portalés, Cristina

    2016-01-01

    This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds). HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.). Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity. PMID:27120601

  20. Effects of novel hybrids of caffeic acid phenethyl ester and NSAIDs on experimental ocular inflammation.

    PubMed

    Pittalà, Valeria; Salerno, Loredana; Romeo, Giuseppe; Siracusa, Maria Angela; Modica, Maria Nunziata; Romano, Giovanni Luca; Salomone, Salvatore; Drago, Filippo; Bucolo, Claudio

    2015-04-01

    In this study, we report the design and synthesis of novel hybrids of caffeic acid phenetyl ester (CAPE) and non-steroidal anti-inflammatory drugs (NSAIDs). We assessed their effects on an experimental ocular inflammation in New Zealand rabbits. The formulations of CAPE-aspirin and CAPE-indomethacin hybrids were topical instilled in the rabbit׳s eye. Afterwards, the anti-inflammatory activity was evaluated by grading the clinical signs and by assessing the inflammatory cell count, protein, PGE2 and TNFα levels in the aqueous humor. Furthermore, ocular tolerability of hybrids formulations was evaluated in a separate set of animals by using a modified Draize test. The ocular inflammation in the control group was significantly higher than in both the hybrid-treated groups, as indicated by clinical grading and biomarkers assessment. However, only the CAPE-aspirin hybrid reduced, in a significant dose-dependent manner, the ocular inflammation elicited by paracentesis. CAPE-indomethacin hybrid was able to significantly attenuate the clinical grading and the PGE2 aqueous levels only at the highest dose (0.1%). CAPE-aspirin significantly reduced PGE2 and TNFα levels in the aqueous humor as well as proteins and PMNs. Finally, all formulations showed no ocular irritation compared with vehicle-treated group. In conclusion, CAPE-aspirin shows full anti-inflammatory efficacy in experimental model of ocular inflammation demonstrating an optimal pharmacological and safety profile. Taken together these data indicate that CAPE-aspirin hybrid represents a valid and safe new chemical entity potentially useful for the treatment of ocular inflammation. PMID:25704612

  1. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  2. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology

    PubMed Central

    Ju, Ying

    2016-01-01

    Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram), have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics. PMID:27478823

  3. Growth characteristics of Ti-based fumaric acid hybrid thin films by molecular layer deposition.

    PubMed

    Cao, Yan-Qiang; Zhu, Lin; Li, Xin; Cao, Zheng-Yi; Wu, Di; Li, Ai-Dong

    2015-09-01

    Ti-based fumaric acid hybrid thin films were successfully prepared using inorganic TiCl4 and organic fumaric acid as precursors by molecular layer deposition (MLD). The effect of deposition temperature from 180 °C to 350 °C on the growth rate, composition, chemical state, and topology of hybrid films has been investigated systematically by means of a series of analytical tools such as spectroscopic ellipsometry, atomic force microscopy (AFM), high resolution X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The MLD process of the Ti-fumaric acid shows self-limiting surface reaction with a reasonable growth rate of ∼0.93 Å per cycle and small surface roughness of ∼0.59 nm in root-mean-square value at 200 °C. A temperature-dependent growth characteristic has been observed in the hybrid films. On increasing the temperature from 180 °C to 300 °C, the growth rate decreases from 1.10 to 0.49 Å per cycle and the XPS composition of the film's C : O : Ti ratio changes from 8.35 : 7.49 : 1.00 to 4.66 : 4.80 : 1.00. FTIR spectra indicate that the hybrid films show bridging bonding mode at a low deposition temperature of 200 °C and bridging/bidentate mixed bonding mode at elevated deposition temperatures of 250 and 300 °C. The higher C and O amounts deviating from the ideal composition may be ascribed to increased organic incorporation into the hybrid films at lower deposition temperature and temperature-dependent density of reactive sites (-OH). The composition of hybrid films grown at 350 °C shows a dramatic decrease in C and O elemental composition (C : O : Ti = 1.97 : 2.76 : 1.00) due to the thermal decomposition of the fumaric acid precursor. The produced by-product H2O changes the structure of the hybrid films, resulting in the formation of more Ti-O bonds at high temperatures. The stability of the hybrid films against chemical and thermal treatment, and long-term storage by

  4. Transposon-5 mutagenesis transforms Corynebacterium matruchotii to synthesize novel hybrid fatty acids that functionally replace corynomycolic acid.

    PubMed Central

    Takayama, Kuni; Hayes, Barry; Vestling, Matha M; Massey, Randall J

    2003-01-01

    Enzymes within the biosynthetic pathway of mycolic acid (C(60)-C(90) a-alkyl,b-hydroxyl fatty acid) in Mycobacterium tuberculosis are attractive targets for developing new anti-tuberculosis drugs. We have turned to the simple model system of Corynebacterium matruchotii to study the terminal steps in the anabolic pathway of a C32 mycolic acid called corynomycolic acid. By transposon-5 mutagenesis, we transformed C. matruchotii into a mutant that is unable to synthesize corynomycolic acid. Instead, it synthesized two related series of novel fatty acids that were released by saponification from the cell wall fraction and from two chloroform/methanol-extractable glycolipids presumed to be analogues of trehalose mono- and di-corynomycolate. By chemical analyses and MS, we determined the general structure of the two series to be 2,4,6,8,10-penta-alkyl decanoic acid for the larger series (C(70)-C(77)) and 2,4,6,8-tetra-alkyl octanoic acid for the smaller series (C(52)-C(64)), both containing multiple keto groups, hydroxy groups and double bonds. The mutant was temperature-sensitive, aggregated extensively, grew very slowly relative to the wild type, and was resistant to the presence of lysozyme. We suggest that a regulatory protein that normally prevents the transfer of the condensation product back to b-ketoacyl synthase in the corynomycolate synthase system of the wild type was inactivated in the mutant. This will result in multiple Claisen-type condensation and the formation of two similar series of these complex hybrid fatty acids. A similar protein in M. tuberculosis would be an attractive target for new drug discovery. PMID:12879902

  5. Laser-Hybrid welding, an innovative technology to join automotive body parts

    NASA Astrophysics Data System (ADS)

    Sieben, Manuel; Brunnecker, Frank

    The design of Tail lamps has been changed dramatically since cars built. At modern lamps, the lenses are absolutely transparent and allow a direct view onto the weld seam. Conventional welding technologies, such as vibration and hot plate welding cannot compete with this demand. Focused on this targeted application, LPKF Laser & Electronics AG has developed in cooperation with the Bavarian Laser Centre a unique Laser welding technology called hybrid welding.

  6. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    SciTech Connect

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  7. Naturally occurring hybrids derived from γ-amino acids and sugars with potential tail to tail ether-bonds

    PubMed Central

    Feng, Zi-ming; Zhan, Zhi-lai; Yang, Ya-nan; Jiang, Jian-shuang; Zhang, Pei-cheng

    2016-01-01

    The basic substances of life include various amino acids and sugars. To search such molecules is the precondition to understand the essential nature. Here we reported four unprecedented hybrids of γ-amino acids and sugars from the roots of Ranunculus ternatus, which possess potential tail to tail ether-connected (6,6-ether-connected) modes in the sugar moiety. The structures of these hybrids were elucidated by extensive analyses of spectra and calculated electronic circular dichroism (ECD) method. PMID:27166276

  8. Naturally occurring hybrids derived from γ-amino acids and sugars with potential tail to tail ether-bonds.

    PubMed

    Feng, Zi-Ming; Zhan, Zhi-Lai; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2016-01-01

    The basic substances of life include various amino acids and sugars. To search such molecules is the precondition to understand the essential nature. Here we reported four unprecedented hybrids of γ-amino acids and sugars from the roots of Ranunculus ternatus, which possess potential tail to tail ether-connected (6,6-ether-connected) modes in the sugar moiety. The structures of these hybrids were elucidated by extensive analyses of spectra and calculated electronic circular dichroism (ECD) method. PMID:27166276

  9. Naturally occurring hybrids derived from γ-amino acids and sugars with potential tail to tail ether-bonds

    NASA Astrophysics Data System (ADS)

    Feng, Zi-Ming; Zhan, Zhi-Lai; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2016-05-01

    The basic substances of life include various amino acids and sugars. To search such molecules is the precondition to understand the essential nature. Here we reported four unprecedented hybrids of γ-amino acids and sugars from the roots of Ranunculus ternatus, which possess potential tail to tail ether-connected (6,6-ether-connected) modes in the sugar moiety. The structures of these hybrids were elucidated by extensive analyses of spectra and calculated electronic circular dichroism (ECD) method.

  10. Technology and economic assessment of lactic acid production and uses

    SciTech Connect

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  11. Hybrid propulsion technology program: Phase 1. Volume 3: Thiokol Corporation Space Operations

    NASA Technical Reports Server (NTRS)

    Schuler, A. L.; Wiley, D. R.

    1989-01-01

    Three candidate hybrid propulsion (HP) concepts were identified, optimized, evaluated, and refined through an iterative process that continually forced improvement to the systems with respect to safety, reliability, cost, and performance criteria. A full scale booster meeting Advanced Solid Rocket Motor (ASRM) thrust-time constraints and a booster application for 1/4 ASRM thrust were evaluated. Trade studies and analyses were performed for each of the motor elements related to SRM technology. Based on trade study results, the optimum HP concept for both full and quarter sized systems was defined. The three candidate hybrid concepts evaluated are illustrated.

  12. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  13. Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies

    SciTech Connect

    David Holloway

    2005-09-30

    Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participation ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the

  14. Hybrid Compounds Strategy in the Synthesis of Oleanolic Acid Skeleton-NSAID Derivatives.

    PubMed

    Pawełczyk, Anna; Olender, Dorota; Sowa-Kasprzak, Katarzyna; Zaprutko, Lucjusz

    2016-01-01

    The current study focuses on the synthesis of several hybrid individuals combining a natural oleanolic acid skeleton and synthetic nonsteroidal anti-inflammatory drug moieties (NSAIDs). It studied structural modifications of the oleanolic acid structure by use of the direct reactivity of hydroxyl or hydroxyimino groups at position C-3 of the triterpenoid skeleton with the carboxylic function of anti-inflammatory drugs leading to new perspective compounds with high potential pharmacological activities. Novel ester- and iminoester-type derivatives of oleanolic unit with the different NSAIDs, such as ibuprofen, aspirin, naproxen, and ketoprofen, were obtained and characterized. Moreover, preliminary research of compounds obtaining structure stability under acidic conditions was examined and the PASS method of prediction of activity spectra for substances was used to estimate the potential biological activity of these compounds. PMID:27077841

  15. Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions.

    PubMed

    Song, Jinliang; Zhou, Baowen; Zhou, Huacong; Wu, Lingqiao; Meng, Qinglei; Liu, Zhimin; Han, Buxing

    2015-08-01

    The utilization of compounds from natural sources to prepare functional materials is of great importance. Herein, we describe for the first time the preparation of organic-inorganic hybrid catalysts by using natural phytic acid as building block. Zirconium phosphonate (Zr-PhyA) was synthesized by reaction of phytic acid and ZrCl4 and was obtained as a mesoporous material with pore sizes centered around 8.5 nm. Zr-PhyA was used to catalyze the mild and selective Meerwein-Ponndorf-Verley (MPV) reduction of various carbonyl compounds, e.g., of levulinic acid and its esters into γ-valerolactone. Further studies indicated that both Zr and phosphate groups contribute significantly to the excellent performance of Zr-PhyA. PMID:26177726

  16. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin.

    PubMed

    Münchow, Eliseu A; Ferreira, Ana Cláudia A; Machado, Raissa M M; Ramos, Tatiana S; Rodrigues-Junior, Sinval A; Zanchi, Cesar H

    2014-01-01

    Composite resins may undergo wear by the action of chemical substances (e.g., saliva, alcohol, bacterial acids) of the oral environment, which may affect the material's structure and surface properties. This study evaluated the effect of acidic substances on the surface properties of a micro-hybrid composite resin (Filtek Z-250). Eighty specimens were prepared, and baseline hardness and surface roughness (KMN0 and Ra0, respectively) were measured. The specimens were subjected to sorption (SO) and solubility (SL) tests according to ISO 4049:2009, but using different storage solutions: deionized water; 75/25 vol% ethanol/water solution; lactic acid; propionic acid; and acetic acid. The acids were used in two concentrations: PA and 0.02 N. pH was measured for all solutions and final hardness (KMN1) and surface roughness (Ra1) were measured. Data were analyzed with paired t-tests and one-way ANOVA and Tukey's test (a=5%). All solutions decreased hardness and increased the Ra values, except for the specimens stored in water and 0.02 N lactic acid, which maintained the hardness. All solutions produced similar SO and SL phenomena, except for the 0.02 N lactic acid, which caused lower solubility than the other solutions. Ethanol showed the highest pH (6.6) and the 0.02 N lactic acid the lowest one (2.5). The solutions affected negatively the surface properties of the composite resin; in addition, an acidic pH did not seem to be a significant factor that intensifies the surface degradation phenomena. PMID:25250496

  17. Deoxyribonucleic acid-based hybrid thin films for potential application as high energy density capacitors

    NASA Astrophysics Data System (ADS)

    Joyce, Donna M.; Venkat, Narayanan; Ouchen, Fahima; Singh, Kristi M.; Smith, Steven R.; Grabowski, Christopher A.; Terry Murray, P.; Grote, James G.

    2014-03-01

    Deoxyribonucleic acid (DNA) based hybrid films incorporating sol-gel-derived ceramics have shown strong promise as insulating dielectrics for high voltage capacitor applications. Our studies of DNA-CTMA (cetyltrimethylammonium) complex/sol-gel ceramic hybrid thin film devices have demonstrated reproducibility and stability in temperature- and frequency-dependent dielectric properties with dielectric constant k ˜ 5.0 (1 kHz), as well as reliability in DC voltage breakdown measurements, attaining values consistently in the range of 300-350 V/μm. The electrical/dielectric characteristics of DNA-CTMA films with sol-gel-derived ceramics were examined to determine the critical energy storage parameters such as voltage breakdown and dielectric constant.

  18. Testing and evaluation of EV-1300 lead-acid modules for the hybrid vehicle application

    SciTech Connect

    Gay, E.C.; Webster, C.E.; Hornstra, F.; Yao, N.P.

    1984-01-01

    This paper presents the results of testing and evaluation of GE/Globe EV-1300 lead-acid modules developed by Globe Battery Division of Johnson Controls, Inc. for the hybrid vehicle, HTV-I, developed by General Electric (GE) for the Department of Energy. The design of this battery was derived from that of the Globe Improved State of the Art (ISOA) battery under development for the ETV-1 all-electric vehicle. Key differences in the battery performance requirements for the HTV-1 hybrid vehicle, as opposed to the ETV-1, are higher specific power (137 W/kg versus 104 W/kg sustained for 15 seconds at 50% depth of discharge (DOD)) and less specific energy (36.1 Wh/kg versus 37.5 Wh/kg at a 3h discharge rate).

  19. Porous polylactic acid-silica hybrids: preparation, characterization, and study of mesenchymal stem cell osteogenic differentiation.

    PubMed

    Pandis, Christos; Trujillo, Sara; Matos, Joana; Madeira, Sara; Ródenas-Rochina, Joaquín; Kripotou, Sotiria; Kyritsis, Apostolos; Mano, João F; Gómez Ribelles, José Luis

    2015-02-01

    A novel approach to reinforce polymer porous membranes is presented. In the prepared hybrid materials, the inorganic phase of silica is synthesized in-situ and inside the pores of aminolyzed polylactic acid (PLA) membranes by sol-gel reactions using tetraethylorthosilicate (TEOS) and glycidoxypropyltrimethoxysilane (GPTMS) as precursors. The hybrid materials present a porous structure with a silica layer covering the walls of the pores while GPTMS serves also as coupling agent between the organic and inorganic phase. The adjustment of silica precursors ratio allows the modulation of the thermomechanical properties. Culture of mesenchymal stem cells on these supports in osteogenic medium shows the expression of characteristic osteoblastic markers and the mineralization of the extracellular matrix. PMID:25303745

  20. Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system.

    PubMed

    Choi, Hee-Jeong; Lee, Seung-Mok

    2015-09-01

    This study investigates the use of calcined eggshells and microalgae for the removal of heavy metals from acid mine drainage (AMD) and the simultaneous enhancement of biomass productivity. The experiment was conducted over a period of 6 days in a hybrid system containing calcined eggshells and the microalgae Chlorella vulgaris. The results show that the biomass productivity increased to ~8.04 times its initial concentration of 0.367 g/L as measured by an optical panel photobioreactor (OPPBR) and had a light transmittance of 95 % at a depth of 305 mm. On the other hand, the simultaneous percent removal of Fe, Cu, Zn, Mn, As, and Cd from the AMD effluent was found to be 99.47 to 100 %. These results indicate that the hybrid system with calcined eggshells and microalgae was highly effective for heavy metal removal in the AMD. PMID:25940497

  1. Technological and economic potential of poly(lactic acid) and lactic acid derivatives

    SciTech Connect

    Datta, R.; Tsai, S.P.; Bonsignore, P.; Moon, S.H.; Frank, J.R.

    1993-10-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}40,000 tons/yr) used in a wide range of food processing and industrial applications. lactic acid h,as the potential of becoming a very large volume, commodity-chemical intermediate produced from renewable carbohydrates for use as feedstocks for biodegradable polymers, oxygenated chemicals, plant growth regulators, environmentally friendly ``green`` solvents, and specially chemical intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of tactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. In this paper, the recent technical advances in tactic and polylactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed.

  2. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  3. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs.

    PubMed

    Massey, Melissa; Ancona, Mario G; Medintz, Igor L; Algar, W Russ

    2015-12-01

    Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved Förster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated "sweet spot" for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective

  4. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration.

  5. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-03-24

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. 14 figs.

  6. New hybrid technology for planar fluxgate sensor fabrication

    SciTech Connect

    Dezuari, O.; Belloy, E.; Gilbert, S.E.; Gijs, M.A.M. . Inst. of Microsystems)

    1999-07-01

    The authors have adapted a new printed circuit board (PCB) technology to the fabrication of ultraflat and sensitive fluxgate magnetic field sensors. The two outer layers of the PCB stack compose the electrical windings of fluxgates, while the inner layer is made of a micro-patterned amorphous magnetic ribbon with extremely high relative magnetic permeability ([mu][sub r] [approx] 100,000). Two basic configurations were considered: one based on a toroidal magnetic core and the other on a rectangular core with and without an air gap. The field response and sensitivity of the fluxgate devices have been studied as a function of the gap length, the excitation current, and excitation frequency. Compared to fluxgate sensors of similar size, a relatively high sensitivity of 60 V/T was found at 30 kHz for a five-winding detection coil would around a rectangular E-shaped magnetic core. This high performance is primarily attributable to the high-permeability magnetic core. The results clearly show the potential of this fluxgate device for application as a magnetic sensor.

  7. Technological advances in hybrid imaging and impact on dose.

    PubMed

    Mattsson, Sören; Andersson, Martin; Söderberg, Marcus

    2015-07-01

    New imaging technologies utilising X-rays and radiopharmaceuticals have developed rapidly. Clinical application of computed tomography (CT) has revolutionised medical imaging and plays an enormous role in medical care. Due to technical improvements, spatial, contrast and temporal resolutions have continuously improved. In spite of significant reduction of CT doses during recent years, CT is still a dominating source of radiation exposure to the population. Combinations with single photon emission computed tomography (SPECT) and positron emission tomography (PET) and especially the use of SPECT/CT and PET/CT, provide important additional information about physiology as well as cellular and molecular events. However, significant dose contributions from SPECT and PET occur, making PET/CT and SPECT/CT truly high dose procedures. More research should be done to find optimal activities of radiopharmaceuticals for various patient groups and investigations. The implementation of simple protocol adjustments, including individually based administration, encouraged hydration, forced diuresis and use of optimised voiding intervals, laxatives, etc., can reduce the radiation exposure to the patients. New data about staff doses to fingers, hands and eye lenses indicate that finger doses could be a problem, but not doses to the eye lenses and to the whole body. PMID:25802466

  8. Economic evaluation of solar-only and hybrid power towers using molten salt technology

    SciTech Connect

    Kolb, G.J.

    1996-12-01

    Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

  9. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  10. Application of locked nucleic acid-based probes in fluorescence in situ hybridization.

    PubMed

    Fontenete, Sílvia; Carvalho, Daniel; Guimarães, Nuno; Madureira, Pedro; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2016-07-01

    Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2'-O-methyl (2'-OMe) RNA modifications have on the probe that is targeting microorganisms is unknown. In this study, the melting and hybridization efficiency properties of 18 different probes in regards to their use in FISH for the detection of the 16S rRNA of Helicobacter pylori were compared. For the same sequence and target, probe length and the type of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2'-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall, these results have significant implications for the design and applications of LNA probes for the detection of microorganisms. PMID:26969040

  11. The dietary branched chain amino acid requirements of hybrid striped bass(Morone chrysops x M. saxatilis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The requirements for branched chain amino acids (BCAAs) are unknown in hybrid striped bass and necessary for formulating efficient and nutritious diets. Moreover, the dietary balance among these three amino acids can substantially influence the performance of meat animals fed those diets. The diet...

  12. Technology assessments of advanced energy storage systems for electric and hybrid vehicles

    SciTech Connect

    Not Available

    1993-04-30

    Flywheels, hydropneumatic accumulators (in vehicles with a hydrostatic powertrain), and superconducting magnets were assessed as candidate technologies for recovering braking energy and averaging power demands in electric and hybrid vehicles. The technologies were also assessed for their suitability for fulfilling the entire energy storage requirement in vehicles. The scope of the technology assessments included the current state-of-the-art and developments anticipated within the next few years in the US and abroad. Key individuals and companies currently working on each technology contributed technical information to the study. Some of these individuals and companies are nearing the pre-production prototype stage with systems suitable for automobiles. Several have constructed systems using similar technology for other applications, including satellites and industrial equipment.

  13. A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Sadaei, Hossein Javedani; Abdullah, Abdul Hanan; Lee, Malrey; Isnin, Ismail Fauzi

    2015-08-01

    Currently, there are many studies have conducted on developing security of the digital image in order to protect such data while they are sending on the internet. This work aims to propose a new approach based on a hybrid model of the Tinkerbell chaotic map, deoxyribonucleic acid (DNA) and cellular automata (CA). DNA rules, DNA sequence XOR operator and CA rules are used simultaneously to encrypt the plain-image pixels. To determine rule number in DNA sequence and also CA, a 2-dimension Tinkerbell chaotic map is employed. Experimental results and computer simulations, both confirm that the proposed scheme not only demonstrates outstanding encryption, but also resists various typical attacks.

  14. Electrochemical sensor for dopamine based on imprinted silica matrix-poly(aniline boronic acid) hybrid as recognition element.

    PubMed

    Li, Jian; Zhang, Ning; Sun, Qingqing; Bai, Zhanming; Zheng, Jianbin

    2016-10-01

    A novel imprinted silica matrix-poly(aniline boronic acid) hybrid for electrochemical detection of dopamine (DA) was developed. Boronic acid functionalized conducting polymer was electrochemically prepared on Au electrode. The number of covalent binding sites toward DA templates was controlled by potential cycles. A precursory sol solution of ammonium fluorosilicate (as cross-linking monomer) containing DA was spin-coated on the polymer modified electrode. Under NH3 atmosphere, the hydroxyl ions were generated in the solution and catalyzed the hydrolysis of fluorosilicate to form silica matrix. After this aqueous sol-gel process, an inorganic framework around the DA template was formed and the imprinted hybrid for DA was also produced. As revealed by scanning electron microscopy, UV-vis spectroscopy and cyclic voltammetry characterization, DA was embedded in the imprinted hybrid successfully. The affinity and selectivity of the imprinted hybrid were also characterized by cyclic voltammetry. The imprinted hybrid showed higher affinity for DA than that for epinephrine, and little or no affinity for ascorbic acid and uric acid due to the combined effects of covalent interaction, cavities matching and electrostatic repulsion. The imprinted hybrid sensor exhibited a quick response (within 5min) to DA in the concentration range from 0.05 to 500μmolL(-1) with a detection limit of 0.018μmolL(-1). The prepared sensor was also applied to detect DA in real samples with a satisfactory result. PMID:27474321

  15. Design and Development of a Technology Enhanced Hybrid Instruction Based on MOLTA Model: Its Effectiveness in Comparison to Traditional Instruction

    ERIC Educational Resources Information Center

    Delialioglu, Omer; Yildirim, Zahide

    2008-01-01

    Using the model for learning and teaching activities (MOLTA), a new technology enhanced hybrid instruction was designed, developed and implemented. The effectiveness of the hybrid instruction in regard to students' achievement, knowledge retention, attitudes towards the subject, and course satisfaction was evaluated in comparison to traditional…

  16. Tartaric Acid-Assisted Self-Assembly of Hybrid Block Copolymer Composites

    NASA Astrophysics Data System (ADS)

    Yao, Li; Lin, Ying; Watkins, James

    2014-03-01

    Enantiopure tartaric acid was used as an additive to increase the segregation strength of poly(ethylene oxide-block-tert-butyl acrylate) (PEO-b-PtBA) copolymers through strong, selective interactions with one of the polymer chain segments. Addition of tartaric acid to PEO-b-PtBA exhibiting cylindrical morphologies resulted in the formation of helical superstructures as observed by transmission electron microscopy. It was also found that this small acid additive can also enable phase-selective ultra-high loading of nanoparticles (NPs) into target domains of the block copolymer composites. The loading of tartaric acid can increase enthalpically favorable interactions between the nanoparticle ligands and the host domain and mitigate entropic penalties associated with NP incorporation into the target domain. A metal content of over 40 weight percent by mass of the resulting well ordered composites was achieved as measured by thermal gravimetric analysis in PEO-b-PtBA/tartaric acid/4-hydroxythiophenol functionalized Au NP hybrid system. Funding from Center for Hierarchical Manufacturing (CHM); Facility support from Materials Research Science and Engineering Center at UMass Amherst.

  17. Nucleic acid hybridization for detection of cell culture-amplified adenovirus.

    PubMed Central

    Huang, C; Deibel, R

    1988-01-01

    A number of recombinant plasmids containing genomic segments of adenovirus were constructed. Seven cloned probes, as well as total adenovirus type 2 (Ad2) and Ad16 genomic DNA, were tested by a nucleic acid hybridization technique for sensitivity and specificity in detecting adenoviruses in infected cells. Adenovirus DNA was spotted onto a nitrocellulose filter and hybridized with 32P-labeled DNA probes. The probes, total Ad2 genomic DNA, and plasmid pAd2-H (containing the hexon gene from Ad2 DNA) all detected 10 reference serotypes of five genomic subgroups (A through E) with similar sensitivities. However, plasmid pAd2-H required less preparation time than did total Ad2 DNA. Probes pAd2-F (containing the fiber gene from Ad2) and pAd16-BD (containing the BamHI D fragment from Ad16) hybridized only with reference serotypes from the homologous subgroups (C and B, respectively). Of 101 patient isolates amplified in cells, pAd2-H detected 100% of all isolates from both the homologous and the heterologous subgroups. The detection rates for pAd2-F were 100% (subgroup C) and 3.6% (subgroups A, B, and D), and those for pAd16-BD were 100% (subgroup B) and 9.4% (subgroups A, C, and D). A commercial biotinylated product (Pathogene II) was also included in this study for comparison. Images PMID:3230138

  18. Hybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation.

    PubMed

    Chu, Te-Wei; Feng, Jiayue; Yang, Jiyuan; Kopeček, Jindřich

    2015-12-28

    This work presents a new concept in hybrid hydrogel design. Synthetic water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) polymers grafted with multiple peptide nucleic acids (PNAs) are crosslinked upon addition of the linker DNA. The self-assembly is mediated by the PNA-DNA complexation, which results in the formation of hydrophilic polymer networks. We show that the hydrogels can be produced through two different types of complexations. Type I hydrogel is formed via the PNA/DNA double-helix hybridization. Type II hydrogel utilizes a unique "P-form" oligonucleotide triple-helix that comprises two PNA sequences and one DNA. Microrheology studies confirm the respective gelation processes and disclose a higher critical gelation concentration for the type I gel when compared to the type II design. Scanning electron microscopy reveals the interconnected microporous structure of both types of hydrogels. Type I double-helix hydrogel exhibits larger pore sizes than type II triple-helix gel. The latter apparently contains denser structure and displays greater elasticity as well. The designed hybrid hydrogels have potential as novel biomaterials for pharmaceutical and biomedical applications. PMID:26394062

  19. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme.

    PubMed

    Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki

    2015-01-01

    Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS-PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS-PKS hybrid enzyme. PMID:26503170

  20. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme

    PubMed Central

    Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki

    2015-01-01

    Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS–PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS–PKS hybrid enzyme. PMID:26503170

  1. Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features.

    PubMed

    Saha, Abhijit; Adamcik, Jozef; Bolisetty, Sreenath; Handschin, Stephan; Mezzenga, Raffaele

    2015-04-27

    Self-assembly of the naturally occurring sweetening agent, glycyrrhizic acid (GA) in water is studied by small-angle X-ray scattering and microscopic techniques. Statistical analysis on atomic force microscopy images reveals the formation of ultralong GA fibrils with uniform thickness of 2.5 nm and right-handed twist with a pitch of 9 nm, independently of GA concentration. Transparent nematic GA hydrogels are exploited to create functional hybrid materials. Two-fold and three-fold hybrids are developed by introducing graphene oxide (GO) and in situ-synthesized gold nanoparticles (Au NPs) in the hydrogel matrix for catalysis applications. In the presence of GO, the catalytic efficiency of Au NPs in the reduction of p-nitrophenol to p-aminophenol is enhanced by 2.5 times. Gold microplate single crystals are further synthesized in the GA hydrogel, expanding the scope of these hybrids and demonstrating their versatility in materials design. PMID:25759108

  2. Strategies for Developing a Community of Practice: Nine Years of Lessons Learned in a Hybrid Technology Education Master's Program

    ERIC Educational Resources Information Center

    Cowan, John E.

    2012-01-01

    Between 2000 and 2009, 243 students in 11 cohort groups participated in the Internet-Based Masters in Educational Technology (iMet) Program. iMet is a hybrid masters program in education with an emphasis in educational technology. Students in the program work collaboratively in a problem-based approach to the integration of technology into…

  3. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    PubMed

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate. PMID:26761615

  4. p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution.

    PubMed

    Zhang, Hongye; Xie, Yun; Liu, Zhimin; Tao, Ranting; Sun, Zhenyu; Ding, Kunlun; An, Guimin

    2009-10-15

    Monodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was demonstrated that the diameters of the resultant TiO2 spheres could be tuned in the range of 380-800 nm by changing the APA:TTIP molar ratio (1:3 to 3:1) and water content (1-3 v/v%) in the reaction medium, and that increasing the APA:TTIP molar ratio led to larger TiO2 hybrid spheres while increasing the water content decreased their size. The loading content of APA in the hybrid spheres could reach 20 wt.% as they were prepared with the APA:TTIP ratio of 3:1. The possible formation mechanism of the hybrid spheres was also investigated. It was found that APA slowed down the hydrolysis rate of the titanium precursor so that resulted in the formation of the TiO2 spheres. In addition, the APA present in TiO2 spheres acted as a reducing agent to in situ convert HAuCl4 into metallic Au on the surface of the TiO2 spheres. The catalytic activity of the resultant Au/APA-TiO2 composite was examined using transfer hydrogenation of phenylacetone with 2-propanol, and it was indicated that the catalyst displayed high efficiency for this reaction. PMID:19616218

  5. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    PubMed Central

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-01-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst. PMID:26938568

  6. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model

    NASA Astrophysics Data System (ADS)

    Dora Tang, T.-Y.; Rohaida Che Hak, C.; Thompson, Alexander J.; Kuimova, Marina K.; Williams, D. S.; Perriman, Adam W.; Mann, Stephen

    2014-06-01

    Mechanisms of prebiotic compartmentalization are central to providing insights into how protocellular systems emerged on the early Earth. Protocell models are based predominantly on the membrane self-assembly of fatty-acid vesicles, although membrane-free scenarios that involve liquid-liquid microphase separation (coacervation) have also been considered. Here we integrate these alternative models of prebiotic compartmentalization and develop a hybrid protocell model based on the spontaneous self-assembly of a continuous fatty-acid membrane at the surface of preformed coacervate microdroplets prepared from cationic peptides/polyelectrolytes and adenosine triphosphate or oligo/polyribonucleotides. We show that the coacervate-supported membrane is multilamellar, and mediates the selective uptake or exclusion of small and large molecules. The coacervate interior can be disassembled without loss of membrane integrity, and fusion and growth of the hybrid protocells can be induced under conditions of high ionic strength. Our results highlight how notions of membrane-mediated compartmentalization, chemical enrichment and internalized structuration can be integrated in protocell models via simple chemical and physical processes.

  7. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model.

    PubMed

    Dora Tang, T-Y; Rohaida Che Hak, C; Thompson, Alexander J; Kuimova, Marina K; Williams, D S; Perriman, Adam W; Mann, Stephen

    2014-06-01

    Mechanisms of prebiotic compartmentalization are central to providing insights into how protocellular systems emerged on the early Earth. Protocell models are based predominantly on the membrane self-assembly of fatty-acid vesicles, although membrane-free scenarios that involve liquid-liquid microphase separation (coacervation) have also been considered. Here we integrate these alternative models of prebiotic compartmentalization and develop a hybrid protocell model based on the spontaneous self-assembly of a continuous fatty-acid membrane at the surface of preformed coacervate microdroplets prepared from cationic peptides/polyelectrolytes and adenosine triphosphate or oligo/polyribonucleotides. We show that the coacervate-supported membrane is multilamellar, and mediates the selective uptake or exclusion of small and large molecules. The coacervate interior can be disassembled without loss of membrane integrity, and fusion and growth of the hybrid protocells can be induced under conditions of high ionic strength. Our results highlight how notions of membrane-mediated compartmentalization, chemical enrichment and internalized structuration can be integrated in protocell models via simple chemical and physical processes. PMID:24848239

  8. Maximizing coupling-efficiency of high-power diode lasers utilizing hybrid assembly technology

    NASA Astrophysics Data System (ADS)

    Zontar, D.; Dogan, M.; Fulghum, S.; Müller, T.; Haag, S.; Brecher, C.

    2015-03-01

    In this paper, we present hybrid assembly technology to maximize coupling efficiency for spatially combined laser systems. High quality components, such as center-turned focusing units, as well as suitable assembly strategies are necessary to obtain highest possible output ratios. Alignment strategies are challenging tasks due to their complexity and sensitivity. Especially in low-volume production fully automated systems are economically at a disadvantage, as operator experience is often expensive. However reproducibility and quality of automatically assembled systems can be superior. Therefore automated and manual assembly techniques are combined to obtain high coupling efficiency while preserving maximum flexibility. The paper will describe necessary equipment and software to enable hybrid assembly processes. Micromanipulator technology with high step-resolution and six degrees of freedom provide a large number of possible evaluation points. Automated algorithms are necess ary to speed-up data gathering and alignment to efficiently utilize available granularity for manual assembly processes. Furthermore, an engineering environment is presented to enable rapid prototyping of automation tasks with simultaneous data ev aluation. Integration with simulation environments, e.g. Zemax, allows the verification of assembly strategies in advance. Data driven decision making ensures constant high quality, documents the assembly process and is a basis for further improvement. The hybrid assembly technology has been applied on several applications for efficiencies above 80% and will be discussed in this paper. High level coupling efficiency has been achieved with minimized assembly as a result of semi-automated alignment. This paper will focus on hybrid automation for optimizing and attaching turning mirrors and collimation lenses.

  9. Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple

    NASA Astrophysics Data System (ADS)

    Gutmann, Günter

    In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.

  10. Self-assembly of nucleic acids, silk and hybrid materials thereof

    NASA Astrophysics Data System (ADS)

    Humenik, Martin; Scheibel, Thomas

    2014-12-01

    Top-down approaches based on etching techniques have almost reached their limits in terms of dimension. Therefore, novel assembly strategies and types of nanomaterials are required to allow technological advances. Self-assembly processes independent of external energy sources and unlimited in dimensional scaling have become a very promising approach. Here, we highlight recent developments in self-assembled DNA-polymer, silk-polymer and silk-DNA hybrids as promising materials with biotic and abiotic moieties for constructing complex hierarchical materials in ‘bottom-up’ approaches. DNA block copolymers assemble into nanostructures typically exposing a DNA corona which allows functionalization, labeling and higher levels of organization due to its specific addressable recognition properties. In contrast, self-assembly of natural silk proteins as well as their recombinant variants yields mechanically stable β-sheet rich nanostructures. The combination of silk with abiotic polymers gains hybrid materials with new functionalities. Together, the precision of DNA hybridization and robustness of silk fibrillar structures combine in novel conjugates enable processing of higher-order structures with nanoscale architecture and programmable functions.

  11. Salinomycin Hydroxamic Acids: Synthesis, Structure, and Biological Activity of Polyether Ionophore Hybrids.

    PubMed

    Borgström, Björn; Huang, Xiaoli; Chygorin, Eduard; Oredsson, Stina; Strand, Daniel

    2016-06-01

    The polyether ionophore salinomycin has recently gained attention due to its exceptional ability to selectively reduce the proportion of cancer stem cells within a number of cancer cell lines. Efficient single step strategies for the preparation of hydroxamic acid hybrids of this compound varying in N- and O-alkylation are presented. The parent hydroxamic acid, salinomycin-NHOH, forms both inclusion complexes and well-defined electroneutral complexes with potassium and sodium cations via 1,3-coordination by the hydroxamic acid moiety to the metal ion. A crystal structure of an cationic sodium complex with a noncoordinating anion corroborates this finding and, moreover, reveals a novel type of hydrogen bond network that stabilizes the head-to-tail conformation that encapsulates the cation analogously to the native structure. The hydroxamic acid derivatives display down to single digit micromolar activity against cancer cells but unlike salinomycin selective reduction of ALDH(+) cells, a phenotype associated with cancer stem cells was not observed. Mechanistic implications are discussed. PMID:27326340

  12. Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) ceramic design manual

    SciTech Connect

    1997-10-01

    This ceramic component design manual was an element of the Advanced Turbine Technology Applications Project (ATTAP). The ATTAP was intended to advance the technological readiness of the ceramic automotive gas turbine engine as a primary power plant. Of the several technologies requiring development before such an engine could become a commercial reality, structural ceramic components represented the greatest technical challenge, and was the prime focus of the program. HVTE-TS, which was created to support the Hybrid Electric Vehicle (HEV) program, continued the efforts begun in ATTAP to develop ceramic components for an automotive gas turbine engine. In HVTE-TS, the program focus was extended to make this technology applicable to the automotive gas turbine engines that form the basis of hybrid automotive propulsion systems consisting of combined batteries, electric drives, and on-board power generators as well as a primary power source. The purpose of the ceramic design manual is to document the process by which ceramic components are designed, analyzed, fabricated, assembled, and tested in a gas turbine engine. Interaction with ceramic component vendors is also emphasized. The main elements of the ceramic design manual are: an overview of design methodology; design process for the AGT-5 ceramic gasifier turbine rotor; and references. Some reference also is made to the design of turbine static structure components to show methods of attaching static hot section ceramic components to supporting metallic structures.

  13. Development of SSR Markers Linked to Low Hydrocyanic Acid Content in Sorghum-Sudan Grass Hybrid Based on BSA Method.

    PubMed

    Xiao-Xia, Yu; Zhi-Hua, Liu; Zhuo, Yu; Yue, Shi; Xiao-Yu, Li

    2016-01-01

    Sorghum-Sudan grass hybrid containing high hydrocyanic acid content can cause hydrocyanic acid poisoning to the livestock and limit the popularization of this forage crop. Molecular markers associated with low hydrocyanic acid content can speed up the process of identification of genotypes with low hydrocyanic acid content. In the present study, 11 polymorphic SSR primers were screened and used for bulked segregant analysis and single marker analysis. Three SSR markers Xtxp7230, Xtxp7375 and Bnlg667960 associated with low hydrocyanic acid content were rapidly identified by BSA. In single marker analysis, six markers Xtxp7230, Xtxp7375, Bnlg667960, Xtxp67-11, Xtxp295-7 and Xtxp12-9 were linked to low hydrocyanic acid content, which explained the proportion of phenotypic variation from 7.6 % to 41.2 %. The markers identified by BSA were also verified by single marker analysis. The three SSR marker bands were then cloned and sequenced for sequence homology analysis in NCBI. It is the first report on the development of molecular markers associated with low hydrocyanic acid content in sorghum- Sudan grass hybrid. These markers will be useful for genetic improvement of low hydrocyanic acid sorghum-Sudan grass hybrid by marker-assisted breeding. PMID:27001403

  14. One-pot transformation of cellobiose to formic acid and levulinic acid over ionic-liquid-based polyoxometalate hybrids.

    PubMed

    Li, Kaixin; Bai, Linlu; Amaniampong, Prince Nana; Jia, Xinli; Lee, Jong-Min; Yang, Yanhui

    2014-09-01

    Currently, levulinic acid (LA) and formic acid (FA) are considered as important carbohydrates for the production of value-added chemicals. Their direct production from biomass will open up a new opportunity for the transformation of biomass resource to valuable chemicals. In this study, one-pot transformation of cellobiose into LA and FA was demonstrated, using a series of multiple-functional ionic liquid-based polyoxometalate (IL-POM) hybrids as catalytic materials. These IL-POMs not only markedly promoted the production of valuable chemicals including LA, FA and monosaccharides with high selectivities, but also provided great convenience of the recovery and the reuse of the catalytic materials in an environmentally friendly manner. Cellobiose conversion of 100%, LA selectivity of 46.3%, and FA selectivity of 26.1% were obtained at 423 K and 3 MPa for 3 h in presence of oxygen. A detailed catalytic mechanism for the one-pot transformation of cellobiose was also presented. PMID:25110998

  15. An evaluation of the hybrid car technology for the Mexico Mega City

    NASA Astrophysics Data System (ADS)

    Jazcilevich, Aron D.; Reynoso, Agustin Garcia; Grutter, Michel; Delgado, Javier; Ayala, Ulises Diego; Lastra, Manuel Suarez; Zuk, Miriam; Oropeza, Rogelio Gonzalez; Lents, Jim; Davis, Nicole

    The introduction of hybrid electric vehicle (HEV) technology in the private car fleet of Mexico City is evaluated in terms of private costs, energy, public health and CO 2 emission benefits. In addition to constructing plausible scenarios for urban expansion, emission, car fleet, and fuel consumption for year 2026 and comparing them with a 2004 base case, a time series is built to obtain accumulated economic benefits. Experimental techniques were used to build a vehicle library for a car simulator that included a Prius 2002, chosen as the HEV technology representative for this work. The simulator is used to estimate the emissions and fuel consumption of the car fleet scenarios. In the context of an urban scenario for year 2026, a complex air quality model obtains the concentrations of criterion pollutants corresponding to these scenarios. Using a technology penetration model, the hybridized fleet starts unfolding in year 2009 reaching to 20% in 2026. In this year, the hybridized fleet resulted in reductions of about 10% of CO 2 emissions, and yielded reductions in daytime mean concentrations of up to 7% in ozone and 3.4% in PM 2.5 compared to the 2004 base case. These reductions are concentrated in the densely populated areas of Mexico City. By building a time series of costs and benefits it is shown that, depending on fuel prices and using a 5% return rate, positive accumulated benefits (CO 2 benefits + energy benefits + public health benefits - private costs) will start generating in year 2015 reaching between 2.8 and 4.5 billion US Dlls in 2026. Another modernized private fleet consisting exclusively of Tier I and II cars did not yield appreciable results, signaling that a change in private car technology towards HEV's is needed to obtain significant accumulated benefits.

  16. Simulation and Technology of Hybrid Welding of Thick Steel Parts with High Power Fiber Laser

    NASA Astrophysics Data System (ADS)

    Turichin, Gleb; Valdaytseva, Ekaterina; Tzibulsky, Igor; Lopota, Alexander; Velichko, Olga

    The article devoted to steady state and dynamic simulation of melt pool behavior during hybrid laser-arc welding of pipes and shipbuilding sections. The quasi-stationary process-model was used to determine an appropriate welding mode. The dynamical model of laser welding was used for investigation of keyhole depth and width oscillations. The experiments of pipe steel and stainless steel hybrid laser-MAG welding have been made with 15-kW fiber laser in wide range of welding mode parameters. Comparison of experimentally measured and simulated behavior of penetration depth as well as their oscillation spectra approved the self-oscillation nature of melt pool behavior. The welding mode influence of melt pool stability has also been observed. The technological peculiarities, which allow provide high quality weld seam, has been discussed also.

  17. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  18. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    SciTech Connect

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  19. A hybrid Li-air battery with buckypaper air cathode and sulfuric acid electrolyte

    SciTech Connect

    Li, YF; Huang, K; Xing, YC

    2012-10-30

    We demonstrate a type of carbon nanotube based buckypaper cathode in a hybrid electrolyte Li-air battery (HyLAB) that showed outstanding discharging performances. The HyLAB has sulfuric acid as the catholyte and a large active electrode area (10 cm(2)). The active cathode layer was made from a buckypaper with 5 wt.% Pt supported on carbon nanotubes (Pt/CNTs) for oxygen reduction and evolution. A similar cathode was constructed with a catalyst of 5 wt.% Pt supported on carbon black (Pt/CB). It is demonstrated that sulfuric acid can achieve high discharging current densities while maintaining relatively high cell potentials. The cell with Pt/CNTs showed a much better performance than with Pt/CB at high current densities. The HyLAB with Pt/CNTs achieved a discharging capacity of 306 mAh/g and a cell voltage of 3.15 V at 0.2 mA/cm(2). The corresponding specific energy is 1067 Wh/kg based on the total weight of the sulfuric acid. Slow decrease in performance was observed, but it can be recovered by refilling the cell with new electrolyte after continuous discharging of more than 75 h. A charge-discharge experiment at 0.2 mA/cm(2) showed that the cell was rechargeable with a capacity of more than 300 mAh/g. (c) 2012 Elsevier Ltd. All rights reserved.

  20. Development and operation of a hybrid acid-alkaline advanced water electrolysis cell

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Zwanziger, M.

    A hybrid acid-alkaline water electrolysis cell has been developed for hydrogen production. The cell is based on the use of an acidic solution at the cathode and a basic solution at the anode to reduce the minimum theoretical voltage for water decomposition from the thermoneutral potential of 1.47 V to close to 1.4 V at 25 C and 1 atm. The pH differential is maintained by the removal of OH ions from the cathode section and water removal from the anode section, which can be driven by heat energy. A practical cell has been built using a solid polymer electrolyte in which, however, the cathodic compartment is not acidic but neutral. Tests with a platinum black cathode catalyst and a platinum-iridium anode catalyst have resulted in steady-state water hydrolysis at an applied voltage of 0.9 V, and a V-I diagram with a considerably lower slope than that of a conventional cell has been obtained at 90 C.

  1. Bus application of oxygen-enrichment technology and diesel-electric hybrid systems

    SciTech Connect

    Sekar, R.R.; Marr, W.W.

    1993-10-01

    The amendments to the Clean Air Act (CAA) mandate very strict limits on particulate, smoke, and other emissions from city buses. The use of alternative fuels, such as compressed natural gas (CNG) or methanol, can help transit operators, such as the Chicago Transit Authority (CTA), meet the mandated limits. However, the capital investment needed to convert the fueling infrastructure and buses is large, as is the expense of training personnel. If a {open_quotes}clean diesel{close_quotes} bus can be implemented with the help of oxygen-enrichment technology or a diesel-electric hybrid system, this large investment could be postponed for many years. The Regional Transportation Authority (RTA) initiated this project to evaluate the possibility of applying these technologies to CTA buses. Argonne National Laboratory (ANL) conducted a limited number of engine tests and computer analyses and concluded that both concepts are practical and will help in a {open_quotes}clean diesel{close_quotes} bus that can meet the mandated limits of the CAA amendments. The oxygen enrichment of combustion air depends on the availability of a compact and economical membrane separator. Because the technology for this critical component is still under development, it is recommended that an actual bus demonstration be delayed until prototype membranes are available. The hybrid propulsion system is ready for the demonstration phase, and it is recommended that the CTA and RTA commence planning for a bus demonstration.

  2. Lead-acid batteries in micro-hybrid applications. Part II. Test proposal

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Albers, J.; Weirather-Koestner, D.; Kabza, H.

    In the first part of this work [1] selected key parameters for applying lead-acid (LA) batteries in micro-hybrid power systems (MHPS) were investigated. Main results are integrated in an accelerated, comprehensive test proposal presented here. The test proposal aims at a realistic representation of the pSoC operation regime, which is described in Refs. [1,6]. The test is designed to be sensitive with respect to dynamic charge acceptance (DCA) at partially discharged state (critical for regenerative braking) and the internal resistance at high-rate discharge (critical for idling stop applications). First results are presented for up-to-date valve-regulated LA batteries with absorbent glass mat (AGM) separators. The batteries are close to the limits of the first proposal of pass/fail-criteria. Also flooded batteries were tested; the first out of ten units failed already.

  3. Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Newnham, R. H.; Ozgun, H.; Fleming, F. A.

    A novel design of lead-acid battery has been developed for use in hybrid electric vehicles (HEVs). The battery has current take-offs at both ends of each of the positive and negative plates. This feature markedly reduces battery operating temperatures, improves battery capacity, and extends cycle-life under HEV duty. The battery also performs well under partial-state-of-charge (PSoC)/fast-charge, electric-vehicle operation. The improvements in performance are attributed to more uniform utilization of the plate active-materials. The battery, combined with an internal-combustion engine and a new type of supercapacitor, will be used to power an HEV, which is being designed and constructed by an Australian industry-government consortium.

  4. Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.

    Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.

  5. Fabrication of Uniform DNA-Conjugated Hydrogel Microparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays

    PubMed Central

    Lewis, Christina L.; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-01-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of probe and target DNA, femtomole sensitivity, and sequence specificity. Combined these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection. PMID:20527819

  6. Fabrication of uniform DNA-conjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays.

    PubMed

    Lewis, Christina L; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-07-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of the probe and target DNA, femtomole sensitivity, and sequence specificity. Combined, these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high-capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high-throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection. PMID:20527819

  7. New high performance hybrid magnet plates for DNA separation andbio-technology applications

    SciTech Connect

    Humphries, David; Pollard, Martin; Elkin, Chris; Petermann, Karl; Reiter, Charles; Cepeda, Mario

    2004-08-02

    A new class of magnet plates for biological and industrial applications has recently been developed at the D.O.E. Joint Genome Institute and Lawrence Berkeley National Laboratory (JGI/LBNL). These devices utilize hybrid technology that combines linear permanent magnet material and ferromagnetic material to produce significantly higher fields and gradients than currently available commercial magnet plates. These hybrid structures incorporate ferromagnetic poles that can be easily shaped to produce complex field distributions for specialized applications. The higher maximum fields and strong gradients of the hybrid structures result in greater holding forces on magnetized targets that are being processed as well as faster draw-down. Current development versions of these magnet plates have exhibited maximum fields in excess of 9000.0 Gauss. The design of these structures is easily scalable to allow for field increases to significantly above 1.0 tesla (10000.0gauss). Author's note: 11000.0 Gauss peak fields have been achieved as of January 2005.

  8. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    PubMed

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture. PMID:26795115

  9. Hybrid Placemaking in the Library: Designing Digital Technology to Enhance Users' On-Site Experience

    ERIC Educational Resources Information Center

    Bilandzic, Mark; Johnson, Daniel

    2013-01-01

    This paper presents research findings and design strategies that illustrate how digital technology can be applied as a tool for "hybrid" placemaking in ways that would not be possible in purely digital or physical spaces. Digital technology has revolutionised the way people learn and gather new information. This trend has challenged the…

  10. Thermodynamic Modeling and Dispatch of Distributed Energy Technologies including Fuel Cell -- Gas Turbine Hybrids

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin Fogle

    Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch

  11. Nanoparticle Formation from Hybrid, Multiblock Copolymers of Poly(Acrylic Acid) and VPGVG Peptide

    PubMed Central

    Grieshaber, Sarah E.; Paik, Bradford A.; Bai, Shi; Kiick, Kristi L.; Jia, Xinqiao

    2012-01-01

    Elastin-mimetic hybrid copolymers with an alternating molecular architecture were synthesized via the step growth polymerization of azide-functionalized, telechelic poly(tert-butyl acrylate) (PtBA) and an alkyne-terminated, valine and glycine-rich peptide with a sequence of (VPGVG)2 (VG2). The resultant hybrid copolymer, [PtBA-VG2]n, contains up to six constituent building blocks and has a polydispersity index (PDI) of ~1.9. Trifluoroacetic acid (TFA) treatment of [PtBA-VG2]n gave rise to an alternating copolymer of poly(acrylic acid) (PAA) and VG2 ([PAA-VG2]n). The modular design permits facile adjustment of the copolymer composition by varying the molecular weight of PAA (22 and 63 repeat units). Characterization by dynamic light scattering indicated that the multiblock copolymers formed discrete nanoparticles at room temperature in aqueous solution at pH 3.8, with an average diameter of 250-270 nm and a particle size distribution of 0.34 for multiblock copolymers containing PAA22 and 0.17 for those containing PAA63. Upon increasing the pH to 7.4, both types of particles were able to swell without being disintegrated, reaching an average diameter of 285-300 nm for [PAA22-VG2]n and 330-350 nm for [PAA63-VG2]n, respectively. The nanoparticles were not dissociated upon the addition of urea, further confirming their unusual stability. The nanoparticles were capable of sequestering a hydrophobic fluorescent dye (pyrene), and the critical aggregation concentration (CAC) was determined to be 1.09 × 10-2 or 1.05 × 10-2 mg/mL for [PAA22-VG2]n and [PAA63-VG2]n, respectively. We suggest that the multiblock copolymers form through collective H-bonding and hydrophobic interactions between the PAA and VG2 peptide units, and that the unusual stability of the multiblock nanoparticles is conferred by the multiblock architecture. These hybrid multiblock copolymers are potentially useful as pH-responsive drug delivery vehicles, with the possibility of drug loading through

  12. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    SciTech Connect

    Hansen, James Gerald

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  13. Hybrid Electric Power Train and Control Strategies Automotive Technology Education (GATE) Program

    SciTech Connect

    Andrew Frank

    2006-05-31

    Plug-in hybrid electric vehicles (PHEV) offer societal benefits through their ability to displace the use of petroleum fuels. Petroleum fuels represent a polluting and politically destabilizing energy carrier. PHEV technologies can move transportation away from petroleum fuel sources by enabling domestically generated electricity and liquids bio-fuels to serve as a carrier for transportation energy. Additionally, the All-Electric-Range (AER) offered by PHEVs can significantly reduce demand for expensive and polluting liquid fuels. The GATE funding received during the 1998 through 2004 funding cycle by the UC Davis Hybrid Electric Vehicle Center (HEVC) was used to advance and train researchers in PHEV technologies. GATE funding was used to construct a rigorous PHEV curriculum, provide financial support for HEVC researchers, and provide material support for research efforts. A rigorous curriculum was developed through the UC Davis Mechanical and Aeronautical Engineering Department to train HEVC researchers. Students' research benefited from this course work by advancing the graduate student researchers' understanding of key PHEV design considerations. GATE support assisted HEVC researchers in authoring technical articles and producing patents. By supporting HEVC researchers multiple Master's theses were written as well as journal articles and publications. The topics from these publications include Continuously Variable Transmission control strategies and PHEV cross platform controls software development. The GATE funding has been well used to advance PHEV systems. The UC Davis Hybrid Electric Vehicle Center is greatly appreciative for the opportunities GATE funding provided. The goals and objectives for the HEVC GATE funding were to nourish engineering research in PHEV technologies. The funding supplied equipment needed to allow researchers to investigate PHEV design sensitivities and to further optimize system components. Over a dozen PHEV researchers benefited

  14. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

    NASA Astrophysics Data System (ADS)

    Ferrari, Andrea C.; Bonaccorso, Francesco; Fal'Ko, Vladimir; Novoselov, Konstantin S.; Roche, Stephan; Bøggild, Peter; Borini, Stefano; Koppens, Frank H. L.; Palermo, Vincenzo; Pugno, Nicola; Garrido, José A.; Sordan, Roman; Bianco, Alberto; Ballerini, Laura; Prato, Maurizio; Lidorikis, Elefterios; Kivioja, Jani; Marinelli, Claudio; Ryhänen, Tapani; Morpurgo, Alberto; Coleman, Jonathan N.; Nicolosi, Valeria; Colombo, Luigi; Fert, Albert; Garcia-Hernandez, Mar; Bachtold, Adrian; Schneider, Grégory F.; Guinea, Francisco; Dekker, Cees; Barbone, Matteo; Sun, Zhipei; Galiotis, Costas; Grigorenko, Alexander N.; Konstantatos, Gerasimos; Kis, Andras; Katsnelson, Mikhail; Vandersypen, Lieven; Loiseau, Annick; Morandi, Vittorio; Neumaier, Daniel; Treossi, Emanuele; Pellegrini, Vittorio; Polini, Marco; Tredicucci, Alessandro; Williams, Gareth M.; Hee Hong, Byung; Ahn, Jong-Hyun; Min Kim, Jong; Zirath, Herbert; van Wees, Bart J.; van der Zant, Herre; Occhipinti, Luigi; Di Matteo, Andrea; Kinloch, Ian A.; Seyller, Thomas; Quesnel, Etienne; Feng, Xinliang; Teo, Ken; Rupesinghe, Nalin; Hakonen, Pertti; Neil, Simon R. T.; Tannock, Quentin; Löfwander, Tomas; Kinaret, Jari

    2015-03-01

    We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

  15. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    SciTech Connect

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  16. Hybrid surgical guidance based on the integration of radionuclear and optical technologies.

    PubMed

    van Leeuwen, Fijs W B; Valdés-Olmos, Renato; Buckle, Tessa; Vidal-Sicart, Sergi

    2016-06-01

    With the evolution of imaging technologies and tracers, the applications for nuclear molecular imaging are growing rapidly. For example, nuclear medicine is increasingly being used to guide surgical resections in complex anatomical locations. Here, a future workflow is envisioned that uses a combination of pre-operative diagnostics, navigation and intraoperative guidance. Radioguidance can provide means for pre-operative and intraoperative identification of "hot" lesions, forming the basis of a virtual data set that can be used for navigation. Luminescence guidance has shown great potential in the intraoperative setting by providing optical feedback, in some cases even in real time. Both of these techniques have distinct drawbacks, which include inaccuracy in areas that contain a background signal (radioactivity) or a limited degree of signal penetration (luminescence). We, and others, have reasoned that hybrid/multimodal approaches that integrate the use of these complementary modalities may help overcome their individual weaknesses. Ultimately, this will lead to advancement of the field of interventional molecular imaging/image-guided surgery. In this review, an overview of clinically applied hybrid surgical guidance technologies is given, whereby the focus is placed on tracers and hardware. PMID:26943463

  17. Development of a lead-acid battery for a hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Cooper, A.

    In September 2000, a project reliable, highly optimized lead-acid battery (RHOLAB) started under the UK Foresight Vehicle Programme with the objective of developing an optimized lead-acid battery solution for hybrid electric vehicles. The work is based on a novel, individual, spirally-wound valve-regulated lead-acid 2 V cell optimized for HEV use and low variability. This cell is being used as a building block for the development of a complete battery pack that is managed at the cell level. Following bench testing, this battery pack is to be thoroughly evaluated by substituting it for the Ni-MH pack in a Honda Insight. The RHOLAB cell is based on the 8 Ah Hawker Cyclon cell which has been modified to have current take-off at both ends—the dual-tab design. In addition, a variant has been produced with modified cell chemistry to help deal with problems that can occur when these valve-regulated lead-acid battery (VRLA) cells operate in a partial-state-of-charge condition. The cells have been cycled to a specially formulated test cycle based on real vehicle data derived from testing the Honda Insight on the various test tracks at the Millbrook Proving Grounds in the UK. These cycling tests have shown that the lead-acid pack can be successfully cycled when subjected to the high current demands from the vehicle, which have been measured at up to 15 C on discharge and 8 C during regenerative recharging, and cycle life is looking very promising under this arduous test regime. Concurrent with this work, battery development has been taking place. It was decided early on to develop the 144 V battery as four 36 V modules. Data collection and control has been built-in and special steps taken to minimize the problems of interconnect in this complex system. Development of the battery modules is now at an advanced stage. The project plan then allows for extensive testing of the vehicle with its lead-acid battery at Millbrook so it can be compared with the benchmark tests which

  18. Preparation and Electrochemical Performance of Hybrid Materials Containing Heteropoly Acid with Dawson Structure and Polymers

    NASA Astrophysics Data System (ADS)

    Tong, Xia; Wu, Wen; Zhou, Shengming; Wu, Qingyin; Cao, Fahe; Yaroslavtsev, A. B.

    2012-11-01

    Highly proton-conducting hybrid materials (P2W17V/PEG and P2W17V/PEG/SiO2) were prepared by heptadecatungstovanadodiphosphoric heteropoly acid with Dawson structure (P2W17V, 90 wt.%), polyethylene glycol (PEG, 10 wt.% and 5 wt.%) and silica gel (SiO2, 0 wt.% and 5 wt.%). The products were characterized by the infrared (IR) spectrum, X-ray powder diffraction (XRD) analysis and electrochemical impedance spectrum (EIS). The result reveals that their conductivity values are 1.02 × 10-2 and 2.58 × 10-2S ṡ cm-1 at room temperature (26°C) and 75% relative humidity (RH), respectively. Their conductivities increase with higher temperature and these activation energies of proton conduction are 9.51 and 14.95 kJṡmol-1, which are lower than that of pure heteropoly acid (32.23 kJṡmol-1). These mechanisms of proton conduction for these two materials are Grotthuss mechanism.

  19. Role of deoxyribonucleic acid technology in forensic dentistry

    PubMed Central

    Datta, Pankaj; Datta, Sonia Sood

    2012-01-01

    In the last few years, Deoxyribonucleic Acid (DNA) analysis methods have been applied to forensic cases. Forensic dental record comparison has been used for human identification in cases where destruction of bodily tissues or prolonged exposure to the environment has made other means of identification impractical, that is, after fire exposure or mass disaster. Teeth play an important role in identification and criminology, due to their unique characteristics and relatively high degree of physical and chemical resistance. The use of a DNA profile test in forensic dentistry offers a new perspective in human identification. The DNA is responsible for storing all the genetic material and is unique to each individual. The currently available DNA tests have high reliability and are accepted as legal proofs in courts. This article gives an overview of the evolution of DNA technology in the last few years, highlighting its importance in cases of forensic investigation. PMID:23087582

  20. Exploring the Hybridization Thermodynamics of Spherical Nucleic Acids to Tailor Probes for Diagnostic and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Randeria, Pratik Shailesh

    Spherical nucleic acids (SNAs), three-dimensional nanoparticle conjugates composed of densely packed and highly oriented oligonucleotides around organic or inorganic nanoparticles, are an emergent class of nanostructures that show promise as single-entity agents for intracellular messenger RNA (mRNA) detection and gene regulation. SNAs exhibit superior biocompatibility and biological properties compared to linear oligonucleotides, enabling them to overcome many of the limitations of linear oligonucleotides for use in biomedical applications. However, the origins of these biologically attractive properties are not well understood. In this dissertation, the chemistry underlying one such property is studied in detail, and the findings are applied towards the rational design of more effective SNAs for diagnostic and therapeutic applications. Chapter 1 introduces the synthesis of SNAs, the unique properties that make them superior to linear nucleic acids for biomedicine, and previously studied applications of these structures. Chapter 2 focuses on quantitatively studying the impact of the chemical structure of the SNA on its ability to hybridize multiple complementary nucleic acids. This chapter lays the groundwork for understanding the factors that govern SNA hybridization thermodynamics and how to tailor SNAs to increase their binding affinity to target mRNA strands. Chapters 3 and 4 capitalize on this knowledge to engineer probes for intracellular mRNA detection and gene regulation applications. Chapter 3 reports the development of an SNA-based probe that can simultaneously report the expression level of two different mRNA transcripts in live cells and differentiate diseased cells from non-diseased cells. Chapter 4 investigates the use of topically-applied SNAs to down-regulate a critical mediator of impaired wound healing in diabetic mice to accelerate wound closure. This study represents the first topical therapeutic application of SNA nanotechnology to treat open

  1. THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

    SciTech Connect

    Gorensek, M.; Summers, W.

    2010-03-24

    The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis

  2. Synthesis and utilization of chitin humic acid hybrid as sorbent for Cr(III)

    NASA Astrophysics Data System (ADS)

    Santosa, Sri Juari; Siswanta, Dwi; Sudiono, Sri; Sehol, Muhamad

    2007-11-01

    New types of hybrid material have been synthesized by using four different methods of immobilization of humic acid (HA) on chitin. The most stable hybrid material toward the change of medium acidity was then utilized as sorbent for Cr(III). The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, using the recommended procedure of International Humic Substances Society (IHSS), while the chitin was isolated from crab shell waste through deproteination using 3.5% (w/v) NaOH and followed by removal of inorganic impurities using 1 M HCl. The four methods of immobilization of HA on chitin were (i) Method A: chitin powder (4 g) was gently poured into the stirred solution of 0.4 g HA in 40 mL of 0.01 M NaOH. After overnight stirring, the solid was separated, washed with water, and dried in oven at 70 °C. (ii) Method B: gelatinous chitin (40 g) in 250 mL of 0.5 M HCl was reacted with HA (4 g) in 500 mL of 0.5 M NaOH and aged for 24 h. The product was washed with water and dried. (iii) Method C: HA powder (0.5 g) was mixed with the stirred gel of chitin (2.5 g) in 60 mL of CaCl 2 saturated methanol and the mixture was then washed with the mixed solution of 25 mL of 2 M sodium citrate and ethylene glycol 1:1. The solid was separated, washed with water, and dried. (iv) Method D: the solution of HA (0.056 g) in 10 mL of 0.01 M NaOH was reacted with the gel of chitin (0.2 g) in 10 mL of CaCl 2 saturated methanol. After 24 h stirring, the solid was separated from the reaction medium, washed with the mixed solution of 2 M sodium citrate and ethylene glycol 1:1, and followed by washing with water and drying. Parameters investigated in this study consisted of the stability test of the immobilized HA, as well as the rate constant ( k1), capacity ( b), and energy ( E) of sorption as well as the rate constant of desorption ( k-1). The k1 and k-1 were determined according to a kinetic model of first order sorption reaching equilibrium, while the b and E

  3. Heterogeneous integration technology for hybrid optoelectronic and electronic device and module fabrication

    NASA Astrophysics Data System (ADS)

    Jin, Michael Sungchun

    Various forms of optical computing architectures have promised enhanced processing capabilities well beyond the limits of traditional VLSI technology during the past decade. However, the progress toward realizing this vision has been severely limited by the lack of mature technology to fabricate heterogeneously integrated optoelectronic transceiver arrays (consisting of VLSI electronics with optoelectronic devices) that are necessary to link the functionality of photonic input/output devices with electronic processors. This dissertation describes a research effort that addressed this need by exploring innovative, yet highly manufacturable integration approaches that can be utilized to fabricate hybrid optoelectronic transceivers by integrating thin silicon device layers on bulk electro-optic (e.g. lead lanthanum zirconate titanate- PLZT) and other host substrates. The two integration techniques developed are: (1) B& P (Bond and Processing) technology involving bonding of bulk-quality thin silicon layer to PLZT followed by low temperature NMOS processing and (2) DDB (Direct-Device Bonding) technology, where circuit layer fabricated in SOI-silicon is thinned and bonded directly to a PLZT substrate. Characteristics of electronic circuits and modulators in integrated Si/PLZT SLMs are measured to be comparable to that of reference devices fabricated in bulk silicon and PLZT substrates. The application of the developed integration technology specifically toward fabricating Si/PLZT spatial light modulator is examined in detail. The developed device layer grafting technology based on chemo-mechanical lapping and reactive ion etching processes can be applied to assemble miniature ``mixed technology'' systems consisting of devices fabricated by different manufacturing processes (e.g. CMOS, MEMS, VCSEL and GaAs processes) in a monolithic fashion. The latter half of the thesis details experimental

  4. Organic-inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid

    NASA Astrophysics Data System (ADS)

    Cui, Xuejun; Zhong, Shuangling; Wang, Hongyan

    A series of silicon-containing polyacrylate nanoparticles (SiPANPs) were successfully synthesized by simple emulsifier-free emulsion polymerization technique. The resulting latex particles were characterized by Fourier transform infrared (FTIR) spectrometry, dynamic light scattering (DLS) analysis, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The SiPANP membranes and SiPANP/phosphotungstic acid (SiPANP/PWA) hybrid membranes were also prepared and characterized to evaluate their potential as proton exchange membranes in proton exchange membrane fuel cell (PEMFC). Compared with the pure SiPANP membrane, the hybrid membranes displayed lower thermal stability. However, the degradation temperatures were still above 190 °C, satisfying the requirement of thermal stability for PEMFC operation. In addition, the hybrid membranes showed lower water uptake but higher proton conductivity than the SiPANP precursor. The proton conductivity of the hybrid membranes was in the range of 10 -3 to 10 -2 S cm -1 and increased gradually with PWA content and temperature. The excellent hydrolytic stability was also observed in the hybrid membranes because of the existence of crosslinked silica network. The good thermal stability, reasonable water uptake, excellent hydrolytic stability, suitable proton conductivity and cost effectiveness make these hybrids quite attractive as proton exchange membranes for PEMFC applications.

  5. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens

    PubMed Central

    Ochyl, Lukasz J.; Akerberg, Jonathan; Moon, James J.

    2015-01-01

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50 ~0.2 mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50 > 4 mg/ml), as measured with bone marrow dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8+ T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, compared with the lack of sero-conversion in mice immunized with the equivalent doses of soluble F1-V vaccine. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  6. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens.

    PubMed

    Fan, Yuchen; Sahdev, Preety; Ochyl, Lukasz J; J Akerberg, Jonathan; Moon, James J

    2015-06-28

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50~0.2mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50>4mg/ml), as measured with bone marrow derived dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8(+) T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, whereas mice immunized with the equivalent doses of soluble F1-V vaccine failed to achieve sero-conversion. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  7. Hybrid hyaluronic acid hydrogel/poly(ɛ-caprolactone) scaffold provides mechanically favorable platform for cartilage tissue engineering studies.

    PubMed

    Mintz, Benjamin R; Cooper, James A

    2014-09-01

    Hybrid scaffolds for cartilage tissue engineering provide the potential for high stiffness properties in tension and compression while exhibiting the viscoelastic response found in hydrogels and native cartilage tissue. We investigate the impact of a hybrid scaffold fabricated from a hyaluronic acid (HA)-based hydrogel combined with porous poly(ε-caprolactone) (PCL) material formed by a particulate leaching method to study dedifferentiated chondrocyte response. The material properties of the hybrid scaffold showed mean Young's moduli in tension which were similar to human articular cartilage but not statistically different between the hybrid and porous PCL scaffolds at 2.02 and 2.07 MPa, respectively. For both the hybrid and porous PCL control scaffolds in compression at low loading frequencies (<1 Hz) and 10% strain peak amplitude the Young's moduli are not statistically distinct. However, at frequencies in the range of normal human gait from 1 to2 Hz, hybrid scaffolds exhibit significantly (p < 0.01) increased loss moduli indicating additional contribution of the viscous phase to stiffness. Dedifferentiated chondrocytes seeded onto the scaffolds exhibited a rounded morphology in hybrid scaffolds however ECM protein expression levels of collagen type I, collagen type II, and aggrecan are not different from the PCL control scaffolds. These results provide a model platform to investigate cell response to mechanical and chemical cues in a hybrid scaffold system with mechanical properties similar to human cartilage that does not contribute to differentiation in order to identify the appropriate design and development parameters to promote formation of extracellular matrix and investigate chondrocyte scaffold interactions. PMID:24115629

  8. Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K.

    2005-03-01

    This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

  9. Hybrid of chitin and humic acid as high performance sorbent for Ni(II)

    NASA Astrophysics Data System (ADS)

    Santosa, Sri Juari; Siswanta, Dwi; Kurniawan, Agusta; Rahmanto, Wasino H.

    2007-11-01

    Hybrid of humic acid (HA) and chitin has been synthesized and the hybrid material (chitin-HA) was then applied as sorbent to adsorb Ni(II). The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, according to the procedure recommended by IHSS (International Humic Substances Society). The chitin was isolated from crab shell waste of sea food restaurants through deproteination using NaOH 3.5% (w/v) and followed by removal of inorganic impurities using HCl 1 M. The synthesis of chitin-HA was performed by reacting gelatinous chitin solution in HCl 0.5 M and HA solution in NaOH 0.5 M. Parameters investigated in this work consists of effect of medium acidity on the sorption, sorption rate ( ks) and desorption rate ( kd) constants, Langmuir (monolayer) and Freundlich (multilayer) sorption capacities, and energy ( E) of sorption. The ks and kd were determined according to a kinetic model of first order sorption reaching equilibrium, monolayer sorption capacity ( b) and energy ( E) were determined according to the Langmuir isotherm model, and multilayer sorption capacity ( B) was determined based on the Freundlich isotherm model. Sorption of Ni(II) on both chitin and chitin-HA was maximum at pH 8.0. The kinetic expression resulted from the proposed kinetic model has been shown to be more applicable than the commonly known Lagergren equation obtained from the pseudo-first order sorption model. The application of the proposed model revealed that the presence of HA increased the ks from 0.018 min -1 for chitin to 0.031 min -1 for chitin-HA. As for ks, the value of b was also bigger in the presence of HA, i.e. 7.42 × 10 -5 mol/g for chitin and 9.93 × 10 -5 mol/g for the chitin-HA. Unlike ks and b, the value of E slightly decreased from 23.23 to 21.51 kJ/mol for the absence and presence of HA, respectively. It can also be deduced that the presence of HA on chitin contributed more to the additional layer of Ni(II) sorbed on sorbent. Without HA, B

  10. Silylated melamine and cyanuric acid as precursors for imprinted and hybrid silica materials with molecular recognition properties.

    PubMed

    Arrachart, Guilhem; Carcel, Carole; Trens, Philippe; Moreau, Jöel J E; Wong Chi Man, Michel

    2009-06-15

    Two monotrialkoxysilylated compounds that consist of complementary fragments of melamine (M) and cyanuric acid (CA) have been synthesised. The molecular recognition properties of the M and CA fragments through complementary hydrogen bonds (DAD and ADA; D=donor, A=acceptor) are the key factor used to direct the formation of hybrid silica materials by using a sol-gel process. These materials were synthesised following two methods: First, an organo-bridged silsesquioxane was obtained by the hydrolysis of the two complementary monotrialkoxysilylated melamine and cyanuric acid derivatives, with fluoride ions as a catalyst. The hydrogen-bonding interactions between the two organic fragments are responsible for the formation of the bridging unit. The transcription of the assembly into the hybrid material was characterised and evidenced by solid-state NMR (29Si, 13C) and FTIR spectroscopic experiments. Second, the molecular recognition was exploited to synthesise an imprinted hybrid silica. This material was prepared by co-condensation of tetraethyl orthosilicate (TEOS) with the monosilylated cyanuric acid derivative (CA) templated by nonsilylated melamine. The melamine template was completely removed by treating the solid material with hydrochloric acid. The reintroduction of the template was performed by treating the resulting material with an aqueous suspension of melamine. These steps were monitored and analysed by several techniques, such as solid-state NMR (29Si, 13C) and FTIR spectroscopic analysis and nitrogen adsorption-desorption isotherms. PMID:19440996

  11. Nano-electromechanical switch-CMOS hybrid technology and its applications.

    PubMed

    Lee, B H; Hwang, H J; Cho, C H; Lim, S K; Lee, S Y; Hwang, H

    2011-01-01

    Si-based CMOS technology is facing a serious challenge in terms of power consumption and variability. The increasing costs associated with physical scaling have motivated a search for alternative approaches. Hybridization of nano-electromechanical (NEM)-switch and Si-based CMOS devices has shown a theoretical feasibility for power management, but a huge technical gap must be bridged before a nanoscale NEM switch can be realized due to insufficient material development and the limited understanding of its reliability characteristics. These authors propose the use of a multilayer graphene as a nanoscale cantilever material for a nanoscale NEM switchwith dimensions comparable to those of the state-of-the-art Si-based CMOS devices. The optimal thickness for the multilayer graphene (about five layers) is suggested based on an analytical model. Multilayer graphene can provide the highest Young's modulus among the known electrode materials and a yielding strength that allows more than 15% bending. Further research on material screening and device integration is needed, however, to realize the promises of the hybridization of NEM-switch and Si-based CMOS devices. PMID:21446436

  12. Developing hybrid near-space technologies for affordable access to suborbital space

    NASA Astrophysics Data System (ADS)

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  13. Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths

    NASA Astrophysics Data System (ADS)

    Czaja, Piotr; Kamiński, Paweł; Klich, Jerzy; Tajduś, Antoni

    2014-10-01

    Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground

  14. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    PubMed Central

    Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769

  15. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.

    PubMed

    Gallagher, Patricia M; Spatari, Sabrina; Cucura, Jeffrey

    2013-04-15

    Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental "systems-level" decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required design life indicates that barrier replacement could increase its life cycle environmental impact above that of the cement barrier. PMID:23500422

  16. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    NASA Astrophysics Data System (ADS)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of <2 microns. Thin-film membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to <50 nm. Additionally, these membranes may be non-porous or porous (with controllable pore sizes from 200 nm to <5 nm), for sophisticated size-based separations. With previous and current support from the NIH SBIR program, we have built several unique devices, and demonstrated improved separations, cell culturing, and imaging (optical and electron microscopy) versus standard products. Being ceramic, the material is much more robust to demanding environments (e.g. high and low temperatures and organic solvents), compared to polymer-based devices. Additionally, we have applied multiple surface modification techniques, including atomic layer deposition, to manipulate properties such as electrical conductivity. This microfabrication technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  17. Hybrid Cleaning Technology for Enhanced Post-Cu/Low-Dielectric Constant Chemical Mechanical Planarization Cleaning Performance

    NASA Astrophysics Data System (ADS)

    Ramachandran, Manivannan; Cho, Byoung-Jun; Kwon, Tae-Young; Park, Jin-Goo

    2013-05-01

    During chemical mechanical planarization (CMP), a copper/low-k surface is often contaminated by abrasive particles, organic materials and other additives. These contaminants need to be removed in the subsequent cleaning process with minimum material loss. In this study, a dilute amine-based alkaline cleaning solution is used along with physical force in the form of megasonic energy to remove particles and organic contaminants. Tetramethylammonium hydroxide (TMAH) and monoethanolamine (MEA) are used as an organic base and complexing agent, respectively, in the proposed solution. Ethanolamine acts as a corrosion inhibitor in the solution. Organic residue removal was confirmed through contact angle measurements and X-ray photoelectron spectroscopy analysis. Electrochemical studies showed that the proposed solution increases protection against corrosion, and that the hybrid cleaning technology resulted in higher particle removal efficiency from both the copper and low-k surfaces.

  18. Wafer-level packaging and direct interconnection technology based on hybrid bonding and through silicon vias

    NASA Astrophysics Data System (ADS)

    Kühne, Stéphane; Hierold, Christofer

    2011-08-01

    The presented wafer-level packaging technology enables the direct integration of electrical interconnects during low-temperature wafer bonding of a cap substrate featuring through silicon vias (TSVs) onto a MEMS device wafer. The hybrid bonding process is based on hydrophilic direct bonding of plasma-activated Si/SiO2 surfaces and the simultaneous interconnection of the device metallization layers with Cu TSVs by transient liquid phase (TLP) bonding of ultra-thin AuSn connects. The direct bond enables precise geometry definition between device and cap substrate, whereas the TLP bonding does not require a planarization of the interconnect metallization before bonding. The complete process flow is successfully validated and the fabricated devices' characterization evidenced ohmic interconnects without interfacial voids in the TLP bond.

  19. Application of hybrid life cycle approaches to emerging energy technologies--the case of wind power in the UK.

    PubMed

    Wiedmann, Thomas O; Suh, Sangwon; Feng, Kuishuang; Lenzen, Manfred; Acquaye, Adolf; Scott, Kate; Barrett, John R

    2011-07-01

    Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy. PMID:21649442

  20. Molecular detection of harmful algal blooms (HABs) using locked nucleic acids and bead array technology

    PubMed Central

    Diaz, Mara R.; Jacobson, James W.; Goodwin, Kelly D.; Dunbar, Sherry A.; Fell, Jack W.

    2010-01-01

    Harmful algal blooms (HABs) are a serious public health risk in coastal waters. As the intensity and frequency of HABs continue to rise, new methods of detection are needed for reliable identification. Herein, we developed a high-throughput, multiplex, bead array technique for the detection of the dinoflagellates Karenia brevis and Karenia mikimotoi. The method combined the Luminex detection system with two novel technologies: locked nucleic acid–modified oligonucleotides (LNA) and Mirus Label IT® nucleic acid technology. To study the feasibility of the method, we evaluated the performance of modified and unmodified LNA probes with amplicon targets that were biotin labeled with two different strategies: direct chemical labeling (Mirus Label IT) versus enzymatic end-labeling (single biotinylated primer). The results illustrated that LNA probes hybridized to complementary single-stranded DNA with better affinity and displayed higher fluorescence intensities than unmodified oligonucleotide DNA probes. The latter effect was more pronounced when the assay was carried out at temperatures above 53°C degree. As opposed to the enzymatic 5′ terminal labeling technique, the chemical-labeling method enhanced the level of fluorescence by as much as ~83%. The detection limits of the assay, which were established with LNA probes and Mirus Label IT system, ranged from 0.05 to 46 copies of rRNA. This high-throughput method, which represents the first molecular detection strategy to integrate Luminex technology with LNA probes and Mirus Label IT, can be adapted for the detection of other HABs and is well suited for the monitoring of red tides at pre-blooming and blooming conditions. PMID:21165155

  1. Enzymatic Amplification of DNA/RNA Hybrid Molecular Beacon Signaling in Nucleic Acid Detection

    PubMed Central

    Jacroux, Thomas; Rieck, Daniel C.; Cui, Rong; Ouyang, Yexin; Dong, Wen-Ji

    2012-01-01

    A rapid assay operable under isothermal or non-isothermal conditions is described wherein the sensitivity of a typical molecular beacon (MB) system is improved by utilizing thermostable RNase H to enzymatically cleave an MB comprised of a DNA stem and RNA loop (R/D-MB). Upon hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (~5.7x above background) due to an opening of the probe and concomitant reduction in the Förster resonance energy transfer efficiency. Addition of thermostable RNase H resulted in the cleavage of the RNA loop which eliminated energy transfer. The cleavage step also released bound target DNA, enabling it to bind to another R/D-MB probe and rendering the approach a cyclic amplification scheme. Full processing of R/D-MBs maximized the fluorescence signal to the fullest extent possible (12.9x above background), resulting in a ~2–2.8 fold increase in the signal-to-noise ratio observed isothermally at 50 °C following the addition of RNase H. The probe was also used to monitor real-time PCR reactions by measuring enhancement of donor fluorescence upon R/D-MB binding to amplified pUC19 template dilutions. Hence, the R/D-MB-RNase H scheme can be applied to a broad range of nucleic acid amplification methods. PMID:23000602

  2. Enzymatic amplification of DNA/RNA hybrid molecular beacon signaling in nucleic acid detection.

    PubMed

    Jacroux, Thomas; Rieck, Daniel C; Cui, Rong; Ouyang, Yexin; Dong, Wen-Ji

    2013-01-15

    A rapid assay operable under isothermal or nonisothermal conditions is described, where the sensitivity of a typical molecular beacon (MB) system is improved by using thermostable RNase H to enzymatically cleave an MB composed of a DNA stem and an RNA loop (R/D-MB). On hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (~5.7× above background) due to an opening of the probe and a concomitant reduction in the Förster resonance energy transfer efficiency. The addition of thermostable RNase H resulted in the cleavage of the RNA loop, which eliminated energy transfer. The cleavage step also released bound target DNA, enabling it to bind to another R/D-MB probe and rendering the approach a cyclic amplification scheme. Full processing of R/D-MBs maximized the fluorescence signal to the fullest extent possible (12.9× above background), resulting in an approximately 2- to 2.8-fold increase in the signal-to-noise ratio observed isothermally at 50 °C following the addition of RNase H. The probe was also used to monitor real-time polymerase chain reactions by measuring enhancement of donor fluorescence on R/D-MB binding to amplified pUC19 template dilutions. Hence, the R/D-MB-RNase H scheme can be applied to a broad range of nucleic acid amplification methods. PMID:23000602

  3. Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method

    PubMed Central

    Machado, António; Castro, Joana; Cereija, Tatiana; Almeida, Carina

    2015-01-01

    Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6–99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis. PMID:25737820

  4. Material balance studies with continuous SSF for ethanol production using dilute-acid pretreated hybrid popular

    SciTech Connect

    Kadam, K.L.; Hayward, T.K.; Philippidis, G.P.

    1995-10-01

    Simultaneous saccharification and fermentation (SSF) is a leading process option for converting lignocellulosic biomass to ethanol. Economic industrial production of ethanol by SSF would likely require a continuous mode of operation, and development of a database on continuous SSF using industrial substrates is essential. To this end, a single-stage continuous SSF system was designed and used for studying ethanol production by Saccharomyces cerevisiae strain D{sub 5}A with dilute-acid preheated hybrid poplar as substrate. Material balance studies were conducted using the bench-scale system; the objectives of these studies were to gain insight into how the cells allocate carbon and to account for all the substrate flowing through the system. It was possible to close the total mass and carbon balances with {+-}3% accuracy, which is within the limits of experimental error. In a typical continuous SSF run, about 57% of the consumed carbon was used to produce ethanol and less than 1% to synthesize cell mass; thus the majority of carbon flow was to ethanol. The ethanol yields based on consumed substrate and volumetric productivities were in the range of 85% and 0.2 g ethanol/l{times}h, respectively; both values are within the expectations for a nearterm biomass-to-ethanol process. In the single-stage system used, continuous inoculation was not needed even for whole-slurry fermentations; this has significant economic implications since the inoculum cost can be significant.

  5. Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method.

    PubMed

    Machado, António; Castro, Joana; Cereija, Tatiana; Almeida, Carina; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6-99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis. PMID:25737820

  6. Mapping the regioisomeric distribution of fatty acids in triacylglycerols by hybrid mass spectrometry[S

    PubMed Central

    Nagy, Kornél; Sandoz, Laurence; Destaillats, Frédéric; Schafer, Olivier

    2013-01-01

    This study describes the use of hybrid mass spectrometry for the mapping, identification, and semi-quantitation of triacylglycerol regioisomers in fats and oils. The identification was performed based on the accurate mass and fragmentation pattern obtained by data-dependent fragmentation. Quantitation was based on the high-resolution ion chromatograms, and relative proportion of sn-1(3)/sn-2 regioisomers was calculated based on generalized fragmentation models and the relative intensities observed in the product ion spectra. The key performance features of the developed method are inter-batch mass accuracy < 1 ppm (n = 10); lower limit of detection (triggering threshold) 0.1 μg/ml (equivalent to 0.2 weight % in oil); lower limit of quantitation 0.2 μg/ml (equivalent to 0.4 weight % in oil); peak area precision 6.5% at 2 μg/ml concentration and 15% at 0.2 μM concentration; inter-batch precision of fragment intensities < 1% (n = 10) independent of the investigated concentration; and averaged accuracy using the generic calibration 3.8% in the 1–10 μg/ml range and varies between 1–23% depending on analytes. Inter-esterified fat, beef tallow, pork lard, and butter fat samples were used to show how well regioisomeric distribution of palmitic acid can be captured by this method. PMID:23093552

  7. To Hybrid or Not to Hybrid, that Is the Question! Incorporating VoiceThread Technology into a Traditional Communication Course

    ERIC Educational Resources Information Center

    Pecot-Hebert, Lisa

    2012-01-01

    A hybrid course, which combines the face-to-face interactions of a traditional course with the flexibility of an online course, provides an alternative option for educating students in a new media environment. While educators often interact with their students through various electronic learning management systems that are set up within the…

  8. Synthesis and biological evaluation of boswellic acid-NSAID hybrid molecules as anti-inflammatory and anti-arthritic agents.

    PubMed

    Shenvi, Suvarna; Kiran, K R; Kumar, Krishna; Diwakar, Latha; Reddy, G Chandrasekara

    2015-06-15

    Methyl esters of the β-boswellic acid (BA) and 11-keto-β-boswellic acid (KBA) obtained from Boswellia serrata resin were subjected to Steglich esterification with the different non-steroidal anti-inflammatory drugs (NSAID) viz., ibuprofen, naproxen, diclophenac and indomethacin. The novel hybrids of methyl boswellate (5-8) and that of methyl 11-keto boswellate (9-12) were evaluated for anti-inflammatory activity by carrageenan-induced rat hind paw edema model and anti-arthritic activity by Complete Freund's Adjuvant (CFA) induced arthritis in Wister albino rat. Significant inhibition on carrageenan-induced paw edema has been observed with 5, 6 and 10 where as in CFA induced rats, hybrids 5, 8, 9 and 12 exhibited pronounced antiarthritic activity. Hybrid molecules 5 and 9 have been found to be more effective in inhibiting in-vivo COX-2 than ibuprofen by itself, thus showing the synergistic effect. Hybrid 5 and 9 tested for in-vitro lipoxygenase and cyclooxygenase-2 (LOX/COX-2) inhibitory activity. The studies revealed that both 5 and 9 inhibited COX-2 relatively better than LOX enzyme. PMID:26010018

  9. Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohang; Wang, Yuan; Cai, Ling; Zhou, Yinghui

    2015-10-01

    Based on the current models of phosphoric acid fuel cells (PAFCs) and thermoelectric generators (TGs), a new hybrid system is proposed, in which the effects of multi-irreversibilities resulting from the activation, concentration, and ohmic overpotentials in the PAFC, Joule heat and heat leak in the TG, finite-rate heat transfer between the TG and the heat reservoirs, and heat leak from the PAFC to the environment are taken into account. Expressions for the power output and efficiency of the PAFC, TG, and hybrid system are analytically derived and directly used to discuss the performance characteristics of the hybrid system. The optimal relationship between the electric currents in the PAFC and TG is obtained. The maximum power output is numerically calculated. It is found that the maximum power output density of the hybrid system will increase about 150 Wm-2, compared with that of a single PAFC. The problem how to optimally match the load resistances of two subsystems is discussed. Some significant results for practical hybrid systems are obtained.

  10. Lead-acid batteries for micro- and mild-hybrid applications

    NASA Astrophysics Data System (ADS)

    Valenciano, J.; Fernández, M.; Trinidad, F.; Sanz, L.

    Car manufactures have announced the launch in coming months of vehicles with reduced emissions due to the introduction of new functions like stop-start and regenerative braking. Initial performance request of automotive lead-acid batteries are becoming more and more demanding and, in addition to this, cycle life with new accelerated ageing profiles are being proposed in order to determine the influence of the new functions on the expected battery life. This paper will show how different lead-acid battery technologies comply with these new demands, from an improved version of the conventional flooded SLI battery to the high performance of spiral wound valve-regulated lead-acid (VRLA) battery. Different approaches have been studied for improving conventional flooded batteries, i.e., either by the addition of new additives for reducing electrolyte stratification or by optimisation of the battery design to extend cycling life in partial state of charge conditions. With respect to VRLA technology, two different battery designs have been compared. Spiral wound design combines excellent power capability and cycle life under different depth of discharge (DoD) cycling conditions, but flat plate design outperform the latter in energy density due to better utilization of the space available in a prismatic enclosure. This latter design is more adequate for high end class vehicles with high electrical energy demand, whereas spiral wound is better suited for high power/long life demand of commercial vehicle. High temperature behaviour (75 °C) is rather poor for both designs due to water loss, and then VRLA batteries should preferably be located out of the engine compartment.

  11. Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe.

    PubMed

    Nakada, Yuji; Nakaba, Satoshi; Matsunaga, Hiroshi; Funada, Ryo; Yoshida, Makoto

    2013-01-01

    White rot fungus, Phanerochaete chrysosporium, and brown rot fungus, Postia placenta, grown on agar plates, were visualized by fluorescence in situ hybridization (FISH) using a peptide nucleic acid (PNA) probe. Mycelia grown on wood chips were also clearly detected by PNA-FISH following blocking treatment. To the best of our knowledge, this is the first report on the visualization of fungi in wood by FISH. PMID:23391931

  12. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were

  13. High capacitance hybrid organic-inorganic gate dielectrics for solution-processable electronic technologies

    NASA Astrophysics Data System (ADS)

    Everaerts, Ken

    Solution-processable materials offer enormous opportunity in designing lightweight, flexible, and low-cost electronic technologies. Dielectric materials and the different classes of semiconductors (derived from organics, inorganics, or nanomaterials) comprise the two most important components in transistors, which are the basic building blocks of all modern electronic devices. New semiconductors such as single-walled carbon nanotubes (SWCNTs) and inorganic amorphous oxide semiconductors (AOSs), including indium gallium zinc oxide (IGZO), are envisioned for high performance applications as a possible replacement for silicon within integrated circuits, display backplane technologies, or high throughput inkjet printing technologies that can be low in cost and waste. These new semiconductors, amongst others, require corresponding advances in gate dielectric materials to support optimum device function. Herein we describe research surrounding the advancement of organic-inorganic hybrid gate dielectric materials for use in thin-film transistor (TFT) architectures. We describe the reasoning, the strategy, and the properties of a new hafnium oxide-based self-assembled nanodielectric (Hf-SAND), and examine in detail the chemical structure/formation, and electronic performance. Record setting capacitance can be achieved by using thin multilayers of Hf-SAND (1.1 μF/cm2). Application of this new dielectric to the aforementioned SWCNT and IGZO semiconductors in an effort to demonstrate technological feasibility, yield record field-effect mobilities (20-130 cm2V-1s-1) and large ON state transconductances (up to 5 mS) at very low operating voltages (< 3 V), while retaining the ability to be processed completely from solution and in ambient atmosphere. These TFT performance metrics are examined in detail, and placed in perspective in relation to the Hf-SAND dielectric properties. Finally, we present some forward looking statements to help identify further opportunities for

  14. Factors affecting detection of PVY in dormant tubers by reverse transcription polymerase chain reaction and nucleic acid spot hybridization.

    PubMed

    Singh, M; Singh, R P

    1996-06-01

    A reverse transcription polymerase chain reaction (RT-PCR) protocol was developed using two 20-mer primers located in nuclear inclusion genes NIa and NIb of potato virus Y (PVY). A 1017 bp PCR-product was detected in dormant potato tubers, infected with PVY(O), but not in tubers from healthy plants. The PCR product was specific to PVY, as determined by Southern blot detection by hybridization with a PVY(O)-specific probe. As little as 1 pg of purified PVY(O)-RNA can be detected after RT-PCR amplification. The presence of phenolics or polysaccharides in tuber nucleic acids inhibited PVY(O) amplification, which was eliminated by diluting nucleic acid preparations prior to cDNA synthesis, modifying the nucleic acid extraction procedure by isopropanol precipitation and using phosphate-buffered saline-Tween in the cDNA mix. Potato cultivars differed in PVY(O) concentration in tubers as much as 128-fold. Tuber parts used for nucleic acid extractions were important in potato cultivars with low virus titres and did not result in reduced detection of PVY(O) by both nucleic acid spot hybridization and RT-PCR, but RT-PCR band intensity was lower at longer storage periods. The primer pair developed in this study exhibited broad specificities with field isolates from Peru, Scotland and North America. PMID:8795005

  15. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. PMID:26652418

  16. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility

    PubMed Central

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph

    2014-01-01

    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical

  17. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.

    PubMed

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph

    2014-01-01

    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical

  18. Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology

    NASA Astrophysics Data System (ADS)

    Jerábek, Vitezslav; Hüttel, Ivan; Prajzler, Václav; Busek, K.; Seliger, P.

    2008-11-01

    We report about design and construction of the bidirectional transceiver TRx module for subscriber part of the passive optical network PON for a fiber to the home FTTH topology. The TRx module consists of a epoxy novolak resin polymer planar lightwave circuit (PLC) hybrid integration technology with volume holographic grating triplex filter VHGT, surface-illuminated photodetectors and spot-size converted Fabry-Pérot laser diode in SMD package. The hybrid PLC has composed from a two parts-polymer optical waveguide including VHGT filter section and a optoelectronic microwave section. The both parts are placed on the composite substrate.

  19. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    SciTech Connect

    Jokstad, Håkon; Boring, Ronald

    2015-02-01

    recently assisted INL in establishing the technical infrastructure for implementation of HSI prototypes from HAMMLAB into the HSSL to demonstrate relevant control room replacement systems in support of the LWRS program. In March, 2014, IFE delivered the first HSI prototype utilizing this infrastructure — a large screen overview display for INL's simulator. The co-operation now continues by developing Procedure Support Displays targeted for operators in hybrid control room settings. These prototypes are being validated with U.S. reactor operators in the HSSL and optimized to enhance their performance. This research serves as a crucial stepping stone toward incorporation of advanced display technologies into conventional main control rooms.

  20. Integrated optical components using hybrid organic-inorganic materials prepared by sol-gel technology

    NASA Astrophysics Data System (ADS)

    Mishechkin, Oleg Viktorovich

    2003-10-01

    A technological platform based on low-temperature hybrid sol-gel method for fabrication of optical waveguides and integrated optical components has been developed. The developed chemistry for doping incorporation in the host network provides a range of refractive indexes (1.444--1.51) critical for device optimization. A passivation method for improving long-term stability of organic-inorganic sol-gel material is reported. The degradation of waveguide loss over time due to moisture adsorption from the atmosphere is drastically suppressed by coating the material with a protective thin SiO2 film. The results indicate a long-term optical loss below 0.3 dB/cm for protected waveguides. The theory of multimode interference couplers employing self-imaging effect is described. A novel approach for design of high-performance MMI devices in low-contrast material is proposed. The design method is based on optimization of refractive index contrast and width of a multimode waveguide (the body of MMI couplers) to achieve a maximum number of constructively interfering modes resulting to the best self-imaging. This optimization is carried out using 3D BPM simulations. This method was applied to design 1 x 4, 1 x 12, and 4 x 4 MMI couplers and led to a superior performance in excess loss, power imbalance in output ports, and polarization sensitivity. Taking advantage of the inherent input-output phase relations in a 4 x 4 MMI coupler, an optical 90° hybrid is realized by incorporation a Y-junction to coherently excite two ports of the coupler. A series of MMI couplers were fabricated and characterized. The experimental results are in good agreement with the design. Measured performance of the sol-gel derived MMI components was compared to analogues fabricated by other technologies. The comparison demonstrates the superior performance of the sol-gel devices. The polarization sensitivity of all fabricated couplers is below 0.05 dB.

  1. Synthesis and antiproliferative activity of two diastereomeric lignan amides serving as dimeric caffeic acid-l-DOPA hybrids.

    PubMed

    Magoulas, George E; Rigopoulos, Andreas; Piperigkou, Zoi; Gialeli, Chrysostomi; Karamanos, Nikos K; Takis, Panteleimon G; Troganis, Anastassios N; Chrissanthopoulos, Athanassios; Maroulis, George; Papaioannou, Dionissios

    2016-06-01

    Two new diastereomeric lignan amides (4 and 5) serving as dimeric caffeic acid-l-DOPA hybrids were synthesized. The synthesis involved the FeCl3-mediated phenol oxidative coupling of methyl caffeate to afford trans-diester 1a as a mixture of enantiomers, protection of the catechol units, regioselective saponification, coupling with a suitably protected l-DOPA derivative, separation of the two diastereomers thus obtained by flash column chromatography and finally global chemoselective deprotection of the catechol units. The effect of hybrids 4 and 5 and related compounds on the proliferation of two breast cancer cell lines with different metastatic potential and estrogen receptor status (MDA-MB-231 and MCF-7) and of one epithelial lung cancer cell line, namely A-549, was evaluated for concentrations ranging from 1 to 256μM and periods of treatment of 24, 48 and 72h. Both hybrids showed interesting and almost equipotent antiproliferative activities (IC50 64-70μM) for the MDA-MB-231 cell line after 24-48h of treatment, but they were more selective and much more potent (IC50 4-16μM) for the MCF-7 cells after 48h of treatment. The highest activity for both hybrids and both breast cancer lines was observed after 72h of treatment (IC50 1-2μM), probably as the result of slow hydrolysis of their methyl ester functions. PMID:27155809

  2. Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection

    PubMed Central

    Chou, Cheng-Chung; Huang, Yi-Han

    2012-01-01

    This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection. PMID:23211753

  3. The optimisation of grid designs for valve-regulated lead/acid batteries for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    May, G. J.; Maleschitz, N.; Diermaier, H.; Haeupl, T.

    The design, construction and testing of valve-regulated lead/acid cells with grid designs optimised for high-rate partial state-of-charge cycling for hybrid electric vehicles are described. Computer modelling was used to develop the grid designs. This showed that designs with opposed tabs and terminals on the top and bottom of the cell were likely to have the best performance not only in terms of grid conductivity but also for uniformity of active material utilisation. Prototype cells were built and tested. Low rate performance was in line with the designs and the high-rate performance was substantially enhanced compared with conventional constructions. The cells were then tested to a shallow cycling regime and to a simplified hybrid electric vehicle cycle. The results showed excellent life under these conditions without the benefit of carbon or graphite additives to the negative active material that have also been shown to improve cycle life under these conditions.

  4. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies.

    PubMed

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-01-01

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies. PMID:26876901

  5. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    DOE PAGESBeta

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-15

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states maymore » be harnessed for the realization of qubits. As a result, the strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.« less

  6. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    PubMed Central

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-01-01

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies. PMID:26876901

  7. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    NASA Astrophysics Data System (ADS)

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-01

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.

  8. Reactive dye house wastewater treatment. Use of hybrid technology: Membrane, sonication followed by wet oxidation

    SciTech Connect

    Dhale, A.D.; Mahajani, V.V.

    1999-05-01

    To address problems associated with treatment of an aqueous waste stream from a reactive dye house, a model dye, turquoise blue CI25, was studied. A hybrid technology, membrane separation followed by sonication and wet oxidation, has been demonstrated to treat the wastewater for reuse and discharge. Experiments were first performed with the reactive dye solution in water. A nanofiltration membrane (MPT 30) was found to be suitable to concentrate the dye. The concentrate was then treated with a wet oxidation process. Kinetics studies were performed with and without catalyst, in the temperature range of 170--215 C. The color destruction achieved was > 99%. After process parameters were fixed, studies were conducted with the actual dye waste stream. The actual waste stream was found to be refractory for wet oxidation under the above conditions. Sonication of the concentrate obtained after membrane filtration, in the presence of CuSO{sub 4}, made the waste stream amenable to wet oxidation. Sonication followed by wet oxidation was found to be more effective at near neutral conditions as compared to basic conditions.

  9. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering

    PubMed Central

    Nandakumar, Anandkumar; Barradas, Ana; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering. PMID:23507924

  10. Human papillomavirus 35 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorincz, A.T.

    1989-07-18

    This patent describes an HPV 35 hybridization probe comprising a member selected from the group consisting of (i) HPV 35 DNA or fragments thereof labelled with a marker and (ii) HPV 35 RNA or fragments thereof labelled with a marker.

  11. Human papillomavirus 56 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorinez, A.T.

    1990-03-13

    This patent describes an HPV 56 hybridization probe. It comprises: a member selected from the group consisting of HPV 56 DNA or fragments thereof labelled with a marker and HPV 56 RNA or fragments thereof labelled with a marker.

  12. Human papillomavirus 44 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorincz, A.T.

    1989-07-18

    This patent describes an HPV 44 hybridization probe comprising a member selected from the group consisting of (1) HPV 44 DNA or fragments thereof labelled with a marker and (ii) HPV 44 RNA or fragments thereof labelled with a marker.

  13. Human papillomavirus 43 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorincz, A.T.

    1989-07-18

    This patent describes an HPV 43 hybridization probe comprising a member selected from the group consisting of (i) HPV 43 DNA or fragments thereof labelled with a marker and (ii) HPV 43 RNA or fragments thereof labelled with a marker.

  14. Recent developments in lead-acid battery technology in Japan

    SciTech Connect

    Shimizu, K.

    1987-12-01

    Japan ranks second to the US in the free world in battery manufacturing. This is a result of the rapid growth in production volume resulting from quick acceleration of equipment investment and manpower reduction to meet the market demand. It has also gotten closer to the development activities to open new markets for battery applications, since the lead-acid battery industry has been bolstered and has benefited from the explosion in demand and production within recent years. Keeping pace with a wide diversity of customized requirements, a demanding schedule has been started in order to promote high-energy-density lead-acid battery development. This article reviews the battery situation in Japan in sections devoted to the following: automotive lead-acid batteries; industrial lead-acid batteries; electric-vehicle batteries; and load-leveling batteries. 9 references, 7 figures, 10 tables.

  15. Interface engineering of hybrid perovskite solar cells with poly(3-thiophene acetic acid) under ambient conditions.

    PubMed

    Shit, Arnab; Nandi, Arun K

    2016-04-21

    The properties of methyl ammonium lead iodide (MAPbI3) perovskite solar cells with poly(3-thiophene acetic acid) (P3TAA) as a hole transporting material (HTM) and a dense layer of ZnO nanoparticle film as an electron transporting material (ETM) are described using the conventional ZnO (n)/perovskite (i)/P3TAA (p) (n-i-p) architecture. The FT-IR spectra of a MAPbI3/P3TAA mixture indicate a shift of the N-H stretching and the abolition of the N-H bending peak indicating the interaction between the components. UV-Vis spectra of the mixture exhibit a large red shift of the π-π* transition peak of the conjugated chain arising from the interaction causing an increase of the conjugation length. The cross-sectional SEM image of the device shows the sequence of the individual layers of ZnO, MAPbI3, P3TAA and Ag, respectively. The current density (J)-voltage (V) curves obtained upon illumination with a light of 100 mW cm(-2) indicate the average PCE to be 7.38 ± 0.59% under ambient conditions. The IPCE values of these cells reach about 63% across a broad range of wavelength (300-800 nm). The HOMO and the LUMO of P3TAA are measured using cyclic voltammetry and the optical band gap and the relative energy level of the components explain the operation of photocurrent in the cell. For comparison purposes a device using poly(3-hexyl thiophene) (P3HT) as the HTM is fabricated under similar conditions and it exhibits a lower PCE (5.85 ± 0.51%) than that of the P3TAA based device. The longevity of the P3TAA based cell is also found to be better than that of the P3HT based cell for storing in air. The UV-Vis and impedance spectral results clearly explain the above results, signifying the influence of the interface on the performance of hybrid solar cells. PMID:27020145

  16. A hybrid of ant colony optimization and minimization of metabolic adjustment to improve the production of succinic acid in Escherichia coli.

    PubMed

    Chong, Shiue Kee; Mohamad, Mohd Saberi; Mohamed Salleh, Abdul Hakim; Choon, Yee Wen; Chong, Chuii Khim; Deris, Safaai

    2014-06-01

    This paper presents a study on gene knockout strategies to identify candidate genes to be knocked out for improving the production of succinic acid in Escherichia coli. Succinic acid is widely used as a precursor for many chemicals, for example production of antibiotics, therapeutic proteins and food. However, the chemical syntheses of succinic acid using the traditional methods usually result in the production that is far below their theoretical maximums. In silico gene knockout strategies are commonly implemented to delete the gene in E. coli to overcome this problem. In this paper, a hybrid of Ant Colony Optimization (ACO) and Minimization of Metabolic Adjustment (MoMA) is proposed to identify gene knockout strategies to improve the production of succinic acid in E. coli. As a result, the hybrid algorithm generated a list of knockout genes, succinic acid production rate and growth rate for E. coli after gene knockout. The results of the hybrid algorithm were compared with the previous methods, OptKnock and MOMAKnock. It was found that the hybrid algorithm performed better than OptKnock and MOMAKnock in terms of the production rate. The information from the results produced from the hybrid algorithm can be used in wet laboratory experiments to increase the production of succinic acid in E. coli. PMID:24763079

  17. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    Reducing cost and increasing reliability were the technology drivers in both the electric utility and on-site integrated energy system applications. The longstanding barrier to the attainment of these goals was materials. Differences in approaches and their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection, and system design philosophy were discussed.

  18. Growth, body composition, immune response and resistance to Streptococcus iniae of hybrid tilapia, Oreochromis niloticus x O. aureaus, fed diets containing various levels of linoleic and linolenic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of various levels of dietary linoleic (LA) and linolenic acids (LN) on growth, body proximate and fatty acid composition, immune response and resistance to Streptococcus iniae of juvenile, sex-reversed all-male hybrid tilapia, Oreochromis niloticus x O. areaus, were evaluated. A basal pu...

  19. Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation

    NASA Astrophysics Data System (ADS)

    Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team

    2014-10-01

    It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER

  20. Adventure Learning: Educational, Social, and Technological Affordances for Collaborative Hybrid Distance Education

    ERIC Educational Resources Information Center

    Doering, Aaron; Miller, Charles; Veletsianos, George

    2008-01-01

    Adventure learning (AL) is a hybrid distance education approach that provides students with opportunities to explore real-world issues through authentic learning experiences within collaborative learning environments. Within hybrid environments, designers habitually attempt to replicate traditional classroom pedagogy resulting in experiences that…

  1. Electric and hybrid electric vehicle technologies. Quarterly report, 1 October--31 December 1998

    SciTech Connect

    1998-12-01

    The goal of the project is to assess the impact of heavy-duty hybrid vehicles on reducing the emissions of greenhouse gases and criteria pollutants associated with internal combustion engines. The study also quantifies the fuel economy benefits of various hybrid configurations.

  2. INTERACTIVE ABANDONED MINE LANDS WORKSHOP SERIES - ACID MINE WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    The purpose of this interactive workshop is to present and discuss active and passive acid mine wastes cleanup technologies and to discuss the apparent disconnect between their development and their implementation. The workshop addressed five main barriers to implementing innovat...

  3. Preparation of hydroxyapatite/poly(lactic acid) hybrid microparticles for local drug delivery

    NASA Astrophysics Data System (ADS)

    Loca, D.; Locs, J.; Berzina-Cimdina, L.

    2013-12-01

    Calcium phosphate (CaP) bioceramic is well known as bioactive and biocompatible material in bone tissue regeneration applications. Apatitic CaP, especially nano sized hydroxyapatite (NHAp), is more similar to the natural apatite presented in the bone tissue than CaP bioceramics. In the current research NHAp was modified using biodegradable polymer - poly(lactic acid) (PLA) to develop composites providing bone regeneration and local drug delivery. NHAp/PLA microcapsules were prepared using solid-in-water-in-oil-in-water (s/w1/o/w2) encapsulation technology. The impact of primary and secondary emulsion stability on the emulsion droplet and microparticle properties was evaluated. The stability of final emulsion can be increased by varying the process parameters. Stable s/w1/o/w2 emulsion using 3ml of NHAp suspension, not less than 100ml of 4% PVA water solution and 10ml of 10% PLA solution in dichloromethane can be obtained. S/w1/o/w2 microencapuslation method can be effectively used for the preparation of multi-domain microcapsules achieving high NHAp encapsulation efficacy (93%).

  4. Development of Acetic Acid Removal Technology for the UREX+Process

    SciTech Connect

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  5. Localization of glucocorticoid receptor messenger ribonucleic acid in hippocampus of rat brain using in situ hybridization.

    PubMed

    Yang, G; Matocha, M F; Rapoport, S I

    1988-08-01

    An in situ hybridization procedure was applied to quantify glucocorticoid receptor (GR) mRNAs in the hippocampus of rat brain. Hybridization was carried out using a radiolabeled antisense probe complementary to the rat liver GR gene. The specificity of the method was validated by showing: 1) a high cellular grain density in sections hybridized with an antisense but not a sense probe; 2) agreement between the experimental and theoretical temperature at which 50% of the hybrids melted, and 3) a high signal distribution of GR mRNA in the hippocampus, a region of brain known to preferentially concentrate steroid hormones. Within the hippocampus, however, subregional differences in hybridization densities were observed. Quantitative autoradiography indicated that the average neuronal silver grain number was highest in the pyramidal cell layers of CA2 and CA4 and lowest in those of CA1 and CA3. Also, there was a significant difference in the average grain number between all of the cell fields except for that between CA2 and CA4. These results show that contiguous but neuroanatomically distinct cell fields of the hippocampus express different levels of GR transcripts, and indicate that differential regulation of GR expression occurs in subpopulations of hippocampal neurons. PMID:3211154

  6. Localization of glucocorticoid receptor messenger ribonucleic acid in hippocampus of rat brain using in situ hybridization

    SciTech Connect

    Yang, G.; Matocha, M.F.; Rapoport, S.I.

    1988-08-01

    An in situ hybridization procedure was applied to quantify glucocorticoid receptor (GR) mRNAs in the hippocampus of rat brain. Hybridization was carried out using a radiolabeled antisense probe complementary to the rat liver GR gene. The specificity of the method was validated by showing: 1) a high cellular grain density in sections hybridized with an antisense but not a sense probe; 2) agreement between the experimental and theoretical temperature at which 50% of the hybrids melted, and 3) a high signal distribution of GR mRNA in the hippocampus, a region of brain known to preferentially concentrate steroid hormones. Within the hippocampus, however, subregional differences in hybridization densities were observed. Quantitative autoradiography indicated that the average neuronal silver grain number was highest in the pyramidal cell layers of CA2 and CA4 and lowest in those of CA1 and CA3. Also, there was a significant difference in the average grain number between all of the cell fields except for that between CA2 and CA4. These results show that contiguous but neuroanatomically distinct cell fields of the hippocampus express different levels of GR transcripts, and indicate that differential regulation of GR expression occurs in subpopulations of hippocampal neurons.

  7. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    Component development has resulted in routine molding of 12 in. by 17 in. bipolar plates with 80 percent acceptance. A 5 C per hour post-cure heating cycle for these plates was found to give blister free materials. Lowering the resin in a bipolar plate content from 32 percent to 22 percent decreases the resistivity more than 50 percent. Evaluation of the corrosion resistance of Novolak and Resol resins at 185 C in phosphoric acid indicates a slow etch. aerosol modified phenolics, however, decompose rapidly. Estimates of acid loss by the use of analytical expressions known as Margule, van Laar, and Wilson equations were not satisfactory. Experimental evaluation of the P4O10 vapor concentration of 103 wt percent acid at 191 C provided a value of 2 ppm. This value is based on a single experiment.

  8. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    A technique for producing an acid inventory control member by spraying FEP onto a partially screened carbon paper backing is discussed. Theoretical analysis of the acid management indicates that the vapor composition of 103% H3PO4 is approximately 1.0 ppm P4O10. An SEM evaluation of corrosion resistance of phenolic resins and graphite/phenolic resin composites in H3PO4 at 185 C shows specific surface etching. Carbonization of graphite/phenolic bipolar plates is achieved without blistering.

  9. Strong, Thermally Superinsulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin.

    PubMed

    Zhao, Shanyu; Malfait, Wim J; Demilecamps, Arnaud; Zhang, Yucheng; Brunner, Samuel; Huber, Lukas; Tingaut, Philippe; Rigacci, Arnaud; Budtova, Tatiana; Koebel, Matthias M

    2015-11-23

    Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica-biopolymer hybrids are a promising alternative. A one-pot process to monolithic, superinsulating pectin-silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed "neck-free" nanoscale network structure with thicker struts. Such a design is superior to "neck-limited", classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica-biopolymer nanocomposite aerogels. PMID:26447457

  10. Proton conductive inorganic-organic hybrid membranes functionalized with phosphonic acid for polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Umeda, Junji; Suzuki, Masashi; Kato, Masaki; Moriya, Makoto; Sakamoto, Wataru; Yogo, Toshinobu

    Proton conductive sol-gel derived hybrid membranes were synthesized from aromatic derivatives of methoxysilanes and ethyl 2-[3-(dihydroxyphosphoryl)-2-oxapropyl]acrylate (EPA). Two aromatic derivatives of methoxysilanes with different number of methoxy groups were used as the starting materials. Hybrid membranes from difunctional (methyldimethoxysilylmethyl)styrene (MDMSMS(D))/EPA revealed a higher chemical stability and mechanical properties than those from monofunctional (dimethylmethoxysilylmethyl)styrene (DMMSMS(M))/EPA. The membrane-electrode assembly (MEA) using the hybrid membranes as electrolytes worked as a fuel cell at 100 °C under saturated humidity. The DMMSMS(M)/EPA membrane-based MEA showed a larger current density than that from MDMSMS(D)/EPA. On the other hand, the MDMSMS(D)/EPA membrane-based MEA exhibited higher open circuit voltages than the DMMSMS(M)/EPA-based MEA, and was stable during fuel cell operation at 80 °C at least for 48 h.

  11. Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications.

    PubMed

    Shahverdi, Sheida; Hajimiri, Mirhamed; Esfandiari, Mohammad Amin; Larijani, Bagher; Atyabi, Fatemeh; Rajabiani, Afsaneh; Dehpour, Ahmad Reza; Gharehaghaji, Ali Akbar; Dinarvand, Rassoul

    2014-10-01

    Silk fibroin (SF) and poly(lactide-co-glycolic acid) (PLGA) have been proved to be invaluable polymers in the field wound healing. This study aims at optimizing the electrospinning process of those polymers to make a hybrid membrane as a chronic wounds dressing. After characterizing the scaffolds, PLGA/SF (2:1), and PLGA scaffolds were selected for further study according to their superior tensile mechanical properties. The attachment and proliferation of mouse fibroblasts (L929) on scaffolds were measured using colorimetric assay and scanning electron microscopy. Furthermore, to evaluate the wound healing effect of the scaffolds in comparison with gauze and Comfeel(®) dressings, an excision wound model was conducted on diabetic rats. On the postoperative days of 3, 6, 9, 12, and 15, residual wound area was calculated using macroscopic data. In vitro results showed that the attachment and proliferation of L929 were significantly increased on PLGA/SF (2:1) hybrid scaffold. Animal study and histopathological evaluation outcomes confirmed the in vitro results as well. On day 15, the residual wound area in PLGA/SF (2:1) hybrid membrane group was significantly smaller than PLGA and control groups. This promising scaffold has the potential to be used for the upcoming development of wound dressings with or without biological drugs. PMID:25051110

  12. LIME TREATMENT LAGOONS TECHNOLOGY FOR TREATING ACID MINE DRAINAGE

    EPA Science Inventory

    Active and inactive mines can produce runoff and drainage that are among the most environmentally damaging processes affecting land in the United States. Acid mine drainage (AMD) from mining sites across the country requires treatment because of high metal concentrations that exc...

  13. Synthesis and properties of poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite

    SciTech Connect

    Preda, N.; Rusen, E.; Musuc, A.; Enculescu, M.; Matei, E.; Marculescu, B.; Fruth, V.; Enculescu, I.

    2010-08-15

    The synthesis of a new hybrid composite based on PbS nanoparticles and poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid) [P(MMA-AMPSA)] copolymer is reported. The chemical synthesis consists in two steps: (i) a surfactant-free emulsion copolymerization between methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid and (ii) the generation of PbS particles in the presence of the P(MMA-AMPSA) latex, from the reaction between lead nitrate and thiourea. The composite was studied by scanning electron microscopy (SEM), X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The microstructure observed using SEM proves that the PbS nanoparticles are well dispersed in the copolymer matrix. The X-ray diffraction measurements demonstrate that the PbS nanoparticles have a cubic rock salt structure. It was also found that the inorganic semiconductor nanoparticles improve the thermal stability of the copolymer matrix.

  14. Functionally graded scaffolds for the engineering of interface tissues using hybrid twin screw extrusion/electrospinning technology

    NASA Astrophysics Data System (ADS)

    Erisken, Cevat

    Tissue engineering is the application of the principles of engineering and life sciences for the development of biological alternatives for improvement or regeneration of native tissues. Native tissues are complex structures with functions and properties changing spatially and temporally, and engineering of such structures requires functionally graded scaffolds with composition and properties changing systematically along various directions. Utilization of a new hybrid technology integrating the controlled feeding, compounding, dispersion, deaeration, and pressurization capabilities of extrusion process with electrospinning allows incorporation of liquids and solid particles/nanoparticles into polymeric fibers/nanofibers for fabrication of functionally graded non-woven meshes to be used as scaffolds in engineering of tissues. The capabilities of the hybrid technology were demonstrated with a series of scaffold fabrication and cell culturing studies along with characterization of biomechanical properties. In the first study, the hybrid technology was employed to generate concentration gradations of beta-tricalcium phosphate (beta-TCP) nanoparticles in a polycaprolactone (PCL) binder, between two surfaces of nanofibrous scaffolds. These scaffolds were seeded with pre-osteoblastic cell line (MC3T3-E1) to attempt to engineer cartilage-bone interface, and after four weeks, the tissue constructs revealed formation of continuous gradations in extracellular matrix akin to cartilage-bone interface in terms of distributions of mineral concentrations and biomechanical properties. In a second demonstration of the hybrid technology, graded differentiation of stem cells was attempted by using insulin, a known stimulator of chondrogenic differentiation, and beta-glycerol phosphate (beta-GP), for mineralization. Concentrations of insulin and beta-GP in PCL were controlled to monotonically increase and decrease, respectively, along the length of scaffolds, which were then seeded

  15. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  16. SITE PROGRAM EVALUATION OF INNOVATIVE ACID MINE DRAINAGE TREATMENT TECHNOLOGIES AT THE LEVIATHAN MINE SITE, CA

    EPA Science Inventory

    The EPA SITE Program is conducting a detailed sampling and evaluation of several innovative acid mine drainage treatment technologies at the Leviathan Mine Superfund site in California. Technologies include BiPhasic Lime Treatment Plant, an alkaline lagoon, and an innovative bio...

  17. MINE WASTE TECHNOLOGY PROGRAM PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT HIGHWALLS

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Program Activity III, Project 26, Prevention of Acid Mine Drainage Generation from Open-Pit Highwalls. The intent of this project was to obtain performance data on the ability of four technologies to prevent the gener...

  18. Systems for hybrid cars

    NASA Astrophysics Data System (ADS)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  19. High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybrid material as an enhanced electrochemical sensing platform.

    PubMed

    Lavanya, J; Gomathi, N

    2015-11-01

    A novel electrode material of graphene sheet/graphene nanoribbon (GS/GNR) hybrid material was developed by incorporating graphene nanoribbons into graphene nanosheets through simultaneous chemical reduction of graphene oxide sheets and graphene oxide ribbons. The structure and properties of synthesized GS/GNR were characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, Brunauer Emmett Teller measurements and Fourier transform infrared spectroscopy. This work compares the electro catalytic performance of the GS/GNR, chemically reduced graphene oxide sheets (CRGOS) and GS/carbon nanotube (CNT) by modifying the glassy carbon electrode (GCE) using ascorbic acid (AA) as analyte. The electrochemical impedance spectroscopy revealed that the charge transfer resistance of GS/GNR modified electrode was less than that of CRGOS modified electrode and bare GCE. The cyclic voltammetric sensing of GS/GNR modified electrode towards AA was negatively shifted (0.08 V) compared to CRGOS, GS/CNT modified electrode and bare GCE (0.222, 0.150 and 0.666 V). This catalytic oxidation allows an amperometric detection of AA with a detection limit of 230 nM and sensitivity of 22 nA μM(-1) cm(-2). GS/GNR modified GCE exhibited a high selectivity for ascorbic acid in the presence of other interferents like dopamine, uric acid and citric acid. PMID:26452874

  20. Energy technology and emissions control for acid rain abatement in Asia

    SciTech Connect

    Streets, D.G.

    1990-01-01

    After more than ten years of research, acid rain is a sufficiently serious problem in North America to warrant control action. The acid rain problem has become a threat to the Asian continent as well. Emissions of sulfur dioxide and nitrogen oxides are already high and announces plans for increases in coal use by countries in the region imply a major increase in emissions in the future. This will inevitably lead to greater incidence of acid rain and probably significant environmental damage in some locations. The purpose of this paper is to examine some of the issues relating to acid-rain-control technology in Asia and to suggest ways to include technology options in integrated simulation models of acid rain in Asia. 14 refs., 9 figs., 6 tabs. (FL)

  1. Testing of a 50-kW wind-diesel hybrid system at the National Wind Technology Center

    SciTech Connect

    Corbus, D.A.; Green, J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

    1996-07-01

    To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this paper include component characterization, such as power conversion losses for the rotary converter systems and battery round trip efficiencies. In addition, systems operation over this period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

  2. Ampholine-functionalized hybrid organic-inorganic silica material as sorbent for solid-phase extraction of acidic and basic compounds.

    PubMed

    Wang, Tingting; Chen, Yihui; Ma, Junfeng; Chen, Mingliang; Nie, Chenggang; Hu, Minjie; Li, Ying; Jia, Zhijian; Fang, Jianghua; Gao, Haoqi

    2013-09-20

    A novel sorbent for solid-phase extraction (SPE) was synthesized by chemical immobilization of ampholine on hybrid organic-inorganic silica material. The ampholine-functionalized hybrid organic-inorganic silica sorbent is consisted of aliphatic amine groups, carboxyl groups and long carbon chains, allowing for extraction of both acidic and basic compounds. The retention properties of the developed sorbent were evaluated for 1-hydroxy-2-naphthoic acid (HNA), 1-naphthoic acid (NA), 3-hydroxybenzoic acid (HBA), benzoic acid (BA), sorbic acid (SA), vanillic aldehyde (VA), butyl 4-hydroxybenzoate (BHB), propyl 4-hydroxybenzoate (PHB), ethyl 4-hydroxybenzoate (EHB), and methyl 4-hydroxybenzoate (MHB). The results show that such a sorbent has three types of interaction, i.e., electrostatic interaction, hydrophobic interaction, and hydrogen bonding, exhibiting high extraction efficiency towards the compounds tested. The adsorption capacities of the analytes ranged from 0.61 to 6.54μgmg(-1). The reproducibility of the sorbent preparation was evaluated at three spiking concentration levels, with relative standard deviations (RSDs) of 1.0-10.5%. The recoveries of ten acidic and basic compounds spiked in beverage Coca-Cola(®) sample ranged from 82.5% to 98.2% with RSDs less than 5.8%. Under optimum conditions, the ampholine-functionalized hybrid organic-inorganic silica sorbent rendered higher extraction efficiency for acidic compounds than that of the commercially available ampholine-functionalized silica particles, and was comparable to that of the commercial Oasis WAX and Oasis WCX. PMID:23953713

  3. Novel Thiosemicarbazide Hybrids with Amino Acids and Peptides Against Hepatocellular Carcinoma: A Molecular Designing Approach Towards Multikinase Inhibitor.

    PubMed

    Chacko, Shinu; Samanta, Subir

    2015-01-01

    Hepatocellular Carcinoma is the most common primary malignant tumor of the liver. Development of multidrug resistance is the main obstacle to the success of anticancer drugs. In this study, designing and docking study of thiosemicarbazide hybrids with amino acids or peptides against hepatocellular carcinoma was performed since hybrids of biologically active compounds with amino acids or peptides may show target specificity and lower toxicity. All the structures were drawn in 2D platform and converted to the 3D platform using ChemDraw 10.0. Evaluations of ADME properties were done by using QikProp 3.0 to check for the possibility of oral delivery. In silico prediction of LD50 values were performed using Pro-Tox webserver. Interestingly, it was found that conjugation with amino acids decreases toxicity and increases the therapeutic index of thiosemicarbazide. Finally, all the compounds were docked to the crystal structure of the Vascular Endothelial Growth Factor Receptor-2 and Checkpoint kinase-1 utilizing Glide 5.0, Schrödinger 8.5, to understand the interaction of ligands with the receptor. A significant number of derivatives have been found active in both the receptors and also displayed multikinase inhibitory activity similar to Sorafenib, against hepatocellular carcinoma. Further, wet lab synthesis, in vitro ADMET and biological screening studies need to be performed to prove that designed compounds are effective against hepatocellular carcinoma as predicted by molecular modeling. However, as predicted by molecular modeling, the efficacy of designed compounds against hepatocellular carcinoma, needs to be confirmed by wet lab synthesis, in vitro ADMET and biological screening studies. PMID:26526710

  4. Structure and DNA Hybridization Properties of Mixed Nucleic Acid/Maleimide-Ethylene Glycol Monolayers

    SciTech Connect

    Lee,C.; Nguyen, P.; Grainger, D.; Gamble, L.; Castner, D.

    2007-01-01

    The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s {yields} {pi}* transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the 'high-density' probe surface than on the 'high-efficiency' probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface.

  5. Alkyl substituent effects on gas-phase acidities - The influence of hybridization.

    NASA Technical Reports Server (NTRS)

    Brauman, J. I.; Blair, L. K.

    1971-01-01

    Exploration of the effect on acidity of alkyl groups bonded to trigonal and digonal carbon. Some results on the relative acidities of toluene and p-xylene, and acetylene and substitute acetylenes, as determined by ion cyclotron resonance (icr) spectroscopy, are described. Some limitations of the CNDO/2 calculation method are discussed.

  6. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  7. Teaching with technology: learning outcomes for a combined dental and dental hygiene online hybrid oral histology course.

    PubMed

    Gadbury-Amyot, Cynthia C; Singh, Amul H; Overman, Pamela R

    2013-06-01

    Among the challenges leaders in dental and allied dental education have faced in recent years is a shortage of well-qualified faculty members, especially in some specialty areas of dentistry. One proposed solution has been the use of technology. At the University of Missouri-Kansas City School of Dentistry, the departure of a faculty member who taught the highly specialized content in oral histology and embryology provided the opportunity to implement distance delivery of that course. The course is taught once a year to a combined group of dental and dental hygiene students. Previous to spring semester of 2009, the course was taught using traditional face-to-face, in-class lectures and multiple-choice examinations. During the spring semesters of 2009, 2010, and 2011, the course was taught using synchronous and asynchronous distance delivery technology. Outcomes for these courses (including course grades and performance on the National Board Dental Examination Part I) were compared to those from the 2006, 2007, and 2008 courses. Students participating in the online hybrid course were also given an author-designed survey, and the perceptions of the faculty member who made the transition from teaching the course in a traditional face-to-face format to teaching in an online hybrid format were solicited. Overall, student and faculty perceptions and student outcomes and course reviews have been positive. The results of this study can provide guidance to those seeking to use technology as one method of curricular delivery. PMID:23740910

  8. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    SciTech Connect

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  9. Multidimensional separation of chiral amino acid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidic device.

    PubMed

    Kim, Bo Young; Yang, Jing; Gong, Maojun; Flachsbart, Bruce R; Shannon, Mark A; Bohn, Paul W; Sweedler, Jonathan V

    2009-04-01

    Microscale total analysis systems (microTAS) allow high-throughput analyses by integrating multiple processes, parallelization, and automation. Here we combine unit operations of microTAS to create a device that can perform multidimensional separations using a three-dimensional hybrid microfluidic/nanofluidic device composed of alternating layers of patterned poly(methyl methacrylate) and nanocapillary array membranes constructed from nuclear track-etched polycarbonate. Two consecutive electrophoretic separations are performed, the first being an achiral separation followed by a chiral separation of a selected analyte band. Separation conditions are optimized for a racemic mixture of fluorescein-isothiocyanate-labeled amino acids, serine and aspartic acid, chosen because there are endogenous D-forms of these amino acids in animals. The chiral separation is implemented using micellar electrokinetic chromatography using beta-cyclodextrin as the chiral selector and sodium taurocholate as the micelle-forming agent. Analyte separation is monitored by dual-beam laser-induced fluorescence detection. After separation in the first electrophoretic channel, the preselected analyte is sampled by the second-stage separation using an automated collection sequence with a zero-crossing algorithm. The controlled fluidic environment inherent to the three-dimensional architecture enables a series of separations in varying fluidic environments and allows sample stacking via different background electrolyte pH conditions. The ability to interface sequential separations, selected analyte capture, and other fluidic manipulations in the third dimension significantly improves the functionality of multilayer microfluidic devices. PMID:19271741

  10. Quantification of Syntrophic Fatty Acid-β-Oxidizing Bacteria in a Mesophilic Biogas Reactor by Oligonucleotide Probe Hybridization

    PubMed Central

    Hansen, Kaare H.; Ahring, Birgitte K.; Raskin, Lutgarde

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-β-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S. wolfei LYB was closely related to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-β-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-β-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, of which the majority was accounted for by the genus Syntrophomonas. PMID:10543784

  11. Structure-activity relationship of hybrids of Cinchona alkaloids and bile acids with in vitro antiplasmodial and antitrypanosomal activities.

    PubMed

    Leverrier, Aurélie; Bero, Joanne; Cabrera, Julián; Frédérich, Michel; Quetin-Leclercq, Joëlle; Palermo, Jorge A

    2015-07-15

    In this work, a series of hybrid compounds were tested as antiparasitic substances. These hybrids were prepared from bile acids and a series of antiparasitic Cinchona alkaloids by the formation of a covalent C-C bond via a decarboxylative Barton-Zard reaction between the two entities. The bile acids showed only weak antiparasitic properties, but all the hybrids exhibited high in vitro activities (IC50: 0.48-5.39 μM) against Trypanosoma brucei. These hybrids were more active than their respective parent alkaloids (up to a 135 fold increase in activity), and displayed good selectivity indices. Aditionally, all these compounds inhibited the in vitro growth of a chloroquine-sensitive strain of Plasmodium falciparum (3D7: IC50: 36.1 nM to 8.72 μM), and the most active hybrids had IC50s comparable to that of artemisinin (IC50: 36 nM). Some structure-activity relationships among the group of 48 hybrids are discussed. The increase in antiparasitic activity may be explained by an improvement in bioavailability, since the more lipophilic derivatives showed the lowest IC50s. PMID:26063305

  12. Technological approaches to minimize industrial trans fatty acids in foods.

    PubMed

    Menaa, Farid; Menaa, Abder; Tréton, Jacques; Menaa, Bouzid

    2013-03-01

    Trans fatty acids (TFAs) mainly arise from 2 major sources: natural ruminal hydrogenation and industrial partial catalytic hydrogenation. Increasing evidence suggests that most TFAs and their isomers cause harmful health effects (that is, increased risk of cardiovascular diseases). Nevertheless, in spite of the existence of an international policy consensus regarding the need for public health action, several countries (for example, France) do not adopt sufficient voluntary approaches (for example, governmental regulations and systematic consumer rejections) nor sufficient industrial strategies (for example, development of healthier manufacturing practices and innovative processes such as fat interesterifications) to eliminate deleterious TFAs from processed foods while ensuring the overall quality of the final product (for example, nutritional value and stability). In this manuscript, we first review the physical-chemical properties of TFAs, their occurrence in processed foods, their main effects on health, and the routine analytical methods to characterize TFAs, before emphasizing on the major industrial methods (that is, fat food reformulation, fat interesterification, genetically modified FAs composition) that can be used worldwide to reduce TFAs in foods. PMID:23458752

  13. Synthesis, Aqueous Reactivity, and Biological Evaluation of Carboxylic Acid Ester-Functionalized Platinum–Acridine Hybrid Anticancer Agents

    PubMed Central

    Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich

    2012-01-01

    The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158

  14. Modeling of the cranking and charging processes of conventional valve regulated lead acid (VRLA) batteries in micro-hybrid applications

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Lee, Anson; Pyko, Jan

    2014-10-01

    The cranking and charging processes of a VRLA battery during stop-start cycling in micro-hybrid applications were simulated by one dimensional mathematical modeling, to study the formation and distribution of lead sulfate across the cell and analyze the resulting effect on battery aging. The battery focused on in this study represents a conventional VRLA battery without any carbon additives in the electrodes or carbon-based electrodes. The modeling results were validated against experimental data and used to analyze the "sulfation" of negative electrodes - the common failure mode of lead acid batteries under high-rate partial state of charge (HRPSoC) cycling. The analyses were based on two aging mechanisms proposed in previous studies and the predictions showed consistency with the previous teardown observations that the sulfate formed at the negative interface is more difficult to be converted back than anywhere else in the electrodes. The impact of cranking pulses during stop-start cycling on current density and the corresponding sulfate layer production was estimated. The effects of some critical design parameters on sulfate formation, distribution and aging over cycling were investigated, which provided guidelines for developing models and designing of VRLA batteries in micro-hybrid applications.

  15. Luminescent molecular hybrid system derived from 2-furancarboxylic acid and silylated monomer coordinated to rare earth ions

    NASA Astrophysics Data System (ADS)

    Sui, Yu-Long; Yan, Bing

    2006-04-01

    In this study, silica-based organic-inorganic hybrids were prepared by the sol-gel method. Tetraethoxysilane (abbreviated as TEOS) and a kind of monomer (abbreviated as FA-APES) derived from modified 2-furancarboxylic acid (abbreviated as FA) with (3-aminopropyl)triethoxysilane (abbreviated as APES) were used as the inorganic and organic fragments, respectively. Coordination reaction between lanthanides (europium and terbium ions) and sbnd C dbnd O group of the monomer happened simultaneously. And after days of aging process the resultant materials showed characteristic luminescence of lanthanides. The enhancement of luminescence can be seen by the comparison with simply doped lanthanide hybrid systems. And it can be explained by the coordination ability of the organic counterpart. IR, NMR, UV-vis absorption, low-temperature phosphorescence spectroscopy and fluorescence spectroscopy were applied to characterize and the above spectroscopic data revealed that the triplet state energy of organic ligand matches with the emissive energy level of lanthanides (especially of Tb 3+).

  16. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase.

    PubMed

    Peng, Fan-Wei; Wu, Ting-Ting; Ren, Zi-Wei; Xue, Jia-Yu; Shi, Lei

    2015-11-15

    A series of hybrids derived from 4-anilinoquinazoline and hydroxamic acid were designed, synthesized, and evaluated as dual inhibitors of vascular endothelia growth factor receptor-2 (VEGFR-2) tyrosine kinase and histone deacetylase (HDAC). Most of these compounds exhibited potent HDAC inhibition and moderate VEGFR-2 inhibition. Among them, compound 6l exhibited the most potent inhibitory activities against VEGFR-2 (IC50=84 nM) and HDAC (IC50=2.8 nM). It also showed the most potent antiproliferative ability against MCF-7, a human breast cancer line, with IC50 of 1.2 μM. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction of compound 6l at the active binding sites of VEGFR-2 and HDAC. PMID:26475519

  17. Hydrofluoric-nitric-sulphuric-acid surface treatment of tungsten for carbon fibre-reinforced composite hybrids in space applications

    NASA Astrophysics Data System (ADS)

    Kanerva, M.; Johansson, L.-S.; Campbell, J. M.; Revitzer, H.; Sarlin, E.; Brander, T.; Saarela, O.

    2015-02-01

    Hybrid material systems, such as combinations of tungsten foils and carbon fibre-reinforced plastic (CFRP), are replacing metal alloy concepts in spacecraft enclosures. However, a good adhesion between the tungsten oxide scale and the epoxy resin used is required. Here, the effects of a hydrofluoric-nitric-sulphuric-acid (HFNS) treatment on tungsten oxides and subsequent adhesion to CFRP are analysed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fracture testing. The work shows that HFNS treatment results in decreased oxygen content, over 50% thinner tungsten trioxide (WO3) layer and increased nano-roughness on thin tungsten foils. Fracture testing established a 39% increase in the average critical strain for tungsten-CFRP specimens after HFNS treatment was carried out on tungsten. The effect of the oxide scale modification regarding the critical strain energy release rate was ΔGc≈ 8.4 J/m2.

  18. Preparation of cyclodextrin-modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography.

    PubMed

    Szwed, Kamila; Ou, Junjie; Huang, Guang; Lin, Hui; Liu, Zhongshan; Wang, Hongwei; Zou, Hanfa

    2016-03-01

    Cyclodextrins and their derivatives are one of the most common and successful chiral selectors. However, there have been few publications about the use of cyclodextrin-modified monoliths. In this study, organic hybrid monoliths were prepared by the immobilization of derivatized β-cyclodextrin alone or with l-2-allylglycine hydrochloride to the polyhedral oligomeric silsesquioxane methacryl substituted monolith. The main topic of this study is a combined system with dual chiral selectors (l-2-allylglycine hydrochloride and β-cyclodextrin) as monolithic chiral stationary phase. The effect of l-2-allylglycine hydrochloride concentration on enantioseparation was investigated. The enantioseparation of the four acidic compounds with resolutions up to 2.87 was achieved within 2.5 min on the prepared chiral monolithic column in capillary liquid chromatography. Moreover, the possible mechanism of enantioseparation was discussed. PMID:27027591

  19. Handbook of Research on Hybrid Learning Models: Advanced Tools, Technologies, and Applications

    ERIC Educational Resources Information Center

    Wang, Fu Lee, Ed.; Fong, Joseph, Ed.; Kwan, Reggie, Ed.

    2010-01-01

    Hybrid learning is now the single-greatest trend in education today due to the numerous educational advantages when both traditional classroom learning and e-learning are implemented collectively. This handbook collects emerging research and pedagogies related to the convergence of teaching and learning methods. This significant "Handbook of…

  20. HYBRID SNCR-SCR TECHNOLOGIES FOR NOX CONTROL: MODELING AND EXPERIMENT

    EPA Science Inventory

    The hybrid process of homogeneous gas-phase selective non-catalytic reduction (SNCR) followed by selective catalytic reduction (SCR) of nitric oxide (NO) was investigated through experimentation and modeling. Measurements, using NO-doped flue gas from a gas-fired 29 kW test combu...

  1. Fabrication of Nonsintered Alumina-Resin Hybrid Films by Inkjet-Printing Technology

    NASA Astrophysics Data System (ADS)

    Hun Woo Jang,; Jihoon Kim,; Hyo-tae Kim,; Youngjoon Yoon,; Sung-nam Lee,; Haejin Hwang,; Jonghee Kim,

    2010-07-01

    We used the inkjet printing to fabricate alumina-resin hybrid films without a high temperature sintering process. Single- and co-solvent ink systems showing different evaporation behaviors were formulated in order to understand their impacts on the inkjet-printing of the alumina dots, lines, and films. The packing densities of the inkjet-printed alumina films from both ink systems were around 60% which is higher than the value obtained by other conventional methods. Since the high temperature sintering process was avoided, the polymer-resin was infiltrated through the inkjet-printed alumina films by the same inkjet printing as a binder. The microstructures of these hybrid films were investigated in order to confirm if the microvoids in the films were filled with the resin. The dielectric properties of these hybrid films such as relative permittivity and Q-value were measured in order to assess if these hybrid materials is applicable to three-dimensional (3D) system integration as ceramic package substrates.

  2. Injectable hybrid hydrogels of hyaluronic Acid crosslinked by well-defined synthetic polycations: preparation and characterization in vitro and in vivo.

    PubMed

    Cross, Daisy; Jiang, Xiaoze; Ji, Weihang; Han, Wenqing; Wang, Chun

    2015-05-01

    An injectable hybrid hydrogel system was developed consisting of hyaluronic acid (HA) crosslinked by well-defined block copolymers of the cationic poly(2-aminoethyl methacrylate) (PAEM) and polyethylene glycol (PEG). Robust, shear-thinning hybrid hydrogel was produced by mixing HA and 4-arm star PEG-PAEM block copolymer at 1:1 charge ratio. The encapsulation and release of highly viable human mesenchymal stem cells in physiological media was demonstrated. After subcutaneous injection of the hybrid gel in mice, mild but resolvable inflammatory response was observed. This hybrid gel could serve as a model system for studying structure-function relationship of polyelectrolyte hydrogels and as a practical injectable biomaterial for medical applications. PMID:25630277

  3. Babesia gibsoni: detection in blood smears and formalin-fixed, paraffin-embedded tissues using deoxyribonucleic acid in situ hybridization analysis.

    PubMed

    Yamasaki, Masahiro; Kobayashi, Yusuke; Nakamura, Kensuke; Sasaki, Noboru; Murakami, Masahiro; Rajapakshage, Bandula Kumara Wickramasekara; Ohta, Hiroshi; Yamato, Osamu; Maede, Yoshimitsu; Takiguchi, Mitsuyoshi

    2011-01-01

    In this study, we attempted to detect Babesia gibsoni in blood smears and formalin-fixed, paraffin-embedded tissues obtained from B. gibsoni-infected dogs using in situ hybridization. Using a digoxigenin-conjugated deoxyribonucleic acid (DNA) probe, both intraerythrocytic and exoerythrocytic parasites in the culture could be specifically stained in blood smears fixed with 4% phosphate-buffered paraformaldehyde. This indicated that genomic DNA extracted from the parasites could be detected using in situ hybridization. Moreover, the parasite could be specifically stained in paraffin-embedded spleen, lymph node, and kidney sections using in situ hybridization. Infected erythrocytes in blood vessels in the spleen and kidney, hemosiderin-laden macrophages in the spleen, and phagocytized erythrocytes, which seemed to be infected with the parasites, in lymph nodes were also specifically stained. This suggests that in situ hybridization can be utilized to investigate both the life cycle of B. gibsoni and the pathological condition of canine babesiosis. PMID:20637756

  4. Structural and optical study of spin-coated camphorsulfonic acid-doped polyaniline/titanium-di-oxide nanoparticles hybrid thin films

    NASA Astrophysics Data System (ADS)

    Geethalakshmi, D.; Muthukumarasamy, N.; Balasundaraprabhu, R.

    2015-06-01

    Polyaniline (PANI) doped with Camphorsulfonic acid (CSA) has been prepared by chemical oxidative polymerization and blend with titanium-di-oxide (TiO2) nanoparticles prepared by sol-gel method to form CSA-doped PANI/TiO2 hybrid thin films. The properties of as-deposited and heat-treated (100 °C) hybrid thin films having different PANI:TiO2 weight ratios (1:0.5, 1:1, and 1:2) have been compared. FTIR study indicated that chemical bonding between CSA-doped PANI and TiO2 has been formed. XRD studies reveal that the as-deposited hybrid thin films are of amorphous nature and heat-treatment of such films initiates crystallization. SEM study shows that as-deposited hybrid films are rough; increase in TiO2 ratio and heat-treatment increased the roughness due to coalescing and agglomeration. UV-visible absorbance of hybrid films shows its characteristic peak in the visible region along with a peak in UV range and its intensity increased with TiO2 ratio and heat-treatment due to agglomeration of TiO2 particles. Photoluminescence spectra revealed that emission occurs in visible region (495 nm) for as-deposited hybrid thin film and this emission increased with TiO2 ratio and heat-treatment of hybrid films.

  5. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  6. Colorimetric Detection of Ehrlichia Canis via Nucleic Acid Hybridization in Gold Nano-Colloids

    PubMed Central

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-01-01

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease. PMID:25111239

  7. Intracellular location of rabbit poxvirus nucleic acid within infected cells as determined by in situ hybridization.

    PubMed Central

    Minnigan, H; Moyer, R W

    1985-01-01

    The intracellular location of rabbit poxvirus DNA within cells during the course of infection has been determined by the hybridization in situ of labeled viral DNA probes to uninfected and infected cells under various conditions. Extensive control experiments were performed to demonstrate that DNA could be detected selectively and accurately within the cell. Our results suggest that rabbit poxvirus DNA is located only within the cytoplasm during the reproductive cycle, and we found no evidence that viral DNA enters the cell nucleus. The pattern of hybridization of viral DNA at early times (1 and 2 h postinfection) and in the presence of inhibitors of viral DNA synthesis suggests that there may be an association between the input viral DNA and some structural component of the host cell. A number of observations support the hypothesis that the host cell nucleus is required for a productive poxvirus infection. Our results are discussed in terms of the possible role of the nucleus in the replication of poxviruses. Images PMID:2991586

  8. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    SciTech Connect

    Amy, Fabrice; Hufton, Jeffrey; Bhadra, Shubhra; Weist, Edward; Lau, Garret; Jonas, Gordon

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  9. High-resolution, hybrid optical trapping methods, and their application to nucleic acid processing proteins.

    PubMed

    Chemla, Yann R

    2016-10-01

    Optical tweezers have become a powerful tool to investigate nucleic-acid processing proteins at the single-molecule level. Recent advances in this technique have now enabled measurements resolving the smallest units of molecular motion, on the scale of a single base pair of DNA. In parallel, new instrumentation combining optical traps with other functionalities have been developed, incorporating mechanical manipulation along orthogonal directions or fluorescence imaging capabilities. Here, we review these technical advances, their capabilities, and limitations, focusing on benchmark studies of protein-nucleic acid interactions they have enabled. We highlight recent work that combines several of these advances together and its application to nucleic-acid processing enzymes. Finally, we discuss future prospects for these exciting developments. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 704-714, 2016. PMID:27225537

  10. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  11. Eco green flexible hybrid photovoltaic-thermoelectric solar cells with nanoimprint technology and roll-to-roll manufacturing

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Choi, Sang H.

    2010-04-01

    This paper explores the technical and commercial feasibility of nanotechnology based, high-efficiency, photovoltaic-thermoelectric hybrid solar cells as an environmentally-friendly, renewable energy source for residential and commercial buildings. To convert as much as possible of the usable photovoltaic (58% of the Energy Density) and thermoelectric (42% of the Energy Density) solar spectrum into electricity, a hybrid multilayer system is presented which comprises of 1) carbon nanotube (CNT) embedded in conducting polymers such as P3HT (poly(3-hexylthiophene) or P3OT (poly3-octylthiophene), 2) 3D gold nanostructures exhibiting plasmonic resonances for energy conversion, 3) nanoantenna architecture to capture IR energy, 4) a composite of Bi2Te3, SiGe nanocrystals and Au nanoshells as thermoelectric energy conversion layer, 5) configuration of the above items engineered in the form of meta-material designs that by virtue of their 3D structures ensure that incident light is neither reflected nor transmitted, but is rather all absorbed, 6) a multilayer arrangement of the above layers in a fractal architecture to capture all the wavelengths from 200 to 3000 nm8 and the matching electronic interface for each layer. The roll-to-roll manufacturing method presented will enable economical large-scale production of solar panels. This potentially transformational technology has the ability to replace the Si solar cell technology by reducing costs from 0.18/KWh to 0.003/KWh while introducing a more environmentally-friendly manufacturing process.

  12. Advancements in large-format SiPIN hybrid focal plane technology

    NASA Astrophysics Data System (ADS)

    Kilcoyne, S.; Malone, N.; Kean, B.; Cantrell, J.; Fierro, J.; Meier, L.; DeWalt, S.; Hewitt, C.; Wyles, J.; Drab, J.; Grama, G.; Paloczi, G.; Vampola, J.; Brown, K.

    2014-09-01

    Raytheon has built hybrid focal planes based on Silicon P-I-N photo-sensors for the past three decades. The device has undergone a continuous improvement process during this period. The detector material has been improved and the thickness has been greatly reduced. Most recently, the readout integrated circuit (ROIC) and the hybridization process, have undergone significant advancements1,2,3. This paper presents recent advancements in the latest generation 8μm pixelpitch 1k2 format and 5k2 format visible Si PIN focal-planes. The current family of devices has very low read-noise ROICs, low detector dark current, operate with a 25 volt bias and deliver 50% mean response operability greater than 99.995%.

  13. Conceptual design of International Linear Collider damping ring wiggler based on a hybrid technology.

    PubMed

    Smirnov, Alexei V

    2009-01-01

    A magnetic design of a failure-free damping ring wiggler with 100% duty factor, 55.6 mm gap, and field exceeding 1.6 T is proposed. The insertion device is based on permanent magnets and specially shimmed poles that capable to meet the requirements of the International Linear Collider (ILC) damping rings (including positron one), with field quality and gap comparable to that projected for ILC using superconducting wiggler. Performance improvement of the modified hybrid design is attained due to yoke reduction down to six separated strips and maximized packaging of the midgrade (or high-grade) parallelepiped magnet blocks surrounding the Permendur poles. Economical efficiency is demonstrated on the base of calculated amount of magnetic material. A cryogenic variant of the hybrid design may certainly provide good sustainability to harsh radiation environment and further enhancement of the design efficiency within the state of the art. PMID:19191428

  14. Conceptual design of International Linear Collider damping ring wiggler based on a hybrid technology

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexei V.

    2009-01-01

    A magnetic design of a failure-free damping ring wiggler with 100% duty factor, 55.6 mm gap, and field exceeding 1.6 T is proposed. The insertion device is based on permanent magnets and specially shimmed poles that capable to meet the requirements of the International Linear Collider (ILC) damping rings (including positron one), with field quality and gap comparable to that projected for ILC using superconducting wiggler. Performance improvement of the modified hybrid design is attained due to yoke reduction down to six separated strips and maximized packaging of the midgrade (or high-grade) parallelepiped magnet blocks surrounding the Permendur poles. Economical efficiency is demonstrated on the base of calculated amount of magnetic material. A cryogenic variant of the hybrid design may certainly provide good sustainability to harsh radiation environment and further enhancement of the design efficiency within the state of the art.

  15. Conceptual design of International Linear Collider damping ring wiggler based on a hybrid technology

    SciTech Connect

    Smirnov, Alexei V.

    2009-01-15

    A magnetic design of a failure-free damping ring wiggler with 100% duty factor, 55.6 mm gap, and field exceeding 1.6 T is proposed. The insertion device is based on permanent magnets and specially shimmed poles that capable to meet the requirements of the International Linear Collider (ILC) damping rings (including positron one), with field quality and gap comparable to that projected for ILC using superconducting wiggler. Performance improvement of the modified hybrid design is attained due to yoke reduction down to six separated strips and maximized packaging of the midgrade (or high-grade) parallelepiped magnet blocks surrounding the Permendur poles. Economical efficiency is demonstrated on the base of calculated amount of magnetic material. A cryogenic variant of the hybrid design may certainly provide good sustainability to harsh radiation environment and further enhancement of the design efficiency within the state of the art.

  16. Local sustained delivery of acetylsalicylic acid via hybrid stent with biodegradable nanofibers reduces adhesion of blood cells and promotes reendothelialization of the denuded artery

    PubMed Central

    Lee, Cheng-Hung; Lin, Yu-Huang; Chang, Shang-Hung; Tai, Chun-Der; Liu, Shih-Jung; Chu, Yen; Wang, Chao-Jan; Hsu, Ming-Yi; Chang, Hung; Chang, Gwo-Jyh; Hung, Kuo-Chun; Hsieh, Ming-Jer; Lin, Fen-Chiung; Hsieh, I-Chang; Wen, Ming-Shien; Huang, Yenlin

    2014-01-01

    Incomplete endothelialization, blood cell adhesion to vascular stents, and inflammation of arteries can result in acute stent thromboses. The systemic administration of acetylsalicylic acid decreases endothelial dysfunction, potentially reducing thrombus, enhancing vasodilatation, and inhibiting the progression of atherosclerosis; but, this is weakened by upper gastrointestinal bleeding. This study proposes a hybrid stent with biodegradable nanofibers, for the local, sustained delivery of acetylsalicylic acid to injured artery walls. Biodegradable nanofibers are prepared by first dissolving poly(D,L)-lactide-co-glycolide and acetylsalicylic acid in 1,1,1,3,3,3-hexafluoro-2-propanol. The solution is then electrospun into nanofibrous tubes, which are then mounted onto commercially available bare-metal stents. In vitro release rates of pharmaceuticals from nanofibers are characterized using an elution method, and a highperformance liquid chromatography assay. The experimental results suggest that biodegradable nanofibers release high concentrations of acetylsalicylic acid for three weeks. The in vivo efficacy of local delivery of acetylsalicylic acid in reducing platelet and monocyte adhesion, and the minimum tissue inflammatory reaction caused by the hybrid stents in treating denuded rabbit arteries, are documented. The proposed hybrid stent, with biodegradable acetylsalicylic acid-loaded nanofibers, substantially contributed to local, sustained delivery of drugs to promote re-endothelialization and reduce thrombogenicity in the injured artery. The stents may have potential applications in the local delivery of cardiovascular drugs. Furthermore, the use of hybrid stents with acetylsalicylic acid-loaded nanofibers that have high drug loadings may provide insight into the treatment of patients with high risk of acute stent thromboses. PMID:24421640

  17. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    NASA Astrophysics Data System (ADS)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  18. The technology assessment of LTA aircraft systems. [hybrid airships for passenger and cargo transportation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advantages of conventional small and large airships over heavier than air aircraft are reviewed and the need for developing hybrid aircraft for passenger and heavy charge transport is assessed. Performance requirements and estimated operating costs are discussed for rota-ships to be used for short distance transportation near large cities as well as for airlifting civil engineering machinery and supplies for the construction of power stations, dams, tunnels, and roads in remote areas or on isolated islands.

  19. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water.

    PubMed

    Bergquist, Allison M; Choe, Jong Kwon; Strathmann, Timothy J; Werth, Charles J

    2016-06-01

    Ion exchange (IX) is the most common approach to treating nitrate-contaminated drinking water sources, but the cost of salt to make regeneration brine, as well as the cost and environmental burden of waste brine disposal, are major disadvantages. A hybrid ion exchange-catalyst treatment system, in which waste brine is catalytically treated for reuse, shows promise for reducing costs and environmental burdens of the conventional IX system. An IX model with separate treatment and regeneration cycles was developed, and ion selectivity coefficients for each cycle were separately calibrated by fitting experimental data. Of note, selectivity coefficients for the regeneration cycle required fitting the second treatment cycle after incomplete resin regeneration. The calibrated and validated model was used to simulate many cycles of treatment and regeneration using the hybrid system. Simulated waste brines and a real brine obtained from a California utility were also evaluated for catalytic nitrate treatment in a packed-bed, flow-through column with 0.5 wt%Pd-0.05 wt%In/activated carbon support (PdIn/AC). Consistent nitrate removal and no apparent catalyst deactivation were observed over 23 d (synthetic brine) and 45 d (real waste brine) of continuous-flow treatment. Ion exchange and catalyst results were used to evaluate treatment of 1 billion gallons of nitrate-contaminated source water at a 0.5 MGD water treatment plant. Switching from a conventional IX system with a two bed volume regeneration to a hybrid system with the same regeneration length and sequencing batch catalytic reactor treatment would save 76% in salt cost. The results suggest the hybrid system has the potential to address the disadvantages of a conventional IX treatment systems. PMID:27043747

  20. Amplified electrochemical detection of nucleic acid hybridization via selective preconcentration of unmodified gold nanoparticles.

    PubMed

    Li, Yuan; Tian, Rui; Zheng, Xingwang; Huang, Rongfu

    2016-08-31

    The common drawback of optical methods for rapid detection of nucleic acid by exploiting the differential affinity of single-/double-stranded nucleic acids for unmodified gold nanoparticles (AuNPs) is its relatively low sensitivity. In this article, on the basis of selective preconcentration of AuNPs unprotected by single-stranded DNA (ssDNA) binding, a novel electrochemical strategy for nucleic acid sequence identification assay has been developed. Through detecting the redox signal mediated by AuNPs on 1, 6-hexanedithiol blocked gold electrode, the proposed method is able to ensure substantial signal amplification and a low background current. This strategy is demonstrated for quantitative analysis of the target microRNA (let-7a) in human breast adenocarcinoma cells, and a detection limit of 16 fM is readily achieved with desirable specificity and sensitivity. These results indicate that the selective preconcentration of AuNPs for electrochemical signal readout can offer a promising platform for the detection of specific nucleic acid sequence. PMID:27506344

  1. Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish oil sparing and demand for -3 long-chain polyunsaturated fatty acids.

    PubMed

    Bowzer, J; Jackson, C; Trushenski, J

    2016-03-01

    Previous research suggests that saturated (SFA) and monounsaturated fatty acid (MUFA) rich lipids, including beef tallow, can make utilization or diet-to-tissue transfer of long-chain polyunsaturated fatty acids (LC-PUFA) more efficient. We hypothesized that using beef tallow as an alternative to fish oil may effectively reduce the LC-PUFA demand of hybrid striped bass × and allow for greater fish oil sparing. Accordingly, we evaluated growth performance and tissue fatty acid profiles of juvenile fish (23.7 ± 0.3 g) fed diets containing menhaden fish oil (considered an ideal source of LC-PUFA for this taxon), beef tallow (BEEF ONLY), or beef tallow amended with purified sources of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) to achieve levels corresponding to 50 or 100% of those observed in the FISH ONLY feed. Diets were randomly assigned to quadruplicate tanks of fish ( = 4; 10 fish/tank), and fish were fed assigned diets to apparent satiation once daily for 10 wk. Survival (98-100%) was equivalent among treatments, but weight gain (117-180%), specific growth rate (1.1-1.5% BW/d), feed intake (1.4-1.8% BW/d), thermal growth coefficient (0.50-0.70), and feed conversion ratio (FCR; 1.1-1.4, DM basis) varied. Except for FCR, no differences were observed between the FISH ONLY and BEEF ONLY treatments, but performance was generally numerically superior among fish fed the diets containing beef tallow supplemented with DHA at the 100% or both EPA and DHA at the 50% or 100% level. Tissue fatty acid composition was significantly distorted in favor among fish fed the beef tallow-based feeds; however, profile distortion was most overt in peripheral tissues. Results suggest that beef tallow may be used as a primary lipid source in practical diets for hybrid striped bass, but performance may be improved by supplementation with LC-PUFA, particularly DHA. Furthermore, our results suggest that -3 LC-PUFA requirements reported for hybrid striped bass may not be

  2. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  3. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    PubMed

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses. PMID:27088457

  4. Preparation and characterization of humic acid-carbon hybrid materials as adsorbents for organic micro-pollutants.

    PubMed

    Radwan, Emad K; Abdel Ghafar, Hany H; Moursy, Ahmed S; Langford, Cooper H; Bedair, Ahmed H; Achari, Gopal

    2015-08-01

    The present work involves the preparation of novel adsorbent materials by the insolubilization and hybridization of humic acid (HA) with carbon. The prepared materials were characterized by N2 adsorption, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, solid-state (13)C cross polarization magic angle spinning nuclear magnetic resonance, and low-field nuclear magnetic resonance (NMR) relaxometry on wetted samples. The water solubility of these materials and the lack of effect of oxidants were also confirmed. With this background, the adsorption capacities toward phenol, 2,4,6-tricholrophenol, and atrazine were evaluated, using these as model compounds for organic micropollutants of concern in water. Experimental results show that the prepared materials are mesoporous and have a higher surface area than humic acid and even than the porous carbon in the case of carbon coating. They retain the basic features of the starting materials with lowered functional group content. Moreover, there are interesting new features. NMR relaxometry shows that equilibration of water uptake is very fast, making use in water simple. They have higher adsorption capacities than the pure materials, and they can be applied under a wide range of environmental conditions. PMID:25874433

  5. NRMRL EVALUATES ACTIVE AND SEMI-PASSIVE TECHNOLOGIES FOR TREATING ACID MINE DRAINAGE

    EPA Science Inventory

    Two-page article describing three SITE demonstration projects underway on the Leviathan mine site in California. BiPhasic lime treatment, lime treatment lagoons and compost free BioReactors are being evaluated as innovative technologies for treating acid mine drainage.

  6. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE LEVIATHAN MINE, CALIFORNIA INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  7. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE - TECHNOLOGY CAPSULE

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  8. URBAN AEROSOL ACIDS: ANALYSIS OF NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY STANDARD REFERENCE MATERIAL 1649

    EPA Science Inventory

    Urban air particulate matter, collected from Washington, D.C. and certified by the National Institute of Standards and Technology (NIST) as Standard Reference Material 1649, was extracted and fractionated into acid, base and neutral fractions. ach fraction was tested for biologic...

  9. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  10. Ribonucleic acid interference (RNAi) technology for control of Asian citrus psyllid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control to the citrus industry. Two part Video presentation....

  11. Hybrid quantum information processing

    SciTech Connect

    Furusawa, Akira

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  12. A Novel Technology for the Imaging of Acidic Prostate Tumors by Positron Emission Tomography

    PubMed Central

    V vere, Amy L.; Biddlecombe, Gráinne B.; Spees, William M.; Garbow, Joel R.; Wijesinghe, Dayanjali; Andreev, Oleg A.; Engelman, Donald M.; Reshetnyak, Yana K.; Lewis, Jason S.

    2009-01-01

    Solid tumors often develop an acidic environment due to the Warburg Effect. The effectiveness of diagnosis and therapy may therefore be enhanced by the design and use of pH-sensitive agents that target acidic tumors. Recently, a novel technology was introduced to target acidic tumors using pHLIP (pH Low Insertion Peptide), a peptide that inserts across cell membranes as an α-helix when the extracellular pH is acidic. In this study we expanded the application of the pHLIP technology to include positron emission tomography (PET) imaging of the acidic environment in prostate tumors using 64Cu conjugated to the pHLIP peptide (64Cu-DOTA-pHLIP). Studies demonstrated that this construct avidly accumulated in LNCaP and PC-3 tumors, with higher uptake and retention in the LNCaP tumors. Uptake correlated with differences in the bulk extracellular pH (pHe) of PC-3 and LNCaP tumors measured in MR spectroscopy experiments by the 31P chemical shift of the extracellular pH marker 3-aminopropylphosphonate. This manuscript introduces a novel class of non-invasive pH-selective PET imaging agents and opens new research directions in the diagnosis of acidic solid tumors. PMID:19417132

  13. Hybrid modeling of lead-acid batteries in frequency and time domain

    NASA Astrophysics Data System (ADS)

    Thele, M.; Buller, S.; Sauer, D. U.; De Doncker, R. W.; Karden, E.

    This paper presents an improved impedance-based non-linear simulation model for lead-acid batteries. The parameterization of impedance-based models is difficult for operation profiles with high Ah throughput in short times. Such conditions result in non-steady-state conditions and do not allow precise measurements of impedance parameters. Therefore, the model has been extended by an electrolyte transport model which describes the generation and the transport of sulfuric acid inside the porous electrodes. This expands the model validity as higher Ah throughputs can be simulated now. A description of the Matlab/Simulink implementation and its parameterization in the time domain is given. Furthermore, the advantages and the limits of the improved model are discussed. The model allows for precise modeling of automotive batteries, both in conventional applications and in vehicles with electrically assisted propulsion. It is therefore an important tool for the design of automotive power nets.

  14. Growth, body fatty acid composition, immune response and resistance to Streptococcus iniae of hybrid tilapia, Oreochromis niloticus X O. aureus, fed diets containing various levels of linoleic and linolenic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of dietary linoleic (LA) and linolenic acids (LN) on growth and immunity of all-male hybrid tilapia, Oreochromis niloticus × O. aureus, were evaluated for 10 weeks. Fish fed 0.12% LA + 0% LN had the lowest weight gain (WG) but was not significantly different from diets containing 0.5% LA...

  15. Preparation of hybrid molecularly imprinted polymer with double-templates for rapid simultaneous purification of theophylline and chlorogenic acid in green tea.

    PubMed

    Tang, Weiyang; Li, Guizhen; Row, Kyung Ho; Zhu, Tao

    2016-05-15

    A novel double-templates technique was adopted for solid-phase extraction packing agent, and the obtained hybrid molecularly imprinted polymers with double-templates (theophylline and chlorogenic acid) were characterized by fourier transform infrared and field emission scanning electron microscope. The molecular recognition ability and binding capability for theophylline and chlorogenic acid of polymers was evaluated by static absorption and dynamic adsorption curves. A rapid and accurate approach was established for simultaneous purification of theophylline and chlorogenic acid in green tea by coupling hybrid molecularly imprinted solid-phase extraction with high performance liquid chromatography. With optimization of SPE procedure, a reliable analytical method was developed for highly recognition towards theophylline and chlorogenic acid in green tea with satisfactory extraction recoveries (theophylline: 96.7% and chlorogenic acid: 95.8%). The limit of detection and limit of quantity of the method were 0.01μg/mL and 0.03μg/mL for theophylline, 0.05μg/mL and 0.17μg/mL for chlorogenic acid, respectively. The recoveries of proposed method at three spiked levels analysis were 98.7-100.8% and 98.3-100.2%, respectively, with the relative standard deviation less than 1.9%. Hybrid molecularly imprinted polymers with double-templates showed good performance for two kinds of targets, and the proposed approach with high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples. PMID:26992488

  16. Testing and evaluation of EV-1300 lead-acid modules for the hybrid vehicle application

    SciTech Connect

    Gay, E.C.; Corp, D.O.; Hayes, E.R.; Webster, C.E.; Hornstra, F.; Yao, N.P.

    1984-01-01

    Tests of two 6-cell, EV-1300 modules with a capacity of 105 Ah (1235 Wh) were conducted at the computer-automated National Battery Test Laboratory at Argonne National Laboratory to verify the above design requirements. In addition, the following tests were completed to more fully characterize the performance of the battery: (1) capacity measurements over a range of constant-current discharges of 35 to 400 A (Peukert Plot); (2) energy measurements over a range of constant-power discharges of 10 to 100 W/kg (Ragone Plot); (3) open-circuit stand testing (self-discharge); (4) partial DOD testing (memory effect); (5) projected range based on simulated driving profile discharges representing the EPA urban driving schedule negotiated by the HTV-1 hybrid vehicle with minimum ICE operation; (6) projected range based on simulated driving profile discharges representing the SAE J227aD urban driving schedule negotiated by an improved ETV-1 (an all-electric vehicle); and (7) peak power measurements at various depths of discharge.

  17. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  18. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage.

    PubMed

    Nicomrat, Duongruitai; Dick, Warren A; Tuovinen, Olli H

    2006-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant. Heterotrophs in the Acidiphilium genus totaled 20% of the bacterial population. Leptospirillum ferrooxidans was below the level of detection in the bacterial community. The results from the FISH technique from this field study are consistent with results from other experiments involving enumeration by most probable number, dot-blot hybridization, and denaturing gradient gel electrophoresis analyses and with the geochemistry of the site. PMID:16825452

  19. Interaction of Proteus mirabilis urease apoenzyme and accessory proteins identified with yeast two-hybrid technology.

    PubMed

    Heimer, S R; Mobley, H L

    2001-02-01

    Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)(3). To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins. PMID:11157956

  20. Hybrid Spaces and Hyphenated Musicians: Secondary Students' Musical Engagement in a Songwriting and Technology Course

    ERIC Educational Resources Information Center

    Tobias, Evan S.

    2012-01-01

    This case study investigates how secondary students (three individuals and three groups) engaged with music and acted as musicians in a Songwriting and Technology Class (STC), a course involving the creation, performance, recording and production of original music with instruments and music technology. The following research question guided the…

  1. Effect of acid or alkaline catalyst and of different capping agents on the optical properties of CdS nanoparticles incorporated within a diureasil hybrid matrix

    NASA Astrophysics Data System (ADS)

    Gonçalves, Luis F. F. F.; Silva, Carlos J. R.; Kanodarwala, Fehmida K.; Stride, John A.; Pereira, Mario R.

    2015-11-01

    CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol-gel process. Both alkaline and acidic catalysis of the sol-gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.

  2. Acid Rain Advisory Committee meeting. Held on March 20-22, 1991. Permits and technology issue papers

    SciTech Connect

    Not Available

    1991-04-01

    Index: (Permits and Technology Subcommittee Papers): Permits and Technologies Conference Call Minutes January 22, 1991; Subcommittee Meeting Minutes; January 28, 1991; Principles for Acid Rain Permits; Fact Sheet: Reduced Utilization; Topics Covered in Acid Rain Permit Regulations; and Primer on the Clean Water Act Permit Program.

  3. Unique honey bee (Apis mellifera) hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    PubMed

    Grubbs, Kirk J; Scott, Jarrod J; Budsberg, Kevin J; Read, Harry; Balser, Teri C; Currie, Cameron R

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components. PMID:25849080

  4. Unique Honey Bee (Apis mellifera) Hive Component-Based Communities as Detected by a Hybrid of Phospholipid Fatty-Acid and Fatty-Acid Methyl Ester Analyses

    PubMed Central

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components. PMID:25849080

  5. Chemical and biological extraction of metals present in E waste: A hybrid technology

    SciTech Connect

    Pant, Deepak; Joshi, Deepika; Upreti, Manoj K.; Kotnala, Ravindra K.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Hybrid methodology for E waste management. Black-Right-Pointing-Pointer Efficient extraction of metals. Black-Right-Pointing-Pointer Trace metal extraction is possible. - Abstract: Management of metal pollution associated with E-waste is widespread across the globe. Currently used techniques for the extraction of metals from E-waste by using either chemical or biological leaching have their own limitations. Chemical leaching is much rapid and efficient but has its own environmental consequences, even the future prospects of associated nanoremediation are also uncertain. Biological leaching on the other hand is comparatively a cost effective technique but at the same moment it is time consuming and the complete recovery of the metal, alone by biological leaching is not possible in most of the cases. The current review addresses the individual issues related to chemical and biological extraction techniques and proposes a hybrid-methodology which incorporates both, along with safer chemicals and compatible microbes for better and efficient extraction of metals from the E-waste.

  6. Solid rocket combustion simulator technology using the hybrid rocket for simulation

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1994-01-01

    The hybrid rocket is reexamined in light of several important unanswered questions regarding its performance. The well-known heat transfer limited burning rate equation is quoted, and its limitations are pointed out. Several inconsistencies in the burning rate determination through fuel depolymerization are explicitly discussed. The resolution appears to be through the postulate of (surface) oxidative degradation of the fuel. Experiments are initiated to study the fuel degradation in mixtures of nitrogen/oxygen in the 99.9 percent/0.1 percent to 98 percent/2 percent range. The overall hybrid combustion behavior is studied in a 2 in-diameter rocket motor, where a PMMA tube is used as the fuel. The results include detailed, real-time infrared video images of the combustion zone. Space- and time-averaged images give a broad indication of the temperature reached in the gases. A brief outline is shown of future work, which will specifically concentrate on the exploration of the role of the oxidizer transport to the fuel surface, and the role of the unburned fuel that is reported to escape below the classical time-averaged boundary layer flame.

  7. Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center

    SciTech Connect

    Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

    1996-07-01

    In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

  8. Ultra-Lightweight Hybrid Thin-Film Solar Cells: A Survey of Enabling Technologies for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; McNatt, Jeremiah S.; Bailey, Sheila G.; Dickman, John E.; Raffaelle, Ryne P.; Landi, Brian J.; Anctil, Annick; DiLeo, Roberta; Jin, Michael H.-C.; Lee, Chung-Young; Friske, Theresa J.; Sun, Sam-S.; Zhang, Cheng; Choi, S.; Ledbetter, Abram; Seo, Kang; Bonner, Carl E.; Banger, Kulbinder K.; Castro, Stephanie L.; Rauh, David

    2007-01-01

    The development of hybrid inorganic/organic thin-film solar cells on flexible, lightweight, space-qualified, durable substrates provides an attractive solution for fabricating solar arrays with high mass specific power (W/kg). Next generation thin-film technologies may well involve a revolutionary change in materials to organic-based devices. The high-volume, low-cost fabrication potential of organic cells will allow for square miles of solar cell production at one-tenth the cost of conventional inorganic materials. Plastic solar cells take a minimum of storage space and can be inflated or unrolled for deployment. We will explore a cross-section of in-house and sponsored research efforts that aim to provide new hybrid technologies that include both inorganic and polymer materials as active and substrate materials. Research at University of Texas at Arlington focuses on the fabrication and use of poly(isothianaphthene-3,6-diyl) in solar cells. We describe efforts at Norfolk State University to design, synthesize and characterize block copolymers. A collaborative team between EIC Laboratories, Inc. and the University of Florida is investigating multijunction polymer solar cells to more effectively utilize solar radiation. The National Aeronautics and Space Administration (NASA)/Ohio Aerospace Institute (OAI) group has undertaken a thermal analysis of potential metallized substrates as well as production of nanoparticles of CuInS2 and CuInSe2 in good yield at moderate temperatures via decomposition of single-source precursors. Finally, preliminary work at the Rochester Institute of Technology (R.I.T.) to assess the impact on performance of solar cells of temperature and carbon nanotubes is reported. Technologies that must be developed to enable ultra-lightweight solar arrays include: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. For NASA applications, any solar cell or array technology must not only meet

  9. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    PubMed

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. PMID:27126169

  10. A hybrid plasma technology life support system for the generation of oxygen on Mars: Considerations on materials and geometry

    NASA Astrophysics Data System (ADS)

    Gruenwald, J.

    2016-06-01

    As there is a growing interest in conducting human missions to Mars, the need for suitable life support systems becomes more and more important. The reliability of such systems has to increase with the duration of manned missions. Furthermore the maintenance requirements have to be low in order to ensure their efficient use over a long period of time. A proposal for a hybrid life support system that is based on plasma technology for the creation of oxygen from the dissociation of carbon dioxide is given in this paper. The main focus lies on geometrical considerations regarding the optimal shape of the main reactor chamber as well as on suitable materials, which are most promising for the construction of such a system.

  11. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB)

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; James, Kevin D.; Bonet, John T.

    2016-01-01

    The NASA Environmentally Responsible Aircraft Project (ERA) was a ve year project broken into two phases. In phase II, high N+2 Technical Readiness Level demonstrations were grouped into Integrated Technology Demonstrations (ITD). This paper describes the work done on ITD-51A: the Vehicle Systems Integration, Engine Airframe Integration Demonstration. Refinement of a Hybrid Wing Body (HWB) aircraft from the possible candidates developed in ERA Phase I was continued. Scaled powered, and unpowered wind- tunnel testing, with and without acoustics, in the NASA LARC 14- by 22-foot Subsonic Tunnel, the NASA ARC Unitary Plan Wind Tunnel, and the 40- by 80-foot test section of the National Full-Scale Aerodynamics Complex (NFAC) in conjunction with very closely coupled Computational Fluid Dynamics was used to demonstrate the fuel burn and acoustic milestone targets of the ERA Project.

  12. Comparing Adhesive Bonding and LAMP Joining Technology in Case of Hybrid Material Combination

    NASA Astrophysics Data System (ADS)

    Markovits, T.; Bauernhuber, A.

    As plastics are utilized more and more frequently in our devices, it becomes necessary that they can be adequately joined to other materials, like metals. Bonding different materials was carried so far out primarily by adhesives, however, novel technologies, like laser assisted metal-plastic joining are showing benefits against current technologies. In the course of this study, the authors joined PMMA plastic to structural steel by adhesives and by laser assisted metal-plastic joining. Mechanical tests were carried out to compare the two different technologies, and to be able to position the LAMP joining within the field of joining technologies. Results show clearly the advantages of laser transmission joining as compared to adhesives.

  13. Blending problem-based learning with Web technology positively impacts student learning outcomes in acid-base physiology.

    PubMed

    Taradi, Suncana Kukolja; Taradi, Milan; Radic, Kresimir; Pokrajac, Niksa

    2005-03-01

    World Wide Web (Web)-based learning (WBL), problem-based learning (PBL), and collaborative learning are at present the most powerful educational options in higher education. A blended (hybrid) course combines traditional face-to-face and WBL approaches in an educational environment that is nonspecific as to time and place. To provide educational services for an undergraduate second-year elective course in acid-base physiology, a rich, student-centered educational Web-environment designed to support PBL was created by using Web Course Tools courseware. The course is designed to require students to work in small collaborative groups using problem solving activities to develop topic understanding. The aim of the study was to identify the impact of the blended WBL-PBL-collaborative learning environment on student learning outcomes. Student test scores and satisfaction survey results from a blended WBL-PBL-based test group (n = 37) were compared with a control group whose instructional opportunities were from a traditional in-class PBL model (n = 84). WBL students scored significantly (t = 3.3952; P = 0.0009) better on the final acid-base physiology examination and expressed a positive attitude to the new learning environment in the satisfaction survey. Expressed in terms of a difference effect, the mean of the treated group (WBL) is at the 76th percentile of the untreated (face-to-face) group, which stands for a "medium" effect size. Thus student progress in the blended WBL-PBL collaborative environment was positively affected by the use of technology. PMID:15718381

  14. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect

    Fezzler, Raymond

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to

  15. Research on spectral resource optimization and self-healing technology of hybrid optical fiber sensing network

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Sang, Mei; Ge, Chunfeng; Chen, Guanghui; Liu, Tiegen

    2015-08-01

    We propose an optical-fiber-sensing-network (OFSN) to allow hybrid fiber sensors working in the same network and it achieves self-healing function. The discrete and distributed optical fiber sensors can be connected in sub-layers of the network. WDM-OTDM technique is introduced to convert multi-wavelengths of light source into a specific arranged wavelength in each sub-layer. Thus every sub-layer can share the system spectrum resources, and sensing signals of each sub-layer are transmitted together in the backbone network. To achieve self-healing function, double-ring structure is adopted in the backbone network. Node microprocessor program is designed to make switching to the protect fiber when working fiber is broken. The experimental backbone setup of the network demonstrates the practical reliability and intelligence of the optical sensing network.

  16. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems: Summary of Research

    NASA Technical Reports Server (NTRS)

    Manna, Zohar

    1998-01-01

    This research is directed towards the implementation of a comprehensive deductive-algorithmic environment (toolkit) for the development and verification of high assurance reactive systems, especially concurrent, real-time, and hybrid systems. For this, we have designed and implemented the STCP (Stanford Temporal Prover) verification system. Reactive systems have an ongoing interaction with their environment, and their computations are infinite sequences of states. A large number of systems can be seen as reactive systems, including hardware, concurrent programs, network protocols, and embedded systems. Temporal logic provides a convenient language for expressing properties of reactive systems. A temporal verification methodology provides procedures for proving that a given system satisfies a given temporal property. The research covered necessary theoretical foundations as well as implementation and application issues.

  17. Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology.

    PubMed

    Lauermann, M; Weimann, C; Knopf, A; Heni, W; Palmer, R; Koeber, S; Elder, D L; Bogaerts, W; Leuthold, J; Dalton, L R; Rembe, C; Freude, W; Koos, C

    2016-05-30

    We demonstrate for the first time a waveguide-based frequency shifter on the silicon photonic platform using single-sideband modulation. The device is based on silicon-organic hybrid (SOH) electro-optic modulators, which combine conventional silicon-on-insulator waveguides with highly efficient electro-optic cladding materials. Using small-signal modulation, we demonstrate frequency shifts of up to 10 GHz. We further show large-signal modulation with optimized waveforms, enabling a conversion efficiency of -5.8 dB while suppressing spurious side-modes by more than 23 dB. In contrast to conventional acousto-optic frequency shifters, our devices lend themselves to large-scale integration on silicon substrates, while enabling frequency shifts that are several orders of magnitude larger than those demonstrated with all-silicon serrodyne devices. PMID:27410095

  18. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Manna, Zohar

    1996-01-01

    The research is directed towards the design and implementation of a comprehensive deductive environment for the development of high-assurance systems, especially reactive (concurrent, real-time, and hybrid) systems. Reactive systems maintain an ongoing interaction with their environment, and are among the most difficult to design and verify. The project aims to provide engineers with a wide variety of tools within a single, general, formal framework in which the tools will be most effective. The entire development process is considered, including the construction, transformation, validation, verification, debugging, and maintenance of computer systems. The goal is to automate the process as much as possible and reduce the errors that pervade hardware and software development.

  19. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid.

    PubMed

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Choi, Yun-Hyeok; Hong, Seong Su; Suh, Hwa-Jin; Park, Woncheol; Boo, Yong Chool

    2016-07-01

    Resveratrol is known to inhibit cellular melanin synthesis by multiple mechanisms. Glycolic acid (GA) is used in skin care products for its excellent skin penetration. The purpose of this study was to examine the anti-melanogenic effects of resveratryl triglycolate (RTG), a novel hybrid compound of resveratrol and GA, in comparison with resveratrol, GA, resveratryl triacetate (RTA) and arbutin. Resveratrol, RTG, and RTA inhibited the catalytic activity human tyrosinase (TYR) more potently than arbutin or GA did. Their cytotoxic and anti-melanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEMs). The cytotoxicity of RTG was similar to that of resveratrol and RTA. RTG at 3-10 μM decreased melanin levels and cellular TYR activities in α-melanocyte-stimulating hormone-stimulated B16/F10 cells, and L-tyrosine-stimulated HEMs. RTG also suppressed mRNA and protein expression of TYR, tyrosinase-related protein 1, L-3,4-dihydroxyphenylalanine chrome tautomerase, and microphthalmia-associated transcription factor (MITF) in HEMs stimulated with L-tyrosine. This study suggests that, like resveratrol and RTA, RTG can attenuate cellular melanin synthesis effectively through the suppression of MITF-dependent expression of melanogenic enzymes and the inhibition of catalytic activity of TYR enzyme. RTG therefore has potential for use as a cosmeceutical ingredient for skin whitening. PMID:27059716

  20. Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical sensors

    SciTech Connect

    Grate, J.W.; Kaganove, S.N.; Patrash, S.J.

    1997-05-01

    Hybrid organic/inorganic polymers have been prepared incorporating fluoroalkyl-substituted bisphenol groups linked using oligosiloxane spacers. These hydrogen-bond acidic materials have glass-to-rubber transition temperatures below room temperature and are excellent sorbents for basic vapors. The physical properties such as viscosity and refractive index can be tuned by varying the length of the oligosiloxane spacers and the molecular weight. In addition, the materials are easily cross-linked to yield solid elastomers. The potential use of these materials for chemical sensing has been demonstrated by applying them to surface acoustic wave devices as thin films and detecting the hydrogen-bond basic vapor dimethyl methylphosphonate with high sensitivity. It has also been demonstrated that one of these materials with suitable viscosity and refractive index can be used to clad silica optical fibers; the cladding was applied to freshly drawn fiber using a fiber drawing tower. These fibers have potential as evanescent wave optical fiber sensors. 38 refs., 2 figs.

  1. Bioinspired syntheses of dimeric hydroxycinnamic acids (lignans) and hybrids, using phenol oxidative coupling as key reaction, and medicinal significance thereof.

    PubMed

    Magoulas, George E; Papaioannou, Dionissios

    2014-01-01

    Lignans are mainly dimers of 4-hydroxycinnamic acids (HCAs) and reduced analogs thereof which are produced in Nature through phenol oxidative coupling (POC) as the primary C-C or C-O bond-forming reaction under the action of the enzymes peroxidases and laccases. They present a large structural variety and particularly interesting biological activities, therefore, significant efforts has been devoted to the development of efficient methodologies for the synthesis of lignans isolated from natural sources, analogs and hybrids with other biologically interesting small molecules. We summarize in the present review those methods which mimic Nature for the assembly of the most common lignan skeleta by using either enzymes or one-electron inorganic oxidants to effect POC of HCAs and derivatives, such as esters and amides, or cross-POC of pairs of HCAs or HCAs with 4-hydrocycinnamyl alcohols. We, furthermore, provide outlines of mechanistic schemes accounting for the formation of the coupled products and, where applicable, indicate their potential application in medicine. PMID:25460307

  2. Rapid recharge capability of valve-regulated lead-acid batteries for electric vehicle and hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Fleming, F. A.; Shumard, P.; Dickinson, B.

    Range limitation is a significant drawback to the successful commercialization of electric vehicles (EVs). An apt description of an EV is `a high performance vehicle with a one-gallon fuel tank'. In the absence of a `super battery', there are at least two approaches to resolving this drawback. The first approach is rapid recharge, i.e., recharging the battery as close as possible to the same time period as it takes to fill the petrol tank of an internal-combustion-engined (ICE) vehicle. Whilst not extending the vehicle range as such, this approach does enable high usage of the vehicle without experiencing unduly long recharge times. The ability of the battery to accept rapid recharge is paramount for this approach. The second approach is the development of a hybrid electric vehicle (HEV). In this case, the demand on the battery is the ability to provide, and also absorb from regenerative braking, high specific peak-power levels over a wide range of battery state-of-charge. This paper describes the ability, and indeed limitations, of the valve-regulated Genesis® lead-acid battery in meeting such requirements.

  3. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  4. Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology.

    PubMed

    Cubas, A L V; Machado, M M; Pinto, C R S C; Moecke, E H S; Dutra, A R A

    2016-01-01

    This article aims to describe an alternative and innovative methodology to transform waste, frying oil in a potential energy source, the biodiesel. The biodiesel was produced from fatty acids, using a waste product of the food industry as the raw material. The methodology to be described is the corona discharge plasma technology, which offers advantages such as acceleration of the esterification reaction, easy separation of the biodiesel and the elimination of waste generation. The best conditions were found to be an oil/methanol molar ratio of 6:1, ambient temperature (25 °C) and reaction time of 110 min and 30 mL of sample. The acid value indicates the content of free fatty acids in the biodiesel and the value obtained in this study was 0.43 mg KOH/g. Peaks corresponding to octadecadienoic acid methyl ester, octadecanoic acid methyl ester and octadecenoic acid methyl ester, from the biodiesel composition, were identified using GC-MS. A major advantage of this process is that the methyl ester can be obtained in the absence of chemical catalysts and without the formation of the co-product (glycerin). PMID:26159043

  5. Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology.

    PubMed

    Schmidt, A; Standfuss-Gabisch, C; Bilitewski, U

    1996-01-01

    A microbial biosensor based on thick film technology was developed. The microorganisms, Arthrobacter nicotianae, were immobilized in Ca-alginate directly on the electrode surface. For the stability of the calcium alginate gel the addition of 0.5 mM CaCl2 to the assay buffer was necessary. The respiratory activity of the microorganisms was monitored by oxygen consumption at -600 mV vs. Ag/AgCl reference electrode. The sensor was used in a batch system and was applied to the determination of free fatty acids in milk. Short-chain fatty acids (C4:0-C12:0) were the preferential substrates, with butyric acid being the main substrate. Consequently, the concentration of free short-chain fatty acids was represented as the butyric acid equivalent. The sensor showed linearity over the concentration range 9.5-165.5 microM (correlation coefficient, r = 0.99920). The response time of the sensor was approximately 3 min. No additional dialysis membrane was necessary, which led to a high sensitivity of the sensor and fast response times. Recovery rates of 98-113% were found for butyric acid in milk samples using the sensor without any additional membrane and a sample dilution of 200 by the assay. Two widespread disadvantages of microbial sensors, long response times and long times to return to the baseline signal after use, could be overcome. PMID:8828165

  6. Humic acids: Structural properties and multiple functionalities for novel technological developments.

    PubMed

    de Melo, Bruna Alice Gomes; Motta, Fernanda Lopes; Santana, Maria Helena Andrade

    2016-05-01

    Humic acids (HAs) are macromolecules that comprise humic substances (HS), which are organic matter distributed in terrestrial soil, natural water, and sediment. HAs differ from the other HS fractions (fulvic acid and humins) in that they are soluble in alkaline media, partially soluble in water, and insoluble in acidic media. Due to their amphiphilic character, HAs form micelle-like structures in neutral to acidic conditions, which are useful in agriculture, pollution remediation, medicine and pharmaceuticals. HAs have undefined compositions that vary according to the origin, process of obtainment, and functional groups present in their structures, such as quinones, phenols, and carboxylic acids. Quinones are responsible for the formation of reactive oxygen species (ROS) in HAs, which are useful for wound healing and have fungicidal/bactericidal properties. Phenols and carboxylic acids deprotonate in neutral and alkaline media and are responsible for various other functions, such as the antioxidant and anti-inflammatory properties of HAs. In particular, the presence of phenolic groups in HAs provides antioxidant properties due to their free radical scavenging capacity. This paper describes the main multifunctionalities of HAs associated with their structures and properties, focusing on human health applications, and we note perspectives that may lead to novel technological developments. To the best of our knowledge, this is the first review to address this topic from this approach. PMID:26952503

  7. Recent advances in the US Department of Energy's energy storage technology research and development programs for hybrid electric and electric vehicles

    NASA Astrophysics Data System (ADS)

    Weinstock, Irwin B.

    This paper provides an overview of recent advances in battery technology resulting from the Department of Energy's (DOE's) energy storage research and development (R&D) programs for hybrid electric vehicles (HEVs) and electrical vehicles (EVs). The DOE's Office of Advanced Automotive Technologies (OAAT) is working with industry, national laboratories, universities, and other government agencies to develop technologies that will lead to a reduction in the petroleum used and the emissions generated by the transportation sector. The programs reviewed in this paper are focused on accelerating the development of energy storage technologies that are critical for the commercialization of HEVs and EV. These include the research conducted at DOE's national laboratories to develop the high-power batteries needed for hybrid electric vehicles (HEVs) and the collaborative research with the US Advanced Battery Consortium (USABC) to develop the high-energy batteries needed for EVs.

  8. Sulfonic acid-functionalized hybrid organic-inorganic proton exchange membranes synthesized by sol-gel using 3-mercaptopropyl trimethoxysilane (MPTMS)

    NASA Astrophysics Data System (ADS)

    Mosa, J.; Durán, A.; Aparicio, M.

    2015-11-01

    Organic/inorganic hybrid membranes based on (3-glycidoxypropyl) trimethoxysilane (GPTMS) and 3-mercaptopropyl trimethoxysilane (MPTMS) have been prepared by sol-gel method and organic polymerisation, as candidate materials for proton exchange membranes in direct alcohol fuel cell (DMFC) applications. The -SH groups of MPTMS are oxidized to sulfonic acid groups, which are attributed to enhance the proton conductivity of hybrid membranes. FTIR, XPS and contact angle were used to characterize and confirm the hybrid structure and oxidation reaction progress. Membranes characterization also includes ion exchange capacity, water uptake, methanol permeability and proton conductivity to confirm their applicability in fuel cells. All the membranes were homogeneous and thermally and chemically resistant. In particular, the hybrid membranes demonstrated proton conductivities as high as 0.16 S cm-1 at high temperature, while exhibiting a low methanol permeability as compared to Nafion®. These results are associated with proton conducting paths through the silica pseudo-PEO network in which sulfonic acid groups work as proton donor.

  9. Weathering and Biodegradation Study on Graft Copolymer Compatibilized Hybrid Bionanocomposites of Poly(Lactic Acid)

    NASA Astrophysics Data System (ADS)

    Sajna, VP; Nayak, Sanjay K.; Mohanty, Smita

    2016-06-01

    This work reports on the influence of moisture absorption and accelerated weathering on the properties of graft copolymer compatibilized bionanocomposites of poly(lactic acid) (PLA). Moisture absorption tests were conducted for 30 days by immersing the samples in a distilled water bath at room temperature, and the amount of moisture absorbed in each time interval was measured. The rate of moisture uptake decreased by incorporation of C30B nanoclay and graft copolymer into fiber-reinforced PLA composites. Changes in the mechanical properties of composites in each time interval of moisture absorption were investigated using tensile and impact tests. Exposure to moisture caused significant drops in the mechanical properties. The morphological characterization of biocomposites during the aforementioned tests has been made using SEM, while bionanocomposites were analyzed by TEM. Further, this paper also reported the effect of accelerated weathering on the mechanical properties and the results are confirmed through SEM analysis. Biodegradation behaviors of PLA biocomposites and bionanocomposites have also been studied.

  10. Weathering and Biodegradation Study on Graft Copolymer Compatibilized Hybrid Bionanocomposites of Poly(Lactic Acid)

    NASA Astrophysics Data System (ADS)

    Sajna, VP; Nayak, Sanjay K.; Mohanty, Smita

    2016-07-01

    This work reports on the influence of moisture absorption and accelerated weathering on the properties of graft copolymer compatibilized bionanocomposites of poly(lactic acid) (PLA). Moisture absorption tests were conducted for 30 days by immersing the samples in a distilled water bath at room temperature, and the amount of moisture absorbed in each time interval was measured. The rate of moisture uptake decreased by incorporation of C30B nanoclay and graft copolymer into fiber-reinforced PLA composites. Changes in the mechanical properties of composites in each time interval of moisture absorption were investigated using tensile and impact tests. Exposure to moisture caused significant drops in the mechanical properties. The morphological characterization of biocomposites during the aforementioned tests has been made using SEM, while bionanocomposites were analyzed by TEM. Further, this paper also reported the effect of accelerated weathering on the mechanical properties and the results are confirmed through SEM analysis. Biodegradation behaviors of PLA biocomposites and bionanocomposites have also been studied.

  11. Effects of molecular liposomal hybrid compositions with oxidized dextrans and isonicotinic acid hydrazide on production of granulocytic macrophage colony-stimulating factor by macrophages.

    PubMed

    Shkurupy, V A; Arkhipov, S A; Troitsky, A V; Luzgina, N G; Zaikovskaja, M V; Ufimceva, E G; Iljine, D A; Akhramenko, E S; Gulyaeva, E P; Bistrova, T N

    2009-10-01

    The effects of molecular liposomal hybrid compositions consisting of liposomes (200-450 nm) containing oxidized dextrans (dextranals; 35-60 kDa) conjugated with isonicotinic acid hydrazide (dextrazides), their components, and native dextrans on the production of granulocytic macrophage CSF by peritoneal macrophages were studied in vitro. Dextranals proved to be more potent inductors of granulocytic macrophage CSF than native dextrans. Conjugation of nicotinic acid hydrazide with dextranals did not modify their capacity to stimulate the production of granulocytic macrophage CSF. Liposomes in the molecular liposomal hybrid compositions did not attenuate the dextrazide capacity to stimulate the production of granulocytic macrophage CSF. Molecular liposomal compositions containing 60 kDa dextrazide exhibited the most potent stimulatory effect on macrophage production of granulocytic macrophage CSF. PMID:20396775

  12. Fluorescence In Situ Hybridization Using Peptide Nucleic Acid Probes for Rapid Detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in Potable-Water Biofilms

    PubMed Central

    Lehtola, Markku J.; Torvinen, Eila; Miettinen, Ilkka T.; Keevil, C. William

    2006-01-01

    Here, we present for the first time a high-affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting Mycobacterium avium bacteria, including the opportunistically pathogenic subspecies M. avium subsp. avium, M. avium subsp. paratuberculosis, and M. avium subsp. silvaticum, by the fluorescence in situ hybridization (FISH) method. There is evidence that M. avium subsp. avium especially is able to survive and grow in drinking-water biofilms and possibly transmit via drinking water. The designed PNA probe (MAV148) specificity was tested with several bacterial species, including other mycobacteria and mycolic acid-containing bacteria. From the range of bacterial strains tested, only M. avium subsp. avium and M. avium subsp. paratuberculosis strains were hybridized. The PNA FISH method was applied successfully to detect M. avium subsp. avium spiked in water samples and biofilm established within a Propella biofilm reactor fed with potable water from a distribution supply. PMID:16391126

  13. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  14. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  15. Carbon honeycomb grids for advanced lead-acid batteries. Part III: Technology scale-up

    NASA Astrophysics Data System (ADS)

    Kirchev, A.; Serra, L.; Dumenil, S.; Brichard, G.; Alias, M.; Jammet, B.; Vinit, L.

    2015-12-01

    The carbon honeycomb grid technology employs new carbon/carbon composites with ordered 3D structure instead of the classic lead-acid battery current collectors. The technology is laboratory scaled up from small size grids corresponding to electrodes with a capacity of 3 Ah to current collectors suitable for assembly of lead-acid batteries covering the majority of the typical lead-acid battery applications. Two series of 150 grids each (one positive and one negative) are manufactured using low-cost lab-scale equipment. They are further subjected to pasting with active materials and the resulting battery plates are assembled in 12 V AGM-VLRA battery mono-blocks for laboratory testing and outdoor demonstration in electric scooter replacing its original VRLAB pack. The obtained results demonstrate that the technology can replace successfully the state of the art negative grids with considerable benefits. The use of the carbon honeycomb grids as positive plate current collectors is limited by the anodic corrosion of the entire structure attacking both the carbon/carbon composite part and the electroplated lead-tin alloy coating.

  16. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer.

    PubMed

    Huh, Hyun Wook; Zhao, Linlin; Kim, So Yeon

    2015-08-01

    A biomineralized hydrogel system containing hyaluronic acid (HA) and poloxamer composed of a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO-PPO-PEO) block copolymer was developed as a biomimetic thermo-responsive injectable hydrogel system for bone regeneration. Using HA and poloxamer macromers with polymerizable residues, organic/inorganic HA/poloxamer hydrogels with various compositions were prepared and subjected to a biomineralization process to mimic the bone extracellular matrix. An increase in HA content within the hydrogels enhanced intermolecular chelation with calcium ions, leading to an increase in nucleation and growth of calcium phosphate in the hydrogels. After the biomineralization procedure, a crystalline formation was observed within and on the surface of the hydrogel. All of the HA/poloxamer hydrogel samples exhibited relatively high water content of greater than 90% at 25 °C, and the water content was influenced by the HA/poloxamer composition, biomineralization, and temperature. In particular, the HA/poloxamer hydrogel was injectable through a syringe without demonstrating appreciable macroscopic fracture at room temperature, whereas it was more opaque and adopted a more rigid structure as the temperature increased because of the increasing hydrophobicity of poloxamer. The enzymatic degradation behavior of the hydrogels depended on the concentration of hyaluronidase, HA/poloxamer composition, and biomineralization. The release kinetics of model drugs from HA/poloxamer hydrogels was primarily dependent on the drug loading content, water content, biomineralization of the hydrogels, and ionic properties of the drug. These results indicate that biomineralized HA/poloxamer hydrogel is a promising candidate material for a biomimetic hydrogel system that promotes bone tissue repair and regeneration via local delivery of drugs. PMID:25933531

  17. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  18. A Comparison of Traditional and Hybrid Online Instructional Presentation in Communication Technology

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.

    2008-01-01

    Online education has become a central element of the discourse on higher education. There seems to be an overall drive toward online learning given the mounting need for flexibility in scheduling and the daily emergence of communication technologies and capabilities. Online education is presented as a means of conveying instruction to an extensive…

  19. Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    NASA Astrophysics Data System (ADS)

    Kunst, S. R.; Cardoso, H. R. P.; Oliveira, C. T.; Santana, J. A.; Sarmento, V. H. V.; Muller, I. L.; Malfatti, C. F.

    2014-04-01

    The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane-poly (methyl methacrylate) (PMMA) hybrid film prepared by sol-gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane-PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase and irregular surface coverage.

  20. Hybridization-Induced Aggregation Technology for Practical Clinical Testing: KRAS Mutation Detection in Lung and Colorectal Tumors.

    PubMed

    Sloane, Hillary S; Landers, James P; Kelly, Kimberly A

    2016-07-01

    KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for appropriate treatment stratification. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation. In response, we recently introduced a unique analytical strategy for revealing KRAS mutations, based on the allele-specific hybridization-induced aggregation (HIA) of oligonucleotide probe-conjugated microbeads. Using simple, inexpensive instrumentation, this approach allows for the detection of any common KRAS mutation in <10 minutes after PCR. Here, we evaluate the clinical utility of the HIA method for mutation detection (HIAMD). In the analysis of 20 lung and colon tumor pathology specimens, we observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and sequencing. In addition, we were able to detect KRAS mutations in a background of 75% wild-type DNA-a finding consistent with that reported for sequencing. With this, we show that HIAMD allows for the rapid and cost-effective detection of KRAS mutations, without compromising analytical performance. These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing. Further expansion of this platform may involve the detection of mutations in other key oncogenic pathways. PMID:27289420

  1. Bacterial production of conjugated linoleic and linolenic Acid in foods: a technological challenge.

    PubMed

    Gorissen, Lara; Leroy, Frédéric; De Vuyst, Luc; De Smet, Stefaan; Raes, Katleen

    2015-01-01

    Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers are present in foods derived from ruminants as a result of the respective linoleic acid (LA) and α-linolenic acid (LNA) metabolism by ruminal microorganisms and in animals' tissues. CLA and CLNA have isomer-specific, health-promoting properties, including anticarcinogenic, antiatherogenic, anti-inflammatory, and antidiabetic activity, as well as the ability to reduce body fat. Besides ruminal microorganisms, such as Butyrivibrio fibrisolvens, many food-grade bacteria, such as bifidobacteria, lactic acid bacteria (LAB), and propionibacteria, are able to convert LA and LNA to CLA and CLNA, respectively. Linoleate isomerase activity, responsible for this conversion, is strain-dependent and probably related to the ability of the producer strain to tolerate the toxic effects of LA and LNA. Since natural concentrations of CLA and CLNA in ruminal food products are relatively low to exert their health benefits, food-grade bacteria with linoleate isomerase activity could be used as starter or adjunct cultures to develop functional fermented dairy and meat products with increased levels of CLA and CLNA or included in fermented products as probiotic cultures. However, results obtained so far are below expectations due to technological bottlenecks. More research is needed to assess if bacterial production kinetics can be increased and can match food processing requirements. PMID:24915316

  2. NASA's Involvement in Technology Development and Transfer: The Ohio Hybrid Bus Project

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1997-01-01

    A government and industry cooperative is using advanced power technology in a city transit bus that will offer double the fuel economy, and reduce emissions to one tenth of government standards. The heart of the vehicle's power system is a natural gas fueled generator unit. Power from both the generator and an advanced energy storage system is provided to a variable speed electric motor attached to the rear drive axle. A unique aspect of the vehicle's design is its use of "super" capacitors for recovery of energy during braking. This is the largest vehicle ever built using this advanced energy recovery technology. This paper describes the project goals and approach, results of its system performance modeling, and the status of the development team's effort.

  3. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  4. Excellent anti-corrosive pretreatment layer on iron substrate based on three-dimensional porous phytic acid/silane hybrid

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Lu, Ke; Xu, Lei; Xu, Hua; Lu, Haifeng; Gao, Feng; Hou, Shifeng; Ma, Houyi

    2016-01-01

    A novel, highly effective and environmentally friendly film-forming material, phytic acid (PA)/silane (denoted as PAS) hybrid with a three-dimensional (3D) network structure, was prepared through a condensation reaction of PA with methyltrihydroxysilane generated from the hydrolysis of methyltriethoxysilane (MTES). Two kinds of PAS-based pretreatment layers, namely NaBrO3-free and NaBrO3-doped PAS layers, were fabricated on iron substrates using the dip-coating method. SEM and AFM observations showed that the as-fabricated PAS-based layers possessed a 3D porous microstructure at the nanoscale and a rough surface morphology. X-ray photoelectron spectroscopic (XPS) and attenuated total reflection infrared (ATR-IR) spectroscopic characterization demonstrated that the above PAS layers bound to the iron surface via the -P-O- bond. Moreover, analyses of steady-state polarization curves and electrochemical impedance spectroscopic (EIS) data indicated that the corrosion rates of the iron substrates decreased considerably in the presence of the two PAS-based pretreatment layers. In particular, the NaBrO3-dosed PAS layer displayed the better corrosion resistance ability as well as maintaining the original microstructure and surface morphology. The PAS-based pretreatment layers are expected to act as substitutes for chromate and phosphate conversion layers and will find widespread application in the surface pretreatment of iron and steel materials due to the advantages of being environmentally friendly, the rapid film-forming process, and, especially, the nanoporous microstructure and rough surface morphology.A novel, highly effective and environmentally friendly film-forming material, phytic acid (PA)/silane (denoted as PAS) hybrid with a three-dimensional (3D) network structure, was prepared through a condensation reaction of PA with methyltrihydroxysilane generated from the hydrolysis of methyltriethoxysilane (MTES). Two kinds of PAS-based pretreatment layers, namely Na

  5. Excellent anti-corrosive pretreatment layer on iron substrate based on three-dimensional porous phytic acid/silane hybrid.

    PubMed

    Gao, Xiang; Lu, Ke; Xu, Lei; Xu, Hua; Lu, Haifeng; Gao, Feng; Hou, Shifeng; Ma, Houyi

    2016-01-21

    A novel, highly effective and environmentally friendly film-forming material, phytic acid (PA)/silane (denoted as PAS) hybrid with a three-dimensional (3D) network structure, was prepared through a condensation reaction of PA with methyltrihydroxysilane generated from the hydrolysis of methyltriethoxysilane (MTES). Two kinds of PAS-based pretreatment layers, namely NaBrO3-free and NaBrO3-doped PAS layers, were fabricated on iron substrates using the dip-coating method. SEM and AFM observations showed that the as-fabricated PAS-based layers possessed a 3D porous microstructure at the nanoscale and a rough surface morphology. X-ray photoelectron spectroscopic (XPS) and attenuated total reflection infrared (ATR-IR) spectroscopic characterization demonstrated that the above PAS layers bound to the iron surface via the -P-O- bond. Moreover, analyses of steady-state polarization curves and electrochemical impedance spectroscopic (EIS) data indicated that the corrosion rates of the iron substrates decreased considerably in the presence of the two PAS-based pretreatment layers. In particular, the NaBrO3-dosed PAS layer displayed the better corrosion resistance ability as well as maintaining the original microstructure and surface morphology. The PAS-based pretreatment layers are expected to act as substitutes for chromate and phosphate conversion layers and will find widespread application in the surface pretreatment of iron and steel materials due to the advantages of being environmentally friendly, the rapid film-forming process, and, especially, the nanoporous microstructure and rough surface morphology. PMID:26689810

  6. Fluorescence in situ Hybridization method using Peptide Nucleic Acid probes for rapid detection of Lactobacillus and Gardnerella spp.

    PubMed Central

    2013-01-01

    Background Bacterial vaginosis (BV) is a common vaginal infection occurring in women of reproductive age. It is widely accepted that the microbial switch from normal microflora to BV is characterized by a decrease in vaginal colonization by Lactobacillus species together with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay (PNA FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. Results Therefore, we evaluated and validated two specific PNA probes by using 36 representative Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically related or pathogenic bacterial strains commonly found in vaginal samples. The probes were also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency and applicability of our PNA FISH. Conclusions This quick method accurately detects Lactobacillus spp. and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two bacterial groups, most frequently encountered in the vagina. PMID:23586331

  7. Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization

    PubMed Central

    2012-01-01

    Background Okadaic acid (OA), a toxin produced by several dinoflagellate species is responsible for frequent food poisonings associated to shellfish consumption. Although several studies have documented the OA effects on different processes such as cell transformation, apoptosis, DNA repair or embryogenesis, the molecular mechanistic basis for these and other effects is not completely understood and the number of controversial data on OA is increasing in the literature. Results In this study, we used suppression subtractive hybridization in SHSY5Y cells to identify genes that are differentially expressed after OA exposure for different times (3, 24 and 48 h). A total of 247 subtracted clones which shared high homology with known genes were isolated. Among these, 5 specific genes associated with cytoskeleton and neurotransmission processes (NEFM, TUBB, SEPT7, SYT4 and NPY) were selected to confirm their expression levels by real-time PCR. Significant down-regulation of these genes was obtained at the short term (3 and 24 h OA exposure), excepting for NEFM, but their expression was similar to the controls at 48 h. Conclusions From all the obtained genes, 114 genes were up-regulated and 133 were down-regulated. Based on the NCBI GenBank and Gene Ontology databases, most of these genes are involved in relevant cell functions such as metabolism, transport, translation, signal transduction and cell cycle. After quantitative PCR analysis, the observed underexpression of the selected genes could underlie the previously reported OA-induced cytoskeleton disruption, neurotransmission alterations and in vivo neurotoxic effects. The basal expression levels obtained at 48 h suggested that surviving cells were able to recover from OA-caused gene expression alterations. PMID:22284234

  8. Technologies for trapped-ion quantum information systems - Progress toward scalability with hybrid systems

    NASA Astrophysics Data System (ADS)

    Eltony, Amira M.; Gangloff, Dorian; Shi, Molu; Bylinskii, Alexei; Vuletić, Vladan; Chuang, Isaac L.

    2016-03-01

    Scaling up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit, and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.

  9. Phasing Variants in Poplar Trees using a Hybrid of Short & Long Read Technologies

    SciTech Connect

    Schackwitz, Wendy; Martin, Joel; Lipzen, Anna; Pennacchio, Len; Tuskan, Gerald

    2013-03-26

    Poplar grow throughout the West coast & are adapted to extremely variable conditions. To examine what allows for this wide range of growth conditions, Jerry Tuskan's team has collected 1000 different individuals from British Columbia to California. In 2009, three Common Gardens were established where each individual was cloned in triplicate. Nearly all of these trees have been sequenced using short read technology, revealing a huge degree of variation in genotype. Correlating this genomic variation to phenotype would be greatly be strengthened if the variants could be phased into long haplotype blocks.

  10. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part I. Results based on kernel density estimation

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Karspeck, T.; Ott, C.; Weckler, M.; Stoermer, A. O.

    2011-03-01

    In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation. The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).

  11. Pixel frontend electronics in a radiation hard technology for hybrid and monolithic applications

    SciTech Connect

    Pengg, F. |; Campbell, M.; Heijne, E.H.M.; Snoeys, W.

    1996-06-01

    Pixel detector readout cells have been designed in the radiation hard DMILL technology and their characteristics evaluated before and after irradiation to 14Mrad. The test chip consists of two blocks of six readout cells each. Two different charge amplifiers are implemented, one of them using a capacitive feedback loop, the other the fast signal charge transfer to a high impedance integrating node. The measured equivalent noise charge is 110e{sup {minus}}r.m.s. before and 150e{sup {minus}}r.m.s. after irradiation. With a discriminator threshold set to 5000e{sup {minus}}, which reduces for the same bias setting to 400e{sup {minus}} after irradiation, the threshold variation is 300e{sup {minus}}r.m.s. and 250e{sup {minus}}r.m.s. respectively. The time walk is 40ns before and after irradiation. The use of this SOI technology for monolithic integration of electronics and detector in one substrate is under investigation.

  12. Magnetic aqueous two phase fishing: a hybrid process technology for antibody purification.

    PubMed

    Dhadge, Vijaykumar L; Rosa, Sara A S L; Azevedo, Ana; Aires-Barros, Raquel; Roque, Ana C A

    2014-04-25

    The potential to combine aqueous two-phase extraction (ATPE) with magnetic separation was here investigated with the aim of developing a selective non-chromatographic method for the purification of antibodies from cell culture supernatants. Aqueous two-phase systems (ATPS) composed of polyethylene glycol (PEG) and dextran were supplemented with several surface modified magnetic particles (MPs) at distinct salt concentrations. The partition of pure human IgG in the upper and lower phases as well as the amount adsorbed at the MPs surface was investigated, indicating that MPs coated with dextran and gum Arabic established the lowest amount of non-specific interactions. The binding capacity of gum arabic coated particles modified with aminophenyl boronic acid (GA-APBA-MP) was were found to be excellent in combination with the ATPS system, yielding high yields of antibody recovery (92%) and purity (98%) from cell culture supernatants. The presence of MPs in the ATPS was found to speed up phase separation (from 40 to 25min), to consume a lower amount of MPs (half of the amount needed in magnetic fishing) and to increase the yield and purity of a mAb purified from a cell culture supernatant, when compared with ATPE or magnetic fishing processes alone. PMID:24657147

  13. Design and application of a technologically explicit hybrid energy-economy policy model with micro and macro economic dynamics

    NASA Astrophysics Data System (ADS)

    Bataille, Christopher G. F.

    2005-11-01

    Are further energy efficiency gains, or more recently greenhouse gas reductions, expensive or cheap? Analysts provide conflicting advice to policy makers based on divergent modelling perspectives, a 'top-down/bottom-up debate' in which economists use equation based models that equilibrate markets by maximizing consumer welfare, and technologists use technology simulation models that minimize the financial cost of providing energy services. This thesis summarizes a long term research project to find a middle ground between these two positions that is more useful to policy makers. Starting with the individual components of a behaviourally realistic and technologically explicit simulation model (ISTUM---Inter Sectoral Technology Use Model), or "hybrid", the individual sectors of the economy are linked using a framework of micro and macro economic feedbacks. These feedbacks are taken from the economic theory that informs the computable general equilibrium (CGE) family of models. Speaking in the languages of both economists and engineers, the resulting "physical" equilibrium model of Canada (CIMS---Canadian Integrated Modeling System), equilibrates energy and end-product markets, including imports and exports, for seven regions and 15 economic sectors, including primary industry, manufacturing, transportation, commerce, residences, governmental infrastructure and the energy supply sectors. Several different policy experiments demonstrate the value-added of the model and how its results compare to top-down and bottom-up practice. In general, the results show that technical adjustments make up about half the response to simulated energy policy, and macroeconomic demand adjustments the other half. Induced technical adjustments predominate with minor policies, while the importance of macroeconomic demand adjustment increases with the strength of the policy. Results are also shown for an experiment to derive estimates of future elasticity of substitution (ESUB) and

  14. Fabrication of a TFF-Attached WDM-Type Triplex Transceiver Module Using Silica PLC Hybrid Integration Technology

    NASA Astrophysics Data System (ADS)

    Han, Young-Tak; Park, Yoon-Jung; Park, Sang-Ho; Shin, Jang-Uk; Lee, Chul-Wook; Ko, Hyunsung; Baek, Yongsoon; Park, Chul-Hee; Kwon, Yoon-Koo; Hwang, Wol-Yon; Oh, Kwang-Ryong; Sung, Heekyung

    2006-12-01

    An optical triplex transceiver (TRx) module, which consists of thin-film filter (TFF)-attached wavelength-division multiplexer (WDM) and photodiode (PD) carriers, has been fabricated using a silica planar lightwave circuit (PLC) hybrid integration technology. Two types of TFFs were attached to a diced sidewall of a silica-terraced PLC platform to realize the TFF-attached WDM. The PD carriers with a 45° mirror, on which receiving surface-illuminated PDs were bonded, were assembled with the PLC platform to form receiver (Rx) parts. As the main performances of the packaged TRx module, a very clear transmitter (Tx) eye pattern and minimum Rx sensitivity of -25.7 dBm were obtained under a 1.25-Gb/s Tx Rx operation for digital applications. For an analog Rx application, a module responsivity of about 0.8 A/W was achieved, and a second-order intermodulation distortion value of less than -70 dBc at an optical modulation index of 40% was obtained under a two-tone test of 400 and 450 MHz.

  15. Polycarboxylic acids as network modifiers for water durability improvement of inorganic-organic hybrid tin-silico-phosphate low-melting glasses

    SciTech Connect

    Menaa, Bouzid . E-mail: bouzidmenaa@noncry.kuicr.kyoto-u.ac.jp; Mizuno, Megumi; Takahashi, Masahide . E-mail: masahide@noncry.kuicr.kyoto-u.ac.jp; Tokuda, Yomei; Yoko, Toshinobu

    2006-02-15

    We investigated the water durability of the inorganic-organic hybrid tin-silico-phosphate glasses Me{sub 2}SiO-SnO-P{sub 2}O{sub 5} (Me designs the organic methyl group) doped with organic acids (salicylic acid (SA), tartaric acid (TA), citric acid (Canada) and butane tetracarboxylic acid (BTCA)) containing one or more of carboxylic groups per molecule. The structure, thermal properties and durability of the final glasses obtained via a non-aqueous acid-base reaction were discussed owing to the nature and the concentration of the acid added. {sup 29}Si magic angle spinning (MAS) NMR and {sup 31}P MAS NMR spectra, respectively, showed clearly a modification of the network in the host glass matrix of the Me{sub 2}SiO-SnO-P{sub 2}O{sub 5} system. The polycondensation enhancement to form -P-O-Si-O-P- linkages (PSP) and the increase of the Q {sup 2} unit (two bridging oxygens per phosphorus atom) over the Q {sup 3} unit (three bridging oxygens per phosphorus atom) as a function of the acid in the order SAacids containing a large number of carboxylic groups per molecule. The presence of carboxylic groups of the acid acting as network modifier may retard the movement of water molecules through the glasses due to the steric hindrance strengthening the PSP connections in a chain-like structure.

  16. Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages.

    PubMed

    Landeta, G; Curiel, J A; Carrascosa, A V; Muñoz, R; de las Rivas, B

    2013-10-01

    Technological and safety-related properties were analyzed in lactic acid bacteria isolated from Spanish dry-cured sausages in order to select them as starter cultures. In relation to technological properties, all the strains showed significative nitrate reductase activity; Lactobacillus plantarum, Lactobacillus paracasei and 52% of the Enterococcus faecium strains showed lipolytic activity and only Lactobacillus sakei strains (43%) were able to form biofilms. Related to safety aspects, E. faecium strains were the most resistant to antibiotics, whereas, L. sakei strains were the most sensitive. In relation to virulence factors, in the E. faecium strains analyzed, only the presence of efaA gene was detected. The analysis of biogenic amine production showed that most E. faecium strains and L. sakei Al-142 produced tyramine. In conclusion, L. paracasei Al-128 and L. sakei Al-143 strains possess the best properties to be selected as adequate and safe meat starter cultures. PMID:23743032

  17. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part II. Results based on multiple regression analysis and tear-down analysis

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Karspeck, T.; Ott, C.; Weirather-Koestner, D.; Stoermer, A. O.

    2011-03-01

    In the first part of this work [1] a field operational test (FOT) on micro-HEVs (hybrid electric vehicles) and conventional vehicles was introduced. Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology and flooded batteries were applied. The FOT data were analyzed by kernel density estimation. In this publication multiple regression analysis is applied to the same data. Square regression models without interdependencies are used. Hereby, capacity loss serves as dependent parameter and several battery-related and vehicle-related parameters as independent variables. Battery temperature is found to be the most critical parameter. It is proven that flooded batteries operated in the conventional power system (CPS) degrade faster than VRLA-AGM batteries in the micro-hybrid power system (MHPS). A smaller number of FOT batteries were applied in a vehicle-assigned test design where the test battery is repeatedly mounted in a unique test vehicle. Thus, vehicle category and specific driving profiles can be taken into account in multiple regression. Both parameters have only secondary influence on battery degradation, instead, extended vehicle rest time linked to low mileage performance is more serious. A tear-down analysis was accomplished for selected VRLA-AGM batteries operated in the MHPS. Clear indications are found that pSoC-operation with periodically fully charging the battery (refresh charging) does not result in sulphation of the negative electrode. Instead, the batteries show corrosion of the positive grids and weak adhesion of the positive active mass.

  18. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics.

    PubMed

    Yu, Lili; Lee, Yi-Hsien; Ling, Xi; Santos, Elton J G; Shin, Yong Cheol; Lin, Yuxuan; Dubey, Madan; Kaxiras, Efthimios; Kong, Jing; Wang, Han; Palacios, Tomás

    2014-06-11

    Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics. PMID:24810658

  19. Growth factors delivery from hybrid PCL-starch scaffolds processed using supercritical fluid technology.

    PubMed

    Diaz-Gomez, Luis; Concheiro, Angel; Alvarez-Lorenzo, Carmen; García-González, Carlos A

    2016-05-20

    Synthetic polymeric scaffolds to be used as surrogates of autologous bone grafts should not only have suitable physicochemical and mechanical properties, but also contain bioactive agents such as growth factors (GFs) to facilitate the tissue growth. For this purpose, cost-effective and autologous GFs sources are preferred to avoid some post-surgery complications after implantation, like immunogenicity or disease transmission, and the scaffolds should be processed using methods able to preserve GFs activity. In this work, poly(ɛ-caprolactone) (PCL) scaffolds incorporating GFs were processed using a green foaming process based on supercritical fluid technology. Preparation rich in growth factors (PRGF), a natural and highly available cocktail of GFs obtained from platelet rich plasma (PRP), was used as GF source. PCL:starch:PRGF (85:10:5 weight ratio) porous solid scaffolds were obtained by a supercritical CO2-assisted foaming process at 100 bar and 37 °C with no need of post-processing steps. Bioactivity of GFs after processing and scaffold cytocompatibility were confirmed using mesenchymal stem cells. The performance of starch as GF control release component was shown to be dependent on starch pre-gelification conditions. PMID:26917401

  20. Graphene-MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics

    NASA Astrophysics Data System (ADS)

    Yu, Lili; Wang, Han; Lee, Yi-Hsien; Ling, Xi; Shin, Yong-Cheol; Santos, Elton J. G.; Kaxiras, Efthimios; Kong, Jing; Palacios, Tomas

    2014-03-01

    Two-dimensional (2D) materials have generated great interest in the last few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2) and insulating Boron Nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency and favorable transport properties for realizing electronic, sensing and optical systems on arbitrary surfaces. In this work, we develop several etch stop layer technologies that allow the fabrication of complex 2D devices and present for the first time the large scale integration of graphene with molybdenum disulfide (MoS2) , both grown using the fully scalable CVD technique. Transistor devices and logic circuits with MoS2 channel and graphene as contacts and interconnects are constructed and show high performances. In addition, the graphene/MoS2 heterojunction contact has been systematically compared with MoS2-metal junctions experimentally and studied using density functional theory. The tunability of the graphene work function significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on 2D heterostructure pave the way for practical flexible transparent electronics in the future. The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Program, the ONR GATE MURI program, and the Army Research Laboratory. This research has made use of the MI.

  1. 80-Channel Multiplexer-Demultiplexer Module for DWDM Communications using Hybrid AWG -- Interleaver Technology

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Bredthauer, Lance

    2007-10-01

    Aside from the more traditional data, voice and e-mail communications, new bandwidth intensive applications in the larger consumer markets, such as music, digital pictures and movies, have led to an explosive increase in the demand for transmission capacity for optical communications networks. This has resulted in a widespread deployment of Dense Wavelength Division Multiplexing (DWDM) as a means of increasing the communications capacity by multiplexing and transmitting signals of different wavelengths (establishing multiple communication channels) through a single strand of fiber. We report on the design, assembly and characterization of a 50-GHz, 80-channel Mux-Demux module for DWDM systems. The module has been assembled from two commercially available 100 GHz, 40-channel Array Waveguide Grating (AWG) modules and a 50-GHz to 100-GHz interleaver. Relevant performance parameters such as insertion loss, channel uniformity, next-channel isolation (crosstalk) and integrated cross-talk are presented and discussed in contrast with the performance of other competing technologies such as Thin-Film-Filter-based Mux-Demux devices.

  2. A new microcolumn-type microchip for examining the expression of chimeric fusion genes using a nucleic acid sandwich hybridization technique.

    PubMed

    Ohnishi, Michihiro; Sasaki, Naoyuki; Kishimoto, Takuya; Watanabe, Hidetoshi; Takagi, Masatoshi; Mizutani, Shuki; Kishii, Noriyuki; Yasuda, Akio

    2014-11-01

    We report a new type of microcolumn installed in a microchip. The architecture allows use of a nucleic acid sandwich hybridization technique to detect a messenger RNA (mRNA) chain as a target. Data are presented that demonstrate that the expression of a chimeric fusion gene can be detected. The microcolumn was filled with semi-transparent microbeads made of agarose gel that acted as carriers, allowing increased efficiency of the optical detection of fluorescence from the microcolumn. The hybrid between the target trapped on the microbeads and a probe DNA labeled with a fluorescent dye was detected by measuring the intensity of the fluorescence from the microcolumn directly. These results demonstrate an easy and simple method for determining the expression of chimeric fusion genes with no preamplification. PMID:25240923

  3. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  4. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  5. State of the Art in Cardiac Hybrid Technology: PET/MR

    PubMed Central

    Nappi, Carmela; El Fakhri, Georges

    2013-01-01

    Simultaneous PET/MRI is an emerging technique combining two powerful imaging modalities in a single device. The wide variety of available tracers for perfusion and metabolic studies and the high sensitivity of positron emission tomography (PET) combined with the high spatial resolution and soft tissue contrast of magnetic resonance imaging (MRI) in depicting cardiac morphology and function as well as MRI's absence of ionizing radiation makes PET/MRI very attractive to radiologists and clinicians. Nevertheless, PET/MR scientific and clinical promise is to be considered in the context of numerous technical challenges that hinder its use in the clinical setting. For example, in order for a PET system to work correctly within an MR field, major changes are required to the photon detection chain such as the elimination of photomultiplier tubes, etc. Another significant limitation of PET/MRI is the lack of an electron density map (as is the case with PET-CT) that can be readily obtained from MRI (the latter measures proton not electron density) and used to correct PET data for attenuation. Moreover, as with PET-CT, cardiac and respiratory motions cause image degradations that affect image quality and accuracy both in static and dynamic PET imaging. As a result, overcoming these (and other) technical limitations is a very active area of research both in academic institutions as well as industry. In this paper, we review recent literature on cardiac PET/MRI, present the state-of-the-art of this technology, and explore promising preclinical and clinical cardiac applications where PET/MRI could play a substantial role. PMID:24073295

  6. State of the Art in Cardiac Hybrid Technology: PET/MR.

    PubMed

    Nappi, Carmela; El Fakhri, Georges

    2013-08-01

    Simultaneous PET/MRI is an emerging technique combining two powerful imaging modalities in a single device. The wide variety of available tracers for perfusion and metabolic studies and the high sensitivity of positron emission tomography (PET) combined with the high spatial resolution and soft tissue contrast of magnetic resonance imaging (MRI) in depicting cardiac morphology and function as well as MRI's absence of ionizing radiation makes PET/MRI very attractive to radiologists and clinicians. Nevertheless, PET/MR scientific and clinical promise is to be considered in the context of numerous technical challenges that hinder its use in the clinical setting. For example, in order for a PET system to work correctly within an MR field, major changes are required to the photon detection chain such as the elimination of photomultiplier tubes, etc. Another significant limitation of PET/MRI is the lack of an electron density map (as is the case with PET-CT) that can be readily obtained from MRI (the latter measures proton not electron density) and used to correct PET data for attenuation. Moreover, as with PET-CT, cardiac and respiratory motions cause image degradations that affect image quality and accuracy both in static and dynamic PET imaging. As a result, overcoming these (and other) technical limitations is a very active area of research both in academic institutions as well as industry. In this paper, we review recent literature on cardiac PET/MRI, present the state-of-the-art of this technology, and explore promising preclinical and clinical cardiac applications where PET/MRI could play a substantial role. PMID:24073295

  7. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  8. Metal-organic hybrid materials built with tetrachlorophthalate acid and different N-donor coligands: Structure diversity and photoluminescence

    NASA Astrophysics Data System (ADS)

    Xiao, Zhenyu; Yang, Xiao; Zhao, Siwei; Wang, Debao; Yang, Yu; Wang, Lei

    2016-02-01

    Eight new metal-organic hybrid materials, namely {Cd(Tcph)(4,4‧-bipy)1/2} (1), {[Cd2(Tcph)2(1,4-bimb)1/2(H2O)4]·H2O} (2), {Cd2(Tcph)2(1,4-bmimb)1/2(H2O)4} (3), {Cd(Tcph)(1,2-bmimb)} (4), {Cu(Tcph)(1,4-bimb)(H2O)} (5), {[Co(Tcph)(1,4-bimb)1/2(H2O)3]·(H2O)} (6), {Zn(Tcph)(1,2-bimb)} (7), {Cu2(Tcph)2(1,2-bimb)(H2O)4} (8), where Tcph=tetrachlorophthalate acid, 4,4‧-bipy=4,4‧-bipyridine, 1,4-bimb=1,4-bis(imidazol-1-ylmethyl)benzene, 1,4-bmimb=1,4-bis(2-methylimidazol-1-ylmethyl)benzene, 1,2-bimb=1,2-bis(imidazol-1-ylmethyl)-benzene, 1,2-bmimb=1,2-bis(2-methylimidazol-1-ylmethyl)benzene, have been synthesized and characterized. Their structures are determined by single crystal X-ray diffraction and further characterized by infrared spectra (IR) and thermogravimetric (TG) analyses. Complex 1, 4 and 7 display 2D layer structures. 1 possesses two-dimensional sheet containing an unusual [Cd(Tcph)] chains linked by 4,4‧-bipy co-ligand, while 4 and 7 hold the similar 4-connected 44-sql nets. Complex 2 and 3 feature a similar three dimensional (3D) internal compensation structure with a topology of {42·63·8}2{63}. 5 is a novel 2-fold self-penetrating 3D network with 4-coordinated 65·8-CdSO4 subnets. The ladder-like chains of 6 are further connected through O-H···O interactions to yield a 3D supramolecular structure. 8 is a discrete tetranuclear complex. The thermal stabilities of 1-8 and the luminescent properties of 1-4 and 7 in the solid state are also discussed.

  9. Discriminating Multi-Species Populations in Biofilms with Peptide Nucleic Acid Fluorescence In Situ Hybridization (PNA FISH)

    PubMed Central

    Almeida, Carina; Azevedo, Nuno F.; Santos, Sílvio; Keevil, Charles W.; Vieira, Maria J.

    2011-01-01

    Background Our current understanding of biofilms indicates that these structures are typically composed of many different microbial species. However, the lack of reliable techniques for the discrimination of each population has meant that studies focusing on multi-species biofilms are scarce and typically generate qualitative rather than quantitative data. Methodology/Principal Findings We employ peptide nucleic acid fluorescence in situ hybridization (PNA FISH) methods to quantify and visualize mixed biofilm populations. As a case study, we present the characterization of Salmonella enterica/Listeria monocytogenes/Escherichia coli single, dual and tri-species biofilms in seven different support materials. Ex-situ, we were able to monitor quantitatively the populations of ∼56 mixed species biofilms up to 48 h, regardless of the support material. In situ, a correct quantification remained more elusive, but a qualitative understanding of biofilm structure and composition is clearly possible by confocal laser scanning microscopy (CLSM) at least up to 192 h. Combining the data obtained from PNA FISH/CLSM with data from other established techniques and from calculated microbial parameters, we were able to develop a model for this tri-species biofilm. The higher growth rate and exopolymer production ability of E. coli probably led this microorganism to outcompete the other two [average cell numbers (cells/cm2) for 48 h biofilm: E. coli 2,1×108 (±2,4×107); L. monocytogenes 6,8×107 (±9,4×106); and S. enterica 1,4×106 (±4,1×105)]. This overgrowth was confirmed by CSLM, with two well-defined layers being easily identified: the top one with E. coli, and the bottom one with mixed regions of L. monocytogenes and S. enterica. Significance While PNA FISH has been described previously for the qualitative study of biofilm populations, the present investigation demonstrates that it can also be used for the accurate quantification and spatial distribution of species in

  10. Innovative valve-regulated battery designs rekindle excitement inlead/acid battery technology

    NASA Astrophysics Data System (ADS)

    Pierson, John R.; Zagrodnik, Jeffrey P.; Johnson, Richard T.

    Recent innovative approaches to the extension of valve-regulated lead/acid (VRLA) technology have led to thedevelopment of several unique products that possess performance attributes not previously achieved in lead/acid technologies, namely: (i)starting, lighting, ignition (SLI) VRLA batteries; (ii) StackPack ™ foil batteries, and (iii) spiral-wound Thin Metal Film (TMF ™) batteries.TheVRLA automotive product has been demonstrated to be capable of improving on the durability of conventional flooded designs in extreme high-temperature climate and extreme drive-cycle operating conditions. In uninterruptible power supply (UPS) applications, the StackPack ™ battery, at a 15-min discharge rate has delivered 23.3 Wh kg -1 and 1090 Wh 1 -1 as compared with 16.0 Wh kg -1 and 595 Wh 1 -1 for traditional designs. TMF ™ prototypes have exhibited power capability of an order of magnitude higher than conventional VRLA designs and have been utilized successfully in a vehicle for seven months and over 31 000 km (19 200 miles).

  11. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies

    SciTech Connect

    Shaoan Cheng; Brian A. Dempsey; Bruce E. Logan

    2007-12-15

    Acid-mine drainage (AMD) is difficult and costly to treat. We investigated a new approach to AMD treatment using fuel cell technologies to generate electricity while removing iron from the water. Utilizing a recently developed microbial fuel cell architecture, we developed an acid-mine drainage fuel cell (AMD-FC) capable of abiotic electricity generation. The AMD-FC operated in fed-batch mode generated a maximum power density of 290 mW/m{sup 2} at a Coulombic efficiency greater than 97%. Ferrous iron was completely removed through oxidation to insoluble Fe(III), forming a precipitate in the bottom of the anode chamber and on the anode electrode. Several factors were examined to determine their effect on operation, including pH, ferrous iron concentration, and solution chemistry. Optimum conditions were a pH of 6.3 and a ferrous iron concentration above about 0.0036 M. These results suggest that fuel cell technologies can be used not only for treating AMD through removal of metals from solution, but also for producing useful products such as electricity and recoverable metals. Advances being made in wastewater fuel cells will enable more efficient power generation and systems suitable for scale-up. 35 refs., 8 figs.

  12. Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics.

    PubMed

    Alvarez-Calatayud, Guillermo; Margolles, Abelardo

    2016-01-01

    Probiotics are living micro-organisms that do not naturally have shelf life, and normally are weakly protected against the digestive action of the GI tract. A new dual coating technology has been developed in an effort to maximize survival, that is, to be able to reach the intestine alive and in sufficient numbers to confer the beneficial health effects on the host. Dual-coating of lactic acid bacteria (LAB) is the result of fourth-generation coating technology for the protection of these bacteria at least 100-fold or greater than the uncoated LAB. This innovative technique involves a first pH-dependent protein layer that protects bacteria from gastric acid and bile salt, and a second polysaccharide matrix that protects bacteria from external factors, such as humidity, temperature and pressure, as well as the digestive action during the passage through the GI tract. Dual-coated probiotic formulation is applicable to different therapeutic areas, including irritable bowel syndrome, atopic dermatitis, acute diarrhea, chronic constipation, Helicobacter pylori eradication, and prevention of antibiotic-associated diarrhea. An updated review of the efficacy of doubly coated probiotic strains for improving bacterial survival in the intestinal tract and its consequent clinical benefits in humans is here presented. PMID:26780116

  13. Review and assessment of technologies for the separation of cesium from acidic media

    SciTech Connect

    Orth, R.J.; Brooks, K.P.; Kurath, D.E.

    1994-09-01

    A preliminary literature survey has been conducted to identify and evaluate methods for the separation of cesium from acidic waste. The most promising solvent extraction, precipitation, and ion exchange methods, along with some of the attributes for each method, are listed. The main criteria used in evaluating the separation methods were as follows: (1) good potential for cesium separation must be demonstrated (i.e., cesium decontamination factors on the order of 50 to 100). (2) Good selectivity for cesium over bulk components must be demonstrated. (3) The method must show promise for evolving into a practical and fairly simple process. (4) The process should be safe to operate. (5) The method must be robust (i.e., capable of separating cesium from various acidic waste types). (6) Secondary waste generation must be minimized. (7) The method must show resistance to radiation damage. The most promising separation methods did not necessarily satisfy all of the above criteria, thus key areas requiring further development are suggested for each method. The report discusses in detail these and other areas requiring further development, as well as alternative solvent extraction, precipitation, ion exchange, and {open_quote}other{close_quote} technologies that, based on current information, show less promise for the separation of cesium from acidic wastes because of significant process limitations. When appropriate, the report recommends areas of future development.

  14. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    SciTech Connect

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-15

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)

  15. Retinoic acid-mediated repression of human papillomavirus 18 transcription and different ligand regulation of the retinoic acid receptor beta gene in non-tumorigenic and tumorigenic HeLa hybrid cells.

    PubMed Central

    Bartsch, D; Boye, B; Baust, C; zur Hausen, H; Schwarz, E

    1992-01-01

    Human papillomavirus type 18 (HPV18) belongs to the group of genital papillomaviruses involved in the development of cervical carcinomas. Since retinoic acid (RA) is a key regulator of epithelial cell differentiation and a growth inhibitor in vitro of HPV18-positive HeLa cervical carcinoma cells, we have used HeLa and HeLa hybrid cells in order to analyse the effects of RA on expression of the HPV18 E6 and E7 oncogenes and of the cellular RA receptor genes RAR-beta and -gamma. We show here that RA down-regulates HPV18 mRNA levels apparently due to transcriptional repression. Transient cotransfection assays indicated that RARs negatively regulate the HPV18 upstream regulatory region and that the central enhancer can confer RA-dependent repression on a heterologous promoter. RA treatment resulted in induction of RAR-beta mRNA levels in non-tumorigenic HeLa hybrid cells, but not in tumorigenic hybrid segregants nor in HeLa cells. No alterations of the RAR-beta gene or of the HeLa RAR-beta promoter could be revealed by Southern and DNA sequence analysis, respectively. As determined by transient transfection assays, however, the RAR-beta control region was activated by RA more strongly in non-tumorigenic hybrid cells than in HeLa cells, thus indicating differences in trans-acting regulatory factors. Our data suggest that the RARs are potential negative regulators of HPV18 E6 and E7 gene expression, and that dysregulation of the RAR-beta gene either causatively contributes to or is an indicator of tumorigenicity in HeLa and HeLa hybrid cells. Images PMID:1318198

  16. High-Throughput Multiple Dies-to-Wafer Bonding Technology and III/V-on-Si Hybrid Lasers for Heterogeneous Integration of Optoelectronic Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Luo, Xianshu; Cao, Yulian; Song, Junfeng; Hu, Xiaonan; Cheng, Yungbing; Li, Chengming; Liu, Chongyang; Liow, Tsung-Yang; Yu, Mingbin; Wang, Hong; Wang, Qijie; Lo, Patrick Guo-Qiang

    2015-04-01

    Integrated optical light source on silicon is one of the key building blocks for optical interconnect technology. Great research efforts have been devoting worldwide to explore various approaches to integrate optical light source onto the silicon substrate. The achievements so far include the successful demonstration of III/V-on-Si hybrid lasers through III/V-gain material to silicon wafer bonding technology. However, for potential large-scale integration, leveraging on mature silicon complementary metal oxide semiconductor (CMOS) fabrication technology and infrastructure, more effective bonding scheme with high bonding yield is in great demand considering manufacturing needs. In this paper, we propose and demonstrate a high-throughput multiple dies-to-wafer (D2W) bonding technology which is then applied for the demonstration of hybrid silicon lasers. By temporarily bonding III/V dies to a handle silicon wafer for simultaneous batch processing, it is expected to bond unlimited III/V dies to silicon device wafer with high yield. As proof-of-concept, more than 100 III/V dies bonding to 200 mm silicon wafer is demonstrated. The high performance of the bonding interface is examined with various characterization techniques. Repeatable demonstrations of 16-III/V-die bonding to pre-patterned 200 mm silicon wafers have been performed for various hybrid silicon lasers, in which device library including Fabry-Perot (FP) laser, lateral-coupled distributed feedback (LC-DFB) laser with side wall grating, and mode-locked laser (MLL). From these results, the presented multiple D2W bonding technology can be a key enabler towards the large-scale heterogeneous integration of optoelectronic integrated circuits (H-OEIC).

  17. Impedance measurements on lead-acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Blanke, Holger; Bohlen, Oliver; Buller, Stephan; De Doncker, Rik W.; Fricke, Birger; Hammouche, Abderrezak; Linzen, Dirk; Thele, Marc; Sauer, Dirk Uwe

    Various attempts have been made to use impedance measurements for online analysis and offline modelling of lead-acid batteries. This presentation gives an overview on the latest and successful approaches based on impedance measurements to assess state-of-charge (SoC), state-of-health (SoH) and cranking capability of lead-acid batteries. Furthermore, it is shown that impedance data can serve as a basis for dynamic battery models for the simulation of vehicle power-supply systems. The methods and procedures aim for a reliable prediction of battery performance in electric vehicles, hybrid cars and classical automotive applications. Although, it will become obvious that impedance measurements give valuable information on the battery state, typically the information needs to be combined with other conventional algorithms or self-learning tools to achieve reliable and stable results for real-world applications.

  18. MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum.

    PubMed

    Chekin, Fereshteh; Teodorescu, Florina; Coffinier, Yannick; Pan, Guo-Hui; Barras, Alexandre; Boukherroub, Rabah; Szunerits, Sabine

    2016-11-15

    In this study, a new matrix based on a molybdenum disulfide-reduced graphene oxide hybrid (MoS2-rGO) was prepared and characterized. Modification of a glassy carbon electrode (GCE) with MoS2-rGO (MG) using drop casting allowed for the selective analysis of folic acid in the presence of a variety of interference species with a limit of detection of 10nM, a linear range between 0.01μM and 100μM with a sensitivity of 14µAµM(-1). In addition, the analytical performance of the proposed sensor was successfully conducted for the determination of folic acid in human serum samples, making MG-GC electrodes promising interfaces for bio-electrochemical applications. PMID:27288713

  19. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    PubMed

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases. PMID:27315139

  20. Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature

    PubMed Central

    Wu, Jiansheng; Liu, Hongde; Duan, Xueye; Ding, Yan; Wu, Hongtao; Bai, Yunfei; Sun, Xiao

    2009-01-01

    Motivation: In this work, we aim to develop a computational approach for predicting DNA-binding sites in proteins from amino acid sequences. To avoid overfitting with this method, all available DNA-binding proteins from the Protein Data Bank (PDB) are used to construct the models. The random forest (RF) algorithm is used because it is fast and has robust performance for different parameter values. A novel hybrid feature is presented which incorporates evolutionary information of the amino acid sequence, secondary structure (SS) information and orthogonal binary vector (OBV) information which reflects the characteristics of 20 kinds of amino acids for two physical–chemical properties (dipoles and volumes of the side chains). The numbers of binding and non-binding residues in proteins are highly unbalanced, so a novel scheme is proposed to deal with the problem of imbalanced datasets by downsizing the majority class. Results: The results show that the RF model achieves 91.41% overall accuracy with Matthew's correlation coefficient of 0.70 and an area under the receiver operating characteristic curve (AUC) of 0.913. To our knowledge, the RF method using the hybrid feature is currently the computationally optimal approach for predicting DNA-binding sites in proteins from amino acid sequences without using three-dimensional (3D) structural information. We have demonstrated that the prediction results are useful for understanding protein–DNA interactions. Availability: DBindR web server implementation is freely available at http://www.cbi.seu.edu.cn/DBindR/DBindR.htm. Contact: xsun@seu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19008251

  1. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine.

    PubMed

    Chen, Xianlan; Zhang, Guowei; Shi, Ling; Pan, Shanqing; Liu, Wei; Pan, Hiabo

    2016-08-01

    The formation of nitrogen-doped (N-doped) graphene uses hydrothermal method with urea as reducing agent and nitrogen source. The surface elemental composition of the catalyst was analyzed through XPS, which showed a high content of a total N species (7.12at.%), indicative of the effective N-doping, present in the form of pyridinic N, pyrrolic N and graphitic N groups. Moreover, Au nanoparticles deposited on ZnO nanocrystals surface, forming Au/ZnO hybrid nanocatalysts, undergo a super-hydrophobic to super-hydrophilic conversion. Herein, we present Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene sheets through sonication technique of the Au/ZnO/N-doped graphene hybrid nanostructures. The as-prepared Au/ZnO/N-doped graphene hybrid nanostructure modified glassy carbon electrode (Au/ZnO/N-doped graphene/GCE) was first employed for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and acetaminophen (AC). The oxidation over-potentials of AA, DA and AC decreased dramatically, and their oxidation peak currents increased significantly at Au/ZnO/N-doped graphene/GCE compared to those obtained at the N-doped graphene/GCE and bare CCE. The peak separations between AA and DA, DA and AC, and AC and AA are large up to 195, 198 and 393mV, respectively. The calibration curves for AA, DA and AC were obtained in the range of 30.00-13.00×10(3), 2.00-0.18×10(3) and 5.00-3.10×10(3)μM, respectively. The detection limits (S/N=3) were 5.00, 0.40 and 0.80μM for AA, DA and AC, respectively. PMID:27157730

  2. Differential Effects of Elevated Ozone on Two Hybrid Aspen Genotypes Predisposed to Chronic Ozone Fumigation. Role of Ethylene and Salicylic Acid1

    PubMed Central

    Vahala, Jorma; Keinänen, Markku; Schützendübel, Andres; Polle, Andrea; Kangasjärvi, Jaakko

    2003-01-01

    The role of ethylene (ET) signaling in the responses of two hybrid aspen (Populus tremula L. × P. tremuloides Michx.) clones to chronic ozone (O3; 75 nL L−1) was investigated. The hormonal responses differed between the clones; the O3-sensitive clone 51 had higher ET evolution than the tolerant clone 200 during the exposure, whereas the free salicylic acid concentration in clone 200 was higher than in clone 51. The cellular redox status, measured as glutathione redox balance, did not differ between the clones suggesting that the O3 lesions were not a result of deficient antioxidative capacity. The buildup of salicylic acid during chronic O3 exposure might have prevented the up-regulation of ET biosynthesis in clone 200. Blocking of ET perception with 1-methylcyclopropene protected both clones from the decrease in net photosynthesis during chronic exposure to O3. After a pretreatment with low O3 for 9 d, an acute 1.5-fold O3 elevation caused necrosis in the O3-sensitive clone 51, which increased substantially when ET perception was blocked. The results suggest that in hybrid aspen, ET signaling had a dual role depending on the severity of the stress. ET accelerated leaf senescence under low O3, but under acute O3 elevation, ET signaling seemed to be required for protection from necrotic cell death. PMID:12746525

  3. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    NASA Technical Reports Server (NTRS)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  4. Oxidative degradation of different chlorinated phenoxyalkanoic acid herbicides by a hybrid ZrO2 gel-derived catalyst without light irradiation.

    PubMed

    Sannino, Filomena; Pernice, Pasquale; Minieri, Luciana; Camandona, Gaia Aurora; Aronne, Antonio; Pirozzi, Domenico

    2015-01-14

    The oxidative degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA), 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB), 4-chlorophenoxyacetic acid (4-CPA) and 2,4-dichlorophenoxyacetic acid (2,4 D) by ZrO2-acetylacetonate hybrid catalyst (HSGZ) without light irradiation was assessed. The thermal stability of the catalyst was investigated by thermogravimetry, differential thermal analysis, and Fourier transform infrared spectroscopy. For each herbicide, a virtually complete removal in about 3 days without light irradiation at room temperature was achieved. The removal kinetics of the herbicides has been satisfactorily characterized by a double-stage physico-mathematical model, in the hypothesis that a first-order adsorption on HSGZ surface is followed by the herbicide degradation, catalytically driven by HSGZ surface groups. The long-term use of the HSGZ catalyst was assessed by repeated-batch tests. The specific cost for unit-volume removal of herbicide was evaluated by a detailed cost analysis showing that it is comparable with those pertaining to alternative methods. PMID:25479367

  5. Quest for a reliable, valid, and sensitive in situ hybridization procedure to detect viral nucleic acids in the central nervous system.

    PubMed

    Tourtellotte, W W; Schmid, P; Pick, P; Verity, N; Martinez, S; Shapshak, P

    1987-06-01

    In situ hybridization (ISH) to detect and to quantitate viral nucleic acid sequences in cryopreserved central nervous system (CNS) tissue is a reliable, valid and sensitive molecular technique. On the other hand, utilization of formaldehyde fixed paraffin embedded (FFPE) tissue to improve cytomorphology requires fundamental changes in the procedure since it is necessary to cleave the elaborate protein network cross-linked by formaldehyde using elevated concentrations of proteinases in order to permit diffusion of complementary DNA probes to the targets (genomic viral nucleic acid sequences and/or viral mRNA). Adversely, this procedure hydrolyzed the proteinaceous glues generally used to fix tissue to glass slides resulting in loss of tissue sections during the ISH protocol. This report describes the application of a novel procedure utilizing a silano-organic compound to covalently bond to glass slides FFPE sections as well as cryopreserved tissue sections and cultured cells with and without virus infections. This covalent bonding procedure has permitted optimization of the ISH procedure for virus detection and quantification, especially for exploratory studies of specificity and wash stringency in relation to the Tm of the hybridized product. Progressive multifocal leucoencephalopathy (PML) caused by an opportunistic papovavirus (JC) was chosen because of the ready availability of tissue, stability of papovavirus nucleic acids, and specificity of 3H- and 35S-radiolabeled JC cloned DNA probes. Further, this laboratory is utilizing the optimized sensitive procedure to search for several virus etiologies in human diseases such as multiple sclerosis, temporal lobe epilepsy, Alzheimer's disease, schizophrenia, and Parkinson's disease, as well as normal aging.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3299127

  6. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  7. Hybrid electric vehicles TOPTEC

    SciTech Connect

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  8. Acetic acid recovery from a hybrid biological-hydrothermal treatment process of sewage sludge - a pilot plant study.

    PubMed

    Andrews, J; Dare, P; Estcourt, G; Gapes, D; Lei, R; McDonald, B; Wijaya, N

    2015-01-01

    A two-stage process consisting of anaerobic fermentation followed by sub-critical wet oxidation was used to generate acetic acid from sewage sludge at pilot scale. Volatile fatty acids, dominated by propionic acid, were produced over 4-6 days in the 2,000 L fermentation reactor, which also achieved 31% solids reduction. Approximately 96% of the carbon was retained in solution over the fermentation stage. Using a 200 L wet oxidation reactor operating in batch mode, the second stage achieved 98% volatile suspended solids (VSS) destruction and 67% total chemical oxygen demand (tCOD) destruction. Acetic acid produced in this stage was recalcitrant to further degradation and was retained in solution. The gross yield from VSS was 16% for acetic acid and 21% for volatile fatty acids across the process, higher than reported yields for wet oxidation alone. The pilot plant results showed that 72% of the incoming phosphorus was retained in the solids, 94% of the nitrogen became concentrated in solution and 41% of the carbon was converted to a soluble state, in a more degradable form. Acetic acid produced from the process has the potential to be used to offset ethanol requirements in biological nutrient removal plants. PMID:25768220

  9. Web technology in the separation of strontium and cesium from INEL-ICPP radioactive acid waste (WM-185)

    SciTech Connect

    Bray, L.A.; Brown, G.N.

    1995-01-01

    Strontium and cesium were successfully removed from radioactive acidic waste (WM-185) at the Idaho National Engineering Laboratory, Idaho Chemical Processing Plant (ICPP), with web technology from 3M and IBC Advanced Technologies, Inc. (IBC). A technical team from Pacific Northwest Laboratory, ICPP, 3M and IBC conducted a very successful series of experiments from August 15 through 18, 1994. The ICPP, Remote Analytical Laboratory, Idaho Falls, Idaho, provided the hot cell facilities and staff to complete these milestone experiments. The actual waste experiments duplicated the initial `cold` simulated waste results and confirmed the selective removal provided by ligand-particle web technology.

  10. DETERMINATION OF THE STRONG ACIDITY OF ATMOSPHERIC FINE PARTICLES (<2.5 UM) USING ANNULAR DENUDER TECHNOLOGY

    EPA Science Inventory

    This report is a standardized methodology description for the determination of strong acidity of fine particles (less than 2.5 microns) in ambient air using annular denuder technology. his methodology description includes two parts: art A - Standard Method and Part B - Enhanced M...

  11. ACID DEPOSITION STRATEGIES, THE LIMB (LIMESTONE INJECTION/MULTISTAGE BURNERS) PROGRAM AND IMPLICATIONS FOR CONTROL TECHNOLOGY REQUIREMENTS

    EPA Science Inventory

    The paper summarizes the various acid deposition bills introduced in the U.S. Congress during the past 2 years and discusses emission sources. A rapidly emerging technology called Limestone Injection/Multistage Burners (LIMB), which has the potential for simultaneous SO2 and NOx ...

  12. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid

    PubMed Central

    Zhai, Zhengyuan; An, Haoran; Wang, Guohong; Luo, Yunbo; Hao, Yanling

    2015-01-01

    Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5′-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5′-TGTAAGCCCTAACA-3′) upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network. PMID:26581248

  13. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    NASA Astrophysics Data System (ADS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  14. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    NASA Astrophysics Data System (ADS)

    Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.

    2013-03-01

    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.

  15. Design, Development and Implementation of a Technology Enhanced Hybrid Course on Molecular Symmetry: Students' Outcomes and Attitudes

    ERIC Educational Resources Information Center

    Antonoglou, L. D.; Charistos, N. D.; Sigalas, M. P.

    2011-01-01

    A hybrid course of Molecular Symmetry and Group Theory which combines traditional face-to-face instruction with an online web enhanced learning environment within a Course Management System was designed, developed, and implemented with a purpose to establish an active and student-centred educational setting. Multi-representational educational…

  16. Students' Emotions for Achievement and Technology Use in Synchronous Hybrid Graduate Programmes: A Control-Value Approach

    ERIC Educational Resources Information Center

    Butz, Nikolaus T.; Stupnisky, Robert H.; Pekrun, Reinhard

    2015-01-01

    Synchronous hybrid delivery (simultaneously teaching on-campus and online students using web conferencing) is becoming more common; however, little is known about how students experience emotions in this learning environment. Based on Pekrun's (2006) control-value theory of emotions, the dual purpose of this study was first to compare synchronous…

  17. Investigation of TiO2 Surface Modification with [6,6]-Phenyl-C61-butyric Acid for Titania/Polymer Hybrid Solar Cells

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Zhang, Jinyu; Kojima, Ryota; Tadaki, Daisuke; Kimura, Yasuo; Niwano, Michio

    2013-11-01

    We have investigated modification of TiO2 surfaces with [6,6]-phenyl-C61-butyric acid (PCBA) used for fabrication of TiO2/poly(3-hexylthiophene-2,5-diyl) (P3HT) hybrid solar cells. The surface modification process was monitored using in-situ infrared absorption spectroscopy in the multiple-internal reflection geometry (MIR-IRAS). IR data showed that longer exposure of TiO2 surfaces to an organic solution of PCBA leads to undesirable formation of a physisorbed PCBA overlayer that cannot be removed by rinsing the surface in pure solvent. We found that ultrasonic cleaning of the TiO2 surface removed most of the physisorbed PCBA molecules. Modification of TiO2 surfaces with PCBA molecules drastically increased the short circuit current of TiO2/P3HT-based hybrid solar cells, which is ascribed to improved charge separation efficiency at the TiO2/P3HT interface. The physisorbed PCBA molecules decreased the open circuit voltage and the fill factor. We demonstrated that the power conversion efficiency is improved by ultrasonic cleaning following PCBA deposition.

  18. Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water

    SciTech Connect

    Caratzoulas, Stavros; Courtney, Timothy; Vlachos, Dionisios G.

    2011-01-01

    We use the conversion of protonated glycerol to acrolein for a case study of the mechanism of acid-catalyzed dehydration of polyols in aqueous environments. We employ hybrid Quamtum Mechanics/Molecular Mechanics Molecular Dynamics (QM/MM MD) simulations with biased sampling and perform free energy calculations for the elementary steps of the reaction. We investigate the effects of solvent dynamics and in particular the role of quantum mechanical water in the dehydration mechanism. We present results supporting a mechanism that proceeds via water-mediated proton transfers and thus through an enol intermediate. We find that the first dehydration may take place by two, low-energy pathways requiring, respectively, 20.9 and 18.8 kcal/mol of activation free energy. The second dehydration requires 19.9 kcal/mol of activation free energy while for the overall reaction we compute a free energy change of -8 kcal/mol.

  19. Improved Methanol Barrier Property of Nafion Hybrid Membrane by Incorporating Nanofibrous Interlayer Self-Immobilized with High Level of Phosphotungstic Acid.

    PubMed

    Abouzari-lotf, Ebrahim; Nasef, Mohamed Mahmoud; Ghassemi, Hossein; Zakeri, Masoumeh; Ahmad, Arshad; Abdollahi, Yadollah

    2015-08-12

    High level of phosphotungstic acid (PWA) was self-immobilized on electrospun nylon nanofiberous sheet to fabricate highly selective methanol barrier layer for sandwich structured proton conducting membranes. Simple tuning for the assembly conditions of central layer and thickness of outer Nafion layers allowed obtaining different composite membranes with superior methanol barrier properties (namely, P=3.59×10(-8) cm2 s(-1)) coupled with proton conductivities reaching 58.6 mS cm(-1) at 30 °C. Comparable activation energy for proton transport and more than 20 times higher selectivity than Nafion 115 confirm the effectiveness of the central layer and resulting membranes for application in direct methanol fuel cells (DMFCs). When tested in DMFC single cell, the performance of hybrid membrane was far better than Nafion 115 especially at higher methanol concentrations. PMID:26196374

  20. Final technical report: Commercialization of the Biofine technology for levulinic acid production from paper sludge

    SciTech Connect

    Fitzpatrick, Stephen W.

    2002-04-23

    This project involved a three-year program managed by BioMetics, Inc. (Waltham, MA) to demonstrate the commercial feasibility of Biofine thermochemical process technology for conversion of cellulose-containing wastes or renewable materials into levulinic acid, a versatile platform chemical. The program, commencing in October 1995, involved the design, procurement, construction and operation of a plant utilizing the Biofine process to convert 1 dry ton per day of paper sludge waste. The plant was successfully designed, constructed, and commissioned in 1997. It was operated for a period of one year on paper sludge from a variety of source paper mills to collect data to verify the design for a commercial scale plant. Operational results were obtained for four different feedstock varieties. Stable, continuous operation was achieved for two of the feedstocks. Continuous operation of the plant at demonstration scale provided the opportunity for process optimization, development of operational protocols, operator training and identification of suitable materials of construction for scale up to commercial operation . Separated fiber from municipal waster was also successfully processed. The project team consisted of BioMetics Inc., Great Lakes Chemical Corporation (West Lafayette, IN), and New York State Energy Research and Development Authority (Albany, NY).

  1. Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid.

    PubMed

    Sun, Zhoumin; Fu, Haiying; Deng, Liu; Wang, Jianxiu

    2013-01-25

    In this paper, we fabricate a sensitive and stable amperometric UA amperometric biosensor using nanobiocomposite derived from thionine modified graphene oxide in this study. A simple wet-chemical strategy for synthesis of thionine-graphene oxide hybrid nanosheets (T-GOs) through π-π stacking has been demonstrated. Various techniques, such as UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemistry have been utilized to characterize the formation of the T-GOs. Due to the synergistic effect between thionine and graphene oxide, the nanosheets exhibited excellent performance toward H(2)O(2) reduction. The incorporation of thionine onto graphene oxide surface resulted in more than a twice increase in the amperometric response to H(2)O(2) of the thionine modified electrode. The as-formed T-GOs also served as a biocompatible matrix for enzyme assembly and a mediator to facilitate the electron transfer between the enzyme and the electrode. Using UOx as a model system, we have developed a simple and effective sensing platform for assay of uric acid at physiological levels. UA has been successfully detected at -0.1 V without any interference due to other electroactive compounds at physiological levels of glucose (5 mM), ascorbic acid (0.1 mM), noradrenalin (0.1 mM), and dopamine (0.1 mM). The response displays a good linear range from 0.02 to 4.5 mM with detection limit 7 μM. The application of this modified electrode in blood and urine UA exhibited a good performance. The robust and advanced hybrid materials might hold great promise in biosensing, energy conversion, and biomedical and electronic systems. PMID:23312318

  2. The Genome Sequence of the Highly Acetic Acid-Tolerant Zygosaccharomyces bailii-Derived Interspecies Hybrid Strain ISA1307, Isolated From a Sparkling Wine Plant

    PubMed Central

    Mira, Nuno P.; Münsterkötter, Martin; Dias-Valada, Filipa; Santos, Júlia; Palma, Margarida; Roque, Filipa C.; Guerreiro, Joana F.; Rodrigues, Fernando; Sousa, Maria João; Leão, Cecília; Güldener, Ulrich; Sá-Correia, Isabel

    2014-01-01

    In this work, it is described the sequencing and annotation of the genome of the yeast strain ISA1307, isolated from a sparkling wine continuous production plant. This strain, formerly considered of the Zygosaccharomyces bailii species, has been used to study Z. bailii physiology, in particular, its extreme tolerance to acetic acid stress at low pH. The analysis of the genome sequence described in this work indicates that strain ISA1307 is an interspecies hybrid between Z. bailii and a closely related species. The genome sequence of ISA1307 is distributed through 154 scaffolds and has a size of around 21.2 Mb, corresponding to 96% of the genome size estimated by flow cytometry. Annotation of ISA1307 genome includes 4385 duplicated genes (∼90% of the total number of predicted genes) and 1155 predicted single-copy genes. The functional categories including a higher number of genes are ‘Metabolism and generation of energy’, ‘Protein folding, modification and targeting’ and ‘Biogenesis of cellular components’. The knowledge of the genome sequence of the ISA1307 strain is expected to contribute to accelerate systems-level understanding of stress resistance mechanisms in Z. bailii and to inspire and guide novel biotechnological applications of this yeast species/strain in fermentation processes, given its high resilience to acidic stress. The availability of the ISA1307 genome sequence also paves the way to a better understanding of the genetic mechanisms underlying the generation and selection of more robust hybrid yeast strains in the stressful environment of wine fermentations. PMID:24453040

  3. The Hybrid Automobile and the Atkinson Cycle

    ERIC Educational Resources Information Center

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  4. Controlling microarray DNA hybridization efficiency by probe-surface distance and external surface electrostatics

    NASA Astrophysics Data System (ADS)

    Qamhieh, K.; Pettitt, B. Montgomery

    2015-03-01

    DNA microarrays are analytical devices designed to determine the composition of multicomponent solutions of nucleic acids, DNA or RNA. These devices are promising technology for diverse applications, including sensing, diagnostics, and drug/gene delivery. Here, we modify a hybridization adsorption isotherm to study the effects of probe-surface distance and the external electrostatic fields, on the oligonucleotide hybridization in microarray and how these effects are varies depending on surface probe density and target concentration. This study helps in our understanding on-surface hybridization mechanisms, and from it we can observe a significant effect of the probe-surface distance, and the external electrostatic fields, on the hybridization yield. In addition we present a simple new criteria to control the oligonucleotide hybridization efficiency by providing a chart illustrating the effects of all factors on the DNA-hybridization efficiency.

  5. Metropolitian area network services comprised of virtual local area networks running over hybrid fiber-coax and asynchronous transfer mode technologies

    NASA Astrophysics Data System (ADS)

    Biedron, William S.

    1995-11-01

    Since 1990 there has been a rapid increase in the demand for communication services, especially local and wide area network (LAN/WAN) oriented services. With the introduction of the DFB laser transmitter, hybrid-fiber-coax (HFC) cable plant designs, ATM transport technologies and rf modems, new LAN/WAN services can now be defined and marketed to residential and business customers over existing cable TV systems. The term metropolitan area network (MAN) can be used to describe this overall network. This paper discusses the technical components needed to provision these services as well as provides some perspectives on integration issues. Architecture at the headend and in the backbone is discussed, as well as specific service definitions and the technology issues associated with each. The TCP/IP protocol is suggested as a primary protocol to be used throughout the MAN.

  6. Efficacy, Safety, and Tolerance of a New Injection Technique for High- and Low-Molecular-Weight Hyaluronic Acid Hybrid Complexes

    PubMed Central

    Palmieri, Beniamino; Coacci, Alessandro

    2015-01-01

    Objective: Facial aging is characterized by skin laxity and loss of skin elasticity. Hyaluronic acid, a biological component of the extracellular matrix, whose level decreases during aging, plays structural, rheological, and physiological roles in the skin. Hyaluronic acid may possess different molecular weights: low-molecular-weight hyaluronic acid (from 50 kDa) and high-molecular-weight hyaluronic acid (just up to 2 million kDa). This monocentric, retrospective, observational study investigates the efficacy, security, and tolerability of a new injective low- and high-molecular-weight hyaluronic acid for facial skin rejuvenation. Methods: Eleven women received once a month, for 2 months, 2 mL of the product in the subcutaneous layer of the right and left malar/submalar areas. Facial skin echography, facial skin hydration, elasticity, and transepidermal water loss were assessed before (T0), after 1 month (T1), and after 3 months of treatment (T2). The injective features of the product, physician subjective satisfaction, and patient satisfaction were also reported. Results: Facial face hydration, elasticity, and transepidermal water loss values significantly improved at T1 and T2 (P < .01). Patients were very satisfied at the end of the treatment, and the compound's profit evaluated by the physician was optimal in the absence of local side effects. Conclusions: This treatment represents a good treatment option to restore vitality and turgidity of skin presenting the signs of aging in the absence of intolerance symptoms. PMID:26491508

  7. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent.

    PubMed

    Zhou, Xiaoyuan; Rauchfuss, Thomas B

    2013-02-01

    We report the one-pot alkylation of mesitylene with carbohydrate-derived 5-(hydroxymethyl)furfural (HMF) as a step toward diesel-range liquids. Using FeCl(3) as a catalyst, HMF is shown to alkylate toluene, xylene, and mesitylene in high yields in CH(2)Cl(2) and MeNO(2) solvents. Efforts to extend this reaction to greener or safer solvents showed that most ether-based solvents are unsatisfactory. Acid catalysts (e.g, p-TsOH) also proved to be ineffective. Using formic acid as a reactive solvent, mesitylene could be alkylated to give mesitylmethylfurfural (MMF) starting from fructose with yields up to approximately 70 %. The reaction of fructose with formic acid in the absence of mesitylene gave rise to low yields of the formate ester of HMF, which indicates the stabilizing effect of replacing the hydroxyl substituent with mesityl. The arene also serves as a second phase into which the product is extracted. Even by using formic acid, the mesitylation of less expensive precursors such as glucose and cellulose proceeded only in modest yields (ca. 20 %). These simpler substrates were found to undergo mesitylation by using hydrogen chloride/formic acid via the intermediate chloromethylfurfural. PMID:23281330

  8. Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol-gel process

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Xu, Tao; He, Guangwei; Jiang, Zhongyi; Wu, Hong

    2015-02-01

    Functionalized titania are used as fillers to modify the sulfonated poly(ether ether ketone) (SPEEK) membrane for improved proton conductivity and methanol barrier property. The functionalized titania sol which contains proton conductive carboxylic acid groups or amino acid groups are derived from a facile chelation method using different functional additives. Then the novel SPEEK/carboxylic acid-functionalized titania (SPEEK/TC) and SPEEK/amino acid-functionalized titania (SPEEK/TNC) hybrid membranes are fabricated via in situ sol-gel method. The anti-swelling property and thermal stability of hybrid membranes are enhanced owing to the formation of electrostatic force between SPEEK and titania nanoparticles. The hybrid membranes exhibit higher proton conductivity than plain SPEEK membrane because more proton transfer sites are provided by the functionalized titania nanoparticles. Particularly, the proton conductivity of SPEEK/TNC membrane with 15% filler content reaches up to 6.24 × 10-2 S cm-1, which is 3.5 times higher than that of the pure SPEEK membrane. For methanol permeability, the SPEEK/TNC membranes possess the lowest values because the acid-base interaction between sulfonic acid groups in SPEEK and amino groups in functionalized titania leads to a more compact membrane structure.

  9. Are Green Vehicles Worth the Extra Cost? The Case of Diesel-Electric Hybrid Technology for Urban Delivery Vehicles

    ERIC Educational Resources Information Center

    Krutilla, Kerry; Graham, John D.

    2012-01-01

    A central question for environmental policy is whether the long-term benefits of energy-saving technologies are sufficient to justify their short-term costs, and if so, whether financial incentives are needed to stimulate adoption. The fiscal effects of incentivizing new technologies, and the revenue effects of using the technology, are also…

  10. Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management.

    PubMed

    Yang, Hu; Leffler, Christopher T

    2013-03-01

    Glaucoma therapy typically begins with topical medications, of which there are 4 major classes in common use in the United States: beta-adrenergic antagonists, alpha-agonists, carbonic anhydrase inhibitors, and prostaglandin analogs. Unfortunately, all 4 classes require at least daily dosing, and 3 of the 4 classes are approved to be administered 2 or 3 times daily. This need for frequent dosing with multiple medications makes compliance difficult. Longer-acting formulations and combinations that require less frequent administration might improve compliance and therefore medication effectiveness. Recently, we developed an ocular drug delivery system, a hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform for delivering glaucoma therapeutics topically. This platform is designed to deliver glaucoma drugs to the eye efficiently and release the drug in a slow fashion. Furthermore, this delivery platform is designed to be compatible with many of the glaucoma drugs that are currently approved for use. In this article, we review this new delivery system with in-depth discussion of its structural features, properties, and preclinical application in glaucoma treatment. In addition, future directions and translational efforts for marketing this technology are elaborated. PMID:23249385

  11. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst.

    PubMed

    Zhang, Zehui; Dong, Kun; Zhao, Zongbao Kent

    2011-01-17

    A clean, facile, and environment-friendly catalytic method has been developed for the conversion of furfuryl alcohol into alkyl levulinates making use of the novel solid catalyst methylimidazolebutylsulfate phosphotungstate ([MIMBS]₃PW₁₂O₄₀). The solid catalyst is an organic-inorganic hybrid material, which consists of an organic cation and an inorganic anion. A study for optimizing the reaction conditions such as the reaction time, the temperature and the catalyst loading has been performed. Under optimal conditions, a high n-butyl levulinate yield of up to 93 % is obtained. Furthermore, the kinetics of the reaction pathways and the mechanism for the alcoholysis of furfuryl alcohol are discussed. This method is environmentally benign and economical for the conversion of biomass-based derivatives into fine chemicals. PMID:21226220

  12. Anticancer activity of ferulic acid-inorganic nanohybrids synthesized via two different hybridization routes, reconstruction and exfoliation-reassembly.

    PubMed

    Kim, Hyoung-Jun; Ryu, Kitae; Kang, Joo-Hee; Choi, Ae-Jin; Kim, Tae-il; Oh, Jae-Min

    2013-01-01

    We have successfully prepared nanohybrids of biofunctional ferulic acid and layered double hydroxide nanomaterials through reconstruction and exfoliation-reassembly routes. From X-ray diffraction and infrared spectroscopy, both nanohybrids were determined to incorporate ferulic acid molecules in anionic form. Microscopic results showed that the nanohybrids had average particle size of 150 nm with plate-like morphology. As the two nanohybridization routes involved crystal disorder and random stacking of layers, the nanohybrids showed slight alteration in z-axis crystallinity and particle size. The zeta potential values of pristine and nanohybrids in deionized water were determined to be positive, while those in cell culture media shifted to negative values. According to the in vitro anticancer activity test on human cervical cancer HeLa cells, it was revealed that nanohybrids showed twice anticancer activity compared with ferulic acid itself. Therefore we could conclude that the nanohybrids of ferulic acid and layered double hydroxide had cellular delivery property of intercalated molecules on cancer cell lines. PMID:24453848

  13. Anticancer Activity of Ferulic Acid-Inorganic Nanohybrids Synthesized via Two Different Hybridization Routes, Reconstruction and Exfoliation-Reassembly

    PubMed Central

    Choi, Ae-Jin; Oh, Jae-Min

    2013-01-01

    We have successfully prepared nanohybrids of biofunctional ferulic acid and layered double hydroxide nanomaterials through reconstruction and exfoliation-reassembly routes. From X-ray diffraction and infrared spectroscopy, both nanohybrids were determined to incorporate ferulic acid molecules in anionic form. Micrsocopic results showed that the nanohybrids had average particle size of 150 nm with plate-like morphology. As the two nanohybridization routes involved crystal disorder and random stacking of layers, the nanohybrids showed slight alteration in z-axis crystallinity and particle size. The zeta potential values of pristine and nanohybrids in deionized water were determined to be positive, while those in cell culture media shifted to negative values. According to the in vitro anticancer activity test on human cervical cancer HeLa cells, it was revealed that nanohybrids showed twice anticancer activity compared with ferulic acid itself. Therefore we could conclude that the nanohybrids of ferulic acid and layered double hydroxide had cellular delivery property of intercalated molecules on cancer cell lines. PMID:24453848

  14. Effect of tannic acid-fish scale gelatin hydrolysate hybrid nanoparticles on intestinal barrier function and α-amylase activity.

    PubMed

    Wu, Shao-Jung; Ho, Yi-Cheng; Jiang, Shun-Zhou; Mi, Fwu-Long

    2015-07-01

    Practical application of tannic acid is limited because it readily binds proteins to form insoluble aggregates. In this study, tannic acid was self-assembled with fish scale gelatin hydrolysates (FSGH) to form stable colloidal complex nanoparticles. The nanoparticles prepared from 4 mg ml(-1) tannic acid and 4 mg ml(-1) FSGH had a mean particle size of 260.8 ± 3.6 nm, and showed a positive zeta potential (20.4 ± 0.4 mV). The nanoparticles acted as effective nano-biochelators and free radical scavengers because they provided a large number of adsorption sites for interaction with heavy metal ions and scavenging free radicals. The maximum adsorption capacity for Cu(2+) ions was 123.5 mg g(-1) and EC50 of DPPH radical scavenging activity was 21.6 ± 1.2 μg ml(-1). Hydroxyl radical scavenging effects of the nanoparticles were investigated by electron spin resonance spectroscopy. The copper-chelating capacity and free radical scavenging activity of the nanoparticles were associated with their capacity to inhibit Cu(2+) ion-induced barrier impairment and hyperpermeability of Caco-2 intestinal epithelial tight junction (TJ). However, α-amylase inhibitory activity of the nanoparticles was significantly lower than that of free tannic acid. The results suggest that the nanoparticles can ameliorate Cu(2+) ion induced intestinal epithelial TJ dysfunction without severely inhibiting the activity of the digestive enzymes. PMID:26069899

  15. A multi-component approach to screening F1 hybrid peanut seed for disease resistance and oleic acid content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of cultivated peanut, an important agronomic crop throughout the United States and the world, is consistently threatened by various diseases and pests. Furthermore, the peanut industry in the Southwestern U.S. currently demands varieties with high oleic acid content. In order to acc...

  16. Influence of Amino Acid-Nucleobase Hybrid Ligand in Binding and Biological Activity of Co(II) and Zn(II) Complexes.

    PubMed

    Dhayabaran, V Violet; Prakash, T Daniel

    2016-09-01

    Synthesis of new metallic complex of cobalt and zinc with amino acid-nucleobase hybrid ligand have been achieved by simple chemical reaction of metal salt with amino acid L-histidine and nucleobase adenine as ligands. Various physicochemical techniques such as elemental analysis, conductometric measurements, FT-IR, UV-visible, (1)H & (13)C NMR, mass spectroscopy and magnetic measurements were employed to characterize the complexes. The results confirmed the formation of the ligand and the complex. The interaction of the complex with calf thymus DNA (CT-DNA) has been carried out using UV-visible titration, fluorescence spectroscopy, cyclic voltammetry and viscosity measurements. The intrinsic binding constant (Kb) and Stern-Volmer constant (Ksv) of the complexes have been calculated. The cleavage activity of the ligand and the complexes with pBR322 DNA was further confirmed by gel electrophoretic technique. The pharmacological activity of the ligand and the complexes was investigated by antioxidant, antimicrobial and cytotoxic activity, and they show promising pharmacological effect. The results of the molecular docking studies of the ligand and the complexes reinforce all the above facts. PMID:27422694

  17. Cysteine-Cystine Photoregeneration for Oxygenic Photosynthesis of Acetic Acid from CO2 by a Tandem Inorganic-Biological Hybrid System.

    PubMed

    Sakimoto, Kelsey K; Zhang, Stephanie J; Yang, Peidong

    2016-09-14

    Tandem "Z-scheme" approaches to solar-to-chemical production afford the ability to independently develop and optimize reductive photocatalysts for CO2 reduction to multicarbon compounds and oxidative photocatalysts for O2 evolution. To connect the two redox processes, molecular redox shuttles, reminiscent of biological electron transfer, offer an additional level of facile chemical tunability that eliminates the need for solid-state semiconductor junction engineering. In this work, we report a tandem inorganic-biological hybrid system capable of oxygenic photosynthesis of acetic acid from CO2. The photoreductive catalyst consists of the bacterium Moorella thermoacetica self-photosensitized with CdS nanoparticles at the expense of the thiol amino acid cysteine (Cys) oxidation to the disulfide form cystine (CySS). To regenerate the CySS/Cys redox shuttle, the photooxidative catalyst, TiO2 loaded with cocatalyst Mn(II) phthalocyanine (MnPc), couples water oxidation to CySS reduction. The combined system M. thermoacetica-CdS + TiO2-MnPc demonstrates a potential biomimetic approach to complete oxygenic solar-to-chemical production. PMID:27537852

  18. The Perils of Pathogen Discovery: Origin of a Novel Parvovirus-Like Hybrid Genome Traced to Nucleic Acid Extraction Spin Columns

    PubMed Central

    Naccache, Samia N.; Greninger, Alexander L.; Lee, Deanna; Coffey, Lark L.; Phan, Tung; Rein-Weston, Annie; Aronsohn, Andrew; Hackett, John; Delwart, Eric L.

    2013-01-01

    Next-generation sequencing was used for discovery and de novo assembly of a novel, highly divergent DNA virus at the interface between the Parvoviridae and Circoviridae. The virus, provisionally named parvovirus-like hybrid virus (PHV), is nearly identical by sequence to another DNA virus, NIH-CQV, previously detected in Chinese patients with seronegative (non-A-E) hepatitis. Although we initially detected PHV in a wide range of clinical samples, with all strains sharing ∼99% nucleotide and amino acid identity with each other and with NIH-CQV, the exact origin of the virus was eventually traced to contaminated silica-binding spin columns used for nucleic acid extraction. Definitive confirmation of the origin of PHV, and presumably NIH-CQV, was obtained by in-depth analyses of water eluted through contaminated spin columns. Analysis of environmental metagenome libraries detected PHV sequences in coastal marine waters of North America, suggesting that a potential association between PHV and diatoms (algae) that generate the silica matrix used in the spin columns may have resulted in inadvertent viral contamination during manufacture. The confirmation of PHV/NIH-CQV as laboratory reagent contaminants and not bona fide infectious agents of humans underscores the rigorous approach needed to establish the validity of new viral genomes discovered by next-generation sequencing. PMID:24027301

  19. Facile "one-pot" synthesis of poly(methacrylic acid)-based hybrid monolith via thiol-ene click reaction for hydrophilic interaction chromatography.

    PubMed

    Lv, Xumei; Tan, Wangming; Chen, Ye; Chen, Yingzhuang; Ma, Ming; Chen, Bo; Yao, Shouzhuo

    2016-07-01

    A novel sol-gel "one-pot" approach in tandem with a radical-mediated thiol-ene reaction for the synthesis of a methacrylic acid-based hybrid monolith was developed. The polymerization monomers, tetramethoxysilane (TMOS) and 3-mercaptopropyl trimethoxysilane (MPTS), were hydrolyzed in high-concentration methacrylic acid solution that also served as a hydrophilic functional monomer. The resulting solution was then mixed with initiator (2, 2'-azobis (2-methylpropionamide) dihydrochloride) and porogen (urea, polyethylene glycol 20,000) in a capillary column and polymerized in water bath. The column had a uniform porous structure and a good permeability. The evaluation of the monolith was performed by separation of small molecules including nucleosides, phenols, amides, bases and Triton X-100. The calibration curves for uridine, inosine, adenosine and cytidine were determined. All the calibration curves exhibited good linear regressions (R(2)≥0.995) within the test ranges of 0.5-40μg/mL for four nucleosides. Additionaliy, atypical hydrophilic mechanism was proved by elution order from low to high according to polarity retention time increased with increases in the content of the organic solvent in the mobile phase. Further studies indicated that hydrogen bond and electrostatic interactions existed between the polar analytes and the stationary phase. This was the mechanism of retention. The excellent separation of the BSA digest showed good hydrophility of the column and indicated the potential in separation of complex biological samples. PMID:27264742

  20. Parallel Characterization of Anaerobic Toluene- and Ethylbenzene-Degrading Microbial Consortia by PCR-Denaturing Gradient Gel Electrophoresis, RNA-DNA Membrane Hybridization, and DNA Microarray Technology

    PubMed Central

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Saïd; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis. PMID:12088997

  1. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    NASA Technical Reports Server (NTRS)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  2. SubMito-PSPCP: Predicting Protein Submitochondrial Locations by Hybridizing Positional Specific Physicochemical Properties with Pseudoamino Acid Compositions

    PubMed Central

    Yu, Yuan

    2013-01-01

    Knowing the submitochondrial location of a mitochondrial protein is an important step in understanding its function. We developed a new method for predicting protein submitochondrial locations by introducing a new concept: positional specific physicochemical properties. With the framework of general form pseudoamino acid compositions, our method used only about 100 features to represent protein sequences, which is much simpler than the existing methods. On the dataset of SubMito, our method achieved over 93% overall accuracy, with 98.60% for inner membrane, 93.90% for matrix, and 70.70% for outer membrane, which are comparable to all state-of-the-art methods. As our method can be used as a general method to upgrade all pseudoamino-acid-composition-based methods, it should be very useful in future studies. We implement our method as an online service: SubMito-PSPCP. PMID:24027753

  3. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase.

    PubMed

    Austin, Michael B; Saito, Tamao; Bowman, Marianne E; Haydock, Stephen; Kato, Atsushi; Moore, Bradley S; Kay, Robert R; Noel, Joseph P

    2006-09-01

    Differentiation-inducing factors (DIFs) are well known to modulate formation of distinct communal cell types from identical Dictyostelium discoideum amoebas, but DIF biosynthesis remains obscure. We report complimentary in vivo and in vitro experiments identifying one of two approximately 3,000-residue D. discoideum proteins, termed 'steely', as responsible for biosynthesis of the DIF acylphloroglucinol scaffold. Steely proteins possess six catalytic domains homologous to metazoan type I fatty acid synthases (FASs) but feature an iterative type III polyketide synthase (PKS) in place of the expected FAS C-terminal thioesterase used to off load fatty acid products. This new domain arrangement likely facilitates covalent transfer of steely N-terminal acyl products directly to the C-terminal type III PKS active sites, which catalyze both iterative polyketide extension and cyclization. The crystal structure of a steely C-terminal domain confirms conservation of the homodimeric type III PKS fold. These findings suggest new bioengineering strategies for expanding the scope of fatty acid and polyketide biosynthesis. PMID:16906151

  4. Improved permeabilization protocols for fluorescence in situ hybridization (FISH) of mycolic-acid-containing bacteria found in foams.

    PubMed

    Carr, Emma L; Eales, Kathryn; Soddell, Jacques; Seviour, Robert J

    2005-04-01

    Formation of thick, stable foams and scums on activated sludge wastewater treatment plants is a worldwide problem, and to better understand what causes this foam and to cure it, there is a need to identify and quantify the bacteria present there. Fluorescence in situ hybridisation (FISH) overcomes the difficulties experienced with microscopic methods of identification for the mycolic-acid-containing actinomycetes (the mycolata), which are present in foams, where many share the morphotype of right-angled branching filaments. However, the presence of hydrophobic mycolic acids in their cell wall makes this group of bacteria particularly difficult to permeabilise, which greatly reduces the usefulness of FISH. While several permeabilisation treatments have been described, none appear to adequately permeabilise all genera of the mycolata. In this study several protocols for permeabilisation were assessed with both pure cultures of selected genera of the mycolata and foam samples. Combining mild acid hydrolysis with enzyme treatments (either mutanolysin/lysozyme or lipase/proteinase K) was found to be the most effective method, although other evidence presented here suggests that negative FISH results can not always be explained in terms of cell permeability to the probes. PMID:15676195

  5. Poly (N-isopropylacrylamide)-co-(acrylic acid) microgel/Ag nanoparticle hybrids for the colorimetric sensing of H2O2

    NASA Astrophysics Data System (ADS)

    Han, De-Man; Matthew Zhang, Qiang; Serpe, Michael J.

    2015-01-01

    Poly (N-isopropylacrylamide)-co-(acrylic acid) (pNIPAm-co-AAc) microgels composed of Ag nanoparticles (Ag NPs) have been synthesized and employed for the colorimetric sensing of H2O2. Each pNIPAm-co-AAc microgel, which exhibited a diameter of ~800 nm, contained multiple Ag NPs (diameter of ~5 nm), and solutions of these hybrid materials showed a UV-vis absorption band at ~400 nm. This is due to the excitation of the Ag NP surface plasmon. We go on to show that the intensity of this absorption band is dependent on the concentration of H2O2 in solution. Specifically, in the presence of H2O2 the magnitude of the absorption peak dramatically decreases in a linear fashion over the concentration range of 0.30 to 3.00 μM H2O2 (r2 = 0.9918). We go on to show that the response is selective for H2O2 and can still function in complex mixtures, e.g., we showed that the response is still robust in milk samples. While Ag NPs themselves can exhibit similar responses, this system has many benefits including sample processing and long term stability - i.e., Ag NPs are destabilized in solutions of a certain pH, and aggregate readily. Our microgel/Ag NP hybrids have been shown to be extremely stable and are easily purified prior to use by simple centrifugation/washing protocols. This system is simple and straightforward to use, is low cost, and can be used in complex media, which makes it practical for analyzing complex biological and environmental samples.Poly (N-isopropylacrylamide)-co-(acrylic acid) (pNIPAm-co-AAc) microgels composed of Ag nanoparticles (Ag NPs) have been synthesized and employed for the colorimetric sensing of H2O2. Each pNIPAm-co-AAc microgel, which exhibited a diameter of ~800 nm, contained multiple Ag NPs (diameter of ~5 nm), and solutions of these hybrid materials showed a UV-vis absorption band at ~400 nm. This is due to the excitation of the Ag NP surface plasmon. We go on to show that the intensity of this absorption band is dependent on the concentration

  6. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    NASA Astrophysics Data System (ADS)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  7. Influence of levels of information as presented by different technologies on students' understanding of acid, base, and ph concepts

    NASA Astrophysics Data System (ADS)

    Nakhleh, Mary B.; Krajcik, Joseph S.

    We investigated how different levels of information presented by various technologies affected secondary students' understanding of acid, base, and pH concepts. Secondary students who were selected for the study had just completed their study of acid-base chemistry. No attempt was made to provide further instruction. We analyzed changes in the understanding of individual students by constructing concept maps from the propositions that the students used in interviews conducted before and after a series of acid-base titrations. After the initial interview, students were divided into three groups. Within each group, students individually performed the same set of titrations using different technologies: chemical indicators, pH meters, and microcomputer-based laboratories (MBL). After the titrations were completed, all students were interviewed again. We found that students using MBL exhibited a larger positive shift in their concept map scores, which indicates a greater differentiation and integration of their knowledge of acids and bases. The chemical indicator students exhibited a more moderate positive shift in their concept map scores, and the pH meter students exhibited a smaller positive shift. We also found that the MBL students constructed more inappropriate links in their concept maps than the chemical indicator or pH meter students. However, we speculate that this increased number of inappropriate links indicates a high level of involvement with the technology. We therefore argue that the level of information offered by the technology affected students' understanding of the chemical concepts.Received: 24 February 1993; Revised: 21 February 1994;

  8. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration.

    PubMed

    Rocha, Rui; Santos, Rita S; Madureira, Pedro; Almeida, Carina; Azevedo, Nuno F

    2016-05-20

    Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria. PMID:27021959

  9. Cellular delivery of quantum dot-bound hybridization probe for detection of intracellular pre-microRNA using chitosan/poly(γ-glutamic acid) complex as a carrier.

    PubMed

    Geng, Yao; Lin, Dajie; Shao, Lijia; Yan, Feng; Ju, Huangxian

    2013-01-01

    A quantum dot (QD)-bound hybridization probe was designed for detection of intracellular pre-miRNA using chitosan (CS)/poly(γ-glutamic acid) (γ-PGA) complex as a gene vector. The probe was prepared by assembling thiolated RNA to gold nanoparticle (Au NP) via Au-S bond and then binding 3'-end amine of the RNA to the carboxy group capped on quantum dot surface. The QD-RNA-Au NP probe was assembled on the vector by mixing with aqueous γ-PGA solution and then CS solution to construct a gene delivery system for highly effective cellular uptake and delivery. After the probe was released from CS/γ-PGA complex to the cytoplasm by electrostatic repulsion at intracellular pH, it hybridized with pre-miRNA precursor as target. The formed product was then cleaved by RNase III Dicer, leading to the separation of QDs from Au NPs and fluorescence emission of QDs, which could be detected by confocal microscopic imaging to monitor the amount of the intracellular pre-miRNA precursor. The in vitro assays revealed that the QD-RNA-Au NP was a robust, sensitive and selective probe for quantitative detection of target pre-miRNA. Using MDA-MB231 and MCF-7 breast cancer cells as models, the relative amount of pre-miRNA let-7a could be successfully compared. Since the amount of miRNA is related to the progress and prognosis of cancer, this strategy could be expected to hold promising application potential in medical research and clinical diagnostics. PMID:23762388

  10. Hanford stakeholder participation in evaluating innovative technologies: VOC product line, Passive soil vapor extraction using borehole flux tunable hybrid plasma

    SciTech Connect

    Peterson, T.; McCabe, G.; Niesen, K.; Serie, P.

    1995-05-01

    A three-phased stakeholder participation program was conducted to support the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID). The US DOE`s Office of Technology Development (OTD) sponsored and directed the VOC-Arid ID. Its purpose was to develop and demonstrate new technologies for remediating VOC contamination in soil and ground water. The integrated demonstration, hosted by the Hanford site in Washington State, is being transitioned into the Department of Energy`s (DOE) Plume Focus Area. The Plume Focus Area has the same basic objectives as the ID, but is broader in scope and is a team effort with technology developers and technology users. The objective is to demonstrate a promising technology once, and if results warrant deploy it broadly across the DOE complex and in private sector applications.

  11. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.

    PubMed

    Yuan, Huiming; Zhang, Lihua; Zhang, Yukui

    2014-12-01

    In this work, a novel kind of organic-silica hybrid monolith based immobilized enzymatic reactor (IMER) was developed. The monolithic support was prepared by a single step "one-pot" strategy via the polycondensation of tetramethoxysilane and vinyltrimethoxysilane and in situ copolymerization of methacrylic acid and vinyl group on the precondensed siloxanes with ammonium persulfate as the thermal initiator. Subsequently, the monolith was activated by N-(3-dimethylaminopropyl) - N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS), followed by the modification of branched polyethylenimine (PEI) to improve the hydrophilicity. Finally, after activated by EDC and NHS, trypsin was covalently immobilized onto the monolithic support. The performance of such a microreactor was evaluated by the in sequence digestion of bovine serum albumin (BSA) and myoglobin, followed by MALDI-TOF-MS analysis. Compared to those obtained by traditional in-solution digestion, not only higher sequence coverages for BSA (74±1.4% vs. 59.5±2.7%, n=6) and myoglobin (93±3% vs. 81±4.5%, n=6) were obtained, but also the digestion time was shortened from 24h to 2.5 min, demonstrating the high digestion efficiency of such an IMER. The carry-over of these two proteins on the IMER was investigated, and peptides from BSA could not be found in mass spectrum of myoglobin digests, attributed to the good hydrophilicity of our developed monolithic support. Moreover, the dynamic concentration range for protein digestion was proved to be four orders of magnitude, and the IMER could endure at least 7-day consecutive usage. Furthermore, such an IMER was coupled with nano-RPLC-ESI/MS/MS for the analysis of extracted proteins from Escherichia coli. Compared to formerly reported silica hybrid monolith based IMER and the traditional in-solution counterpart, by our developed IMER, although the identified protein number was similar, the identified distinct peptide number was improved by 7% and 25% respectively

  12. Nitrogen dioxide reducing ascorbic acid technologies in the ventilator circuit leads to uniform NO concentration during inspiration.

    PubMed

    Pezone, Matthew J; Wakim, Matthew G; Denton, Ryan J; Gamero, Lucas G; Roscigno, Robert F; Gilbert, Richard J; Lovich, Mark A

    2016-08-31

    Conventional inhaled NO systems deliver NO by synchronized injection or continuous NO flow in the ventilator circuitry. Such methods can lead to variable concentrations during inspiration that may differ from desired dosing. NO concentrations in these systems are generally monitored through electrochemical methods that are too slow to capture this nuance and potential dosing error. A novel technology that reduces NO2 into NO via low-resistance ascorbic-acid cartridges just prior to inhalation has recently been described. The gas volume of these cartridges may enhance gas mixing and reduce dosing inconsistency throughout inhalation. The impact of the ascorbic-acid cartridge technology on NO concentration during inspiration was characterized through rapid chemiluminescence detection during volume control ventilation, pressure control ventilation, synchronized intermittent mandatory ventilation and continuous positive airway pressure using an in vitro lung model configured to simulate the complete uptake of NO. Two ascorbic acid cartridges in series provided uniform and consistent dosing during inspiration during all modes of ventilation. The use of one cartridge showed variable inspiratory concentration of NO at the largest tidal volumes, whereas the use of no ascorbic acid cartridge led to highly inconsistent NO inspiratory waveforms. The use of ascorbic acid cartridges also decreased breath-to-breath variation in SIMV and CPAP ventilation. The ascorbic-acid cartridges, which are designed to convert NO2 (either as substrate or resulting from NO oxidation during injection) into NO, also provide the benefit of minimizing the variation of inhaled NO concentration during inspiration. It is expected that the implementation of this method will lead to more consistent and predictable dosing. PMID:27264784

  13. Continued development of hybrid directional boring technology and New horizontal logging development for characterization, monitoring and instrument emplacement at environmental sites

    SciTech Connect

    Wemple, R.P.; Meyer, R.D.; Jacobson, R.D. ); Layne, R.R. )

    1991-01-01

    This work in partnership with industry is a continuation of cost- effective innovative, directional boring development begun in FY90 and planed to extend into FY94. Several demonstrations of the strategy of building hybrid hardware from utilities installation, geothermal, and soil mechanics technologies have been performed at Sandia National Laboratories (SNL) and at Charles Machine works (CMW) test sites as well as at a commercial refinery site. Additional tests at the SNL Directional Boring Test Range (DBTR) and a lagoon site are planned in calendar 1991. A new companion project to develop and demonstrate a hybrid capability for horizontal logging with penetrometers, specialty instruments and samplers has been taken from concept to early prototype hardware. The project goal of extending the tracking/locating capability of the shallow boring equipment to 80in. is being pursued with encouraging results at 40in. depths. Boring costs, not including tailored well completions dictated by individual site parameters, are estimated at $20 to $50 per foot. Applications continue to emerge for this work and interest continues to be expressed by DoD and EPA researchers and environmental site engineers. 12 figs.

  14. Endotoxin-stimulated macrophages decrease bile acid uptake in WIF-B cells, a rat hepatoma hybrid cell line.

    PubMed

    Sturm, E; Zimmerman, T L; Crawford, A R; Svetlov, S I; Sundaram, P; Ferrara, J L; Karpen, S J; Crawford, J M

    2000-01-01

    Endotoxemia leads to cytokine-mediated alterations of the hepatocellular sodium-taurocholate-cotransporting polypeptide (ntcp). We hypothesized that stimulated macrophages are essential transducers for down-regulating hepatocellular bile salt uptake in response to endotoxin (lipopolysaccharide [LPS]) exposure. Using an in vitro model, we exposed mouse macrophages (IC-21 cell line) to LPS for 24 hours. Concentrations of cytokines tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, and IL-6 increased 10.6-fold, 12.5-fold, and 444-fold, respectively, in LPS-conditioned IC-21 medium (CM) versus unconditioned IC-21 medium (UM). WIF-B rat hepatoma hybrid cells were incubated with either CM or UM or treated directly with medium containing recombinant TNF-alpha, IL-1beta, and IL-6. [(3)H]Taurocholate ([(3)H]TC) uptake decreased in WIF-B cells exposed to either TNF-alpha (54% of control), IL-1beta (78%), IL-6 (55%) as single additives, or in triple combination (TCC) (43%). A virtually identical decrease was observed after exposing WIF-B cells to CM (52%, P <.001). LPS had no direct effect on [(3)H]TC uptake. CM treatment did not decrease L-alanine transport in WIF-B cells. Blocking antibodies against TNF-alpha, IL-1beta, and IL-6 restored the diminished [(3)H]TC uptake in cells exposed to TCC and CM to 87% and 107% of controls, respectively. Northern blotting revealed that ntcp messenger RNA (mRNA) expression was significantly reduced in WIF-B cells after exposure to CM, and in primary rat hepatocytes exposed to CM or TNF-alpha (68%, 14%, and 29% of control, respectively). We conclude that macrophages and their ability to secrete the cytokines TNF-alpha, IL-1beta, and IL-6 may be essential in mediating the endotoxin-induced cholestatic effect of decreased hepatocellular bile salt uptake. PMID:10613737

  15. The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications

    NASA Astrophysics Data System (ADS)

    Fernández, M.; Valenciano, J.; Trinidad, F.; Muñoz, N.

    Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. This paper updates work carried out to develop spiral wound valve-regulated batteries for vehicles with different hybridisation degrees, ranging from stop-start to mild hybrid applications. In order to develop a battery that can withstand the hard operating conditions that the work at High Rate Partial-State-of-Charge (HRPSoC) implies, it is necessary to modify the negative AM formulation by using special, additives like carbon and graphite that reduce lead sulphate accumulation during HRPSoC cycling within in the negative plate. Several batches of negative active material (NAM) with the addition of graphites of different types, as well as combinations of graphite and activated carbons, have been made on 6 V 24 Ah Spiral wound modules. Electrical results show a dramatic increase of the charge acceptance at different SoC's that for some combinations approach 200%. On the other hand, on cycle life according to EUCAR Power Assist cycling, values in the range 200,000-220,000 cycles have been obtain in most part of the batch. This represents a capacity turnover of 5000-5500 times the nominal capacity. The paper is divided into three parts. The first part is devoted to identify the cause of failure of the negative plate on Power Assist Cycle Life, that turned to be the development of high amounts of lead sulphate and its accumulation on the surface of the plate. The second part covers the addition of carbon and graphite of low SSA to NAM and finally the third part is dedicated to the test of additions of medium/high SSA carbon to NAM with the specific objective of trying to implement the supercapacitor effect inside the battery.

  16. A split-ubiquitin two-hybrid screen for proteins physically interacting with the yeast amino acid transceptor Gap1 and ammonium transceptor Mep2.

    PubMed

    Van Zeebroeck, Griet; Kimpe, Marlies; Vandormael, Patrick; Thevelein, Johan M

    2011-01-01

    Several nutrient permeases have been identified in yeast, which combine a transport and receptor function, and are called transceptors. The Gap1 general amino acid permease and the Mep2 ammonium permease mediate rapid activation by amino acids and by ammonium, respectively, of the protein kinase A (PKA) pathway in nitrogen-starved cells. Their mode of action is not well understood. Both proteins are subject to complex controls governing their intracellular trafficking. Using a split-ubiquitin yeast two-hybrid screen with Gap1 or Mep2 as bait, we identified proteins putatively interacting with Gap1 and/or Mep2. They are involved in glycosylation, the secretory pathway, sphingolipid biosynthesis, cell wall biosynthesis and other processes. For several candidate interactors, determination of transport and signaling capacity, as well as localization of Gap1 or Mep2 in the corresponding deletion strains, confirmed a functional interaction with Gap1 and/or Mep2. Also common interacting proteins were identified. Transport and signaling were differentially affected in specific deletion strains, clearly separating the two functions of the transceptors and confirming that signaling does not require transport. We identified two new proteins, Bsc6 and Yir014w, that affect trafficking or downregulation of Gap1. Deletion of EGD2, YNL024c or SPC2 inactivates Gap1 transport and signaling, while its plasma membrane level appears normal.. Vma4 is required for Mep2 expression, while Gup1 appears to be required for proper distribution of Mep2 over the plasma membrane. Some of the interactions were confirmed by GST pull-down assay, using the C-terminal tail of Gap1 or Mep2 expressed in E.coli. Our results reveal the effectiveness of split-ubiquitin two-hybrid screening for identification of proteins functionally interacting with membrane proteins. They provide several candidate proteins involved in the transport and signaling function or in the complex trafficking control of the Gap1

  17. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  18. Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation.

    PubMed

    Yang, Sudong; Shen, Chengmin; Liang, Yanyu; Tong, Hao; He, Wei; Shi, Xuezhao; Zhang, Xiaogang; Gao, Hong-jun

    2011-08-01

    A novel electrode material based on graphene oxide (GO)-polypyrrole (PPy) composites was synthesized by in situ chemical oxidation polymerization. Palladium nanoparticles (NPs) with a diameter of 4.0 nm were loaded on the reduced graphene oxide(RGO)-PPy composites by a microwave-assisted polyol process. Microstructure analysis showed that a layer of coated PPy film with monodisperse Pd NPs is present on the RGO surface. The Pd/RGO-PPy catalysts exhibit excellent catalytic activity and stability for formic acid electro-oxidation when the weight feed ratio of GO to pyrrole monomer is 2:1. The superior performance of Pd/RGO-PPy catalysts may arise from utilization of heterogeneous nucleation sites for NPs and the greatly increased electronic conductivity of the supports. PMID:21713273

  19. Arrays of probes for positional sequencing by hybridization

    DOEpatents

    Cantor, Charles R.; Prezetakiewiczr, Marek; Smith, Cassandra L.; Sano, Takeshi

    2008-01-15

    This invention is directed to methods and reagents useful for sequencing nucleic acid targets utilizing sequencing by hybridization technology comprising probes, arrays of probes and methods whereby sequence information is obtained rapidly and efficiently in discrete packages. That information can be used for the detection, identification, purification and complete or partial sequencing of a particular target nucleic acid. When coupled with a ligation step, these methods can be performed under a single set of hybridization conditions. The invention also relates to the replication of probe arrays and methods for making and replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.

  20. Characterization of fatty acid-producing wastewater microbial communities using next generation sequencing technologies

    EPA Science Inventory

    While wastewater represents a viable source of bacterial biodiesel production, very little is known on the composition of these microbial communities. We studied the taxonomic diversity and succession of microbial communities in bioreactors accumulating fatty acids using 454-pyro...

  1. Quantitative determination of isoquinoline alkaloids and chlorogenic acid in Berberis species using ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Singh, Awantika; Bajpai, Vikas; Kumar, Sunil; Arya, Kamal Ram; Sharma, Kulwant Rai; Kumar, Brijesh

    2015-06-01

    Berberis species are well known and used extensively as medicinal plants in traditional medicine. They have many medicinal values attributable to the presence of alkaloids having different pharmacological activities. In this study, a method was developed and validated as per international conference on harmonization guidelines using ultra high performance liquid chromatography with hybrid triple quadrupole-linear ion trap mass spectrometry operated in the multiple reaction monitoring mode for nine bioactive compounds, including protoberberine alkaloids, aporphine alkaloids and chlorogenic acid. This method was applied in different plant parts of eight Berberis species to determine variations in content of nine bioactive compounds. The separation was achieved on an ACQUITY UPLC CSH™ C18 column using a gradient mobile phase at flow rate 0.3 mL/min. Calibration curves for all the nine analytes provided optimum linear detector response (with R(2) ≥0.9989) over the concentration range of 0.5-1000 ng/mL. The precision and accuracy were within RSDs ≤2.4 and ≤2.3%, respectively. The results indicated significant variation in the total contents of the nine compounds in Berberis species. PMID:25847792

  2. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres.

    PubMed

    Dai, Yunlu; Zhang, Cuimiao; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Kang, Xiaojiao; Yang, Dongmei; Lin, Jun

    2012-03-01

    In this study, we design a controlled release system based on CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) (PAA) composite microspheres, which were fabricated by filling the pH-responsive PAA inside CaF(2):Ce(3+)/Tb(3+) hollow spheres via photopolymerization route. The CaF(2):Ce(3+)/Tb(3+) hollow spheres prepared by hydrothermal route possess mesoporous structure and show strong green fluorescence from Tb(3+) under UV excitation. Doxorubicin hydrochloride (DOX), a widely used anti-cancer drug, was used as a model drug to evaluate the loading and controlled release behaviors of the composite microspheres due to the good biocompatibility of the samples using MTT assay. The composite carriers provide a strongly pH-dependent drug release behavior owing to the intrinsic property of PAA and its interactions with DOX. The endocytosis process of drug-loaded microspheres was observed using confocal laser scanning microscopy (CLSM) and the in vitro cytotoxic effect against SKOV3 ovarian cancer cells of the DOX-loaded carriers was investigated. In addition, the extent of drug release could be monitored by the altering of photoluminescence (PL) intensity of CaF(2):Ce(3+)/Tb(3+). Considering the good biocompatibility, high drug loading content and pH-dependent drug release of the materials, these hybrid luminescent microspheres have potential applications in drug controlled release and disease therapy. PMID:22196902

  3. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism

    PubMed Central

    Halla, Velazquez-Jimenez Litza; Hurt Robert, H; Juan, Matos; Rene, Rangel-Mendez Jose

    2014-01-01

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbent by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L−1. The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve –OH− exchange from zirconyl oxalate complexes. PMID:24359079

  4. Fabrication of Microfibrous and Nano-/Microfibrous Scaffolds: Melt and Hybrid Electrospinning and Surface Modification of Poly(L-lactic acid) with Plasticizer

    PubMed Central

    Yoon, Young Il; Park, Ko Eun; Lee, Seung Jin; Park, Won Ho

    2013-01-01

    Biodegradable poly(L-lactic acid) (PLA) fibrous scaffolds were prepared by electrospinning from a PLA melt containing poly(ethylene glycol) (PEG) as a plasticizer to obtain thinner fibers. The effects of PEG on the melt electrospinning of PLA were examined in terms of the melt viscosity and fiber diameter. Among the parameters, the content of PEG had a more significant effect on the average fiber diameter and its distribution than those of the spinning temperature. Furthermore, nano-/microfibrous silk fibroin (SF)/PLA and PLA/PLA composite scaffolds were fabricated by hybrid electrospinning, which involved a combination of solution electrospinning and melt electrospinning. The SF/PLA (20/80) scaffolds consisted of a randomly oriented structure of PLA microfibers (average fiber diameter = 8.9 µm) and SF nanofibers (average fiber diameter = 820 nm). The PLA nano-/microfiber (20/80) scaffolds were found to have similar pore parameters to the PLA microfiber scaffolds. The PLA scaffolds were treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. This approach of controlling the surface properties and diameter of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering. PMID:24381937

  5. Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction

    PubMed Central

    Sun, Liguo; Li, Hongguo; Qu, Ling; Zhu, Rui; Fan, Xiangli; Xue, Yingsen; Xie, Zhenghong; Fan, Hongbin

    2014-01-01

    The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface. PMID:25019087

  6. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    PubMed Central

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  7. Cellular compatibility of a gamma-irradiated modified siloxane-poly(lactic acid)-calcium carbonate hybrid membrane for guided bone regeneration.

    PubMed

    Takeuchi, Naoshi; Machigashira, Miho; Yamashita, Daisuke; Shirakata, Yoshinori; Kasuga, Toshihiro; Noguchi, Kazuyuki; Ban, Seiji

    2011-01-01

    A bi-layered silicon-releasable membrane consisting of a siloxane-poly(lactic acid) (PLA)-vaterite hybrid material (Si-PVH) microfiber mesh and a PLA microfiber mesh has been developed by an electrospinning method for guided bone regeneration (GBR) application. The bi-layered membrane was modified to a three-laminar structure by sandwiching an additional PLA microfiber mesh between the Si-PVH and PLA microfiber meshes (Si-PVH/PLA membrane). In this study, the influence of gamma irradiation, used for sterilization, on biological properties of the Si-PVH/PLA membrane was evaluated with osteoblasts and fibroblasts. After gamma irradiation, while the average molecular weight of the Si-PVH/PLA membrane decreased, the Si-PVH/PLA membrane promoted cell proliferation and differentiation (alkaline phosphatase activity and calcification) of osteoblasts, compared with the poly(lactide-co-glycolide) membrane. These results suggest that the gamma-irradiated Si-PVH/PLA membrane is biocompatible with both fibroblasts and osteoblasts, and may have an application for GBR. PMID:21946495

  8. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.

    PubMed

    Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Chengcai; Ma, Chunlei; Zhang, Liqun; Gong, Wuyun; Wu, Liyun

    2013-02-10

    The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism. PMID:23201417

  9. A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprined polymer-functionalized nanoarchitectured hybrid of AgI-BiOI composite.

    PubMed

    Gong, Jingming; Fang, Tian; Peng, Dinghua; Li, Aimin; Zhang, Lizhi

    2015-11-15

    A rapid and ultrasensitive signal-off photoelectrochemical sensor has been developed under visible-light irradiation, for the detection of perfluorooctanoic acid (PFOA), especially low level PFOA present in environment, whereby a novel nanostructured probe made of molecularly imprinted polymer (MIP) modified AgI nanoparticles-BiOI nanoflake arrays (AgI-BiOINFs) is designed as the photoactive electrode (denoted as MIP@AgI-BiOINFs). Here, the unique nanoarchitectured hybrid of AgI-BiOINFs was first in situ synthesized via a facile successive ionic layer adsorption and reaction (SILAR) approach and then employed as a matrix to graft the recognition element of MIP. Such a newly designed PEC sensor exhibits high sensitivity and selectivity for the determination of PFOA. The PEC analysis is highly linear over the PFOA concentration ranging from 0.02 to 1000.0 ppb with a detection limit of 0.01 ppb (S/N=3). This value obtained by using the facile PEC sensor is comparable to the results obtained by using well-established liquid chromatography-tandem mass spectrometry (LC-MS/MS). Toward practical applications, this low-cost and sensitive assay was successfully applied to measure PFOA in real water samples. PMID:26092130

  10. Polydimethylsiloxane-Paper Hybrid Lateral Flow Assay for Highly Sensitive Point-of-Care Nucleic Acid Testing.

    PubMed

    Choi, Jane Ru; Liu, Zhi; Hu, Jie; Tang, Ruihua; Gong, Yan; Feng, Shangsheng; Ren, Hui; Wen, Ting; Yang, Hui; Qu, Zhiguo; Pingguan-Murphy, Belinda; Xu, Feng

    2016-06-21

    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future. PMID:27012657

  11. DSPMP: Discriminating secretory proteins of malaria parasite by hybridizing different descriptors of Chou's pseudo amino acid patterns.

    PubMed

    Fan, Guo-Liang; Zhang, Xiao-Yan; Liu, Yan-Ling; Nang, Yi; Wang, Hui

    2015-12-01

    Identification of the proteins secreted by the malaria parasite is important for developing effective drugs and vaccines against infection. Therefore, we developed an improved predictor called "DSPMP" (Discriminating Secretory Proteins of Malaria Parasite) to identify the secretory proteins of the malaria parasite by integrating several vector features using support vector machine-based methods. DSPMP achieved an overall predictive accuracy of 98.61%, which is superior to that of the existing predictors in this field. We show that our method is capable of identifying the secretory proteins of the malaria parasite and found that the amino acid composition for buried and exposed sequences, denoted by AAC(b/e), was the most important feature for constructing the predictor. This article not only introduces a novel method for detecting the important features of sample proteins related to the malaria parasite but also provides a useful tool for tackling general protein-related problems. The DSPMP webserver is freely available at http://202.207.14.87:8032/fuwu/DSPMP/index.asp. PMID:26484844

  12. Hybrid nanocomposite from aniline and CeO2 nanoparticles: Surface protective performance on mild steel in acidic environment

    NASA Astrophysics Data System (ADS)

    Sasikumar, Y.; Kumar, A. Madhan; Gasem, Zuhair M.; Ebenso, Eno E.

    2015-03-01

    This present work contributes to the development of a new generation of active corrosion inhibitors composed of CeO2 nanoparticles covered with polyaniline that are able to release entrapped nanoparticles in acidic medium. Nanocomposites of aniline and CeO2 nanoparticles have been chemically synthesized by in-situ polymerization. The structural evolutions and morphological characteristics of PANI/CeO2 nanocomposite (PCN) have performed using various techniques such as XRD, IR, XPS, SEM and TEM analysis. It was illustrated from SEM and TEM observation that the PCN has globular particle with core-shell structure. The inhibition properties of synthesized PCN on mild steel (MS) corrosion in 0.5 M HCl were estimated using weight loss and electrochemical techniques. Potentiodynamic polarization results revealed PCN to be a mixed-type inhibitor, while impedance results indicate the adsorption of the PCN film on the MS surface. The inhibition efficiency of PCN was found to increase almost linearly with concentration. Moreover, an increase in the water contact-angle with PCN indicated its adsorption at the MS surface, and ATR-IR, SEM/EDAX and AFM visualization confirmed the formation of a protective film adsorbed on a MS surface. Finally, it was concluded that the PCN is a potential inhibitor for mild steel in HCl medium.

  13. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    NASA Astrophysics Data System (ADS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials.

  14. ECUT: Energy Conversion and utilization Technologies program biocatalysis research activity. Generation of chemical intermediates by catalytic oxidative decarboxylation of dilute organic acids

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Gupta, A.; Ingham, J. D.

    1983-01-01

    A rhodium-based catalyst was prepared and preliminary experiments were completed where the catalyst appeared to decarboxylate dilute acids at concentrations of 1 to 10 vol%. Electron spin resonance spectroscoy was used to characterize the catalyst as a first step leading toward modeling and optimization of rhodium catalysts. Also, a hybrid chemical/biological process for the production of hydrocarbons has been assessed. These types of catalysts could greatly increase energy efficiency of this process.

  15. Hybrid image processing

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1990-01-01

    Partly-digital, partly-optical 'hybrid' image processing attempts to use the properties of each domain to synergistic advantage: while Fourier optics furnishes speed, digital processing allows the use of much greater algorithmic complexity. The video-rate image-coordinate transformation used is a critical technology for real-time hybrid image-pattern recognition. Attention is given to the separation of pose variables, image registration, and both single- and multiple-frame registration.

  16. Determination of the strong acidity of atmospheric fine-particles (<2. 5 mum) using annular denuder technology. Standard method, enhanced method

    SciTech Connect

    Purdue, L.J.

    1992-11-01

    The report is a standardized methodology description for the determination of strong acidity of fine particles (less than 2.5 micrometers) in ambient air using annular denuder technology. The methodology description includes two parts: Part A - Standard Method and Part B - Enhanced Method. The Standard Method utilizes a denuder for removing ammonia and a filter assembly for determination of atmospheric strong acidity fine particle aerosols in ambient air, but does not account for potential interferences from nitric acid, ammonium nitrate aerosol or other ammonium salts which might bias the acidity measurement. The Enhanced Method adds an additional denuder upstream of the filter assembly to selectively remove acid gases (nitric acid vapors, nitrous acid and sulfur dioxide) from the gas stream prior to filtration. In addition, backup nylon and citric acid impregnated filters are used to correct for biases due to the dissociation of ammonium nitrate aerosol.

  17. Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Wu, Dong; Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2015-03-01

    We propose herein the "ship-in-a-bottle" integration of three-dimensional (3D) polymeric sinusoidal ridges inside photosensitive glass microfluidic channel by a hybrid subtractive - additive femtosecond laser processing method. It consists of Femtosecond Laser Assisted Wet Etching (FLAE) of a photosensitive Foturan glass followed by Two-Photon Polymerization (TPP) of a SU-8 negative epoxy-resin. Both subtractive and additive processes are carried out using the same set-up with the change of laser focusing objective only. A 522 nm wavelength of the second harmonic generation from an amplified femtosecond Yb-fiber laser (FCPA µJewel D-400, IMRA America, 1045 nm; pulse width 360 fs, repetition rate 200 kHz) was employed for irradiation. The new method allows lowering the size limit of 3D objects created inside channels to smaller details down to the dimensions of a cell, and improve the structure stability. Sinusoidal periodic patterns and ridges are of great use as base scaffolds for building up new structures on their top or for modulating cell migration, guidance and orientation while created interspaces can be exploited for microfluidic applications. The glass microchannel offers robustness and appropriate dynamic flow conditions for cellular studies while the integrated patterns are reducing the size of structure to the level of cells responsiveness. Taking advantage of the ability to directly fabricate 3D complex shapes, both glass channels and polymeric integrated patterns enable us to 3D spatially design biochips for specific applications.

  18. Comparison of different mechanical refining technologies on the enzymatic digestibility of low severity acid pretreated corn stover.

    PubMed

    Chen, Xiaowen; Kuhn, Erik; Wang, Wei; Park, Sunkyu; Flanegan, Keith; Trass, Olev; Tenlep, Lisette; Tao, Ling; Tucker, Melvin

    2013-11-01

    The effect of mechanical refining on the enzymatic digestibility of pretreated corn stover (PCS) was investigated. Low severity, dilute sulfuric acid PCS was subjected to mechanical refining using a bench-scale food processor blender, a PFI mill, a 12-inch laboratory disk refiner, and a 25 mm co-rotating twin-screw extruder. Glucose yields from enzymatic hydrolysis were improved by 10-15% after blending and disk refining, while PFI refining and twin-screw extrusion showed a glucose yield improvement of 16-20%. A pilot scale refining test using a Szego mill was performed and showed approximately 10% improvements in biomass digestibility. This suggests the possibility to scale up a mechanical refining technique to obtain similar enzymatic digestibility glucose yield enhancement as achieved by PFI milling and extrusion technologies. Proposed mechanisms of each mechanical refining technology are presented and reasons for improvements in biomass digestibility are discussed in this paper. PMID:24001565

  19. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system.

    PubMed

    Richards, B S; Capão, D P S; Schäfer, A I

    2008-06-15

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration--nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized using four different NF membranes (BW30, NF90, ESPA4, TFC-S), and examined in more detail for the BW30 membrane. On an Australian spring day, the system produced 1.1 m3 of permeate with an average conductivity of 0.28 mS x cm(-1), recovering 28% of the brackish (8.29 mS x cm(-1) conductivity) feedwater with an average specific energy consumption of 2.3 kWh x m(-3). The RE-membrane system tolerated large fluctuations in solar irradiance (500--1200 W x m(-2)), resulting in only small increases in the permeate conductivity. When equipped with the NF90 (cloudy day) and ESPA4 (rainy day) membranes, the system was still able to produce 1.36 m(-3) and 0.85 m(-3) of good quality permeate, respectively. The TFC-S membrane was not able to produce adequate water quality from the bore water tested. It is concluded that batteryless operation is a simple and robust way to operate such systems under conditions ranging from clear skies to medium cloud cover. PMID:18605587

  20. Tubular and endothelial chimerism in renal allografts using fluorescence and chromogenic in situ hybridization (FISH, CISH) technology.

    PubMed

    Varga, Zsuzsanna; Gaspert, Ariana; Behnke, Silvia; von Teichman, Adriana; Fritzsche, Florian; Fehr, Thomas

    2012-04-01

    The role of endothelial and tubular chimerism in renal allograft adaptation and rejection varies in different studies. We addressed the correlation between different clinico-pathological settings and sex-chromosomal endothelial and/or tubular chimerism in renal allografts. We examined the presence or absence of the X and Y chromosomes by fluorescence and chromogenic in situ hybridization (FISH, CISH) methodology on paraffin embedded kidney biopsies in 16 gender mismatched renal transplants (1 to 12 years post-transplantation). Twelve patients were male, four female. Four groups were selected: (i) Vascular calcineurin inhibitor toxicity without rejection; (ii) T-cell mediated vascular rejection; (iii) antibody mediated rejection; and (iv) C4d-positivity in AB0-incompatible transplants with or without rejection. Twelve non-transplant kidney biopsies (8 female, 4 male) were used as controls. Tubular chimerism was detected more frequently (69%) than endothelial chimerism (12%) in renal transplants. One of 12 control patients had tubular and endothelial chimeric cells (8%). The Y chromosome occurred in 8/12 male recipients (67%) in tubular epithelial cells and in 5/12 male recipients (42%) in endothelial cells. Double X chromosomes were detected in 3/4 female recipients in tubular epithelium. Tubular chimerism occurred more often with endothelial chimerism and capillaritis without correlation with other parameters, such as rejection. Combined Y chromosomal tubular and lymphatic endothelial chimerism correlated with T-cell mediated vascular rejection in two out of three patients (66%). Combined Y chromosomal tubular and peritubular capillary chimerism correlated with antibody mediated C4d+ rejection in one out of two patients (50%). Tubular and/or endothelial chimerism occur frequently in gender mismatched renal allografts and, when combined, this is associated with T-cell mediated rejection. PMID:22449229