Science.gov

Sample records for acid hydrate abundance

  1. Correlation of Sulfuric Acid Hydrate Abundance with Charged Particle Flux at the Surface of Europa

    NASA Astrophysics Data System (ADS)

    Dalton, James B.; Paranicas, C. P.; Cassidy, T. A.; Shirley, J. H.

    2010-10-01

    The trailing hemisphere of Jupiter's moon Europa is bombarded by charged particles trapped within Jupiter's magnetosphere. Sulfur ion implantation and impacting energetic electrons strongly affect the surface chemistry of Europa. Understanding these processes is important for disentangling the extrinsic and intrinsic components of Europa's surface chemistry. In the sulfur cycle model of Carlson et al. (Science 286, 97, 1999), hydrated sulfuric acid represents the dominant reaction product of radiolytic surface modification processes on Europa. In recent compositional investigations employing linear mixture modeling, Dalton et al. (LPSC XV, #2511, 2009) and Shirley et al. (Icarus, in press, 2010) document a well-defined gradient of hydrated sulfuric acid abundance for a study area spanning the leading side - trailing side boundary in Argadnel Regio. Sulfuric acid hydrate abundance in this region increases toward the trailing side apex. Here we compare the derived sulfuric acid hydrate abundances at 41 locations on Europa's surface with independent model results describing 1) the sulfur ion flux (Hendrix et al., 2010, in preparation), and 2) the energetic electron flux, at the same locations. We improve upon the prior calculation of electron energy into the surface of Paranicas et al. (2009, in Europa, U. Arizona, p529; Pappalardo, McKinnon, & Khurana eds.) by incorporating a realistic pitch angle dependence of the distribution. While the sulfur ion implantation and electron energy deposition model distributions differ in important details, both show trailing side gradients similar to that found for the sulfuric acid hydrate. Correlation coefficients exceed 0.9 in comparisons of each of these models with the sulfuric acid hydrate distribution. Our results support models in which the electron energy flux drives reactions that utilize implanted sulfur to produce sulfuric acid hydrate. This work was performed at the California Institute of Technology-Jet Propulsion

  2. Hydration of nucleic acid crystals.

    PubMed

    Berman, H M

    1986-01-01

    Can we make any generalizations from examination of the crystal structures in hand? The results of study of the very well-determined high-resolution structures indicate that the counterions have a very strong effect on organizing the water structure and that these counterions are bonded in a sequence-specific manner. Hence, the sodium ion bonds in the minor groove of ApU and only to the phosphate backbone in GpC. Not surprisingly then, the water network in ApU is predominantly in its minor groove. Similarly, the negative sulfate counterion in the major groove of the 3:2 complex between proflavine and CpG has a significant influence on the water structure in that crystal. The crystallization of two positive proflavine molecules with two negative nucleic acid chains obviates the need for inorganic ions and may provide additional insight about nucleic acid water structure. The presence of the charged aromatic hydrocarbon appears to provide the correct mixture of hydrophilicity and hydrophobicity that allows for both the gathering and ordering of water molecules around the nucleic acid molecule, not unlike what was previously observed in the semiclathrate structures. This same type of hydrophobic aggregation might pertain along the major groove side of structures containing the appropriate arrangement of methyl-containing thymine bases. Although it is very tempting at this point to make further rules and predictions, experience has shown that, especially in the case of nucleic acids, such prognostications would be premature. What is clearly needed are some more high-quality crystal structures of a variety of sequences under different and controlled conditions. Analyses of these may then put us in a position to successfully predict both the structure of water and its effects on nucleic acid conformation.

  3. Hydration of biological molecules: lipids versus nucleic acids.

    PubMed

    Pohle, W; Gauger, D R; Dornberger, U; Birch-Hirschfeld, E; Selle, C; Rupprecht, A; Bohl, M

    2002-01-01

    We used FTIR spectroscopy to comparatively study the hydration of films prepared from nucleic acids (DNA and double-stranded RNA) and lipids (phosphatidylcholines and phosphatidylethanolamines chosen as the most abundant ones) at room temperature by varying the ambient relative humidity in terms of solvent-induced structural changes. The nucleic acids and phospholipids both display examples of polymorphism on the one hand and structural conservatism on the other; even closely related representatives behave differently in this respect. DNA undergoes a hydration-driven A-B conformational transition, but RNA maintains an A-like structure independently of the water activity. Similarly, a main transition between the solid and liquid-crystalline phases can be induced lyotropically in certain phosphatidylcholines, while their phosphatidylethanolamine counterparts do not exhibit chain melting under the same conditions. A principal difference concerning the structural changes that occur in the studied biomolecules is given by the relevant water-substrate stoichiometries. These are rather high in DNA and often low in phospholipids, suggesting different mechanisms of action of the hydration water that appears to induce structural changes on global- and local-mode levels, respectively.

  4. Carbon abundances, major element chemistry, and mineralogy of hydrated interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Thomas, K. L.; Mckay, D. S.

    1993-01-01

    Hydrated interplanetary dust particles (IDP's) comprise a major fraction of the interplanetary dust particles collected in the stratosphere. While much is known about the mineralogy and chemistry of hydrated IDP's, little is known about the C abundance in this class of IDP's, the nature of the C-bearing phases, and how the C abundance is related to other physical properties of hydrated IDP's. Bulk compositional data (including C and O) for 11 hydrated IDP's that were subsequently examined by the transition electron microscopy (TEM) to determine their mineralogy and mineral chemistry are reported. Our analysis indicates that these hydrated IDP's are strongly enriched in C relative to the most C-rich meteorites. The average abundance of C in these hydrated IDP's is 4X CI chondrite values. The bulk compositions (including C and O) of 11 hydrated IDP's were determined by thin-window, energy-dispersive x ray (EDX) spectroscopy of the uncoated IDP's on Be substrates in the scanning electron microscopy (SEM). As a check on our C measurements, one of the IDP's (L2006H5) was embedded in glassy S, and microtome thin sections were prepared and placed onto Be substrates. Thin-film EDX analyses of multiple thin sections of L2006H5 show good agreement with the bulk value determined in the SEM. Following EDX analysis, the mineralogy and mineral chemistry of each IDP was determined by analyzing ultramicrotome thin sections in a TEM equipped with an EDX spectrometer.

  5. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds. PMID:26980678

  6. Formation of nitric acid hydrates - A chemical equilibrium approach

    NASA Technical Reports Server (NTRS)

    Smith, Roland H.

    1990-01-01

    Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.

  7. Thermal regeneration of sulfuric acid hydrates after irradiation

    NASA Astrophysics Data System (ADS)

    Loeffler, Mark J.; Hudson, Reggie L.

    2012-06-01

    In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4·4H2O and H2SO4·H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System.

  8. Thermal Regeneration of Sulfuric Acid Hydrates after Irradiation

    NASA Technical Reports Server (NTRS)

    Loeffler, Mark J.; Hudson, Reggie L.

    2012-01-01

    In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4 4H2O and H2SO4 H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System.

  9. Improving powder flow properties of citric acid by crystal hydration.

    PubMed

    Sun, Changquan

    2009-05-01

    A batch of poorly flowing citric acid anhydrate was exposed to 69.9% relative humidity to prepare pure monohydrate with nearly identical particle size and morphology but different surface properties. Flow properties of the powders were tested using a ring shear cell. Results show the hydration can significantly improve flow properties of anhydrous citric acid.

  10. Influence of citric acid on the hydration of Portland cement

    SciTech Connect

    Moeschner, Goeril Lothenbach, Barbara; Figi, Renato; Kretzschmar, Ruben

    2009-04-15

    Citric acid can be used to retard the hydration of cement. Experiments were carried out to investigate the influence of citric acid on the composition of solid and liquid phases during cement hydration. Analyses of the solid phases showed that dissolution of alite and aluminate slowed down while analyses of the pore solution showed that citric acid was removed almost completely from the pore solution within the first hours of hydration. The complexation of the ions by citrate was weak, which could also be confirmed by thermodynamic calculations. Only 2% of the dissolved Ca and 0.001% of the dissolved K formed complexes with citrate during the first hours. Thus, citric acid retards cement hydration not by complex formation, but by slowing down the dissolution of the clinker grains. Thermodynamic calculations did not indicate precipitation of a crystalline citrate species. Thus, it is suggested that citrate sorbed onto the clinker surface and formed a protective layer around the clinker grains retarding their dissolution.

  11. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    PubMed

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  12. Hydration of protonated aromatic amino acids: phenylalanine, tryptophan, and tyrosine.

    PubMed

    Gao, Bing; Wyttenbach, Thomas; Bowers, Michael T

    2009-04-01

    The first steps of hydration of the protonated aromatic amino acids phenylalanine, tryptophan, and tyrosine were studied experimentally employing a mass spectrometer equipped with a drift cell to examine the sequential addition of individual water molecules in equilibrium experiments and theoretically by a combination of molecular mechanics and electronic structure calculations (B3LYP/6-311++G**) on the three amino acid systems including up to five water molecules. It is found that both the ammonium and carboxyl groups offer good water binding sites with binding energies of the order of 13 kcal/mol for the first water molecule. Subsequent water molecules bind less strongly, in the range of 7-11 kcal/mol for the second through fifth water molecules. The ammonium group is able to host up to three water molecules and the carboxyl group one water molecule before additional water molecules bind either to the amino acid side chain as in tyrosine or to already-bound water in a second solvation shell around the ammonium group. Reasons for the surprisingly high water affinity of the neutral carboxyl group, comparable to that of the charge-carrying ammonium group, are found to be high intrinsic hydrophilicity, favorable charge-dipole alignment, and--for the case of multiply hydrated species--favorable dipole-dipole interaction among water molecules and the lack of alternative fully exposed hydration sites.

  13. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  14. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong

    2013-01-01

    As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media. PMID:23938301

  15. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation

    NASA Astrophysics Data System (ADS)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong

    2013-08-01

    As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media.

  16. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  17. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  18. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  19. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  20. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  1. Vapor pressures and lattice energies of oxalic acid, mesotartaric acid, phloroglucinol, myoinositol, and their hydrates

    NASA Astrophysics Data System (ADS)

    de Wit, H. G. M.; Bouwstra, J. A.; Blok, J. G.; de Kruif, C. G.

    1983-02-01

    In the present investigation, we report the enthalpy of dehydration and the enthalpy of sublimation of a number of organic hydrates and their anhydrous counterparts. These values are used to test the transferability of a set of atom-atom potential parameters, originally derived for carboxylic acids. The calculations showed that the parameter set was transferable to a fairly good degree.

  2. Proton diffusion in the hexafluorophosphoric acid clathrate hydrate.

    PubMed

    Bedouret, Laura; Judeinstein, Patrick; Ollivier, Jacques; Combet, Jérôme; Desmedt, Arnaud

    2014-11-26

    The hexafluorophosphoric acid clathrate hydrate is known as a "super-protonic" conductor: its proton conductivity is of the order of 0.1 S/cm at ca. room temperature. The long-range proton diffusion and the associated mechanism have been analyzed with the help of incoherent quasi-elastic neutron scattering (QENS) and proton pulsed-field-gradient nuclear magnetic resonance ((1)H PFG-NMR). The system crystallizes into the so-called type I clathrate structure (SI) at low temperature and into the type VII structure (SVII) above ca. 230 K with a melting point close to room temperature. While, in the SI phase, no long-range proton diffusion is observed (at least faster than the present measurement capabilities, i.e., 10(-7) cm(2)·s(-1)) with respect to the probed time scale, both techniques evidence a long-range proton diffusion process in the SVII phase (3.85 × 10(-6) cm(2)·s(-1) at 275 K with an activation energy of 0.19 ± 0.04 eV). QENS experiments lead to modeling the microscopic mechanism of the long-range proton diffusion by means of a Chudley-Elliot jump diffusion model with a characteristic jump distance of 2.79 ± 0.17 Å. In other words, the long-range diffusion occurs through a Grotthus mechanism with proton jumping from one water-oxygen site to another. Moreover, the analysis of the proton diffusion for hydration numbers greater than 6 (i.e., in the SVII structure) reveals that the additional water molecules coexisting with the SVII structure act as a "structural defect" barrier for the proton diffusivity, responsible for the conductivity. PMID:24941122

  3. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    SciTech Connect

    Biedermannová, Lada Schneider, Bohdan

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  4. A theoretical study of hydrated molecular clusters of amines and dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Zhang, Renyi

    2013-08-01

    Amines and carboxylic acids have been recognized as important precursor species in atmospheric new particle formation. In this study, the interaction between dimethylamine and succinic acid is investigated using Basin Paving Monte Carlo (BPMC) sampling with the classical force field to obtain low energy conformers of dimethylamine and succinic acid hydrated molecular clusters. Geometry optimization and frequency calculations are further performed on the basis of the BPMC results using density functional theory. At standard temperature and pressure, dimethylamine binds to succinic acid with a bonding energy of 14.2 kcal mol-1, smaller than that of dimethylamine with sulfuric acid (21.1 kcal mol-1). Hydration promotes proton transfer from succinic acid to dimethylamine and consequently increases the interaction strength, while proton transfer from sulfuric acid to dimethylamine occurs without hydration. On the other hand, the reactivity of sulfuric acid with dimethylamine decreases with the degree of hydration of sulfuric acid. The free energies of formation for hydrated clusters consisting of dimethylamine and succinic acid reveal that the interaction between amines and dicarboxylic acids likely exerts a synergetic effect on atmospheric aerosol nucleation by formation of aminium carboxylate ion pairs.

  5. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Koehler, Birgit G.; Middlebrook, Ann M.; Tolbert, Margaret A.; Jordon, Joseph

    1994-01-01

    We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.

  6. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  7. Abnormal incorporation of amino acids into the gas hydrate crystal lattice.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Ahn, Docheon; Lee, Kun-Hong

    2014-12-28

    Gas hydrates are crystalline ice-like solid materials enclosing gas molecules inside. The possibility of the presence of gas hydrates with amino acids in the universe is of interest when revealing the potential existence of life as they are evidence of a source of water and organic precursors, respectively. However, little is known about how they can naturally coexist, and their crystallization behavior would become far more complex as both crystallize with formation of hydrogen bonds. Here, we report abnormal incorporation of amino acids into the gas hydrate crystal lattice that is contrary to the generally accepted crystallization mode, and this resulted in lattice distortion and expansion. The present findings imply the potential for their natural coexistence by sharing the crystal lattice, and will be helpful for understanding the role of additives in the gas hydrate crystallization.

  8. Exploring Jupiter's icy moons with old techniques and big facilities - new insights on sulfuric acid hydrates

    NASA Astrophysics Data System (ADS)

    Maynard-Casely, H. E.; Avdeev, M.; Brand, H.; Wallwork, K.

    2013-12-01

    Sulfuric acid hydrates have been proposed to be abundant on the surface of Europa [1], and hence would be important planetary forming materials for this moon and its companions Ganymede and Callisto. Understanding of the surface features and subsurface of these moons could be advanced by firmer knowledge of the icy materials that comprise them [2], insight into which can be drawn from firmer knowledge of physical properties and phase behaviour of the candidate materials. We wish to present results from a study that started with the question ';What form of sulfuric acid hydrate would form on the surface of Europa'. The intrinsic hydrogen-domination of planetary ices, makes studying these materials with laboratory powder diffraction very challenging. Insights into their crystalline phase behavior and the extraction of a number of thermal and mechanical properties is often only accessible with high-flux synchrotron x-ray diffraction and utilization of the large scattering cross section with neutron diffraction. We have used the Powder Diffraction beamline at Australian synchrotron [4] and the Echidna (High-resolution neutron powder diffraction) instrument of the Australian Nuclear Science and Technology Organization, [5] to obtain an number of new insights into the crystalline phases formed from sulfruic acid and water mixtures. These instruments have enabled the discovery a new water-rich sulfuric acid hydrate form [6], improved structural characterisation of existing forms [7] and a charting the phase diagram of this fundamental binary system [8]. This has revealed exciting potential for understanding more about the surface of Europa from space, perhaps even providing a window into its past. [1] Carlson, R.W., R.E. Johnson, and M.S. Anderson, Science, 1999. 286(5437): p. 97-99. [2] Fortes, A.D. and M. Choukroun. Space Sci Rev, 2010. 153(1-4): p. 185-218. [3] Blake, D., et al., Space Sci Rev,, 2012. 170(1-4): p. 341-399. [4] Wallwork, K.S., Kennedy B. J. and Wang, D

  9. Hydration effect on proton transfer in melamine-cyanuric acid complex.

    PubMed

    Yan, Shihai; Kang, Baotao; Lee, Jin Yong; Sun, Lixiang

    2016-07-01

    Self-assembly of melamine-cyanuric acid (MC) leads to urinary tract calculi and renal failure. The hydration effects on molecular geometry, the IR spectra, the frontier molecular orbital, the energy barrier of proton transfer (PT), as well as the stability of MC were explored by density functional theory (DFT) calculations. The intramolecular PT breaks the big π-conjugated ring of melamine or converts the p-π conjugation (:N-C'=O) to π-π conjugation (O=C-N=C') of cyanuric acid. The intermolecular PT varies the coupling between melamine and cyanuric acid from pure hydrogen bonds (Na…HNd and NH…O) to the cooperation of cation…anion electrostatic interaction (NaH(+)…Nd (-)) and two NH…O hydrogen bonds. Distinct IR spectra shifts occur for Na…HNd stretching mode upon PT, i.e., blue-shift upon intramolecular PT and red-shift upon intermolecular PT. It is expected that the PT would inhibit the generation of rosette-like structure or one-dimensional tape conformer for the MC complexes. Hydration obviously effects the local geometric structure around the water binding site, as well as the IR spectra of NH…O and N…HN hydrogen bonds. Hydration decreases the intramolecular PT barrier from ~45 kcal mol(-1) in anhydrous complex to ~11.5 kcal mol(-1) in trihydrated clusters. While, the hydration effects on intermolecular PT barrier is slight. The relative stability of MC varies slightly by hydration due to the strong hydrogen bond interaction between melamine and cyanuric acid fragments. Graphical Abstract Hydration effect on proton transfer in melamine-cyanuric acid complex. PMID:27351422

  10. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.

    PubMed

    Ferrando, Nicolas; Gedik, Ibrahim; Lachet, Véronique; Pigeon, Laurent; Lugo, Rafael

    2013-06-13

    In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database.

  11. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.

    PubMed

    Ferrando, Nicolas; Gedik, Ibrahim; Lachet, Véronique; Pigeon, Laurent; Lugo, Rafael

    2013-06-13

    In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database. PMID:23697338

  12. Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid.

    PubMed

    Zhu, Yu-Peng; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Xu, Kang-Ming; Wen, Hui; Zhang, Wei-Jun; Huang, Wei

    2014-09-11

    While atmosphere is known to contain a significant fraction of organic substance and the effect of acetic acid to stabilize hydrated sulfuric acids is found to be close that of ammonia, the details about the hydration of (CH3COOH)(H2SO4)2 are poorly understood, especially for the larger clusters with more water molecules. We have investigated structural characteristics and thermodynamics of the hydrates using density functional theory (DFT) at PW91PW91/6-311++G(3df,3pd) level. The phenomena of the structural evolution may exist during the early stage of the clusters formation, and we tentatively proposed a calculation path for the Gibbs free energies of the clusters formation via the structural evolution. The results in this study supply a picture of the first deprotonation of sulfuric acids for a system consisting of two sulfuric acid molecules, an acetic acid molecule, and up to three waters at 0 and 298.15 K, respectively. We also replace one of the sulfuric acids with a bisulfate anion in (CH3COOH)(H2SO4)2 to explore the difference of acid dissociation between two series of clusters and interaction of performance in clusters growth between ion-mediated nucleation and organics-enhanced nucleation.

  13. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    NASA Astrophysics Data System (ADS)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  14. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-16

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  15. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-01-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes. PMID:27526869

  16. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-01-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes. PMID:27526869

  17. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    PubMed

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-01

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane. PMID:25954916

  18. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    PubMed

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-01

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane.

  19. Hydrated forms of fluoroacetic acid: a rotational study.

    PubMed

    Feng, Gang; Gou, Qian; Evangelisti, Luca; Spada, Lorenzo; Blanco, Susana; Caminati, Walther

    2016-09-14

    The rotational spectra of two conformers of the 1 : 1 adduct of fluoroacetic acid with water have been assigned by pulsed jet Fourier transform microwave spectroscopy. Their shapes differ according to the trans and cis forms of the fluoroacetic acid moiety. This is in contrast to the rotational spectrum of the monomer, for which the cis form has not been observed. Details of the hydrogen bond, structure, dynamics and energetic features of the two species are given.

  20. Effect of minodronic acid hydrate on hip geometry in Japanese women with postmenopausal osteoporosis.

    PubMed

    Ito, Masako; Sone, Teruki; Fukunaga, Masao

    2010-05-01

    Dual-energy X-ray absorptiometry-based hip structural analysis was performed to evaluate the effect of a bisphosphonate, minodronic acid hydrate, on the geometry of the proximal femur in Japanese patients with osteoporosis. The subjects were 103 postmenopausal patients (average age 63.9 +/- 6.4 years) with primary osteoporosis. Minodronic acid hydrate was administered orally at a dose of 1 mg/day for 12 months. Significant early responses at 3-6 months after the start of administration were observed in all three regions of the proximal femur (narrow neck, intertrochanter, and shaft) in terms of bone density, geometry, and bone strength indices. The outcomes of therapy included a reduction of the internal diameter of the cortical bone (-0.1, -0.6, and -0.2% in the neck, intertrochanter, and shaft, respectively, at 12 months; not significant) and a significant increase in cortical thickness (3.1, 3.7, and 2.0% in the respective regions at 12 months). Furthermore, minodronic acid hydrate induced a significant enlargement of the cross-sectional bone area, which is related to compressive strength; a significant increase in cross-sectional moment of inertia and section modulus (SM 4.9, 5.8, and 2.9% in the neck, intertrochanter, and shaft, respectively, at 12 months; P < 0.001), which are related to the bending strength; and a significant reduction in buckling ratio (BR -3.0% (P < 0.001), -4.2% (P < 0.001), and -1.4% (P < 0.05) in the respective regions at 12 months), which reflects improved cortical stability. These findings show that minodronic acid hydrate reduces age-related endocortical bone resorption, leading to increased cortical thickness and sustained or enhanced bone strength. PMID:19937358

  1. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system.

    PubMed

    Song, Zhou; Tang, Heqing; Wang, Nan; Zhu, Lihua

    2013-11-15

    A method for reductive degradation of perfluorooctanoic acid (PFOA) was established by using a sulfite/UV process. This process led to a PFOA removal of 100% at about 1h and a defluorination ratio of 88.5% at reaction time of 24h under N2 atmosphere, whereas the use of either UV irradiation or SO3(2-) alone induced little defluorination of PFOA under the same conditions. It was confirmed that the reductive defluorination of PFOA was achieved by hydrated electrons being generated from the photo-conversion of SO3(2-) as a mediator. Theoretical reaction kinetic analysis demonstrated that the generation of hydrated electrons was promoted by increasing either SO3(2-) concentration or solution pH, leading to the acceleration of the PFOA defluorination. Accompanying the reduction of PFOA, a small amount of short-chain perfluorocarboxylic acids, less fluorinated carboxylic acids and perfluorinated alkyl sulfonates were generated, all of which were able to be further degraded with further releasing of fluoride ions. Based on the generation, accumulation and distribution of intermediates, hydrated electrons induced defluorination pathway of PFOA was proposed in a sulfite-mediated UV photochemical system.

  2. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    SciTech Connect

    De Windt, Laurent; Bertron, Alexandra; Larreur-Cayol, Steeves; Escadeillas, Gilles

    2015-03-15

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelating effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.

  3. Vapor pressures of solid hydrates of nitric Acid: implications for polar stratospheric clouds.

    PubMed

    Worsnop, D R; Zahniser, M S; Fox, L E; Wofsy, S C

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO(3).H(2)O, HNO(3).2H(2)O, HNO(3).3H(2)O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO(3).2H(2)O may be favored in polar stratospheric clouds over the slightly more stable HNO(3).3H(2)O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO(3).2H(2)O and HNO(3).3H(2)O. Vapor transfer from HNO(3).2H(2)O to HNO(3).3H(2)O could be a key step in the sedimentation of HNO(3), which plays an important role in the depletion of polar ozone. PMID:17757475

  4. Vapor pressures of solid hydrates of nitric Acid: implications for polar stratospheric clouds.

    PubMed

    Worsnop, D R; Zahniser, M S; Fox, L E; Wofsy, S C

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO(3).H(2)O, HNO(3).2H(2)O, HNO(3).3H(2)O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO(3).2H(2)O may be favored in polar stratospheric clouds over the slightly more stable HNO(3).3H(2)O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO(3).2H(2)O and HNO(3).3H(2)O. Vapor transfer from HNO(3).2H(2)O to HNO(3).3H(2)O could be a key step in the sedimentation of HNO(3), which plays an important role in the depletion of polar ozone.

  5. Vapor pressures of solid hydrates of nitric acid - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Worsnop, Douglas R.; Fox, Lewis E.; Zahniser, Mark S.; Wofsy, Steven C.

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO3.H2O, HNO3.2H2O, HNO3.3H2O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO3.2H2O may be favored in polar stratospheric clouds over the slightly more stable HNO3.3H2O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO3.2H2O and HNO3.3H2O. Vapor transfer from HNO3.2H2O to HNO3.3H2O could be a key step in the sedimentation of HNO3, which plays an important role in the depletion of polar ozone.

  6. Hydration studies of electrospray ions from amino acids and small peptides

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong (Steve)

    This project was undertaken to gain a better understanding of the hydration behaviors of gas phase ions from solutions containing amino acids and peptides. In order to characterize their hydration behavior, the molecules of interest in solutions were first converted into gas phase ions by electrospray ionization (ESI). The completely desolvated ions were then deliberately dispersed into an inert bath gas, usually nitrogen, containing accurately known concentrations of solvent vapor. The resulting mixtures of ions and bath gas were subsequently passed into a vacuum chamber by way of an adiabatic supersonic free jet expansion. The cooling during that expansion caused solvation of the ions, the extent of which was determined by a quadrupole mass analyzer. Mass analysis of the solute ions in the absence of vapor showed peaks with the mass to charge ratios corresponding to the desolvated ions. On the other hand, mass spectrometric analyses of ions in the presence of solvent vapor showed sequences of peaks corresponding to the solvated ions with varying numbers of water molecules. The extent of the ion solvation was controlled by varying the concentration of solvent vapor in the bath gas. Two different scales were proposed for the evaluation of the relative affinities of amino acids for water molecules. One was based primarily on the assumption that the affinities of amino acids for water molecules are directly proportional to their gas phase solvation rate constants ( k). An alternative approach produced an affinity scale based on the extent of ion hydration occurred during the free jet expansion. It was found that the addition of a polar solvent vapor to the bath gas at low concentrations substantially enhanced the production of the bare solute ions from the evaporating charged droplets. This remarkable result not only provided a means to increase the ion production and thus detection sensitivity of mass spectrometric analyses, but also yielded important information

  7. Insights on peptide backbone N-H acidity: Structure of anions, hydration effects

    NASA Astrophysics Data System (ADS)

    Oliva, Antoni; Henry, Bernard; Ruiz-López, Manuel F.

    2013-03-01

    Despite the key role played by deamidation reactions in biochemical phenomena such as aging processes, knowledge of factors determining peptide backbone N-H acidities is scarce. We report a theoretical study on this topic by means of quantum-chemical calculations. Gas-phase acidities and pKa's in water have been estimated. The results agree reasonably well with available experimental data. Further analysis suggests that the secondary peptide structure, in addition to hydration effects, is the main factor determining pKa. In particular, we predict N-H protons to be more acidic in β-turns than in α-helices, a finding that may have broad biological implications.

  8. A laboratory study of the nucleation kinetics of nitric acid hydrates under stratospheric conditions

    NASA Astrophysics Data System (ADS)

    James, Alexander D.; Murray, Benjamin J.; Plane, John M. C.

    2016-04-01

    Measurements of the kinetics of crystallisation of ternary H2O-H2SO4-HNO3 mixtures to produce nitric acid hydrate phases, as occurs in the lower stratosphere, have been a long-standing challenge for investigators in the laboratory. Understanding polar stratospheric chlorine chemistry and thereby ozone depletion is increasingly limited by descriptions of nucleation processes. Meteoric smoke particles have been considered in the past as heterogeneous nuclei, however recent studies suggest that these particles will largely dissolve, leaving mainly silica and alumina as solid inclusions. In this study the nucleation kinetics of nitric acid hydrate phases have been measured in microliter droplets at polar stratospheric cloud (PSC) temperatures, using a droplet freezing assay. A clear heterogeneous effect was observed when silica particles were added. A parameterisation based on the number of droplets activated per nuclei surface area (ns) has been developed and compared to global model data. Nucleation experiments on identical droplets have been performed in an X-Ray Diffractometer (XRD) to determine the nature of the phase which formed. β-Nitric Acid Trihydrate (NAT) was observed alongside a mixture of Nitric Acid Dihydrate (NAD) phases. It is not possible to determine whether NAT nucleates directly or is formed by a phase transition from NAD (likely requiring the presence of a mediating liquid phase). Regardless, these results demonstrate the possibility of forming NAT on laboratory timescales. In the polar stratosphere, sulfuric acid (present at several weight percent of the liquid under equilibrium conditions) could provide such a liquid phase. This study therefor provides insight into previous discrepancies between phases formed in the laboratory and those observed in the atmosphere. It also provides a basis for future studies into atmospheric nucleation of solid PSCs.

  9. Insights into the crystallisation process from anhydrous, hydrated and solvated crystal forms of diatrizoic acid.

    PubMed

    Fucke, Katharina; McIntyre, Garry J; Lemée-Cailleau, Marie-Hélène; Wilkinson, Clive; Edwards, Alison J; Howard, Judith A K; Steed, Jonathan W

    2015-01-12

    Diatrizoic acid (DTA), a clinically used X-ray contrast agent, crystallises in two hydrated, three anhydrous and nine solvated solid forms, all of which have been characterised by X-ray crystallography. Single-crystal neutron structures of DTA dihydrate and monosodium DTA tetrahydrate have been determined. All of the solid-state structures have been analysed using partial atomic charges and hardness algorithm (PACHA) calculations. Even though in general all DTA crystal forms reveal similar intermolecular interactions, the overall crystal packing differs considerably from form to form. The water of the dihydrate is encapsulated between a pair of host molecules, which calculations reveal to be an extraordinarily stable motif. DTA presents functionalities that enable hydrogen and halogen bonding, and whilst an extended hydrogen-bonding network is realised in all crystal forms, halogen bonding is not present in the hydrated crystal forms. This is due to the formation of a hydrogen-bonding network based on individual enclosed water squares, which is not amenable to the concomitant formation of halogen bonds. The main interaction in the solvates involves the carboxylic acid, which corroborates the hypothesis that this strong interaction is the last one to be broken during the crystal desolvation and nucleation process.

  10. Determination of pKa and Hydration Constants for a Series of α-Keto-Carboxylic Acids Using Nuclear Magnetic Resonance Spectrometry.

    PubMed

    Lopalco, Antonio; Douglas, Justin; Denora, Nunzio; Stella, Valentino J

    2016-02-01

    The determination of the acid-base dissociation constants, and thus the pKa values, of α-keto acids such as pyruvic acid is complex because of the existence of these acids in their hydrated and nonhydrated or oxo state. Equilibria involved in the hydration and dehydration of the α-keto group of pyruvic acid and three other α-keto acids, 3-methyl-2-oxobutanoic acid, 4-methyl-2-oxopentanoic acid, and 2-oxo-2-phenylacetic acid, were investigated by proton and carbon nuclear magnetic resonance spectrometry, at constant ionic strength, 0.15, and 25 °C. Dissociation constants for the oxo (pKa(oxo)) and hydrated (pKa(hyd)) acids of each compound were estimated from the change in the degree of hydration with changes in pH and directly from the changes in chemical shifts of various hydrogen and carbons nuclei with pH. α-Keto acids showed greater hydration in their acidic forms than their carboxylate forms. The degree of hydration was sensitive to steric and electronic/resonance factors. As expected, the oxo forms of the acids were stronger acids compared with their hydrated analogs, and their dissociation constants were also sensitive to steric and electronic factors.

  11. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    PubMed

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine. PMID:26304742

  12. ATR FT-IR H 2O spectra of acidic aqueous solutions. Insights about proton hydration

    NASA Astrophysics Data System (ADS)

    Śmiechowski, Maciej; Stangret, Janusz

    2008-04-01

    Proton hydration in aqueous solutions has been recently characterised in our laboratory by means of vibrational spectra of HDO isotopically diluted in H 2O [M. Śmiechowski, J. Stangret, J. Chem. Phys. 125 (2006) 204508]. Here, we attempt to study quantitatively H 2O spectra of acidic aqueous solutions. In principle, H 2O spectra provide more information about the structural state of water molecules, resulting from oscillator couplings in the system, but they are much more difficult in interpretation, when compared with HDO spectra. The spectra of aqueous solutions of monoprotic acids (HCl, HClO 4, HPF 6) have been measured by Attenuated Total Reflectance (ATR) FT-IR spectroscopy. Spectral data have been analysed in a way that led to removal of the contribution of bulk water, in order to separate the spectra of solute-affected water only. The analysis has been focused on the infinite dilution limit behaviour of the spectrum. Changes induced in the affected spectra by temperature have been studied for HPF 6 solutions at 25-45 °C. The stretching vibration fundamental has been found to be primarily affected by counter-anion. Proton-affected H 2O spectrum shows the presence of very wide absorption bands in the range, where bulk water shows negligible own absorption, rather than "absorption continua". They could be adequately resolved into analytical components. These bands have been unaffected by temperature and loosely correlated with the stretching fundamental, as indicated by 2D IR correlation spectra. All spectral effects of the studied acids on H 2O in solution have been quantitatively evidenced and discussed. They seem to be in accordance with the main conclusions about proton hydration derived from recent studies of HDO spectra mentioned above.

  13. Unmasking the Action of Phosphinous Acid Ligands in Nitrile Hydration Reactions Catalyzed by Arene-Ruthenium(II) Complexes.

    PubMed

    Tomás-Mendivil, Eder; Cadierno, Victorio; Menéndez, María I; López, Ramón

    2015-11-16

    The catalytic hydration of benzonitrile and acetonitrile has been studied by employing different arene-ruthenium(II) complexes with phosphinous (PR2OH) and phosphorous acid (P(OR)2OH) ligands as catalysts. Marked differences in activity were found, depending on the nature of both the P-donor and η(6)-coordinated arene ligand. Faster transformations were always observed with the phosphinous acids. DFT computations unveiled the intriguing mechanism of acetonitrile hydration catalyzed by these arene-ruthenium(II) complexes. The process starts with attack on the nitrile carbon atom of the hydroxyl group of the P-donor ligand instead of on a solvent water molecule, as previously suggested. The experimental results presented herein for acetonitrile and benzonitrile hydration catalyzed by different arene-ruthenium(II) complexes could be rationalized in terms of such a mechanism.

  14. Amino acids generated from hydrated Titan tholins: Comparison with Miller-Urey electric discharge products

    NASA Astrophysics Data System (ADS)

    Cleaves, H. James; Neish, Catherine; Callahan, Michael P.; Parker, Eric; Fernández, Facundo M.; Dworkin, Jason P.

    2014-07-01

    Various analogues of Titan haze particles (termed ‘tholins’) have been made in the laboratory. In certain geologic environments on Titan, these haze particles may come into contact with aqueous ammonia (NH3) solutions, hydrolyzing them into molecules of astrobiological interest. A Titan tholin analogue hydrolyzed in aqueous NH3 at room temperature for 2.5 years was analyzed for amino acids using highly sensitive ultra-high performance liquid chromatography coupled with fluorescence detection and time-of-flight mass spectrometry (UHPLC-FD/ToF-MS) analysis after derivatization with a fluorescent tag. We compare here the amino acids produced from this reaction sequence with those generated from room temperature Miller-Urey (MU) type electric discharge reactions. We find that most of the amino acids detected in low temperature MU CH4/N2/H2O electric discharge reactions are generated in Titan simulation reactions, as well as in previous simulations of Triton chemistry. This argues that many processes provide very similar mixtures of amino acids, and possibly other types of organic compounds, in disparate environments, regardless of the order of hydration. Although it is unknown how life began, it is likely that given reducing conditions, similar materials were available throughout the early Solar System and throughout the universe to facilitate chemical evolution.

  15. Amino Acids Generated from Hydrated Titan Tholins: Comparison with Miller-Urey Electric Discharge Products

    NASA Technical Reports Server (NTRS)

    Cleaves, H. James, II; Neish, Catherine; Callahan, Michael P.; Parker, Eric; Fernandez, Facundo M.; Dworkin, Jason P.

    2014-01-01

    Various analogues of Titan haze particles (termed tholins) have been made in the laboratory. In certain geologic environments on Titan, these haze particles may come into contact with aqueous ammonia (NH3) solutions, hydrolyzing them into molecules of astrobiological interest. A Titan tholin analogue hydrolyzed in aqueous NH3 at room temperature for 2.5 years was analyzed for amino acids using highly sensitive ultra-high performance liquid chromatography coupled with fluorescence detection and time-of-flight mass spectrometry (UHPLC-FDToF-MS) analysis after derivatization with a fluorescent tag. We compare here the amino acids produced from this reaction sequence with those generated from room temperature Miller-Urey (MU) type electric discharge reactions. We find that most of the amino acids detected in low temperature MU CH4N2H2O electric discharge reactions are generated in Titan simulation reactions, as well as in previous simulations of Triton chemistry. This argues that many processes provide very similar mixtures of amino acids, and possibly other types of organic compounds, in disparate environments, regardless of the order of hydration. Although it is unknown how life began, it is likely that given reducing conditions, similar materials were available throughout the early Solar System and throughout the universe to facilitate chemical evolution.

  16. Infrared and density functional theory studies of formic acid hydrate clusters in noble gas matrices

    NASA Astrophysics Data System (ADS)

    Ito, Fumiyuki

    2016-08-01

    Infrared absorption spectra of formic acid hydrate clusters (HCOOH)m(H2O)n have been measured in noble gas matrices (Ar and Kr). The concentration dependence of the spectra and the comparison with a previous experimental study on HCOOH(H2O) and HCOOH(H2O)2 [Geoge et al., Spectrochim. Acta, Part A 60 (2004) 3225] led to the identification of large clusters. Density functional theory calculations at the B3LYP-DCP/6-31+G(2d,2p) level were carried out to determine the anharmonic vibrational properties of the clusters, enabling a consistent assignment of the observed vibrational peaks to specific clusters.

  17. Structural investigation of frozen-hydrated Omp C specimens prepared by the fatty acid monolayer technique

    SciTech Connect

    Chang, C.F.; Glaeser, R.M.

    1983-01-01

    Omp C (M.W. approx.36,000) is one of the major proteins in the outer membrane of E. coli. Trimeric Omp C forms a pore allowing small hydrophilic molecules to diffuse across the membrane. Specimens studied are prepared by reconstituting purified Omp C trimers with lipid A (the core structure of the outer membrane lipopolysaccharide). These specimens form 2-D periodic arrays with a size of approx.0.5 ..mu..m on edge. Initial structural investigations on negatively stained Omp C specimens have been reported by Grano et al. A preliminary structural analysis of frozen-hydrated Omp C is presented, using specimens prepared by a modification of the stearic-acid monolayer technique of Hayward et al. Stearate monolayers can successfully squeeze out the bulk water on the surface of the EM grid only at relatively high concentrations of Ca/sup + +/ and high pH. In the current study, the authors replaced the stearic acid with behenic acid, CH/sub 3/(CH/sub 2/)/sub 20/COOH, which can adhere to a suitably prepared EM grid from a subphase of distilled water.

  18. Laboratory studies of nitric acid hydrate and sulfuric acid aerosols: Implications for polar stratospheric cloud formation

    SciTech Connect

    Miller, R.E.

    1995-12-31

    The optical properties of atmospheric aerosols are important in a number of modeling and remote sensing applications. We have devised a new approach for determining the frequency dependent real and imaginary refractive indices directly from the observation of the infrared spectra of the aerosols. We have applied this method to the study of water ice aerosols and comparisons with previous measurements confirm that the method is sound and accurate. The temperature dependence of the refractive index of ice has also been measured over the range 130 K to 210 K, which includes the region of interest for the study of Polar Stratospheric Clouds (PSC`s). The method has also been applied to the study of nitric acid dehydrate (NAD) and nitric acid trihydrate (NAT). Sulfuric acid/nitric acid/water ternary systems are also being studied with the aim of determining the nature of the phases formed and the associated freezing points as a function of the concentrations of the acids.

  19. Nature's starships. I. Observed abundances and relative frequencies of amino acids in meteorites

    SciTech Connect

    Cobb, Alyssa K.; Pudritz, Ralph E. E-mail: pudritz@physics.mcmaster.ca

    2014-03-10

    The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. These meteorites have been classified according to the temperatures and physical conditions of their parent planetesimals. We collate available data on amino acid abundance in these meteorites and plot the concentrations of different amino acids for each meteorite within various meteorite subclasses. We plot average concentrations for various amino acids across meteorites separated by subclass and petrologic type. We see a predominance in the abundance and variety of amino acids in CM2 and CR2 meteorites. The range in temperature corresponding to these subclasses indicates high degrees of aqueous alteration, suggesting aqueous synthesis of amino acids. Within the CM2 and CR2 subclasses, we identify trends in relative frequencies of amino acids to investigate how common amino acids are as a function of their chemical complexity. These two trends (total abundance and relative frequencies) can be used to constrain formation parameters of amino acids within planetesimals. Our organization of the data supports an onion shell model for the temperature structure of planetesimals. The least altered meteorites (type 3) and their amino acids originated near cooler surface regions. The most active amino acid synthesis likely took place at intermediate depths (type 2). The most altered materials (type 1) originated furthest toward parent body cores. This region is likely too hot to either favor amino acid synthesis or for amino acids to be retained after synthesis.

  20. Proton transport in triflic acid hydrates studied via path integral car-parrinello molecular dynamics.

    PubMed

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2009-12-31

    The mono-, di-, and tetrahydrates of trifluoromethanesulfonic acid, which contain characteristic H(3)O(+), H(5)O(2)(+), and H(9)O(4)(+) structures, provide model systems for understanding proton transport in materials with high perfluorosulfonic acid density such as perfluorosulfonic acid membranes commonly employed in hydrogen fuel cells. Ab initio molecular dynamics simulations indicate that protons in these solids are predisposed to transfer to the water most strongly bound to sulfonate groups via a Grotthuss-type mechanism, but quickly return to the most solvated defect structure either due to the lack of a nearby species to stabilize the new defect or a preference for the proton to be maximally hydrated. Path integral molecular dynamics of the mono- and dihydrate reveal significant quantum effects that facilitate proton transfer to the "presolvated" water or SO(3)(-) in the first solvation shell and increase the Zundel character of all the defects. These trends are quantified in free energy profiles for each bonding environment. Hydrogen bonding criteria for HOH-OH(2) and HOH-O(3)S are extracted from the two-dimensional potential of mean force. The quantum radial distribution function, radius of gyration, and root-mean-square displacement position correlation function show that the protonic charge is distributed over two or more water molecules. Metastable structural defects with one excess proton shared between two sulfonate groups and another Zundel or Eigen type cation defect are found for the mono- and dihydrate but not for the tetrahydrate crystal. Results for the tetrahydrate native crystal exhibit minor differences at 210 and 250 K. IR spectra are calculated for all native and stable defect structures. Graph theory techniques are used to characterize the chain lengths and ring sizes in the hydrogen bond network. Low conductivities when limited water is present may be attributable to trapping of protons between SO(3)(-) groups and the increased

  1. Xanthone-2-carboxylic acid effect on lens growth, hydration and proteins during diabetic cataract development.

    PubMed

    Beyer-Mears, A; Cruz, E; Nicolas-Alexandre, J; Varagiannis, E

    1982-09-01

    The concomitant protective effects of the aldose reductase inhibitor, 7-dimethylsulfamoyl-xanthone-2-carboxylic acid, were established by three lens parameters (soluble crystallin proteins, growth and cell hydration) because their quantitation provided a comprehensive index of lens physiology during sugar cataractogenesis in the rat neonate. Their fused eyelids provided the orbital pouch for topical administration of inhibitor to the treated lens; the contralateral pouch served as an untreated control. Protein preservation was determined by gel filtration chromatography. In galactose-maintained neonates, untreated lenses exhibited only 50% of the normal Fraction II protein whereas xanthone-treatment maintained 73% of this component. Quantitative analysis of scanning electron micrographs indicated that xanthone-treatment partially protected lenses against both intra and extracellular fluid accumulation as determined by measurements of individual fiber cell thickness, density (the number of cells/10 micron cortex), and interdigitation. In addition, xanthone-treatment improved lens growth as evidenced by radius and dry weight measurements. Our results suggest that topically applied xanthone partially inhibited sugar cataractogenesis. PMID:6817723

  2. Bis(allyl)-ruthenium(iv) complexes with phosphinous acid ligands as catalysts for nitrile hydration reactions.

    PubMed

    Tomás-Mendivil, Eder; Francos, Javier; González-Fernández, Rebeca; González-Liste, Pedro J; Borge, Javier; Cadierno, Victorio

    2016-09-14

    Several mononuclear ruthenium(iv) complexes with phosphinous acid ligands [RuCl2(η(3):η(3)-C10H16)(PR2OH)] have been synthesized (78-86% yield) by treatment of the dimeric precursor [{RuCl(μ-Cl)(η(3):η(3)-C10H16)}2] (C10H16 = 2,7-dimethylocta-2,6-diene-1,8-diyl) with 2 equivalents of different aromatic, heteroaromatic and aliphatic secondary phosphine oxides R2P([double bond, length as m-dash]O)H. The compounds [RuCl2(η(3):η(3)-C10H16)(PR2OH)] could also be prepared, in similar yields, by hydrolysis of the P-Cl bond in the corresponding chlorophosphine-Ru(iv) derivatives [RuCl2(η(3):η(3)-C10H16)(PR2Cl)]. In addition to NMR and IR data, the X-ray crystal structures of representative examples are discussed. Moreover, the catalytic behaviour of complexes [RuCl2(η(3):η(3)-C10H16)(PR2OH)] has been investigated for the selective hydration of organonitriles in water. The best results were achieved with the complex [RuCl2(η(3):η(3)-C10H16)(PMe2OH)], which proved to be active under mild conditions (60 °C), with low metal loadings (1 mol%), and showing good functional group tolerance. PMID:27510460

  3. Bis(allyl)-ruthenium(iv) complexes with phosphinous acid ligands as catalysts for nitrile hydration reactions.

    PubMed

    Tomás-Mendivil, Eder; Francos, Javier; González-Fernández, Rebeca; González-Liste, Pedro J; Borge, Javier; Cadierno, Victorio

    2016-09-14

    Several mononuclear ruthenium(iv) complexes with phosphinous acid ligands [RuCl2(η(3):η(3)-C10H16)(PR2OH)] have been synthesized (78-86% yield) by treatment of the dimeric precursor [{RuCl(μ-Cl)(η(3):η(3)-C10H16)}2] (C10H16 = 2,7-dimethylocta-2,6-diene-1,8-diyl) with 2 equivalents of different aromatic, heteroaromatic and aliphatic secondary phosphine oxides R2P([double bond, length as m-dash]O)H. The compounds [RuCl2(η(3):η(3)-C10H16)(PR2OH)] could also be prepared, in similar yields, by hydrolysis of the P-Cl bond in the corresponding chlorophosphine-Ru(iv) derivatives [RuCl2(η(3):η(3)-C10H16)(PR2Cl)]. In addition to NMR and IR data, the X-ray crystal structures of representative examples are discussed. Moreover, the catalytic behaviour of complexes [RuCl2(η(3):η(3)-C10H16)(PR2OH)] has been investigated for the selective hydration of organonitriles in water. The best results were achieved with the complex [RuCl2(η(3):η(3)-C10H16)(PMe2OH)], which proved to be active under mild conditions (60 °C), with low metal loadings (1 mol%), and showing good functional group tolerance.

  4. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    PubMed

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts. PMID:27224476

  5. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    PubMed

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  6. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content

    PubMed Central

    Hansen, Thomas; Ismar, Stefanie M. H.; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1–5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts. PMID:27224476

  7. {sup 1}H nuclear magnetic resonance study of hydrated water dynamics in perfluorosulfonic acid ionomer Nafion

    SciTech Connect

    Han, Jun Hee; Lee, Kyu Won; Jeon, G. W.; Lee, Cheol Eui; Park, W. K.; Choi, E. H.

    2015-01-12

    We have studied the dynamics of hydrated water molecules in the proton exchange membrane of Nafion by means of high-resolution {sup 1}H nuclear magnetic resonance (NMR) measurements. “Bound” and “free” states of hydrated water clusters as well as the exchange protons were identified from the NMR chemical shift measurements, and their activation energies were obtained from the temperature-dependent laboratory- and rotating-frame spin-lattice relaxation measurements. Besides, a peculiar motional transition in the ultralow frequency region was observed at 373 K for the “free” hydrated water from the rotating-frame NMR spin-lattice relaxation time measurements.

  8. Gas hydrate inhibition by perturbation of liquid water structure

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-01-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates. PMID:26082291

  9. Gas hydrate inhibition by perturbation of liquid water structure

    NASA Astrophysics Data System (ADS)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  10. Gas hydrate inhibition by perturbation of liquid water structure.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-17

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  11. Acid attack on hydrated cement — Effect of mineral acids on the degradation process

    SciTech Connect

    Gutberlet, T.; Hilbig, H.; Beddoe, R.E.

    2015-08-15

    During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone between the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.

  12. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.

    PubMed

    Dagade, Dilip H; Madkar, Kavita R; Shinde, Sandeep P; Barge, Seema S

    2013-01-31

    Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb

  13. Computational Study on the Effect of Hydration on New Particle Formation in the Sulfuric Acid/Ammonia and Sulfuric Acid/Dimethylamine Systems.

    PubMed

    Henschel, Henning; Kurtén, Theo; Vehkamäki, Hanna

    2016-03-24

    The formation of new particles through condensation from the gas phase is an important source of atmospheric aerosols. The properties of the electrically neutral clusters formed in the very first steps of the condensation process are, however, not directly observable by experimental means. We present here electronic structure calculations on the hydrates of clusters of three molecules of sulfuric acid and three molecules of ammonia or dimethylamine. On the basis of the results of these new calculations together with previously published material we simulate the influence of hydration on the dynamic processes involved in particle formation. Most strongly affected by hydration and most important as a mediator for the effect on particle formation rates are the evaporation rates of clusters. The results give an estimate of the sensitivity of the atmospheric particle formation rate for humidity. The particle formation rate can change approximately two orders of magnitude in either direction due to hydration; the net effect, however, is highly dependent on the exact conditions. PMID:26918813

  14. Computational Study on the Effect of Hydration on New Particle Formation in the Sulfuric Acid/Ammonia and Sulfuric Acid/Dimethylamine Systems.

    PubMed

    Henschel, Henning; Kurtén, Theo; Vehkamäki, Hanna

    2016-03-24

    The formation of new particles through condensation from the gas phase is an important source of atmospheric aerosols. The properties of the electrically neutral clusters formed in the very first steps of the condensation process are, however, not directly observable by experimental means. We present here electronic structure calculations on the hydrates of clusters of three molecules of sulfuric acid and three molecules of ammonia or dimethylamine. On the basis of the results of these new calculations together with previously published material we simulate the influence of hydration on the dynamic processes involved in particle formation. Most strongly affected by hydration and most important as a mediator for the effect on particle formation rates are the evaporation rates of clusters. The results give an estimate of the sensitivity of the atmospheric particle formation rate for humidity. The particle formation rate can change approximately two orders of magnitude in either direction due to hydration; the net effect, however, is highly dependent on the exact conditions.

  15. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite

    NASA Astrophysics Data System (ADS)

    Tian, Haoting; Gao, Juan; Li, Hui; Boyd, Stephen A.; Gu, Cheng

    2016-09-01

    Here we describe a unique process that achieves complete defluorination and decomposition of perfluorinated compounds (PFCs) which comprise one of the most recalcitrant and widely distributed classes of toxic pollutant chemicals found in natural environments. Photogenerated hydrated electrons derived from 3-indole-acetic-acid within an organomodified clay induce the reductive defluorination of co-sorbed PFCs. The process proceeds to completion within a few hours under mild reaction conditions. The organomontmorillonite clay promotes the formation of highly reactive hydrated electrons by stabilizing indole radical cations formed upon photolysis, and prevents their deactivation by reaction with protons or oxygen. In the constrained interlayer regions of the clay, hydrated electrons and co-sorbed PFCs are brought in close proximity thereby increasing the probability of reaction. This novel green chemistry provides the basis for in situ and ex situ technologies to treat one of the most troublesome, recalcitrant and ubiquitous classes of environmental contaminants, i.e., PFCs, utilizing innocuous reagents, naturally occurring materials and mild reaction conditions.

  16. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite.

    PubMed

    Tian, Haoting; Gao, Juan; Li, Hui; Boyd, Stephen A; Gu, Cheng

    2016-01-01

    Here we describe a unique process that achieves complete defluorination and decomposition of perfluorinated compounds (PFCs) which comprise one of the most recalcitrant and widely distributed classes of toxic pollutant chemicals found in natural environments. Photogenerated hydrated electrons derived from 3-indole-acetic-acid within an organomodified clay induce the reductive defluorination of co-sorbed PFCs. The process proceeds to completion within a few hours under mild reaction conditions. The organomontmorillonite clay promotes the formation of highly reactive hydrated electrons by stabilizing indole radical cations formed upon photolysis, and prevents their deactivation by reaction with protons or oxygen. In the constrained interlayer regions of the clay, hydrated electrons and co-sorbed PFCs are brought in close proximity thereby increasing the probability of reaction. This novel green chemistry provides the basis for in situ and ex situ technologies to treat one of the most troublesome, recalcitrant and ubiquitous classes of environmental contaminants, i.e., PFCs, utilizing innocuous reagents, naturally occurring materials and mild reaction conditions. PMID:27608658

  17. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite

    PubMed Central

    Tian, Haoting; Gao, Juan; Li, Hui; Boyd, Stephen A.; Gu, Cheng

    2016-01-01

    Here we describe a unique process that achieves complete defluorination and decomposition of perfluorinated compounds (PFCs) which comprise one of the most recalcitrant and widely distributed classes of toxic pollutant chemicals found in natural environments. Photogenerated hydrated electrons derived from 3-indole-acetic-acid within an organomodified clay induce the reductive defluorination of co-sorbed PFCs. The process proceeds to completion within a few hours under mild reaction conditions. The organomontmorillonite clay promotes the formation of highly reactive hydrated electrons by stabilizing indole radical cations formed upon photolysis, and prevents their deactivation by reaction with protons or oxygen. In the constrained interlayer regions of the clay, hydrated electrons and co-sorbed PFCs are brought in close proximity thereby increasing the probability of reaction. This novel green chemistry provides the basis for in situ and ex situ technologies to treat one of the most troublesome, recalcitrant and ubiquitous classes of environmental contaminants, i.e., PFCs, utilizing innocuous reagents, naturally occurring materials and mild reaction conditions. PMID:27608658

  18. Structure of Hydrated Poly(d,l-lactic acid) Studied with X-ray Diffraction and Molecular Simulation Methods

    SciTech Connect

    Li, Xianfeng; Murthy, N. Sanjeeva; Latour, Robert A.

    2012-10-10

    The effect of hydration on the molecular structure of amorphous poly(D,L-lactic acid) (PDLLA) with 50:50 L-to-D ratio has been studied by combining experiments with molecular simulations. X-ray diffraction measurements revealed significant changes upon hydration in the structure functions of the copolymer. Large changes in the structure functions at 10 days of incubation coincided with the large increase in the water uptake from {approx} 1 to {approx} 40% and the formation of voids in the film. Computer modeling based on the recently developed TIGER2/TIGER3 mixed sampling scheme was used to interpret these changes by efficiently equilibrating both dry and hydrated models of PDLLA. Realistic models of bulk amorphous PDLLA structure were generated as demonstrated by close agreement between the calculated and the experimental structure functions. These molecular simulations were used to identify the interactions between water and the polymer at the atomic level including the change of positional order between atoms in the polymer due to hydration. Changes in the partial O-O structure functions, about 95% of which were due to water-polymer interactions, were apparent in the radial distribution functions. These changes, and somewhat smaller changes in the C-C and C-O partial structure functions, clearly demonstrated the ability of the model to capture the hydrogen-bonding interactions between water and the polymer, with the probability of water forming hydrogen bonds with the carbonyl oxygen of the ester group being about 4 times higher than with its ether oxygen.

  19. Hydrate detection

    SciTech Connect

    Dillon, W.P.; Ahlbrandt, T.S.

    1992-06-01

    Project objectives were: (1) to create methods of analyzing gas hydrates in natural sea-floor sediments, using available data, (2) to make estimates of the amount of gas hydrates in marine sediments, (3) to map the distribution of hydrates, (4) to relate concentrations of gas hydrates to natural processes and infer the factors that control hydrate concentration or that result in loss of hydrate from the sea floor. (VC)

  20. Hydrate detection

    SciTech Connect

    Dillon, W.P.; Ahlbrandt, T.S.

    1992-01-01

    Project objectives were: (1) to create methods of analyzing gas hydrates in natural sea-floor sediments, using available data, (2) to make estimates of the amount of gas hydrates in marine sediments, (3) to map the distribution of hydrates, (4) to relate concentrations of gas hydrates to natural processes and infer the factors that control hydrate concentration or that result in loss of hydrate from the sea floor. (VC)

  1. Analysis of Carbohydrate and Fatty Acid Marker Abundance in Ricin Toxin Preparations for Forensic Information

    SciTech Connect

    Colburn, Heather A.; Wunschel, David S.; Kreuzer-Martin, Helen W.; Moran, James J.; Antolick, Kathryn C.; Melville, Angela M.

    2010-07-15

    One challenge in the forensic analysis of ricin samples is determining the method and extent of sample preparation. Ricin purification from the source castor seeds is essentially a protein purification through removal of the non-protein fractions of the seed. Two major, non-protein constituents in the seed are the castor oil and carbohydrates. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil, which comprises roughly half the seed weight. The carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. We used derivatization of carbohydrate and fatty acid markers followed by identification and quantification using gas chromatography/mass spectrometry (GC/MS) to assess compositional changes in ricin samples purified by different methods. The loss of ricinoleic acid indicated steps for oil removal had occurred. Changes to the carbohydrate content of the sample were also observed following protein precipitation. The differential loss of arabinose relative to mannose indicated removal of the major carbohydrate fraction of the seed and enrichment of the protein content. Taken together, these changes in fatty acid and carbohydrate abundance are indicative of the preparation method used for each sample.

  2. [Seasonality and contribution to acid rain of the carbon abundance in rainwater].

    PubMed

    Xu, Tao; Song, Zhi-guang; Liu, Jun-feng; Wang, Cui-ping

    2008-02-01

    This paper reports the results from a study of the carbon abundance in rainwater of Guangzhou city, China. The determination of TOC, DOC, POC and PEC helps to study the seasonality of carbon abundance and its contribution to the acid rain. The results display the fact that the average contents of TOC, DOC, POC and PEC are 7.10 mg/L, 3.58 mg/L, 3.60 mg/L and 0.72 mg/L, respectively. These results confirm the deep effect of the organic pollutant to the rain. The seasonality exists in the carbon abundance of rainwater. The contents of TOC and DOC are up to the maximum in spring and the minimum in summer; the contribution of POC to TOC in summer is obviously higher than that in other seasons; and the relative content of POC is clearly higher in dry season than that in wet season. The seasonality reflects the more emission of the total pollutant in spring and the solid particle pollutant in summer than those in other seasons. Moreover, the emission of the organic pollutant from the mobile vehicles is more obvious in dry season than that in wet season. The contents of TOC and DOC have the negative correlation to the pH values, which confirms the contribution effect of the organic pollutant, such as vehicle emission, to the acid rain.

  3. Structure and hydration of polycytidylic acid from the data of infrared spectroscopy, EHF dielectrometry and computer modeling

    NASA Astrophysics Data System (ADS)

    Maleev, V.; Semenov, M.; Kashpur, V.; Bolbukh, T.; Shestopalova, A.; Anishchenko, D.

    2002-02-01

    The aim of this paper is to summarize the original results concerned with the elucidation of the role of water environment in the formation of different structures of polyribocytidylic acid (poly(rC)), depending on the pH, temperature and ion content. To solve this problem, we studied the hydration of poly(rC)-K + in films differing in water content, by methods of infrared spectroscopy and piezogravimetry, and in solution, using the dielectric measurements at a wavelength of 7.6 mm (extremely high frequencies — EHF). The experimental results were confirmed by a Monte Carlo simulation of the interaction between water molecules and single-strand and double-strand poly(rC) fragments in clusters of 800 water molecules. A model of hydration of double-strand complex of poly(rC) +-poly(rC) has been proposed based on our results and the known X-ray parameters of the complex. The obtained results and proposed structure of poly(rC) +-poly(rC) suggest that, the stabilization of this complex occurs due to intra- and inter-chain water bridges, together with the hydrogen bonds between neutral and protonated cytosines in pairs.

  4. Molecular structures of N-ethylpiperidine betaine hydrate and its 1:1 complex with squaric acid

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2013-12-01

    N-ethylpiperidine betaine, (N-carboxymethyl-N-ethylpiperidinium inner salt, EtPB) crystallizes as a hydrate. EtPB and water molecules are bonded by intermolecular OH⋯O hydrogen bonds of 2.817(1) and 2.863(1) Å, into a centrosymmetric dimer, in which only one carboxylate oxygen atom is involved in H-bonds formation. In the complex of EtPB with squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione, H2SQ) both carboxylate oxygen atoms are engaged in the hydrogen bonds which links molecules through two short, non-symmetric OH⋯O hydrogen bonds of 2.489(1) and 2.500(1) Å. The preferences of the conformation of the EtPB unit in the hydrogen bond formation have been studied by X-ray diffraction, FTIR and NMR spectroscopy and the results are supported by DFT calculations. EtPB, in hydrate and in the complex, has a chair conformation with the CH3CH2 group in the axial position and the CH2COO substituent in the equatorial position.

  5. ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION

    SciTech Connect

    Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.; Colburn, Heather A.; Moran, James J.; Melville, Angela M.

    2009-12-01

    This report describes method development and preliminary evaluation for analyzing castor samples for signatures of purifying ricin. Ricin purification from the source castor seeds is essentially a problem of protein purification using common biochemical methods. Indications of protein purification will likely manifest themselves as removal of the non-protein fractions of the seed. Two major, non-protein, types of biochemical constituents in the seed are the castor oil and various carbohydrates. The oil comprises roughly half the seed weight while the carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. Different castor oil and carbohydrate components can serve as indicators of specific toxin processing steps. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil. The loss of ricinoleic acid indicates a step to remove oil from the seeds. The relative amounts of carbohydrates and carbohydrate-like compounds, including arabinose, xylose, myo-inositol fucose, rhamnose, glucosamine and mannose detected in the sample can also indicate specific processing steps. For instance, the differential loss of arabinose relative to mannose and N-acetyl glucosamine indicates enrichment for the protein fraction of the seed using protein precipitation. The methods developed in this project center on fatty acid and carbohydrate extraction from castor samples followed by derivatization to permit analysis by gas chromatography-mass spectrometry (GC-MS). Method descriptions herein include: the source and preparation of castor materials used for method evaluation, the equipment and description of procedure required for chemical derivatization, and the instrument parameters used in the analysis. Two types of derivatization methods describe analysis of carbohydrates and one procedure for analysis of fatty acids. Two types of GC-MS analysis is included in the method development, one

  6. Abundance, Diversity, and Depth Distribution of Planctomycetes in Acidic Northern Wetlands

    PubMed Central

    Ivanova, Anastasia O.; Dedysh, Svetlana N.

    2011-01-01

    Members of the bacterial phylum Planctomycetes inhabit various aquatic and terrestrial environments. In this study, fluorescence in situ hybridization (FISH) was applied to assess the abundance and depth distribution of these bacteria in nine different acidic wetlands of Northern Russia. Planctomycetes were most abundant in the oxic part of the wetland profiles. The respective cell numbers were in the range 1.1–6.7 × 107 cells g−1 of wet peat, comprising 2–14% of total bacterial cells, and displaying linear correlation to the peat water pH. Most peatland sites showed a sharp decline of planctomycete abundance with depth, while in two particular sites this decline was followed by a second population maximum in an anoxic part of the bog profile. Oxic peat layers were dominated by representatives of the Isosphaera–Singulisphaera group, while anoxic peat was inhabited mostly by Zavarzinella- and Pirellula-like planctomycetes. Phylogenetically related bacteria of the candidate division OP3 were detected in both oxic and anoxic peat layers with cell densities of 0.6–4.6 × 106 cells g−1 of wet peat. PMID:22279446

  7. The influence of petroleum acids and solid surface energy on pipeline wettability in relation to hydrate deposition.

    PubMed

    Aspenes, G; Høiland, S; Barth, T; Askvik, K M

    2009-05-15

    The mechanisms by which hydrates deposit in a petroleum production-line are probably related to pipeline surface properties, e.g. pipeline material, surface energy and roughness. In this work, the wettability alteration of pipeline surfaces from contact with oil, and the adhesion energy between water and solid in the presence of oil is investigated. Contact angles for model systems are determined as a function of solid material and oil composition. Although contact angles in oil/brine/solid systems have previously been extensively reported in the literature, the variety of solids that mimic a pipeline surface is limited. In this study, we include various metal surfaces in addition to glass and epoxy coating. The results show that both the presence of petroleum acids in the oil, and low surface free energy of the pipeline material, lead to more oil-wet systems and consequently reduced adhesion energy between water and solid.

  8. Laboratory Investigation of the Growth and Crystal Structure of Nitric Acid Hydrates by Transmission Electron Microscopy (TEM)

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Chang, Sherwood (Technical Monitor)

    1994-01-01

    A great deal of recent laboratory work has focussed on the characterization of the nitric acid hydrates, thought to be present in type I Polar Stratospheric Clouds (PSCs). Phase relationships and vapor pressure measurements (1-3) and infrared characterizations (4-5) have been made. However, the observed properties of crystalline solids (composition, melting point, vapor pressure, surface reactivity, thermodynamic stability, extent of solid solution with other components, etc.) are controlled by their crystal structure. The only means of unequivocal structural identification for crystalline solids is diffraction (using electrons, X-rays, neutrons, etc.). Other observed properties of crystalline solids, such as their infrared spectra, their vapor pressure as a function of temperature, etc. yield only indirect information about what phases are present, their relative proportions, or whether they are crystalline or amorphous.

  9. Amino acid abundances and stereochemistry in hydrothermally altered sediments from the Juan de Fuca Ridge, northeastern Pacific Ocean.

    PubMed

    Andersson, E; Simoneit, B R; Holm, N G

    2000-09-01

    The Juan de Fuca Ridge is a hydrothermally active, sediment covered, spreading ridge situated a few hundred kilometres off the west coast of North America in the northeastern Pacific Ocean. Sediments from seven sites drilled during the Ocean Drilling Program (ODP) Legs 139 and 168 were analyzed for total hydrolyzable amino acids (THAA), individual amino acid distributions, total organic C (TOC) and total N (TN) contents. The aim was to evaluate the effects of hydrothermal stress on the decomposition and transformation of sedimentary amino acids. Hydrolyzable amino acids account for up to 3.3% of the total organic C content and up to 12% of the total N content of the upper sediments. The total amounts of amino acids decrease significantly with depth in all drilled holes. This trend is particularly pronounced in holes with a thermal gradient of around 0.6 degrees C/m or higher. The most abundant amino acids in shallow sediments are glycine, alanine, lysine, glutamic acid, valine and histidine. The changes in amino acid distributions in low temperature holes are characterized by increased relative abundances of non-protein beta-alanine and gamma-aminobutyric acid. In high temperature holes the amino acid compositions are characterized by high abundances of glycine, alanine, serine, ornithine and histidine at depth. D/L ratios of samples with amino acid distributions similar to those found in acid hydrolysates of kerogen, indicate that racemization rates of amino acids bound by condensation reactions may be diminished.

  10. A Comparative Ab Initio Study of the Primary Hydration and Proton Dissociation of Various Imide and Sulfonic Acid Ionomers

    SciTech Connect

    Clark II, Jeffrey K.; Paddison, Stephen J.; Eikerling, Michael; Dupuis, Michel; Zawodzinski, Jr., Thomas A.

    2012-03-29

    We compare the role of neighboring group substitutions on proton dissociation of hydrated acidic moieties suitable for proton exchange membranes through electronic structure calculations. Three pairs of ionomers containing similar electron withdrawing groups within the pair were chosen for the study: two fully fluorinated sulfonyl imides (CF3SO2NHSO2CF3 and CF3CF2SO2NHSO2CF3), two partially fluorinated sulfonyl imides (CH3SO2NHSO2CF3 and C6H5SO2NHSO2CF2CF3), and two aromatic sulfonic acid based material s (CH3C6H4SO3H and CH3 OC6 - H3OCH3C6H4SO3H). Fully optimized counterpoise (CP) corrected geometries were obtained for each ionomer fragment with the inclusion of water molecules at the B3LYP/6-311G** level of density functional theory. Spontaneous proton dissociation was observed upon addition of three water molecules in each system, and the transition to a solvent-separated ion pair occurred when four water molecules were introduced. No considerable quantitative or qualitative differences in proton dissociation, hydrogen bond networks formed, or water binding energies were found between systems containing similar electron withdrawing groups. Each of the sulfonyl imide ionomers exhibited qualitatively similar results regarding proton dissociation and separation. The fully fluorinated sulfonyl imides, however, showed a greater propensity to exist in dissociated and ion-pair separated states at low degrees of hydration than the partially fluorinated sulfonyl imides. This effect is due to the additional electron withdrawing groups providing charge stabilization as the dissociated proton migrates away from the imide anion.

  11. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Ahmed, Imtiaz; Tahir, Muhammad Nawaz

    2016-08-01

    Isoniazid is an important component used in "triple therapy" to combat tuberculosis. It has reduced Tabletting formulations stability. Anti-oxidants are obligatory to counter oxidative stress, pulmonary inflammation, and free radical burst from macrophages caused in tuberculosis and other diseases. In the present study a hydrate cocrystal of Isoniazid with anti-oxidant and anti-inflammatory and anti-bacterial Protocatechuic acid (3,4-dihydroxybenzoic acid) in 1:1 is reported. This Cocrystal may have improved tabletting stability and anti-oxidant properties. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the Cocrystal. Other synthons of different graph sets involving Nsbnd H···O and Osbnd H···N bonds are formed between hydrazide group of isoniazid and coformer. Solubility studies revealed that cocrystal is less soluble as compared to isoniazid in buffer at pH 7.4 at 22 °C while stability studies at 80 °C for 24 h period disclosed the fact that cocrystal has higher stability than that of isoniazid.

  12. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    PubMed Central

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 105 gdw−1 in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0–5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5–10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 107 gdw−1). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil. PMID:20740027

  13. Fatty acid hydration activity of a recombinant Escherichia coli-based biocatalyst is improved through targeting the oleate hydratase into the periplasm.

    PubMed

    Jung, Sang-Min; Seo, Joo-Hyun; Lee, Jung-Hoo; Park, Jin-Byung; Seo, Jin-Ho

    2015-12-01

    Whole-cell biotransformation of fatty acids can be influenced by the activities of catalytic enzymes and by the efficiency of substrate transport into host cells. Here, we improved fatty acid hydration activity of the recombinant Escherichia coli expressing an oleate hydratase of Stenotrophomonas maltophilia by targeting the catalytic enzyme into the periplasm instead of the cytoplasm. Recombinant E. coli producing OhyA in the periplasm under guidance of the PelB signal sequence (E. coli OhyA_PP) exhibited significantly greater hydration activity with oleic acid and linoleic acid compared to a recombinant E. coli producing OhyA in the cytoplasm (E. coli OhyA_CS). For example, the oleate double bond hydration rate of E. coli OhyA_PP was >400 μmol/g dry cells/min (400 U/g dry cells), which is >10-fold higher than that of E. coli OhyA_CS. As the specific activities of the enzymes targeted into the cytoplasm and periplasm were comparable, we assumed that targeting OhyA into the periplasm could accelerate fatty acid transport to the catalytic enzymes by skipping the major mass transport barrier of the cytoplasmic membrane. Our results will contribute to the development of whole-cell biocatalysts for fatty acid biotransformation.

  14. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Iljina, Marija; Tosatto, Laura; Choi, Minee L.; Sang, Jason C.; Ye, Yu; Hughes, Craig D.; Bryant, Clare E.; Gandhi, Sonia; Klenerman, David

    2016-09-01

    The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation.

  15. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein

    PubMed Central

    Iljina, Marija; Tosatto, Laura; Choi, Minee L.; Sang, Jason C.; Ye, Yu; Hughes, Craig D.; Bryant, Clare E.; Gandhi, Sonia; Klenerman, David

    2016-01-01

    The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation. PMID:27671749

  16. Application of hydrated and anhydrous fluroantimonic acids in the polymerization of epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymerizations of epoxidized soybean oil (ESO) were catalyzed by the superacids, fluroantimonic acid hexahydrate (HSbF6•6H2O) and anhydrous fluroantimonic acid (HSbF6) using ethyl acetate solvent. This work was conducted in an effort to develop useful biodegradable polymers from renewable resources...

  17. On the factors governing the abundance of oxalic acid in tropospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Neusuess, C.; Brüggemann, E.; Gnauk, T.; Müller, K.; Herrmann, H.

    2010-12-01

    Oxalic acid is frequently observed as one of the most abundant single organic compounds in tropospheric particles. Its sources are commonly believed to be of secondary nature. In state-of-the-art multiphase chemistry models, different pathways exist, which can lead to oxalic acid as final product. Anthropogenic hydrocarbon emissions can be photochemically degraded to glyoxal and methyglyoxal, which - after partitioning into deliquescent particles or cloud droplets - are further oxidized via glyoxylic acid to oxalic acid [Herrmann et al., 2005]. A biogenic oxidation pathway starts with isoprene or monoterpene emissions and leads to glycolaldehyde and methylglyoxal via methacrolein and methylvinylketone, followed by aqueous phase oxalic acid formation [Lim et al., 2005]. As suggested by Warneck, 2003, a marine pathway might exist, starting from marine ethene emissions and leading via glycolaldehyde to oxalic acid. The aim of this study was to elucidate from field measurements the importance of each of these pathways. To this aim, oxalic acid concentrations from 144 size-resolved particle samples (5-stage Berner impactor) from different continental and coastal European sampling sites were statistically analyzed using principal component analysis (PCA). Hourly back trajectories were calculated for each sampling interval using the HYSPLIT model [Draxler and Rolph, 2003] and combined in a novel way with global land cover data to yield “residence times” of the sampled air masses above urban, agricultural, forested, and oceanic areas. These residence times served as quantitative proxies for different emission regimes (anthropogenic, biogenic, marine) in the statistical analysis. Additionally, meteorological parameters such as sunflux along the trajectories or mixing layer depth at the sampling site were retrieved from the HYSPLIT output. PCA of the continental dataset retrieved two factors that were connected to the oxalic acid concentrations. A first one showed high

  18. Squaraines: crystal structures and spectroscopic analysis of hydrated and anhydrous forms of squaric acid-isoniazid species.

    PubMed

    dos Reis, Felipe D; Gatti, Isabela C; Garcia, Humberto C; de Oliveira, Vanessa E; de Oliveira, Luiz F C

    2014-12-11

    The crystal structures, synthesis procedure, thermal behavior, and spectroscopic properties of a new squaraine SqINH·H2O and its anhydrous arrangement are described. This squaraine is obtained through an acid-base reaction using squaric acid (H2Sq) and isoniazid (INH) as precursors. Both squaraines crystallize in the monoclinic system, but in different space groups: the hydrated and anhydrous arrangement crystallizes in the P2₁ and P2₁/c space group, respectively. The crystallographic data strongly suggest that the structures present an expressive increase in their electronic delocalization all over the molecular structure of both compounds, when compared with the reagents. The bond distances for both structures present an average value intermediate between a single and double character (1.463(3) Å for SqINH·H2O and 1.4959(3) Å for SqINH). The vibrational and electronic data also corroborate with this proposal, since the band shifts indicate that the conjugation over the system is increased, as indicated by the blue shift observed for the carbonyl stretching bands for both compounds. The presence of the water molecule is responsible for a decrease in fluorescence emission, as determined by the emission spectra recorded for both compounds.

  19. Natural gas hydrates; vast resource, uncertain future

    USGS Publications Warehouse

    Collett, T.S.

    2001-01-01

    Gas hydrates are naturally occurring icelike solids in which water molecules trap gas molecules in a cagelike structure known as a clathrate. Although many gases form hydrates in nature, methane hydrate is by far the most common; methane is the most abundant natural gas. The volume of carbon contained in methane hydrates worldwide is estimated to be twice the amount contained in all fossil fuels on Earth, including coal.

  20. Abscisic acid and late embryogenesis abundant protein profile changes in winter wheat under progressive drought stress.

    PubMed

    Vaseva, I I; Grigorova, B S; Simova-Stoilova, L P; Demirevska, K N; Feller, U

    2010-09-01

    Three varieties (cv. Pobeda, Katya and Sadovo) of winter wheat (Triticum aestivum), differing in their agronomic characteristics, were analysed during progressive soil water stress and recovery at early vegetation stages. Changes in abscisic acid content, SDS-PAGE and immunoblot profiles of proteins that remained soluble upon heating were monitored. Initially higher ABA content in control Pobeda and Katya corresponded to earlier expression of the studied late embryogenesis abundant (LEA) proteins. A combination of higher ABA content, early immunodetection of dehydrins, and a significant increase of WZY2 transcript levels were observed in drought-stressed leaves of the tolerant variety Katya. One-step RT-PCR analyses of some acidic dehydrin genes (WCOR410b, TADHN) documented their relatively constant high expression levels in leaves under drought stress during early vegetative development. Neutral WZY2 dehydrin, TaLEA2 and TaLEA3 transcripts accumulated gradually with increasing water deficit. Delayed expression of TaLEA2 and TaLEA3 genes was found in the least drought-tolerant wheat, Sadovo. The expression profile of WZY2 revealed two distinct and separate bands, suggesting alternative splicing, which altered as water stress increased.

  1. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  2. Isolable gold(I) complexes having one low-coordinating ligand as catalysts for the selective hydration of substituted alkynes at room temperature without acidic promoters.

    PubMed

    Leyva, Antonio; Corma, Avelino

    2009-03-01

    Hydration of a wide range of alkynes to the corresponding ketones has been afforded in high yields at room temperature by using gold(I)-phosphine complexes as catalyst, with no acidic cocatalysts required. Suitable substrates covering alkyl and aryl terminal alkynes, enynes, internal alkynes, and propargylic alcohols, including enantiopure forms, are cleanly transformed to the corresponding ketones in nearly quantitative yields. Acid-labile groups present in the substrates are preserved. The catalytic activity strongly depends on both the nature of the phosphine coordinated to the gold (I) center and the softness of the counteranion, the complex AuSPhosNTf(2) showing the better activity. A plausible mechanism for the hydration of alkynes through ketal intermediates is proposed on the basis of kinetic studies. The described catalytic system should provide an efficient alternative to mercury-based methodologies and be useful in synthetic programs.

  3. Metastable nitric acid hydrates--possible constituents of polar stratospheric clouds?

    PubMed

    Grothe, Hinrich; Tizek, Heinz; Ortega, Ismael K

    2008-01-01

    Crystallization kinetics of the metastable modifications of Nitric Acid Dihydrate (NAD) was investigated by time-dependent X-Ray Diffraction (XRD) measurements. Kinetic conversion curves were evaluated adopting the Avrami model. The growth and morphology of the respective crystallites and particles were monitored in situ on the cryo-stage of an Environmental Scanning Electron Microscope (ESEM) under a partial pressure of nitrogen gas (0.5 Torr, 67 Pa). The morphologies were used to adapt the InfraRed (IR) extinction spectra by T-matrix calculation using respective optical indices of NAD. The results show a significant dependence of the band shapes on different morphologies.

  4. Molecular structure of hydrated complex of trigonelline with L(+)-tartaric acid

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.; Barczyński, P.

    2011-04-01

    Crystal structure of the 1:1:1 complex of trigonelline with L(+)-tartaric acid and water has been determined by X-ray diffraction. The crystals are monoclinic, space group P2 1. Trigonelline is protonated and it is linked with the semi-tartrate anion by the COOH⋯OOC hydrogen bond of 2.475(2) Å. The semi-tartrate anions form infinite chains through the COOH⋯OOC hydrogen bonds of 2.599(2) Å. Water molecules play a role of double donors and double acceptors of hydrogen bonds with the semi-tartrate anions and link them into a three-dimensional net. In the optimized structure of the title complex at the B3LYP/6-31G(d,p) level of theory trigonelline is linked with L(+)-tartaric acid by the COO⋯HOOC hydrogen bond of 2.473 Å. The solid-state FTIR spectrum is consistent with the X-ray results. The 1H and 13C NMR spectra elucidate the structure of the complex investigated in aqueous solutions. The value of p Ka of trigonelline has been determined by the potentiometric titration of its hydrochloride.

  5. Hydration of nucleic acid fragments: comparison of theory and experiment for high-resolution crystal structures of RNA, DNA, and DNA-drug complexes.

    PubMed

    Hummer, G; García, A E; Soumpasis, D M

    1995-05-01

    A computationally efficient method to describe the organization of water around solvated biomolecules is presented. It is based on a statistical mechanical expression for the water-density distribution in terms of particle correlation functions. The method is applied to analyze the hydration of small nucleic acid molecules in the crystal environment, for which high-resolution x-ray crystal structures have been reported. Results for RNA [r(ApU).r(ApU)] and DNA [d(CpG).d(CpG) in Z form and with parallel strand orientation] and for DNA-drug complexes [d(CpG).d(CpG) with the drug proflavine intercalated] are described. A detailed comparison of theoretical and experimental data shows positional agreement for the experimentally observed water sites. The presented method can be used for refinement of the water structure in x-ray crystallography, hydration analysis of nuclear magnetic resonance structures, and theoretical modeling of biological macromolecules such as molecular docking studies. The speed of the computations allows hydration analyses of molecules of almost arbitrary size (tRNA, protein-nucleic acid complexes, etc.) in the crystal environment and in aqueous solution.

  6. Molecular structural conformations and hydration of internally hydrogen-bonded salicylic acid: Ab initio and DFT studies

    NASA Astrophysics Data System (ADS)

    Anandan, K.; Kolandaivel, P.; Kumaresan, R.

    We studied molecular structural conformations and hydration of internally hydrogen-bonded salicylic acid using ab initio and density functional theory methods. Molecular geometries and energetical parameters were obtained in gaseous phase using MP2 and B3LYP levels of theory, implementing the 6-311G(2d,2p) atomic basis set. Chemical hardness and chemical potential were calculated at HF/6-311G(2d,2p) level of theory for all the optimized structures, and the principle of maximum hardness was tested. The condensed Fukui functions were calculated using the atomic charges obtained through a natural population analysis scheme for all optimized structures at B3LYP/6-311G(2d,2p) level of theory, and the most reactive sites of the molecules were identified. NMR studies were carried out for all the conformers in gaseous phase on the basis of Cheeseman et al.'s method at B3LYP/6-311G(2d,2p) level of theory; the calculated chemical shift values are discussed. The self-consistent reaction field theory (SCRF) was used to optimize all the conformers in aqueous phase (ɛ = 78.39) at B3LYP/6-311G(2d,2p) level of theory and the solvent effect was studied. The geometrical and energetical parameters of all the conformers are compared and analyzed. The dimeric structure of the most stable conformer in the gaseous phase was optimized at B3LYP/6-311G(2d,2p) level of theory and the interaction energy studied. Selected conformers were allowed to interact with water molecule; optimized parameters are discussed. Vibrational frequency analyses were performed at MP2/6-311G(2d,2p) level of theory and the stationary point corresponding to local minima without imaginary frequencies are obtained for all the optimized structures.

  7. Lack of formic acid production in rat hepatocytes and human renal proximal tubule cells exposed to chloral hydrate or trichloroacetic acid.

    PubMed

    Lock, Edward A; Reed, Celia J; McMillan, Joellyn M; Oatis, John E; Schnellmann, Rick G

    2007-02-12

    The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3-3mM CH for 3 days or 0.03-3mM CH for 10 days, respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolized CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and three-fold greater capacity than HRPTC to form TCE-OH and TCA, respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days [Lock, E.A., Reed, C.J., 2006. Trichloroethylene: mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Toxicol. Sci. 19, 313-331] supporting the view that glutathione derived

  8. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters.

    PubMed

    Thomas, Jikku M; He, Siqin; Larriba-Andaluz, Carlos; DePalma, Joseph W; Johnston, Murray V; Hogan, Christopher J

    2016-08-17

    We applied an atmospheric pressure differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer to examine the stability, mass-mobility relationship, and extent of hydration of dimethylamine-sulfuric acid cluster ions, which are of relevance to nucleation in ambient air. Cluster ions were generated by electrospray ionization and were of the form: [H((CH3)2NH)x(H2SO4)y](+) and [(HSO4)((CH3)2NH)x(H2SO4)y](-), where 4 ≤ x ≤ 8, and 5 ≤ y ≤ 12. Under dry conditions, we find that positively charged cluster ions dissociated via loss of both multiple dimethylamine and sulfuric acid molecules after mobility analysis but prior to mass analysis, and few parent ions were detected in the mass spectrometer. Dissociation also occurred for negative ions, but to a lesser extent than for positive ions for the same mass spectrometer inlet conditions. Under humidified conditions (relative humidities up to 30% in the DMA), positively charged cluster ion dissociation in the mass spectrometer inlet was mitigated and occurred primarily by H2SO4 loss from ions containing excess acid molecules. DMA measurements were used to infer collision cross sections (CCSs) for all identifiable cluster ions. Stokes-Millikan equation and diffuse/inelastic gas molecule scattering predicted CCSs overestimate measured CCSs by more than 15%, while elastic-specular collision model predictions are in good agreement with measurements. Finally, cluster ion hydration was examined by monitoring changes in CCSs with increasing relative humidity. All examined cluster ions showed a modest amount of water molecule adsorption, with percentage increases in CCS smaller than 10%. The extent of hydration correlates directly with cluster ion acidity for positive ions. PMID:27485283

  9. Gas hydrates in the ocean environment

    USGS Publications Warehouse

    Dillon, William P.

    2002-01-01

    A GAS HYDRATE, also known as a gas clathrate, is a gas-bearing, icelike material. It occurs in abundance in marine sediments and stores immense amounts of methane, with major implications for future energy resources and global climate change. Furthermore, gas hydrate controls some of the physical properties of sedimentary deposits and thereby influences seafloor stability.

  10. RBC deformability and amino acid concentrations after hypo-osmotic challenge may reflect chronic cell hydration status in healthy young men

    PubMed Central

    Stookey, Jodi D; Klein, Alexis; Hamer, Janice; Chi, Christine; Higa, Annie; Ng, Vivian; Arieff, Allen; Kuypers, Frans A; Larkin, Sandra; Perrier, Erica; Lang, Florian

    2013-01-01

    Biomarkers of chronic cell hydration status are needed to determine whether chronic hyperosmotic stress increases chronic disease risk in population-representative samples. In vitro, cells adapt to chronic hyperosmotic stress by upregulating protein breakdown to counter the osmotic gradient with higher intracellular amino acid concentrations. If cells are subsequently exposed to hypo-osmotic conditions, the adaptation results in excess cell swelling and/or efflux of free amino acids. This study explored whether increased red blood cell (RBC) swelling and/or plasma or urine amino acid concentrations after hypo-osmotic challenge might be informative about relative chronic hyperosmotic stress in free-living men. Five healthy men (20–25 years) with baseline total water intake below 2 L/day participated in an 8-week clinical study: four 2-week periods in a U-shaped A-B-C-A design. Intake of drinking water was increased by +0.8 ± 0.3 L/day in period 2, and +1.5 ± 0.3 L/day in period 3, and returned to baseline intake (0.4 ± 0.2 L/day) in period 4. Each week, fasting blood and urine were collected after a 750 mL bolus of drinking water, following overnight water restriction. The periods of higher water intake were associated with significant decreases in RBC deformability (index of cell swelling), plasma histidine, urine arginine, and urine glutamic acid. After 4 weeks of higher water intake, four out of five participants had ½ maximal RBC deformability below 400 mmol/kg; plasma histidine below 100 μmol/L; and/or undetectable urine arginine and urine glutamic acid concentrations. Work is warranted to pursue RBC deformability and amino acid concentrations after hypo-osmotic challenge as possible biomarkers of chronic cell hydration. PMID:24303184

  11. RBC deformability and amino acid concentrations after hypo-osmotic challenge may reflect chronic cell hydration status in healthy young men.

    PubMed

    Stookey, Jodi D; Klein, Alexis; Hamer, Janice; Chi, Christine; Higa, Annie; Ng, Vivian; Arieff, Allen; Kuypers, Frans A; Larkin, Sandra; Perrier, Erica; Lang, Florian

    2013-10-01

    Biomarkers of chronic cell hydration status are needed to determine whether chronic hyperosmotic stress increases chronic disease risk in population-representative samples. In vitro, cells adapt to chronic hyperosmotic stress by upregulating protein breakdown to counter the osmotic gradient with higher intracellular amino acid concentrations. If cells are subsequently exposed to hypo-osmotic conditions, the adaptation results in excess cell swelling and/or efflux of free amino acids. This study explored whether increased red blood cell (RBC) swelling and/or plasma or urine amino acid concentrations after hypo-osmotic challenge might be informative about relative chronic hyperosmotic stress in free-living men. Five healthy men (20-25 years) with baseline total water intake below 2 L/day participated in an 8-week clinical study: four 2-week periods in a U-shaped A-B-C-A design. Intake of drinking water was increased by +0.8 ± 0.3 L/day in period 2, and +1.5 ± 0.3 L/day in period 3, and returned to baseline intake (0.4 ± 0.2 L/day) in period 4. Each week, fasting blood and urine were collected after a 750 mL bolus of drinking water, following overnight water restriction. The periods of higher water intake were associated with significant decreases in RBC deformability (index of cell swelling), plasma histidine, urine arginine, and urine glutamic acid. After 4 weeks of higher water intake, four out of five participants had ½ maximal RBC deformability below 400 mmol/kg; plasma histidine below 100 μmol/L; and/or undetectable urine arginine and urine glutamic acid concentrations. Work is warranted to pursue RBC deformability and amino acid concentrations after hypo-osmotic challenge as possible biomarkers of chronic cell hydration. PMID:24303184

  12. Methane hydrate formation in partially water-saturated Ottawa sand

    USGS Publications Warehouse

    Waite, W.F.; Winters, W.J.; Mason, D.H.

    2004-01-01

    Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.

  13. Endospore abundance and D:L-amino acid modeling of bacterial turnover in holocene marine sediment (Aarhus Bay)

    NASA Astrophysics Data System (ADS)

    Langerhuus, Alice T.; Røy, Hans; Lever, Mark A.; Morono, Yuki; Inagaki, Fumio; Jørgensen, Bo B.; Lomstein, Bente Aa.

    2012-12-01

    In order to study bacterial activity, and turnover times of bacterial necromass and biomass in marine sediment, two stations from the Aarhus Bay, Denmark were analyzed. Sediment cores were up to 11 m deep and covered a timescale from the present to ˜11,000 years ago. Sediment was analyzed for total hydrolysable amino acids (THAA), total hydrolysable amino sugars, the bacterial endospore marker dipicolinic acid (DPA), and amino acid enantiomers (L- and D-form) of aspartic acid. Turnover times of bacterial necromass and vegetative cells, as well as carbon oxidation rates were estimated by use of the D:L-amino acid racemization model. Diagenetic indicators were applied to evaluate the diagenetic state of the sedimentary organic matter. The contribution of amino acids to total organic carbon, and the ratio between the amino acids aspartic acid and glutamic acid, and their respective non protein degradation products, β-alanine and γ-amino butyric acid, all indicated increasing degradation state of the organic matter with sediment depth and age. Quantification of DPA showed that endospores were abundant, and increased with depth relative to vegetative cells. Most of the amino acids (97%) could be ascribed to microbial necromass, i.e. the remains of dead bacterial cells. Model estimates showed that the turnover times of microbial necromass were in the range of 0.5-1 × 105 years, while turnover times of vegetative cells were in the range of tens to hundreds of years. The turnover time of the TOC pool increased with depth in the sediment, indicating that the TOC pool became progressively more refractory and unavailable to microorganisms with depth and age of the organic matter.

  14. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat.

    PubMed

    Lin, Xueju; Handley, Kim M; Gilbert, Jack A; Kostka, Joel E

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  15. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    SciTech Connect

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; Kostka, Joel E.

    2015-05-22

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  16. Vibrational analysis of amino acids and short peptides in hydrated media. VIII. Amino acids with aromatic side chains: L-phenylalanine, L-tyrosine, and L-tryptophan.

    PubMed

    Hernández, Belén; Pflüger, Fernando; Adenier, Alain; Kruglik, Sergei G; Ghomi, Mahmoud

    2010-11-25

    hydrated amino acids.

  17. Effect of Temperature on Acidity and Hydration Equilibrium Constants of Delphinidin-3-O- and Cyanidin-3-O-sambubioside Calculated from Uni- and Multiwavelength Spectroscopic Data.

    PubMed

    Vidot, Kévin; Achir, Nawel; Mertz, Christian; Sinela, André; Rawat, Nadirah; Prades, Alexia; Dangles, Olivier; Fulcrand, Hélène; Dornier, Manuel

    2016-05-25

    Delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside are the main anthocyanins of Hibiscus sabdariffa calyces, traditionally used to make a bright red beverage by decoction in water. At natural pH, these anthocyanins are mainly in their flavylium form (red) in equilibrium with the quinonoid base (purple) and the hemiketal (colorless). For the first time, their acidity and hydration equilibrium constants were obtained from a pH-jump method followed by UV-vis spectroscopy as a function of temperature from 4 to 37 °C. Equilibrium constant determination was also performed by multivariate curve resolution (MCR). Acidity and hydration constants of cyanidin-3-O-sambubioside at 25 °C were 4.12 × 10(-5) and 7.74 × 10(-4), respectively, and were significantly higher for delphinidin-3-O-sambubioside (4.95 × 10(-5) and 1.21 × 10(-3), respectively). MCR enabled the obtaining of concentration and spectrum of each form but led to overestimated values for the equilibrium constants. However, both methods showed that formations of the quinonoid base and hemiketal were endothermic reactions. Equilibrium constants of anthocyanins in the hibiscus extract showed comparable values as for the isolated anthocyanins. PMID:27124576

  18. Effect of Temperature on Acidity and Hydration Equilibrium Constants of Delphinidin-3-O- and Cyanidin-3-O-sambubioside Calculated from Uni- and Multiwavelength Spectroscopic Data.

    PubMed

    Vidot, Kévin; Achir, Nawel; Mertz, Christian; Sinela, André; Rawat, Nadirah; Prades, Alexia; Dangles, Olivier; Fulcrand, Hélène; Dornier, Manuel

    2016-05-25

    Delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside are the main anthocyanins of Hibiscus sabdariffa calyces, traditionally used to make a bright red beverage by decoction in water. At natural pH, these anthocyanins are mainly in their flavylium form (red) in equilibrium with the quinonoid base (purple) and the hemiketal (colorless). For the first time, their acidity and hydration equilibrium constants were obtained from a pH-jump method followed by UV-vis spectroscopy as a function of temperature from 4 to 37 °C. Equilibrium constant determination was also performed by multivariate curve resolution (MCR). Acidity and hydration constants of cyanidin-3-O-sambubioside at 25 °C were 4.12 × 10(-5) and 7.74 × 10(-4), respectively, and were significantly higher for delphinidin-3-O-sambubioside (4.95 × 10(-5) and 1.21 × 10(-3), respectively). MCR enabled the obtaining of concentration and spectrum of each form but led to overestimated values for the equilibrium constants. However, both methods showed that formations of the quinonoid base and hemiketal were endothermic reactions. Equilibrium constants of anthocyanins in the hibiscus extract showed comparable values as for the isolated anthocyanins.

  19. Gas Hydrate Petroleum System Analysis

    NASA Astrophysics Data System (ADS)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is

  20. Chloral hydrate

    Integrated Risk Information System (IRIS)

    Chloral hydrate ; CASRN 302 - 17 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  1. Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells.

    PubMed

    Rosario, Fredrick J; Kanai, Yoshikatsu; Powell, Theresa L; Jansson, Thomas

    2013-02-01

    Abnormal fetal growth increases the risk for perinatal complications and predisposes for the development of obesity, diabetes and cardiovascular disease later in life. Emerging evidence suggests that changes in placental amino acid transport directly contribute to altered fetal growth. However, the molecular mechanisms regulating placental amino acid transport are largely unknown. Here we combined small interfering (si) RNA-mediated silencing approaches with protein expression/localization and functional studies in cultured primary human trophoblast cells to test the hypothesis that mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate amino acid transporters by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal System A and System L amino acid transport activity but had no effect on growth factor-stimulated amino acid uptake. Simultaneous inhibition of mTORC1 and 2 completely inhibited both basal and growth factor-stimulated amino acid transport activity. In contrast, mTOR inhibition had no effect on serotonin transport. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of specific System A (SNAT2, SLC38A2) and System L (LAT1, SLC7A5) transporter isoforms without affecting global protein expression. In conclusion, mTORC1 and mTORC2 regulate human trophoblast amino acid transporters by modulating the cell surface abundance of specific transporter isoforms. This is the first report showing regulation of amino acid transport by mTORC2. Because placental mTOR activity and amino acid transport are decreased in human intrauterine growth restriction our data are consistent with the possibility that dysregulation of placental mTOR plays an important role in the development of abnormal fetal growth.

  2. Elastomer coated filler and composites thereof comprising at least 60% by weight of a hydrated filler and an elastomer containing an acid substituent

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Ingham, J. D.; Reilly, W. W. (Inventor)

    1983-01-01

    The impact resistance of flame retardant composites, especially thermoplastic molding: compounds containing over 60% hydrated mineral filler such as Al(OH)3 or Mg(OH)2 as improved by coating the filler with 1 to 20% of an elastomer. The composite will fail by crazing or shearing rather than by brittle fracture. A well bonded elastomeric interphase resulted by utilizing acidic substituted resins such as ethyl-hexyl acrylate-acrylic acid copolymers which bond to and are cross-linked by the basic filler particles. Further improvement in impact resistance was provided by incorporating 1 to 10% of a resin fiber reinforcement such as polyvinyl alcohol fibers that decompose to yield at least 30% water when heated to decomposition temperature.

  3. Mice Abundant in Muricholic Bile Acids Show Resistance to Dietary Induced Steatosis, Weight Gain, and to Impaired Glucose Metabolism

    PubMed Central

    Bonde, Ylva; Eggertsen, Gösta; Rudling, Mats

    2016-01-01

    High endogenous production of, or treatment with muricholic bile acids, strongly reduces the absorption of cholesterol. Mice abundant in muricholic bile acids may therefore display an increased resistance against dietary induced weight gain, steatosis, and glucose intolerance due to an anticipated general reduction in lipid absorption. To test this hypothesis, mice deficient in steroid 12-alpha hydroxylase (Cyp8b1-/-) and therefore abundant in muricholic acids were monitored for 11 weeks while fed a high fat diet. Food intake and body and liver weights were determined, and lipids in liver, serum and feces were measured. Further, responses during oral glucose and intraperitoneal insulin tolerance tests were evaluated. On the high fat diet, Cyp8b1-/- mice displayed less weight gain compared to wildtype littermates (Cyp8b1+/+). In addition, liver enlargement with steatosis and increases in serum LDL-cholesterol were strongly attenuated in Cyp8b1-/- mice on high fat diet. Fecal excretion of cholesterol was increased and there was a strong trend for doubled fecal excretion of free fatty acids, while excretion of triglycerides was unaltered, indicating dampened lipid absorption. On high fat diet, Cyp8b1-/- mice also presented lower serum glucose levels in response to oral glucose gavage or to intraperitoneal insulin injection compared to Cyp8b1+/+. In conclusion, following exposure to a high fat diet, Cyp8b1-/- mice are more resistant against weight gain, steatosis, and to glucose intolerance than Cyp8b1+/+ mice. Reduced lipid absorption may in part explain these findings. Overall, the results suggest that muricholic bile acids may be beneficial against the metabolic syndrome. PMID:26824238

  4. Effects of inorganic acids and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process.

    PubMed

    Zhang, Jian; Xia, Yuguo; Zhang, Li; Chen, Dairong; Jiao, Xiuling

    2015-11-01

    In-depth understanding of the sol-gel process plays an essential role in guiding the preparation of new materials. Herein, the effects of different inorganic acids (HCl, HNO3 and H2SO4) and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process were studied based on experiments and density functional theory (DFT) calculations. In these experiments, the sol originating from the γ-AlOOH suspension was formed only with the addition of HCl and HNO3, but not with H2SO4. Furthermore, the DFT calculations showed that the strong adsorption of HSO4(-) on the surface of the γ-AlOOH particles, and the hydrogen in HSO4(-) pointing towards the solvent lead to an unstable configuration of electric double layer (EDL). In the experiment, the gelation time sequence of γ-AlOOH sol obtained by adding metal ions changed when the ionic strength was equal to or greater than 0.198 mol kg(-1). The DFT calculations demonstrated that the adsorption energy of hydrated metal ions on the γ-AlOOH surface can actually make a difference in the sol-gel process.

  5. Methane Clathrate Hydrate Prospecting

    NASA Technical Reports Server (NTRS)

    Duxbury, N.; Romanovsky, V.

    2003-01-01

    A method of prospecting for methane has been devised. The impetus for this method lies in the abundance of CH4 and the growing shortages of other fuels. The method is intended especially to enable identification of subpermafrost locations where significant amounts of methane are trapped in the form of methane gas hydrate (CH4(raised dot)6H2O). It has been estimated by the U.S. Geological Survey that the total CH4 resource in CH4(raised dot) 6H2O exceeds the energy content of all other fossil fuels (oil, coal, and natural gas from non-hydrate sources). Also, CH4(raised dot)6H2O is among the cleanest-burning fuels, and CH4 is the most efficient fuel because the carbon in CH4 is in its most reduced state. The method involves looking for a proxy for methane gas hydrate, by means of the combination of a thermal-analysis submethod and a field submethod that does not involve drilling. The absence of drilling makes this method easier and less expensive, in comparison with prior methods of prospecting for oil and natural gas. The proposed method would include thermoprospecting in combination with one more of the other non-drilling measurement techniques, which could include magneto-telluric sounding and/or a subsurface-electrical-resistivity technique. The method would exploit the fact that the electrical conductivity in the underlying thawed region is greater than that in the overlying permafrost.

  6. Effect of food preservatives on the hydration properties and taste behavior of amino acids: a volumetric and viscometric approach.

    PubMed

    Banipal, Tarlok S; Kaur, Navalpreet; Kaur, Amanpreet; Gupta, Mehak; Banipal, Parampaul K

    2015-08-15

    Thermodynamic and transport properties of aqueous solutions are very useful in the elucidation of solute-solvent and solute-solute interactions, which help to understand the hydration and taste behavior of solutes. The densities and viscosities of L-glycine, β-alanine and L-leucine have been determined in water and in aqueous solutions of sodium propionate (NaP) and calcium propionate (CaP) at temperatures 298.15 and 308.15K. From these data, apparent molar volumes (V2,ϕ), viscosity B-coefficients and corresponding transfer parameters (ΔtrV2,ϕo and ΔtrB) have been calculated. The dB/dT values suggest that L-glycine and β-alanine act as structure-breaker, while L-leucine acts as structure-maker both in water and in aqueous solutions of NaP and CaP. The decrease in hydration number and change in taste behavior have also been observed with increasing concentration of the cosolute.

  7. The hydration of dental cements.

    PubMed

    Wilson, A D; Paddon, J M; Crisp, S

    1979-03-01

    A study was made of the hydration of dental cements, water being classified as "non-evaporable" and "evaporable". The ratio of these two types of water was found to vary greatly among different cement types, being lesser in zinc oxide and ionic polymer cements and greater in ion-leachable glass and phosphoric acid cements. The cement with the least "non-evaporable" water, i.e., showing least hydration (the zinc polycarboxylate cement), had the lowest strength and modulus and the greatest deformation at failure. A linear relationship was found to exist between strength and the degree of hydration of dental cements. All the cements were found to become more highly hydrated and stronger as they aged. PMID:284040

  8. Conformation and hydration of aspartame.

    PubMed

    Kang, Y K

    1991-07-01

    Conformational free energy calculations using an empirical potential (ECEPP/2) and the hydration shell model were carried out on the neutral, acidic, zwitterionic, and basic forms of aspartame in the hydrated state. The results indicate that as the molecule becomes more charged, the number of low energy conformations becomes smaller and the molecule becomes less flexible. The calculated free energies of hydration of charged aspartames show that hydration has a significant effect on the conformation in solution. Only two feasible conformations were found for the zwitterionic form, and these are consistent with the conformations deduced from NMR and X-ray diffraction experiments. The calculated free energy difference between these two conformations was 1.25 kcal/mol. The less favored of the two solvated conformations can be expected to be stabilized by hydrophobic interaction of the phenyl groups in the crystal.

  9. Growth and spectral characterization of ethylene diamine tetra acetic acid (EDTA) doped zinc sulphate hepta hydrate - a semi organic NLO material.

    PubMed

    Ramachandra Raja, C; Ramamurthi, K; Manimekalai, R

    2012-12-01

    Semi-organic non-linear optical single crystals of ethylene diamine tetra acetic acid (EDTA) doped zinc sulphate hepta hydrate crystals were grown by slow evaporation solution growth technique, at room temperature, using de-ionized water as solvent. The modes of vibrations of different molecular groups present in the grown crystal were identified by FT-IR technique. The optical absorbance/transmittance was recorded in the wavelength range of 190-1100 nm. Thermal properties of the grown crystal were studied by thermo gravimetric analysis and differential thermal analysis. The melting point of the grown crystal was estimated by differential scanning calorimetric analysis. The inclusion of the dopant (EDTA) was confirmed by colorimetric estimation method. The second harmonic generation efficiency is about 30% of potassium dihydrogen orthophosphate.

  10. Acidic α-galactosidase is the most abundant nectarin in floral nectar of common tobacco (Nicotiana tabacum)

    PubMed Central

    Zha, Hong-Guang; Flowers, V. Lynn; Yang, Min; Chen, Ling-Yang; Sun, Hang

    2012-01-01

    Background and Aims To date, most floral nectarins (nectar proteins) are reported to function in nectar defence, particularly for insect-pollinated outcrossing species. We compared nectarin composition and abundance in selfing common tobacco (Nicotiana tobaccum) with outcrossing ornamental tobacco plants to elucidate the functional difference of nectarins in different reproductive systems. Methods Common tobacco (CT) nectarins were separated by SDS-PAGE and the N terminus of the most abundant nectarin was sequenced via Edman degradation. The full-length nectarin gene was amplified and cloned from genomic DNA and mRNA with hiTail-PCR and RACE (rapid amplification of cDNA ends), and expression patterns were then investigated in different tissues using semi-quantitative reverse transcriptase PCR. Additionally, high-performance liquid chromatography and enzymatic analyses of nectar sugar composition, and other biochemical traits and functions of the novel nectarin were studied. Key Results The most abundant nectarin in CT nectar is an acidic α-galactosidase, here designated NTα-Gal. This compound has a molecular mass of 40 013 Da and a theoretical pI of 5·33. NTα-Gal has a conserved α-Gal characteristic signature, encodes a mature protein of 364 amino acids and is expressed in different organs. Compared with 27 other melliferous plant species from different families, CT floral nectar demonstrated the highest α-Gal activity, which is inhibited by d-galactose. Raffinose family oligosaccharides were not detected in CT nectar, indicating that NTα-Gal does not function in post-secretory hydrolysis. Moreover, tobacco plant fruits did not develop intact skin with galactose inhibition of NTα-Gal activity in nectar, suggesting that NTα-Gal induces cell-wall surface restructuring during the initial stages of fruit development. Conclusions α-Gal was the most abundant nectarin in selfing CT plants, but was not detected in the nectar of strictly outcrossing sister tobacco

  11. Electron capture dissociation product ion abundances at the X amino acid in RAAAA-X-AAAAK peptides correlate with amino acid polarity and radical stability.

    PubMed

    Vorobyev, Aleksey; Ben Hamidane, Hisham; Tsybin, Yury O

    2009-12-01

    We present mechanistic studies aimed at improving the understanding of the product ion formation rules in electron capture dissociation (ECD) of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry. In particular, we attempted to quantify the recently reported general correlation of ECD product ion abundance (PIA) with amino acid hydrophobicity. The results obtained on a series of model H-RAAAAXAAAAK-OH peptides confirm a direct correlation of ECD PIA with X amino acid hydrophobicity and polarity. The correlation factor (R) exceeds 0.9 for 12 amino acids (Ile, Val, His, Asn, Asp, Glu, Gln, Ser, Thr, Gly, Cys, and Ala). The deviation of ECD PIA for seven outliers (Pro is not taken into consideration) is explained by their specific radical stabilization properties (Phe, Trp, Tyr, Met, and Leu) and amino acid basicity (Lys, Arg). Phosphorylation of Ser, Thr, and Tyr decreases the efficiency of ECD around phosphorylated residues, as expected. The systematic arrangement of amino acids reported here indicates a possible route toward development of a predictive model for quantitative electron capture/transfer dissociation tandem mass spectrometry, with possible applications in proteomics.

  12. Hydrate habitat

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Whoever said there is nothing new under the sun did not delve deeply enough to the bottom of the ocean. There in the Gulf of Mexico, about 150 miles south of New Orleans, scientists have just discovered what could be a new species of centipede—like worms living on or within gas hydrates— mounds of methane ice— rising from the ocean floor.Scientists have previously recognized an association between some bacteria and these hydrates. However, this is the first discovery of a higher life form there.

  13. The highly abundant urinary metabolite urobilin interferes with the bicinchoninic acid assay.

    PubMed

    Sampson, D L; Chng, Y L; Upton, Z; Hurst, C P; Parker, A W; Parker, T J

    2013-11-01

    Estimation of total protein concentration is an essential step in any protein- or peptide-centric analysis pipeline. This study demonstrates that urobilin, a breakdown product of heme and a major constituent of urine, interferes considerably with the bicinchoninic acid (BCA) assay. This interference is probably due to the propensity of urobilin to reduce cupric ions (Cu(2+)) to cuprous ions (Cu(1+)), thus mimicking the reduction of copper by proteins, which the assay was designed to do. In addition, it is demonstrated that the Bradford assay is more resistant to the influence of urobilin and other small molecules. As such, urobilin has a strong confounding effect on the estimate of total protein concentrations obtained by BCA assay and thus this assay should not be used for urinary protein quantification. It is recommended that the Bradford assay be used instead.

  14. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-08-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (>6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8-11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of

  15. Ontogenetic change in the abundance of mycosporine-like amino acids in non-zooxanthellate coral larvae

    NASA Astrophysics Data System (ADS)

    Yakovleva, Irina M.; Baird, Andrew H.

    2005-11-01

    Although mycosporine-like amino acids (MAAs) have been extensively investigated in reef-building corals, the sources of these MAAs and the process of their interconversion remain a topic of interest. Here we examined ontogenetic change in the abundance of MAAs in planula larvae of the spawning scleractinian coral Goniastrea retiformis in the absence of zooxanthellae and other dietary input. In order to examine the potential contribution of prokaryotes in the synthesis of MAAs in animal tissue, one group of larvae were treated with the antibiotic rifampicin. High concentrations of MAAs (mycosporine-glycine, shinorine, palythinol, asterina-330), were present in the asymbiotic eggs and adults; however, no MAAs were present in the endosymbiotic zooxanthellae. We documented a steady decline in the total MAA concentrations through time in larvae treated with rifampicin; however, in the absence of antibiotic there was a significant increase in the concentration of MAAs, driven by a sharp increase in the abundance of shinorine and palythinol between day 3 and 7. Our results suggest that MAA synthesis and conversion in G. retiformis larvae occurred in the absence of symbiotic zooxanthellae, and indicate a possible contribution of prokaryotes associated with the animal tissue to these processes.

  16. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountain aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-02-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N; 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acid, were also detected together with aromatic diacids (phthalic, iso-phthalic and tere-phthalic acids). ω-Oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (> 6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June showing a maximum on 7 June and then significantly decreased during 8-11 June when the wind direction shifted from northeasterly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning products of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi

  17. Abundant class III acidic chitinase homologue in tamarind (Tamarindus indica) seed serves as the major storage protein.

    PubMed

    Rao, Devavratha H; Gowda, Lalitha R

    2008-03-26

    The phyla Leguminosae contains protease inhibitors, lectins, chitinases, and glycohydrolases as major defense proteins in their seeds. Electrophoretic analysis of the seed proteins of tamarind ( Tamarindus indica L.), an agri-waste material, indicated the unusual presence of two major proteins comparable to overexpression of recombinant proteins. These proteins were identified by amino-terminal analysis to be (1) Kunitz-type trypsin inhibitor and (2) class III endochitinase (34000 Da). These two proteins were purified to apparent homogeneity by a single-step chitin bead affinity chromatography and characterized. The Kunitz inhibitor was specific toward inhibiting trypsin with a stoichiometry of 1:1. The 33000 +/- 1000 Da protein, accounting for >50% of the total seed protein, is an acidic glycoprotein exhibiting a very low endotype hydrolytic activity toward chitin derivatives. SDS-PAGE followed by densitometry of tamarind seed germination indicates the disappearance of the chitinase with the concomitant appearance of a cysteine endopeptidase. On the basis of its abundance, accumulation without any pathogenesis-related stimulus, temporal regulation, amino acid composition, and very low enzyme activity, this 34000 Da protein designated "tamarinin" physiologically serves as the major storage protein.

  18. Comparison of amino acids physico-chemical properties and usage of late embryogenesis abundant proteins, hydrophilins and WHy domain.

    PubMed

    Jaspard, Emmanuel; Hunault, Gilles

    2014-01-01

    Late Embryogenesis Abundant proteins (LEAPs) comprise several diverse protein families and are mostly involved in stress tolerance. Most of LEAPs are intrinsically disordered and thus poorly functionally characterized. LEAPs have been classified and a large number of their physico-chemical properties have been statistically analyzed. LEAPs were previously proposed to be a subset of a very wide family of proteins called hydrophilins, while a domain called WHy (Water stress and Hypersensitive response) was found in LEAP class 8 (according to our previous classification). Since little is known about hydrophilins and WHy domain, the cross-analysis of their amino acids physico-chemical properties and amino acids usage together with those of LEAPs helps to describe some of their structural features and to make hypothesis about their function. Physico-chemical properties of hydrophilins and WHy domain strongly suggest their role in dehydration tolerance, probably by interacting with water and small polar molecules. The computational analysis reveals that LEAP class 8 and hydrophilins are distinct protein families and that not all LEAPs are a protein subset of hydrophilins family as proposed earlier. Hydrophilins seem related to LEAP class 2 (also called dehydrins) and to Heat Shock Proteins 12 (HSP12). Hydrophilins are likely unstructured proteins while WHy domain is structured. LEAP class 2, hydrophilins and WHy domain are thus proposed to share a common physiological role by interacting with water or other polar/charged small molecules, hence contributing to dehydration tolerance. PMID:25296175

  19. Hydrogen bonding and molecular association in 2-(quinuclidinium)-butyric acid bromide hydrate studied by X-ray diffraction, DFT calculations, FTIR and NMR spectroscopy, and potentiometric titration

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.; Barczyński, P.

    2010-06-01

    The structure of 2-(quinuclidinium)-butyric acid bromide hydrate (QNBu·H 2O·HBr, 3) has been determined by X-ray diffraction, DFT calculations and characterized by FTIR and NMR spectroscopy. Crystals of 3 are monoclinic, space group P2 1. The water molecule interacts with the carboxylic group of 2-(quinuclidinium)-butyric acid and with the bromide anion by the COOH⋯OH 2 and HOH⋯Br hydrogen bonds of 2.575(3) and 3.293(2) Å, respectively. The structures of monomer ( 4) and dimeric cation ( 5) of the title complex have been optimized by the B3LYP/6-31G(d,p) approach, yielding conformations consistent with this in the crystal. The solid-state FTIR spectra of 3 and its deuterated analogue have been measured and compared with the theoretical spectrum of 4. The assignments of the observed and predicted bands have been proposed. The molecule of 3 has a chiral center at the C(9) atom, which is responsible for the non-magnetically equivalence of the α-ring and C(11)H 2 methylene protons in 1H NMR spectrum. The values of p Ka of quinuclidinium-acetate (quinuclidine betaine), 2-(quinuclidinium)-propionate and 2-(quinuclidinium)-butyrate have been determined by the potentiometric titration of their hydrohalides.

  20. Bio-inspired nitrile hydration by peptidic ligands based on L-cysteine, L-methionine or L-penicillamine and pyridine-2,6-dicarboxylic acid.

    PubMed

    Byrne, Cillian; Houlihan, Kate M; Devi, Prarthana; Jensen, Paul; Rutledge, Peter J

    2014-01-01

    Nitrile hydratase (NHase, EC 4.2.1.84) is a metalloenzyme which catalyses the conversion of nitriles to amides. The high efficiency and broad substrate range of NHase have led to the successful application of this enzyme as a biocatalyst in the industrial syntheses of acrylamide and nicotinamide and in the bioremediation of nitrile waste. Crystal structures of both cobalt(III)- and iron(III)-dependent NHases reveal an unusual metal binding motif made up from six sequential amino acids and comprising two amide nitrogens from the peptide backbone and three cysteine-derived sulfur ligands, each at a different oxidation state (thiolate, sulfenate and sulfinate). Based on the active site geometry revealed by these crystal structures, we have designed a series of small-molecule ligands which integrate essential features of the NHase metal binding motif into a readily accessible peptide environment. We report the synthesis of ligands based on a pyridine-2,6-dicarboxylic acid scaffold and L-cysteine, L-S-methylcysteine, L-methionine or L-penicillamine. These ligands have been combined with cobalt(III) and iron(III) and tested as catalysts for biomimetic nitrile hydration. The highest levels of activity are observed with the L-penicillamine ligand which, in combination with cobalt(III), converts acetonitrile to acetamide at 1.25 turnovers and benzonitrile to benzamide at 1.20 turnovers.

  1. High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo; Fu, Pingqing

    2014-05-01

    Atmospheric dicarboxylic acids (DCA) are a ubiquitous water-soluble component of secondary organic aerosols (SOA), which can act as cloud condensation nuclei (CCN), affecting the Earth's climate. Despite the high abundances of oxalic acid and related compounds in the marine aerosols, there is no consensus on what controls their distributions over the open ocean. Marine biological productivity could play a role in the production of DCA, but there is no substantial evidence to support this hypothesis. Here we present latitudinal distributions of DCA, oxoacids and α-dicarbonyls in the marine aerosols from the remote Pacific. Their concentrations were found several times higher in more biologically influenced aerosols (MBA) than less biologically influenced aerosols. We propose isoprene and unsaturated fatty acids as sources of DCA as inferred from significantly higher abundances of isoprene-SOA tracers and azelaic acid in MBA. These results have implications toward the reassessment of climate forcing feedbacks of marine-derived SOA.

  2. Species diversity and relative abundance of lactic acid bacteria in the milk of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Jin, L.; Hinde, K.; Tao, L.

    2013-01-01

    Background Mother’s milk is a source of bacteria that influences the development of the infant commensal gut microbiota. To date, the species diversity and relative abundance of lactic acid bacteria in the milk of non-human primates have not been described. Methods Milk samples were aseptically obtained from 54 female rhesus monkeys (Macaca mulatta) at peak lactation. Following GM17 and MRS agar plating, single bacterial colonies were isolated based on difference in morphotypes, then grouped based on whole-cell protein profiles on SDS–PAGE. Bacterial DNA was isolated and the sequence the 16S rRNA gene was analyzed. Results A total of 106 strains of 19 distinct bacterial species, belonging to five genera, Bacillus, Enterococcus, Lactobacillus, Pediococcus, and Streptococcus, were identified. Conclusions Maternal gut and oral commensal bacteria may be translocated to the mammary gland during lactation and present in milk. This pathway can be an important source of commensal bacteria to the infant gut and oral cavity. PMID:20946146

  3. Heliothine caterpillars differ in abundance of a gut lumen aminoacylase (L-ACY-1)-Suggesting a relationship between host preference and fatty acid amino acid conjugate metabolism.

    PubMed

    Kuhns, Emily H; Seidl-Adams, Irmgard; Tumlinson, James H

    2012-03-01

    Fatty acid amino acid conjugates (FACs) in the oral secretions of Lepidopteran larvae are responsible for eliciting plant defense responses. FACs are present despite fitness costs which suggests that they are important for larval survival. In previous work, an aminoacylase (L-ACY-1) was identified as the enzyme responsible for hydrolysis of FACs within the larvae gut. This gene is present in three related Heliothine species: Heliothis virescens, Helicoverpa zea, and Heliothis subflexa. Transcript levels in gut tissues are predictive of protein abundance and enzyme activity in the frass. H. zea has the least amount of L-ACY-1 present in gut tissue and frass, while H. virescens has intermediate protein levels and H. subflexa has the highest amount of L-ACY-1 in gut tissue as well as in frass samples. These species differ in their host range and protein intake targets, and recently, it has been shown that FACs, the substrates of L-ACY-1, are involved in nitrogen metabolism. The correlation between protein intake and degree of host range specialization suggests that this aminoacylase may allow specialized larvae to obtain nitrogen requirements despite limitations in diet heterogeneity.

  4. Polygonum aviculare L. and its active compounds, quercitrin hydrate, caffeic acid, and rutin, activate the Wnt/β-catenin pathway and induce cutaneous wound healing.

    PubMed

    Seo, Seol Hwa; Lee, Soung-Hoon; Cha, Pu-Hyeon; Kim, Mi-Yeon; Min, Do Sik; Choi, Kang-Yell

    2016-05-01

    Polygonum aviculare L. is a member of the Polygonaceae family of plants, which has been known for its antioxidant and anti-obesity effects. However, the wound healing function of P. aviculare extract has not been assessed. In this study, we identified a novel property of P. aviculare extract as a Wnt/β-catenin pathway activator based on a screen of 350 plant extracts using HEK293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. P. aviculare extract accelerated the migration of HaCaT keratinocytes without showing significant cytotoxicity. Moreover, P. aviculare extract efficiently re-epithelized wounds generated on mice. Additionally, ingredients of P. aviculare extract, such as quercitrin hydrate, caffeic acid, and rutin, also accelerated the motility of HaCaT keratinocytes with the activation of Wnt/β-catenin signaling. Therefore, based on our findings, P. aviculare extract and its active ingredients could be potential therapeutic agents for wound healing. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Polygonum aviculare L. and its active compounds, quercitrin hydrate, caffeic acid, and rutin, activate the Wnt/β-catenin pathway and induce cutaneous wound healing.

    PubMed

    Seo, Seol Hwa; Lee, Soung-Hoon; Cha, Pu-Hyeon; Kim, Mi-Yeon; Min, Do Sik; Choi, Kang-Yell

    2016-05-01

    Polygonum aviculare L. is a member of the Polygonaceae family of plants, which has been known for its antioxidant and anti-obesity effects. However, the wound healing function of P. aviculare extract has not been assessed. In this study, we identified a novel property of P. aviculare extract as a Wnt/β-catenin pathway activator based on a screen of 350 plant extracts using HEK293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. P. aviculare extract accelerated the migration of HaCaT keratinocytes without showing significant cytotoxicity. Moreover, P. aviculare extract efficiently re-epithelized wounds generated on mice. Additionally, ingredients of P. aviculare extract, such as quercitrin hydrate, caffeic acid, and rutin, also accelerated the motility of HaCaT keratinocytes with the activation of Wnt/β-catenin signaling. Therefore, based on our findings, P. aviculare extract and its active ingredients could be potential therapeutic agents for wound healing. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26929003

  6. Hydrated and anhydrous forms of copper(II) complex of 3-methylpicolinic acid, and spectroscopic studies of their ROS-inducing and proteasome inhibition

    NASA Astrophysics Data System (ADS)

    Lai, Jing Wei; Chan, Cheang Wei; Ng, Chew Hee; Ooi, Ing Hong; Tan, Kong Wai; Maah, Mohd Jamil; Ng, Seik Weng

    2016-02-01

    The hydrated and anhydrous forms of the copper(II) complex of 3-methylpicolinic acid, monomeric [Cu(3Me-pic)2(H2O)]·H2O 1 and polymeric [Cu(3Me-pic)2]n2, were synthesized and characterized by FTIR, UV-visible spectroscopy, conductivity measurement, magnetic susceptibility determination, electron paramagnetic resonance (EPR) and light scattering. Crystal structure analysis of 2 shows that it has a doubly-bridged polymeric structure, involving diagonally stacked Cu(3Me-pic)2 units which are linked via carbonyl oxygen atoms of the 3Me-pic moieties. Analysis of EPR spectra at 133 K and 293 K suggests isotropic intermolecular spin interaction only in 2. Complex 2 dissolved in DMF and DMSO solvents to yield nano-size particles. Solution studies show aqueous solutions of 1 and 2 contain the same neutral Cu(3Me-pic)2 species, which generates less hydroxyl radicals from the reaction with hydrogen peroxide than their precursor CuCl2. The Cu(3Me-pic)2 species exhibit more selective inhibition of the β2 site of the 20S proteasome, among the three proteolytic sites.

  7. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance.

    PubMed

    Yobi, Abou; Wone, Bernard W M; Xu, Wenxin; Alexander, Danny C; Guo, Lining; Ryals, John A; Oliver, Melvin J; Cushman, John C

    2013-03-01

    Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to 'resurrect' from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/dehydration cycle, then analyzed using non-biased, global metabolomics profiling technology based on GC/MS and UHLC/MS/MS(2) platforms. A total of 251 metabolites including 167 named (66.5%) and 84 (33.4%) unnamed compounds were characterized. Only 42 (16.7%) and 74 (29.5%) of compounds showed significantly increased or decreased abundance, respectively, indicating that most compounds were produced constitutively, including highly abundant trehalose, sucrose, and glucose. Several glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle intermediates showed increased abundance at 100% relative water content (RWC) and 50% RWC. Vanillate, a potent antioxidant, was also more abundant in the hydrated state. Many different sugar alcohols and sugar acids were more abundant in the hydrated state. These polyols likely decelerate the rate of water loss during the drying process as well as slow water absorption during rehydration, stabilize proteins, and scavenge reactive oxygen species (ROS). In contrast, nitrogen-rich and γ-glutamyl amino acids, citrulline, and nucleotide catabolism products (e.g. allantoin) were more abundant in the dry states, suggesting that these compounds might play important roles in nitrogen remobilization during rehydration or in ROS scavenging. UV-protective compounds such as 3-(3-hydroxyphenyl)propionate, apigenin, and naringenin, were more abundant in the dry states. Most lipids were produced constitutively, with the exception of choline phosphate, which was more abundant in dry states and likely plays a role in membrane hydration and stabilization. In contrast, several polyunsaturated fatty acids were more abundant in the hydrated states

  8. Dietary sunflower oil modulates milk fatty acid composition without major changes in adipose and mammary tissue fatty acid profile or related gene mRNA abundance in sheep.

    PubMed

    Castro-Carrera, T; Frutos, P; Leroux, C; Chilliard, Y; Hervás, G; Belenguer, A; Bernard, L; Toral, P G

    2015-04-01

    There are very few studies in ruminants characterizing mammary and adipose tissue (AT) expression of genes and gene networks for diets causing variations in milk fatty acid (FA) composition without altering milk fat secretion, and even less complementing this information with data on tissue FA profiles. This work was conducted in sheep in order to investigate the response of the mammary gland and the subcutaneous and perirenal AT, in terms of FA profile and mRNA abundance of genes involved in lipid metabolism, to a diet known to modify milk FA composition. Ten lactating Assaf ewes were randomly assigned to two treatments consisting of a total mixed ration based on alfalfa hay and a concentrate (60 : 40) supplemented with 0 (control diet) or 25 (SO diet) g of sunflower oil/kg of diet dry matter for 7 weeks. Milk composition, including FA profile, was analysed after 48 days on treatments. On day 49, the animals were euthanized and tissue samples were collected to analyse FA and mRNA abundance of 16 candidate genes. Feeding SO did not affect animal performance but modified milk FA composition. Major changes included decreases in the concentration of FA derived from de novo synthesis (e.g. 12:0, 14:0 and 16:0) and increases in that of long-chain FA (e.g. 18:0, c9-18:1, trans-18:1 isomers and c9,t11-CLA); however, they were not accompanied by significant variations in the mRNA abundance of the studied lipogenic genes (i.e. ACACA, FASN, LPL, CD36, FABP3, SCD1 and SCD5) and transcription factors (SREBF1 and PPARG), or in the constituent FA of mammary tissue. Regarding the FA composition of AT, the little influence of SO did not appear to be linked to changes in gene mRNA abundance (decreases of GPAM and SREBF1 in both tissues, and of PPARG in the subcutaneous depot). Similarly, the great variation between AT (higher contents of saturated FA and trans-18:1 isomers in the perirenal, and of cis-18:1, c9,t11-CLA and n-3 PUFA in the subcutaneous AT) could not be related to

  9. Hydrated Sulfates in the Southern High Latitudes of Mars

    NASA Astrophysics Data System (ADS)

    Ackiss, S. E.; Wray, J. J.

    2012-12-01

    Sulfates on Mars appear largely concentrated in sedimentary rocks dating to the Late Noachian or Hesperian [e.g., 1], but they are also abundant in Amazonian sand dunes around the north polar cap [2]. The gypsum in those dunes derives from the polar layered deposits [e.g., 3], where it may form when sunlight causes minor melting and weathering of embedded dust. We are investigating whether such processes might have also contributed to sulfate formation elsewhere, specifically in regions surrounding the south polar terrain. Our study regions to date include the Sisyphi Montes (20W-40E and 55-75S) and other mountainous areas near the Thyles Rupes (110-140E and 55-75S), the Ulyxis Rupes (150-180E and 55-70S), and Chamberlin Crater (110-150W and 55-75S). We searched for sulfates using the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). TRR3 images were evaluated using standard CRISM procedures, including the "volcano scan" atmospheric correction. We used spectral parameters to identify regions of interest, from which we extracted spectra, which we divided by spectrally neutral regions in the same scene to remove systematic artifacts. The resulting ratio spectra were visually compared to library spectra to identify possible hydrated mineral constituents. Some sulfates in the southern high latitudes appear localized to mountains of the Sisyphi Montes, which have been interpreted as volcanoes that erupted under a Hesperian ice sheet [4]. These sulfates might have formed via volcanic hydrothermal or acid fog alteration. We found that nearly 50% of the images on putative volcanoes in the Sisyphi Montes show a 1.9 μm absorption consistent with hydration. The percentage for images on the plains between volcanoes is actually higher; i.e., hydration is not unique to the volcanoes. Nevertheless, the three locations at which we found the strongest absorptions are all on volcanoes. In the Thyles Rupes region, 25% of the images on putative volcanoes are hydrated with

  10. Molecular structure of hydrated complex of 1,4-dimethylpiperazine di-betaine with L-tartaric acid

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.

    2008-12-01

    1,4-Dimethylpiperazine di-betaine (DBPZ) forms a crystalline complex with L-tartaric acid (TA) and two and a half water molecules. The crystals are monoclinic, space group P2 1. The piperazine has a chair conformation with the methyl groups in the equatorial positions and the axial CH 2COO substituents. One of the CH 2COO group is protonated and forms with the neighboring DBPZ molecule the COO sbnd H⋯OOC hydrogen bond of the length 2.476(3) Å, which links them into a chain. The semi-tartrate anions, form a chain through the symmetrical, short COO⋯H⋯OOC hydrogen bond of 2.464(3) Å. The crystals have a layer structure, where hydrogen-bonded sheets of TA and water molecules are separated by the chains of DBPZ; no H-bonds between water and DBPZ are present. In the optimized molecules in the B3LYP/6-31G(d,p) approach, the tartaric acid interacts with the tartrate di-anions through the COO sbnd H⋯OOC hydrogen bonds of 2.506 Å, while the DBPZ has the same conformation as in the crystals. The FTIR spectrum of the solid complex is consistent with the X-ray results.

  11. Hydration profiles of aromatic amino acids: conformations and vibrations of L-phenylalanine-(H2O)n clusters.

    PubMed

    Ebata, Takayuki; Hashimoto, Takayo; Ito, Takafumi; Inokuchi, Yoshiya; Altunsu, Fuat; Brutschy, Bernhard; Tarakeshwar, P

    2006-11-01

    IR-UV double resonance spectroscopy and ab initio calculations were employed to investigate the structures and vibrations of the aromatic amino acid, L-phenylalanine-(H(2)O)(n) clusters formed in a supersonic free jet. Our results indicate that up to three water molecules are preferentially bound to both the carbonyl oxygen and the carboxyl hydrogen of L-phenylalanine (L-Phe) in a bridged hydrogen-bonded conformation. As the number of water molecules is increased, the bridge becomes longer. Two isomers are found for L-Phe-(H(2)O)(1), and both of them form a cyclic hydrogen-bond between the carboxyl group and the water molecule. In L-Phe-(H(2)O)(2), only one isomer was identified, in which two water molecules form extended cyclic hydrogen bonds with the carboxyl group. In the calculated structure of L-Phe-(H(2)O)(3) the bridge of water molecules becomes larger and exhibits an extended hydrogen-bond to the pi-system. Finally, in isolated L-Phe, the D conformer was found to be the most stable conformer by the experiment and by the ab initio calculation.

  12. Formation of stratospheric nitric acid by a hydrated ion cluster reaction: chemical and dynamical effects of energetic particle precipitation on the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Kvissel, O. K.; Orsolini, Y. J.; Stordal, F.

    2012-04-01

    In order to Improve our understanding of the effects of energetic particle precipitation upon the nitrogen family (NOy) and ozone (O3), we have modelled the chemical and dynamical middle atmosphere response to the introduction of a chemical pathway that produces nitric acid (HNO3) by conversion of dinitrogen pentoxide (N2O5) upon hydrated water clusters H+•(H2O)n. We have used an ensemble of simulations with the National Center for Atmospheric Research (NCAR) Whole-Atmosphere Community Climate Model (WACCM) chemistry-climate model. The introduced chemical pathway alters the internal partitioning of NOy during winter months in both hemispheres, and ultimately triggers statistically significant changes in the climatological distributions of constituents including: i) a cold season production of HNO3 with a corresponding loss of N2O5, and ii) a cold season decrease in NOx/NOy-ratio and an increase of O3, in polar regions. We see an improved seasonal evolution of modelled HNO3 compared to satellite observations from Microwave Limb Sounder (MLS), albeit not enough HNO3 is produced at high altitudes. Through O3 changes, both temperature and dynamics are affected, allowing for complex chemical-dynamical feedbacks beyond the cold season when the introduced pathway is active. Hence, we also find a NOx polar increase in spring-to-summer in the SH, and in spring in the NH. The springtime NOx increase arises from anomalously strong poleward transport associated with a weaker polar vortex. In the southern hemisphere, a statistical significant weakening of the stratospheric jet is altered down to the lower stratosphere, and we argue that it is caused by strengthened planetary waves induced by mid-latitude zonal asymmetries in O3 and short-wave heating.

  13. Gas hydrate and humans

    USGS Publications Warehouse

    Kvenvolden, K.A.

    2000-01-01

    The potential effects of naturally occurring gas hydrate on humans are not understood with certainty, but enough information has been acquired over the past 30 years to make preliminary assessments possible. Three major issues are gas hydrate as (1) a potential energy resource, (2) a factor in global climate change, and (3) a submarine geohazard. The methane content is estimated to be between 1015 to 1017 m3 at STP and the worldwide distribution in outer continental margins of oceans and in polar regions are significant features of gas hydrate. However, its immediate development as an energy resource is not likely because there are various geological constraints and difficult technological problems that must be solved before economic recovery of methane from hydrate can be achieved. The role of gas hydrate in global climate change is uncertain. For hydrate methane to be an effective greenhouse gas, it must reach the atmosphere. Yet there are many obstacles to the transfer of methane from hydrate to the atmosphere. Rates of gas hydrate dissociation and the integrated rates of release and destruction of the methane in the geo/hydro/atmosphere are not adequately understood. Gas hydrate as a submarine geohazard, however, is of immediate and increasing importance to humans as our industrial society moves to exploit seabed resources at ever-greater depths in the waters of our coastal oceans. Human activities and installations in regions of gas-hydrate occurrence must take into account the presence of gas hydrate and deal with the consequences of its presence.

  14. Natural Methane and Carbon Dioxide Hydrates in the Earth System

    NASA Astrophysics Data System (ADS)

    Research Team; Milkereit, B.

    2004-05-01

    Both CH4 and CO2 are abundant volatiles in the earth's crust. Methane hydrates occur in permafrost regions and continental slopes of oceans. It is currently estimated that the energy stored in CH4 hydrate reserves totals more than twice the global reserves of all conventional oil, gas, and coal deposits combined. This means that methane hydrate could prove to be a very important source of energy in the future. Pressure versus temperature phase diagrams for methane and carbon dioxide define characteristic stability fields for gas, fluid and hydrates states. Sequestration of carbon dioxide in the earths crust and production of methane hydrate reservoirs are critically dependent on knowledge of the in situ elastic moduli of natural hydrates. The physical properties of simple methane and carbon dioxide hydrates are similar [1]. Our compilation of experimental data confirms high compressional wave velocities and elastic moduli for CH4 and CO2 hydrates and low compressional wave velocities for the fluid and gas phases. As methane and carbon dioxide hydrates are stable over similar pressure-temperature ranges, the two types of hydrates form in similar settings in the earth's crust. For example, temperature and pressure conditions in deepwater marine environments require both CO2 and CH4 to be in hydrate phase. However, not much is known about the origin, distribution and total volume of natural carbon dioxide hydrates stored in the earth's crust. For a number of tectonic/geological settings, CO2-rich fluids from deep crustal reservoirs must be considered: rifted margins, volcanic arcs, deepwater vents [2], mud volcanoes and mud diapirs [3]. Both methane and carbon dioxide hydrates work to cement sea floors in similar ways. Slope failure, a phenomenon usually taken as a hallmark of the presence of methane hydrate, could also be attributed to the existence of carbon dioxide hydrates. Perhaps most critically, many of the estimations of the amounts of methane hydrates are

  15. Bacterial Growth, Necromass Turnover, And Endospore Abundance In The Deep Subseafloor Sediments Of The Greenland Shelf Using D:L Amino Acid Model.

    NASA Astrophysics Data System (ADS)

    Mhatre, S. S.; Braun, S.; Jaussi, M.; Røy, H.; Jørgensen, B. B.; Lomstein, B. A.

    2015-12-01

    The subsurface realm is colonized by a large number of microorganisms- about 3 × 1029. Microbial cells in these very stable and oligotrophic settings catabolize at a much slower rate than model organisms in nutrient rich cultures. The aim of this work was to use recently developed D:L-amino acid racemization model for studying the turnover times of microbial biomass and microbial necromass in a ~12,000 years old Greenland shelf marine sediment samples. Sediments were analyzed for total hydrolysable amino acids (THAA), the bacterial endospore marker dipicolinic acid (DPA), and amino acid enantiomers of aspartic acid. The percentage amino acid carbon content (%TAAC) and the percentage amino acid nitrogen content (%TAAN) were used for determining the degradation state of the organic matter. Endospores quantified using DPA quantification method were found to be as abundant as vegetative cells. The microbial necromass turnover times were thousand years, and biomass turnover times were in the range of tens to hundred years. Studies with deeper sediment cores will further improve our understanding of the energetic limits of life in the deep biosphere.

  16. Origins of hydration lubrication.

    PubMed

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  17. Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction.

    PubMed

    Smith, J David; Meuler, Adam J; Bralower, Harrison L; Venkatesan, Rama; Subramanian, Sivakumar; Cohen, Robert E; McKinley, Gareth H; Varanasi, Kripa K

    2012-05-01

    Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhesion to surfaces, ideally to a low enough level that hydrodynamic shear stresses can detach deposits and prevent plug formation. Systematic and quantitative studies of hydrate adhesion on smooth substrates with varying solid surface energies reveal a linear trend between hydrate adhesion strength and the practical work of adhesion (γ(total)[1 + cos θ(rec)]) of a suitable probe liquid, that is, one with similar surface energy properties to those of the hydrate. A reduction in hydrate adhesion strength by more than a factor of four when compared to bare steel is achieved on surfaces characterized by low Lewis acid, Lewis base, and van der Waals contributions to surface free energy such that the practical work of adhesion is minimized. These fundamental studies provide a framework for the development of hydrate-phobic surfaces, and could lead to passive enhancement of flow assurance and prevention of blockages in deep-sea oil and gas operations.

  18. Noble gas encapsulation: clathrate hydrates and their HF doped analogues.

    PubMed

    Mondal, Sukanta; Chattaraj, Pratim Kumar

    2014-09-01

    The significance of clathrate hydrates lies in their ability to encapsulate a vast range of inert gases. Although the natural abundance of a few noble gases (Kr and Xe) is poor their hydrates are generally abundant. It has already been reported that HF doping enhances the stability of hydrogen hydrates and methane hydrates, which prompted us to perform a model study on helium, neon and argon hydrates with their HF doped analogues. For this purpose 5(12), 5(12)6(8) and their HF doped analogues are taken as the model clathrate hydrates, which are among the building blocks of sI, sII and sH types of clathrate hydrate crystals. We use the dispersion corrected and gradient corrected hybrid density functional theory for the calculation of thermodynamic parameters as well as conceptual density functional theory based reactivity descriptors. The method of the ab initio molecular dynamics (AIMD) simulation is used through atom centered density matrix propagation (ADMP) techniques to envisage the structural behaviour of different noble gas hydrates on a 500 fs timescale. Electron density analysis is carried out to understand the nature of Ng-OH2, Ng-FH and Ng-Ng interactions. The current results noticeably demonstrate that the noble gas (He, Ne, and Ar) encapsulation ability of 5(12), 5(12)6(8) and their HF doped analogues is thermodynamically favourable. PMID:25047071

  19. Long-term variations in abundance and distribution of sulfuric acid vapor in the Venus atmosphere inferred from Pioneer Venus and Magellan radio occultation studies

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Steffes, P. G.

    1992-01-01

    Radio occultation experiments have been used to study various properties of planetary atmospheres, including pressure and temperature profiles, and the abundance profiles of absorbing constituents in those planetary atmospheres. However, the reduction of amplitude data from such experiments to determine abundance profiles requires the application of the inverse Abel transform (IAT) and numerical differentiation of experimental data. These two operations preferentially amplify measurement errors above the true signal underlying the data. A new technique for processing radio occultation data has been developed that greatly reduces the errors in the derived absorptivity and abundance profiles. This technique has been applied to datasets acquired from Pioneer Venus Orbiter radio occultation studies and more recently to experiments conducted with the Magellan spacecraft. While primarily designed for radar studies of the Venus surface, the high radiated power (EIRP) from the Magellan spacecraft makes it an ideal transmitter for measuring the refractivity and absorptivity of the Venus atmosphere by such experiments. The longevity of the Pioneer Venus Orbiter has made it possible to study long-term changes in the abundance and distribution of sulfuric acid vapor, H2SO4(g), in the Venus atmosphere between 1979 and 1992. The abundance of H2SO4(g) can be inferred from vertical profiles of 13-cm absorptivity profiles retrieved from radio occultation experiments. Data from 1979 and 1986-87 suggest that the abundance of H2SO4(g) at latitudes northward of 70 deg decreased over this time period. This change may be due to a period of active volcanism in the late 1970s followed by a relative quiescent period, or some other dynamic process in the Venus atmosphere. While the cause is not certain, such changes must be incorporated into dynamic models of the Venus atmosphere. Potentially, the Magellan spacecraft will extend the results of Pioneer Venus Orbiter and allow the continued

  20. Single-step analysis of low abundance phosphoamino acids via on-line sample preconcentration with chemical derivatization by capillary electrophoresis.

    PubMed

    Ptolemy, Adam S; Britz-McKibbin, Philip

    2005-09-01

    New strategies for rapid, sensitive and high-throughput analysis of low abundance metabolites in biological samples are required for future metabolomic research. In this report, a direct method for sub-micromolar analyses of phosphoamino acids was developed using on-line sample preconcentration with 9-fluorenylmethyloxycarbonyl chloride (FMOC) derivatization by capillary electrophoresis (CE) and UV detection. Analyte focusing by dynamic pH junction and FMOC labeling efficiency were influenced by several experimental factors including buffer pH, ionic strength, sample injection length and FMOC concentration. About a 200-fold enhancement in concentration sensitivity was achieved under optimal conditions relative to conventional off-line derivatization, as reflected by a detection limit (S/N approximately 3) of 0.1 microM. In-capillary sample preconcentration with chemical labeling by CE offers a unique single-step analytical platform for high-throughput screening of low abundance metabolites without intrinsic chromophores.

  1. Single-step analysis of low abundance phosphoamino acids via on-line sample preconcentration with chemical derivatization by capillary electrophoresis.

    PubMed

    Ptolemy, Adam S; Britz-McKibbin, Philip

    2005-09-01

    New strategies for rapid, sensitive and high-throughput analysis of low abundance metabolites in biological samples are required for future metabolomic research. In this report, a direct method for sub-micromolar analyses of phosphoamino acids was developed using on-line sample preconcentration with 9-fluorenylmethyloxycarbonyl chloride (FMOC) derivatization by capillary electrophoresis (CE) and UV detection. Analyte focusing by dynamic pH junction and FMOC labeling efficiency were influenced by several experimental factors including buffer pH, ionic strength, sample injection length and FMOC concentration. About a 200-fold enhancement in concentration sensitivity was achieved under optimal conditions relative to conventional off-line derivatization, as reflected by a detection limit (S/N approximately 3) of 0.1 microM. In-capillary sample preconcentration with chemical labeling by CE offers a unique single-step analytical platform for high-throughput screening of low abundance metabolites without intrinsic chromophores. PMID:16096672

  2. TOUGH-Fx/Hydrate

    SciTech Connect

    Moridis, George Julius

    2005-02-01

    TOUGH-Fx/HYORATL can model the non-isothermal gas release. phase behavior and flow of fluids and heat in complex geologic media. The code can simulate production from natural gas hydrate deposits in the subsurtace (i.e., in the permafrost and in deep ocean sediments), as well as laboratory experiments of hydrate dissociation/formation in porous/fractured media. T006H-Fx/HYDRATE vi .0 includes both an equilibrium and a kinetic model of hydrate Ibmiation and dissociation. The model accounts for heat and up to four mass components-- i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dIssociation or formation, phase changes, and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects, and inhibItor-Induced effects.

  3. TOUGH-Fx/Hydrate

    2005-02-01

    TOUGH-Fx/HYORATL can model the non-isothermal gas release. phase behavior and flow of fluids and heat in complex geologic media. The code can simulate production from natural gas hydrate deposits in the subsurtace (i.e., in the permafrost and in deep ocean sediments), as well as laboratory experiments of hydrate dissociation/formation in porous/fractured media. T006H-Fx/HYDRATE vi .0 includes both an equilibrium and a kinetic model of hydrate Ibmiation and dissociation. The model accounts for heat and upmore » to four mass components-- i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dIssociation or formation, phase changes, and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects, and inhibItor-Induced effects.« less

  4. Sulfuric acid on Europa and the radiolytic sulfur cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  5. Effect of ribonucleic acid (RNA) isolation methods on putative reference genes messenger RNA abundance in human spermatozoa.

    PubMed

    Barragán, M; Martínez, A; Llonch, S; Pujol, A; Vernaeve, V; Vassena, R

    2015-07-01

    Although the male gamete participates in a significant proportion of infertility cases, there are currently no proven molecular markers of sperm quality. The search for significant gene expression markers is partially hindered by the lack of a recognized set of reference genes (RGs) to normalize reverse transcription quantitative PCR (RT-qPCR) data across studies. The aim of this study is to define a set of RGs in assisted reproduction patients undergoing different sample collection and RNA isolation methods. Twenty-two normozoospermic men were included in the study. From each man, semen was either cryopreserved by slow freezing or analyzed fresh, and, for each, RNA was extracted with either phenol-free or phenol-based methods. In two cases, both methods were used to isolate RNA. Twenty putative RGs were analyzed and their mRNA abundance across samples was estimated by RT-qPCR. To determine the genes whose steady-state mRNA abundance remains unchanged, three different algorithms (geNorm, BestKeeper and NormFinder) were applied to the qPCR data. We found that RGs such as GAPDH or ACTB, useful in other biological contexts, cannot be used as reference for human spermatozoa. It is possible to compare gene expression from fresh and cryopreserved sperm samples using the same isolation method, while the mRNA abundance of expressed genes becomes different depending on the RNA isolation technique employed. In our conditions, the most appropriate RGs for RT-qPCR analysis were RPLP1, RPL13A, and RPLP2. Published discrepancies in gene expression studies in human spermatozoa may be due in part to inappropriate RGs selection, suggesting a possible different interpretation of PCR data in several reports, which were normalized using unstable RGs.

  6. Fragmentation and hydration of tektites and microtektites

    USGS Publications Warehouse

    Glass, B.P.; Muenow, D.W.; Bohor, B.F.; Meeker, G.P.

    1997-01-01

    An examination of data collected over the last 30 years indicates that the percent of glass fragments vs. whole splash forms in the Cenozoic microtektite strewn fields increases towards the source crater (or source region). We propose that this is due to thermal stress produced when tektites and larger microtektites fall into water near the source crater while still relatively hot (>1150 ??C). We also find evidence (low major oxide totals, frothing when melted) for hydration of most of the North American tektite fragments and microtektites found in marine sediments. High-temperature mass spectrometry indicates that these tektite fragments and microtektites contain up to 3.8 wt% H2O. The H2O-release behavior during the high-temperature mass-spectrometric analysis, plus high Cl abundances (???0.05 wt%), indicate that the North. American tektite fragments and microtektites were hydrated in the marine environment (i.e., the H2O was not trapped solely on quenching from a melt). The younger Ivory Coast and Australasian microtektites do not exhibit much evidence of hydration (at least not in excess of 0.5 wt% H2O); this suggests that the degree of hydration increases with age. In addition, we find that some glass spherules (with 65 wt% SiO2 can undergo simple hydration in the marine environment, while impact glasses (with <65 wt% SiO2) can also undergo palagonitization.

  7. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  8. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids.

    PubMed

    Wang, Tza-Huei; Peng, Yahui; Zhang, Chunyang; Wong, Pak Kin; Ho, Chih-Ming

    2005-04-20

    Here, we report a method capable of quantitative detection of low-abundance DNA/RNA molecules by incorporating confocal fluorescence spectroscopy, molecular beacons, and a molecular-confinement microfluidic reactor. By using a combination of ac and dc fields via a trio of 3-D electrodes in the microreactor, we are able to precisely direct the transport of individual molecules to a minuscule laser-focused detection volume ( approximately 1 fL). A burst of fluorescence photons is detected whenever a molecular beacon-target hybrid flows through the detection region, and the amount of targets can be directly quantified according to the number of recorded single-molecule flow-through events. This assay consumes only attomoles of molecular probes and is able to quantitatively detect subpicomolar DNA targets. A measurement time of less than 2 min is sufficient to complete the detection.

  9. Hydration rate of obsidian.

    PubMed

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years. PMID:17782901

  10. Hydration rate of obsidian.

    PubMed

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  11. Methane Hydrates: Chapter 8

    USGS Publications Warehouse

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  12. Combustion of Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Roshandell, Melika

    A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding

  13. Here's butane hydrates equilibria

    SciTech Connect

    Peettman, F.H.

    1984-06-01

    In 1961 McLeod and Campbell studied hydrates formation for binary mixtures of methane with ethane through butane at pressures up to 10,000 psia. Their data showed that butane lowered the pressure of hydrate formation for methane up to pressures ranging from 1,500 to 2,000 psia. At pressures above this range methane-n-butane mixtures generally followed the curve for pure methane or were slightly above it. McLeod and Campbell conclude that the crystal lattice is deformed at higher pressures (above 6,000 psia) and that hydrate composition on a water-free basis is the same as the gas.

  14. Gold(III)-Catalyzed Hydration of Phenylacetylene

    ERIC Educational Resources Information Center

    Leslie, J. Michelle; Tzeel, Benjamin A.

    2016-01-01

    A guided inquiry-based experiment exploring the regioselectivity of the hydration of phenylacetylene is described. The experiment uses an acidic gold(III) catalyst in a benign methanol/water solvent system to introduce students to alkyne chemistry and key principles of green chemistry. The experiment can be easily completed in approximately 2 h,…

  15. Transformations in methane hydrates

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Shu, J.; Mao, Ho-kwang; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2000-01-01

    Detailed study of pure methane hydrate in a diamond cell with in situ optical, Raman, and x-ray microprobe techniques reveals two previously unknown structures, structure II and structure H, at high pressures. The structure II methane hydrate at 250 MPa has a cubic unit cell of a = 17.158(2) A?? and volume V = 5051.3(13) A??3; structure H at 600 MPa has a hexagonal unit cell of a = 11.980(2) A??, c = 9.992(3) A??, and V = 1241.9(5) A??3. The compositions of these two investigated phases are still not known. With the effects of pressure and the presence of other gases in the structure, the structure II phase is likely to dominate over the known structure I methane hydrate within deep hydrate-bearing sediments underlying continental margins.

  16. Withdrawing Nutrition, Hydration

    Cancer.gov

    Module eleven of the EPEC-O Self-Study Original Version discusses the general aspects of withholding or withdrawing of life-sustaining therapies, and presents a specific application to artificial nutrition and hydration.

  17. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  18. Natural (15)N Abundance in Key Amino Acids from Lamb Muscle: Exploring a New Horizon in Diet Authentication and Assessment of Feed Efficiency in Ruminants.

    PubMed

    Cantalapiedra-Hijar, Gonzalo; Ortigues-Marty, Isabelle; Schiphorst, Anne-Marie; Robins, Richard J; Tea, Illa; Prache, Sophie

    2016-05-25

    Natural (15)N abundance (δ(15)N) varies between individual amino acids (AAs). We hypothesized that δ(15)N of nontransaminating and essential AAs ("source" AAs, such as phenylalanine) present in animal tissues could be used as a marker of dietary origin, whereas δ(15)N of transaminating AAs ("trophic" AAs, such as glutamic acid) could give more detailed insights into animal feed efficiency. Two diets based on dehydrated Lucerne pellets were tested in growing lambs, which promoted different feed efficiencies. No dietary effects were noted on δ(15)N of any AAs analyzed in lamb muscle. In addition, δ(15)N of phenylalanine was unexpectedly similar to that of glutamic acid, suggesting that δ(15)N of AAs is significantly derived from the metabolism of the rumen microbiota and, thus, are not suited for diet authentication in ruminants. In contrast, the δ(15)N of transaminating AAs facilitates an improved prediction of animal feed efficiency compared to the classical isotopic bulk N analysis. PMID:27148901

  19. Rom2-dependent Phosphorylation of Elo2 Controls the Abundance of Very Long-chain Fatty Acids*

    PubMed Central

    Olson, Daniel K.; Fröhlich, Florian; Christiano, Romain; Hannibal-Bach, Hans K.; Ejsing, Christer S.; Walther, Tobias C.

    2015-01-01

    Sphingolipids are essential components of eukaryotic membranes, where they serve to maintain membrane integrity. They are important components of membrane trafficking and function in signaling as messenger molecules. Sphingolipids are synthesized de novo from very long-chain fatty acids (VLCFA) and sphingoid long-chain bases, which are amide linked to form ceramide and further processed by addition of various headgroups. Little is known concerning the regulation of VLCFA levels and how cells coordinate their synthesis with the availability of long-chain bases for sphingolipid synthesis. Here we show that Elo2, a key enzyme of VLCFA synthesis, is controlled by signaling of the guanine nucleotide exchange factor Rom2, initiating at the plasma membrane. This pathway controls Elo2 phosphorylation state and VLCFA synthesis. Our data identify a regulatory mechanism for coordinating VLCFA synthesis with sphingolipid metabolism and link signal transduction pathways from the plasma membrane to the regulation of lipids for membrane homeostasis. PMID:25519905

  20. Picoliter droplet-based digital peptide nucleic acid clamp PCR and dielectric sorting for low abundant K-ras mutations

    NASA Astrophysics Data System (ADS)

    Zhang, Huidan; Sperling, Ralph; Rotem, Assaf; Shan, Lianfeng; Heyman, John; Zhang, Yizhe; Weitz, David

    2012-02-01

    Colorectal cancer (CRC) remains the second leading cause of cancer-related mortality in the US, and the 5-year survival of metastatic CRC (mCRC) is less than 10%. Although monoclonal antibodies against epidermal growth factor receptor (EGFR) provide incremental improvements in survival, approximately 40% of mCRC patients with activating KRAS mutations won't benefit from this therapy. Peptide nucleic acid (PNA), a synthetic non-extendable oligonucleotides, can bind strongly to completely complementary wild-type KRAS by Watson-Crick base pairing and suppress its amplification during PCR, while any mutant allele will show unhindered amplification. The method is particularly suitable for the simultaneously detection of several adjoining mutant sites, just as mutations of codons 12 and 13 of KRAS gene where there are totally 12 possible mutation types. In this work, we describe the development and validation of this method, based on the droplet-based digital PCR. Using a microfluidic system, single target DNA molecule is compartmentalized in microdroplets together with PNA specific for wild-type KRAS, thermocycled and the fluorescence of each droplet was detected, followed by sorting and sequencing. It enables the precise determination of all possible mutant KRAS simultaneously, and the precise quantification of a single mutated KRAS in excess background unmutated KRAS.

  1. Galbanic acid decreases androgen receptor abundance and signaling and induces G1 arrest in prostate cancer cells

    PubMed Central

    Zhang, Yong; Kim, Kwan-Hyun; Zhang, Wei; Guo, Yinglu; Kim, Sung-Hoon; Lü, Junxuan

    2011-01-01

    Androgen receptor (AR) signaling is crucial for the genesis and progression of prostate cancer (PCa). We compared the growth responses of AR(+) LNCaP and LNCaP C4-2 vs. AR(−) DU145 and PC-3 PCa cell lines to galbanic acid (GBA) isolated from the resin of medicinal herb Ferula assafoetida and assessed their connection to AR signaling and cell cycle regulatory pathways. Our results showed that GBA preferentially suppressed AR(+) PCa cell growth than AR(−) PCa cells. GBA induced a caspase-mediated apoptosis that was attenuated by a general caspase inhibitor. Subapoptotic GBA down-regulated AR protein in LNCaP cells primarily through promoting its proteasomal degradation, and inhibited AR-dependent transcription without affecting AR nuclear translocation. Whereas docking simulations predicted binding of GBA to the AR ligand binding domain with similarities and differences with the AR antagonist drug bicalutamide, LNCaP cell culture assays did not detect agonist activity of GBA. GBA and bicalutamide exerted greater than additive inhibitory effect on cell growth when used together. Subapoptotic GBA induced G1 arrest associated with an inhibition of cyclin/CDK4/6 pathway, especially cyclin D1 without the causal involvement of CDK inhibitory proteins P21Cip1 and P27Kip1. In summary, the novelty of GBA as an anti-AR compound resides in the distinction between GBA and bicalutamide with respect to AR protein turnover and a lack of agonist effect. Our observations of anti-AR and cell cycle arrest actions plus the anti-angiogenesis effect reported elsewhere suggest GBA as a multi-targeting drug candidate for the prevention and therapy of PCa. PMID:21328348

  2. Synthesis and characterization of a new structure of gas hydrate

    SciTech Connect

    Tulk, Christopher A; Chakoumakos, Bryan C; Ehm, Lars; Klug, Dennis D; Parise, John B; Yang, Ling; Martin, Dave; Ripmeester, John; Moudrakovski, Igor; Ratcliffe, Chris

    2009-01-01

    Atoms and molecules 0.4 0.9 nm in diameter can be incorporated in the cages formed by hydrogen-bonded water molecules making up the crystalline solid clathrate hydrates. There are three structural families of these hydrates , known as sI, sII and sH, and the structure usually depends on the largest guest molecule in the hydrate. Species such as Ar, Kr, Xe and methane form sI or sII hydrate, sH is unique in that it requires both small and large cage guests for stability. All three structures, containing methane, other hydrocarbons, H2S and CO2, O2 and N2 have been found in the geosphere, with sI methane hydrate by far the most abundant. At high pressures (P > 0.7 kbar) small guests (Ar, Kr, Xe, methane) are also known to form sH hydrate with multiple occupancy of the largest cage in the hydrate. The high-pressure methane hydrate of sH has been proposed as playing a role in the outer solar system, including formation models for Titan , and yet another high pressure phase of methane has been reported , although its structure remains unknown. In this study, we report a new and unique hydrate structure that is derived from the high pressure sH hydrate of xenon. After quench recovery at ambient pressure and 77 K it shows considerable stability at low temperatures (T < 160 K) and is compositionally similar to the sI Xe clathrate starting material. This evidence of structural complexity in compositionally similar clathrate compounds indicates that thermodynamic pressure temperature conditions may not be the only important factor in structure determination, but also the reaction path may have an important effect.

  3. Natural gas hydrates

    SciTech Connect

    Sloan, E.D. Jr. )

    1991-12-01

    This paper reports on gas clathrates (commonly called hydrates), which are crystalline compounds that occur when water form a cage-like structure around smaller guest molecules. Gas hydrates of interest to the natural gas hydrocarbon industry are composed of water and eight molecules: methane, ethane, propane, isobutane, normal butane, nitrogen, carbon dioxide, and hydrogen sulfide. Hydrate formation is possible in any place where water exists with such molecules - in natural or artificial environments and at temperatures above and below 32{degrees} F when the pressure is elevated. Hydrates are considered a nuisance because they block transmission lines, plug blowout preventers, jeopardize the foundations of deepwater platforms and pipelines, cause tubing and casing collapse, and foul process heat exchangers, valves, and expanders. Common examples of preventive measures are the regulation of pipeline water content, unusual drilling-mud compositions, and large quantities of methanol injection into pipelines. We encounter conditions that encourage hydrate formation as we explore more unusual environments for gas and oil, including deepwater frontiers and permafrost regions.

  4. Physicochemical and structural studies of clathrate hydrates of tetrabutylammonium polyacrylates.

    PubMed

    Terekhova, Irina S; Manakov, Andrey Yu; Komarov, Vladislav Yu; Villevald, Galina V; Burdin, Alexander A; Karpova, Tamara D; Aladko, Eugeny Ya

    2013-03-01

    In this work, physicochemical and structural studies have been carried out for semiclathrate hydrates of linear (un-cross-linked) and cross-linked tetrabutylammonium polyacrylates with different degrees of cross-linking of the polymeric guest molecules (n = 0.5, 1, 2, 3%) and different degrees of substitution of proton ions of carboxylic groups in poly(acrylic acid) for TBA cations (x = 1, 0.8, 0.6). The changes in the hydrates' stability and composition depending on the outlined parameters were examined in the course of phase diagram studies of the binary systems water-tetrabutylammonium polyacrylates using differential thermal analysis method and calorimetric measurements of fusion enthalpies of the hydrates. Phase diagram studies of the binary system water-linear tetrabutylammonium polyacrylate revealed the formation of four hydrates. Based on the data of chemical analysis of hydrate crystals the compositions of all hydrates have been determined. Single-crystal X-ray diffraction studies revealed a tetragonal structure, space group 4/m, and unit cell parameters are close for different hydrates and lie in the ranges a = 23.4289-23.4713 Å and c = 12.3280-12.3651 Å (150 K). The structure can be related to tetragonal structure I typical for the clathrate hydrates of tetraalkylammonium salts with monomeric anions. Powder X-ray diffraction analyses confirmed the identity of the above crystal structure to that of the hydrates with cross-linked tetrabutylammonium polyacrylates. The behavior of TBA polyacrylate hydrates under the pressure of methane was studied and quantitative assessment of the gas content in the hydrates was made using volumetric analysis method.

  5. Physicochemical and structural studies of clathrate hydrates of tetrabutylammonium polyacrylates.

    PubMed

    Terekhova, Irina S; Manakov, Andrey Yu; Komarov, Vladislav Yu; Villevald, Galina V; Burdin, Alexander A; Karpova, Tamara D; Aladko, Eugeny Ya

    2013-03-01

    In this work, physicochemical and structural studies have been carried out for semiclathrate hydrates of linear (un-cross-linked) and cross-linked tetrabutylammonium polyacrylates with different degrees of cross-linking of the polymeric guest molecules (n = 0.5, 1, 2, 3%) and different degrees of substitution of proton ions of carboxylic groups in poly(acrylic acid) for TBA cations (x = 1, 0.8, 0.6). The changes in the hydrates' stability and composition depending on the outlined parameters were examined in the course of phase diagram studies of the binary systems water-tetrabutylammonium polyacrylates using differential thermal analysis method and calorimetric measurements of fusion enthalpies of the hydrates. Phase diagram studies of the binary system water-linear tetrabutylammonium polyacrylate revealed the formation of four hydrates. Based on the data of chemical analysis of hydrate crystals the compositions of all hydrates have been determined. Single-crystal X-ray diffraction studies revealed a tetragonal structure, space group 4/m, and unit cell parameters are close for different hydrates and lie in the ranges a = 23.4289-23.4713 Å and c = 12.3280-12.3651 Å (150 K). The structure can be related to tetragonal structure I typical for the clathrate hydrates of tetraalkylammonium salts with monomeric anions. Powder X-ray diffraction analyses confirmed the identity of the above crystal structure to that of the hydrates with cross-linked tetrabutylammonium polyacrylates. The behavior of TBA polyacrylate hydrates under the pressure of methane was studied and quantitative assessment of the gas content in the hydrates was made using volumetric analysis method. PMID:23383955

  6. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  7. Dynamics of protein hydration water.

    PubMed

    Wolf, M; Emmert, S; Gulich, R; Lunkenheimer, P; Loidl, A

    2015-09-01

    We present the frequency- and temperature-dependent dielectric properties of lysozyme solutions in a broad concentration regime, measured at subzero temperatures, and compare the results with measurements above the freezing point of water and on hydrated lysozyme powder. Our experiments allow examining the dynamics of unfreezable hydration water in a broad temperature range. The obtained results prove the bimodality of the hydration shell dynamics. In addition, we find indications of a fragile-to-strong transition of hydration water. PMID:26465518

  8. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    PubMed Central

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  9. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces.

    PubMed

    Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2014-12-01

    Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.

  10. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces.

    PubMed

    Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2014-12-01

    Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall. PMID:25332072

  11. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  12. [Hydration in clinical practice].

    PubMed

    Maristany, Cleofé Pérez-Portabella; Segurola Gurruchaga, Hegoi

    2011-01-01

    Water is an essential foundation for life, having both a regulatory and structural function. The former results from active and passive participation in all metabolic reactions, and its role in conserving and maintaining body temperature. Structurally speaking it is the major contributer to tissue mass, accounting for 60% of the basis of blood plasma, intracellular and intersticial fluid. Water is also part of the primary structures of life such as genetic material or proteins. Therefore, it is necessary that the nurse makes an early assessment of patients water needs to detect if there are signs of electrolyte imbalance. Dehydration can be a very serious problem, especially in children and the elderly. Dehydrations treatment with oral rehydration solution decreases the risk of developing hydration disorders, but even so, it is recommended to follow preventive measures to reduce the incidence and severity of dehydration. The key to having a proper hydration is prevention. Artificial nutrition encompasses the need for precise calculation of water needs in enteral nutrition as parenteral, so the nurse should be part of this process and use the tools for calculating the patient's requirements. All this helps to ensure an optimal nutritional status in patients at risk. Ethical dilemmas are becoming increasingly common in clinical practice. On the subject of artificial nutrition and hydration, there isn't yet any unanimous agreement regarding hydration as a basic care. It is necessary to take decisions in consensus with the health team, always thinking of the best interests of the patient.

  13. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl2.6H2o as latent heat energy storage system in Indonesia

    NASA Astrophysics Data System (ADS)

    U, Sri Rahayu A.; Putri, Widya A.; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    A latent heat energy storage system utilizing phase change materials (PCM) is an alternative strategy to reduce the use of Air Conditioning (AC) system in big cities in Indonesia in order for energy conservation in the future. In this research we used two kinds of materials, namely organic PCM based on lauric acid from coconut oil (CO) and inorganic PCM based on salt hydrate CaCl2.6H2O, because they have thermophysical parameters suitable for human's thermal comfort application in the building. The CO which contained more than 50% lauric acid has the melting temperature (Tm ) of about 26 °C and heat entalphy (ΔH) around 103 kJ/kg, while CaCl2.6H2O has the melting point of 29 °C and heat entalphy of 190 kJ/kg. In this paper we report the effectiveness of those two kinds of PCM in reducing the air temperature as one of some criteria for human's thermal comfort. The experiments were performed in a close and adiabatic room and the time-temperature measurements were done automatically using Arduino microcontroller and LM35 temperature sensor connected to the PC.

  14. Phyllosilicate and Hydrated Sulfate Deposits in Meridiani

    NASA Technical Reports Server (NTRS)

    Wiseman, S. M.; Avidson, R. E.; Murchie, S.; Poulet, F.; Andrews-Hanna, J. C.; Morris, R. V.; Seelos, F. P.

    2008-01-01

    Several phyllosilicate and hydrated sulfate deposits in Meridiani have been mapped in detail with high resolution MRO CRISM [1] data. Previous studies have documented extensive exposures of outcrop in Meridiani (fig 1), or etched terrain (ET), that has been interpreted to be sedimentary in origin [e.g., 2,3]. These deposits have been mapped at a regional scale with OMEGA data and show enhanced hydration (1.9 m absorption) in several areas [4]. However, hydrated sulfate detections were restricted to valley exposures in northern Meridiani ET [5]. New high resolution CRISM images show that hydrated sulfates are present in several spatially isolated exposures throughout the ET (fig 1). The hydrated sulfate deposits in the valley are vertically heterogeneous with layers of mono and polyhydrated sulfates and are morphologically distinct from other areas of the ET. We are currently mapping the detailed spatial distribution of sulfates and searching for distinct geochemical horizons that may be traced back to differential ground water recharge and/or evaporative loss rates. The high resolution CRISM data has allowed us to map out several phyllosilicate deposits within the fluvially dissected Noachian cratered terrain (DCT) to the south and west of the hematite-bearing plains (Ph) and ET (fig 1). In Miyamoto crater, phyllosilicates are located within 30km of the edge of Ph, which is presumably underlain by acid sulfate deposits similar to those explored by Opportunity. The deposits within this crater may record the transition from fluvial conditions which produced and/or preserved phyllosilicates deposits to a progressively acid sulfate dominated groundwater system in which large accumulations of sulfate-rich evaporites were deposited .

  15. Formation of stratospheric nitric acid by a hydrated ion cluster reaction: Implications for the effect of energetic particle precipitation on the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Kvissel, O.-K.; Orsolini, Y. J.; Stordal, F.; Isaksen, I. S. A.; Santee, M. L.

    2012-08-01

    In order to improve our understanding of the effects of energetic particle precipitation on the middle atmosphere and in particular upon the nitrogen family and ozone, we have modeled the chemical and dynamical middle atmosphere response to the introduction of a chemical pathway that produces HNO3 by conversion of N2O5 upon hydrated water clusters H+·(H2O)n. We have used an ensemble of simulations with the National Center for Atmospheric Research (NCAR) Whole-Atmosphere Community Climate Model (WACCM) chemistry-climate model. The chemical pathway alters the internal partitioning of the NOy family during winter months in both hemispheres, and ultimately triggers statistically significant changes in the climatological distributions of constituents including: i) a cold season production and loss of HNO3 and N2O5, respectively, and ii) a cold season decrease and increase in NOx/NOy-ratio and O3, respectively, in the polar regions of both hemispheres. We see an improved seasonal evolution of modeled HNO3 compared to satellite observations from Microwave Limb Sounder (MLS), albeit not enough HNO3 is produced at high altitudes. Through O3changes, both temperature and dynamics are affected, allowing for complex chemical-dynamical feedbacks beyond the cold season when the pathway is active. Hence, we also find a NOxpolar increase in spring-to-summer in the southern hemisphere, and in spring in the northern hemisphere. The springtime NOxincrease arises from anomalously strong poleward transport associated with a weaker polar vortex. We argue that the weakening of zonal-mean polar winds down to the lower stratosphere, which is statistically significant at the 0.90 level in spring months in the southern hemisphere, is caused by strengthened planetary waves induced by the middle and sub-polar latitude zonal asymmetries in O3and short-wave heating.

  16. FcLDP1, a Gene Encoding a Late Embryogenesis Abundant (LEA) Domain Protein, Responds to Brassinosteroids and Abscisic Acid during the Development of Fruits in Fragaria chiloensis.

    PubMed

    Espinoza, Analía; Contreras, Rodrigo; Zúñiga, Gustavo E; Herrera, Raúl; Moya-León, María Alejandra; Norambuena, Lorena; Handford, Michael

    2016-01-01

    White Chilean strawberries (Fragaria chiloensis) are non-climacteric fruits, with an exotic color and aroma. In order to discover genes involved in the development of these fruits, we identified a fragment of a gene encoding a late embryogenesis abundant domain protein, FcLDP1, that was expressed in early stages of fruit development, particularly in receptacles. Hormones play key roles in regulating the development of non-climacteric fruits. We show that the brassinosteroid content of the white strawberry varies during development. Additionally, FcLDP1 as well as the closest ortholog in the woodland strawberry, F. vesca (FvLDP1) possess multiple brassinosteroid, as well as abscisic acid (ABA) response motifs in the promoter region, consistent with the response of transiently expressed FcLDP1 promoter-GFP fusions to these hormones, and the rise in FcLDP1 transcript levels in white strawberry fruits treated with brassinosteroids or ABA. These findings suggest that both hormones regulate FcLDP1 expression during the development of white strawberries.

  17. FcLDP1, a Gene Encoding a Late Embryogenesis Abundant (LEA) Domain Protein, Responds to Brassinosteroids and Abscisic Acid during the Development of Fruits in Fragaria chiloensis.

    PubMed

    Espinoza, Analía; Contreras, Rodrigo; Zúñiga, Gustavo E; Herrera, Raúl; Moya-León, María Alejandra; Norambuena, Lorena; Handford, Michael

    2016-01-01

    White Chilean strawberries (Fragaria chiloensis) are non-climacteric fruits, with an exotic color and aroma. In order to discover genes involved in the development of these fruits, we identified a fragment of a gene encoding a late embryogenesis abundant domain protein, FcLDP1, that was expressed in early stages of fruit development, particularly in receptacles. Hormones play key roles in regulating the development of non-climacteric fruits. We show that the brassinosteroid content of the white strawberry varies during development. Additionally, FcLDP1 as well as the closest ortholog in the woodland strawberry, F. vesca (FvLDP1) possess multiple brassinosteroid, as well as abscisic acid (ABA) response motifs in the promoter region, consistent with the response of transiently expressed FcLDP1 promoter-GFP fusions to these hormones, and the rise in FcLDP1 transcript levels in white strawberry fruits treated with brassinosteroids or ABA. These findings suggest that both hormones regulate FcLDP1 expression during the development of white strawberries. PMID:27379111

  18. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response.

    PubMed

    Lim, Chae Woo; Lim, Sohee; Baek, Woonhee; Lee, Sung Chul

    2015-08-01

    As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1-silenced peppers and CaLEA1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus-induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl-treated leaves. CaLEA1-OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild-type plants because of enhanced stomatal closure and increased expression of stress-responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA-mediated cell signaling. PMID:25302464

  19. FcLDP1, a Gene Encoding a Late Embryogenesis Abundant (LEA) Domain Protein, Responds to Brassinosteroids and Abscisic Acid during the Development of Fruits in Fragaria chiloensis

    PubMed Central

    Espinoza, Analía; Contreras, Rodrigo; Zúñiga, Gustavo E.; Herrera, Raúl; Moya-León, María Alejandra; Norambuena, Lorena; Handford, Michael

    2016-01-01

    White Chilean strawberries (Fragaria chiloensis) are non-climacteric fruits, with an exotic color and aroma. In order to discover genes involved in the development of these fruits, we identified a fragment of a gene encoding a late embryogenesis abundant domain protein, FcLDP1, that was expressed in early stages of fruit development, particularly in receptacles. Hormones play key roles in regulating the development of non-climacteric fruits. We show that the brassinosteroid content of the white strawberry varies during development. Additionally, FcLDP1 as well as the closest ortholog in the woodland strawberry, F. vesca (FvLDP1) possess multiple brassinosteroid, as well as abscisic acid (ABA) response motifs in the promoter region, consistent with the response of transiently expressed FcLDP1 promoter-GFP fusions to these hormones, and the rise in FcLDP1 transcript levels in white strawberry fruits treated with brassinosteroids or ABA. These findings suggest that both hormones regulate FcLDP1 expression during the development of white strawberries. PMID:27379111

  20. Uses of phage display in agriculture: sequence analysis and comparative modeling of late embryogenesis abundant client proteins suggest protein-nucleic acid binding functionality.

    PubMed

    Kushwaha, Rekha; Downie, A Bruce; Payne, Christina M

    2013-01-01

    A group of intrinsically disordered, hydrophilic proteins-Late Embryogenesis Abundant (LEA) proteins-has been linked to survival in plants and animals in periods of stress, putatively through safeguarding enzymatic function and prevention of aggregation in times of dehydration/heat. Yet despite decades of effort, the molecular-level mechanisms defining this protective function remain unknown. A recent effort to understand LEA functionality began with the unique application of phage display, wherein phage display and biopanning over recombinant Seed Maturation Protein homologs from Arabidopsis thaliana and Glycine max were used to retrieve client proteins at two different temperatures, with one intended to represent heat stress. From this previous study, we identified 21 client proteins for which clones were recovered, sometimes repeatedly. Here, we use sequence analysis and homology modeling of the client proteins to ascertain common sequence and structural properties that may contribute to binding affinity with the protective LEA protein. Our methods uncover what appears to be a predilection for protein-nucleic acid interactions among LEA client proteins, which is suggestive of subcellular residence. The results from this initial computational study will guide future efforts to uncover the protein protective mechanisms during heat stress, potentially leading to phage-display-directed evolution of synthetic LEA molecules.

  1. Hydration dynamics near a model protein surface

    SciTech Connect

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.

  2. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  3. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  4. Adsorption of 4-picoline and piperidine to the hydrated SiO2 surface: probing the surface acidity with vibrational sum frequency generation spectroscopy.

    PubMed

    Liu, Dingfang; Ma, Gang; Allen, Heather C

    2005-04-01

    Vapor adsorption is an important process influencing the migration and the fate of many organic pollutants in the environment. In this study, vibrational sum frequency generation (SFG) spectroscopy was used to study the adsorption of two surface acidity probe molecules, 4-picoline (pKa = 5.94) and piperidine (pKa = 11.24), onto the amorphous SiO2 surface. The adsorption of 4-picoline onto the silica surface occurs by forming weak hydrogen bonds between the nitrogen atoms of 4-picoline molecules and the hydrogen atoms of surface silanol OH groups. Piperidine molecules are strongly chemisorbed onto the SiO2 surface through the protonation of piperidine molecules by surface silanol OH groups. The SFG results indicate that the surface acidity constant of silanol OH groups (pKa-(HOSi triple bond)) is in the range of 5.94-11.24 at the air/solid interface. Although this range of surface acidity constants is quite wide, it is possible to narrow it by choosing probe molecules with a smaller pKa range. Together with theoretical prediction methods, adsorption studies using vibrational SFG spectroscopy are capable of quantifying the surface acidity of mineral oxides by carefully choosing the acidity probe molecules.

  5. Influence of magnetic fields on the hydration process of amino acids: vibrational spectroscopy study of L-phenylalanine and L-glutamine.

    PubMed

    De Ninno, Antonella; Congiu Castellano, Agostina

    2014-02-01

    Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to investigate the effect of weak electromagnetic fields on the structure of L-glutamine (L-Gln) and L-phenylalnine (L-Phe) in aqueous solution. It has been found that the exposure to a DC field or a 50 Hz AC field, for a short time induces modifications in the spectra of exposed samples in agreement with our preceding observations on glutamic acid. Furthermore, the acid-base equilibrium has been investigated by using the ratio of the intensity of the deprotonated on protonated species. In the case of L-Phe, the exposure induces a measurable shift of acid dissociation constant pKa1 out of the experimental errors, while in case of L-Gln, the effect is under the limit detectable with this method. The phenomenon of the shift of the acid-base equilibrium has been connected elsewhere to modification of the water-water hydrogen bonds in the water around both the backbone and the residue (R). Here we suggest that the magnetic field modifies the water structure around the molecules and changes the hydrophobic interactions allowing the molecules of amino acids to aggregate. The differences observed in the behavior of L-Phe and L-Gln may be related to the differences in the polarity of their residues.

  6. Hydration-dependent dynamic crossover phenomenon in protein hydration water

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Fratini, Emiliano; Li, Mingda; Le, Peisi; Mamontov, Eugene; Baglioni, Piero; Chen, Sow-Hsin

    2014-10-01

    The characteristic relaxation time τ of protein hydration water exhibits a strong hydration level h dependence. The dynamic crossover is observed when h is higher than the monolayer hydration level hc=0.2-0.25 and becomes more visible as h increases. When h is lower than hc, τ only exhibits Arrhenius behavior in the measured temperature range. The activation energy of the Arrhenius behavior is insensitive to h, indicating a local-like motion. Moreover, the h dependence of the crossover temperature shows that the protein dynamic transition is not directly or solely induced by the dynamic crossover in the hydration water.

  7. Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl

    NASA Technical Reports Server (NTRS)

    Jones, A. M.; Cochran, D. S.; Lamerson, P. M.; Evans, M. L.; Cohen, J. D.

    1991-01-01

    We examined the changes in the levels of indoleacetic acid (IAA), IAA esters, and a 22-kilodalton subunit auxin-binding protein (ABP1) in apical mesocotyl tissue of maize (Zea mays L.) during continuous red light (R) irradiation. These changes were compared with the kinetics of R-induced growth inhibition in the same tissue. Upon the onset of continuous irradiation, growth decreased in a continuous manner following a brief lag period. The decrease in growth continued for 5 hours, then remained constant at 25% of the dark rate. The abundance of ABP1 and the level of free IAA both decreased in the mesocotyl. Only the kinetics of the decrease in IAA within the apical mesocotyl correlated with the initial change in growth, although growth continued to decrease even after IAA content reached its final level, 50% of the dark control. This decrease in IAA within the mesocotyl probably occurs primarily by a change in its transport within the shoot since auxin applied as a pulse move basipetally in R-irradiated tissue at the same rate but with half the area as dark control tissue. In situ localization of auxin in etiolated maize shoots revealed that R-irradiated shoots contained less auxin in the epidermis than the dark controls. Irradiated mesocotyl grew 50% less than the dark controls even when incubated in an optimal level of auxin. However, irradiated and dark tissue contained essentially the same amount of radioactivity after incubation in [14C]IAA indicating that the light treatment does not affect the uptake into the tissue through the cut end, although it is possible that a small subset of cells within the mesocotyl is affected. These observations support the hypothesis that R causes a decrease in the level of auxin in epidermal cells of the mesocotyl, consequently constraining the growth of the entire mesocotyl.

  8. Carbon-13 natural abundance signatures of long-chain fatty acids to determinate sediment origin: A case study in northeast Austria

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Gibbs, Max; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Swales, Andrew; Alewell, Christine

    2016-04-01

    - Several recently published information from scientific research have highlighted that compound-specific stable isotope (CSSI) signatures of fatty acids (FAs) based on the measurement of carbon-13 natural abundance signatures showed great promises to identify sediment origin. The authors have used this innovative isotopic approach to investigate the sources of sediment in a three hectares Austrian sub-watershed (i.e. Mistelbach). Through a previous study using the Cs-137 technique, Mabit et al. (Geoderma, 2009) reported a local maximum sedimentation rate reaching 20 to 50 t/ha/yr in the lowest part of this watershed. However, this study did not identify the sources. Subsequently, the deposited sediment at its outlet (i.e. the sediment mixture) and representative soil samples from the four main agricultural fields - expected to be the source soils - of the site were investigated. The bulk delta carbon-13 of the samples and two long-chain FAs (i.e. C22:0 and C24:0) allowed the best statistical discrimination. Using two different mixing models (i.e. IsoSource and CSSIAR v1.00) and the organic carbon content of the soil sources and sediment mixture, the contribution of each source has been established. Results suggested that the grassed waterway contributed to at least 50% of the sediment deposited at the watershed outlet. This study, that will require further validation, highlights that CSSI and Cs-137 techniques are complementary as fingerprints and tracers for establishing land sediment redistribution and could provide meaningful information for optimized decision-making by land managers.

  9. Abundant local interactions in the 4p16.1 region suggest functional mechanisms underlying SLC2A9 associations with human serum uric acid

    PubMed Central

    Wei, Wen-Hua; Guo, Yunfei; Kindt, Alida S.D.; Merriman, Tony R.; Semple, Colin A.; Wang, Kai; Haley, Chris S.

    2014-01-01

    Human serum uric acid concentration (SUA) is a complex trait. A recent meta-analysis of multiple genome-wide association studies (GWAS) identified 28 loci associated with SUA jointly explaining only 7.7% of the SUA variance, with 3.4% explained by two major loci (SLC2A9 and ABCG2). Here we examined whether gene–gene interactions had any roles in regulating SUA using two large GWAS cohorts included in the meta-analysis [the Atherosclerosis Risk in Communities study cohort (ARIC) and the Framingham Heart Study cohort (FHS)]. We found abundant genome-wide significant local interactions in ARIC in the 4p16.1 region located mostly in an intergenic area near SLC2A9 that were not driven by linkage disequilibrium and were replicated in FHS. Taking the forward selection approach, we constructed a model of five SNPs with marginal effects and three epistatic SNP pairs in ARIC—three marginal SNPs were located within SLC2A9 and the remaining SNPs were all located in the nearby intergenic area. The full model explained 1.5% more SUA variance than that explained by the lead SNP alone, but only 0.3% was contributed by the marginal and epistatic effects of the SNPs in the intergenic area. Functional analysis revealed strong evidence that the epistatically interacting SNPs in the intergenic area were unusually enriched at enhancers active in ENCODE hepatic (HepG2, P = 4.7E−05) and precursor red blood (K562, P = 5.0E−06) cells, putatively regulating transcription of WDR1 and SLC2A9. These results suggest that exploring epistatic interactions is valuable in uncovering the complex functional mechanisms underlying the 4p16.1 region. PMID:24821702

  10. Retinoic acid-induced differentiation of human neuroblastoma SH-SY5Y cells is associated with changes in the abundance of G proteins.

    PubMed

    Ammer, H; Schulz, R

    1994-04-01

    Western blot analysis, using subtype-specific anti-G protein antibodies, revealed the presence of the following G protein subunits in human neuroblastoma SH-SY5Y cells: Gs alpha, Gi alpha 1, Gi alpha 2, Go alpha, Gz alpha, and G beta. Differentiation of the cells by all-trans-retinoic acid (RA) treatment (10 mumol/L; 6 days) caused substantial alterations in the abundance of distinct G protein subunits. Concomitant with an enhanced expression of mu-opioid binding sites, the levels of the inhibitory G proteins Gi alpha 1 and Gi alpha 2 were found to be significantly increased. This coordinate up-regulation is accompanied by functional changes in mu-opioid receptor-stimulated low-Km GTPase, mu-receptor-mediated adenylate cyclase inhibition, and receptor-independent guanosine 5'-(beta gamma-imido)triphosphate [Gpp(NH)p; 10 nmol/L]-mediated attenuation of adenylate cyclase activity. In contrast, increased levels of inhibitory G proteins had no effect on muscarinic cholinergic receptor-mediated adenylate cyclase inhibition. With respect to stimulatory receptor systems, a reciprocal regulation was observed for prostaglandin E1 (PGE1) receptors and Gs alpha, the G protein subunit activating adenylate cyclase. RA treatment of SH-SY5Y cells increases both the number of PGE1 binding sites and PGE1-stimulated adenylate cyclase activity, but significantly reduced amounts of Gs alpha were found. This down-regulation is paralleled by a decrease in the stimulatory activity of Gs alpha as assessed in S49 cyc- reconstitution assays.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8133263

  11. Hydrogen peroxide generation from hydrated protein drink mixes.

    PubMed

    Boatright, William L

    2013-11-01

    Generation of oxygen radicals upon hydration of powdered protein products was examined using luminol-enhanced chemiluminescence. Among individual proteins powders examined oxidative bursts occurred almost immediately, and then rapidly declined in the 1st 5 min. Commercially available powdered protein drink mixes behaved differently, with an initial lag phase followed by a sustained increase in luminol-enhanced luminescence, lasting for an hour or beyond. The drink mix that produced the highest level of luminol-enhanced luminescence also contained 379 nM ascorbate radical when hydrated (28 nmole/g of powdered drink mix). The entire ascorbic acid content of this drink mix was oxidized to nondetectable levels (using HPLC-diode array detection) within 60 min of being hydrated. Treatment of the hydrated drink mixes with the enzyme catalase almost completely inhibited the luminol-enhanced luminescence from the hydrated drink mix demonstrating that hydrogen peroxide generated via a chemical reaction among the drink mixes' ingredients was a primary reactive oxygen species (ROS). This is the strongest oxidative capacity demonstrated in a food product as consumed (without any manipulation to increase ROS) and the 1st time that the ascrobate radical in a food product as been quantified. Generation of hydrogen peroxide in the hydrated drink mixes from metal catalyzed reactions involving oxygen and reducing equivalents from ascorbic acid is proposed.

  12. Rapid gas hydrate formation process

    DOEpatents

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  13. Global occurrences of gas hydrate

    USGS Publications Warehouse

    Kvenvolden, K.A.; Lorenson, T.D.

    2001-01-01

    Natural gas hydrate is found worldwide in sediments of outer continental margins of all oceans and in polar areas with continuous permafrost. There are currently 77 localities identified globally where geophysical, geochemical and/or geological evidence indicates the presence of gas hydrate. Details concerning individual gas-hydrate occurrences are compiled at a new world-wide-web (www) site (http://walrus.wr.usgs.gov/globalhydrate). This site has been created to facilitate global gas-hydrate research by providing information on each of the localities where there is evidence for gas hydrate. Also considered are the implications of gas hydrate as a potential (1) energy resource, (2) factor in global climate change, and (3) geohazard.

  14. Chemical and Mineralogical Characterization of Acid-Sulfate Alteration of Basaltic Material on Mauna Kea Volcano, Hawaii: Jarosite and Hydrated Halloysite

    NASA Technical Reports Server (NTRS)

    Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.

    2012-01-01

    Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH <3) formation environment [4]. Jarosite and other sulfate minerals, including kieserite, gypsum, and alunite have also been identified in several locations in orbital remote sensing data from the MEx OMEGA and MRO CRISM instruments [e.g. 5-8]. Acid sulfate weathering of basaltic materials is an obvious pathway for formation of sulfate-bearing phases on Mars [e.g. 4, 9, 10]. In order to constrain acid-sulfate pathways on Mars, we are studying the mineralogical and chemical manifestations of acid-sulfate alteration of basaltic compositions in terrestrial environments. We have previously shown that acidsulfate alteration of tephra under hydrothermal conditions on the Puu Poliahu cone (summit region of Mauna Kea volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO

  15. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    PubMed Central

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  16. Chemical characteristics of mineral trioxide aggregate and its hydration reaction.

    PubMed

    Chang, Seok-Woo

    2012-11-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  17. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  18. Grain-scale imaging and compositional characterization of cryo-preserved India NGHP 01 gas-hydrate-bearing cores

    USGS Publications Warehouse

    Stern, Laura A.; Lorenson, T.D.

    2014-01-01

    We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.

  19. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    USGS Publications Warehouse

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-01-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant “onion-skin” fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2–3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched “hydration fronts” where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between ~110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at <200 °C. Our observations support fast hydration at temperatures as low as 60 °C; prolonged exposure to high temperature of 175°–225° during water addition is less likely as the glass would lose alkalies and should alter to clays within days. A compilation of low-temperature hydration diffusion coefficients suggests ~2 orders of magnitude higher rates of diffusion at 60–110 °C temperatures, compared with values expected from extrapolation of high-temperature (>400 °C) experimental data. The thick

  20. Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties.

    PubMed

    Brown, Erika P; Koh, Carolyn A

    2016-01-01

    Investigating the effect of surfactants on clathrate hydrate growth and morphology, especially particle shell strength and cohesion force, is critical to advancing new strategies to mitigate hydrate plug formation. In this study, dodecylbenzenesulfonic acid and polysorbate 80 surfactants were included during the growth of cyclopentane hydrates at several concentrations above and below the critical micelle concentration. A novel micromechanical method was applied to determine the force required to puncture the hydrate shell using a glass cantilever (with and without surfactants), with annealing times ranging from immediately after the hydrate nucleated to 90 minutes after formation. It was shown that the puncture force was decreased by the addition of both surfactants up to a maximum of 79%. Over the entire range of annealing times (0-90 minutes), the thickness of the hydrate shell was also measured. However, there was no clear change in shell thickness with the addition of surfactants. The growth rate of the hydrate shell was found to vary less than 15% with the addition of surfactants. The cohesive force between two hydrate particles was measured for each surfactant and found to be reduced by 28% to 78%. Interfacial tension measurements were also performed. Based on these results, microscopic changes to the hydrate shell morphology (due to the presence of surfactants) were proposed to cause the decrease in the force required to break the hydrate shell, since no macroscopic morphology changes were observed. Understanding the hydrate shell strength can be critical to reducing the capillary bridge interaction between hydrate particles or controlling the release of unconverted water from the interior of the hydrate particle, which can cause rapid hydrate conversion.

  1. Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties.

    PubMed

    Brown, Erika P; Koh, Carolyn A

    2016-01-01

    Investigating the effect of surfactants on clathrate hydrate growth and morphology, especially particle shell strength and cohesion force, is critical to advancing new strategies to mitigate hydrate plug formation. In this study, dodecylbenzenesulfonic acid and polysorbate 80 surfactants were included during the growth of cyclopentane hydrates at several concentrations above and below the critical micelle concentration. A novel micromechanical method was applied to determine the force required to puncture the hydrate shell using a glass cantilever (with and without surfactants), with annealing times ranging from immediately after the hydrate nucleated to 90 minutes after formation. It was shown that the puncture force was decreased by the addition of both surfactants up to a maximum of 79%. Over the entire range of annealing times (0-90 minutes), the thickness of the hydrate shell was also measured. However, there was no clear change in shell thickness with the addition of surfactants. The growth rate of the hydrate shell was found to vary less than 15% with the addition of surfactants. The cohesive force between two hydrate particles was measured for each surfactant and found to be reduced by 28% to 78%. Interfacial tension measurements were also performed. Based on these results, microscopic changes to the hydrate shell morphology (due to the presence of surfactants) were proposed to cause the decrease in the force required to break the hydrate shell, since no macroscopic morphology changes were observed. Understanding the hydrate shell strength can be critical to reducing the capillary bridge interaction between hydrate particles or controlling the release of unconverted water from the interior of the hydrate particle, which can cause rapid hydrate conversion. PMID:26618773

  2. Volatile inventories in clathrate hydrates formed in the primordial nebula.

    PubMed

    Mousis, Olivier; Lunine, Jonathan I; Picaud, Sylvain; Cordier, Daniel

    2010-01-01

    The examination of ambient thermodynamic conditions suggests that clathrate hydrates could exist in the Martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates are probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at a given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically averaged Kihara potential with a nominal set of parameters, most of which are fitted to experimental equilibrium data. Our model allows us to find that Kr, Ar and N2 can be efficiently encaged in clathrate hydrates formed at temperatures higher than approximately 48.5 K in the primitive nebula, instead of forming pure condensates below 30 K. However, we find at the same time that the determination of the relative abundances of guest species incorporated in these clathrate hydrates strongly depends on the choice of the parameters of the Kihara potential and also on the adopted size of cages. Indeed, by testing different potential parameters, we have noted that even minor dispersions between the different existing sets can lead to non-negligible variations in the determination of the volatiles trapped in clathrate hydrates formed in the primordial nebula. However, these variations are not found to be strong enough to reverse the relative abundances

  3. Lactic acid and thermal treatments trigger the hydrolysis of myo-inositol hexakisphosphate and modify the abundance of lower myo-inositol phosphates in barley (Hordeum vulgare L.).

    PubMed

    Metzler-Zebeli, Barbara U; Deckardt, Kathrin; Schollenberger, Margit; Rodehutscord, Markus; Zebeli, Qendrim

    2014-01-01

    Barley is an important source of dietary minerals, but it also contains myo-inositol hexakisphosphate (InsP6) that lowers their absorption. This study evaluated the effects of increasing concentrations (0.5, 1, and 5%, vol/vol) of lactic acid (LA), without or with an additional thermal treatment at 55°C (LA-H), on InsP6 hydrolysis, formation of lower phosphorylated myo-inositol phosphates, and changes in chemical composition of barley grain. Increasing LA concentrations and thermal treatment linearly reduced (P<0.001) InsP6-phosphate (InsP6-P) by 0.5 to 1 g compared to the native barley. In particular, treating barley with 5% LA-H was the most efficient treatment to reduce the concentrations of InsP6-P, and stimulate the formation of lower phosphorylated myo-inositol phosphates such as myo-inositol tetraphosphate (InsP4) and myo-inositol pentaphosphates (InsP5). Also, LA and thermal treatment changed the abundance of InsP4 and InsP5 isomers with Ins(1,2,5,6)P4 and Ins(1,2,3,4,5)P5 as the dominating isomers with 5% LA, 1% LA-H and 5% LA-H treatment of barley, resembling to profiles found when microbial 6-phytase is applied. Treating barley with LA at room temperature (22°C) increased the concentration of resistant starch and dietary fiber but lowered those of total starch and crude ash. Interestingly, total phosphorus (P) was only reduced (P<0.05) in barley treated with LA-H but not after processing of barley with LA at room temperature. In conclusion, LA and LA-H treatment may be effective processing techniques to reduce InsP6 in cereals used in animal feeding with the highest degradation of InsP6 at 5% LA-H. Further in vivo studies are warranted to determine the actual intestinal P availability and to assess the impact of changes in nutrient composition of LA treated barley on animal performance.

  4. Lactic Acid and Thermal Treatments Trigger the Hydrolysis of Myo-Inositol Hexakisphosphate and Modify the Abundance of Lower Myo-Inositol Phosphates in Barley (Hordeum vulgare L.)

    PubMed Central

    Metzler-Zebeli, Barbara U.; Deckardt, Kathrin; Schollenberger, Margit; Rodehutscord, Markus; Zebeli, Qendrim

    2014-01-01

    Barley is an important source of dietary minerals, but it also contains myo-inositol hexakisphosphate (InsP6) that lowers their absorption. This study evaluated the effects of increasing concentrations (0.5, 1, and 5%, vol/vol) of lactic acid (LA), without or with an additional thermal treatment at 55°C (LA-H), on InsP6 hydrolysis, formation of lower phosphorylated myo-inositol phosphates, and changes in chemical composition of barley grain. Increasing LA concentrations and thermal treatment linearly reduced (P<0.001) InsP6-phosphate (InsP6-P) by 0.5 to 1 g compared to the native barley. In particular, treating barley with 5% LA-H was the most efficient treatment to reduce the concentrations of InsP6-P, and stimulate the formation of lower phosphorylated myo-inositol phosphates such as myo-inositol tetraphosphate (InsP4) and myo-inositol pentaphosphates (InsP5). Also, LA and thermal treatment changed the abundance of InsP4 and InsP5 isomers with Ins(1,2,5,6)P4 and Ins(1,2,3,4,5)P5 as the dominating isomers with 5% LA, 1% LA-H and 5% LA-H treatment of barley, resembling to profiles found when microbial 6-phytase is applied. Treating barley with LA at room temperature (22°C) increased the concentration of resistant starch and dietary fiber but lowered those of total starch and crude ash. Interestingly, total phosphorus (P) was only reduced (P<0.05) in barley treated with LA-H but not after processing of barley with LA at room temperature. In conclusion, LA and LA-H treatment may be effective processing techniques to reduce InsP6 in cereals used in animal feeding with the highest degradation of InsP6 at 5% LA-H. Further in vivo studies are warranted to determine the actual intestinal P availability and to assess the impact of changes in nutrient composition of LA treated barley on animal performance. PMID:24967651

  5. Changes in microbial communities associated with gas hydrates in subseafloor sediments from the Nankai Trough.

    PubMed

    Katayama, Taiki; Yoshioka, Hideyoshi; Takahashi, Hiroshi A; Amo, Miki; Fujii, Tetsuya; Sakata, Susumu

    2016-08-01

    Little is known about the microbial distribution patterns in subseafloor sediments. This study examines microbial diversity and activities in sediments of the Nankai Trough, where biogenic gas hydrates are deposited. Illumina sequencing of 16S rRNA genes revealed that the prokaryotic community structure is correlated with hydrate occurrence and depth but not with the sedimentary facies. The bacterial phyla 'Atribacteria' lineage JS1 and Chloroflexi dominated in all samples, whereas lower taxonomic units of Chloroflexi accounted for community variation related to hydrate saturation. In archaeal communities, 'Bathyarchaeota' was significantly abundant in the hydrate-containing samples, whereas Marine Benthic Group-B dominated in the upper sediments without hydrates. mcrA gene sequences assigned to deeply branching groups and ANME-1 were detected only in hydrate-containing samples. A predominance of hydrogenotrophic methanogens, Methanomicrobiales and Methanobacteriales, over acetoclastic methanogens was found throughout the depth. Incubation tests on hydrate-containing samples with a stable isotope tracer showed anaerobic methane oxidation activities under both low- and seawater-like salinity conditions. These results indicate that the distribution patterns of microorganisms involved in carbon cycling changed with gas hydrate occurrence, possibly because of the previous hydrate dissociation followed by pore water salinity decrease in situ, as previously proposed by a geochemical study at the study site. PMID:27170363

  6. Changes in microbial communities associated with gas hydrates in subseafloor sediments from the Nankai Trough.

    PubMed

    Katayama, Taiki; Yoshioka, Hideyoshi; Takahashi, Hiroshi A; Amo, Miki; Fujii, Tetsuya; Sakata, Susumu

    2016-08-01

    Little is known about the microbial distribution patterns in subseafloor sediments. This study examines microbial diversity and activities in sediments of the Nankai Trough, where biogenic gas hydrates are deposited. Illumina sequencing of 16S rRNA genes revealed that the prokaryotic community structure is correlated with hydrate occurrence and depth but not with the sedimentary facies. The bacterial phyla 'Atribacteria' lineage JS1 and Chloroflexi dominated in all samples, whereas lower taxonomic units of Chloroflexi accounted for community variation related to hydrate saturation. In archaeal communities, 'Bathyarchaeota' was significantly abundant in the hydrate-containing samples, whereas Marine Benthic Group-B dominated in the upper sediments without hydrates. mcrA gene sequences assigned to deeply branching groups and ANME-1 were detected only in hydrate-containing samples. A predominance of hydrogenotrophic methanogens, Methanomicrobiales and Methanobacteriales, over acetoclastic methanogens was found throughout the depth. Incubation tests on hydrate-containing samples with a stable isotope tracer showed anaerobic methane oxidation activities under both low- and seawater-like salinity conditions. These results indicate that the distribution patterns of microorganisms involved in carbon cycling changed with gas hydrate occurrence, possibly because of the previous hydrate dissociation followed by pore water salinity decrease in situ, as previously proposed by a geochemical study at the study site.

  7. Thermochemical Kinetics of H2O and HNO3 on crystalline Nitric Acid Hydrates (alpha-, beta-NAT, NAD) in the range 175-200 K

    NASA Astrophysics Data System (ADS)

    Rossi, Michel J.; Iannarelli, Riccardo

    2015-04-01

    The growth of NAT (Nitric Acid Trihydrate, HNO3x3H2O) and NAD (Nitric Acid Dihydrate, HNO3x2H2O) on an ice substrate, the evaporative lifetime of NAT and NAD as well as the interconversion of alpha- and beta-NAT competing with evaporation and growth under UT/LS conditions depends on the interfacial kinetics of H2O and HNO3 vapor on the condensed phase. Despite the existence of some literature results we have embarked on a systematic investigation of the kinetics using a multidiagnostic experimental approach enabled by the simultaneous observation of both the gas (residual gas mass spectrometry) as well as the condensed phase (FTIR absorption in transmission). We report on thermochemically consistent mass accommodation coefficients alpha and absolute evaporation rates Rev/molecule s-1cm-3 as a function of temperature which yields the corresponding vapor pressures of both H2O and HNO3 in equilibrium with the crystalline phases, hence the term thermochemical kinetics. These results have been obtained using a stirred flow reactor (SFR) using a macroscopic pure ice film of 1 micron or so thickness as a starting substrate mimicking atmospheric ice particles and are reported in a phase diagram specifically addressing UT (Upper Troposphere)/LS (Lower Stratosphere) conditions as far as temperature and partial pressures are concerned. The experiments have been performed either at steady-state flow conditions or in transient supersaturation using a pulsed solenoid valve in order to generate gas pulses whose decay were subsequently monitored in real time. Special attention has been given to the effect of the stainless-steel vessel walls in that Langmuir adsorption isotherms for H2O and HNO3 have been used to correct for wall-adsorption of both probe gases. Typically, the accommodation coefficients of H2O and HNO3 are similar throughout the temperature range whereas the rates of evaporation Rev of H2O are significantly larger than for HNO3 thus leading to the difference in

  8. Hydration and physical performance.

    PubMed

    Murray, Bob

    2007-10-01

    There is a rich scientific literature regarding hydration status and physical function that began in the late 1800s, although the relationship was likely apparent centuries before that. A decrease in body water from normal levels (often referred to as dehydration or hypohydration) provokes changes in cardiovascular, thermoregulatory, metabolic, and central nervous function that become increasingly greater as dehydration worsens. Similarly, performance impairment often reported with modest dehydration (e.g., -2% body mass) is also exacerbated by greater fluid loss. Dehydration during physical activity in the heat provokes greater performance decrements than similar activity in cooler conditions, a difference thought to be due, at least in part, to greater cardiovascular and thermoregulatory strain associated with heat exposure. There is little doubt that performance during prolonged, continuous exercise in the heat is impaired by levels of dehydration >or= -2% body mass, and there is some evidence that lower levels of dehydration can also impair performance even during relatively short-duration, intermittent exercise. Although additional research is needed to more fully understand low-level dehydration's effects on physical performance, one can generalize that when performance is at stake, it is better to be well-hydrated than dehydrated. This generalization holds true in the occupational, military, and sports settings.

  9. Ductile flow of methane hydrate

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  10. Some thermodynamical aspects of protein hydration water.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H Eugene; Chen, Sow-Hsin

    2015-06-01

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  11. Some thermodynamical aspects of protein hydration water

    SciTech Connect

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene; Chen, Sow-Hsin

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  12. Offshore gas hydrate sample database with an overview and preliminary analysis

    USGS Publications Warehouse

    Booth, James S.; Rowe, Mary M.; Fisher, Kathleen M.

    1996-01-01

    Synopsis -- A database of offshore gas hydrate samples was constructed from published observations and measurements. More than 90 samples from 15 distinct regions are represented in 13 data categories. This database has permitted preliminary description of gas hydrate (chiefly methane hydrate) tendencies and associations with respect to their geological environment. Gas hydrates have been recovered from offshore sediment worldwide and from total depths (water depth plus subseabed depth) ranging from 500 m to nearly 6,000 m. Samples have come from subbottom depths ranging from 0 to 400 m. Various physiographic provinces are represented in the data set including second order landforms such as continental margins and deep-sea trenches, and third order forms such as submarine canyons, continental slopes, continental margin ridges and intraslope basins. There is a clear association between fault zones and other manifestations of local, tectonic-related processes, and hydrate-bearing sediment. Samples of gas hydrate frequently consist of individual grains or particles. These types of hydrates are often further described as inclusions or disseminated in the sediment. Moreover, hydrates occur as a cement, as nodules, or as layers (mostly laminae) or in veins. The preponderance of hydrates that could be characterized as 2- dimensional (planar) were associated with fine sediment, either as intercalated layers or in fractures. Hydrate cements were commonly associated with coarser sediment. Hydrates have been found in association with grain sizes ranging from clay through gravel. More hydrates are associated with the more abundant finer-grained sediment than with coarser sediment, and many were discovered in the presence of both fine (silt and clay) and coarse sediment. The thickness of hydrate zones (i. e., sections of hydrate-bearing sediment) varies from a few centimeters to as much as 30 m. In contrast, the thickness of layers of pure hydrate or the dimensions of

  13. Administration of Exogenous Growth Hormone Is Associated with Changes in Plasma and Intracellular Mammary Amino Acid Profiles and Abundance of the Mammary Gland Amino Acid Transporter SLC3A2 in Mid-Lactation Dairy Cows

    PubMed Central

    Sciascia, Quentin L.; Pacheco, David; McCoard, Susan A.

    2015-01-01

    The objectives of this study were to (1) identify changes in plasma and mammary intracellular amino acid (AA) profiles in dairy cows treated with growth hormone (GH), and (2) evaluate the expression of mammary gland genes involved in the transport of AA identified in (1). Eight non-pregnant (n = 4 per group) lactating dairy cows were treated with a single subcutaneous injection of either a slow-release formulation of commercially available GH (Lactotropin 500 mg) or physiological saline solution. Six days after treatment, cows were milked and blood collected from the jugular vein for the analysis of free AA in the plasma. Cows were euthanized and mammary tissue harvested. Treatment with GH increased milk, protein, fat and lactose yields, with no effect on dry matter intake. Plasma concentrations of lysine and group I AA decreased significantly, and arginine, methionine, tyrosine and arginine-family AA tended to decrease in GH-treated cows. Concentrations of intracellular glycine, serine and glutamate increased significantly, with a trend for decreased arginine observed in the mammary gland of GH-treated cows. A trend for increased concentrations of intracellular total AA, NEAA and arginine-family AA were observed in the mammary gland of GH-treated cows. Variance in the concentration of plasma methionine, tyrosine, valine, alanine, ornithine, BCAA, EAA was significantly different between treatments. Variance in the concentration of intracellular lysine, valine, glutamine, EAA and group II was significantly different between treatments. AA changes were associated with increased mRNA abundance of the mammary gland AA transporter SLC3A2. We propose that these changes occur to support increased milk protein and fatty acid production in the mammary gland of GH-treated cows via potential mTOR pathway signaling. PMID:26226162

  14. CO2 hydrate formation and dissociation in cooled porous media: a potential technology for CO2 capture and storage.

    PubMed

    Yang, Mingjun; Song, Yongchen; Jiang, Lanlan; Zhu, Ningjun; Liu, Yu; Zhao, Yuechao; Dou, Binlin; Li, Qingping

    2013-09-01

    The purpose of this study was to investigate the hydrate formation and dissociation with CO2 flowing through cooled porous media at different flow rates, pressures, temperatures, and flow directions. CO2 hydrate saturation was quantified using the mean intensity of water. The experimental results showed that the hydrate block appeared frequently, and it could be avoided by stopping CO2 flooding early. Hydrate formed rapidly as the temperature was set to 274.15 or 275.15 K, but the hydrate formation delayed when it was 276.15 K. The flow rate was an important parameter for hydrate formation; a too high or too low rate was not suitable for CO2 hydration formation. A low operating pressure was also unacceptable. The gravity made hydrate form easily in the vertically upward flow direction. The pore water of the second cycle converted to hydrate more completely than that of the first cycle, which was a proof of the hydrate "memory effect". When the pressure was equal to atmospheric pressure, hydrate did not dissociate rapidly and abundantly, and a long time or reduplicate depressurization should be used in industrial application.

  15. Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311

    USGS Publications Warehouse

    Torres, M.E.; Trehu, A.M.; Cespedes, N.; Kastner, M.; Wortmann, U.G.; Kim, J.-H.; Long, P.; Malinverno, A.; Pohlman, J.W.; Riedel, M.; Collett, T.

    2008-01-01

    Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW-NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~ 8??km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~ 49??mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23??cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and > 80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (> 63????m) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245??mbsf. ?? 2008 Elsevier B.V.

  16. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope

    USGS Publications Warehouse

    Collett, T.S.; Lee, M.W.; Agena, W.F.; Miller, J.J.; Lewis, K.A.; Zyrianova, M.V.; Boswell, R.; Inks, T.L.

    2011-01-01

    In the 1960s Russian scientists made what was then a bold assertion that gas hydrates should occur in abundance in nature. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. In 1995, the U.S. Geological Survey made the first systematic assessment of the in-place natural gas hydrate resources of the United States. That study suggested that the amount of gas in the gas hydrate accumulations of northern Alaska probably exceeds the volume of known conventional gas resources on the North Slope. Researchers have long speculated that gas hydrates could eventually become a producible energy resource, yet technical and economic hurdles have historically made gas hydrate development a distant goal. This view began to change in recent years with the realization that this unconventional resource could be developed with existing conventional oil and gas production technology. One of the most significant developments was the completion of the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope, which along with the Mallik project in Canada, have for the first time allowed the rational assessment of gas hydrate production technology and concepts. Almost 40 years of gas hydrate research in northern Alaska has confirmed the occurrence of at least two large gas hydrate accumulations on the North Slope. We have also seen in Alaska the first ever assessment of how much gas could be technically recovered from gas hydrates. However, significant technical concerns need to be further resolved in order to assess the ultimate impact of gas hydrate energy resource development in northern Alaska. ?? 2009 Elsevier Ltd.

  17. Methane hydrate formation in turbidite sediments of northern Cascadia IODP Expedition 311

    SciTech Connect

    Torres, M. E.; Trehu, Ann M.; cespedes, N.; Kastner, Miriam; Wortmann, Ulrich; Kim, J.; Long, Philip E.; Malinverno, Alberto; Pohlman, J. W.; Collett, T. S.

    2008-07-15

    Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW–NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~8 km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~49 mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23 cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and N80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (N63 μm) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245 mbsf.

  18. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate

    PubMed Central

    Abbad, Sarra; Wang, Cheng; Waddad, Ayman Yahia; Lv, Huixia; Zhou, Jianping

    2015-01-01

    Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH), based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate) (HA-PBCA) block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA “plain” nanoparticle (MH-PNs) and HA-PBCA/TPGS “mixed” nanoparticles (MH-MNs) were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice. Overall, the results imply that the developed nanoparticles are promising vehicles for the targeted delivery of lipophilic anticancer drugs. PMID:25609946

  19. Navigating the Waters of Unconventional Crystalline Hydrates

    PubMed Central

    2015-01-01

    Elucidating the crystal structures, transformations, and thermodynamics of the two zwitterionic hydrates (Hy2 and HyA) of 3-(4-dibenzo[b,f][1,4]oxepin-11-yl-piperazin-1-yl)-2,2-dimethylpropanoic acid (DB7) rationalizes the complex interplay of temperature, water activity, and pH on the solid form stability and transformation pathways to three neutral anhydrate polymorphs (Forms I, II°, and III). HyA contains 1.29 to 1.95 molecules of water per DB7 zwitterion (DB7z). Removal of the essential water stabilizing HyA causes it to collapse to an amorphous phase, frequently concomitantly nucleating the stable anhydrate Forms I and II°. Hy2 is a stoichiometric dihydrate and the only known precursor to Form III, a high energy disordered anhydrate, with the level of disorder depending on the drying conditions. X-ray crystallography, solid state NMR, and H/D exchange experiments on highly crystalline phase pure samples obtained by exquisite control over crystallization, filtration, and drying conditions, along with computational modeling, provided a molecular level understanding of this system. The slow rates of many transformations and sensitivity of equilibria to exact conditions, arising from its varying static and dynamic disorder and water mobility in different phases, meant that characterizing DB7 hydration in terms of simplified hydrate classifications was inappropriate for developing this pharmaceutical. PMID:26075319

  20. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    PubMed

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  1. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    PubMed

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-24

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  2. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  3. Arctic Methane Hydrates: A Potential Greenhouse Gas Hazard

    NASA Astrophysics Data System (ADS)

    Light, M. P. R.; Solana, C.

    Methane is one of the most important greenhouse gases present in the atmosphere, having 20 times more warming potential than CO2 over a 100 yr period and 56 times more over a 20 yr period. The submarine arctic ice contains abundant methane trapped as hydrates below the continental shelf and its edge. The reserves in this area are estimated at more than 140 times the volume of methane in the atmosphere and, if released relatively quickly, the effects could be catastrophic. Although some authors have established that submarine hydrates will remain stable for the next 1000 yr, this estimation could change if other phenomena are taken into account. Hydrates within the continental shelf in the Arctic are more unstable because of the increase in oceanic temperatures over the last 10,000 yr. A warm (2C maximum) intermediate depth (5- 500 m) current recently detected in the Arctic basin flowing along the shelf edge will further destabilize the methane hydrates exposed there. In addition, the presence of seismic activity along the Arctic mid-ocean ridge and in the northern Alaska region, with magnitudes greater than 3.5 Richter and epicentres less than 30 km deep, could trigger slope failures where the methane hydrate is unstable, releasing huge volumes of methane into the atmosphere. Therefore, identifying those areas that are potentially unstable under these new conditions and the possibilities of reducing the hazard are a priority in our research.

  4. Mass density and water content of saturated never-dried calcium silicate hydrates.

    PubMed

    da Silva, Julio C; Trtik, Pavel; Diaz, Ana; Holler, Mirko; Guizar-Sicairos, Manuel; Raabe, Jörg; Bunk, Oliver; Menzel, Andreas

    2015-04-01

    Calcium silicate hydrates (C-S-H) are the most abundant hydration products in ordinary Portland cement paste. Yet, despite the critical role they play in determining mechanical and transport properties, there is still a debate about their density and exact composition. Here, the site-specific mass density and composition of C-S-H in hydrated cement paste are determined with nanoscale resolution in a nondestructive approach. We used ptychographic X-ray computed tomography in order to determine spatially resolved mass density and water content of the C-S-H within the microstructure of the cement paste. Our findings indicate that the C-S-H at the border of hydrated alite particles possibly have a higher density than the apparent inner-product C-S-H, which is contrary to the common expectations from previous works on hydrated cement paste.

  5. Water, Hydration and Health

    PubMed Central

    Popkin, Barry M.; D’Anci, Kristen E.; Rosenberg, Irwin H.

    2010-01-01

    This review attempts to provide some sense of our current knowledge of water including overall patterns of intake and some factors linked with intake, the complex mechanisms behind water homeostasis, the effects of variation in water intake on health and energy intake, weight, and human performance and functioning. Water represents a critical nutrient whose absence will be lethal within days. Water’s importance for prevention of nutrition-related noncommunicable diseases has emerged more recently because of the shift toward large proportions of fluids coming from caloric beverages. Nevertheless, there are major gaps in knowledge related to measurement of total fluid intake, hydration status at the population level, and few longer-term systematic interventions and no published random-controlled longer-term trials. We suggest some ways to examine water requirements as a means to encouraging more dialogue on this important topic. PMID:20646222

  6. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  7. The influence of SO2 and NO2 impurities on CO2 gas hydrate formation and stability.

    PubMed

    Beeskow-Strauch, Bettina; Schicks, Judith M; Spangenberg, Erik; Erzinger, Jörg

    2011-04-11

    The sequestration of industrially emitted CO(2) in gas hydrate reservoirs has been recently discussed as an option to reduce atmospheric greenhouse gas. This CO(2) contains, despite much effort to clean it, traces of impurities such as SO(2) and NO(2) . Here, we present results of a pilot study on CO(2) hydrates contaminated with 1% SO(2) or 1% NO(2) and show the impact on hydrate formation and stability. Microscopic observations show similar hydrate formation rates, but an increase in hydrate stability in the presence of SO(2). Laser Raman spectroscopy indicates a strong enrichment of SO(2) in the liquid and hydrate phase and its incorporation in both large and small cages of the hydrate lattice. NO(2) is not verifiable by laser Raman spectroscopy, only the presence of nitrate ions could be confirmed. Differential scanning calorimetry analyses show that hydrate stability and dissociation enthalpy of mixed CO(2)-SO(2) hydrates increase, but that only negligible changes arise in the presence of NO(2) impurities. X-ray diffraction data reveal the formation of sI hydrate in all experiments. The conversion rates of ice+gas to hydrate increase in the presence of SO(2), but decrease in the presence of NO(2). After hydrate dissociation, SO(2) and NO(2) dissolved in water and form strong acids.

  8. [NMF and cosmetology of cutaneous hydration].

    PubMed

    Marty, J-P

    2002-01-01

    In the stratum corneum, the water binds to the intracellular hygroscopic and hydrosoluble substances called "natural moisturizing factors" or NMF. These "natural moisturizing factors" contained in the corneocytes are formed during epidermal differentiation and may represent up to 10 p. cent of the corneocyte mass. They are principally amino acids, carboxylic pyrrolidone acid, lactic acid, urea, glucose and mineral ions. Keratinization plays an important part in the formation of NMF that exhibit strong osmotic potential attracting the water molecules. The binding of water to NMF is the static aspect of cutaneous hydration. The second, dynamic, aspect is related to the selective permeability of the stratum corneum and to its lipid barrier properties, the permeability of which depends on the integrity and nature of the inter-corneocyte lipids and their lamellar organization between the cells. In these conditions, hydration cosmetics rely on two concepts that can be isolated or associated: the supply of hydrophilic substances to the stratum corneum, capable of attracting and retaining water (moisturizer) or capable of restoring the barrier in order to restore normal water loss or of protecting it against aggression (occlusive). PMID:11976540

  9. A Hydration of an Alkyne Illustrating Steam and Vacuum Distillation.

    ERIC Educational Resources Information Center

    Wasacz, J. P.; Badding, V. G.

    1982-01-01

    Reports on the conversion 2,5-dimethylhexyne-2,5-diol(I) to 2,2,5,5-tetramethyltetrahydrofuran-3-one(II) using aqueous mercuric sulfate without the use of acid. The experiment has been successfully performed in introductory organic chemistry laboratories demonstrating alkyne hydration, steam distillation, vacuum distillation, drying of organic…

  10. Transcript abundance of amino acid transporters, β-casein, and α-lactalbumin in mammary tissue of periparturient, lactating, and postweaned sows.

    PubMed

    Manjarin, R; Steibel, J P; Zamora, V; Am-In, N; Kirkwood, R N; Ernst, C W; Weber, P S; Taylor, N P; Trottier, N L

    2011-07-01

    The objective of these experiments was to test the hypothesis that transcript abundance of cationic AA transporter- and milk protein-encoding genes increase in the porcine mammary gland in response to higher lactation demand. Genes of interest included those encoding for the milk proteins α-lactalbumin (α-LA) and β-casein (β-CN; LALBA and CSN2, respectively), and AA transporter b(0,+)AT, y(+)LAT1, y(+)LAT2, ATB(0,+), CAT-1, and CAT-2b (SLC7A9, SLC7A7, SLC7A6, SLC6A14, SLC7A1, and SLC7A2, respectively). Mammary tissue was biopsied from 4 sows on d 110 of gestation (prepartum), on d 2 (early postpartum), on d 5 (early), and d 17 (peak) of lactation, and on d 5 after weaning (postweaning), and mRNA of target genes quantified by reverse transcription quantitative PCR. Compared with prepartum, CAT-1, ATB(0,+), y(+)LAT2, β-CN, and α-LA mRNA abundance was higher at early lactation, whereas compared with early lactation, only CAT-1 and α-LA mRNA abundance was higher at peak lactation. The CAT-2b, y(+)LAT1, and b(0,+)AT mRNA abundance did not differ when comparing either prepartum or peak lactation to early lactation. Compared with peak lactation, postweaning mRNA abundance of CAT-1, ATB(0,+), α-LA, and β-CN decreased, y(+)LAT2, CAT-2b, and b(0,+)AT remained unchanged, and y(+)LAT1 increased. The mRNA abundance of y(+)LAT2 increased from early postpartum to early lactation, and remained unchanged for CAT-1, ATB(0,+), α-LA, and β-CN. From prepartum to peak lactation, the mRNA abundance of CAT-1, y(+)LAT2, and ATB(0,+) was positively correlated with that of β-CN and α-LA. In conclusion, the expression of genes encoding for y(+)LAT1, CAT-2b, and b(0,+)AT remained unchanged in porcine mammary glands over prepartum to peak lactation period, whereas expression of genes encoding for CAT-1, ATB(0,+), and y(+)LAT2 was upregulated and positively correlated to expression of genes encoding for the mammary synthesized milk proteins β-CN and α-LA.

  11. Abundances of Triacylglycerol Positional Isomers and Enantiomers Comprised of a Dipalmitoylglycerol Backbone and Short- or Medium-chain Fatty Acids in Bovine Milk Fat.

    PubMed

    Nagai, Toshiharu; Watanabe, Natsuko; Yoshinaga, Kazuaki; Mizobe, Hoyo; Kojima, Koichi; Kuroda, Ikuma; Odanaka, Yuki; Saito, Tadao; Beppu, Fumiaki; Gotoh, Naohiro

    2015-01-01

    Bovine milk fat (BMF) is composed of triacylglycerols (TAG) rich in palmitic acid (P), oleic acid (O), and short-chain or medium-chain fatty acids (SCFAs or MCFAs). The composition and binding positions of the fatty acids on the glycerol backbone determine their physical and nutritional properties. SCFAs and MCFAs are known to characteristically bind to the sn-3 position of the TAGs in BMF; however, there are very few non-destructive analyses of TAG enantiomers binding the fatty acids at this position. We previously reported a method to resolve the enantiomers of TAGs, binding both long-chain saturated fatty acid and unsaturated fatty acid at the sn-1 and 3 positions, in palm oil, fish oil, and marine mammal oil using chiral HPLC. Here, we further developed a method to resolve several TAG enantiomers containing a dipalmitoyl (PP) glycerol backbone and one SCFA (or MCFA) in BMF. We revealed that the predominant TAG structure in BMF was homochiral, such as 1,2-dipalmitoyl-3-butyroyl-sn-glycerol. This is the first quantitative determination of many TAG enantiomers, which bind to a SCFA or MCFA, in BMF was evaluated simultaneously. Furthermore, the results indicated that the amount ratios of the positional isomers and enantiomers of TAGs consisting of a dipalmitoyl (PP) glycerol backbone and SCFA (or MCFA), resembled the whole TAG structures containing the other diacylglycerol backbones consisting of P, O, myristic acid, and/or stearic acid in BMF. PMID:26329769

  12. Insulin increases mRNA abundance of the amino acid transporter SLC7A5/LAT1 via an mTORC1‐dependent mechanism in skeletal muscle cells

    PubMed Central

    Walker, Dillon K.; Drummond, Micah J.; Dickinson, Jared M.; Borack, Michael S.; Jennings, Kristofer; Volpi, Elena; Rasmussen, Blake B.

    2014-01-01

    Abstract Amino acid transporters (AATs) provide a link between amino acid availability and mammalian/mechanistic target of rapamycin complex 1 (mTORC1) activation although the direct relationship remains unclear. Previous studies in various cell types have used high insulin concentrations to determine the role of insulin on mTORC1 signaling and AAT mRNA abundance. However, this approach may limit applicability to human physiology. Therefore, we sought to determine the effect of insulin on mTORC1 signaling and whether lower insulin concentrations stimulate AAT mRNA abundance in muscle cells. We hypothesized that lower insulin concentrations would increase mRNA abundance of select AAT via an mTORC1‐dependent mechanism in C2C12 myotubes. Insulin (0.5 nmol/L) significantly increased phosphorylation of the mTORC1 downstream effectors p70 ribosomal protein S6 kinase 1 (S6K1) and ribosomal protein S6 (S6). A low rapamycin dose (2.5 nmol/L) significantly reduced the insulin‐(0.5 nmol/L) stimulated S6K1 and S6 phosphorylation. A high rapamycin dose (50 nmol/L) further reduced the insulin‐(0.5 nmol/L) stimulated phosphorylation of S6K1 and S6. Insulin (0.5 nmol/L) increased mRNA abundance of SLC38A2/SNAT2 (P ≤ 0.043) and SLC7A5/LAT1 (P ≤ 0.021) at 240 min and SLC36A1/PAT1 (P = 0.039) at 30 min. High rapamycin prevented an increase in SLC38A2/SNAT2 (P = 0.075) and SLC36A1/PAT1 (P ≥ 0.06) mRNA abundance whereas both rapamycin doses prevented an increase in SLC7A5/LAT1 (P ≥ 0.902) mRNA abundance. We conclude that a low insulin concentration increases SLC7A5/LAT1 mRNA abundance in an mTORC1‐dependent manner in skeletal muscle cells. PMID:24760501

  13. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Wang, X.; Hutchinson, D.R.; Wu, S.; Yang, S.; Guo, Y.

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190-221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone. Copyright 2011 by the American Geophysical Union.

  14. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    SciTech Connect

    R.E. Rogers

    1999-09-27

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  15. Identification of Clathrate Hydrates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: the CHILL+ Algorithm.

    PubMed

    Nguyen, Andrew H; Molinero, Valeria

    2015-07-23

    Clathrate hydrates and ice I are the most abundant crystals of water. The study of their nucleation, growth, and decomposition using molecular simulations requires an accurate and efficient algorithm that distinguishes water molecules that belong to each of these crystals and the liquid phase. Existing algorithms identify ice or clathrates, but not both. This poses a challenge for cases in which ice and hydrate coexist, such as in the synthesis of clathrates from ice and the formation of ice from clathrates during self-preservation of methane hydrates. Here we present an efficient algorithm for the identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in molecular simulations. CHILL+ uses the number of staggered and eclipsed water-water bonds to identify water molecules in cubic ice, hexagonal ice, and clathrate hydrate. CHILL+ is an extension of CHILL (Moore et al. Phys. Chem. Chem. Phys. 2010, 12, 4124-4134), which identifies hexagonal and cubic ice but not clathrates. In addition to the identification of hydrates, CHILL+ significantly improves the detection of hexagonal ice up to its melting point. We validate the use of CHILL+ for the identification of stacking faults in ice and the nucleation and growth of clathrate hydrates. To our knowledge, this is the first algorithm that allows for the simultaneous identification of ice and clathrate hydrates, and it does so in a way that is competitive with respect to existing methods used to identify any of these crystals. PMID:25389702

  16. Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal.

    PubMed

    Kadnikov, Vitaly V; Mardanov, Andrey V; Beletsky, Alexey V; Shubenkova, Olga V; Pogodaeva, Tatiana V; Zemskaya, Tamara I; Ravin, Nikolai V; Skryabin, Konstantin G

    2012-02-01

    Gas hydrates in marine sediments have been known for many years but recently hydrates were found in the sediments of Lake Baikal, the largest freshwater basin in the world. Marine gas hydrates are associated with complex microbial communities involved in methanogenesis, methane oxidation, sulfate reduction and other biotransformations. However, the contribution of microorganisms to the formation of gas hydrates remains poorly understood. We examined the microbial communities in the hydrate-bearing sediments and water column of Lake Baikal using pyrosequencing of 16S rRNA genes. Aerobic methanotrophic bacteria dominated the water sample collected at the lake floor in the hydrate-bearing site. The shallow sediments were dominated by Archaea. Methanogens of the orders Methanomicrobiales and Methanosarcinales were abundant, whereas representatives of archaeal lineages known to perform anaerobic oxidation of methane, as well as sulfate-reducing bacteria, were not found. Affiliation of archaea to methanogenic rather than methane-oxidizing lineages was supported by analysis of the sequences of the methyl coenzyme M reductase gene. The deeper sediments located at 85-90 cm depth close to the hydrate were dominated by Bacteria, mostly assigned to Chloroflexi, candidate division JS1 and Caldiserica. Overall, our results are consistent with the biological origin of methane hydrates in Lake Baikal. PMID:22092495

  17. Obsidian hydration dates glacial loading?

    PubMed

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow. PMID:17806883

  18. Proton affinities of hydrated molecules

    NASA Astrophysics Data System (ADS)

    Valadbeigi, Younes

    2016-09-01

    Proton affinities (PA) of non-hydrated, M, and hydrated forms, M(H2O)1,2,3, of 20 organic molecules including alcohols, ethers, aldehydes, ketones and amines were calculated by the B3LYP/6-311++G(d,p) method. For homogeneous families, linear correlations were observed between PAs of the M(H2O)1,2,3 and the PAs of the non-hydrated molecules. Also, the absolute values of the hydration enthalpies of the protonated molecules decreased linearly with the PAs. The correlation functions predicted that for an amine with PA < 1100 kJ/mol the PA(M(H2O)) is larger than the corresponding PA, while for an amine with PA > 1100 kJ/mol the PA(M(H2O)) is smaller than the PA.

  19. Obsidian hydration dates glacial loading?

    PubMed

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  20. Obsidian Hydration: A New Paleothermometer

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Riciputi, Lee R; Cole, David R; Fayek, Mostafa; Elam, J. Michael

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  1. Obsidian hydration dates glacial loading?

    USGS Publications Warehouse

    Friedman, I.; Pierce, K.L.; Obradovich, J.D.; Long, W.D.

    1973-01-01

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming . The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  2. Regulation of cell function by the cellular hydration state.

    PubMed

    Häussinger, D; Lang, F; Gerok, W

    1994-09-01

    Cellular hydration can change within minutes under the influence of hormones, nutrients, and oxidative stress. Such short-term modulation of cell volume within a narrow range acts per se as a potent signal which modifies cellular metabolism and gene expression. It appears that cell swelling and cell shrinkage lead to certain opposite patterns of cellular metabolic function. Apparently, hormones and amino acids can trigger those patterns simply by altering cell volume. Thus alterations of cellular hydration may represent another important mechanism for metabolic control and act as another second or third messenger linking cell function to hormonal and environmental alterations.

  3. Hydration of polyethylene glycol-grafted liposomes.

    PubMed Central

    Tirosh, O; Barenholz, Y; Katzhendler, J; Priev, A

    1998-01-01

    This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG2000 binds 136 +/- 4 molecules of water. For PEG2000 covalently attached to the lipid molecules organized in micelles, the water binding increases to 210 +/- 6 water molecules. This demonstrates that the two different structural configurations of the PEG2000, a random coil in the case of the free PEG and a brush in the case of DHP-PEG2000 micelles, differ in their hydration level. Ultrasound absorption changes in liposomes reflect mainly the heterophase fluctuations and packing defects in the lipid bilayer. The PEG-induced excess ultrasound absorption of the lipid bilayer at 7.7 MHz for PEG-lipid concentrations over 5 mol % indicates the increase in the relaxation time of the headgroup rotation due to PEG-PEG interactions. The adiabatic compressibility (calculated from ultrasound velocity and density) of the lipid bilayer of the liposome increases monotonically with PEG-lipid concentration up to approximately 7 mol %, reflecting release of water from the lipid headgroup region. Elimination of this water, induced by grafted PEG, leads to a decrease in bilayer defects and enhanced lateral packing of the phospholipid acyl chains. We assume that the dehydration of the lipid headgroup region in conjunction with the increase of the hydration of the outer layer by grafting PEG in brush configuration are responsible for increasing thermodynamic stability of the liposomes at 5-7 mol % of PEG-lipid. At higher PEG-lipid concentrations, compressibility and partial volume of the lipid phase

  4. Water Tectonics: Evidence That Hydration Plays a Role in Tectonism

    NASA Astrophysics Data System (ADS)

    Lowry, A. R.; Schutt, D.; Perez-Gussinye, M.; Buehler, J. S.; Berry, M. A.; Ma, X.; Ravat, D.

    2015-12-01

    Several new observations provide evidence that water may play a more important role in tectonism than previously realized. Among these, • Thermodynamical modeling suggests that hydration promotes crustal mineral assemblages with lowered vP/vS and decreased density. This sheds new light on the significance of low crustal vP/vS measured in the western U.S. Cordillera from joint inversion of EarthScope USArray receiver functions and gravity. vP/vS, previously interpreted in terms of quartz abundance, is strikingly low throughout the highest-elevation regions of the western Cordillera. • Rheological modeling of flexural rigidity measurements also can be used to map water variations, primarily in the uppermost mantle. Mantle hydration estimated from flexural rigidity exhibits very similar spatial distribution to crustal hydration inferred from vP/vS, with the notable exception that the Wyoming craton has dry mantle lithosphere but a hydrous crust. • In hydrated lithosphere of the high-elevation western U.S. Cordillera, Moho temperatures estimated from Pn velocities are systematically colder than predictions by simple geothermal models of surface heat flow. These differences can only be reconciled by invoking a previously unrecognized advective term in the deep thermal transfer. • New and improved estimates of magnetic bottom are much deeper than the depth of the magnetite Curie temperature in some apparently hydrous lithosphere (notably, east of the Siletzia accreted terrane). This may indicate exotic magnetic mineralogies thought to occur only under hydrous conditions. Lithospheric hydration may be driven either by dehydration of subducted slab or by entrainment of water into upwellings passing through the mantle transition zone. Conceptualizing hydration as a large-scale process accompanied by increased buoyancy and decreased ductile strength, coupled with widespread changes in mineralogy, mass and energy transfer may help to illuminate many otherwise

  5. Airway Hydration and COPD

    PubMed Central

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  6. Impacts of Hydrate Pore Habit on Physical Properties of Hydrate Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Seol, Y.; Dai, S.; Choi, J. H.

    2014-12-01

    The physical properties of gas hydrate bearing sediments, to a large extent, are governed by the volume fraction and spatial distribution of the hydrate phase. For sediments containing the same amount of hydrates, their overall physical properties may vary several orders of magnitude depending on hydrate pore habit. We investigate the interplay among hydrate formation methods, hydrate pore habits, and fundamental physical properties of hydrate bearing sediments. We have developed a new method to synthesize noncementing hydrate in sands, a multi-properties characterization chamber to test the hydrate bearing sediments, and pore network models to simulate fluid flow processes in hydrate bearing sediments. We have found that (1) the growth pattern of hydrate crystal in the pore spaces of water saturated sediments is dominated by the relative magnitude of the capillary force (between hydrate crystal and pore fluid) and the skeleton force, which will result in pore-filling or grain-displacing type of hydrate pore character; (2) the existing capillary tube models of water permeability in hydrate bearing sediments are sensitive to pore geometry and hydrate pore habit; and (3) preliminary CT results suggest that hydrate nucleation in partially water saturated sands tends to agglomerate in patches, rather than in an uniformly-distributed contact-cementing morphology. Additional CT results with a small amount of fines (5wt%) and visualization via micro-CT of hydrate pore habits in sediments using different hydrate formation methods will be discussed.

  7. Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris

    USGS Publications Warehouse

    Roach, L.H.; Mustard, J.F.; Swayze, G.; Milliken, R.E.; Bishop, J.L.; Murchie, S.L.; Lichtenberg, K.

    2010-01-01

    New high-resolution spectral and morphologic imaging of deposits on walls and floor of Ius Chasma extend previous geomorphic mapping, and permit a new interpretation of aqueous processes that occurred during the development of Valles Marineris. We identify hydrated mineralogy based on visible-near infrared (VNIR) absorptions. We map the extents of these units with CRISM spectral data as well as morphologies in CTX and HiRISE imagery. Three cross-sections across Ius Chasma illustrate the interpreted mineral stratigraphy. Multiple episodes formed and transported hydrated minerals within Ius Chasma. Polyhydrated sulfate and kieserite are found within a closed basin at the lowest elevations in the chasma. They may have been precipitates in a closed basin or diagenetically altered after deposition. Fluvial or aeolian processes then deposited layered Fe/Mg smectite and hydrated silicate on the chasma floor, postdating the sulfates. The smectite apparently was weathered out of Noachian-age wallrock and transported to the depositional sites. The overlying hydrated silicate is interpreted to be an acid-leached phyllosilicate transformed from the underlying smectite unit, or a smectite/jarosite mixture. The finely layered smectite and massive hydrated silicate units have an erosional unconformity between them, that marks a change in surface water chemistry. Landslides transported large blocks of wallrock, some altered to contain Fe/Mg smectite, to the chasma floor. After the last episode of normal faulting and subsequent landslides, opal was transported short distances into the chasma from a few m-thick light-toned layer near the top of the wallrock, by sapping channels in Louros Valles. Alternatively, the material was transported into the chasma and then altered to opal. The superposition of different types of hydrated minerals and the different fluvial morphologies of the units containing them indicate sequential, distinct aqueous environments, characterized by alkaline

  8. Laser Desorption Supersonic Jet Spectroscopy of Hydrated Tyrosine

    NASA Astrophysics Data System (ADS)

    Oba, Hikari; Shimozono, Yoko; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Carcabal, Pierre

    2013-06-01

    The structure of tyrosine (tyr) consists of amino-acid chain and phenol, and it has roughly two possible binding sites for water, amino-acid site and phenolic OH site. Investigating how water molecule binds to tyr will give fundamental information for hydrations of peptide and protein. Resonance enhanced multi photon ionization (REMPI) spectrum of tyr-water 1:1 cluster has already been reported by de Vries and co-workers, however, no analysis on the hydrated structures has been reported. In the REMPI spectrum, two clusters of bands are observed; one appears at ˜35600 cm^{-1} energy region which is the almost same with 0-0 transitions of tyr monomer, and another is observed at ˜300 cm^{-1} lower than the former. Based on the electronic transition energy of phenylalanine and the hydrated clusters, the former is expected to be derived from a structure that water binds to amino acid site. On the other hand, it is plausibly predicted that the latter originates from a structure that water binds to phenolic OH group, because the electronic transition of mono hydrated phenol is ˜300 cm^{-1} red-shifted from the monomer. We applied IR dip spectroscopy which can measure conformer selective IR spectra to the tyr-(H_{2}O)_{1} clusters by using laser desorption supersonic jet technique to confirm the assignments. Especially in the phenolic OH bound isomer, it was found that the intra molecular hydrogen bond within amino-acid chain, which is far from the water molecule and cannot interact directly with each other, is strengthened by the hydration. A. Abio-Riziq et al., J. Phys. Chem. A, 115, 6077 (2011). Y. Shimozono, et al., Phys. Chem. Chem. Phys., (2013) DOI: 10.1039/c3cp43573c. T. Ebata et al., Phys. Chem. Chem. Phys., 8, 4783 (2006). T. Watanabe et al., J. Chem. Phys., 105, 408 (1996).

  9. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  10. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with

  11. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    SciTech Connect

    Hutchinson, D.R.; Shelander, D.; Dai, J.; McConnell, D.; Shedd, W.; Frye, M.; Ruppel, C.; Boswell, R.; Jones, E.; Collett, T.S.; Rose, K.; Dugan, B.; Wood, W.; Latham, T.

    2008-07-01

    In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other

  12. Life Origination Hydrate Hypothesis (LOH-Hypothesis)

    PubMed Central

    Ostrovskii, Victor; Kadyshevich, Elena

    2012-01-01

    The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis), according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides), DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their “thermodynamic front” guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor. PMID:25382120

  13. Life Origination Hydrate Hypothesis (LOH-Hypothesis).

    PubMed

    Ostrovskii, Victor; Kadyshevich, Elena

    2012-01-01

    The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis), according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides), DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their "thermodynamic front" guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor. PMID:25382120

  14. Making solutions from hydrated compounds.

    PubMed

    Adams, Dany Spencer

    2008-05-01

    INTRODUCTIONSolution making typically involves dissolving dry chemicals in water or other specified solvent. The amount of chemical to be added to a solvent depends on the final concentration or molarity (M) needed for the finished solution and the total amount in liters (L) of solution required. However, some chemicals come with water molecules attached. The molecular weight (MW) of such compounds, listed as formula weight (FW) on the bottle, includes the mass of the water. Whenever you would use the MW of an unhydrated compound in calculations, use instead the MW of the hydrated compound. If a recipe tells how many grams to use of the unhydrated compound, determine the target concentration and then calculate the grams to use of hydrated compound. When using a hydrated compound, the attached water molecules contribute water to the solution, potentially diluting the final concentration (if the solvent is water). Therefore, you must account for the contribution of water from the hydrated compound when determining the volume of solvent (water) to add. This article describes the calculations involved in making solutions from hydrated compounds.

  15. The nature of carbon-bearing phases in hydrated interplanetary dust particles. [Abstract only

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Thomas, K. L.; Mckay, D. S.

    1994-01-01

    We have been quantitatively measuring C abundances in hydrated interplanetary dust particles for the past few years, but in general, we have had to infer the distribution and nature of the C-bearing materials within these particles because of the complex microtextures of hydrated IDPs. Aside from rare carbonate grains, other C-bearing phases are difficult to distinguish from the fine-grained, poorly crystalline phyllosilicates that comprise the bulk of these particles. We know that carbonates alone cannot account for the high C abundances observed in most hydrated IDPs and that additional C-bearing phases must be present. We have recently applied the technique of electron energy-loss spectroscopy (EELS) in the transmission electron microscope (TEM) to identify and form the distribution of C-bearing phases in hydrated IDPs. These preliminary data show that several C-rich hydrated IDPs contain a mixture of two major forms of C, Mg-Fe carbonate and amorphous C. The near-edge structure in the C k-edges from these IDPs shows no evidence for the development of graphite or even poorly graphitized C. We conclude that the 'elemental' C in these IDPs is either very poorly ordered or is exceedingly fine-grained (we refer to this C as 'amorphous C'). The amorphous C is intimately intergrown with the fine-grained phyllosilicates and is evenly distributed within three of the four IDPs analyzed (only G1 contains discrete 'hot spots' of amorphous C). Not all hydrated IDPs contain carbonates.

  16. Effects of heat stress on proliferation, protein turnover, and abundance of heat shock protein messenger ribonucleic acid in cultured porcine muscle satellite cells.

    PubMed

    Kamanga-Sollo, E; Pampusch, M S; White, M E; Hathaway, M R; Dayton, W R

    2011-11-01

    It is well established that heat stress (HS) negatively affects growth rate in swine. Although reduced feed intake undoubtedly plays a significant role in this reduction, studies in laboratory animals and other nonswine species indicate muscle growth also is affected by HS-related alterations in muscle physiology. Evidence is now emerging that heat shock proteins (Hsp), produced in response to HS and other types of cellular stress, may play an important role in regulating the rate and efficiency of muscle growth. Because muscle satellite cells play a crucial role in postnatal muscle growth, the effects of HS on rates of satellite cell proliferation, protein synthesis, and protein degradation play an important role in determining the rate and extent of muscle growth. Consequently, in the current study we have examined the effects of mild HS (40.5°C for 48 h) on the rates of proliferation, protein synthesis, and protein degradation and on quantities of Hsp90, Hsp70, and Hsp25/27 mRNA and protein in cultured porcine muscle satellite cells (PSC). Mild HS of PSC cultures resulted in 2.5-, 1.4-, and 6.5-fold increases (P < 0.05) in the abundance of Hsp90, Hsp70, and Hsp25/27 mRNA, respectively, relative to control cultures. Abundance of Hsp 90, 70, and 25/27 proteins was also increased in HS PSC cultures compared with those in control cultures. Proliferation rates in HS PSC cultures were 35% less (P < 0.05) than those in control cultures. Protein synthesis rates in HS-fused PSC cultures were 85% greater (P < 0.05) than those in control cultures, and protein degradation rates in HS-fused PSC were 23% less (P < 0.05) than those in control cultures. In light of the crucial role satellite cells play in postnatal muscle growth, the HS-induced changes we have observed in rates of proliferation, protein turnover, and abundance of Hsp mRNA and Hsp protein in PSC cultures indicate that mild HS affects the physiology of PSC in ways that could affect muscle growth in swine.

  17. The abundance and activation of mTORC1 regulators in skeletal muscle of neonatal pigs are modulated by insulin, amino acids, and age

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we demonstrated that the insulin (INS) and amino acid (AA) -induced activation of the mammalian target of rapamycin complex 1 (mTORC1) is developmentally regulated in neonatal pigs. This study aimed to determine the effects of the post-prandial rise in INS and AA on the activation and abu...

  18. Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we demonstrated that the insulinand amino acid-induced activation of the mammalian target of rapamycin complex 1 (mTORC1) is developmentally regulated in neonatal pigs. Recent studies have indicated that members of the System A transporter (SNAT2), the System N transporter (SNAT3), the Sy...

  19. Well log evaluation of natural gas hydrates

    SciTech Connect

    Collett, T.S.

    1992-10-01

    Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

  20. Well log evaluation of natural gas hydrates

    SciTech Connect

    Collett, T.S.

    1992-10-01

    Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

  1. Carbon kinetic isotope effects at natural abundances during iron-catalyzed photolytic cleavage of Csbnd C bonds in aqueous phase α,ω-dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Irei, Satoshi

    2016-09-01

    Carbon kinetic isotope effects (KIEs) at natural abundances during photolysis of Fe3+-oxalato, malonato, and succinato complexes in aqueous solution were studied to identify the Csbnd C bond cleaving mechanism of Fe3+-oxalato complexes under sunlight irradiation. Observed overall KIEs were 5.9‰, 11.5‰, and 8.4‰, respectively. This variation is inconsistent with secondary carbon KIEs for the Fesbnd O bond cleavage, but consistent with primary carbon KIEs for sequential cleavage of Fesbnd O and Csbnd C bonds. Position-specific probability of 13C content estimated KIEs of 5.9‰, 17.2‰, and 17‰ for 12Csbnd 13C bond cleavage, respectively, indicating the different KIEs for carboxyl-carboxyl and methyl-carboxyl cleavage.

  2. Hydrated interfacial ions and electrons.

    PubMed

    Abel, Bernd

    2013-01-01

    Charged particles such as hydrated ions and transient hydrated electrons, the simplest anionic reducing agents in water, and the special hydronium and hydroxide ions at water interfaces play an important role in many fields of science, such as atmospheric chemistry, radiation chemistry, and biology, as well as biochemistry. This article focuses on these species near hydrophobic interfaces of water, such as the air or vacuum interface of water or water protein/membrane interfaces. Ions at interfaces as well as solvated electrons have been reviewed frequently during the past decade. Although all species have been known for some time with seemingly familiar features, recently the picture in all cases became increasingly diffuse rather than clearer. The current account gives a critical state-of-the art overview of what is known and what remains to be understood and investigated about hydrated interfacial ions and electrons.

  3. Rheology of hydrate forming emulsions.

    PubMed

    Peixinho, Jorge; Karanjkar, Prasad U; Lee, Jae W; Morris, Jeffrey F

    2010-07-20

    Results are reported on an experimental study of the rheology of hydrate-forming water-in-oil emulsions. Density-matched concentrated emulsions were quenched by reducing the temperature and an irreversible transition was observed where the viscosity increased dramatically. The hydrate-forming emulsions have characteristic times for abrupt viscosity change dependent only on the temperature, reflecting the importance of the effect of subcooling. Mechanical transition of hydrate-free water-in-oil emulsions may require longer times and depends on the shear rate, occurring more rapidly at higher rates but with significant scatter which is characterized through a probabilistic analysis. This rate dependence together with dependence on subcooling reflects the importance of hydrodynamic forces to bring drops or particles together.

  4. Evaluation of the geological relationships to gas hydrate formation and stability

    SciTech Connect

    Krason, J.; Finley, P.

    1988-01-01

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  5. Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates

    USGS Publications Warehouse

    Andreassen, K.; Hart, P.E.; MacKay, M.

    1997-01-01

    A bottom simulating seismic reflection (BSR) that parallels the sea floor occurs worldwide on seismic profiles from outer continental margins. The BSR coincides with the base of the gas hydrate stability field and is commonly used as indicator of natural submarine gas hydrates. Despite the widespread assumption that the BSR marks the base of gas hydrate-bearing sediments, the occurrence and importance of low-velocity free gas in the sediments beneath the BSR has long been a subject of debate. This paper investigates the relative abundance of hydrate and free gas associated with the BSR by modeling the reflection coefficient or amplitude variation with offset (AVO) of the BSR at two separate sites, offshore Oregon and the Beaufort Sea. The models are based on multichannel seismic profiles, seismic velocity data from both sites and downhole log data from Oregon ODP Site 892. AVO studies of the BSR can determine whether free gas exists beneath the BSR if the saturation of gas hydrate above the BSR is less than approximately 30% of the pore volume. Gas hydrate saturation above the BSR can be roughly estimated from AVO studies, but the saturation of free gas beneath the BSR cannot be constrained from the seismic data alone. The AVO analyses at the two study locations indicate that the high amplitude BSR results primarily from free gas beneath the BSR. Hydrate concentrations above the BSR are calculated to be less than 10% of the pore volume for both locations studied.

  6. Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Archer, Paul Douglas; Franz, Heather B.; Sutter, Brad; Arevalo, Ricardo D.; Coll, Patrice; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Jones, John J.; Leshin, Laurie A.; Mahaffy, Paul R.; McAdam, Amy C.; McKay, Christopher P.; Ming, Douglas W.; Morris, Richard V.; Navarro-González, Rafael; Niles, Paul B.; Pavlov, Alex; Squyres, Steven W.; Stern, Jennifer C.; Steele, Andrew; Wray, James J.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H2O, SO2, CO2, and O2, all at the µmol level, with HCl, H2S, NH3, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H2O sources), carbonates (CO2), perchlorates (O2 and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH3, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.

  7. Gas Hydrate and Pore Pressure

    NASA Astrophysics Data System (ADS)

    Tinivella, Umberta; Giustiniani, Michela

    2014-05-01

    Many efforts have been devoted to quantify excess pore pressures related to gas hydrate dissociation in marine sediments below the BSR using several approaches. Dissociation of gas hydrates in proximity of the BSR, in response to a change in the physical environment (i.e., temperature and/or pressure regime), can liberate excess gas incrising the local pore fluid pressure in the sediment, so decreasing the effective normal stress. So, gas hydrate dissociation may lead to excess pore pressure resulting in sediment deformation or failure, such as submarine landslides, sediment slumping, pockmarks and mud volcanoes, soft-sediment deformation and giant hummocks. Moreover, excess pore pressure may be the result of gas hydrate dissociation due to continuous sedimentation, tectonic uplift, sea level fall, heating or inhibitor injection. In order to detect the presence of the overpressure below the BSR, we propose two approachs. The fist approach models the BSR depth versus pore pressure; in fact, if the free gas below the BSR is in overpressure condition, the base of the gas hydrate stability is deeper with respect to the hydrostatic case. This effect causes a discrepancy between seismic and theoretical BSR depths. The second approach models the velocities versus gas hydrate and free gas concentrations and pore pressure, considering the approximation of the Biot theory in case of low frequency, i.e. seismic frequency. Knowing the P and S seismic velocity from seismic data analysis, it is possibile to jointly estimate the gas hydrate and free gas concentrations and the pore pressure regime. Alternatively, if the S-wave velocity is not availbale (due to lack of OBS/OBC data), an AVO analysis can be performed in order to extract information about Poisson ratio. Our modeling suggests that the areas characterized by shallow waters (i.e., areas in which human infrastructures, such as pipelines, are present) are significantly affected by the presence of overpressure condition

  8. Natural Gas Hydrates Update 1998-2000

    EIA Publications

    2001-01-01

    Significant events have transpired on the natural gas hydrate research and development front since "Future Supply Potential of Natural Gas Hydrates" appeared in Natural Gas 1998 Issues and Trends and in the Potential Gas Committee's 1998 biennial report.

  9. Physical properties of hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Waite, W. F.; Santamarina, J. C.; Cortes, D. D.; Dugan, B.; Espinoza, D. N.; Germaine, J.; Jang, J.; Jung, J. W.; Kneafsey, T. J.; Shin, H.; Soga, K.; Winters, W. J.; Yun, T.-S.

    2009-12-01

    Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate-bearing sediments. Formation phenomena include pore-scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small-strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate-bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate-bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.

  10. Formation of carbon dioxide hydrate in soil and soil mineral suspensions with electrolytes.

    PubMed

    Lamorena, Rheo B; Lee, Woojin

    2008-04-15

    We have identified the effects of solid surface (soil, bentonite, kaolinite, nontronite, and pyrite) and electrolyte (NaCl, KCl, CaCl2, and MgCl2) types on the formation and dissociation of CO2 hydrate in this study. The hydrate formation experiments were conducted by injecting CO2 gas into the soil suspensions with and without electrolytes in a 50 mL pressurized vessel. The formation of CO2 hydrate in deionized water was faster than that in aqueous electrolyte solutions. The addition of soil suspensions accelerated the formation of CO2 hydrate in the electrolyte solutions. The hydrate formation times in the solid suspensions without electrolytes were very similar to that in the deionized water. We did not observe any significant differences between the hydrate dissociation in the solid suspension and that in the deionized water. The pHs of clay mineral suspensions decreased significantly after CO2 hydrate formation and dissociation experiments, while the pH of the soil suspension slightly decreased by less than pH 1 and that of pyrite slightly increased due to the dissolution of CO2 forming carbonic acid. The results obtained from this research could be indirectly applied to the fate of CO2 sequestered into geological formations as well as its storage as a form of CO2 hydrate. PMID:18497119

  11. Differential abundance of IGF1, bile acids, and the genes involved in their signaling in the dominant follicle microenvironment of lactating cows and nulliparous heifers.

    PubMed

    Sanchez, Ricardo; Schuermann, Yasmin; Gagnon-Duval, Laurianne; Baldassarre, Hernan; Murphy, Bruce D; Gevry, Nicolas; Agellon, Luis B; Bordignon, Vilceu; Duggavathi, Raj

    2014-04-01

    It is well documented that incidence of fertility problems is high in lactating cows but not in heifers of the same genetic merit. Understanding the metabolic and molecular differences between fertile heifers and relatively infertile lactating cows will help us understand the pathogenesis of infertility in dairy cows. Follicular waves in lactating cows (30-50 days in milk; n = 12) and heifers (n = 10) were synchronized by ultrasound-guided follicle ablation. Follicular fluid and granulosa cells of the dominant follicle were collected by ultrasound-guided aspiration along with blood sampling on Day 6 after synchronization. Dominant and subordinate follicles were larger in lactating cows than in heifers. Metabolic stress in lactating cows was evidenced by lower glucose and higher ß-hydroxy butyric acid compared with heifers. Insulin-like growth factor 1 signaling was reduced in the dominant follicle in lactating cows through reduced insulin-like growth factor 1 concentrations in plasma and follicular fluid of the dominant follicle, and reduced expression of pregnancy-associated plasma protein A (PAPPA) in their granulosa cells. We also found increased levels of total bile acids in the follicular fluid of the dominant follicle of lactating cows compared with heifers. Granulosa cells of the dominant follicle had higher expression of SLC10A2 and GPBAR1 (bile acid transporter and receptor, respectively) in lactating cows. These novel data are indicative of increased bile acid signaling within the dominant follicles of lactating cows compared with heifers. Overall, we demonstrate in the present study the metabolic, endocrine, and molecular differences within the microenvironment of the dominant follicles in lactating cows and heifers. These differences in follicular microenvironment may contribute toward abnormal ovarian function in lactating dairy cows. PMID:24503106

  12. Methods to determine hydration states of minerals and cement hydrates

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  13. Proteorhodopsin Activation Is Modulated by Dynamic Changes in Internal Hydration.

    PubMed

    Feng, Jun; Mertz, Blake

    2015-12-01

    Proteorhodopsin, a member of the microbial rhodopsin family, is a seven-transmembrane α-helical protein that functions as a light-driven proton pump. Understanding the proton-pumping mechanism of proteorhodopsin requires intimate knowledge of the proton transfer pathway via complex hydrogen-bonding networks formed by amino acid residues and internal water molecules. Here we conducted a series of microsecond time scale molecular dynamics simulations on both the dark state and the initial photoactivated state of blue proteorhodopsin to reveal the structural basis for proton transfer with respect to protein internal hydration. A complex series of dynamic hydrogen-bonding networks involving water molecules exists, facilitated by water channels and hydration sites within proteorhodopsin. High levels of hydration were discovered at each proton transfer site-the retinal binding pocket and proton uptake and release sites-underscoring the critical participation of water molecules in the proton-pumping mechanism. Water-bridged interactions and local water channels were also observed and can potentially mediate long-distance proton transfer between each site. The most significant phenomenon is after isomerization of retinal, an increase in water flux occurs that connects the proton release group, a conserved arginine residue, and the retinal binding pocket. Our results provide a detailed description of the internal hydration of the early photointermediates in the proteorhodopsin photocycle under alkaline pH conditions. These results lay the fundamental groundwork for understanding the intimate role that hydration plays in the structure-function relationship underlying the proteorhodopsin proton-pumping mechanism, as well as providing context for the relationship of hydration in proteorhodopsin to other microbial retinal proteins. PMID:26562497

  14. Observation of hydration of single, modified carbon aerosols

    NASA Technical Reports Server (NTRS)

    Wyslouzil, B. E.; Carleton, K. L.; Sonnenfroh, D. M.; Rawlins, W. T.; Arnold, S.

    1994-01-01

    We have compared the hydration behavior of single carbon particles that have been treated by exposure to gaseous H2SO4 with that of untreated particles. Untreated carbon particles did not hydrate as the relative humidity varied from 0 to 80% at 23 C. In contrast, treated particles hydrated under subsaturation conditions; mass increases of up to 30% were observed. The mass increase is consistent with sulfuric acid equilibration with the ambient relative humidity in the presence of inert carbon. For the samples studied, the average amount of absorbed acid was 14% +/- 6% by weight, which corresponds to a surface coverage of approximately 0.1 monolayer. The mass fraction of surface-absorbed acid is comparable to the soluble mass fraction observed by Whitefield et al. (1993) in jet aircraft engine aerosols. Estimates indicate this mass fraction corresponds to 0.1% of the available SO2 exiting an aircraft engine ending up as H2SO4 on the carbon aerosol. If this heterogeneous process occurs early enough in the exhaust plume, it may compete with homogeneous nucleation as a mechanism for producing sulfuric acid rich aerosols.

  15. Fluidized catalyst process for production and hydration of olefins

    SciTech Connect

    Harandi, M.N.

    1993-08-03

    A continuous multi-stage process is described for increasing octane quality and yield of liquid hydrocarbons from an integrated fluidized catalytic cracking unit and hydration reaction zone comprising: contacting heavy hydrocarbon feedstock in a primary fluidized bed reaction stage with cracking catalyst comprising particulate solid large pore acid aluminosilicate zeolite catalyst at conversion conditions to produce a hydrocarbon effluent comprising gas containing C2-C6 olefins, intermediate hydrocarbons in the gasoline and distillate range, and cracked bottoms; regenerating primary stage zeolite cracking catalyst in a primary stage regeneration zone and returning at least a portion of regenerated zeolite cracking catalyst to the primary reaction stage; reacting an olefinic stream containing at least one iso-olefin with water in a secondary fluidized bed hydration reactor stage in contact with a closed fluidized bed of acid zeolite catalyst particles comprising solid acid zeolite under hydration reaction conditions to effectively convert said isoolefin to alkyl alkanol; adding fresh acid zeolite particles to the secondary stage reactor in an amount sufficient to maintain average equilibrium catalyst particle activity for effective alkanol synthesis reaction without regeneration of the secondary catalyst bed; withdrawing a portion of equilibrium catalyst from the secondary fluidized bed reactor stage; and passing said withdrawn catalyst portion to the primary fluidized bed reaction stage for contact with the petroleum feedstock.

  16. 75 FR 9886 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. Federal... Methane Hydrate Advisory Committee is to provide advice on potential applications of methane hydrate...

  17. Hydration rind dates rhyolite flows.

    PubMed

    Friedman, I

    1968-02-23

    Hydration of obsidian has been used to date rhyolite flows, containing obsidian or porphyritic glass, at Glass Mountain (Medicine Lake Highlands) and Mono Lake, California. The method is simple and rapid and can be used to date flows that erupted between 200 and approximately 200,000 years ago. PMID:17768978

  18. Attraction between hydrated hydrophilic surfaces

    NASA Astrophysics Data System (ADS)

    Kanduč, Matej; Schneck, Emanuel; Netz, Roland R.

    2014-08-01

    According to common knowledge, hydrophilic surfaces repel via hydration forces while hydrophobic surfaces attract, but mounting experimental evidence suggests that also hydrophilic surfaces can attract. Using all-atom molecular dynamics simulations at prescribed water chemical potential we study the crossover from hydration repulsion to hydrophobic attraction for planar polar surfaces of varying stiffness and hydrogen-bonding capability. Rescaling the partial charges of the polar surface groups, we cover the complete spectrum from very hydrophobic surfaces (characterized by contact angles θ ≃ 135°) to hydrophilic surfaces exhibiting complete wetting (θ = 0°). Indeed, for a finite range θadh < θ < 90°, we find a regime where hydrophilic surfaces attract at sub-nanometer separation and stably adhere without intervening water. The adhesive contact angle θadh depends on surface type and lies in the range 65° < θadh < 80°, in good agreement with experiments. Analysis of the total number of hydrogen bonds (HBs) formed by water and surface groups rationalizes this crossover between hydration repulsion and hydrophilic attraction in terms of a subtle balance: Highly polar surfaces repel because of strongly bound hydration water, less polar hydrophilic surfaces attract because water-water HBs are preferred over surface-water HBs. Such solvent reorganization forces presumably underlie also other important phenomena, such as selective ion adsorption to interfaces as well as ion pair formation.

  19. Strong covalent hydration of terephthalaldehyde.

    PubMed

    Baymak, Melek S; Vercoe, Kellie L; Zuman, Petr

    2005-11-24

    Spectrophotometric and electroanalytical studies indicate that one of the formyl groups of terephthalaldehyde in aqueous solution is present in about 23% as a geminal diol. Stronger covalent hydration of CHO in terephthalaldehyde than in p-nitrobenzaldehyde is attributed to a strong resonance interaction between the two formyl groups.

  20. Hydration rind dates rhyolite flows.

    PubMed

    Friedman, I

    1968-02-23

    Hydration of obsidian has been used to date rhyolite flows, containing obsidian or porphyritic glass, at Glass Mountain (Medicine Lake Highlands) and Mono Lake, California. The method is simple and rapid and can be used to date flows that erupted between 200 and approximately 200,000 years ago.

  1. Hydration rind dates rhyolite flows

    USGS Publications Warehouse

    Friedman, I.

    1968-01-01

    Hydration of obsidian has been used to date rhyolite flows, containing obsidian or porphyritic glass, at Glass Mountain (Medicine Lake Highlands) and Mono Lake, California. The method is simple and rapid and can be used to date flows that erupted between 200 and approximately 200,000 years ago.

  2. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH

    PubMed Central

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten

    2016-01-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  3. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH.

    PubMed

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten; Spieck, Eva

    2016-03-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  4. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH.

    PubMed

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten; Spieck, Eva

    2016-01-08

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism.

  5. Aldehyde oxidase 1 is highly abundant in hepatic steatosis and is downregulated by adiponectin and fenofibric acid in hepatocytes in vitro

    SciTech Connect

    Neumeier, Markus; Weigert, Johanna; Schaeffler, Andreas; Weiss, Thomas S.; Schmidl, Christian; Buettner, Roland; Bollheimer, Cornelius; Aslanidis, Charalampos; Schoelmerich, Juergen; Buechler, Christa . E-mail: christa.buechler@klinik.uni-regensburg.de

    2006-11-24

    Adiponectin protects the liver from steatosis caused by obesity or alcohol and therefore the influence of adiponectin on human hepatocytes was analyzed. GeneChip experiments indicated that recombinant adiponectin downregulates aldehyde oxidase 1 (AOX1) expression and this was confirmed by real-time RT-PCR and immunoblot. AOX1 is a xenobiotic metabolizing protein and produces reactive oxygen species (ROS), that promote cell damage and fibrogenesis. Adiponectin and fenofibric acid activate peroxisome proliferator-activated receptor-{alpha} (PPAR-{alpha}) and both suppress AOX1 protein and this is blocked by the PPAR-{alpha} antagonist RU486. Obesity is associated with low adiponectin, reduced hepatic PPAR-{alpha} activity and fatty liver, and AOX1 was found induced in the liver of rats on a high-fat diet when compared to controls. Free fatty acids and leptin, that are elevated in obesity, failed to upregulate AOX1 in vitro. The current data indicate that adiponectin reduces AOX1 by activating PPAR-{alpha} whereas fatty liver disease is associated with elevated hepatic AOX1. High AOX1 may be associated with higher ROS well described to induce fibrogenesis in liver tissue but may also influence drug metabolism and activity.

  6. Thermal properties of methane gas hydrates

    USGS Publications Warehouse

    Waite, William F.

    2007-01-01

    Gas hydrates are crystalline solids in which molecules of a “guest” species occupy and stabilize cages formed by water molecules. Similar to ice in appearance (fig. 1), gas hydrates are stable at high pressures and temperatures above freezing (0°C). Methane is the most common naturally occurring hydrate guest species. Methane hydrates, also called simply “gas hydrates,” are extremely concentrated stores of methane and are found in shallow permafrost and continental margin sediments worldwide. Brought to sea-level conditions, methane hydrate breaks down and releases up to 160 times its own volume in methane gas. The methane stored in gas hydrates is of interest and concern to policy makers as a potential alternative energy resource and as a potent greenhouse gas that could be released from sediments to the atmosphere and ocean during global warming. In continental margin settings, methane release from gas hydrates also is a potential geohazard and could cause submarine landslides that endanger offshore infrastructure. Gas hydrate stability is sensitive to temperature changes. To understand methane release from gas hydrate, the U.S. Geological Survey (USGS) conducted a laboratory investigation of pure methane hydrate thermal properties at conditions relevant to accumulations of naturally occurring methane hydrate. Prior to this work, thermal properties for gas hydrates generally were measured on analog systems such as ice and non-methane hydrates or at temperatures below freezing; these conditions limit direct comparisons to methane hydrates in marine and permafrost sediment. Three thermal properties, defined succinctly by Briaud and Chaouch (1997), are estimated from the experiments described here: - Thermal conductivity, λ: if λ is high, heat travels easily through the material. - Thermal diffusivity, κ: if κ is high, it takes little time for the temperature to rise in the material. - Specific heat, cp: if cp is high, it takes a great deal of heat to

  7. The Hydration of Subglacial Rhyolite to Form Perlite

    NASA Astrophysics Data System (ADS)

    Denton, J. S.; Tuffen, H.; Gilbert, J. S.

    2009-12-01

    Subglacial rhyolite deposits at Torfajökull, Iceland encountered glacier meltwater as they cooled, leading to variable amounts of hydration. High-temperature lava-meltwater interactions are key to understanding jökulhlaup hazards, perlite formation, cooling rates and, ultimately, soil formation [Denton et al., 2009]. Perlite is a hydrated glass that contains abundant, intersecting, arcuate and gently curved cracks surrounding cores of intact glass. Knowledge of how perlite forms is required for us to better understand the way in which meltwater and lava interact during and after subglacial eruptions. The mechanism for perlite formation is currently poorly understood, it is not known whether cracking leads to hydration or vice versa. Different textural zones from effusively erupted lava lobes from Torfajökull, Iceland [Tuffen et al., 2001] have been studied using a combination of experimental and quantitative textural measurements to examine the processes of hydration and perlite formation. A differential scanning calorimetry - thermogravimetric analyser coupled to a mass spectrometer (DSC-TGA-MS) has been used to quantify the total volatile contents of a number of samples. A novel petrological technique has been used to quantify the concentration of fractures present in a sample which has then been related to the amount of hydration. Water content using infra-red microspectroscopy (FTIR) has been used to study the micro-scale variations of water content and how they relate to fractures in the rhyolitic glasses. The results indicate that progressive perlitisation at the margins of lava bodies is accompanied by an increase in the water content, from ~0.5 wt. % to ~2 wt. %. The speciation of the inwardly diffusing water changes from hydroxyl to molecular water with increasing total volatile content. The temperature of dehydration of samples during TGA experiments decreases with increasing volatile content, consistent with a change in the dominant H2O species from

  8. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India

    USGS Publications Warehouse

    Riedel, M.; Collett, T.S.; Kumar, P.; Sathe, A.V.; Cook, A.

    2010-01-01

    Gas hydrate was discovered in the Krishna-Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ~2.5 km2 defined using seismic attributes of the seafloor reflection, as well as " seismic sweetness" at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ~6 km NW of Site NGHP-01-10. ?? 2010.

  9. Mesoscale texture of cement hydrates.

    PubMed

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  10. Physical activity, hydration and health.

    PubMed

    Marcos, Ascensión; Manonelles, Pedro; Palacios, Nieves; Wärnberg, Julia; Casajús, José A; Pérez, Margarita; Aznar, Susana; Benito, Pedro J; Martínez-Gomez, David; Ortega, Francisco B; Ortega, Eduardo; Urrialde, Rafael

    2014-06-01

    Since the beginning of mankind, man has sought ways to promote and preserve health as well as to prevent disease. Hydration, physical activity and exercise are key factors for enhancing human health. However, either a little dose of them or an excess can be harmful for health maintenance at any age. Water is an essential nutrient for human body and a major key to survival has been to prevent dehydration. However, there is still a general controversy regarding the necessary amount to drink water or other beverages to properly get an adequate level of hydration. In addition, up to now the tools used to measure hydration are controversial. To this end, there are several important groups of variables to take into account such as water balance, hydration biomarkers and total body water. A combination of methods will be the most preferred tool to find out any risk or situation of dehydration at any age range. On the other hand, physical activity and exercise are being demonstrated to promote health, avoiding or reducing health problems, vascular and inflammatory disea ses and helping weight management. Therefore, physical activity is also being used as a pill within a therapy to promote health and reduce risk diseases, but as in the case of drugs, dose, intensity, frequency, duration and precautions have to be evaluated and taken into account in order to get the maximum effectiveness and success of a treatment. On the other hand, sedentariness is the opposite concept to physical activity that has been recently recognized as an important factor of lifestyle involved in the obesogenic environment and consequently in the risk of the non-communicable diseases. In view of the literature consulted and taking into account the expertise of the authors, in this review a Decalogue of global recommendations is included to achieve an adequate hydration and physical activity status to avoid overweight/obesity consequences.

  11. Mesoscale texture of cement hydrates

    PubMed Central

    Ioannidou, Katerina; Krakowiak, Konrad J.; Bauchy, Mathieu; Hoover, Christian G.; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J.-M.; Del Gado, Emanuela

    2016-01-01

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium–silicate–hydrates (C–S–H) during cement hydration. Controlling structure and properties of the C–S–H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C–S–H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C–S–H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C–S–H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C–S–H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  12. Physical activity, hydration and health.

    PubMed

    Marcos, Ascensión; Manonelles, Pedro; Palacios, Nieves; Wärnberg, Julia; Casajús, José A; Pérez, Margarita; Aznar, Susana; Benito, Pedro J; Martínez-Gomez, David; Ortega, Francisco B; Ortega, Eduardo; Urrialde, Rafael

    2014-01-01

    Since the beginning of mankind, man has sought ways to promote and preserve health as well as to prevent disease. Hydration, physical activity and exercise are key factors for enhancing human health. However, either a little dose of them or an excess can be harmful for health maintenance at any age. Water is an essential nutrient for human body and a major key to survival has been to prevent dehydration. However, there is still a general controversy regarding the necessary amount to drink water or other beverages to properly get an adequate level of hydration. In addition, up to now the tools used to measure hydration are controversial. To this end, there are several important groups of variables to take into account such as water balance, hydration biomarkers and total body water. A combination of methods will be the most preferred tool to find out any risk or situation of dehydration at any age range. On the other hand, physical activity and exercise are being demonstrated to promote health, avoiding or reducing health problems, vascular and inflammatory disea ses and helping weight management. Therefore, physical activity is also being used as a pill within a therapy to promote health and reduce risk diseases, but as in the case of drugs, dose, intensity, frequency, duration and precautions have to be evaluated and taken into account in order to get the maximum effectiveness and success of a treatment. On the other hand, sedentariness is the opposite concept to physical activity that has been recently recognized as an important factor of lifestyle involved in the obesogenic environment and consequently in the risk of the non-communicable diseases. In view of the literature consulted and taking into account the expertise of the authors, in this review a Decalogue of global recommendations is included to achieve an adequate hydration and physical activity status to avoid overweight/obesity consequences. PMID:24972459

  13. Model of Methane Hydrate Formation in Mid-ocean Ridges

    NASA Astrophysics Data System (ADS)

    Dmitrievsky, A. N.; Balanyuk, I. E.; Sorokhtin, O. G.; Matveenkov, V. V.; Dongaryan, L. Sh.

    2003-04-01

    MODEL OF METHANE HYDRATE FORMATION IN MID-OCEAN RIDGES A.N. Dmitrievsky, I.E. Balanyuk, O.G.Sorokhtin, V.V. Matveenkov, and L.Sh. Dongaryan P.P.Shirshov Institute of Oceanology Russian Academy of Sciences Moscow, Russia, balanyuk@sio.rssi.ru One among the most perspective direction in studying the ocean floor is the research of hydrothermal fields within the most active zones — rift valleys, where the processes of spreading of the ocean floor, uplift of the deep matter to the surface of the ocean floor, and creation of the new oceanic crust occur. Volcanic activity in these zones is accompanied with the formation of the hydrothermal system executing separation, transfer, and precipitation of a series of chemical elements. It is known that ore deposits with high concentration of iron, manganese, copper, nickel, cobalt are formed as a result of hydrothermal activity. It is much less known that hydrothermal activity in these zones has important but not so evident result — the formation of hydrocarbons in the form of methane hydrates. We propose the hypothesis of formation of methane hydrate deposits over the shallow slopes of the mid-oceanic ridges as an outcome of the action of two factors: the thermal convection of water in fractured-porous rocks of the crust and the reaction of serpentinization of the crust. The intensive exhalation of hydrocarbons takes place in the process of serpentinization. The conditions of water convection in the porous media are favorable for the formation and accumulation of methane hydrates in the near-surface layers of the oceanic crust. The carbonic-acid gas dissolved in the seawater is involved into the process of methane hydrate formation. It was established that the most favorable conditions for this mechanism are over the slopes of the Mid-Atlantic Ridge. All types of water areas where gas hydrates occur can be conditionally subdivided into following geodynamic zones: the abyssal basins of the inner and marginal seas, the

  14. In vivo characterization of fatty acids in human adipose tissue using natural abundance 1H decoupled 13C MRS at 1.5 T: clinical applications to dietary therapy.

    PubMed

    Hwang, Jong-Hee; Bluml, Stefan; Leaf, Alexander; Ross, Brian D

    2003-05-01

    Natural abundance proton-decoupled (13)C magnetic resonance spectroscopy was used to establish the in vivo lipid composition of normal adipose tissue and the corresponding effects of altered lipid diets. Experiments were performed on a standard 1.5 T clinical MR scanner using a double-tuned (1)H-(13)C coil. Peaks from double-bonded and methylene carbons were analyzed. Normal lipid composition was established in 20 control subjects. For comparison, five subjects on altered lipid diets were studied. Four subjects were on a fish oil supplement diet or predominantly seafood diet (polyunsaturated fatty acids), and one subject was on a Lorenzo's oil diet (monounsaturated fatty acids). Well-resolved (13)C spectra were obtained from the calf adipose tissue with a total acquisition time of 10 min. Model oil solutions were used to identify specific (13)C resonances. Subjects on lipid diets showed significantly elevated levels of monounsaturated and polyunsaturated fatty acids for Lorenzo's and fish oil diets, respectively. We conclude that (13)C MR spectroscopy can readily detect changes in lipid composition due to medium- and long-term therapeutic lipid diets. Since the examination is rapid, robust and noninvasive, opportunities arise for large clinical trials of preventive or therapeutic diets to be performed with (13)C MRS on a clinical MR scanner.

  15. Gas hydrate reservoir characteristics and economics

    SciTech Connect

    Collett, T.S.; Bird, K.J.; Burruss, R.C.; Lee, Myung W.

    1992-06-01

    The primary objective of the DOE-funded USGS Gas Hydrate Program is to assess the production characteristics and economic potential of gas hydrates in northern Alaska. The objectives of this project for FY-1992 will include the following: (1) Utilize industry seismic data to assess the distribution of gas hydrates within the nearshore Alaskan continental shelf between Harrison Bay and Prudhoe Bay; (2) Further characterize and quantify the well-log characteristics of gas hydrates; and (3) Establish gas monitoring stations over the Eileen fault zone in northern Alaska, which will be used to measure gas flux from destabilized hydrates.

  16. Gas hydrate reservoir characteristics and economics

    SciTech Connect

    Collett, T.S.; Bird, K.J.; Burruss, R.C.; Lee, Myung W.

    1992-01-01

    The primary objective of the DOE-funded USGS Gas Hydrate Program is to assess the production characteristics and economic potential of gas hydrates in northern Alaska. The objectives of this project for FY-1992 will include the following: (1) Utilize industry seismic data to assess the distribution of gas hydrates within the nearshore Alaskan continental shelf between Harrison Bay and Prudhoe Bay; (2) Further characterize and quantify the well-log characteristics of gas hydrates; and (3) Establish gas monitoring stations over the Eileen fault zone in northern Alaska, which will be used to measure gas flux from destabilized hydrates.

  17. Well log evaluation of gas hydrate saturations

    USGS Publications Warehouse

    Collett, T.S.

    1998-01-01

    The amount of gas sequestered in gas hydrates is probably enormous, but estimates are highly speculative due to the lack of previous quantitative studies. Gas volumes that may be attributed to a gas hydrate accumulation within a given geologic setting are dependent on a number of reservoir parameters; one of which, gas-hydrate saturation, can be assessed with data obtained from downhole well logging devices. The primary objective of this study was to develop quantitative well-log evaluation techniques which will permit the calculation of gas-hydrate saturations in gas-hydrate-bearing sedimentary units. The "standard" and "quick look" Archie relations (resistivity log data) yielded accurate gas-hydrate and free-gas saturations within all of the gas hydrate accumulations assessed in the field verification phase of the study. Compressional wave acoustic log data have been used along with the Timur, modified Wood, and the Lee weighted average acoustic equations to calculate accurate gas-hydrate saturations in all of the gas hydrate accumulations assessed in this study. The well log derived gas-hydrate saturations calculated in the field verification phase of this study, which range from as low as 2% to as high as 97%, confirm that gas hydrates represent a potentially important source of natural gas.

  18. Handbook of gas hydrate properties and occurrence

    SciTech Connect

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  19. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    NASA Astrophysics Data System (ADS)

    Boudreau, Bernard P.; Luo, Yiming; Meysman, Filip J. R.; Middelburg, Jack J.; Dickens, Gerald R.

    2015-11-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the oceanic dissolved carbonate system over the next 13 kyr in response to CO2 from gas hydrates, combined with a reasonable scenario for long-term anthropogenic CO2 emissions. Hydrate-derived CO2 will appreciably delay the neutralization of ocean acidity and the return to preindustrial-like conditions. This finding is the same with CH4 release and oxidation in either the deep ocean or the atmosphere. A change in CaCO3 export, coupled to CH4 release, would intensify the transient rise of the carbonate compensation depth, without producing any changes to the long-term evolution of the carbonate system. Overall, gas hydrate destabilization implies a moderate additional perturbation to the carbonate system of the Anthropocene oceans.

  20. Thermal conductivity of hydrate-bearing sediments

    USGS Publications Warehouse

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  1. Well log characterization of natural gas hydrates

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate

  2. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Mahabadi, Nariman; Zheng, Xianglei; Jang, Jaewon

    2016-05-01

    The experimental measurement of water retention curve in hydrate-bearing sediments is critically important to understand the behavior of hydrate dissociation and gas production. In this study, tetrahydrofuran (THF) is selected as hydrate former. The pore habit of THF hydrates is investigated by visual observation in a transparent micromodel. It is confirmed that THF hydrates are not wetting phase on the quartz surface of the micromodel and occupy either an entire pore or part of pore space resulting in change in pore size distribution. And the measurement of water retention curves in THF hydrate-bearing sediments with hydrate saturation ranging from Sh = 0 to Sh = 0.7 is conducted for excess water condition. The experimental results show that the gas entry pressure and the capillary pressure increase with increasing hydrate saturation. Based on the experimental results, fitting parameters for van Genuchten equation are suggested for different hydrate saturation conditions.

  3. Solar abundance of osmium

    PubMed Central

    Jacoby, George; Aller, Lawrence H.

    1976-01-01

    The abundance parameter, log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance (by numbers of atoms with respect to hydrogen), has been derived for three lines of osmium by a method of spectrum synthesis. An apparent discordance of the derived abundance with that found from the carbonaceous chondrites is probably to be attributed primarily to errors in the f-values, and blending with unknown contributors. PMID:16592314

  4. Controlled-source electromagnetic and seismic delineation of subseafloor fluid flow structures in a gas hydrate province, offshore Norway

    NASA Astrophysics Data System (ADS)

    Attias, Eric; Weitemeyer, Karen; Minshull, Tim A.; Best, Angus I.; Sinha, Martin; Jegen-Kulcsar, Marion; Hölz, Sebastian; Berndt, Christian

    2016-08-01

    Deep sea pockmarks underlain by chimney-like or pipe structures that contain methane hydrate are abundant along the Norwegian continental margin. In such hydrate provinces the interaction between hydrate formation and fluid flow has significance for benthic ecosystems and possibly climate change. The Nyegga region, situated on the western Norwegian continental slope, is characterized by an extensive pockmark field known to accommodate substantial methane gas hydrate deposits. The aim of this study is to detect and delineate both the gas hydrate and free gas reservoirs at one of Nyegga's pockmarks. In 2012, a marine controlled-source electromagnetic (CSEM) survey was performed at a pockmark in this region, where high-resolution 3-D seismic data were previously collected in 2006. 2-D CSEM inversions were computed using the data acquired by ocean bottom electrical field receivers. Our results, derived from unconstrained and seismically constrained CSEM inversions, suggest the presence of two distinctive resistivity anomalies beneath the pockmark: a shallow vertical anomaly at the underlying pipe structure, likely due to gas hydrate accumulation, and a laterally extensive anomaly attributed to a free gas zone below the base of the gas hydrate stability zone. This work contributes to a robust characterization of gas hydrate deposits within subseafloor fluid flow pipe structures.

  5. Ruthenium hydroxide supported on magnetic nanoparticles: a benign aqueous protocol for hydration of nitriles

    EPA Science Inventory

    Amides are an important class of compounds in the chemical and pharmaceutical industry1,2. Conventionally, amides have been synthesized by the hydration of nitriles, catalyzed by strong acids3 and bases4. Many by-products such as carboxylic acids are produced due to hydrolysis of...

  6. Gas Hydrates on Mars: In-situ Resources for Human Habitation?

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Pellenbarg, R. E.

    2002-05-01

    The apparent presence of abundant water on Mars, combined with the recent discovery of deep lithoautotrophic bacteria on Earth raises the possibility that a similar development of early life was established on Mars early in its history. CH4 would be a likely by-product of that deep biosphere metabolism. Where methane may have been produced over a long period of time, considerable volumes of it can be expected to have migrated toward the planet?s surface. Although confirmation of the presence of gas hydrate in the Martian subsurface has yet to be made, its occurrence is consistent with the temperature and pressure regimes expected at depth. The possible existence of substantial deposits of gas hydrates in the Martian subsurface, comparable to those now known on Earth, may be of critical importance to exploration and colonization of Mars because hydrate concentrates resources. Both CO2 and CH4 hydrates compress about 164 m3 of gas (at Earth STP) along with about 0.87m3 of pure water into each m3 of gas hydrate. The successful retrieval of concentrated CO2, CH4 and water from relatively shallow depths within the Martian cryosphere may provide the key of human occupation of Mars. In addition to the basic elements of fuel and water necessary to support the eventual expansion of human life across the surface of the planet virtually all shelter and hard goods can be fabricated from plastics produced from chemical components of these hydrate deposits.

  7. Comprehensive Study of Hydrated IDPs: X-Ray Diffraction, IR Spectroscopy and Electron Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Nozaki, W.; Tomeoka, K.

    2003-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere(1). Although much is known about the mineralogy, chemistry and carbon abundance of hydrated IDPs (2-4) controversies still exist regarding their formation, history, and relationship to other primitive solar system materials. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone some degree of aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels (3,4) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. We report the comprehensive study of individual hydrated IDPs. The strong depletion in Ca (I) has been used as a diagnostic feature of hydrated IDPs. The particles are embedded in elemental sulfur or low viscosity epoxy and ultramicrotomed thin sections are observed using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray detector (EDX) followed by other measurements including: 1) FTIR microspectroscopy to understand the significant constraints on the organic functionality and the nature of the C-bearing phases and 2) powder X-ray difiaction using a synchrotron X-ray source to understand the bulk mineralogy of the particles.

  8. Gas hydrate cool storage system

    DOEpatents

    Ternes, Mark P.; Kedl, Robert J.

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  9. Multiple stage multiple filter hydrate store

    DOEpatents

    Bjorkman, Jr., Harry K.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means or separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means.

  10. Gas hydrate resources of northern Alaska

    USGS Publications Warehouse

    Collett, T.S.

    1997-01-01

    Large amounts of natural gas, composed mainly of methane, can occur in arctic sedimentary basins in the form of gas hydrates under appropriate temperature and pressure conditions. Gas hydrates are solids, composed of rigid cages of water molecules that trap molecules of gas. These substances are regarded as a potential unconventional source of natural gas because of their enormous gas-storage capacity. Most published gas hydrate resource estimates are highly simplified and based on limited geological data. The gas hydrate resource assessment for northern Alaska presented in this paper is based on a "play analysis" scheme, in which geological factors controlling the accumulation and preservation of gas hydrates are individually evaluated and risked for each hydrate play. This resource assessment identified two gas hydrate plays; the in-place gas resources within the gas hydrates of northern Alaska are estimated to range from 6.7 to 66.8 trillion cubic metres of gas (236 to 2,357 trillion cubic feet of gas), at the 0.50 and 0.05 probability levels respectively. The mean in-place hydrate resource estimate for northern Alaska is calculated to be 16.7 trillion cubic metres of gas (590 trillion cubic feet of gas). If this assessment is valid, the amount of natural gas stored as gas hydrates in northern Alaska could be almost seven times larger then the estimated total remaining recoverable conventional natural gas resources in the entire United States.

  11. Well log evaluation of gas hydrate saturations

    USGS Publications Warehouse

    Collett, Timothy S.

    1998-01-01

    The amount of gas sequestered in gas hydrates is probably enormous, but estimates are highly speculative due to the lack of previous quantitative studies. Gas volumes that may be attributed to a gas hydrate accumulation within a given geologic setting are dependent on a number of reservoir parameters; one of which, gas-hydrate saturation, can be assessed with data obtained from downhole well logging devices. The primary objective of this study was to develop quantitative well-log evaluation techniques which will permit the calculation of gas-hydrate saturations in gas-hydrate-bearing sedimentary units. The `standard' and `quick look' Archie relations (resistivity log data) yielded accurate gas-hydrate and free-gas saturations within all of the gas hydrate accumulations assessed in the field verification phase of the study. Compressional wave acoustic log data have been used along with the Timur, modified Wood, and the Lee weighted average acoustic equations to calculate accurate gas-hydrate saturations in this study. The well log derived gas-hydrate saturations calculated in the field verification phase of this study, which range from as low as 2% to as high as 97%, confirm that gas hydrates represent a potentially important source of natural gas.

  12. Multiple stage multiple filter hydrate store

    DOEpatents

    Bjorkman, H.K. Jr.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means for separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means. 7 figs.

  13. Gas hydrates: Technology status report

    SciTech Connect

    Not Available

    1987-01-01

    In 1983, the US Department of Energy (DOE) assumed the responsibility for expanding the knowledge base and for developing methods to recover gas from hydrates. These are ice-like mixtures of gas and water where gas molecules are trapped within a framework of water molecules. This research is part of the Unconventional Gas Recovery (UGR) program, a multidisciplinary effort that focuses on developing the technology to produce natural gas from resources that have been classified as unconventional because of their unique geologies and production mechanisms. Current work on gas hydrates emphasizes geological studies; characterization of the resource; and generic research, including modeling of reservoir conditions, production concepts, and predictive strategies for stimulated wells. Complementing this work is research on in situ detection of hydrates and field tests to verify extraction methods. Thus, current research will provide a comprehensive technology base from which estimates of reserve potential can be made, and from which industry can develop recovery strategies. 7 refs., 3 figs., 6 tabs.

  14. Energy landscape of clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Desmedt, A.; Bedouret, L.; Pefoute, E.; Pouvreau, M.; Say-Liang-Fat, S.; Alvarez, M.

    2012-11-01

    Clathrate hydrates are nanoporous crystalline materials made of a network of hydrogen-bonded water molecules (forming host cages) that is stabilized by the presence of foreign (generally hydrophobic) guest molecules. The natural existence of large quantities of hydrocarbon hydrates in deep oceans and permafrost is certainly at the origin of numerous applications in the broad areas of energy and environmental sciences and technologies (e.g. gas storage). At a fundamental level, their nanostructuration confers on these materials specific properties (e.g. their "glass-like" thermal conductivity) for which the host-guest interactions play a key role. These interactions occur on broad timescale and thus require the use of multi-technique approach in which neutron scattering brings unvaluable information. This work reviews the dynamical properties of clathrate hydrates, ranging from intramolecular vibrations to Brownian relaxations; it illustrates the contribution of neutron scattering in the understanding of the underlying factors governing chemical-physics properties specific to these nanoporous systems.

  15. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  16. Hydrated silica on Mars: Global comparison and in-depth analysis at Antoniadi Crater

    NASA Astrophysics Data System (ADS)

    Smith, Matthew R.

    Hydrated silica is found in a variety of Martian deposits within suites of minerals that indicate aqueous alteration, mostly because hydrated silica forms easily in different environments. Because of its relative ubiquity on Mars, it makes a good tracer mineral to compare otherwise dissimilar deposits and relate their relative degrees of aqueous alteration. The first portion of this dissertation uses near-infrared and thermal-infrared spectroscopy to determine the relative degree of crystallinity of hydrated silica and the bulk SiO2 abundance of hydrated-silica-bearing surfaces. This analysis reveals that Martian hydrated silicas exhibit a range of crystalline structures, from noncrystalline (opal-A or hydrated glass) to crystalline (quartz), implying a range in the maturity of these silica deposits. However, bulk SiO2 abundances show less diversity, with most Martian silica deposits having relatively low SiO2 abundances, similar to a basaltic andesitic composition that exists over much of the surface and that suggests little interaction with water. The second portion of this dissertation focuses on one location that contains the only detected quartz on the planet. High-resolution satellite imagery and thermal and near-infrared spectroscopy is used to construct a geologic history of these deposits and their local context. The quartz-bearing deposits are consistently found co-located with hydrated silica, and this spatial coherence suggests that the quartz formed as a diagenetic product of amorphous silica, rather than as a primary igneous mineral. Diagenetic quartz is a mature alteration product of hydrated amorphous silica, and indicates more persistent water and/or higher temperatures at this site. There is also spectral evidence for smectites beneath the silica-bearing rocks, in the lowermost exposed Noachian-aged breccia. A similar stratigraphic sequence---smectite-bearing breccias beneath deposits containing minerals indicating a greater degree of alteration

  17. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  18. Study of Formation Mechanisms of Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  19. Development of Alaskan gas hydrate resources

    SciTech Connect

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  20. Fundamentals and applications of gas hydrates.

    PubMed

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.

  1. Geomechanical Modeling of Gas Hydrate Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Sanchez, M. J.; Gai, X., Sr.

    2015-12-01

    This contribution focuses on an advance geomechanical model for methane hydrate-bearing soils based on concepts of elasto-plasticity for strain hardening/softening soils and incorporates bonding and damage effects. The core of the proposed model includes: a hierarchical single surface critical state framework, sub-loading concepts for modeling the plastic strains generally observed inside the yield surface and a hydrate enhancement factor to account for the cementing effects provided by the presence of hydrates in sediments. The proposed framework has been validated against recently published experiments involving both, synthetic and natural hydrate soils, as well as different sediments types (i.e., different hydrate saturations, and different hydrates morphologies) and confinement conditions. The performance of the model in these different case studies was very satisfactory.

  2. Fundamentals and applications of gas hydrates.

    PubMed

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties. PMID:22432618

  3. Hydrated electrons react with high specificity with cisplatin bound to single-stranded DNA.

    PubMed

    Behmand, B; Cloutier, P; Girouard, S; Wagner, J R; Sanche, L; Hunting, D J

    2013-12-19

    Short oligonucleotides TTTTTGTGTTT and TTTTTTTGTTT in solution with and without cisplatin (cisPt) bound to the guanine bases were irradiated with γ-rays at doses varying from 0 to 2500 Gy. To determine the effect of hydrated electrons from water radiolysis on the oligonucleotides, we quenched (•)OH radicals with ethylenediaminetetraacetic acid (EDTA) and displaced oxygen, which reacts with hydrated electrons, by bubbling the solution with wet nitrogen. DNA strand breaks and platinum detachment were quantified by gel electrophoresis. Our results demonstrate that hydrated electrons react almost exclusively at the position of the cisPt adduct, where they induce cisPt detachment from one or both guanines in the oligonucleotide. Given the high yield of hydrated electrons in irradiated tissues, this reaction may be an important step in the mechanism of radiosensitization of DNA by cisPt.

  4. Hydrated Electrons React with High Specificity with Cisplatin Bound to Single-Stranded DNA

    PubMed Central

    Behmand, B.; Cloutier, P.; Girouard, S.; Wagner, J. R.; Sanche, L.; Hunting, D. J.

    2015-01-01

    Short oligonucleotides TTTTTGTGTTT and TTTTTTTGTTT in solution with and without cisplatin (cisPt) bound to the guanine bases were irradiated with γ-rays at doses varying from 0 to 2500 Gy. To determine the effect of hydrated electrons from water radiolysis on the oligonucleotides, we quenched •OH radicals with ethylenediaminetetraacetic acid (EDTA) and displaced oxygen, which reacts with hydrated electrons, by bubbling the solution with wet nitrogen. DNA strand breaks and platinum detachment were quantified by gel electrophoresis. Our results demonstrate that hydrated electrons react almost exclusively at the position of the cisPt adduct, where they induce cisPt detachment from one or both guanines in the oligonucleotide. Given the high yield of hydrated electrons in irradiated tissues, this reaction may be an important step in the mechanism of radiosensitization of DNA by cisPt. PMID:24205952

  5. Use of Hydration Inhibitors to Improve Bond Durability of Aluminum Adhesive Joints

    NASA Technical Reports Server (NTRS)

    Davis, G. D.; Ahearn, J. S.; Matienzo, L. J.; Venables, J. D.

    1985-01-01

    An investigation is conducted of the mechanisms by which nitrilotris methylene phosphonic acid (NTMP) and related compounds are adsorbed onto oxidized aluminum surfaces to inhibit hydration and increase the durability of adhesive bonds formed with inhibitor-treated panels. P - O - Al bonds are identified as the basis of adsorption, and it is found that water initially adsorbed onto the etched aluminum surfaces is displaced by the NTMP. The hydration of the NTMP-treated surfaces occurs in three stages, namely the reverisble physisorption of water, the slow dissolution of NTMP followed by rapid hydration of the freshly exposed Al2O3 to AlOOH and further hydration of the surface to Al(OH)3. Five properties of an ideal inhibitor are identified.

  6. Development of media for dynamic latent heat storage for the low-temperature range. Part 1: Thermal analyses of selected salt hydrate systems

    NASA Technical Reports Server (NTRS)

    Kanwischer, H.; Tamme, R.

    1985-01-01

    Phase change temperatures and phase change enthalpies of seventeen salt hydrates, three double salts, and four eutectics were measured thermodynamically and the results reported herein. Good results were obtained, especially for congruently melting salt hydrates. Incongruently melting salt hydrates appear less suitable for heat storage applications. The influence of the second phase - water, acid and hydroxide - to the latent heat is described. From these results, basic values of the working temperatures and storage capabilities of various storage media compositions may be derived.

  7. Gas hydrates of outer continental margins

    SciTech Connect

    Kvenvolden, K.A. )

    1990-05-01

    Gas hydrates are crystalline substances in which a rigid framework of water molecules traps molecules of gas, mainly methane. Gas-hydrate deposits are common in continental margin sediment in all major oceans at water depths greater than about 300 m. Thirty-three localities with evidence for gas-hydrate occurrence have been described worldwide. The presence of these gas hydrates has been inferred mainly from anomalous lacoustic reflectors seen on marine seismic records. Naturally occurring marine gas hydrates have been sampled and analyzed at about tensites in several regions including continental slope and rise sediment of the eastern Pacific Ocean and the Gulf of Mexico. Except for some Gulf of Mexico gas hydrate occurrences, the analyzed gas hydrates are composed almost exclusively of microbial methane. Evidence for the microbial origin of methane in gas hydrates includes (1) the inverse relation between methane occurence and sulfate concentration in the sediment, (2) the subparallel depth trends in carbon isotopic compositions of methane and bicarbonate in the interstitial water, and (3) the general range of {sup 13}C depletion ({delta}{sub PDB}{sup 13}C = {minus}90 to {minus}60 {per thousand}) in the methane. Analyses of gas hydrates from the Peruvian outer continental margin in particular illustrate this evidence for microbially generated methane. The total amount of methane in gas hydrates of continental margins is not known, but estimates of about 10{sup 16} m{sup 3} seem reasonable. Although this amount of methane is large, it is not yet clear whether methane hydrates of outer continental margins will ever be a significant energy resource; however, these gas hydrates will probably constitute a drilling hazard when outer continental margins are explored in the future.

  8. Natural gas hydrate occurrence and issues

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1994-01-01

    Naturally occurring gas hydrate is found in sediment of two regions: (1) continental, including continental shelves, at high latitudes where surface temperatures are very cold, and (2) submarine outer continental margins where pressures are very high and bottom-water temperatures are near 0??C. Continental gas hydrate is found in association with onshore and offshore permafrost. Submarine gas hydrate is found in sediment of continental slopes and rises. The amount of methane present in gas hydrate is thought to be very large, but the estimates that have been made are more speculative than real. Nevertheless, at the present time there has been a convergence of ideas regarding the amount of methane in gas hydrate deposits worldwide at about 2 x 1016 m3 or 7 x 1017 ft3 = 7 x 105 Tcf [Tcf = trillion (1012) ft3]. The potentially large amount of methane in gas hydrate and the shallow depth of gas hydrate deposits are two of the principal factors driving research concerning this substance. Such a large amount of methane, if it could be commercially produced, provides a potential energy resource for the future. Because gas hydrate is metastable, changes of surface pressure and temperature affect its stability. Destabilized gas hydrate beneath the sea floor leads to geologic hazards such as submarine mass movements. Examples of submarine slope failures attributed to gas hydrate are found worldwide. The metastability of gas hydrate may also have an effect on climate. The release of methane, a 'greenhouse' gas, from destabilized gas hydrate may contribute to global warming and be a factor in global climate change.

  9. Radiolysis of Sulfuric Acid, Sulfuric Acid Monohydrate, and Sulfuric Acid Tetrahydrate and Its Relevance to Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.; Carlson, R. W.

    2011-01-01

    We report laboratory studies on the 0.8 MeV proton irradiation of ices composed of sulfuric acid (H2SO4), sulfuric acid monohydrate (H2SO4 H2O), and sulfuric acid tetrahydrate (H2SO4 4H2O) between 10 and 180 K. Using infrared spectroscopy, we identify the main radiation products as H2O, SO2, (S2O3)x, H3O+, HSO4(exp -), and SO4(exp 2-). At high radiation doses, we find that H2SO4 molecules are destroyed completely and that H2SO4 H2O is formed on subsequent warming. This hydrate is significantly more stable to radiolytic destruction than pure H2SO4, falling to an equilibrium relative abundance of 50% of its original value on prolonged irradiation. Unlike either pure H2SO4 or H2SO4 H2O, the loss of H2SO4 4H2O exhibits a strong temperature dependence, as the tetrahydrate is essentially unchanged at the highest irradiation temperatures and completely destroyed at the lowest ones, which we speculate is due to a combination of radiolytic destruction and amorphization. Furthermore, at the lower temperatures it is clear that irradiation causes the tetrahydrate spectrum to transition to one that closely resembles the monohydrate spectrum. Extrapolating our results to Europa s surface, we speculate that the variations in SO2 concentrations observed in the chaotic terrains are a result of radiation processing of lower hydration states of sulfuric acid and that the monohydrate will remain stable on the surface over geological times, while the tetrahydrate will remain stable in the warmer regions but be destroyed in the colder regions, unless it can be reformed by other processes, such as thermal reactions induced by diurnal cycling.

  10. Desalination utilizing clathrate hydrates (LDRD final report).

    SciTech Connect

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy; Greathouse, Jeffery A.; Majzoub, Eric H.

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  11. Natural gas production from Arctic gas hydrates

    SciTech Connect

    Collett, T.S. )

    1993-01-01

    The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

  12. Physical Properties of Gas Hydrates: A Review

    DOE PAGES

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  13. Physical Properties of Gas Hydrates: A Review

    SciTech Connect

    Gabitto, Jorge; Tsouris, Costas

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  14. DAN Active Parameters and Mastcam Hydration Survey Imaging: Comparisons Across Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hardgrove, C. J.; Rice, M. S.; Moersch, J.; Mitrofanov, I. G.; Litvak, M.; Wellington, D. F.; Behar, A.; Bell, J. F.; Boynton, W. V.; DeFlores, L.; Drake, D.; Fedosov, F.; Golovin, D.; Jun, I.; Harshman, K.; Kozyrev, A.; Malakhov, A.; Milliken, R.; Kuzmin, R.; Mischna, M. A.; Mokrousov, M.; Nikiforov, S.; Sanin, A.; Tate, C.; Team, M.

    2013-12-01

    The Dynamic Albedo of Neutrons (DAN) instrument on the Mars Science Laboratory (MSL) rover Curiosity has recorded variability in neutron counts along traverses in and around Yellowknife Bay that suggest variable amounts of hydrogen (H) are present. At the locations of several DAN observations, Mastcam 'hydration survey' mosaics have been acquired with the R0 (493 nm, 551 nm and 638 nm), R5 (937 nm) and R6 (1013 nm) science filters to characterize RGB color and look for potential hydration as indicated by an absorption near 1000 nm. Whereas DAN is sensitive to H abundance down to 60cm depth, the Mastcam hydration index is sensitive to the presence of certain hydrated minerals (bound-OH and/or H2O) exposed in the upper hundreds of micrometers of the surface. Furthermore, many light-toned, Ca-sulfate-bearing features (i.e. veins and nodules within the outcrop) exposed at the surface in Yellowknife Bay have a high hydration index, consistent with a hydrated mineral such as gypsum. Other light-toned features do not have a high hydration index, suggesting they are composed of anhydrous or lower hydration state phases such as anhydrite or bassanite. The distribution of light-toned features within the outcrop at Yellowknife Bay is also highly variable within a DAN footprint. Given that there is variability in both the DAN signal and Mastcam hydration index throughout Yellowknife Bay, this work investigates whether or not increases or decreases in H seen by DAN correlate to areas of high hydration index as derived from Mastcam observations. Positive correlations of the DAN H signal and Mastcam hydration index may indicate that the observed densities of light-toned features (hydrated or dehydrated) extend to at least 60cm depth. Conversely, negative correlations could indicate that either the veins/nodules are only present at very shallow depths (a few cm), that the hydration of the phases changes with depth (e.g., gypsum at the surface and anhydrite at depth), or that there

  15. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    ERIC Educational Resources Information Center

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  16. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Yun, T. S.; Santamarina, J. C.; Ruppel, C.

    2007-06-01

    The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.

  17. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.

    2007-01-01

    The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.

  18. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein.

    PubMed

    Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-12-01

    Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P < 0.001; δ(13)C, P < 0.001). Furthermore, the δ(15)N (‰) of individual amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.

  19. Topological crystallography of gas hydrates.

    PubMed

    Gudkovskikh, Sergey V; Kirov, Mikhail V

    2015-07-01

    A new approach to the investigation of the proton-disordered structure of clathrate hydrates is presented. This approach is based on topological crystallography. The quotient graphs were built for the unit cells of the cubic structure I and the hexagonal structure H. This is a very convenient way to represent the topology of a hydrogen-bonding network under periodic boundary conditions. The exact proton configuration statistics for the unit cells of structure I and structure H were obtained using the quotient graphs. In addition, the statistical analysis of the proton transfer along hydrogen-bonded chains was carried out. PMID:26131899

  20. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  1. Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, Ulysses J.; Meyer, David M.

    2001-06-01

    We evaluate the stellar abundances often used to represent the total (gas plus dust) composition of the interstellar medium. Published abundances for B stars, young later type (F and G) stars, and the Sun are compared to the modeled dust-phase and measured gas-phase compositions of the interstellar medium. This study uses abundances for the five most populous elements in dust grains-C, O, Mg, Si, and Fe-and the cosmically abundant element, N. We find that B stars have metal abundances that are too low to be considered valid representations of the interstellar medium. The commonly invoked interstellar standard that is two-thirds of the solar composition is also rejected by recent observations. Young (<=2 Gyr) F and G disk stars and the Sun, however, cannot be ruled out as reliable proxies for the total interstellar composition. If their abundances are valid representations of the interstellar medium, then the apparent underabundance of carbon with respect to that required by dust models, i.e., the carbon crisis, is substantially eased.

  2. Gas hydrates in ocean bottom sediments

    SciTech Connect

    MacLeod, M.K.

    1982-12-01

    Gas hydrates belong to a special category of chemical substances known as inclusion compounds. An inclusion compound is a physical combination of molecules in which one component becomes trapped inside the other. In gas hydrates, gas molecules are physically trapped inside an expanded lattice of water molecules. The pressures and temperatures beneath Artic water depths greater than 1,100 ft (335 m) and subtropical water depths greater than 2,000 ft (610 m) are suitable for the formation of methane hydrate. Theoretical depths to the base of a gas hydrate layer in ocean bottom sediments are determined by assuming: (1) a constant hydrostatic pressure gradient, (2) two typical hydrothermal gradients, (3) variable geothermal gradients, and (4) pure methane hydrated with connate seawater. In addition to pressure and geothermal gradient, other variables affecting the stability of gas hydrate are examined. These variables are hydrothermal gradient, sediment thermal conductivity, heat flow, hydrate velocity, gas composition, and connate water salinity. If these variables are constant in a lateral direction and the above assmptions are valid, a local geothermal gradient can be determined if the depth to the base of a gas hydrate is known. The base of the gas hydrate layer is seen on seismic profiles as an anomalous reflection nearly parallel to the ocean bottom, cross-cutting geologic bedding plane reflections, and generally increasing in sub-ocean bottom time with increasing water depth. The acoustic impedance is a result of the relatively fast velocity hydrate layer overlying slower velocity sediments. In addition, free gas may be trapped beneath the hydrate, thereby enhancing the reflection.

  3. Methane hydrate research at NETL: Research to make methane production from hydrates a reality

    SciTech Connect

    Taylor, C.E.; Link, D.D.; English, N.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. Five key areas of research that need further investigation have been identified. These five areas, i.e. thermal properties of hydrates in sediments, kinetics of natural hydrate dissociation, hysteresis effects, permeability of sediments to gas flow and capillary pressures within sediments, and hydrate distribution at porous scale, are important to the production models that will be used for producing methane from hydrate deposits. NETL is using both laboratory experiments and computational modeling to address these five key areas. The laboratory and computational research reinforce each other by providing feedback. The laboratory results are used in the computational models and the results from the computational modeling is used to help direct future laboratory research. The data generated at NETL will be used to help fulfill The National Methane Hydrate R&D Program of a “long-term supply of natural gas by developing the knowledge and technology base to allow commercial production of methane from domestic hydrate deposits by the year 2015” as outlined on the NETL Website [NETL Website, 2005. http://www.netl.doe.gov/scngo/Natural%20Gas/hydrates/index.html]. Laboratory research is accomplished in one of the numerous high-pressure hydrate cells available ranging in size from 0.15 mL to 15 L in volume. A dedicated high-pressure view cell within the Raman spectrometer allows for monitoring the formation and dissociation of hydrates. Thermal conductivity of hydrates (synthetic and natural) at a certain temperature and pressure is performed in a NETL-designed cell. Computational modeling studies are investigating the kinetics of hydrate formation and dissociation, modeling methane hydrate reservoirs, molecular dynamics simulations of hydrate formation, dissociation, and thermal properties, and Monte Carlo simulations of hydrate formation and dissociation.

  4. Transmission electron microscopy of the 'LOW-CA' hydrated interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Tomeoka, K.; Buseck, P. R.

    1984-01-01

    Transmission electron microscopy of a hydrated interplanetary dust particle indicates that it consists largely of a poorly crystalline phyllosilicate containing Fe, Mg and Al with an interlayer spacing of 10 to 12 A and so is distinct from the major phyllosilicate in CI and CM carbonaceous chondrites. The silicate is probably an Fe- and Mg-rich smectite or mica. Submicron, spherical to euhedral pyrrhotite and pentlandite are prominent. Unusual, low-Ni pentlandite is also common and typically occurs as rectangular platelets. Unlike many chondritic interplanetary dust particles, olivine is rare and pyroxene was not observed. Other less abundant phases are magnetite, chromite, and an unidentified phase containing Fe, Mg, Si, Ca, and Mn. This particle differs from a hydrated micrometeorite described previously by Brownlee (1978), indicating there are mineralogically different subsets of hydrated interplanetary dust particles. Despite gross similarities in mineralogy between the particle and the carbonaceous chondrites, they show appreciable differences in detail.

  5. Evaluation of the geological relationships to gas hydrate formation and stability. Progress report, June 16--September 30, 1988

    SciTech Connect

    Krason, J.; Finley, P.

    1988-12-31

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  6. Vibrational lifetimes of hydrated phospholipids

    NASA Astrophysics Data System (ADS)

    Jadidi, Tayebeh; Anvari, Mehrnaz; Mashaghi, Alireza; Sahimi, Muhammad; Rahimi Tabar, M. Reza

    2013-04-01

    Large-scale ab initio molecular-dynamics simulations have been carried out to compute, at human-body temperature, the vibrational modes and lifetimes of pure and hydrated dipalmitoylphosphatidylcholine (DPPC) lipids. The projected atomic vibrations calculated from the spectral energy density are used to compute the vibrational modes and the lifetimes. All the normal modes of the pure and hydrated DPPC and their frequencies are identified. The computed lifetimes incorporate the full anharmonicity of the atomic interactions. The vibrational modes of the water molecules close to the head group of DPPC are active (possess large projected spectrum amplitudes) in the frequency range 0.5-55 THz, with a peak at 2.80 THz in the energy spectrum. The computed lifetimes for the high-frequency modes agree well with the recent data measured at room temperature where high-order phonon scattering is not negligible. The computed lifetimes of the low-frequency modes can be tested using the current experimental capabilities. Moreover, the approach may be applied to other lipids and biomolecules, in order to predict their vibrational dispersion relations, and to study the dynamics of vibrational energy transfer.

  7. 78 FR 37536 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. The Federal... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of...

  8. 76 FR 59667 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... Meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. Federal... of the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice...

  9. 78 FR 26337 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... Meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. The Federal... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of...

  10. Free energy of hydration of niobium oxide

    SciTech Connect

    Plodinec, M.J.

    1996-08-21

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium.

  11. ATR-FTIR study of water in Nafion membrane combined with proton conductivity measurements during hydration/dehydration cycle.

    PubMed

    Kunimatsu, Keiji; Bae, Byungchan; Miyatake, Kenji; Uchida, Hiroyuki; Watanabe, Masahiro

    2011-04-21

    We have conducted combined time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) and proton conductivity measurements of Nafion NRE211 membrane during hydration/dehydration cycles at room temperature. Conductivity change was interpreted in terms of different states of water in the membrane based on its δ(HOH) vibrational spectra. It was found that hydration of a dry membrane leads first to complete dissociation of the sulfonic acid groups to liberate hydrated protons, which are isolated from each other and have δ(HOH) vibrational frequency around 1740 cm(-1). The initial hydration is not accompanied by a significant increase of the proton conductivity. Further hydration gives rise to a rapid increase of the conductivity in proportion to intensity of a new δ(HOH) band around 1630 cm(-1). This was interpreted in terms of formation of channels of weakly hydrogen-bonded water to combine the isolated hydrophilic domains containing hydrated protons and hydrated sulfonate ions produced during the initial stage of hydration. Upon dehydration, proton conductivity drops first very rapidly due to loss of the weakly hydrogen bonded water from the channels to leave hydrophilic domains isolated in the membrane. Dehydration of the protons proceeds very slowly after significant loss of the proton conductivity.

  12. Isotopic fractionation of methane and ethane hydrates between gas and hydrate phases

    NASA Astrophysics Data System (ADS)

    Hachikubo, Akihiro; Kosaka, Tomoko; Kida, Masato; Krylov, Alexey; Sakagami, Hirotoshi; Minami, Hirotsugu; Takahashi, Nobuo; Shoji, Hitoshi

    2007-11-01

    Isotopic fractionation of carbon and hydrogen in methane and ethane during the formation of gas hydrates was investigated. The gas hydrate samples were experimentally prepared in a pressure cell and isotopic compositions of both residual and hydrate-bound gases were measured. δD of hydrate-bound molecules of methane and ethane hydrates was several per mil lower than that of residual gas molecules in the formation processes, while there was no difference in the case of δ 13C. These isotopic differences in δD are enough small for discussing the source types of hydrate-bound gases using the δ 13C-δD diagram of Whiticar et al. [1986]. These results may provide useful insight into the formation process of gas hydrates.

  13. Bacterial dominance in subseafloor sediments characterized by methane hydrates

    USGS Publications Warehouse

    Briggs, Brandon R.; Inagaki, Fumio; Morono, Yuki; Futagami, Taiki; Huguet, Carme; Rosell-Mele, Antoni; Lorenson, T.D.; Colwell, Frederick S.

    2015-01-01

    The degradation of organic carbon in subseafloor sediments on continental margins contributes to the largest reservoir of methane on Earth. Sediments in the Andaman Sea are composed of ~ 1% marine-derived organic carbon and biogenic methane is present. Our objective was to determine microbial abundance and diversity in sediments that transition the gas hydrate occurrence zone (GHOZ) in the Andaman Sea. Microscopic cell enumeration revealed that most sediment layers harbored relatively low microbial abundance (103–105 cells cm−3). Archaea were never detected despite the use of both DNA- and lipid-based methods. Statistical analysis of terminal restriction fragment length polymorphisms revealed distinct microbial communities from above, within, and below the GHOZ, and GHOZ samples were correlated with a decrease in organic carbon. Primer-tagged pyrosequences of bacterial 16S rRNA genes showed that members of the phylum Firmicutes are predominant in all zones. Compared with other seafloor settings that contain biogenic methane, this deep subseafloor habitat has a unique microbial community and the low cell abundance detected can help to refine global subseafloor microbial abundance.

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new

  15. Raman tomography of natural air hydrates

    NASA Astrophysics Data System (ADS)

    Weikusat, Christian; Kipfstuhl, Sepp; Weikusat, Ilka

    2015-04-01

    Ice cores are the only climate archives incorporating paleo-atmosphere as individual gas inclusions, enabling the extraction and analysis of the contained gasses. A firm understanding of the processes involved is mandatory for a reliable interpretation of the gas records. One prominent process is the transition from air bubbles to crystalline air hydrates, which is known to influence, at least temporarily, the gas mixing ratios by diffusion and fractionation. This transition is still not understood completely and the existing theories do not explain the large diversity of observed hydrate morphologies. Raman tomographic measurements using the AWI cryo-Raman system provide 3D reconstructions of air hydrate morphologies. The results show complex growth structures that emphasize the importance of crystallography, microstructure and ice rheology for the hydrate formation process. Accurate hydrate volumes can be calculated from the 3D objects, improving the estimates of total gas contents.

  16. Hydration forces at solid and fluid biointerfaces.

    PubMed

    Shrestha, Buddha Ratna; Banquy, Xavier

    2016-03-01

    The authors review the different molecular mechanisms giving rise to the repulsive hydration force between biologically relevant surfaces such as lipid bilayers and bioceramics. As the authors will show, the hydration force manifests itself in very different and subtle ways depending on the substrates. Soft, mobile surfaces such as lipid bilayers tend to exhibit monotonic, decaying hydration force, originated from the entropic constriction of the lipid head groups. Solid surfaces, on the other hand, tend to exhibit a periodic oscillatory hydration force, originated from the surface induced polarization of water molecules. In this review, the authors will describe both subtle faces of this important interaction by first describing the early experiments performed on solid surfaces and their interpretation by recent simulation studies. Then, the authors will describe the hydration force between fluid interfaces such as bilayers and explain how experimentally researchers have unraveled the dominant role of the lipid head groups' conformation. PMID:26795057

  17. On Hydrated Sulfates and Carbonates on Europa's Surface

    NASA Astrophysics Data System (ADS)

    McCord, T.; Fanale, F.; Hansen, G.; Orlando, T.; Sieger, M.; Petrik, N.; Crowley, J.

    1999-09-01

    Galileo NIMS observations of Europa indicate the presence of hydrated non-ice materials on the surface. McCord et al. (Science, 280, 1242, 1998; JGR, 104, 11827, 1999) suggested hydrated sulfates and/or carbonates, with MgSO_4*xH_2O being one candidate. Carlson et al. (submitted to JGR) suggests sulfuric acid (H_2SO_4*xH_2O). MgSO_4*xH_2O and H_2SO_4*xH_2O have similar spectral and chemical characteristics that are dominated by the solvated sulfate species. In fact, the indicative distorted water bands in the NIMS spectra are most likely associated with solvation shell and water molecules that interact most strongly with the sulfate and carbonate anions (McCord et al. ibid.). The cations present (e.g., Mg, Na, H) affect these bound water molecules less, making it difficult to identify them in the NIMS spectra. A number of hydrated SO_4- and CO_3-bearing materials are predicted by models of interior evolution (Fanale et al., Science, 186, 922, 1977; Kargel, Icarus, 94, 368, 1991). McCord et al. (ibid.) suggested that the Europa material is probably a mixture of these materials with possible modification by radiation-induced chemistry. We report further analysis of the NIMS spectra and recent laboratory work on the radiation and thermal stability of these materials under Europa conditions. Our results indicate that the hydrated magnesium sulfate epsomite (x=7) remains hydrated under high vacuum (<10(9) Torr) at temperatures less than about 250 K and are much more stable with respect to electron irradiation than is water ice. Thus, deposits of at least hydrated sulfates can become concentrated on Europa due to electronic sputtering of ice and may account for the apparently high concentrations of these materials in some places. These results, with the likelihood that ice sputtering provides sufficient water molecules at the surface to maintain fully solvated sulfate ions, makes these materials reasonable for Europa's surface.

  18. Evaluation of CO2 Substitution for CH4 as a Mechanism for Concurrent Gas Production and CO2 Sequestration in Hydrate-Bearing Geologic Media

    NASA Astrophysics Data System (ADS)

    Moridis, G. J.; Reagan, M. T.; Silpngarmlert, S.

    2010-12-01

    Natural hydrates in geologic media contain CH4 in overwhelming abundance. In addition to the conventional methods of CH4-hydrate dissociation (depressurization, thermal stimulation, the use of inhibitors, and combinations thereof), CO2 substitution for CH4 has been proposed as a potential method that could simultaneously achieve two goals: the release of CH4 from the CH4-hydrates for gas production, and the replacement of CH4 by CO2 in the clathrates, thus forming either binary CH4+CO2-hydrates or pure CO2-hydrates and enabling CO2 sequestration. The reaction of CO2 substitution for CH4 in the clathrates is thermodynamically favorable, resulting in binary or CO2-hydrates that are more thermodynamically stable than CH4-hydrates. In this numerical study we first evaluate the performance of a new equation-of-state (EOS) module developed as a code unit for the TOUGH+ general simulator. The EOS describes the thermodynamic and flow behavior of binary CH4+CO2-hydrates in geologic media, and covers the entire composition spectrum in both the gas and the hydrate phase. The EOS includes fast parametric relationships that describe the 3-dimensional P-T-X phase diagram of the CH4+CO2+H2O system, which (a) were developed from 3D regression of thermodynamic data obtained from the CSMGem code (a statistical thermodynamics simulator that is based on the minimization of Gibbs energy of hydrate systems) and (b) were validated using laboratory measurements. The TOUGH+ simulator with the CH4+CO2-hydrate EOS is then validated using results from laboratory studies that involve replacement of CH4 by CO2 in hydrate-bearing cores. Finally, we investigate the technical feasibility of such replacement at the reservoir scale, and the conditions under which it may be successful, in realistic settings involving systems of vertical and horizontal wells.

  19. Zirconium tungstate hydroxide hydrate revisited: Crystallization dependence on halide and hydronium ions

    SciTech Connect

    Colin, Julie A. Camper, DeMarco V.; Gates, Stacy D.; Simon, Monty D. Witker, Karen L. Lind, Cora

    2007-12-15

    The formation of zirconium tungstate hydroxide hydrate, a precursor to the negative thermal expansion material cubic zirconium tungstate, shows a strong dependence on hydrothermal reaction conditions. It was found that not only the acid concentration, but also the acid counterion plays a significant role in the crystallization of ZrW{sub 2}O{sub 7}(OH){sub 2}.2H{sub 2}O. High temperatures, high acid concentrations, and the presence of chloride or bromide ions promote the formation of well-crystallized ZrW{sub 2}O{sub 7}(OH){sub 2}.2H{sub 2}O. For low acid concentrations, a new zirconium tungstate hydrate polymorph is observed, which transforms to tetragonal ZrW{sub 2}O{sub 7}(OH){sub 2}.2H{sub 2}O at longer reaction times. A study of crystallization kinetics in hydrochloric acid is presented. - Graphical abstract: The formation of ZrW{sub 2}O{sub 7}(OH){sub 2}.2H{sub 2}O shows a strong dependence on reaction conditions. Both acid concentration and acid counterion play a significant role in the crystallization. High temperatures, high acid concentrations, and the presence of chloride or bromide ions promote the formation of well-crystallized ZrW{sub 2}O{sub 7}(OH){sub 2}.2H{sub 2}O. For low acid concentrations, a new zirconium tungstate hydrate polymorph is observed.

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-07-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  3. Overview on Hydrate Coring, Handling and Analysis

    SciTech Connect

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  4. Methane Hydrates: Major Energy Source for the Future or Wishful Thinking?

    SciTech Connect

    Thomas, Charles Phillip

    2001-09-01

    Methane hydrates are methane bearing, ice-like materials that occur in abundance in permafrost areas such as on the North Slope of Alaska and Canada and as well as in offshore continental margin environments throughout the world including the Gulf of Mexico and the East and West Coasts of the United States. Methane hydrate accumulations in the United States are currently estimated to be about 200,000 Tcf, which is enormous when compared to the conventional recoverable resource estimate of 2300 Tcf. On a worldwide basis, the estimate is 700,000 Tcf or about two times the total carbon in coal, oil and conventional gas in the world. The enormous size of this resource, if producible to any degree, has significant implications for U.S. and worldwide clean energy supplies and global environmental issues. Historically the petroleum industry's interests in methane hydrates have primarily been related to safety issues such as wellbore stability while drilling, seafloor stability, platform subsidence, and pipeline plugging. Many questions remain to be answered to determine if any of this potential energy resource is technically and economically viable to produce. Major technical hurdles include: 1) methods to find, characterize, and evaluate the resource; 2) technology to safely and economically produce natural gas from methane hydrate deposits; and 3) safety and seafloor stability issues related to drilling through gas hydrate accumulations to produce conventional oil and gas. The petroleum engineering profession currently deals with gas hydrates in drilling and production operations and will be key to solving the technical and economic problems that must be overcome for methane hydrates to be part of the future energy mix in the world.

  5. Submarine landslides associated with shallow seafloor gas and gas hydrates off northern California

    SciTech Connect

    Field, M.E. )

    1990-06-01

    The continental margin off California north of Cape Mendocino contains more landslides than any other region along the west coast of the US Factors contributing to the abundance of landslides are high levels of seismicity (historically one event of M6 or greater per decade), tectonic uplift and deformation, and large quantities (20 to 30 {times} 10{sup 6} tons) of fluvial sediment delivered to the margin each year. More recently, interstitial gas derived from biogenic and possible thermogenic sources, and from degraded gas hydrates, has been recognized as another potentially important factor in causing some of the slides. One of the more prominent slides is the Humboldt slide zone, west of Eureka on a 4{degree} slope at water depths of 250 to 500 m. The slide zone consists of large back-rotated blocks that failed in a retrogressive manner. The evidence for shallow gas is abundant. Acoustic masking and enhancement of reflectors below the slide are evident on high resolution records. Hundreds of pock marks up to 25 m in diameter are scattered throughout the area. Shallow cores indicate elevated levels (>10,000 mL/L) of methane gas in the upper 2 m of sediment. Similarly, the presence of gas hydrates is well documented. Initially inferred on the basis of a bottom simulating reflector (BSR), samples of gas hydrates have recently been obtained from the upper 1 m of the sea floor. Gas in bubble phase can markedly increase the pore fluid pressure and thereby decrease the effective stress of seafloor sediment and ultimately lead to failure. Gas hydrates contain enormous quantities of gas, and thus their presence, along with the abundant evidence of free gas, in the failure zone indicates a possible link between the gas hydrates and the slides.

  6. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides

    NASA Astrophysics Data System (ADS)

    Grossutti, Michael; Dutcher, John

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly important example of confined water, with differences in polysaccharide structure providing different spatially confined environments for water adsorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, monodisperse phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA) and chitosan. We find similarities between water structuring in the two linear polysaccharides, and significant differences for phytoglycogen. In particular, the phytoglycogen nanoparticles exhibited high network water connectivity, and a large increase in the fraction of multimer water clusters with increasing RH, whereas the water structure for HA and chitosan was found to be insensitive to changes in RH. These measurements provide unique insight into the relationship between the chain architecture and hydration of polysaccharides.

  7. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides.

    PubMed

    Grossutti, Michael; Dutcher, John R

    2016-03-14

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly interesting example of confined water, because differences in polysaccharide structure provide different spatially confined environments for water sorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, dendrimer-like phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA), and chitosan. We find similarities between the water structuring in the two linear polysaccharides and significant differences for phytoglycogen. In particular, the results suggest that the high degree of branching in phytoglycogen leads to a much more well-ordered water structure (low density, high connectivity network water), indicating the strong influence of chain architecture on the structuring of water. These measurements provide unique insight into the relationship between the structure and hydration of polysaccharides, which is important for understanding and exploiting these sustainable nanomaterials in a wide range of applications.

  8. Simulating the Dissolution of Gas Hydrates at the Deep Sea Floor in a Pressure Chamber Under Controlled P/T and Shear Stress Conditions

    NASA Astrophysics Data System (ADS)

    Drews, M.; Holscher, B.; Rehder, G.; Wallmann, K.; Steffen, H.; Gust, G.

    2003-04-01

    We report on the investigation of the dissolution kinetics of natural gas hydrates in a laboratory pressure chamber. The kinetics of gas hydrate dissociation, where gas hydrates are destabilised when temperature increases, pressure decreases, or chemical agents attack and destroy the hydrate matrix, have been intensively studied in the context of technical applications. However, the abundance and distribution of gas hydrates outcropping from the sea floor are limited by dissolution through contact with methane-undersaturated bottom water while the hydrate is still inside the hydrate stability field. This process has only recently been studied in an in situ experiment, which used a remotely operated vehicle to transfer synthetically generated gas hydrate to the seafloor and to observe its dissolution behavior (Rehder et al., subm.). The results imply that gas hydrate dissolution is diffusion controlled. Until now, there have been no attempts to investigate gas hydrate dissolution kinetics within the gas hydrate stability field under variable salinity, methane concentration, and bottom shear stress conditions. The newly designed deep sea simulation chamber (A-PROACH, adaptive pressure ocean analysis chamber), constructed by the Technical University Hamburg-Harburg, provides the opportunity to study gas hydrate dissolution under realistic conditions including stable pressure, temperature, and defined shear stress (Steffen et al., this volume). We equipped the pressure chamber with an underwater video camera and high precision conductivity, temperature, and pressure sensors using an integrated CTD-probe (Seabird). During gas hydrate dissolution, the release of hydrate leads to a salinity decrease in the surrounding sea water, which can be tracked real-time by the conductivity sensor. This set-up enables us to conduct first time-series experiments under various P/T conditions in order to calculate dissolution constants of natural gas hydrates. References: Rehder, G. et

  9. Influence of a Neighboring Charged Group on Hydrophobic Hydration Shell Structure.

    PubMed

    Davis, Joel G; Zukowski, Samual R; Rankin, Blake M; Ben-Amotz, Dor

    2015-07-23

    Raman multivariate curve resolution (Raman-MCR), as well as quantum and classical calculations, are used to probe water structural changes in the hydration shells of carboxylic acids and tetraalkyl ammonium ions with various aliphatic chain lengths. The results reveal that water molecules in the hydration shell around the hydrophobic chains undergo a temperature and chain length dependent structural transformation resembling that previously observed in aqueous solutions of n-alcohols. Deprotonation of the carboxylic acid headgroup (at pH ∼ 7) is found to suppress the onset of the hydration-shell structural transformation around the nearest aliphatic methylene group. Tetraalkyl ammonium cations are found to more strongly suppress the water structural transformation, perhaps reflecting the greater intramolecular charge delocalization and suppression of dangling OH defects in water's tetrahedral H-bond network. The observed coupling between ionic and hydrophobic groups, as well as the associated charge asymmetry, may influence the hydrophobicity of proteins and other materials.

  10. Solar abundance of platinum

    PubMed Central

    Burger, Harry; Aller, Lawrence H.

    1975-01-01

    Three lines of neutral platinum, located at λ 2997.98 Å, λ 3064.71 Å, and λ 3301.86 Å have been used to determine the solar platinum abundance by the method of spectral synthesis. On the scale, log A(H) = 12.00, the thus-derived solar platinum abundance is 1.75 ± 0.10, in fair accord with Cameron's value of log A(Pt) = 1.69 derived by Mason from carbonaceous chondrites and calculated on the assumption that log A(Si) = 7.55 in the sun. PMID:16592278

  11. DNA hydration studied by neutron fiber diffraction

    SciTech Connect

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J.

    1994-12-31

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

  12. Clathrate hydrate tuning for technological purposes

    NASA Astrophysics Data System (ADS)

    di Profio, Pietro; Germani, Raimondo; Savelli, Gianfranco

    2010-05-01

    Gas hydrates are being increasingly considered as convenient media for gas storage and transportation as the knowledge of their properties increases, in particular as relates to methane and hydrogen. Clathrate hydrates may also represent a feasible sequestration technology for carbon dioxide, due to a well defined P/T range of stability, and several research programs are addressing this possibility. Though the understanding of the molecular structure and supramolecular interactions which are responsible of most properties of hydrates have been elucitated in recent years, the underlying theoretical physico-chemical framework is still poor, especially as relates to the role of "conditioners" (inhibitors and promoters) from the molecular/supramolecular point of view. In the present communication we show some results from our research approach which is mainly focused on the supramolecular properties of clathrate hydrate systems - and their conditioners - as a way to get access to a controlled modulation of the formation, dissociation and stabilization of gas hydrates. In particular, this communication will deal with: (a) a novel, compact apparatus for studying the main parameters of formation and dissociation of gas hydrates in a one-pot experiment, which can be easily and rapidly carried out on board of a drilling ship;[1] (b) the effects of amphiphile molecules (surfactants) as inhibitors or promoters of gas hydrate formation;[2] (c) a novel nanotechnology for a reliable and quick production of hydrogen hydrates, and its application to fuel cells;[3,4] and (d) the development of a clathrate hydrate tecnology for the sequestration and geological storage of man-made CO2, possibly with concomitant recovery of natural gas from NG hydrate fields. Furthermore, the feasibility of catalyzing the reduction of carbon dioxide to energy-rich species by hydrates is being investigated. [1] Di Profio, P., Germani, R., Savelli, G., International Patent Application PCT/IT2006

  13. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  14. Gas Hydrate Storage of Natural Gas

    SciTech Connect

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  15. Diffusion of CO2 During Hydrate Formation and Dissolution

    SciTech Connect

    Franklin M. Orr, Jr.

    2002-08-20

    Experiments were performed to measure the rate of diffusion of CO2 through hydrate films. Hydrate films were created in a capillary tube, and the growth of the hydrate film was measured. Difficulties were encountered in creating hydrate repeatedly, and some non-uniform growth of the films was observed. Sufficient observations were obtained to demonstrate that hydrate growth occurs preferentially on the hydrate/water side of the interface, rather than at the hydrate/CO2 interface. Diffusion coefficients were estimated from observations of the rate of growth of the hydrate film along with estimates of the solubility of CO2 in water and of the concentration gradient across the hydrate layer. The experimental observations indicate that hydrate formation occurs much more rapidly at the hydrate water interface than at the hydrate/CO2 interface. Any growth of hydrate at the CO2/hydrate interface was too slow to be observed at the time scale of the experiments. That observation is consistent with the idea that CO2 can move more easily through the hydrate, presumably by hopping between hydrate cages, than water can move through the hydrate, presumably by lattice hopping. Estimated diffusion coefficients were in the range 1-3E-06 cm2/sec. Those values are about an order of magnitude lower than the diffusion coefficient for CO2 in liquid water, but four orders of magnitude larger than the value for diffusion of CO2 in a solid. The rate of diffusion through the hydrate controls both the creation of new hydrate at the hydrate/water interface and the rate at which CO2 dissolves in the liquid water and diffuses away from the hydrate layer. Formation of a hydrate layer reduces the rate at which CO2 dissolves in liquid water.

  16. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    USGS Publications Warehouse

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  17. Abundances of light elements.

    PubMed Central

    Pagel, B E

    1993-01-01

    Recent developments in the study of abundances of light elements and their relevance to cosmological nucleosynthesis are briefly reviewed. The simplest model, based on standard cosmology and particle physics and assuming homogeneous baryon density at the relevant times, continues to stand up well. PMID:11607388

  18. Detection and Production of Methane Hydrate

    SciTech Connect

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes

  19. Gas Hydrates Research Programs: An International Review

    SciTech Connect

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  20. Electrical properties of methane hydrate + sediment mixtures

    USGS Publications Warehouse

    Du Frane, Wyatt L.; Stern, Laura A.; Weitemeyer, Karen A.; Constable, Steven; Roberts, Jeffery J.

    2011-01-01

    As part of our DOE-funded proposal to characterize gas hydrate in the Gulf of Mexico using marine electromagnetic methods, a collaboration between SIO, LLNL, and USGS with the goal of measuring the electrical properties of lab-created methane (CH4) hydrate and sediment mixtures was formed. We examined samples with known characteristics to better relate electrical properties measured in the field to specific gas hydrate concentration and distribution patterns. Here we discuss first-ever electrical conductivity (σ) measurements on unmixed CH4 hydrate (Du Frane et al., 2011): 6 x 10-5 S/m at 5 °C, which is ~5 orders of magnitude lower than seawater. This difference allows electromagnetic (EM) techniques to distinguish highly resistive gas hydrate deposits from conductive water saturated sediments in EM field surveys. More recently, we performed measurements on CH4 hydrate mixed with sediment and we also discuss those initial findings here. Our results on samples free of liquid water are important for predicting conductivity of sediments with pores highly saturated with gas hydrate, and are an essential starting point for comprehensive mixing models.

  1. Prospecting for marine gas hydrate resources

    USGS Publications Warehouse

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  2. Ab Initio Studies of Calcium Carbonate Hydration.

    PubMed

    Lopez-Berganza, Josue A; Diao, Yijue; Pamidighantam, Sudhakar; Espinosa-Marzal, Rosa M

    2015-11-25

    Ab initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate. Structural and energetics analysis of the hydration of these clusters revealed a first hydration shell composed of 12 water molecules. Bond-length and charge densities were also determined for different cluster sizes. The solvation of calcium carbonate in bulk water was investigated by placing the explicitly solvated CaCO3·nH2O clusters in a polarizable continuum model (PCM). The findings of this study provide new insights into the energetics and structure of hydrated calcium carbonate and contribute to the understanding of mechanisms where calcium carbonate formation or dissolution is of relevance.

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Buddy King

    2003-12-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the US have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by maurer Technology, noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R and D in the area of onshore hydrate deposition. They plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. They also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. They are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. They hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, the goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  5. Tapping methane hydrates for unconventional natural gas

    USGS Publications Warehouse

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  6. Clathrate hydrates in cometary nuclei and porosity

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1988-01-01

    Possible mechanisms of formation and decomposition of CO2-clathrate hydrate in cometary nuclei are discussed. As far as it is known, this is the only clathrate hydrate which is unstable at low temperatures. Calculation shows that, in accord with other evidence, neither volume nor grain boundary diffusion in the clathrate lattice can be responsible for the rate of these reactions and that a surface mechanism with the attendant sensitivity to pressure must play a crucial role. Density changes accompanying CO2-clathrate decomposition and formation can lead to microporosity and enhanced brittleness or even to fracture of cometary nuclei at low temperatures. Other clathrate hydrates and mixed clathrates are also discussed.

  7. Carbon dioxide hydrate and floods on Mars

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1974-01-01

    Ground ice on Mars probably consists largely of carbon dioxide hydrate. This hydrate dissociates upon release of pressure at temperatures between 0 and 10 C. The heat capacity of the ground would be sufficient to produce up to 4% (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near-surface temperature was in this range would have produced chaotic terrain and flood channels.

  8. Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi.

    PubMed

    Rizzo, Angela M; Negroni, Manuela; Altiero, Tiziana; Montorfano, Gigliola; Corsetto, Paola; Berselli, Patrizia; Berra, Bruno; Guidetti, Roberto; Rebecchi, Lorena

    2010-06-01

    Reactive oxygen species (ROS) are formed in all aerobic organisms, potentially leading to oxidative damage of all biological molecules. A number of defence mechanisms have developed to protect the organism from attack by ROS. Desiccation tolerance is correlated with an increase in the antioxidant potential in several organisms, but the regulation of the antioxidant defence system is complex and its role in desiccation-tolerant organisms is not yet firmly established. To determine if anhydrobiotic tardigrades have an antioxidant defence system, capable of counteracting ROS, we compared the activity of several antioxidant enzymes, the fatty acid composition and Heat shock protein expression in two physiological states (desiccated vs. hydrated) of the tardigrade Paramacrobiotus richtersi. In hydrated tardigrades, superoxide dismutase and catalase show comparable activities, while in desiccated specimens the activity of superoxide dismutase increases. Both glutathione peroxidase and glutathione were induced by desiccation. The percentage of fatty acid composition of polyunsaturated fatty acids and the amount of thiobarbituric acid reactive substances are higher in desiccated animals than in hydrated ones. Lastly, desiccated tardigrades did not differ significantly from the hydrated ones in the relative levels of Hsp70 and Hsp90. These results indicate that the possession of antioxidant metabolism could represent a crucial strategy to avoid damages during desiccation in anhydrobiotic tardigrades.

  9. From Black Hole to Hydrate Hole: Gas hydrates, authigenic carbonates and vent biota as indicators of fluid migration at pockmark sites of the Northern Congo Fan

    NASA Astrophysics Data System (ADS)

    Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b

    2003-04-01

    A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major

  10. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    USGS Publications Warehouse

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  11. Solar abundance of iridium

    PubMed Central

    Drake, Stephen; Aller, Lawrence H.

    1976-01-01

    By a method of spectrum synthesis, which yields log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance, an attempt is made to deduce the solar iridium abundance from one relatively unblended, but fairly weak IrI line, λ 3220.78 Å. If the Corliss-Bozman f-value for this line is adopted, we find log A(Ir) = 0.82 on the scale log A(H) = 12.00. The discordance with the value found from carbonaceous chondrites may arise from faulty f-values or from difficulties arising from line blending in this far ultraviolet domain of the solar spectrum. PMID:16578735

  12. Possible Albedo Proton Signature of Hydrated Lunar Surface Layer

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Wilson, J. K.; Looper, M. D.; Jordan, A.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; Lawrence, D. J.; Livadiotis, G.; Mazur, J. E.; Petro, N. E.; Pieters, C. M.; Robinson, M. S.; Smith, S. S.; Townsend, L. W.; Zeitlin, C. J.

    2015-12-01

    We find evidence for a surface layer of hydrated material in the lunar regolith using "albedo protons" measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high-energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and cannot be accounted for by either heavy element enrichment (e.g., enhanced Fe abundance), or by deeply buried (> 50 cm) hydrogenous material. The latitudinal distribution of albedo protons does not correlate with that of epithermal or high-energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in a thin (~ 1-10 cm) layer of hydrated regolith near the surface that is more prevalent near the poles. The CRaTER instrument thus provides critical measurements of volatile distributions within lunar regolith and potentially, with similar sensors and observations, at other bodies within the Solar System.

  13. Free gas in the regional hydrate stability zone: Implications for hydrate distribution and fracturing behavior

    NASA Astrophysics Data System (ADS)

    Daigle, H.; Dugan, B.

    2010-12-01

    We show that hydrate distribution and fracture genesis in the hydrate stability zone are largely governed by the phase of methane supply. In systems where methane is supplied primarily as free gas, hydrate saturation increases upwards in the hydrate stability zone, and fractures nucleate in the middle of the stability zone where hydrate saturation is highest. In systems where methane is supplied primarily as a dissolved phase in the pore water, hydrate saturation decreases upwards in the stability zone, and fractures nucleate at the base of the stability zone. These interpretations are based on our one-dimensional model that incorporates multiphase flow and free gas within the regional hydrate stability zone (RHSZ). The RHSZ is defined as the interval in which methane hydrate may occur at seawater salinity (3.35% by mass). As hydrate forms and excludes salt from the crystal structure, the porewater salinity increases. Free gas enters the RHSZ when the porewater salinity increases to the value required for three-phase (dissolved methane + gas hydrate + free gas) equilibrium. Our model also incorporates changes to capillary pressure as hydrate forms and occludes the pore system. We model the system until the excess pore pressure exceeds the vertical effective stress in the domain due to capillary effects and pore occlusion, at which point we assume fractures nucleate. We test our model at Hydrate Ridge, where methane supply is dominantly in the gas phase, and show that hydrate saturation increases upwards and fractures nucleate high within the stability zone, eventually allowing gas to vent to the seafloor. We also model Blake Ridge, where methane supply is dominantly in the dissolved phase, and show that hydrate saturation is greatest at the base of the stability zone; fractures nucleate here and in some cases could propagate through the regional hydrate stability zone, allowing methane-charged water to vent to the seafloor. These two systems represent endmembers of

  14. Understanding effect of structure and stability on transformation of CH4 hydrate to CO2 hydrate

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiang; Yan, Yujie; Liu, Haiying; Xu, Jiafang; Zhang, Jun; Chen, Gang

    2016-03-01

    Understanding the transformation process of CH4 hydrate to CO2 hydrate is crucial to develop the CH4sbnd CO2 replacement technique for CH4 production and CO2 sequestration. Ab initio calculations show that the transformation will slightly distort the host lattice and decrease the binding strength of guest molecules, but it is a thermodynamically spontaneous process dominated by the entropic contribution. Moreover, ab initio molecular dynamics simulations suggest that the dynamics of the host lattice is independent on the guest molecules, while CO2 in hydrate exhibits slower translational and rotational motion than CH4 in hydrate.

  15. Controlled-source electromagnetic and seismic delineation of sub-seafloor fluid flow structures in a gas hydrate province, offshore Norway

    NASA Astrophysics Data System (ADS)

    Attias, Eric; Weitemeyer, Karen; Minshull, Tim A.; Best, Angus I.; Sinha, Martin; Jegen-Kulcsar, Marion; Hölz, Sebastian; Berndt, Christian

    2016-05-01

    Deep sea pockmarks underlain by chimney-like or pipe structures that contain methane hydrate are abundant along the Norwegian continental margin. In such hydrate provinces the interaction between hydrate formation and fluid flow has significance for benthic ecosystems and possibly climate change. The Nyegga region, situated on the western Norwegian continental slope, is characterized by an extensive pockmark field known to accommodate substantial methane gas hydrate deposits. The aim of this study is to detect and delineate both the gas hydrate and free gas reservoirs at one of Nyegga's pockmarks. In 2012, a marine controlled-source electromagnetic (CSEM) survey was performed at a pockmark in this region, where high-resolution three-dimensional seismic data were previously collected in 2006. Two-dimensional CSEM inversions were computed using the data acquired by ocean bottom electrical field receivers. Our results, derived from unconstrained and seismically constrained CSEM inversions, suggest the presence of two distinctive resistivity anomalies beneath the pockmark: a shallow vertical anomaly at the underlying pipe structure, likely due to gas hydrate accumulation, and a laterally extensive anomaly attributed to a free gas zone below the base of the gas hydrate stability zone. This work contributes to a robust characterization of gas hydrate deposits within sub-seafloor fluid flow pipe structures.

  16. Hydrate Control for Gas Storage Operations

    SciTech Connect

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  17. Polyethylene oxide hydration in grafted layers

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were

  19. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  20. Hydration states of AFm cement phases

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Wadsö, Lars

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  1. Infrared Spectroscopy of Hydrated Nitromethane Anions

    NASA Astrophysics Data System (ADS)

    Marcum, Jesse C.; Weber, J. Mathias

    2009-06-01

    The hydration of molecular anions is still not as thoroughly explored as for atomic anions. We present IR spectra and quantum chemical calculations of hydrated nitromethane anions. In the monohydrate, the nitro group of the ion interacts with the water molecule via two hydrogen bonds, one from each O atom. This motif is partially conserved in the dihydrate. Adding the third water molecule results in a ring-like structure of the water ligands, each of which forms one H bond to one of the O atoms of the nitro group and another to a neighboring water ligand, reminiscent of the hydration motif of the heavier halides. Interestingly, while the methyl group is not directly involved in the interaction with the water ligands, its infrared signature is strongly affected by the changes in the intramolecular charge distribution through hydration.

  2. Overview: Gas hydrate geology and geography

    SciTech Connect

    Malone, R.D.

    1993-01-01

    Several geological factors which are directly responsible for the presence or absence of gas hydrates have been reviewed and are: tectonic position of the region; sedimentary environments; structural deformation; shale diapirism; hydrocarbon generation and migration; thermal regime in the hydrate formation zone (HFZ); pressure conditions; and hydrocarbon gas supply to the HFZ. Work on gas hydrate formation in the geological environment has made significant advances, but there is still much to be learned. Work is continuing in the deeper offshore areas through the Ocean Drilling Program, Government Agencies, and Industry. The pressure/temperature conditions necessary for formation has been identified for various compositions of natural gas through laboratory investigations and conditions for formation are being advanced through drilling in areas where gas hydrates exist.

  3. Natural gas hydrates: myths, facts and issues

    NASA Astrophysics Data System (ADS)

    Beauchamp, Benoı̂t

    2004-07-01

    Gas hydrates are solid-like substances naturally occurring beneath the oceans and in polar regions. They contain vast, and potentially unstable, reserves of methane and other natural gases. Many believe that, if released in the environment, the methane from hydrates would be a considerable hazard to marine ecosystems, coastal populations and infrastructures, or worse, that it would dangerously contribute to global warming. On the other hand, hydrates may contain enough natural gas to provide an energy supply assurance for the 21st century. This paper attempts to separate the myths, the facts and the issues that relate to natural gas hydrates beyond the doomsday environmental scenarios and overly optimistic estimates. To cite this article: B. Beauchamp, C. R. Geoscience 336 (2004).

  4. Clathrate hydrate stability models for Titan: implications for a global subsurface ocean

    NASA Astrophysics Data System (ADS)

    Basu Sarkar, D.; Elwood Madden, M.

    2013-12-01

    Titan is the only planetary body in the solar system, apart from the Earth, with liquid at its surface. Titan's changing rotational period suggests that a global subsurface ocean decouples the icy crust from the interior. Several studies predict the existence of such an internal ocean below an Ice I layer, ranging in depth between a few tens of kilometers to a few hundreds of kilometers, depending on the composition of the icy crust and liquid-ocean. While the overall density of Titan is well constrained, the degree of differentiation within the interior is unclear. These uncertainties lead to poor understanding of the volatile content of the moon. However, unlike other similar large icy moons like Ganymede and Callisto, Titan has a thick nitrogen atmosphere, with methane as the second most abundant constituent - 5% near the surface. Titan's atmosphere, surface, and interior are likely home to various compounds such as C2H6, CO2, Ar, N2 and CH4, capable of forming clathrate hydrates. In addition, the moon has low temperature and low-to-high pressure conditions required for clathrate formation. Therefore the occurrence of extensive multicomponent hydrates may effect the composition of near-surface materials, the subsurface ocean, as well as the atmosphere. This work uses models of hydrate stability for a number of plausible hydrate formers including CH4, C2H6, CH4 + C2H6 and CH4 + NH3, and equilibrium geothermal gradients for probable near-surface materials to delineate the lateral and vertical extent of clathrate hydrate stability zones for Titan. By comparing geothermal gradients with clathrate stability fields for these systems we investigate possible compositions of Titan's global subsurface ocean. Preliminary model results indicate that ethane hydrates or compound hydrates of ethane and methane could be destabilized within the proposed depth range of the internal ocean, while methane/ammonia or pure methane hydrates may not be affected. Therefore, ethane or

  5. Gas geochemistry studies at the gas hydrate occurrence in the permafrost environment of Mallik (NWT, Canada)

    NASA Astrophysics Data System (ADS)

    Wiersberg, T.; Erzinger, J.; Zimmer, M.; Schicks, J.; Dahms, E.; Mallik Working Group

    2003-04-01

    samples from the hydrate zone, the concentrations of all noble gases are lower than in air. Using Ne as a tracer for air contamination, the air-normalized abundances of Ar, Ke and Xe in those samples increase with their mass. Non-atmospheric elemental ratios of the heavier noble gases are most possible the result of elemental fractionation during hydrate formation.

  6. Indian National Gas Hydrate Program Expedition 01 report

    USGS Publications Warehouse

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.; ,

    2015-01-01

    The Indian National Gas Hydrate Program Expedition 01 was designed to study the gas-hydrate occurrences off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. During Indian National Gas Hydrate Program Expedition 01, dedicated gas-hydrate coring, drilling, and downhole logging operations were conducted from 28 April 2006 to 19 August 2006.

  7. Physical properties of sediment containing methane gas hydrate

    USGS Publications Warehouse

    Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.

    2005-01-01

    A study conducted by the US Geological Survey (USGS) on the formation, behavior, and properties of mixtures of gas hydrate and sediment is presented. The results show that the properties of host material influence the type and quantity of hydrates formed. The presence of hydrate during mechanical shear tests affects the measured sediment pore pressure. Sediment shear strength may be increased more than 500 percent by intact hydrate, but greatly weakened if the hydrate dissociates.

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2004-11-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the

  10. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  12. Methane Content and Distribution of Natural Gas Hydrate Accumulations in the Deep-Water Basins of the Bering Sea

    NASA Astrophysics Data System (ADS)

    Barth, G. A.; Scholl, D. W.; Childs, J. R.

    2005-12-01

    Seismic reflection images from the deep-water (>3500 m) Aleutian and Bowers Basins of the Bering Sea indicate an abundant presence of natural gas and gas hydrate. Distinctive velocity-amplitude anomalies, or VAMPs, stand out as both velocity pseudostructures and gas bright spots within the otherwise horizontal and uniform sedimentary reflection sequences. These are interpreted as methane chimneys overlain by interstitial gas hydrate caps. Hundreds of VAMPs have been imaged throughout the Bering Sea; several thousand are inferred to exist. Ongoing USGS development of an interpretive seismic database presents an opportunity to quantify the hydrate content of individual VAMPs and to explore the distribution of major and minor anomalies relative to basement topography, silica diagenesis features, ancient subduction boundary structures and sediment sources. We present quantitative estimates of the size and methane content of representative large VAMP structures, based on seismic reflection interval-time anomalies. Time-average and frame-component effective medium velocity models are used to relate hydrate concentration to velocity anomaly. For this specific case, differences between the two models are minimal for hydrate concentrations <35% of pore space. To facilitate modeling of sediment dominated by diatomaceous ooze, grain-scale elastic moduli for diatom frustules are back-calculated to be ~5 GPa, assuming shear and bulk modulus are equal. Maximum velocity anomaly observed within the VAMPs is +235 m/s in the hydrate zone, relative to a background P-wave velocity of 1600 m/s. This corresponds to hydrate concentration ~40% of pore space (or ~20% of bulk rock). Hydrate distribution appears to be lithologically controlled within a section of alternating turbidite and diatomaceous sediments. It is preferentially located in a zone ~40 to 90 m above the gas hydrate BSR. Free gas is most concentrated immediately below the hydrate BSR, which lies at ~360 m bsf. Evidence for

  13. Weakly Hydrated Surfaces and the Binding Interactions of Small Biological Solutes

    SciTech Connect

    Brady, J. W.; Tavagnacco, L.; Ehrlich, L.; Chen, M.; Schnupf, U.; Himmel, M. E.; Saboungi, M. L.; Cesaro, A.

    2012-04-01

    Extended planar hydrophobic surfaces, such as are found in the side chains of the amino acids histidine, phenylalanine, tyrosine, and tryptophan, exhibit an affinity for the weakly hydrated faces of glucopyranose. In addition, molecular species such as these, including indole, caffeine, and imidazole, exhibit a weak tendency to pair together by hydrophobic stacking in aqueous solution. These interactions can be partially understood in terms of recent models for the hydration of extended hydrophobic faces and should provide insight into the architecture of sugar-binding sites in proteins.

  14. Exploitation of subsea gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  15. Experimental Dissociation of Methane Hydrates Through Depressurization

    NASA Astrophysics Data System (ADS)

    Borgfeldt, T.; Flemings, P. B.; Meyer, D.; You, K.

    2015-12-01

    We dissociated methane hydrates by stepwise depressurization. The initial hydrates were formed by injecting gas into a cylindrical sample of brine-saturated, coarse-grained sand at hydrate-stable conditions with the intention of reaching three-phase equilibrium. The sample was initially at 1°C with a pore pressure of 1775 psi and a salinity of 7 wt. % NaBr. The depressurization setup consisted of one pump filled with tap water attached to the confining fluid port and a second pump attached to the inlet port where the methane was injected. Depressurization was conducted over sixteen hours at a constant temperature of 1°C. The pore pressure was stepwise reduced from 1775 psi to atmospheric pressure by pulling known volumes of gas from the sample. After each extraction, we recorded the instantaneous and equilibrium pore pressure. 0.503 moles of methane were removed from the sample. The pore pressure decreased smoothly and nonlinearly with the cumulative gas withdrawn from the sample. We interpret that hydrate began to dissociate immediately with depressurization, and it continued to dissociate when the pressure decreased below the three-phase pressure for 1°C and 0 wt. % salinity. Two breaks in slope in the pressure vs. mass extracted data are bounded by smooth, nonlinear curves with differing slopes on either side. We attribute the breaks to dissociation of three zones of hydrate concentration. We created a box model to simulate the experimental behavior. For a 10% initial gas saturation (estimated from the hydrate formation experiment and based on mass conservation), an initial hydrate saturation of 55% is required to match the total methane extracted from the sample. Future experiments will be conducted over a longer timespan while monitoring hydrate dissociation with CT imaging throughout the process.

  16. Influence of hydration and cation binding on parvalbumin dynamics

    NASA Astrophysics Data System (ADS)

    Zanotti, J.-M.; Parello, J.; Bellissent-Funel, M.-C.

    Due to structural characteristics, parvalbumin exerts a major role in intracellular Mg2+ and Ca2+ concentration regulation during the muscular contraction-relieving cycle. This structure-function relationship being established, we are investigating the structure-dynamics-function relationship to take into account the protein dynamics. Because of the strong incoherent neutron scattering cross section of hydrogen and of the abundance of this element in proteins, incoherent inelastic neutron scattering is a unique probe to study vibrations and localised motions in biological macromolecules. We take advantage of the complementarities in energy or time resolution of various neutron spectrometers (time of flight, backscattering, spin-echo) to probe the parvalbumin dynamics from a fraction of a picosecond to a few nanoseconds. Influences of hydration and of the nature of the cation on parvalbumin dynamics are discussed.

  17. Solid state characterization of the anti-HIV drug TMC114: interconversion of amorphous TMC114, TMC114 ethanolate and hydrate.

    PubMed

    Van Gyseghem, Elke; Stokbroekx, Sigrid; de Armas, Hector Novoa; Dickens, Jules; Vanstockem, Marc; Baert, Lieven; Rosier, Jan; Schueller, Laurent; Van den Mooter, Guy

    2009-12-01

    The interconversion of the ethanolate, hydrate and amorphous form of TMC114 ((3-[(4-amino-benzenesulfonyl)-isobutyl-amino]-1-benzyl-2-hydroxypropyl)-carbamic acid hexahydrofuro-[2,3-b]furan-3-yl ester) in open conditions was characterized. TMC114 hydrate and ethanolate form isostructural channel solvates. The crystal structure of TMC114 was obtained from single crystal X-ray diffraction, confirming that it is a channel solvate. Ethanol and water can exchange with one another. TMC114 ethanolate converts into TMC114 hydrate at moderate or high relative humidity (RH) at 25 degrees C, and it converts back into the ethanolate in ethanol atmosphere. The hydration level of the hydrate is determined by the environmental humidity. TMC114 hydrate collapses to the amorphous product when water is removed by drying at low RH or increasing temperature. TMC114 ethanolate becomes amorphous at elevated temperature in a dry environment below the desolvation temperature. Amorphous TMC114 obtained by dehydrating the hydrate during storage at room temperature/<5% RH, by increasing the temperature, or via desolvating the ethanolate by heating, converts into the hydrate at moderate or high RH at ambient conditions, and into TMC114 ethanolate in an ethanol atmosphere. Under ambient conditions, TMC114 ethanolate may convert into the hydrate, whereas the opposite will not occur under these conditions. The amorphous form, prepared by melting-quenching shows a limited water uptake. Whereas TMC114 ethanolate is stable in the commercialized drug product, special conditions can trigger its conversion.

  18. Electrical properties of polycrystalline methane hydrate

    USGS Publications Warehouse

    Du Frane, W. L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J.

    2011-01-01

    Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution and complement other resource assessment techniques, particularly seismic methods. To fully utilize EM results requires knowledge of the electrical properties of individual phases and mixing relations, yet little is known about the electrical properties of gas hydrates. We developed a pressure cell to synthesize gas hydrate while simultaneously measuring in situ frequency-dependent electrical conductivity (σ). Synthesis of methane (CH4) hydrate was verified by thermal monitoring and by post run cryogenic scanning electron microscope imaging. Impedance spectra (20 Hz to 2 MHz) were collected before and after synthesis of polycrystalline CH4 hydrate from polycrystalline ice and used to calculate σ. We determined the σ of CH4 hydrate to be 5 × 10−5 S/m at 0°C with activation energy (Ea) of 30.6 kJ/mol (−15 to 15°C). After dissociation back into ice, σ measurements of samples increased by a factor of ~4 and Ea increased by ~50%, similar to the starting ice samples.

  19. Ground movements associated with gas hydrate production

    SciTech Connect

    Siriwardane, H.J.

    1992-10-01

    The mechanics of ground movements during hydrate production can be more closely simulated by considering similarities with ground movements associated with subsidence in permafrost regions than with gob compaction in a longwall mine. The purpose of this research work is to investigate the potential strata movements associated with hydrate production by considering similarities with ground movements in permafrost regions. The work primarily involves numerical modeling of subsidence caused by hydrate dissociation. The investigation is based on the theories of continuum mechanics , thermomechanical behavior of frozen geo-materials, and principles of rock mechanics and geomechanics. It is expected that some phases of the investigation will involve the use of finite element method, which is a powerful computer-based method which has been widely used in many areas of science and engineering. Parametric studies will be performed to predict expected strata movements and surface subsidence for different reservoir conditions and properties of geological materials. The results from this investigation will be useful in predicting the magnitude of the subsidence problem associated with gas hydrate production. The analogy of subsidence in permafrost regions may provide lower bounds for subsidence expected in hydrate reservoirs. Furthermore, it is anticipated that the results will provide insight into planning of hydrate recovery operations.

  20. Clathrate hydrates in the solar system

    NASA Technical Reports Server (NTRS)

    Miller, S. L.

    1985-01-01

    Clathrate hydrates are crystalline compounds in which an expanded ice lattice forms cages that contain gas molecules. There are two principal hydrate structures. Structure I, with a 12 A cubic unit cell, contains 46 water molecules and 8 cages of two types, giving an ideal formula (for CH4) of CH4.5.75H2O. The actual formula contains somewhat more water as the cages are not completely filled. Other examples that form Structure I hydrates are C2H6, C2H4, C2H2, CO2, SO2, OCS, Xe, H2S. Structure II, with a 17 A cubic unit cell, contains 136 water molecules, and 8 large and 16 small cages. The ideal formula for CHCl3 is CHCL3.17H2O. Other examples of Structure II hydrates include C3H8, C2H5Cl, acetone, and tetrahydrofuran. Small molecules such as Ar, Kr and probably N2 and O2 also form a Structure II hydrate. The small molecules occupy both the large and small cages, giving an ideal formula of Ar.5.67H2O. The conditions of pressure and temperature for hydrate formation are discussed.

  1. Surfactant effects on SF6 hydrate formation.

    PubMed

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  2. Measurement of clathrate hydrates via Raman spectroscopy

    USGS Publications Warehouse

    Sum, A.K.; Burruss, R.C.; Sloan, E.D.

    1997-01-01

    Raman spectra of clathrate hydrate guest molecules are presented for three known structures (I (sI), II (sII), and H (sH)) in the following systems: CH4 (sI), CO2 (sI), C3H8 (sII), CH4 + CO2 (sI), CD4 + C3H8 (sII), CH4 + N2 (sI), CH4 + THF-d8 (sII), and CH4 + C7D14 (sH). Relative occupancy of CH4 in the large and small cavities of sI were determined by deconvoluting the ??1 symmetric bands, resulting in hydration numbers of 6.04 ?? 0.03. The frequency of the ??1 bands for CH4 in structures I, II, and H differ statistically, so that Raman spectroscopy is a potential tool to identify hydrate crystal structure. Hydrate guest compositions were also measured for two vapor compositions of the CH4 + CO2 system, and they compared favorably with predictions. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities. Hydration numbers from 7.27 to 7.45 were calculated for the mixed hydrate.

  3. Implications of abundant hygroscopic minerals in the Martian regolith

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1978-01-01

    Converging lines of evidence suggest that a significant portion of the Martian surface fines may consist of salts and smectite clays. Salts can form stoichiometric hydrates as well as eutectic solutions with depressed freezing points; clays contain bound water of constitution and adsorb significant quantities of water from the vapor phase. The formation of ice may be suppressed by these minerals in some regions on Mars, and their presence in abundance would imply important consequences for atmospheric and geologic processes and the prospects for exobiology.

  4. Hydration during intense exercise training.

    PubMed

    Maughan, R J; Meyer, N L

    2013-01-01

    Hydration status has profound effects on both physical and mental performance, and sports performance is thus critically affected. Both overhydration and underhydration - if sufficiently severe - will impair performance and pose a risk to health. Athletes may begin exercise in a hypohydrated state as a result of incomplete recovery from water loss induced in order to achieve a specific body mass target or due to incomplete recovery from a previous competition or training session. Dehydration will also develop in endurance exercise where fluid intake does not match water loss. The focus has generally been on training rather than on competition, but sweat loss and fluid replacement in training may have important implications. Hypohydration may impair training quality and may also increase stress levels. It is unclear whether this will have negative effects (reduced training quality, impaired immunity) or whether it will promote a greater adaptive response. Hypohydration and the consequent hyperthermia, however, can enhance the effectiveness of a heat acclimation program, resulting in improved endurance performance in warm and temperate environments. Drinking in training may be important in enhancing tolerance of the gut when athletes plan to drink in competition. The distribution of water between body water compartments may also be important in the initiation and promotion of cellular adaptations to the training stimulus. PMID:23899752

  5. Variation in hydration forces between neutral phospholipid bilayers: evidence for hydration attraction.

    PubMed

    Rand, R P; Fuller, N; Parsegian, V A; Rau, D C

    1988-10-01

    It is now generally recognized that hydration forces dominate close interactions of lipid hydrophilic surfaces. The commonality of their characteristics has been reasonably established. However, differences in measured net repulsion, particularly evident when phosphatidylethanolamine (PE) and phosphatidylcholine (PC) bilayers are compared, suggest there exists a variety of behavior wider than expected from earlier models of hydration and fluctuation repulsion balanced by van der Waals attraction. To find a basis for this diverse behavior, we have looked more closely at measured structural parameters, degrees of hydration, and interbilayer repulsive forces for the lamellar phases of the following lipids: 1-palmitoyl-2-oleoyl-PE (POPE), egg PE, transphosphatidylated egg PE (egg PE-T), mono- and dimethylated egg PE-T (MMPE and DMPE), 1-stearoyl-2-oleoyl-PC (SOPC), and mixtures of POPE and SOPC. POPE and SOPC bilayers differ not only in their maximum degrees of hydration but also in the empirical hydration force coefficients and decay lengths that characterize their interaction. When mixed with POPE, SOPC effects sudden and disproportionate increases in hydration. POPE, egg PE, and egg PE-T differ in their degree of hydration, molecular area, and hydration repulsion. A single methylation of egg PE-T almost completely converts its hydration and bilayer repulsive properties to those of egg PC; little progression of hydration is seen with successive methylations. In order to reconcile these observations with the conventional scheme of balancing interbilayer hydration and fluctuation-enhanced repulsion with van der Waals attraction, it is necessary to relinquish the fundamental idea that the decay of hydration forces is a constant determined by the properties of the aqueous medium. Alternatively, one can retain that fundamental idea if one recognizes the possibility that polar group hydration has an attractive component to it. In the latter view, that attractive component

  6. Hydrated Salts: Dehydration, Dissolution, and Incongruent Melting In Terrestrial Evaporites and at Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Dougherty, A.; Feldman, W.; Hogenboom, D.; Marion, G.; McCarthy, C.; Prieto-Ballesteros, O.

    2004-12-01

    The Opportunity rover and orbital observations of Meridiani Planum (Mars) have revealed much about the region's stratigraphy, chemistry, sedimentology, and mineralogy of what appears to be a layered lacustrine sedimentary sequence, including chemical sediments deposited by evaporative or freezing processes in a large, saline lake or sea. The roles of evaporation versus freezing are not clearly elucidated in the data, but both freezing and evaporation are likely on Mars for any paleoclimate scenario that minimizes excursions from current climate. The rock sequences reveal many interesting features reported in press accounts, NASA press releases, and in conference presentations by the MER science teams. The topic dealt with here concerns indirect sedimentologic indications of phase changes that seem to have generated negative volume changes due to dehydration, dissolution, and/or annealing. These indicators include microkarstic and polygonal structures in the laminated chemical sediments. These processes have operated on a small scale at Meridiani Planum, and serve as possible analogs for processes operative on mega scales elsewhere on Mars. Comparable processes are common in terrestrial evaporite basins and in sequences of evaporitic rocks. Fluctuations of mineral water content drive large changes in volume and pore fluid pressure, and these exert stresses that can drive extensional fracturing and faulting, folding, thrusting, and diapirism. These processes may be even more important on Mars than on Earth, because on Mars solid salts may be more abundant, more widespread, and subject to larger ranges of hydration states; the effects of these processes may be better preserved for lack of erasure by fluvial erosional processes and other degradational processes on Earth's more active surface. Specific processes and reactions proposed here can account for the sedimentologic structures observed at Meridiani Planum based on aqueous chemical phase equilibria and phase

  7. Pf1 bacteriophage hydration by magic angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Sergeyev, Ivan V.; Bahri, Salima; Day, Loren A.; McDermott, Ann E.

    2014-12-01

    High resolution two- and three-dimensional heteronuclear correlation spectroscopy (1H-13C, 1H-15N, and 1H-13C-13C HETCOR) has provided a detailed characterization of the internal and external hydration water of the Pf1 virion. This long and slender virion (2000 nm × 7 nm) contains highly stretched DNA within a capsid of small protein subunits, each only 46 amino acid residues. HETCOR cross-peaks have been unambiguously assigned to 25 amino acids, including most external residues 1-21 as well as residues 39-40 and 43-46 deep inside the virion. In addition, the deoxyribose rings of the DNA near the virion axis are in contact with water. The sets of cross-peaks to the DNA and to all 25 amino acid residues were from the same hydration water 1H resonance; some of the assigned residues do not have exchangeable side-chain protons. A mapping of the contacts onto structural models indicates the presence of water "tunnels" through a highly hydrophobic region of the capsid. The present results significantly extend and modify results from a lower resolution study, and yield a comprehensive hydration surface map of Pf1. In addition, the internal water could be distinguished from external hydration water by means of paramagnetic relaxation enhancement. The internal water population may serve as a conveniently localized magnetization reservoir for structural studies.

  8. Pf1 bacteriophage hydration by magic angle spinning solid-state NMR

    SciTech Connect

    Sergeyev, Ivan V.; Bahri, Salima; McDermott, Ann E.; Day, Loren A.

    2014-12-14

    High resolution two- and three-dimensional heteronuclear correlation spectroscopy ({sup 1}H–{sup 13}C, {sup 1}H–{sup 15}N, and {sup 1}H–{sup 13}C–{sup 13}C HETCOR) has provided a detailed characterization of the internal and external hydration water of the Pf1 virion. This long and slender virion (2000 nm × 7 nm) contains highly stretched DNA within a capsid of small protein subunits, each only 46 amino acid residues. HETCOR cross-peaks have been unambiguously assigned to 25 amino acids, including most external residues 1–21 as well as residues 39–40 and 43–46 deep inside the virion. In addition, the deoxyribose rings of the DNA near the virion axis are in contact with water. The sets of cross-peaks to the DNA and to all 25 amino acid residues were from the same hydration water {sup 1}H resonance; some of the assigned residues do not have exchangeable side-chain protons. A mapping of the contacts onto structural models indicates the presence of water “tunnels” through a highly hydrophobic region of the capsid. The present results significantly extend and modify results from a lower resolution study, and yield a comprehensive hydration surface map of Pf1. In addition, the internal water could be distinguished from external hydration water by means of paramagnetic relaxation enhancement. The internal water population may serve as a conveniently localized magnetization reservoir for structural studies.

  9. Abundance of field galaxies

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Karachentsev, Igor; Makarov, Dmitry; Nasonova, Olga

    2015-12-01

    We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centred on the Milky Way Galaxy and extending to distance ˜10 Mpc. The sample of ˜750 mostly dwarf galaxies provides a unique opportunity to study the abundance and properties of galaxies down to absolute magnitudes MB ≈ -10 and virial masses M_vir= 109{ M_{⊙}}. We find that the standard Λ cold dark matter (ΛCDM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V ≳ 70 kms-1 and corresponding virial masses M_vir≳ 5× 10^{10}{ M_{⊙}}, but it badly fails by overpredicting ˜5 times the abundance of large dwarfs with velocities V = 30-40 kms-1. The warm dark matter (WDM) models cannot explain the data either, regardless of mass of WDM particle. Just as in previous observational studies, we find a shallow asymptotic slope dN/dlog V ∝ Vα, α ≈ -1 of the velocity function, which is inconsistent with the standard ΛCDM model that predicts the slope α = -3. Though reminiscent to the known overabundance of satellite problem, the overabundance of field galaxies is a much more difficult problem. For the standard ΛCDM model to survive, in the 10 Mpc radius of the Milky Way there should be 1000 not yet detected galaxies with virial mass M_vir≈ 10^{10}{ M_{⊙}}, extremely low surface brightness and no detectable H I gas. So far none of this type of galaxies have been discovered.

  10. Hydration study of limestone blended cement in the presence of hazardous wastes containing Cr(VI)

    SciTech Connect

    Trezza, M.A.; Ferraiuelo, M.F

    2003-07-01

    Considering the increasing use of limestone cement manufacture, the present paper tends to characterize limestone behavior in the presence of Cr(VI). The research reported herein provides information regarding the effect of Cr(VI) from industrial wastes in the limestone cement hydration. The cementitious materials were ordinary Portland cement, as reference, and limestone blended cement. The hydration and physicomechanical properties of cementitious materials and the influence of chromium at an early age were studied with X-ray diffraction (XRD), infrared spectroscopy (FTIR), conductimetric and mechanical tests. Portland cement pastes with the addition of Cr(VI) were examined and leaching behavior with respect to water and acid solution were investigated. This study indicates that Cr(VI) modifies the rate and the components obtained during the cement hydration.

  11. Precision Oxygen Isotope Measurements of Two C-Rich Hydrated Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Snead, C. J.; Keller, L. P.; McKeegan, K. D.; Messenger, S.

    2016-01-01

    Introduction: Chondritic-smooth IDPs (Interplanetary Dust Particles) are low porosity objects whose mineralogy is dominated by aqueous alteration products such as Mg-rich phyllosilicates (smectite and serpentine group) and Mg-Fe carbonate minerals. Their hydrated mineralogy combined with low atmospheric entry velocities have been used to infer an origin largely from asteroidal sources. Spectroscopic studies show that the types and abundance of organic matter in CS IDPs is similar to that in CP IDPs. Although CS IDPs show broad similarities to primitive carbonaceous chondrites, only a few particles have been directly linked to specific meteorite groups such as CM and CI chondrites based on the presence of diagnostic minerals. Many CS IDPs however, have carbon contents that greatly exceed that of known meteorite groups suggesting that they either may derive from comets or represent samples of more primitive parent bodies than do meteorites. It is now recognized that many large, dark primitive asteroids in the outer main belt, as well as some trans-Neptunian objects, show spectroscopic evidence for aqueous alteration products on their surfaces. Some CS IDPs exhibit large bulk D enrichments similar to those observed in the cometary CP IDPs. While hydrated minerals in comets have not been unambiguously identified to date, the presence of the smectite group mineral nontronite has been inferred from infrared spectra obtained from the ejecta from comet 9P/Tempel 1 during the Deep Impact mission. Recent observations of low temperature sulfide minerals in Stardust mission samples suggest that limited aqueous activity occurred on comet Wild-2. All of these observations, taken together, suggest that the high-carbon hydrated IDPs are abundant and important samples of primitive solar system objects not represented in meteorite collections. Oxygen isotopic compositions of chondrites reflect mixing between a 16O-rich reservoir and a 17O,18O-rich reservoir produced via mass

  12. Late embryogenesis abundant proteins

    PubMed Central

    Olvera-Carrillo, Yadira; Reyes, José Luis

    2011-01-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families, each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility. PMID:21447997

  13. Gravimetric analysis and differential scanning calorimetric studies on glycerin-induced skin hydration.

    PubMed

    Lee, Ae-Ri Cho; Moon, Hee Kyung

    2007-11-01

    A thermal gravimetric analysis (TGA) and a differential scanning calorimetry (DSC) were carried out to characterize the water property and an alteration of lipid phase transition of stratum corneum (SC) by glycerin. In addition, the relationship between steady state skin permeation rate and skin hydration in various concentrations of glycerin was investigated. Water vapor absorption-desorption was studied in the hairless mouse stratum corneum. Dry SC samples were exposed to different conc. of glycerin (0-50%) followed by exposure to dry air and the change in weight property was monitored over time by use of TGA. In DSC study, significant decrease in DeltaH of the lipid transition in 10% glycerin and water treated sample: the heat of lipid transition of normal, water, 10% glycerin treated SC were 6.058, 4.412 and 4.316 mJ/mg, respectively. In 10% glycerin treated SCs, the Tc of water shifts around 129 degrees C, corresponding to the weakly bound secondary water. In 40% glycerin treated SC, the Tc of water shifts to 144 degrees C corresponding to strongly bound primary water. There was a good correlation between the hydration property of the skin and the steady state skin flux with the correlation coefficient (r2=0.94). As the hydration increased, the steady state flux increased. As glycerin concentration increased, hydration property decreased. High diffusivity induced by the hydration effect of glycerin and water could be the major contributing factor for the enhanced skin permeation of nicotinic acid (NA).

  14. Influence of polymeric excipient properties on crystal hydrate formation kinetics of caffeine in aqueous slurries.

    PubMed

    Gift, Alan D; Southard, Leslie A; Riesberg, Amanda L

    2012-05-01

    The influence of polymeric excipients on the hydrate transformation of caffeine (CAF) was studied. Anhydrous CAF was added to aqueous solutions containing different additives and the transformation to the hydrate form was monitored using in-line Raman spectroscopy. Various properties of two known inhibitors of CAF hydrate formation, polyacrylic acid (PAA) and polyvinyl alcohol (PVA), were investigated. For inhibition by PAA, a pH dependence was observed: at low pH, the inhibition was greatest, whereas no inhibitory effects were observed at pH above 6.5. For PVA, grades with high percent hydrolysis were the most effective at inhibiting the transformation. In addition, PVA with higher molecular weight showed slightly more inhibition than the shorter chain PVA polymers. A variety of other hydroxyl containing compounds were examined but none inhibited the CAF anhydrate-to-hydrate transformation. The observed inhibitory effects of PAA and PVA are attributed to the large number of closely spaced hydrogen bond donating groups of the polymer molecule, which can interact with the CAF hydrate crystal. PMID:22271407

  15. Facile synthesis of highly active hydrated yttrium oxide towards arsenate adsorption.

    PubMed

    Yu, Yang; Yu, Ling; Sun, Min; Paul Chen, J

    2016-07-15

    A novel hydrated yttrium oxide adsorbent with high capacity towards the arsenate (As(V)) adsorption was fabricated by a one-step hydrothermal process. Structure analysis identified the hydrated yttrium oxide to be Y2O(OH)4·1.5H2O, which displayed as irregular rods in the range of tens to hundreds of nanometers. The adsorbent exhibited favorable As(V) adsorption efficiency in a wide pH range from 4.0 to 7.0, with the maximum adsorption capacity of 480.2mg-As/g obtained at pH 5.0. Both the kinetics and isotherm studies demonstrated that the adsorption of the As(V) was a monolayer chemical adsorption process, in which the ion exchange between the hydroxyl groups on the hydrated yttrium oxide and arsenate anions played a key role in the uptake of the As(V). During the adsorption, the As(V) anions were replaced the hydroxyl groups and bound to the hydrated yttrium oxide via the linkage of AsOY. The presence of fluoride and phosphate greatly hindered the As(V) uptake on the hydrated yttrium oxide, whereas the bicarbonate, sulfate and humic acid showed insignificant impacts on the removal. PMID:27135142

  16. Facile synthesis of highly active hydrated yttrium oxide towards arsenate adsorption.

    PubMed

    Yu, Yang; Yu, Ling; Sun, Min; Paul Chen, J

    2016-07-15

    A novel hydrated yttrium oxide adsorbent with high capacity towards the arsenate (As(V)) adsorption was fabricated by a one-step hydrothermal process. Structure analysis identified the hydrated yttrium oxide to be Y2O(OH)4·1.5H2O, which displayed as irregular rods in the range of tens to hundreds of nanometers. The adsorbent exhibited favorable As(V) adsorption efficiency in a wide pH range from 4.0 to 7.0, with the maximum adsorption capacity of 480.2mg-As/g obtained at pH 5.0. Both the kinetics and isotherm studies demonstrated that the adsorption of the As(V) was a monolayer chemical adsorption process, in which the ion exchange between the hydroxyl groups on the hydrated yttrium oxide and arsenate anions played a key role in the uptake of the As(V). During the adsorption, the As(V) anions were replaced the hydroxyl groups and bound to the hydrated yttrium oxide via the linkage of AsOY. The presence of fluoride and phosphate greatly hindered the As(V) uptake on the hydrated yttrium oxide, whereas the bicarbonate, sulfate and humic acid showed insignificant impacts on the removal.

  17. Mild hydration of didecyldimethylammonium chloride modified DNA by 1H-nuclear magnetic resonance and by sorption isotherm

    NASA Astrophysics Data System (ADS)

    Harańczyk, H.; Kobierski, J.; Nizioł, J.; Hebda, E.; Pielichowski, J.; Zalitacz, D.; Marzec, M.; El-Ghayoury, A.

    2013-01-01

    The gaseous phase hydration of deoxyribonucleic acid and didecyldimethylammonium chloride (C19H42ClN) complexes (DNA-DDCA) was observed using hydration kinetics, sorption isotherm, and high power nuclear magnetic resonance. Three bound water fractions were distinguished: (i) a very tightly bound water not removed by incubation over silica gel, (ii) a tightly bound water saturating with the hydration time t1h = (0.59 ± 0.04) h, and a loosely bound water fraction, (iii) with the hydration time t2h = (20.9 ± 1.3) h. Proton free induction decay was decomposed into the signal associated with the solid matrix of DNA-DDCA complex (T2S∗≈ 30 μs) and two liquid signal components coming from tightly bound (T2L1∗≈ 100 μs) and from loosely bound water fraction (T2L2∗≈ 1000 μs).

  18. About transformation of the deep-water methane bubbles into hydrate powder and hydrate foam

    NASA Astrophysics Data System (ADS)

    Egorov, A. V.; Nigmatulin, R. I.; Rozhkov, A. N.; Sagalevich, A. M.; Chernyaev, E. S.

    2012-04-01

    During the Russian Academy of Sciences "MIRI na Baikale, 2008-2010" expedition, deep-water experiments with the bubbles of methane seeping from the bottom at depths 405, 860 and 1400 meters were carried out. These depths correspond to gas hydrate stability zone. Bubbles were caught by the trap which was looked like an inverted glass. It was found that the behavior of bubbles in a trap depends on the depth. At depth of 405 meters formation of hydrates was not observed. Having got to a trap at the depth of 860 meters, bubbles became covered by solid hydrate envelope, kept the initial form, and after a time period collapsed in a number of hydrate fragments which showed all properties of a granular matter. No visible changes in the hydrate granular matter were observed in the course of lifting it to a depth of 380 meters. Shallower, the decomposition of the hydrate granular matter into methane gas was observed. In the experiments at depth of 1400 meters the caught bubbles, becoming covered by hydrate envelope formed solid hydrate foam in the trap. At lifting this foam structure was deformed slightly but simultaneously a free gas left the foam and filled the trap. The volume of free gas in the trap at lifting varied according to the Boyle-Mariotte law.

  19. Controls on Gas Hydrate Formation and Dissociation

    SciTech Connect

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  20. Chemical abundance of comets

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Wehinger, Peter

    1988-01-01

    Observations of NH2, (OI) and molecular ion spectra in comets represent virtually all of the volatile fraction of a comet nucleus. Their study leads to the N2, NH3, H2O, CO2, CO content of the nucleus, and thus to important constraints on models of comet formation and chemical processing in the primitive solar nebula. The observations of Comet Halley provide the opportunity for the first comprehensive determination of the abundances in a comet nucleus. The carbon isotope abundance ratio 12 C/13 C = 65 plus or minus 8 has been determined for Comet Halley from resolved rotational line structure in the CN B-X (0,0) band. The ratio is approximately 30 pct lower than the solar system value, 89, indicating either an enhancement of 13CN or a depletion of 12CN in the comet. Scenarios consistent with the observed carbon isotope ratio are: (1) formation of the comet at the periphery of the solar nebula in a fractionation-enriched 13CN region, or hidden from 12CN enrichment sources, and (2) capture of an interestellar comet. Long-slit charge coupled device (CCD) spectra obtained at the time of the spacecraft encounter of Comet Halley have also been analyzed. Scale lengths, production rates and column densities of CH, CN, C2 and NH2 were determined.

  1. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  2. Depressurization and electrical heating of hydrate sediment for gas production

    NASA Astrophysics Data System (ADS)

    Minagawa, H.

    2015-12-01

    As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on electrical heating of the hydrate core combined with depressurization for gas production. In-situ dissociation of natural gas hydrate is necessary for commercial recovery of natural gas from natural gas hydrate sediment. Thermal stimulation is an effective dissociation method, along with depressurization.To simulate methane gas production from methane hydrate layer, we investigated electrical heating of methane hydrate sediment. A decrease in core temperature due to the endothermic reaction of methane hydrate dissociation was suppressed and the core temperature increased between 1oC and 4oC above the control temperature with electric heating. A current density of 10A/m2 with depressurization would effectively dissociate hydrate. Therefore, depressurization and additional electrode heating of hydrate sediment saturated with electrolyte solution was confirmed to enable higher gas production from sediment with less electric power.

  3. Properties of equilibrium carbon dioxide hydrate in porous medium

    NASA Astrophysics Data System (ADS)

    Voronov, V. P.; Gorodetskii, E. E.; Podnek, V. E.; Grigoriev, B. A.

    2016-09-01

    Specific heat capacity, dissociation heat and hydration number of carbon dioxide hydrate in porous medium are determined by adiabatic calorimetry method. The measurements were carried out in the temperature range 250-290 K and in pressure range 1-5 MPa. The measured specific heat of the hydrate is approximately 2.7 J/(g K), which is significantly larger than the specific heat of methane hydrate. In particular, at heating, larger value of the specific heat of carbon dioxide hydrate is a result of gas emission from the hydrate. The hydration number at the hydrate-gas coexistence changes from 6.2 to 6.9. The dissociation heat of carbon dioxide hydrate varies from the 55 kJ/mol near the upper quadruple point to the 57 kJ/mol near the lower quadruple point.

  4. Thermodynamic properties of methane hydrate in quartz powder.

    PubMed

    Voronov, Vitaly P; Gorodetskii, Evgeny E; Safonov, Sergey S

    2007-10-01

    Using the experimental method of precision adiabatic calorimetry, the thermodynamic (equilibrium) properties of methane hydrate in quartz sand with a grain size of 90-100 microm have been studied in the temperature range of 260-290 K and at pressures up to 10 MPa. The equilibrium curves for the water-methane hydrate-gas and ice-methane hydrate-gas transitions, hydration number, latent heat of hydrate decomposition along the equilibrium three-phase curves, and the specific heat capacity of the hydrate have been obtained. It has been experimentally shown that the equilibrium three-phase curves of the methane hydrate in porous media are shifted to the lower temperature and high pressure with respect to the equilibrium curves of the bulk hydrate. In these experiments, we have found that the specific heat capacity of the hydrate, within the accuracy of our measurements, coincides with the heat capacity of ice. The latent heat of the hydrate dissociation for the ice-hydrate-gas transition is equal to 143 +/- 10 J/g, whereas, for the transition from hydrate to water and gas, the latent heat is 415 +/- 15 J/g. The hydration number has been evaluated in the different hydrate conditions and has been found to be equal to n = 6.16 +/- 0.06. In addition, the influence of the water saturation of the porous media and its distribution over the porous space on the measured parameters has been experimentally studied.

  5. Hydration sequence of swelling clays: evolutions of specific surface area and hydration energy.

    PubMed

    Salles, Fabrice; Douillard, Jean-Marc; Denoyel, Renaud; Bildstein, Olivier; Jullien, Michel; Beurroies, Isabelle; Van Damme, Henri

    2009-05-15

    In order to identify the key steps and the driving force for the hydration process of swelling clays, the water adsorption isotherms and enthalpies were measured on monoionic montmorillonite samples saturated with alkali or calcium ions, and on bi-ionic samples saturated with a sodium-calcium mixture. The specific surface area evolution along the hydration process was determined using a recent interpretation of the experimental adsorption isotherms of swelling solids. Results are interpreted in structural terms. Compared with additional data from sample-controlled thermal analysis (SCTA), the results confirm experimentally that the hydration of Li- and Na-montmorillonite is mainly a cation-controlled process, in contrast with the hydration of Cs samples in which the cation contribution to hydration is negligible, as we have already demonstrated using electrostatic calculations or conductivity measurements. PMID:19303602

  6. High-Altitude Hydration System

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott E.; Orndoff, Evelyne; Bue, Grant C.; Schaefbauer, Mark E.; Urban, Kase

    2010-01-01

    Three methods are being developed for keeping water from freezing during high-altitude climbs so that mountaineers can remain hydrated. Three strategies have been developed. At the time of this reporting two needed to be tested in the field and one was conceptual. The first method is Passive Thermal Control Using Aerogels. This involves mounting the fluid reservoir of the climber s canteen to an inner layer of clothing for better heat retention. For the field test, bottles were mounted to the inner fleece layer of clothing, and then aerogel insulation was placed on the outside of the bottle, and circumferentially around the drink straw. When climbers need to drink, they can pull up the insulated straw from underneath the down suit, take a sip, and then put it back into the relative warmth of the suit. For the field test, a data logger assessed the temperatures of the water reservoir, as well as near the tip of the drink straw. The second method is Passive Thermal Control with Copper-Shielded Drink Straw and Aerogels, also mounted to inner layers of clothing for better heat retention. Braided wire emanates from the inside of the fleece jacket layer, and continues up and around the drink straw in order to use body heat to keep the system-critical drink straw warm enough to keep water in the liquid state. For the field test, a data logger will be used to compare this with the above concept. The third, and still conceptual, method is Active Thermal Control with Microcontroller. If the above methods do not work, microcontrollers and tape heaters have been identified that could keep the drink straw warm even under extremely cold conditions. Power requirements are not yet determined because the thermal environment inside the down suit relative to the external environment has not been established. A data logger will be used to track both the external and internal temperatures of the suit on a summit day.

  7. X-ray synchrotron diffraction study of natural gas hydrates from African margin

    NASA Astrophysics Data System (ADS)

    Bourry, Christophe; Charlou, Jean-Luc; Donval, Jean-Pierre; Brunelli, Michela; Focsa, Cristian; Chazallon, Bertrand

    2007-11-01

    Natural gas hydrates recovered from the Congo-Angola basin and Nigerian margins are analyzed by synchrotron X-ray powder diffraction. Biogenic methane is the most abundant gas trapped in the samples and others minor components (CO2, H2S) are co-clathrated in a type I cubic lattice structure. The refinement for the type I structure gives lattice parameters of a = 11.8646 (39) Å and a = 11.8619 (23) Å for specimens from Congo-Angola and Nigerian margins respectively at 90 K. These values, intermediate between the lattice constant of less pure methane specimens and pure artificial methane hydrates, indicate that lattice constants can be affected by the presence of encaged CO2, H2S and other gas molecules, even in small amounts. Thermal expansion is also presented for Congo-Angola hydrate in the temperature range 90-200 K. The coefficients are comparable with values reported for synthetic hydrates at low temperature and tend to approach thermal expansion of ice at higher temperature.

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  9. Complex admixtures of clathrate hydrates in a water desalination method

    DOEpatents

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  10. Subterahertz characterization of ethanol hydration layers by microfluidic system

    NASA Astrophysics Data System (ADS)

    Laurette, S.; Treizebre, A.; Affouard, F.; Bocquet, B.

    2010-09-01

    Characterizations of ethanol hydration layers are examined through subterahertz spectroscopy of water/ethanol mixtures by using a microfluidic system. A three-component model is used to explain measurements discrepancies with the Lambert-Beer law and to determine ethanol hydration shell absorption. Moreover, the hydration shell distribution is compared with molecular dynamics simulations with a good agreement. Ethanol hydration number is then computed and it can quickly characterize only the first water hydration layer or the whole hydration shell, depending on the chosen extraction model.

  11. Hydrate problems in pipelines: A study from Norwegian continental waters

    SciTech Connect

    Lysne, D.; Larsen, R.; Lund, A.; Thomsen, A.K.

    1995-12-31

    This study was undertaken by the Norwegian Petroleum Directorate and SINTEF to identify hydrate problems occurring in pipelines on the Norwegian continental shelf. A brief review of hydrate dissociation theory is given. Three major techniques for hydrate removal are discussed, as well as hazards related to hydrate plug removal. Questionnaire answers from 15 companies operating in Norwegian waters show three specific occurrences of hydrate plugs in the North Sea. Problems from other geographical areas are also discussed. Hydrate problems are reported for a wide variety of pipe lengths, diameters, profiles, insulations characteristics and fluids. Most problems occur during normal operation.

  12. Development of hydrate risk quantification in oil and gas production

    NASA Astrophysics Data System (ADS)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  13. Study on propane-butane gas storage by hydrate technology

    NASA Astrophysics Data System (ADS)

    Hamidi, Nurkholis; Wijayanti, Widya; Widhiyanuriyawan, Denny

    2016-03-01

    Different technology has been applied to store and transport gas fuel. In this work the storage of gas mixture of propane-butane by hydrate technology was studied. The investigation was done on the effect of crystallizer rotation speed on the formation of propane-butane hydrate. The hydrates were formed using crystallizer with rotation speed of 100, 200, and 300 rpm. The formation of gas hydrates was done at initial pressure of 3 bar and temperature of 274K. The results indicated that the higher rotation speed was found to increase the formation rate of propane-butane hydrate and improve the hydrates stability.

  14. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  15. Abundances in Sagittarius Stars

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Zaggia, S.; Sbordone, L.; Santin, P.; Monaco, L.; Monai, S.; Molaro, P.; Marconi, G.; Girardi, L.; Ferraro, F.; di Marcantonio, P.; Caffau, E.; Bellazzini, M.

    The Sagittarius dwarf spheroidal is a very complex galaxy, which has undergone prolonged star formation. From the very first high resolution chemical analysis of Sgr stars, conducted using spectra obtained during the commissioning of UVES at VLT, it was clear that the star had undergone a high level of chemical processing, at variance with most of the other Local Group dwarf spheroidals. Thanks to FLAMES at VLT we now have accurate metallicities and abundances of alpha-chain elements for about 150 stars, which provide the first reliable metallicity distribution for this galaxy. Besides the already known high metallicity tail the existence of a metal-poor population has also been highlighted, although an assessment of the fraction of Sgr stars which belong to this population requires a larger sample. From our data it is also obvious that Sagittarius is a nucleated galaxy and that the centre of the nucleus coincides with M54, as already shown by Monaco et al.

  16. Novel hydrogen hydrate structures under pressure.

    PubMed

    Qian, Guang-Rui; Lyakhov, Andriy O; Zhu, Qiang; Oganov, Artem R; Dong, Xiao

    2014-01-01

    Gas hydrates are systems of prime importance. In particular, hydrogen hydrates are potential materials of icy satellites and comets, and may be used for hydrogen storage. We explore the H₂O-H₂ system at pressures in the range 0-100 GPa with ab initio variable-composition evolutionary simulations. According to our calculation and previous experiments, the H₂O-H₂ system undergoes a series of transformations with pressure, and adopts the known open-network clathrate structures (sII, C₀), dense "filled ice" structures (C₁, C₂) and two novel hydrate phases. One of these is based on the hexagonal ice framework and has the same H₂O:H₂ ratio (2:1) as the C₀ phase at low pressures and similar enthalpy (we name this phase Ih-C₀). The other newly predicted hydrate phase has a 1:2 H₂O:H₂ ratio and structure based on cubic ice. This phase (which we name C₃) is predicted to be thermodynamically stable above 38 GPa when including van der Waals interactions and zero-point vibrational energy, and explains previously mysterious experimental X-ray diffraction and Raman measurements. This is the hydrogen-richest hydrate and this phase has a remarkable gravimetric density (18 wt.%) of easily extractable hydrogen.

  17. An extended dynamical hydration shell around proteins.

    PubMed

    Ebbinghaus, Simon; Kim, Seung Joong; Heyden, Matthias; Yu, Xin; Heugen, Udo; Gruebele, Martin; Leitner, David M; Havenith, Martina

    2007-12-26

    The focus in protein folding has been very much on the protein backbone and sidechains. However, hydration waters make comparable contributions to the structure and energy of proteins. The coupling between fast hydration dynamics and protein dynamics is considered to play an important role in protein folding. Fundamental questions of protein hydration include, how far out into the solvent does the influence of the biomolecule reach, how is the water affected, and how are the properties of the hydration water influenced by the separation between protein molecules in solution? We show here that Terahertz spectroscopy directly probes such solvation dynamics around proteins, and determines the width of the dynamical hydration layer. We also investigate the dependence of solvation dynamics on protein concentration. We observe an unexpected nonmonotonic trend in the measured terahertz absorbance of the five helix bundle protein lambda(6-85)* as a function of the protein: water molar ratio. The trend can be explained by overlapping solvation layers around the proteins. Molecular dynamics simulations indicate water dynamics in the solvation layer around one protein to be distinct from bulk water out to approximately 10 A. At higher protein concentrations such that solvation layers overlap, the calculated absorption spectrum varies nonmonotonically, qualitatively consistent with the experimental observations. The experimental data suggest an influence on the correlated water network motion beyond 20 A, greater than the pure structural correlation length usually observed.

  18. Novel hydrogen hydrate structures under pressure.

    PubMed

    Qian, Guang-Rui; Lyakhov, Andriy O; Zhu, Qiang; Oganov, Artem R; Dong, Xiao

    2014-01-01

    Gas hydrates are systems of prime importance. In particular, hydrogen hydrates are potential materials of icy satellites and comets, and may be used for hydrogen storage. We explore the H₂O-H₂ system at pressures in the range 0-100 GPa with ab initio variable-composition evolutionary simulations. According to our calculation and previous experiments, the H₂O-H₂ system undergoes a series of transformations with pressure, and adopts the known open-network clathrate structures (sII, C₀), dense "filled ice" structures (C₁, C₂) and two novel hydrate phases. One of these is based on the hexagonal ice framework and has the same H₂O:H₂ ratio (2:1) as the C₀ phase at low pressures and similar enthalpy (we name this phase Ih-C₀). The other newly predicted hydrate phase has a 1:2 H₂O:H₂ ratio and structure based on cubic ice. This phase (which we name C₃) is predicted to be thermodynamically stable above 38 GPa when including van der Waals interactions and zero-point vibrational energy, and explains previously mysterious experimental X-ray diffraction and Raman measurements. This is the hydrogen-richest hydrate and this phase has a remarkable gravimetric density (18 wt.%) of easily extractable hydrogen. PMID:25001502

  19. Interfacial phenomena in gas hydrate systems.

    PubMed

    Aman, Zachary M; Koh, Carolyn A

    2016-03-21

    Gas hydrates are crystalline inclusion compounds, where molecular cages of water trap lighter species under specific thermodynamic conditions. Hydrates play an essential role in global energy systems, as both a hinderance when formed in traditional fuel production and a substantial resource when formed by nature. In both traditional and unconventional fuel production, hydrates share interfaces with a tremendous diversity of materials, including hydrocarbons, aqueous solutions, and inorganic solids. This article presents a state-of-the-art understanding of hydrate interfacial thermodynamics and growth kinetics, and the physiochemical controls that may be exerted on both. Specific attention is paid to the molecular structure and interactions of water, guest molecules, and hetero-molecules (e.g., surfactants) near the interface. Gas hydrate nucleation and growth mechanics are also presented, based on studies using a combination of molecular modeling, vibrational spectroscopy, and X-ray and neutron diffraction. The fundamental physical and chemical knowledge and methods presented in this review may be of value in probing parallel systems of crystal growth in solid inclusion compounds, crystal growth modifiers, emulsion stabilization, and reactive particle flow in solid slurries. PMID:26781172

  20. Stability evaluation of hydrate-bearing sediments during thermally-driven hydrate dissociation

    NASA Astrophysics Data System (ADS)

    Kwon, T.; Cho, G.; Santamarina, J.; Kim, H.; Lee, J.

    2009-12-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations, or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. This study examined how thermal changes destabilize gas hydrate-bearing sediments. First, an analytical formulation was derived for predicting fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation captures the self-preservation behavior, calculates the hydrate and free gas quantities during dissociation, considering effective stress-controlled sediment compressibility and gas solubility in aqueous phase. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. Second, the analytical formulation for hydrate dissociation was incorporated as a user-defined function into a verified finite difference code (FLAC2D). The underlying physical processes of hydrate-bearing sediments, including hydrate dissociation, self-preservation, pore pressure evolution, gas dissolution, and sediment volume expansion, were coupled with the thermal conduction, pore fluid flow, and mechanical response of sediments. We conducted the simulations for a duration of 20 years, assuming a constant-temperature wellbore transferred heat to the surrounding hydrate-bearing sediments, resulting in dissociation of methane hydrate in the well vicinity. The model predicted dissociation-induced excess pore fluid pressures which resulted in a large volume expansion and plastic deformation of the sediments. Furthermore, when the critical stress was reached, localized shear failure of the sediment around the borehole was

  1. Gas Hydrates and Perturbed Permafrost: Can Thermokarst Lakes Leak Hydrate-Derived Methane?

    NASA Astrophysics Data System (ADS)

    Ruppel, C.; Walter, K.; Pohlman, J.; Wooller, M.

    2008-12-01

    Thermokarst lakes are common features in the continuous permafrost of Siberia, the Alaskan North Slope, and the Canadian Arctic and have been intensely studied as the loci of rapid and substantial methane flux to the atmosphere. Previous numerical modeling has constrained the conditions under which deep thermokarst lakes can develop organic-rich thaw bulbs (talik) tens of meters thick, and seismic surveys have imaged thaw bulbs more than 75 m thick beneath some thermokarst lakes. Microbial processes active in talik organic material are likely the predominant source for thermokarst methane emissions, although coalbed methane and methane associated with conventional hydrocarbons may contribute in some geologic settings. Here we evaluate the possibility that another source--methane released from dissociating gas hydrate--could contribute to methane emissions from these lakes. Temperatures within and beneath thermokarst lakes are significantly warmer than those in surrounding permafrost, and these relatively warm conditions can persist to depths several times greater than the thickness of the thaw bulb. For a 95-m-thick thaw bulb and a geothermal gradient consistent with the regional top of gas hydrate stability at ~200 m depth, the warmer temperatures beneath a thermokarst lake could lead to destabilization of up to 75 m of gas hydrate. Arguably, the presence of gas hydrate near the top of the stability zone in permafrost regions has not yet been observed. Nonetheless, the potential dissociation of such relatively shallow gas hydrate and the widespread availability in terrestrial settings of high permeability conduits (e.g., faults, sandy strata) that could facilitate the migration of hydrate-derived methane to the surface render this an important topic for future investigation. The susceptibility of permafrost gas hydrate zones to thermal perturbations is in sharp contrast to the situation in conventional marine hydrate provinces. There, gas hydrate first dissociates

  2. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Stevenson, D. J.

    1985-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  3. The gas-hydrate-related seabed features in the Palm Ridge off southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Su, Zheng-Wei; Hsu, Shu-Kun; Tsai, Ching-Hui; Chen, Song-Chuen; Lin, Hsiao-Shan

    2016-04-01

    The offshore area of the SW Taiwan is located in the convergence zone between the northern continental margin of the South China Sea and the Manila subduction complex. Our study area, the Palm Ridge, is located in the passive continental margin. According to the geophysical, geochemical and geothermal data, abundant gas hydrate may exist in the offshore area of SW Taiwan. In this study, we will study the relation between the seabed features and the gas hydrate formation of the Palm Ridge. The data used in this study include high-resolution sidescan sonar images, sub-bottom profiles, echo sounder system, multi-beam bathymetric data, multi-channel reflection seismic and submarine photography in the Palm Ridge. Our results show the existing authigenic carbonates, gas seepages and gas plumes are mainly distributed in the bathymetric high of the Palm Ridge. Numerous submarine landslides have occurred in the place where the BSR distribution is not continuous. We suggest that it may be because of rapid slope failure, causing the change of the gas hydrate stability zone. We also found several faults on the R3.1 anticline structure east of the deformation front. These features imply that abundant deep methane gases have migrated to shallow strata, causing submarine landslides or collapse. The detailed relationship of gas migration and submarine landslides need further studies.

  4. A spectroscopic study of the structure and occupancies of clathrate hydrates incorporating hydrogen

    NASA Astrophysics Data System (ADS)

    Grim, R. Gary

    With the ability to store and concentrate gases inside a clean and abundant water framework, clathrate hydrates are considered to be a promising material for many applications related to gas storage, separation, and sequestration. Hydrates of hydrogen are particularly interesting, for in addition to these potential applications, the small molecular size provides an opportunity for use as a model guest in many fundamental studies such as guest diffusion, multiple guest occupancy, and quantum mechanical effects upon confinement. In attempt to study these effects and the viability of H 2 hydrates as an energy storage material, a combined experimental and theoretical approach incorporating Raman spectroscopy, X-ray and neutron diffraction, nuclear magnetic resonance, ab-initio calculations, and molecular dynamic simulations was performed. One of the most significant challenges in the application of H2 clathrate hydrates is the demanding thermodynamic requirements needed for stability. In recent years, a mechanism known as the `tuning' effect had reportedly solved this issue where thermodynamic requirements could be reduced while simultaneously maintaining high storage capacities. In this work, the viability and validity of this technique is explored and alternative explanations in the form of epitaxial hydrate growth under high driving force conditions are discussed. A second, and equally important challenge facing clathrate hydrates as a future storage material is the overall storage capacity of H2. In previous work, H2 has only been experimentally verified to occupy the small 512 and 43566 3 cages and also in the large 51264 cages of the type II clathrate, often with an energy deficient promoter. In order to achieve more robust energy densities, other hydrate cages must be accessible. Herein a new method for increasing overall hydrate energy densities is presented involving the incorporation of H2 in the