Science.gov

Sample records for acid hydrogen peroxide

  1. Catalytic hydroxylation of benzoic acid by hydrogen peroxide

    SciTech Connect

    Pulippurasseril, C.R.; Filippova, T.Yu.; Dedov, A.G.

    1992-12-31

    An effective catalytic system based on Fe(III) and surfactants is proposed for the hydroxylation of benozic acid by hydrogen peroxide in an aqueous medium at a temperature of 30-80{degrees}C. 8 refs., 1 tab.

  2. Hydrogen peroxide poisoning

    MedlinePlus

    ... peroxide is used in these products: Hydrogen peroxide Hair bleach Some contact lens cleaners Note: Household hydrogen peroxide ... it contains 97% water and 3% hydrogen peroxide. Hair bleaches are stronger. They usually have a concentration of ...

  3. Water disinfection with the hydrogen peroxide-ascorbic acid-copper (II) system.

    PubMed Central

    Ragab-Depre, N J

    1982-01-01

    Treatment of secondary effluents with hydrogen peroxide (10 mg/liter)-ascorbic acid (10 mg/liter)-Cu2+ (0.5 mg/liter) for 60 min resulted in around 99% reduction of the initial plate count. Hydrogen peroxide could be replaced by other peroxygen compounds; ascorbic acid could be replaced by other reducing agents, of which sodium sulfite and ethanol were the most effective. Cu2+, however, could not be replaced by other metal ions without loss of bactericidal efficiency of the ternary combination. Enterobacteriaceae, total and fecal coliforms, staphylococci, and micrococci were reduced by 99.0 to 99.9%. Group D streptococci aerobic spores were reduced by 80 and 15%, respectively. Clostridium perfringens, yeasts, and molds were not killed by the disinfectant combinations. The effect of pH was only minor in the range from 6 to 7.5. At a higher pH value the bactericidal effects tended to decrease. The hydrogen peroxide-ascorbic acid-Cu2+ combination made it possible to obtain 99% reduction within 30 min. When using the hydrogen peroxide-sodium sulfite-Cu2+ or the hydrogen peroxide-ethanol-Cu2+ combinations, 60 min of contact time was necessary to obtain 99% reduction of the initial plate count. Cu2+ combined to an intermediate product of the ascorbic acid autoxidation is the toxic agent, and its penetration into the cell is promoted by hydrogen peroxide. PMID:7138000

  4. Isolation of lactic acid bacteria exhibiting high scavenging activity for environmental hydrogen peroxide from fermented foods and its two scavenging enzymes for hydrogen peroxide.

    PubMed

    Watanabe, Akio; Kaneko, Chiaki; Hamada, Yasuhiro; Takeda, Kouji; Kimata, Shinya; Matsumoto, Takashi; Abe, Akira; Tanaka, Naoto; Okada, Sanae; Uchino, Masataka; Satoh, Junichi; Nakagawa, Junichi; Niimura, Youichi

    2016-01-01

    To obtain lactic acid bacteria that scavenge environmental hydrogen peroxide, we developed a specialized enrichment medium and successfully isolated Pediococcus pentosaceus Be1 strain from a fermented food. This strain showed vigorous environmental hydrogen peroxide scavenging activity over a wide range of hydrogen peroxide concentrations. High Mn-catalase and NADH peroxidase activities were found in the cell-free extract of the P. pentosaceus Be1 strain, and these two hydrogen peroxide scavenging enzymes were purified from the cell-free extract of the strain. Mn-catalase has been purified from several microorganisms by several researchers, and the NADH peroxidase was first purified from the original strain in this report. After cloning the genes of the Mn-catalase and the NADH peroxidase, the deduced amino acid sequences were compared with those of known related enzymes. PMID:27118075

  5. Concentration of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  6. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.

    PubMed

    Boatright, William L

    2016-04-01

    The effect of oxygen on the two separate one-electron reactions involved in the oxidation of ascorbic acid was investigated. The rate of ascorbate radical (Asc(-)) formation (and stability) was strongly dependent on the presence of oxygen. A product of ascorbic acid oxidation was measurable levels of hydrogen peroxide, as high as 32.5 μM from 100 μM ascorbic acid. Evidence for a feedback mechanism where hydrogen peroxide generated during the oxidation of ascorbic acid accelerates further oxidation of ascorbic acid is also presented. The second one-electron oxidation reaction of ascorbic acid leading to the disappearance of Asc(-) was also strongly inhibited in samples flushed with argon. In the range of 0.05-1.2 mM ascorbic acid, maximum levels of measurable hydrogen peroxide were achieved with an initial concentration of 0.2 mM ascorbic acid. Hydrogen peroxide generation was greatly diminished at ascorbic acid levels of 0.8 mM or above. PMID:26593628

  7. Electrochemical Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  8. Evaluation of a sporicidal peracetic acid/hydrogen peroxide-based daily disinfectant cleaner.

    PubMed

    Deshpande, Abhishek; Mana, Thriveen S C; Cadnum, Jennifer L; Jencson, Annette C; Sitzlar, Brett; Fertelli, Dennis; Hurless, Kelly; Kundrapu, Sirisha; Sunkesula, Venkata C K; Donskey, Curtis J

    2014-11-01

    OxyCide Daily Disinfectant Cleaner, a novel peracetic acid/hydrogen peroxide-based sporicidal disinfectant, was as effective as sodium hypochlorite for in vitro killing of Clostridium difficile spores, methicillin-resistant Staphylococcus aureus, and vancomcyin-resistant enterococci. OxyCide was minimally affected by organic load and was effective in reducing pathogen contamination in isolation rooms. PMID:25333438

  9. Oxidation of benzene with hydrogen peroxide catalyzed with ferrocene in the presence of pyrazine carboxylic acid

    NASA Astrophysics Data System (ADS)

    Shul'pina, L. S.; Durova, E. L.; Kozlov, Yu. N.; Kudinov, A. R.; Strelkova, T. V.; Shul'pin, G. B.

    2013-12-01

    It is found that ferrocene in the presence of small amounts of pyrazine carboxylic acid (PCA) effectively catalyzes the oxidation of benzene to phenol with hydrogen peroxide. Two main differences upon the oxidation of two different substrates, i.e., cyclohexane and benzene, with the same H2O2-ferrocene-PCA catalytic system are revealed: the rates of benzene oxidation and hydrogen peroxide decomposition are several times lower than the rate of cyclohexane oxidation at close concentrations of both substrates, and the rate constant ratios for the reactions of oxidizing particles with benzene and acetonitrile are significantly lower than would be expected for reactions involving free hydroxyl radicals. The overall rate of hydrogen peroxide decomposition, including both the catalase and oxidase routes, is lower in the presence of benzene than in the presence of cyclohexane. It is suggested on the grounds of these data that a catalytically active particle different from the one generated in the absence of benzene is formed in the presence of benzene. This particle catalyzes hydrogen peroxide decomposition less efficiently than the initial complex and generates a dissimilar oxidizing particle that exhibits higher selectivity. It is shown that reactivity of the system at higher concentrations of benzene differs from that of an initial system not containing an aromatic component with the capability of π-coordination with metal ions.

  10. Hydrogen Peroxide Concentrator

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.

    2007-01-01

    A relatively simple and economical process and apparatus for concentrating hydrogen peroxide from aqueous solution at the point of use have been invented. The heart of the apparatus is a vessel comprising an outer shell containing tubular membranes made of a polymer that is significantly more permeable by water than by hydrogen peroxide. The aqueous solution of hydrogen peroxide to be concentrated is fed through the interstitial spaces between the tubular membranes. An initially dry sweep gas is pumped through the interiors of the tubular membranes. Water diffuses through the membranes and is carried away as water vapor mixed into the sweep gas. Because of the removal of water, the hydrogen peroxide solution flowing from the vessel at the outlet end is more concentrated than that fed into the vessel at the inlet end. The sweep gas can be air, nitrogen, or any other gas that can be conveniently supplied in dry form and does not react chemically with hydrogen peroxide.

  11. Stabilized aqueous hydrogen peroxide solution

    SciTech Connect

    Malin, M.J.; Sciafani, L.D.

    1988-05-17

    This patent describes a stabilized aqueous hydrogen peroxide solution having a pH below 7 and an amount of Ferric ion up to about 2 ppm comprising hydrogen peroxide, acetanilide having a concentration which ranges between 0.74 M Mol/L and 2.22 mMol/L, and o-benzene disulfonic acid or salt thereof at a concentration between about 0.86 mMol/L to about 1.62 mMol/L.

  12. Oxidative cleavage of cycloalkanones by hydrogen peroxide

    SciTech Connect

    Starostin, E.K.; Aleksandrov, A.V.; Nikishin, G.I.

    1986-07-10

    The authors have studied the reaction of cyclopentanone, cyclohexanone, cycloheptanone, and cyclododecanone with aqueous hydrogen peroxide over the temperature range 110-150/sup 0/C. The effects of temperature, hydrogen peroxide concentration, and the molar proportions of the reagents on the composition and yields of the products have been examined in the case of cyclohexanone. Oxidation of cyclohexanone by aqueous hydrogen peroxide at 110-150/sup 0/C gives 1,10-decanedicarboxylic acid and hexanoic acid as the principal products. Cyclopentanone and cycloheptanone react with hydrogen peroxide similarly to cyclohexanone, giving sebacic and pentanoic acids, and 1,12-dodecanedicarboxylic acids, respectively.

  13. Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron.

    PubMed

    Yoshino, Hiroyuki; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The zero-valent iron (ZVI) wastewater treatment has been applied to simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewaters. The simultaneous removal occurs by the reactions performed due to the sequential transformation of ZVI under the acidic condition. Fortunately the solution pH of semiconductor acidic wastewaters is low which is effective for the sequential transformation of ZVI. Firstly the reduction of nitrate is taken place by electrons generated by the corrosion of ZVI under acidic conditions. Secondly the ferrous ion generated by the corrosion of ZVI reacts with hydrogen peroxide and generates ·OH radical (Fenton reaction). The Fenton reaction consists of the degradation of hydrogen peroxide and the generation of ferric ion. Finally phosphate precipitates out with iron ions. In the simultaneous removal process, 1.6 mM nitrate, 9.0 mM hydrogen peroxide and 1.0 mM phosphate were completely removed by ZVI within 100, 15 and 15 min, respectively. The synergy among the reactions for the removal of nitrate, hydrogen peroxide and phosphate was found. In the individual pollutant removal experiment, the removal of phosphate by ZVI was limited to 80% after 300 min. Its removal rate was considerably improved in the presence of hydrogen peroxide and the complete removal of phosphate was achieved after 15 min. PMID:24798898

  14. Hydrogen peroxide poisoning.

    PubMed

    Watt, Barbara E; Proudfoot, Alex T; Vale, J Allister

    2004-01-01

    Hydrogen peroxide is an oxidising agent that is used in a number of household products, including general-purpose disinfectants, chlorine-free bleaches, fabric stain removers, contact lens disinfectants and hair dyes, and it is a component of some tooth whitening products. In industry, the principal use of hydrogen peroxide is as a bleaching agent in the manufacture of paper and pulp. Hydrogen peroxide has been employed medicinally for wound irrigation and for the sterilisation of ophthalmic and endoscopic instruments. Hydrogen peroxide causes toxicity via three main mechanisms: corrosive damage, oxygen gas formation and lipid peroxidation. Concentrated hydrogen peroxide is caustic and exposure may result in local tissue damage. Ingestion of concentrated (>35%) hydrogen peroxide can also result in the generation of substantial volumes of oxygen. Where the amount of oxygen evolved exceeds its maximum solubility in blood, venous or arterial gas embolism may occur. The mechanism of CNS damage is thought to be arterial gas embolisation with subsequent brain infarction. Rapid generation of oxygen in closed body cavities can also cause mechanical distension and there is potential for the rupture of the hollow viscus secondary to oxygen liberation. In addition, intravascular foaming following absorption can seriously impede right ventricular output and produce complete loss of cardiac output. Hydrogen peroxide can also exert a direct cytotoxic effect via lipid peroxidation. Ingestion of hydrogen peroxide may cause irritation of the gastrointestinal tract with nausea, vomiting, haematemesis and foaming at the mouth; the foam may obstruct the respiratory tract or result in pulmonary aspiration. Painful gastric distension and belching may be caused by the liberation of large volumes of oxygen in the stomach. Blistering of the mucosae and oropharyngeal burns are common following ingestion of concentrated solutions, and laryngospasm and haemorrhagic gastritis have been

  15. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    PubMed

    Putt, Karson S; Pugh, Randall B

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution. PMID:24260173

  16. Distribution of Hydrogen Peroxide, Carbon Dioxide, and Sulfuric Acid in Europa's Icy Crust

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    2004-01-01

    Galileo's Near Infrared Mapping Spectrometer (NIMS) detected hydrogen peroxide, carbon dioxide and a hydrated material on Europa's surface, the latter interpreted as hydrated sulfuric acid (H2SO4*nH2O) or hydrated salts. Related compounds are molecular oxygen, sulfur dioxide, and two chromophores, one that is dark in the ultraviolet(UV) and concentrated on the trailing side, the other brighter in the UV and preferentially distributed in the leading hemisphere. The UV-dark material has been suggested to be sulfur.

  17. Hydrogen peroxide catalytic decomposition

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  18. Hydroxy acetone and lactic acid synthesis from aqueous propylene glycol/hydrogen peroxide catalysis on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Harris, Benjamin D.; Hart, Todd R.

    2008-07-20

    The production of polyol chemicals is of increasing interest as they are obtained from the catalytic processing of biological feedstock materials, which also is becoming more prevalent. A case in point is glycerol production, formed as a byproduct in biodiesel catalytic processing. Here we report the reaction of a simple 1,2-diol, propylene glycol, with hydrogen peroxide and a Pd-black catalyst under reflux conditions at 368 K. The experiments were performed by either co-addition of hydrogen peroxide with air sparging, or addition of hydrogen peroxide alone, each yielding hydroxy acetone (HA) and acetic acid (AA) products, with a lesser amount of lactic acid (LA) formed. Product conversion data at near neutral pH versus hydrogen peroxide equivalents added relative to substrate is presented. Hydrogen peroxide addition without air sparging at 5 equivalents resulted in 65% conversion with an HA:AA molar ratio of 2:1. Conversely, hydrogen peroxide addition with air sparging at only 0.75 equivalents resulted in 40% conversion with an HA:AA ratio of 3:1. From this it is concluded that although the product distribution in these chemistries is somewhat unchanged by air sparging, it is surprising that the amount of reactive oxygen is greatly enhanced with co-addition of O2/H2O2. Additional studies have revealed the amount of LA formed can be enhanced under acidic conditions (pH=1.5 compared to pH=8.5), such that 26% of total product formation is LA. Since hydrogen peroxide is an environmentally clean reagent and becoming more cost effective to use, this work may guide future applied investigations into polyol chemical syntheses.

  19. Effect of temperature on NOx absorption into nitric acid solutions containing hydrogen peroxide

    SciTech Connect

    Thomas, D.; Vanderschuren, J.

    1998-11-01

    A mathematical model previously developed by the authors for the absorption of NOx into nitric acid solutions containing hydrogen peroxide at 20 C was adapted to take the effect of temperature into account. It was used to determine at 10 and 30 C the overall kinetic parameters relative to the absorption of the different NOx species, for increasing HNO{sub 3} molarities (up to 2 M) and a low concentration of H{sub 2}O{sub 2} (0.02 M), from test runs performed in a small packed column. The interpretation of the experimental results obtained at 10 and 30 C according to the model confirmed the previous findings: hydrolysis is the main controlling step for tetravalent nitrogen oxides, and nitrous acid is likely to contribute for the most part to the absorption of trivalent species.

  20. Mechanism of Decarboxylation of Pyruvic Acid in the Presence of Hydrogen Peroxide.

    PubMed

    Lopalco, Antonio; Dalwadi, Gautam; Niu, Sida; Schowen, Richard L; Douglas, Justin; Stella, Valentino J

    2016-02-01

    The purpose of this work was to probe the rate and mechanism of rapid decarboxylation of pyruvic acid in the presence of hydrogen peroxide (H2O2) to acetic acid and carbon dioxide over the pH range 2-9 at 25 °C, utilizing UV spectrophotometry, high performance liquid chromatography (HPLC), and proton and carbon nuclear magnetic resonance spectrometry ((1)H, (13)C-NMR). Changes in UV absorbance at 220 nm were used to determine the kinetics as the reaction was too fast to follow by HPLC or NMR in much of the pH range. The rate constants for the reaction were determined in the presence of molar excess of H2O2 resulting in pseudo first-order kinetics. No buffer catalysis was observed. The calculated second-order rate constants for the reaction followed a sigmoidal shape with pH-independent regions below pH 3 and above pH 7 but increased between pH 4 and 6. Between pH 4 and 9, the results were in agreement with a change from rate-determining nucleophilic attack of the deprotonated peroxide species, HOO(-), on the α-carbonyl group followed by rapid decarboxylation at pH values below 6 to rate-determining decarboxylation above pH 7. The addition of H2O2 to ethyl pyruvate was also characterized. PMID:26422524

  1. From thiol to sulfonic acid: modeling the oxidation pathway of protein thiols by hydrogen peroxide.

    PubMed

    van Bergen, Laura A H; Roos, Goedele; De Proft, Frank

    2014-08-01

    Hydrogen peroxide is a natural oxidant that can oxidize protein thiols (RSH) via sulfenic acid (RSOH) and sulfinic acid (RSO2H) to sulfonic acid (RSO3H). In this paper, we study the complete anionic and neutral oxidation pathway from thiol to sulfonic acid. Reaction barriers and reaction free energies for all three oxidation steps are computed, both for the isolated substrates and for the substrates in the presence of different model ligands (CH4, H2O, NH3) mimicking the enzymatic environment. We found for all three barriers that the anionic thiolate is more reactive than the neutral thiol. However, the assistance of the environment in the neutral pathway in a solvent-assisted proton-exchange (SAPE) mechanism can lower the reaction barrier noticeably. Polar ligands can decrease the reaction barriers, whereas apolar ligands do not influence the barrier heights. The same holds for the reaction energies: they decrease (become more negative) in the presence of polar ligands whereas apolar ligands do not have an influence. The consistently negative consecutive reaction energies for the oxidation in the anionic pathway when going from thiolate over sulfenic and sulfinic acid to sulfonic acid are in agreement with biological reversibility. PMID:25036614

  2. An ab initio study of some structural features and the rotational barriers in performic acid, formic acid and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Bock, Charles W.; George, Philip; Trachtman, Mendel

    1981-02-01

    Calculations on performic acid at the 4-31G level, with and without bond functions with complete geometry optimization, and at the (9, 5) level, with and without polarization functions and rigid rotation, all give no sign of a well in the potential energy curve for rotation about the O/O bond axis in the region of 50° - 90° ; and all but the unaugmented 4-31G basis set find the cis- cis planar conformer to be the most stable form. Calculations at the (9,5) level with rigid rotation find the energies of the other planar conformers, relative to the cis- cis conformer, to be 0.94, 1.50 and 14.80 kcal mol -1 for the trans- trans, cis- trans and trans- cis structures respectively. These energies and also that for the barrier separating the cis- cis and cis- trans conformers, 1-2 kcal mol -1, are discussed in relation to corresponding data for formic acid, hydrogen peroxide and several planar four heavy-atom molecules. Dipole moment calculations using the same basis sets would seem to favor a skew conformation as the most stable for performic acid, but comparisons between calculated and experimental values for formic acid and for hydrogen peroxide cast doubt on the validity of such results.

  3. Acetyl xylan esterase of Aspergillus ficcum catalyzed the synthesis of peracetic acid from ethyl acetate and hydrogen peroxide.

    PubMed

    Park, Seung-Moon

    2011-11-01

    Recombinant acetyl xylan esterase (rAXE) of Aspergillus ficcum catalyzed the synthesis of peracetic acid (PAA) from ethyl acetate and hydrogen peroxide. Ten micrograms of rAXE catalyzed the synthesis of 1.34 mM of PAA, which can be used for the pretreatment of cellulosic biomass in situ. PMID:21824816

  4. Optimization of Lipase-Mediated Synthesis of 1-Nonene Oxide Using Phenylacetic Acid and Hydrogen Peroxide

    PubMed Central

    Abdulmalek, Emilia; Arumugam, Mahashanon; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul

    2012-01-01

    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99%) under the optimum reaction conditions, including temperature (35 °C), initial H2O2 concentration (30%), H2O2 amount (4.4 mmol), H2O2 addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker. PMID:23202943

  5. Modeling of NO{sub x} absorption into nitric acid solutions containing hydrogen peroxide

    SciTech Connect

    Thomas, D.; Vanderschuren, J.

    1997-08-01

    A mathematical model was developed for the isothermal absorption of nitrogen oxides into nitric acid solutions containing hydrogen peroxide. This model, based on the two-film theory of absorption with chemical reactions, includes diffusive transport and equilibrium between species in the gas phase and simultaneous absorption of the NO{sub x} components with fast irreversible reactions in the liquid phase. Kinetic parameters relative to the absorption of the different NO{sub x} species were determined at increasing acidities and for a low concentration of H{sub 2}O{sub 2} from test runs performed in a small packed column at 20 C and atmospheric pressure for various NO{sub x} partial pressures up to 500 Pa and the whole range of NO{sub x} oxidation ratios. Only the parameter relative to trivalent NO{sub x} was found to increase with the HNO{sub 3} molarity, the other ones remaining constant. Interpretation of the experimental results according to the model showed that the hydrolysis is the main controlling step for tetravalent nitrogen oxides and that among the trivalent components nitrous acid is likely to be a major transporting species.

  6. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... vinegar Amount sufficient for the purpose Remove sulfur dioxide from wine prior to fermentation to produce vinegar. Emulsifiers containing fatty acid esters 1.25 Bleaching agent. (d) Residual hydrogen peroxide...

  7. Coal desulfurization in oxidative acid media using hydrogen peroxide and ozone: a kinetic and statistical approach

    SciTech Connect

    F.R. Carrillo-Pedroza; A. Davalos Sanchez; M. Soria-Aguilar; E.T. Pecina Trevino

    2009-07-15

    The removal of pyritic sulfur from a Mexican sub-bituminous coal in nitric, sulfuric, and hydrochloric acid solutions was investigated. The effect of the type and concentration of acid, in the presence of hydrogen peroxide and ozone as oxidants, in a temperature range of 20-60{sup o}C, was studied. The relevant factors in pyrite dissolution were determined by means of the statistical analysis of variance and optimized by the response surface method. Kinetic models were also evaluated, showing that the dissolution of pyritic sulfur follows the kinetic model of the shrinking core model, with diffusion through the solid product of the reaction as the controlling stage. The results of statistical analysis indicate that the use of ozone as an oxidant improves the pyrite dissolution because, at 0.25 M HNO{sub 3} or H{sub 2}SO{sub 4} at 20{sup o}C and 0.33 g/h O{sub 3}, the obtained dissolution is similar to that of 1 M H{sub 2}O{sub 2} and 1 M HNO{sub 3} or H{sub 2}SO{sub 4} at 40{sup o}C. 42 refs., 9 figs., 3 tabs.

  8. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide.

    PubMed

    Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; McDonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2016-02-01

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. PMID:26637595

  9. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide

    PubMed Central

    Leggett, Mark J.; Schwarz, J. Spencer; Burke, Peter A.; McDonnell, Gerald; Denyer, Stephen P.

    2015-01-01

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. PMID:26637595

  10. Enhanced Sensitivity for Hydrogen Peroxide Detection: Polydiacetylene Vesicles with Phenylboronic Acid Head Group.

    PubMed

    Jia, Chen; Tang, Jie; Lu, Shengguo; Han, Yuwang; Huang, He

    2016-01-01

    It was recently reported that, besides UV irradiated polymerization, polymerization of diacetylene compounds could also been initiated by radicals generated from enzyme catalyzed hydrogen peroxide (H2O2) decomposition. A new optical sensing method for H2O2 was proposed based on this phenomenon. However, the sensitivity of this method is relatively lower than existed ones. In the present work, phenylboronic acid (PBA) functionalized 10, 12-pentacosadiynoic acid (PDA-PBA) was synthesized and its vesicles were formed successfully as colorimetric sensor for H2O2 detection. It was found that color change during the polymerization of vesicles composed of the PBA modified monomer is much stronger than that of the non-modified one. The response of PDA-PBA vesicles to H2O2 is 16 times more sensitive than that of the PDA. The absorption of PDA-PBA at 650 nm is linearly related to the concentration of H2O2 and a detection limit of ~5 μM could be achieved. PMID:26511954

  11. Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli.

    PubMed

    Doi, Hidetaka; Hoshino, Yasushi; Nakase, Kentaro; Usuda, Yoshihiro

    2014-01-01

    Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production. PMID:24169950

  12. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner

    PubMed Central

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2•−). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2•− in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA. PMID:26633563

  13. Effect of organic acids and hydrogen peroxide on Cryptosporidium parvum viability in fruit juices.

    PubMed

    Kniel, Kalmia E; Sumner, Susan S; Lindsay, David S; Hackney, Cameron R; Pierson, Merle D; Zajac, Anne M; Golden, David A; Fayer, Ronald

    2003-09-01

    Cryptosporidium parvum has historically been associated with waterborne outbreaks of diarrheal illness. Foodborne cryptosporidiosis has been associated with unpasteurized apple cider. Infectious oocysts are shed in the feces of common ruminants like cattle and deer in and near orchards. In this study, the ability of organic acids and hydrogen peroxide (H2O2) added to fruit juice to inhibit the survival of C. parvum was analyzed. Oocyst viability was analyzed by a cell culture infectivity assay with the use of a human ileocecal cell line (HCT-8) whose infectivity pattern is similar to that for human oral infectivity. Cell monolayers were infected with 10(6) treated oocysts or a series of 10-fold dilutions. Parasitic life stages were visualized through immunohistochemistry with 100 microscope fields per monolayer being counted. In vitro excystation assays were also used to evaluate these treatments. Organic acids and H2O2 were added to apple cider, orange juice, and grape juices on a weight/volume basis. Malic, citric, and tartaric acids at concentrations of 1 to 5% inhibited C. parvum's infectivity of HCT-8 cells by up to 88%. Concentrations ranging from 0.025 to 3% H2O2 were evaluated. The addition of 0.025% H2O2 to each juice resulted in a >5-log reduction of C. parvum infectivity as determined with a most-probable-number-based cell culture infectivity assay. As observed with differential interference contrast and scanning electron microscopy, reduced infectivity may be mediated through effects on the oocyst wall that are caused by the action of H2O2 or related oxygen radicals. The addition of low concentrations of H2O2 can represent a valuable alternative to pasteurization. PMID:14503720

  14. d-Amino acid oxidase-mediated increase in spinal hydrogen peroxide is mainly responsible for formalin-induced tonic pain

    PubMed Central

    Lu, Jin-Miao; Gong, Nian; Wang, Yan-Chao; Wang, Yong-Xiang

    2012-01-01

    BACKGROUND AND PURPOSE Spinal reactive oxygen species (ROS) are critically involved in chronic pain. d-Amino acid oxidase (DAAO) oxidizes d-amino acids such as d-serine to form the byproduct hydrogen peroxide without producing other ROS. DAAO inhibitors are specifically analgesic in tonic pain, neuropathic pain and cancer pain. This study examined the role of spinal hydrogen peroxide in pain and the mechanism of the analgesic effects of DAAO inhibitors. EXPERIMENTAL APPROACH Formalin-induced pain behaviours and spinal hydrogen peroxide levels were measured in rodents. KEY RESULTS Formalin injected into the paw increased spinal hydrogen peroxide synchronously with enhanced tonic pain; both were effectively prevented by i.t. fluorocitrate, a selective astrocyte metabolic inhibitor. Given systemically, the potent DAAO inhibitor CBIO (5-chloro-benzo[d]isoxazol-3-ol) blocked spinal DAAO enzymatic activity and specifically prevented formalin-induced tonic pain in a dose-dependent manner. Although CBIO maximally inhibited tonic pain by 62%, it completely prevented the increase in spinal hydrogen peroxide. I.t. catalase, an enzyme specific for decomposition of hydrogen peroxide, completely depleted spinal hydrogen peroxide and prevented formalin-induced tonic pain by 65%. Given systemically, the ROS scavenger PBN (phenyl-N-tert-butylnitrone) also inhibited formalin-induced tonic pain and increase in spinal hydrogen peroxide. Formalin-induced tonic pain was potentiated by i.t. exogenous hydrogen peroxide. CBIO did not increase spinal d-serine level, and i.t. d-serine did not alter either formalin-induced tonic pain or CBIO's analgesic effect. CONCLUSIONS AND IMPLICATIONS Spinal hydrogen peroxide is specifically and largely responsible for formalin-induced pain, and DAAO inhibitors produce analgesia by blocking spinal hydrogen peroxide production rather than interacting with spinal d-serine. PMID:21950354

  15. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  16. Hydrogen peroxide generation in caco-2 cell culture medium by addition of phenolic compounds: effect of ascorbic acid.

    PubMed

    Roques, Sylvie Cambon; Landrault, Nicolas; Teissèdre, Pierre-Louis; Laurent, Caroline; Besançon, Pierre; Rouane, Jean-Max; Caporiccio, Bertrand

    2002-05-01

    Phenolic compounds have recently attracted special attention due to their beneficial health effects; their intestinal absorption and bioavailability need, therefore, to be investigated and Caco-2 cell culture model appeared as a promising tool. We have shown herein that the addition of a grape seed extract (GSE) to Dulbecco's modified Eagle's medium (DMEM) used for Caco-2 cell culture leads to a substantial loss of catechin, epicatechin and B2 and B3 dimers from GSE in the medium after 24 h and to a production of hydrogen peroxide (H2O2). When 1420 microM ascorbic acid is added to the DMEM, such H2O2 production was prevented. This hydrogen peroxide generation substantially involves inorganic salts from the DMEM. We recommend that ascorbic acid be added to circumvent such a risk. PMID:12150547

  17. Hydrogen Peroxide Elicits Constriction of Skeletal Muscle Arterioles by Activating the Arachidonic Acid Pathway

    PubMed Central

    Csató, Viktória; Pető, Attila; Koller, Ákos; Édes, István

    2014-01-01

    Aims The molecular mechanisms of the vasoconstrictor responses evoked by hydrogen peroxide (H2O2) have not been clearly elucidated in skeletal muscle arterioles. Methods and Results Changes in diameter of isolated, cannulated and pressurized gracilis muscle arterioles (GAs) of Wistar-Kyoto rats were determined under various test conditions. H2O2 (10–100 µM) evoked concentration-dependent constrictions in the GAs, which were inhibited by endothelium removal, or by antagonists of phospholipase A (PLA; 100 µM 7,7-dimethyl-(5Z,8Z)-eicosadienoic acid), protein kinase C (PKC; 10 µM chelerythrine), phospholipase C (PLC; 10 µM U-73122), or Src family tyrosine kinase (Src kinase; 1 µM Src Inhibitor-1). Antagonists of thromboxane A2 (TXA2; 1 µM SQ-29548) or the non-specific cyclooxygenase (COX) inhibitor indomethacin (10 µM) converted constrictions to dilations. The COX-1 inhibitor (SC-560, 1 µM) demonstrated a greater reduction in constriction and conversion to dilation than that of COX-2 (celecoxib, 3 µM). H2O2 did not elicit significant changes in arteriolar Ca2+ levels measured with Fura-2. Conclusions These data suggest that H2O2 activates the endothelial Src kinase/PLC/PKC/PLA pathway, ultimately leading to the synthesis and release of TXA2 by COX-1, thereby increasing the Ca2+ sensitivity of the vascular smooth muscle cells and eliciting constriction in rat skeletal muscle arterioles. PMID:25093847

  18. Manganese Peroxidase-Dependent Oxidation of Glyoxylic and Oxalic Acids Synthesized by Ceriporiopsis subvermispora Produces Extracellular Hydrogen Peroxide

    PubMed Central

    Urzúa, Ulises; Kersten, Philip J.; Vicuña, Rafael

    1998-01-01

    The ligninolytic system of the basidiomycete Ceriporiopsis subvermispora is composed of manganese peroxidase (MnP) and laccase. In this work, the source of extracellular hydrogen peroxide required for MnP activity was investigated. Our attention was focused on the possibility that hydrogen peroxide might be generated by MnP itself through the oxidation of organic acids secreted by the fungus. Both oxalate and glyoxylate were found in the extracellular fluid of C. subvermispora cultures grown in chemically defined media, where MnP is also secreted. The in vivo oxidation of oxalate was measured; 14CO2 evolution was monitored after addition of exogenous [14C]oxalate to cultures at constant specific activity. In standard cultures, evolution of CO2 from oxalate was maximal at day 6, although the MnP titers were highest at day 12, the oxalate concentration was maximal (2.5 mM) at day 10, and the glyoxylate concentration was maximal (0.24 mM) at day 5. However, in cultures containing low nitrogen levels, in which the pH is more stable, a better correlation between MnP titers and mineralization of oxalate was observed. Both MnP activity and oxidation of [14C]oxalate were negligible in cultures lacking Mn(II). In vitro assays confirmed that Mn(II)-dependent oxidation of [14C]oxalate by MnP occurs and that this reaction is stimulated by glyoxylate at the concentrations found in cultures. In addition, both organic acids supported phenol red oxidation by MnP without added hydrogen peroxide, and glyoxylate was more reactive than oxalate in this reaction. Based on these results, a model is proposed for the extracellular production of hydrogen peroxide by C. subvermispora. PMID:16349495

  19. Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide.

    PubMed

    Berlett, B S; Chock, P B; Yim, M B; Stadtman, E R

    1990-01-01

    In bicarbonate/CO2 buffer, Mn(II) and Fe(II) catalyze the oxidation of amino acids by H2O2 and the dismutation of H2O2. As the Mn(II)/Fe(II) ratio is increased, the yield of carbonyl compounds per mole of leucine oxidized is essentially constant, but the ratio of alpha-ketoisocaproate to isovaleraldehyde formed increases, and the fraction of H2O2 converted to O2 increases. In the absence of Fe(II), the rate of Mn(II)-catalyzed leucine oxidation is directly proportional to the H2O2, Mn(II), and amino acid concentrations and is proportional to the square of the HCO3- concentration. The rate of Mn(II)-catalyzed O2 production in the presence of 50 mM alanine or leucine is about 4-fold the rate observed in the absence of amino acids and accounts for about half of the H2O2 consumed; the other half of the H2O2 is consumed in the oxidation of the amino acids. In contrast, O2 production is increased nearly 18-fold by the presence of alpha-methylalanine and accounts for about 90% of the H2O2 consumed. The data are consistent with the view that H2O2 decomposition is an inner sphere (cage-like) process catalyzed by a Mn coordination complex of the composition Mn(II), amino acid, (HCO3-)2. Oxidation of the amino acid in this complex most likely proceeds by a free radical mechanism involving hydrogen abstraction from the alpha-carbon as a critical step. The results demonstrate that at physiological concentrations of HCO3- and CO2, Mn(II) is able to facilitate Fenton-type reactions. PMID:2296594

  20. Effect of Molecular Structure on the Relative Hydrogen Peroxide Scavenging Ability of Some α-Keto Carboxylic Acids.

    PubMed

    Lopalco, Antonio; Stella, Valentino J

    2016-09-01

    The α-keto carboxylic acid, pyruvic acid (1) was found to be a very effective peroxide scavenger but is subject to an aldol-like self-condensation/polymerization reaction. The purpose of this study was to evaluate the hydrogen peroxide, H2O2, scavenging ability of 3-methyl-2-oxobutanoic acid (2), 4-methyl-2-oxopentanoic acid (3), and 2-oxo-2-phenylacetic acid (phenylglyoxylic acid, 4) in the pH range 2-9 at 25°C and the effect of molecular structure on the relative reactivity. The reaction with H2O2 was followed by UV spectrophotometry at 220 or 260 nm and high-performance liquid chromatography. Pseudo-first order, buffer-independent decarboxylation kinetics were observed in the presence of molar excess H2O2. The second-order rate constants for 2-4 followed a sigmoidal shape and mechanism similar to pyruvic acid. Pyruvic acid was a superior H2O2 scavenger to 2-4 over the pH range 2-9 but 4 was more reactive than 2 and 3 at pH values above 6. There was a qualitative correlation between the degree of keto-group hydration and reactivity of the acids in the pH range 4-6 while the data above pH 7 suggested that the intrinsic decarboxylation step for 4 was faster than for pyruvic acid. Differences in reactivity to molecular structure were analyzed. PMID:27209460

  1. Hydrogen Peroxide Is Involved in Salicylic Acid-Elicited Rosmarinic Acid Production in Salvia miltiorrhiza Cell Cultures

    PubMed Central

    Hao, Wenfang; Zhang, Jingyi; Hu, Gege; Yao, Yaqin; Dong, Juane

    2014-01-01

    Salicylic acid (SA) is an elicitor to induce the biosynthesis of secondary metabolites in plant cells. Hydrogen peroxide (H2O2) plays an important role as a key signaling molecule in response to various stimuli and is involved in the accumulation of secondary metabolites. However, the relationship between them is unclear and their synergetic functions on accumulation of secondary metabolites are unknown. In this paper, the roles of SA and H2O2 in rosmarinic acid (RA) production in Salvia miltiorrhiza cell cultures were investigated. The results showed that SA significantly enhanced H2O2 production, phenylalanine ammonia-lyase (PAL) activity, and RA accumulation. Exogenous H2O2 could also promote PAL activity and enhance RA production. If H2O2 production was inhibited by NADPH oxidase inhibitor (IMD) or scavenged by quencher (DMTU), RA accumulation would be blocked. These results indicated that H2O2 is secondary messenger for signal transduction, which can be induced by SA, significantly and promotes RA accumulation. PMID:24995364

  2. Direct determination of peracetic acid, hydrogen peroxide, and acetic acid in disinfectant solutions by far-ultraviolet absorption spectroscopy.

    PubMed

    Higashi, Noboru; Yokota, Hiroshi; Hiraki, Satoru; Ozaki, Yukihiro

    2005-04-01

    In this paper we propose a rapid and highly selective far-ultraviolet (FUV) spectroscopic method for the simultaneous determination of peracetic acid (PAA), hydrogen peroxide, and acetic acid (AA). For this purpose we developed a novel FUV spectrometer that enables us to measure the spectra down to 180 nm. Direct determination of PAA, H(2)O(2), and AA, the three main species in disinfectant solutions, was carried out by using their absorption bands in the 180-220-nm region. The proposed method does not require any reagents or catalysts, a calibration standard, and a complicated procedure for the analysis. The only preparation procedure requested is a dilution of H(2)O(2) with pure water to a concentration range lower than 0.2 wt % in the sample solutions. Usually, the required concentration range can be obtained by the 10 times volume dilution of the actual disinfectant solutions. As the measured sample does not leave any impurity for the disinfection, it can be reused completely by using a circulation system. The detection limit for PAA of the new FUV spectrometer was evaluated to be 0.002 wt %, and the dynamic ranges of the measured concentrations were from 0 to 0.05 wt %, from 0 to 0.2 wt %, and from 0 to 0.2 wt % for PAA, H(2)O(2), and AA, respectively. The response time for the simultaneous determination of the three species is 30 s, and the analysis is applicable even to the flowing samples. This method may become a novel approach for the continuous monitoring of PAA in disinfectant solutions on the process of sterilization. PMID:15801764

  3. Titanium corrosion in alkaline hydrogen peroxide environments

    NASA Astrophysics Data System (ADS)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  4. Specific recognition of guanines in non-duplex regions of nucleic acids with potassium tungstate and hydrogen peroxide

    PubMed Central

    Mao, Wuxiang; Xu, Xiaowei; He, Huan; Huang, Rong; Chen, Xi; Xiao, Heng; Yu, Zhenduo; Liu, Yi; Zhou, Xiang

    2015-01-01

    Structural features of nucleic acids have become an integral part of current biomedical research. Highly selective and readily performed methods with little toxicity that target guanosines in non-duplex nucleic acids are needed, which led us to search for an effective agent for guanosine sequencing. Treatment of DNA or RNA with potassium tungstate and hydrogen peroxide produced damaged guanosines in DNA or RNA sequences. The damaged guanosines in non-duplex DNA could be cleaved by hot piperidine. Similarly, damaged guanosines in non-duplex RNA could be cleaved by aniline acetate. We could identify structural features of nucleic acid using this strategy instead of dimethyl sulphate and Ribonuclease T1. PMID:25355517

  5. Control of Pseudomonas aeruginosa and Stenotrophomonas maltophilia contamination of microfiltered water dispensers with peracetic acid and hydrogen peroxide.

    PubMed

    Sacchetti, Rossella; De Luca, Giovanna; Zanetti, Franca

    2009-06-30

    The abilities of peracetic acid and hydrogen peroxide to remove or reduce Pseudomonas aeruginosa and Stenotrophomonas maltophilia in output water from microfiltered water dispensers (MWDs) were investigated. Two MWDs were inoculated with strains of P. aeruginosa and S. maltophilia isolated from water. Dispensers A and B were disinfected with 10% (v/v) peracetic acid (PAA) and 3% (v/v) hydrogen peroxide (HP) respectively. Each dispenser was disinfected three times at monthly intervals with contact times of 10, 30 and 40 min. Water dispensed by the MWDs was collected immediately before and after each treatment and then twice weekly for the remaining period. Once a week a sample of the tap water entering the dispensers was tested. P. aeruginosa and S. maltophilia were enumerated in the 90 samples collected during 6 months. In the output water from the dispensers before the first treatment, the number of the bacteria was 3 to 4 log cfu/100 mL. Treatment with PAA greatly reduced the numbers of P. aeruginosa and S. maltophilia in the dispensed water initially. However, by 2 days after treatment, the numbers increased and remained high. In the case of disinfection with HP for 40 min, P. aeruginosa was not detected in most of the samples (73.7%). Numbers of S. maltophilia decreased with increasing time after treatment. PMID:19439386

  6. The oxidative degradation of barley β-glucan in the presence of ascorbic acid or hydrogen peroxide.

    PubMed

    Mäkelä, Noora; Sontag-Strohm, Tuula; Maina, Ndegwa Henry

    2015-06-01

    Cereal β-glucans are polysaccharides with health benefits that have been linked to their ability to increase luminal viscosity. However, the functional properties of cereal β-glucans may be diminished by the susceptibility of this polysaccharide to oxidative degradation. In this study, barley β-glucan was oxidised with hydrogen peroxide or ascorbic acid and the oxidative degradation of β-glucan was investigated using both asymmetrical flow field-flow fractionation (AsFlFFF) with aqueous solvent and high performance size exclusion chromatography (HPSEC) with LiBr in DMSO as the solvent. Oxidation was shown to cause degradation of β-glucan, the reaction being faster when oxidised with hydrogen peroxide compared with ascorbic acid. Both HPSEC and AsFlFFF showed comparable results as long as aggregates (only observed in AsFlFFF) were not included in the integration. The compact aggregates observed in oxidised samples suggest oxidation driven interactions between β-glucan molecules. PMID:25843872

  7. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    USGS Publications Warehouse

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  8. Progress toward hydrogen peroxide micropulsion

    SciTech Connect

    Whitehead, J C; Dittman, M D; Ledebuhr, A G

    1999-07-08

    A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.

  9. Mutagenic Effects of Perfluorooctanesulfonic Acid in gpt Delta Transgenic System Are Mediated by Hydrogen Peroxide.

    PubMed

    Wang, Yichen; Zhang, Xuefeng; Wang, Meimei; Cao, Yiyi; Wang, Xinan; Liu, Yun; Wang, Juan; Wang, Jing; Wu, Lijun; Hei, Tom K; Luan, Yang; Xu, An

    2015-05-19

    Perfluorooctane sulfate (PFOS), a persistent organic pollutant, has recently been closely linked with an increased risk of tumorigenesis. However, PFOS has yielded negative results in various tests of genotoxicity. The present study aimed to investigate the mutagenic response to PFOS in the gpt delta transgenic mouse mutation system and to illustrate the contribution of hydrogen peroxide (H2O2) to PFOS genotoxicity. Mutations at the redBA/gam loci were determined by Spi(-) assay both in vitro and in vivo. DNA damage was measured by phosphorylated histone H2AX (γ-H2AX) and mouse bone marrow micronucleus (MN) testing. Our data showed that PFOS induced concentration-dependent increases in γ-H2AX foci and in mutation frequencies at redBA/gam loci in transgenic mouse embryonic fibroblast cells, which were confirmed by the formation of MNs in the bone marrow and the observations of mutation induction in the livers of gpt delta transgenic mice. Concurrent treatment with catalase, an efficient H2O2 scavenger, significantly decreased the formation of γ-H2AX foci and the mutation yields induced by PFOS. In addition, the generation of H2O2 was found to be closely related to the abnormal peroxisomal β-oxidation caused by PFOS. These finding might provide new mechanistical information about genotoxic effects of PFOS. PMID:25875360

  10. Oxidative and Molecular Responses in Capsicum annuum L. after Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications

    PubMed Central

    Mejía-Teniente, Laura; de Dalia Durán-Flores, Flor; Chapa-Oliver, Angela María; Torres-Pacheco, Irineo; Cruz-Hernández, Andrés; González-Chavira, Mario M.; Ocampo-Velázquez, Rosalía V.; Guevara-González, Ramón G.

    2013-01-01

    Hydrogen peroxide (H2O2) is an important ROS molecule (Reactive oxygen species) that serves as a signal of oxidative stress and activation of signaling cascades as a result of the early response of the plant to biotic stress. This response can also be generated with the application of elicitors, stable molecules that induce the activation of transduction cascades and hormonal pathways, which trigger induced resistance to environmental stress. In this work, we evaluated the endogenous H2O2 production caused by salicylic acid (SA), chitosan (QN), and H2O2 elicitors in Capsicum annuum L. Hydrogen peroxide production after elicitation, catalase (CAT) and phenylalanine ammonia lyase (PAL) activities, as well as gene expression analysis of cat1, pal, and pathogenesis-related protein 1 (pr1) were determined. Our results displayed that 6.7 and 10 mM SA concentrations, and, 14 and 18 mM H2O2 concentrations, induced an endogenous H2O2 and gene expression. QN treatments induced the same responses in lesser proportion than the other two elicitors. Endogenous H2O2 production monitored during several days, showed results that could be an indicator for determining application opportunity uses in agriculture for maintaining plant alert systems against a stress. PMID:23676352

  11. Inhibition of hydrogen embrittlement of Ni-Ti superelastic alloy in acid fluoride solution by hydrogen peroxide addition.

    PubMed

    Yokoyama, Ken'ichi; Yazaki, Yushin; Sakai, Jun'ichi

    2011-09-01

    Inhibition of the hydrogen embrittlement of Ni-Ti superelastic alloy in an acidulated phosphate fluoride (APF) solution has been attempted by adding various amounts of H(2)O(2). In a 0.2% APF solution, hydrogen absorption is markedly inhibited by adding H(2)O(2), although corrosion is slightly enhanced by increasing the amount of added H(2)O(2). By adding a small amount of H(2)O(2) (0.001 M), in the early stage of immersion, hydrogen embrittlement is inhibited and corrosion is only slightly enhanced. Upon adding H(2)O(2), it appears that the dominant cathodic reactions change from hydrogen evolution to H(2)O(2) reduction reactions, or the surface conditions of the alloy are changed by H(2)O(2) with a high oxidation capability, thereby inhibiting hydrogen absorption. The present study clearly indicates that infinitesimal addition of H(2)O(2) into acid fluoride solutions is effective for the inhibition of the hydrogen embrittlement of the alloy. PMID:21630433

  12. Evaluating the effects of galbanic acid on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes

    PubMed Central

    Shirani, Kobra; Behravan, Javad; Mosaffa, Fatemeh; Iranshahi, Mehrdad; Mehmankhah, Babak; Razavi-Azarkhiavi, Kamal; Karimi, Gholamreza

    2014-01-01

    Objective: Ferula szowitsiana has been widely used for medicinal purposes around the world. The anti-oxidant effect of F. szowitsiana had been proved. The current study aims to determine the protective effects of galbanic acid, a sesquiterpene coumarin from F. szowitsiana, against hydrogen peroxide (H2O2) - induced oxidative DNA damage in human lymphocytes. Materials and Methods: Human lymphocytes were incubated with H2O2 (0, 25, 50, 100, and 200 µM), galbanic acid (200 and 400 µM) and a combination of galbanic acid (200 and 400 µM) and H2O2 (25 µM) at 4 C for 30 minutes. Solvents of galbanic acid without H2O2 were used as negative controls. Results: The findings of this study demonstrated that H2O2 exposure leads to a significant concentration-dependent increase in DNA damage. Galbanic acid did not cause DNA damage compared with the control cells. Data showed that galbanic acid does not have a protective effect against H2O2-induced oxidative DNA damage in human lymphocytes. Conclusion: According to the results, it is concluded that the capability of F. szowitsiana in reducing reactive oxygen species and the anti-inflammatory property of its methanolic extract may be due to its other ingredients. PMID:25386396

  13. Improved dual flow aluminum hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart L.; Matthews, Donna

    1993-11-01

    A novel dual flow battery configuration is provided comprising an aqueous hydrogen peroxide catholyte, an aqueous anolyte, a porous solid electrocatalyst capable of reducing said hydrogen peroxide and separating said anolyte, and an aluminum anode positioned within said anolyte. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode.

  14. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may...

  15. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  16. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  17. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  18. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may...

  19. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  20. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may...

  1. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  2. Sampling Stoichiometry: The Decomposition of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Clift, Philip A.

    1992-01-01

    Describes a demonstration of the decomposition of hydrogen peroxide to provide an interesting, quantitative illustration of the stoichiometric relationship between the decomposition of hydrogen peroxide and the formation of oxygen gas. This 10-minute demonstration uses ordinary hydrogen peroxide and yeast that can be purchased in a supermarket.…

  3. Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment.

    PubMed

    Song, Younho; Wi, Seung Gon; Kim, Ho Myeong; Bae, Hyeun-Jong

    2016-08-01

    Jerusalem artichoke (JA) is recognized as a suitable candidate biomass crop for bioethanol production because it has a rapid growth rate and high biomass productivity. In this study, hydrogen peroxide-acetic acid (HPAC) pretreatment was used to enhance the enzymatic hydrolysis and to effectively remove the lignin of JA. With optimized enzyme doses, synergy was observed from the combination of three different enzymes (RUT-C30, pectinase, and xylanase) which provided a conversion rate was approximately 30% higher than the rate with from treatment with RUT-C30 alone. Fermentation of the JA hydrolyzates by Saccharomyces cerevisiae produced a fermentation yield of approximately 84%. Therefore, Jerusalem artichoke has potential as a bioenergy crop for bioethanol production. PMID:27115748

  4. Conversion of Saccharides into Formic Acid using Hydrogen Peroxide and a Recyclable Palladium(II) Catalyst in Aqueous Alkaline Media at Ambient Temperatures

    PubMed Central

    Zargari, N.; Kim, Y.; Jung, K. W.

    2015-01-01

    We have developed an effective method that converts a variety of mono- and disaccharides into formic acid predominantly. Our recyclable NHC-amidate palladium(II) catalyst facilitated oxidative degradation of carbohydrates without using excess oxidant. Stoichiometric amounts of hydrogen peroxide and sodium hydroxide were employed at ambient temperatures. PMID:26421000

  5. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  6. NASA Hydrogen Peroxide Propulsion Perspective

    NASA Technical Reports Server (NTRS)

    Unger, Ronald; Lyles, Garry M. (Technical Monitor)

    2002-01-01

    This presentation is to provide the current status of NASA's efforts in the development of hydrogen peroxide in both mono-propellant and bi-propellant applications, consistent with the Space Launch Initiative goals of pursuing low toxicity and operationally simpler propellants for application in the architectures being considered for the 2nd Generation Reusable Launch Vehicle, also known as the Space Launch Initiative, or SLI.

  7. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide.

    PubMed Central

    Carlsson, J; Iwami, Y; Yamada, T

    1983-01-01

    Approved type strains of Streptococcus sanguis, S. mitis, S. mutans, and S. salivarius were grown under aerobic and anaerobic conditions. The rate of hydrogen peroxide excretion, oxygen uptake, and acid production from glucose by washed-cell suspensions of these strains were studied, and the levels of enzymes in cell-free extracts which reduced oxygen, hydrogen peroxide, or hypothiocyanite (OSCN-) in the presence of NADH or NADPH were assayed. The effects of lactoperoxidase-thiocyanate-hydrogen peroxide on the rate of acid production and oxygen uptake by intact cells, the activity of glycolytic enzymes in cell-free extracts, and the levels of intracellular glycolytic intermediates were also studied. All strains consumed oxygen in the presence of glucose. S. sanguis, S. mitis, and anaerobically grown S. mutans excreted hydrogen peroxide. There was higher NADH oxidase and NADH peroxidase activity in aerobically grown cells than in anaerobically grown cells. NADPH oxidase activity was low in all species. Acid production, oxygen uptake, and, consequently, hydrogen peroxide excretion were inhibited in all the strains by lactoperoxidase-thiocyanate-hydrogen peroxide. S. sanguis and S. mitis had a higher capacity than S. mutans and S. salivarius to recover from this inhibition. Higher activity in the former strains of an NADH-OSCN oxidoreductase, which converted OSCN- into thiocyanate, explained this difference. The change in levels of intracellular glycolytic intermediates after inhibition of glycolysis by OSCN- and the actual activity of glycolytic enzymes in cell-free extracts in the presence of OSCN- indicated that the primary target of OSCN- in the glycolytic pathway was glyceraldehyde 3-phosphate dehydrogenase. PMID:6832837

  8. Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Zaidi, Z. H. Lee, K. B.; Qian, H.; Jiang, S.; Houston, P. A.; Guiney, I.; Wallis, D. J.; Humphreys, C. J.

    2014-12-28

    In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}–10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid is believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90 × 10{sup 12 }cm{sup −2} eV{sup −1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.

  9. Selective peracetic acid determination in the presence of hydrogen peroxide using a label free enzymatic method based on catalase.

    PubMed

    Galbán, Javier; Sanz, Vanesa; de Marcos, Susana

    2010-11-01

    Peracetic acid (PAA) is selectively determined in the presence of hydrogen peroxide (H(2)O(2)) by using the self-indicating UV-Vis molecular absorption properties of catalase. The PAA reacts with the protein giving an intermediate (Cat-I) which is reduced back by the amino acid core surrounding the heme group. Since the original form of the enzyme and the Cat-I have different UV-Vis absorption properties, the absorbance changes can be used for PAA determination. The H(2)O(2)/catalase reaction is extremely fast so that neither Cat-I compound nor kinetic interferences are observed. The method permits PAA determination in the 5 × 10(-7) to 1.5 × 10(-5) M range, the reproducibility being between 1% and 10%. Using this method, PAA has been successfully determined in water samples treated with commercial PAA/H(2)O(2) biocides. A theoretical study has also been carried out for obtaining a mathematical model able to analytically describe the process. PMID:20824427

  10. Simultaneous Quantification of Iodine and Other Elements in Infant Formula by ICP-MS Following an Acid Digestion with Nitric Acid and Hydrogen Peroxide.

    PubMed

    Fujisaki, Koji; Matsumoto, Hiroshi; Shimokawa, Yukiko; Kiyotaki, Kenji

    2016-01-01

    A method for quantifying iodine in infant formula is described. Nitric acid and hydrogen peroxide converted iodine into iodate in microwave-assisted digestion and prevented iodine volatilization and memory effects. Acetic acid as a carbon source was added to both the sample and standard solutions as a countermeasure against carbon charge transfer to iodine and the addition of acetic acid helped to enhance the sensitivity. The instrument limit of quantification was 0.1 ng mL(-1) and the relative standard deviation was less than 3%. The spike recoveries were between 94.8 and 106%. Good agreement with the values obtained using the tetramethylammonium hydroxide method was obtained for infant formula sold in several countries. This method permitted the simultaneous determination of iodine and 12 other important elements (Na, Mg, P, K, Ca, Cr, Mn, Fe, Cu, Zn, Se and Mo) in infant formula. PMID:26860560

  11. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen...

  12. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen...

  13. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen...

  14. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen...

  15. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen...

  16. Coating for components requiring hydrogen peroxide compatibility

    NASA Technical Reports Server (NTRS)

    Yousefiani, Ali (Inventor)

    2010-01-01

    The present invention provides a heretofore-unknown use for zirconium nitride as a hydrogen peroxide compatible protective coating that was discovered to be useful to protect components that catalyze the decomposition of hydrogen peroxide or corrode when exposed to hydrogen peroxide. A zirconium nitride coating of the invention may be applied to a variety of substrates (e.g., metals) using art-recognized techniques, such as plasma vapor deposition. The present invention further provides components and articles of manufacture having hydrogen peroxide compatibility, particularly components for use in aerospace and industrial manufacturing applications. The zirconium nitride barrier coating of the invention provides protection from corrosion by reaction with hydrogen peroxide, as well as prevention of hydrogen peroxide decomposition.

  17. Breath condensate hydrogen peroxide correlates with both airway cytology and epithelial lining fluid ascorbic acid concentration in the horse.

    PubMed

    Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Smith, Ken C; Newton, Richard J; Gower, Susan M; Cade, Susan M; Roberts, Colin A; Harris, Pat A; Schroter, Robert C; Kelly, Frank J

    2004-02-01

    The relationship between hydrogen peroxide (H2O2) concentration in expired breath condensate (EBC) and cytology of the respiratory tract obtained from tracheal wash (TW) or bronchoalveolar lavage (BAL), and epithelial lining fluid (ELF) antioxidant status is unknown. To examine this we analysed the concentration of H2O2 in breath condensate from healthy horses and horses affected by recurrent airway obstruction (RAO), a condition considered to be an animal model of human asthma. The degree of airway inflammation was determined by assessing TW inflammation as mucus, cell density and neutrophil scores, and by BAL cytology. ELF antioxidant status was determined by measurement of ascorbic acid, dehydroascorbate, reduced and oxidised glutathione, uric acid and alpha-tocopherol concentrations. RAO-affected horses with marked airway inflammation had significantly higher concentrations of breath condensate H2O2 than control horses and RAO-affected horses in the absence of inflammation (2.0 +/- 0.5 micromol/l. 0.4 +/- 0.2 micromol/l and 0.9 +/- 0.2 micromol/l H2O2, respectively; p < 0.0001). The concentration of breath condensate H2O2 was related inversely to the concentration of ascorbic acid in ELF (r = -0.80; p < 0.0001) and correlated positively with TW inflammation score (r = 0.76, p < 0.0001) and BAL neutrophil count (r = 0.80, p < 0.0001). We conclude that the concentration of H2O2 in breath condensate influences the ELF ascorbic acid concentration and provides a non-invasive diagnostic indicator of the severity of neutrophilic airway inflammation. PMID:15104214

  18. Hydrogen peroxide, from Wieland to Sies.

    PubMed

    Koppenol, Willem H

    2016-04-01

    A history of the formation of hydrogen peroxide in vivo is presented, starting with the discovery of catalase. The first hypothesis was formulated by Heinrich Wieland, who assumed that dioxygen reacted directly with organic molecules. This view was strongly criticised by Otto Warburg, Helmut Sies' academic grandfather. The involvement of hydrogen peroxide in physiological processes was investigated by Theodor Bücher, the "Doktorvater" of Helmut. Helmut's research made it possible to quantitate hydrogen peroxide in tissues. PMID:27095207

  19. Hydrogen peroxide on the surface of Europa

    USGS Publications Warehouse

    Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Smythe, W.D.; Hendrix, A.R.; Barth, C.A.; Soderblom, L.A.; Hansen, G.B.; McCord, T.B.; Dalton, J.B.; Clark, R.N.; Shirley, J.H.; Ocampo, A.C.; Matson, D.L.

    1999-01-01

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  20. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  1. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  2. Hydrogen peroxide on the surface of Europa.

    PubMed

    Carlson, R W; Anderson, M S; Johnson, R E; Smythe, W D; Hendrix, A R; Barth, C A; Soderblom, L A; Hansen, G B; McCord, T B; Dalton, J B; Clark, R N; Shirley, J H; Ocampo, A C; Matson, D L

    1999-03-26

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis. PMID:10092224

  3. Volatilization of iodine from nitric acid using peroxide

    DOEpatents

    Cathers, G.I.; Shipman, C.J.

    1975-10-21

    A method for removing radioactive iodine from nitric acid solution by adding hydrogen peroxide to the solution while concurrently holding the solution at the boiling point and distilling hydrogen iodide from the solution is reported.

  4. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  5. Hydrogen peroxide as a greenhouse soil amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are anecdotal reports that hydrogen peroxide provides growth benefits beyond controlling plant infection and plant stress. The objective of this research was to determine the effect of soil applications of hydrogen peroxide solutions on plant growth and flowering. Nasturtium (Tropaeolum maju...

  6. Fundamentals of ISCO Using Hydrogen Peroxide

    EPA Science Inventory

    Hydrogen peroxide is a common oxidant that has been applied extensively with in situ chemical oxidation (ISCO). Because of its widespread use in this and other fields, it has been extensively researched. This research has revealed that hydrogen peroxide has very complex chemistry...

  7. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  8. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  9. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  10. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  11. Molecular Association and Structure of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Giguere, Paul A.

    1983-01-01

    The statement is sometimes made in textbooks that liquid hydrogen peroxide is more strongly associated than water, evidenced by its higher boiling point and greater heat of vaporization. Discusses these and an additional factor (the nearly double molecular mass of the peroxide), focusing on hydrogen bonds and structure of the molecule. (JN)

  12. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  13. Vapor Hydrogen Peroxide Sterilization Certification

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Chung, Shirley; Barengoltz, Jack

    For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be

  14. Ascorbic acid and tetrahydrobiopterin potentiate the EDHF phenomenon by generating hydrogen peroxide

    PubMed Central

    Garry, Ambroise; Edwards, David H.; Fallis, Ian F.; Jenkins, Robert L.; Griffith, Tudor M.

    2009-01-01

    Aims Our objective was to investigate whether pro-oxidant properties of ascorbic acid (AA) and tetrahydrobiopterin (BH4) modulate endothelium-dependent, electrotonically mediated arterial relaxation. Methods and results In studies with rabbit iliac artery (RIA) rings, NO-independent, endothelium-derived hyperpolarizing factor (EDHF)-type relaxations evoked by the sarcoplasmic endoplasmic reticulum Ca2+-ATPase inhibitor cyclopiazonic acid and the G protein-coupled agonist acetylcholine (ACh) were enhanced by AA (1 mM) and BH4 (200 µM), which generated buffer concentrations of H2O2 in the range of 40–80 µM. Exogenous H2O2 potentiated cyclopiazonic acid (CPA)- and ACh-evoked relaxations with a threshold of 10–30 µM, and potentiation by AA and BH4 was abolished by catalase, which destroyed H2O2 generated by oxidation of these agents in the organ chamber. Adventitial application of H2O2 also enhanced EDHF-type dilator responses evoked by CPA and ACh in RIA segments perfused intraluminally with H2O2-free buffer, albeit with reduced efficacy. In RIA rings, both control relaxations and their potentiation by H2O2 were overcome by blockade of gap junctions by connexin-mimetic peptides (YDKSFPISHVR and SRPTEK) targeted to the first and second extracellular loops of the dominant vascular connexins expressed in the RIA. Superoxide dismutase attenuated the potentiation of EDHF-type relaxations by BH4, but not AA, consistent with findings demonstrating a differential role for superoxide anions in the generation of H2O2 by the two agents. Conclusion Pro-oxidant effects of AA and BH4 can enhance the EDHF phenomenon by generating H2O2, which has previously been shown to amplify electrotonic hyperpolarization-mediated relaxation by facilitating Ca2+ release from endothelial stores. PMID:19592567

  15. Electron paramagnetic resonance study of hydrogen peroxide/ascorbic acid ratio as initiator redox pair in the inulin-gallic acid molecular grafting reaction.

    PubMed

    Arizmendi-Cotero, Daniel; Gómez-Espinosa, Rosa María; Dublán García, Octavio; Gómez-Vidales, Virginia; Dominguez-Lopez, Aurelio

    2016-01-20

    Gallic acid (GA) was grafted onto inulin using the free radicals method, generated by the hydrogen peroxide/ascorbic acid (H2O2/AA) redox pair. Molar ratios of H2O2/AA at 9, 20, 39 and 49 were evaluated by Electron Paramagnetic Resonance in order to find the effect of the oxidation of the inulin and the efficiency in the inulin-gallic acid grafting (IGA). The highest concentration of the inulin macro-radical was obtained with H2O2/AA molar ratios of 20 and 49 with the removal of a hydrogen atom from a methyl group of the inulin fructose monomers. The highest grafting ratio (30.4 mg GA eq/g IGA) was obtained at 9 M of H2O2/AA. UV-Vis, FT-IR-ATR and XDR results confirmed a successful IGA grafting. The efficiency of the grafting reaction depends on the concentration of the macro-radical, it depends on the molar ratio of H2O2/AA, being affected by simultaneous reactions between components of the mixture (H2O2, AA, inulin, GA and eventually atmospheric oxygen) as well. PMID:26572365

  16. The kinetics of iodide oxidation by hydrogen peroxide in acid solution

    NASA Astrophysics Data System (ADS)

    Milenković, M. C.; Stanisavljev, D. R.

    2011-12-01

    The kinetics of the complex reaction between I- and H2O2 in acid media was investigated. The particular attention was focused on the determination of the rate constant of the reaction between HIO and H2O2 involved in the investigated complex process. The examination of the whole kinetics was performed by simultaneously monitoring the evolution of O2 pressure, I{3/-} and I- concentrations. We modeled the behavior of experimentally followed components based on Liebhafsky's research. Our preliminary results suggest a significantly higher rate constant (3.5 × 107 M-1 s-1) of the reaction between HIO and H2O2 as those proposed in the literature.

  17. Hydrogen Peroxide Is a Second Messenger in the Salicylic Acid-Triggered Adventitious Rooting Process in Mung Bean Seedlings

    PubMed Central

    Yang, Wei; Zhu, Changhua; Ma, Xiaoling; Li, Guijun; Gan, Lijun; Ng, Denny; Xia, Kai

    2013-01-01

    In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N’-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings. PMID:24386397

  18. In Vitro Neuroprotective Effect of Shikimic Acid Against Hydrogen Peroxide-Induced Oxidative Stress.

    PubMed

    Rabelo, Thallita Kelly; Zeidán-Chuliá, Fares; Caregnato, Fernanda Freitas; Schnorr, Carlos Eduardo; Gasparotto, Juciano; Serafini, Mairim Russo; de Souza Araújo, Adriano Antunes; Quintans-Junior, Lucindo José; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2015-08-01

    Shikimic acid (SA), originally extracted from Illicium verum Hook. fil., is an indispensable starting material for the synthesis of the antiviral drug Oseltamivir (Tamiflu(®)) with very limited number of studies regarding its biological effects in vitro. Therefore, we here evaluated the thermoanalytical profile, redox properties, and in vitro effects of SA on human neuronal-like cells (SH-SY5Y). The thermoanalytical profile of SA was studied by using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG) characterization. Both antioxidant potential and in vitro lipoperoxidation levels were analyzed. Cell viability and intracellular reactive species (RS) production was determined by DCF and SRB assays, respectively. Our results show in vitro antioxidant activity of SA without exerting cytotoxic effects on SH-SY5Y cells at tested concentrations of 10 nM, 10 μM, and 10 mM. In addition, SA protected the cells against H2O2-induced toxicity; effect that could be related, at least in part, with decreased intracellular RS production and its antioxidant potential. The present study shows evidence for neuroprotective actions of SA against oxidative stress-induced toxicity on SH-SY5Y cells, inviting for further investigation about its potential use in the context of oxidative stress-associated neurodegenerative diseases. PMID:25862258

  19. K Basin Sludge Conditioning Process Testing Fate of PCBs During K Basin Sludge Dissolution in Nitric Acid and with Hydrogen Peroxide Addition

    SciTech Connect

    GM Mong; AJ Schmidt; EW Hoppe; KH Pool; KL Silvers; BM Thornton

    1999-01-04

    The work described in this report is part of the studies being performed to address the fate of polychlorinated biphenyls (PCBs) in K Basin sludge before the sludge can be transferred to the Tank Waste Remediation System (TWRS) double shell tanks. One set of tests examined the effect of hydrogen peroxide on the disposition of PCBs in a simulated K Basin dissolver solution containing 0.5 M nitric acid/1 M Fe(NO{sub 3}){sub 3}. A second series of tests examined the disposition of PCBs in a much stronger ({approx}10 M) nitric acid solution, similar to that likely to be encountered in the dissolution of the sludge.

  20. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  1. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  2. Microcalorimetric Measurements of Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D.; Hornung, Steven D.; Baker, Dave L.

    1999-01-01

    Recent interest in propellants with nontoxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because hydrogen peroxide is sensitive to contaminants and materials interactions, stability and shelf life are issues. A relatively new, ultrasensitive heat measurement technique, isothermal microcalorimetry, is being used at the White Sands Test Facility to monitor the decomposition of hydrogen peroxide at near ambient temperatures. Isothermal microcalorimetry measures the beat flow from a reaction vessel into a surrounding heat sink. In these applications, microcalorimetry is approximately 1,000 times more sensitive than accelerating rate calorimetry or differential scanning calorimetry for measuring thermal events. Experimental procedures have been developed for the microcalorimetric measurement of the ultra-small beat effects caused by incompatible interactions of hydrogen peroxide. The decomposition rates of hydrogen peroxide at the picomole/sec/gram level have been measured showing the effects of stabilizers and peroxide concentration. Typical measurements are carried out at 40 C over a 24-hour period, This paper describes a method for the conversion of the heat flow measurements to chemical reaction rates based on thermochemical considerations. The reaction rates are used in a study of the effects of stabilizer levels on the decomposition of propellant grade hydrogen peroxide.

  3. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell

    PubMed Central

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells. PMID:23457415

  4. Isothermal Decomposition of Hydrogen Peroxide Dihydrate

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Baragiola, R. A.

    2011-01-01

    We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.

  5. NASA Hydrogen Peroxide Propellant Hazards Technical Manual

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Greene, Ben; Frazier, Wayne

    2005-01-01

    The Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide NASA technical manual was developed at the NASA Johnson Space Center White Sands Test Facility. NASA Technical Memorandum TM-2004-213151 covers topics concerning high concentration hydrogen peroxide including fire and explosion hazards, material and fluid reactivity, materials selection information, personnel and environmental hazards, physical and chemical properties, analytical spectroscopy, specifications, analytical methods, and material compatibility data. A summary of hydrogen peroxide-related accidents, incidents, dose calls, mishaps and lessons learned is included. The manual draws from art extensive literature base and includes recent applicable regulatory compliance documentation. The manual may be obtained by United States government agencies from NASA Johnson Space Center and used as a reference source for hazards and safe handling of hydrogen peroxide.

  6. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  7. Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse

    SciTech Connect

    Clews, P.J.; Nelson, G.C.; Resnick, P.J.; Matlock, C.A.; Adkins, C.L.J.

    1997-08-01

    Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.

  8. Effect of benzoic acid on the removal of 1,2-dichloroethane by a siderite-catalyzed hydrogen peroxide and persulfate system.

    PubMed

    Li, Shengpin; Li, Mengjiao; Luo, Ximing; Huang, Guoxin; Liu, Fei; Chen, Honghan

    2016-01-01

    Benzoic acid can affect the iron-oxide mineral dissolution and react with hydroxyl radical. This study investigated its effect on 1,2-dichloroethane removal process by siderite-catalyzed hydrogen peroxide and persulfate. The variation of benzoic acid concentrations can affect pH value and soluble iron concentrations; when benzoic acid varied from 0 to 0.5 mmol/L, pH increased while Fe(2+) and Fe(3+) concentrations decreased, resulting in 1,2-dichloroethane removal efficiency which decreased from 91.2 to 5.0%. However, when benzoic acid varied from 0.5 to 10 mmol/L, pH decreased while Fe(2+) and Fe(3+) concentrations increased, resulting in 1,2-dichloroethane removal efficiency which increased from 5.0 to 83.4%. PMID:26308917

  9. Comparison of the toxicity of the peracetic acid formulations Wofasteril(c) E400, E250 and Lspez to Daphnia magna with emphasis on the effect of hydrogen peroxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial peracetic acid (PAA) formulations are acidic mixtures of PAA, hydrogen peroxide (H2O2), acetic acid (AA), H2O and stabilizers to maintain equilibrium of the concentrations. Different PAA formulations show diverse PAA/H2O2 ratios, leading to potentially different toxicities at the same con...

  10. Different Modes of Hydrogen Peroxide Action During Seed Germination

    PubMed Central

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  11. [Hydrogen peroxide in artificial photosynthesizing systems].

    PubMed

    Lobanov, A V; Komissarov, G G

    2014-01-01

    From the point of view of the concepts of hydrogen peroxide as a source of photosynthetic oxygen (hydrogen) coordination and photochemical properties of chlorophyll and its aggregates towards hydrogen peroxide were considered. The binding energy of H2O and H2O2 with chlorophyll and chlorophyllide depending on their form (monomers, dimers and trimers) was estimated by quantum chemical calculations. It is shown that at an increase of the degree of the pigment aggregation binding energy of H2O2 was more than the energy of H2O. Analysis of experimental results of the photochemical decomposition of hydrogen peroxide using chlorophyll was carried out. Estimates of the thermodynamic parameters (deltaG degrees and deltaH degrees) of the formation of organic compounds from CO2 with water and hydrogen peroxide were compared. The interaction of CO2 with H2O2 requires much less energy consumption than with water for all considered cases. The formation of organic products (formaldehyde, alcohols, carboxylic and carbonylic compounds) and simultaneous production of O2 under the influence of visible light in the systems of inorganic carbon--hydrogen peroxide--chlorophyll (phthalocyanine) is detected by GC/MS method, FTIR spectroscopy, and chemical analysis. PMID:25702472

  12. Improvement of adventitious root formation in flax using hydrogen peroxide.

    PubMed

    Takáč, Tomáš; Obert, Bohuš; Rolčík, Jakub; Šamaj, Jozef

    2016-09-25

    Flax (Linum usitatissimum L.) is an important crop for the production of oil and fiber. In vitro manipulations of flax are used for genetic improvement and breeding while improvements in adventitious root formation are important for biotechnological programs focused on regeneration and vegetative propagation of genetically valuable plant material. Additionally, flax hypocotyl segments possess outstanding morphogenetic capacity, thus providing a useful model for the investigation of flax developmental processes. Here, we investigated the crosstalk between hydrogen peroxide and auxin with respect to reprogramming flax hypocotyl cells for root morphogenetic development. Exogenous auxin induced the robust formation of adventitious roots from flax hypocotyl segments while the addition of hydrogen peroxide further enhanced this process. The levels of endogenous auxin (indole-3-acetic acid; IAA) were positively correlated with increased root formation in response to exogenous auxin (1-Naphthaleneacetic acid; NAA). Histochemical staining of the hypocotyl segments revealed that hydrogen peroxide and peroxidase, but not superoxide, were positively correlated with root formation. Measurements of antioxidant enzyme activities showed that endogenous levels of hydrogen peroxide were controlled by peroxidases during root formation from hypocotyl segments. In conclusion, hydrogen peroxide positively affected flax adventitious root formation by regulating the endogenous auxin levels. Consequently, this agent can be applied to increase flax regeneration capacity for biotechnological purposes such as improved plant rooting. PMID:26921706

  13. Process for the production of hydrogen peroxide

    DOEpatents

    Datta, R.; Randhava, S.S.; Tsai, S.P.

    1997-09-02

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H{sub 2}O{sub 2} laden permeate. 1 fig.

  14. Process for the production of hydrogen peroxide

    DOEpatents

    Datta, Rathin; Randhava, Sarabjit S.; Tsai, Shih-Perng

    1997-01-01

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H.sub.2 O.sub.2 laden permeate.

  15. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide.

    PubMed

    Megarajan, Sengan; Ayaz Ahmed, Khan Behlol; Rajendra Kumar Reddy, G; Suresh Kumar, P; Anbazhagan, Veerappan

    2016-02-01

    Herein, we present a simple and green method for the synthesis of gold nanoparticles (AuNPs) using the phytoproteins of spinach leaves. Under ambient sunlight irradiation, the isolated phytoprotein complex from spinach leaves reduces the gold chloride aqueous solution and stabilizes the formed AuNPs. As prepared nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, zeta potential, transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). The surface plasmon resonance (SPR) maximum for AuNPs was observed at 520 nm. The zeta potential value estimated for the AuNPs is -27.0 mV, indicating that the NPs are well separated. Transmission electron micrographs revealed that the particles are spherical in nature with the size range from 10 to 15 nm. AuNPs act as a catalyst in the degradation of an azo dye, methyl orange in an aqueous environment. The reduction rate was determined to be pseudo-first order. Electrocatalytic efficiency of the synthesized AuNPs via this green approach was studied by chronoamperometry using ascorbic acid and hydrogen peroxide as a model compound for oxidation and reduction, respectively. Electrocatalytic studies indicate that the gold nanoparticles can be used to detect ascorbic acid and hydrogen peroxide in micromolar concentrations with response time less than 3s. PMID:26722997

  16. Catalyst Development for Hydrogen Peroxide Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.

    1999-01-01

    The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.

  17. Hydrogen Peroxide - Material Compatibility Studied by Microcalorimetry

    NASA Technical Reports Server (NTRS)

    Homung, Steven D.; Davis, Dennis D.; Baker, David; Popp, Christopher G.

    2003-01-01

    Environmental and toxicity concerns with current hypergolic propellants have led to a renewed interest in propellant grade hydrogen peroxide (HP) for propellant applications. Storability and stability has always been an issue with HP. Contamination or contact of HP with metallic surfaces may cause decomposition, which can result in the evolution of heat and gas leading to increased pressure or thermal hazards. The NASA Johnson Space Center White Sands Test Facility has developed a technique to monitor the decompositions of hydrogen peroxide at temperatures ranging from 25 to 60 C. Using isothermal microcalorimetry we have measured decomposition rates at the picomole/s/g level showing the catalytic effects of materials of construction. In this paper we will present the results of testing with Class 1 and 2 materials in 90 percent hydrogen peroxide.

  18. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rhodes, Christopher P. (Inventor); Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  19. EFFECTS OF AQUATIC HUMIC SUBSTANCES ON ANALYSIS FOR HYDROGEN PEROXIDE USING PEROXIDASE-CATALYZED OXIDATIONS OF TRIARYLMETHANES OR P-HYDROXYPENYLACETIC ACID (JOURNAL VERSION)

    EPA Science Inventory

    A sensitive procedure is described for trace analysis of hydrogen peroxide in water. The process involves the peroxide-catalyzed oxidation of the leuco forms of two dyes, crystal violet and malachite green. The sensitivity of this procedure, as well as of another procedure based ...

  20. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.356...

  1. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  2. Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide.

    PubMed

    Szymczycha-Madeja, Anna

    2011-02-28

    The kinetics of molybdenum, nickel, vanadium and aluminium leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide was investigated. The effects of temperature and particle size were examined. In addition, the reaction mechanism for the dissolution of the spent catalyst was discussed. The results of the kinetic analysis for various experimental conditions indicated that the reaction rate of leaching process is controlled by chemical reaction at the particle surface. The values of the activation energies of 31±2, 36±4, 30±4 and 57±3 kJ mol(-1) for Mo, Ni, V and Al, respectively, are characteristic for mechanism controlled by chemical reaction. PMID:21167639

  3. An upper limit for stratospheric hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Traub, W. A.

    1984-01-01

    It has been postulated that hydrogen peroxide is important in stratospheric chemistry as a reservoir and sink for odd hydrogen species, and for its ability to interconvert them. The present investigation is concerned with an altitude dependent upper limit curve for stratospheric hydrogen peroxide, taking into account an altitude range from 21.5 to 38.0 km for January 23, 1983. The data employed are from balloon flight No. 1316-P, launched from the National Scientific Balloon Facility (NSBF) in Palestine, Texas. The obtained upper limit curve lies substantially below the data reported by Waters et al. (1981), even though the results are from the same latitude and are both wintertime measurements.

  4. Impact of hydrogen peroxide as a soil amendment on nasturtiums

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen peroxide, H2O2, is a highly reactive oxidizing agent naturally occurring in plants and animals. Plants produce hydrogen peroxide to destroy either their infected plant cells or the pathogens within their cells. Hydrogen peroxide also acts as a stress signal to plants. It is approved for c...

  5. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric...

  6. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric...

  7. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric...

  8. An Experimental Investigation of Hypergolic Ignition Delay of Hydrogen Peroxide with Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Gostowski, Rudy; Chianese, Silvio

    2003-01-01

    An experimental evaluation of decomposition and ignition delay of hydrogen peroxide at concentrations of 80% to 98% with combinations of hydrocarbon fuels, tertiary amines and transition metal chelates will be presented in the proposed paper. The results will be compared to hydrazine ignition delays with hydrogen peroxide and nitric acid mixtures using the same test apparatus.

  9. Experimental investigation of hydrogen peroxide RF plasmas

    NASA Astrophysics Data System (ADS)

    Barni, R.; Decina, A.; Zanini, S.; D'Orazio, A.; Riccardi, C.

    2016-04-01

    This work reports a detailed experimental study of the plasma properties in low pressure RF discharges in hydrogen peroxide and a comparison with argon under the same operating conditions. H2O2 plasmas have been proposed for sterilization purposes. Electrical properties of the discharge were shown to be similar, as for the RF and DC voltages of the driving electrode. Bulk plasma volume remains stable, concentrated in an almost cylindrical region between the two facing electrodes. It was found that the electron temperature is almost uniform across the plasma and independent of the power level. This is higher than in argon discharges: T e  =  4.6  ±  0.9 eV versus T e  =  3.3  ±  1.1 eV. The plasma density increases almost linearly with the power level and a substantial negative ion component has been ruled out in hydrogen peroxide. Dissociation in the plasma gas phase was revealed by atomic hydrogen and hydroxyl radical emission in the discharge spectra. Emission from hydroxyl and atomic oxygen demonstrates that oxidizing radicals are produced by hydrogen peroxide discharges, revealing its usefulness for plasma processing other than sterilization, for instance to increase polymer film surface energy. On the other hand, argon could be considered as a candidate for the sterilization purposes due to the intense production of UV radiation.

  10. Materials Compatibility in High Test Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy

    1999-01-01

    Previous ratings of the compatibility of high test hydrogen peroxide (HTP) with materials are not adequate for current needs. The goal of this work was to develop a new scheme of evaluation of compatibility of HTP with various materials. Procedures were developed to enrich commercially available hydrogen peroxide to 90% concentration and to assay the product. Reactivity testing, accelerated aging of materials and calorimetry studies were done on HTP with representative metallic and non-metallic materials. It was found that accelerated aging followed by concentration determination using refractive index effectively discriminated between different Class 2 metallic materials. Preliminary experiments using Differential Scanning Calorimetry (DSC) suggest that a calorimetry experiment is the most sensitive means to assay the compatibility of HTP with materials.

  11. Vaporized hydrogen peroxide sterilization of freeze dryers.

    PubMed

    Johnson, J W; Arnold, J F; Nail, S L; Renzi, E

    1992-01-01

    The feasibility of using vapor hydrogen peroxide (VHP) as an alternative to steam sterilization has been examined using a pilot plant freeze dryer equipped with a prototype vapor generator. Specific objectives of the study discussed in this presentation were to: 1. Identify critical process variables affecting the lethality of VHP to Bacillus stearothermophilus spores, particularly within dead legs in the system. 2. Measure the efficacy of system degassing after sterilization. 3. Determine the effect of repeated sterilization cycles on the integrity of elastomeric components of the freeze dryer. Penetration of adequate concentrations of hydrogen peroxide vapor into small diameter piping, such as tubing connected to pressure gauges, is the most challenging aspect of VHP sterilization of freeze dryers. Prior to equipment modifications, spore strips placed within such dead legs remained positive irrespective of the number of gas/degas pulses and system pressure. Equipment modifications necessary to effect complete kill of biological indicators placed in system dead legs is discussed. Results of this study support the conclusion that vaporized hydrogen peroxide shows promise as an alternative sterilization method for freeze dryers. PMID:1474433

  12. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. The value of γPAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas γH2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  13. Cr(VI) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: Cooperative interaction with organic acids in the biotransformation of Cr(VI).

    PubMed

    Romo-Rodríguez, Pamela; Acevedo-Aguilar, Francisco Javier; Lopez-Torres, Adolfo; Wrobel, Kazimierz; Wrobel, Katarzyna; Gutiérrez-Corona, J Félix

    2015-09-01

    The Cr(VI) reducing capability of growing cells of the environmental A. tubingensis Ed8 strain is remarkably efficient compared to reference strains A. niger FGSC322 and A. tubingensis NRRL593. Extracellular glucose oxidase (GOX) activity levels were clearly higher in colonies developed in solid medium and in concentrated extracts of the spent medium of liquid cultures of the Ed8 strain in comparison with the reference strains. In addition, concentrated extracts of the spent medium of A. tubingensis Ed8, but not those of the reference strains, exhibited the ability to reduce Cr(VI). In line with this observation, it was found that A. niger purified GOX is capable of mediating the conversion of Cr(VI) to Cr(III) in a reaction dependent on the presence of glucose that is stimulated by organic acids. Furthermore, it was found that a decrease in Cr(VI) may occur in the absence of the GOX enzyme, as long as the reaction products gluconolactone and hydrogen peroxide are present; this conversion of Cr(VI) is stimulated by organic acids in a reaction that generates hydroxyl radicals, which may involve the formation of an intermediate peroxichromate(V) complex. These findings indicated that fungal glucose oxidase acts an indirect chromate reductase through the formation of Cr(VI) reducing molecules, which interact cooperatively with other fungal metabolites in the biotransformation of Cr(VI). PMID:25577697

  14. Hydrogen peroxide generation associated with the oxidations of the eumelanin precursors 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid.

    PubMed

    Nappi, A J; Vass, E

    1996-10-01

    The ability of iron chelates to promote hydroxyl radical (.OH) formation from hydrogen peroxide (H2O2) via Fenton chemistry was exploited to detect H2O2 produced during the oxidations of the eumelanin precursors 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA). H2O2 generation during the autooxidations of DHI and DHICA was confirmed on the basis of the electrochemical detection of three hydroxylation products of salicylate [2,3 and 2,5-dihydroxybenzoic acid (DHBA) and catechol], which was used as an .OH indicator. The oxidations of both 5,6-dihydroxyindoles were augmented by tyrosinase and peroxidase without the addition of H2O2. The partial inhibitions by catalase of the auto-oxidations and tyrosinase- and peroxidase-mediated oxidations of DHI and DHICA provide additional evidence of an endogenous origin of H2O2 during the final stages of eumelanogenesis. The mechanism proposed for the formation of H2O2 involves the semiquinones of DHI and DHICA in the univalent transfer of electrons to molecular oxygen. The observations described in this study support previous reports suggesting that factors modulating the levels of H2O2 in melanocytes and melanoma cells play critical roles in directing the course of melanogenesis and influencing the potential cytotoxicity of the biosynthetic pathways. PMID:8908594

  15. Comparison of UV/hydrogen peroxide and UV/peroxydisulfate processes for the degradation of humic acid in the presence of halide ions.

    PubMed

    Lou, Xiaoyi; Xiao, Dongxue; Fang, Changling; Wang, Zhaohui; Liu, Jianshe; Guo, Yaoguang; Lu, Shuyu

    2016-03-01

    This study compared the behaviors of two classic advanced oxidation processes (AOPs), hydroxyl radical-based AOPs ((•)OH-based AOPs) and sulfate radical-based AOPs (SO4 (•-)-based AOPs), represented by UV/ hydrogen peroxide (H2O2) and UV/peroxydisulfate (PDS) systems, respectively, to degrade humic acid (HA) in the presence of halide ions (Cl(-) and Br(-)). The effects of different operational parameters, such as oxidant dosages, halide ions concentration, and pH on HA degradation were investigated in UV/H2O2/Cl(-), UV/PDS/Cl(-), UV/H2O2/Br(-), and UV/PDS/Br(-) processes. It was found that the oxidation capacity of H2O2 and PDS to HA degradation in the presence of halides was nearly in the same order. High dosage of peroxides would lead to an increase in HA removal while excess dosage would slightly inhibit the efficiency. Both Cl(-) and Br(-) would have depressing impact on the two AOPs, but the inhibiting effect of Br(-) was more obvious than that of Cl(-), even the concentration of Cl(-) was far above that of Br(-). The increasing pH would have an adverse effect on HA decomposition in UV/H2O2 system, whereas there was no significant impact of pH in UV/PDS process. Furthermore, infrared spectrometer was used to provide the information of degraded HA in UV/H2O2/Cl(-), UV/PDS/Cl(-), UV/H2O2/Br(-), and UV/PDS/Br(-) processes, and halogenated byproducts were identified in using GC-MS analysis in the four processes. The present research might have significant technical implications on water treatment using advanced oxidation technologies. PMID:26538259

  16. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  17. Hazard Assessment of Personal Protective Clothing for Hydrogen Peroxide Service

    NASA Technical Reports Server (NTRS)

    Greene, Ben; McClure, Mark B.; Johnson, Harry T.

    2004-01-01

    Selection of personal protective equipment (PPE) for hydrogen peroxide service is an important part of the hazard assessment process. But because drip testing of chemical protective clothing for hydrogen peroxide service has not been reported for about 40 years, it is of great interest to test new protective clothing materials with new, high-concentration hydrogen peroxide following similar procedures. The suitability of PPE for hydrogen peroxide service is in part determined by observations made when hydrogen peroxide is dripped onto swatches of protective clothing material. Protective clothing material was tested as received, in soiled condition, and in grossly soiled condition. Materials were soiled by pretreating the material with potassium permanganate (KMnO4) solution then drying to promote a reaction. Materials were grossly soiled with solid KMnO4 to greatly promote reaction. Observations of results including visual changes to the hydrogen peroxide and materials, times to ignition, and self-extinguishing characteristics of the materials are reported.

  18. Optimization of strawberry disinfection by fogging of a mixture of peracetic acid and hydrogen peroxide based on microbial reduction, color and phytochemicals retention.

    PubMed

    Van de Velde, Franco; Vaccari, María Celia; Piagentini, Andrea Marcela; Pirovani, María Élida

    2016-09-01

    The fogging of strawberries using a environmentally friendly sanitizer mixture of peracetic acid (5%) and hydrogen peroxide (20%) was performed in a model chamber and modeled as a function of the concentration (3.4, 20.0, 60.0, 100.0 and 116.6 µL sanitizer L(-) (1) air chamber) and the treatment time (5.7, 15.0, 37.5, 60.0 and 69.3 min). The sanitizer fogging was adequate for reducing total mesophilic microbial and yeasts and moulds counts of fruits until seven days of storage at 2℃. However, sanitizer oxidant properties adversely affected the content of total anthocyanins, total phenolics, vitamin C, and antioxidant capacity to various degrees, with some deleterious changes in the fruits color, depending on the fogging conditions. A multiple numeric response optimization was developed based on 2.0 log microbiological reduction, maximum phytochemicals and antioxidant capacity retentions, with no changes in the fruits color, being the optimal fogging conditions achieved: 10.1 µL sanitizer L(-1) air chamber and 29.6 min. The fogging of strawberries at these conditions may represent a promising postharvest treatment option for extending their shelf-life without affecting their sensory quality and bioactive properties. PMID:26769132

  19. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown

    PubMed Central

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-01-01

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10–80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59–83%, compared to 13–23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS. PMID:26565653

  20. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-11-01

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10-80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59-83%, compared to 13-23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS.

  1. Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2014-05-01

    Free radical reactions are an important degradation process for organic compounds within the aqueous atmospheric environment. Nevertheless, non-radical oxidants such as hydrogen peroxide and ozone also contribute to the degradation and conversion of these substances (Tilgner and Herrmann, 2010). In this work, kinetic investigations of non-radical reactions were conducted using UV / Vis spectroscopy (dual-beam spectrophotometer and stopped flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics to reactions of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acid as well as methacrolein (MACR) and methyl vinyl ketone (MVK) with H2O2 and ozone at 298 K. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH • ~109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated first-order conversion rate constants change the picture towards H2O2 reactions becoming more important, especially when compared to the nitrate radical. For some reactions mechanistic suggestions are also given.

  2. Kinetic measurements on the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2013-10-01

    Within the aqueous atmospheric environment free radical reactions are an important degradation process for organic compounds. Nevertheless, non-radical oxidants like hydrogen peroxide and ozone also contribute to the degradation and conversion of this substance group (Tilgner und Herrmann, 2010). In this work kinetic investigations of non-radical reactions were conducted using UV/Vis spectroscopy (dual-beam spectrophotometer and Stopped Flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acids as well as methacrolein (MACR) and methyl vinyl ketone (MVK) towards H2O2 and ozone. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH· ~ 109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated turnovers change the picture to more important H2O2 reactions especially when compared to the nitrate radical. For some reactions also mechanistic suggestions are given.

  3. Hydrogen peroxide and hypochlorous acid influx through the major S. Typhimurium porin OmpD is affected by substitution of key residues of the channel.

    PubMed

    Aguayo, Daniel; Pacheco, Nicolás; Morales, Eduardo H; Collao, Bernardo; Luraschi, Roberto; Cabezas, Carolina; Calderón, Paulina; González-Nilo, Fernando; Gil, Fernando; Calderón, Iván L; Saavedra, Claudia P

    2015-02-15

    OmpD is the major Salmonella enterica serovar Typhimurium (S. Typhimurium) porin and mediates hydrogen peroxide (H2O2) influx. The results described herein extend this finding to hypochlorous acid (HOCl), another reactive oxygen species that is also part of the oxidative burst generated by the phagosome. S. Typhimurium cells lacking OmpD show decreased HOCl influx, and OmpD-reconstituted proteoliposomes show an increase in the uptake of the toxic compound. To understand this physiologically relevant process, we investigated the role of key OmpD residues in H2O2 and NaOCl transport. Using a theoretical approach, residue K16 was defined as a major contributor to the channel electrostatic properties, and E111 was shown to directly participate in the size-exclusion limit of the channel. Together, we provide theoretical, genetic, and biochemical evidence that OmpD mediates H2O2 and NaOCl uptake, and that key residues of the channel are implicated in this process. PMID:25600570

  4. Photooxidative removal of the herbicide Acid Blue 9 in the presence of hydrogen peroxide: modeling of the reaction for evaluation of electrical energy per order (E EO).

    PubMed

    Khataee, Ali R; Khataee, Hamid R

    2008-09-01

    The present work deals with photooxidative removal of the herbicide, Acid Blue 9 (AB9), in water in the presence of hydrogen peroxide (H2O2) under UV light illumination (30 W). The influence of the basic operational parameters such as amount of H2O2, irradiation time and initial concentration of AB9 on the photodegradation efficiency of the herbicide was investigated. The degradation rate of AB9 was not appreciably high when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of UV light. The photooxidative removal of the herbicide was found to follow pseudo-first-order kinetic, and hence the figure-of-merit electrical energy per order (E Eo) was considered appropriate for estimating the electrical energy efficiency. A mathematical relation between the apparent reaction rate constant and H2O2 used was applied for prediction of the electricity consumption in the photooxidative removal of AB9. The results indicated that this kinetic model, based on the initial rates of degradation, provided good prediction of the E Eo values for a variety of conditions. The results also indicated that the UV/H2O2 process was appropriate as the effective treatment method for removal of AB9 from the contaminated wastewater. PMID:18803110

  5. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin-Mediated Immunoassay with Naked-Eye Detection.

    PubMed

    Yang, Ya-Chun; Tseng, Wei-Lung

    2016-05-17

    Hydrogen-peroxide (H2O2)-induced growth of small-sized gold nanoparticles (AuNPs) is often implemented for H2O2 sensing and plasmonic immunoassay. In contrast, there is little-to-no information in the literature regarding the application of H2O2-inhibited aggregation of citrate-capped AuNPs. This study discloses that benzene-1,4-diboronic acid (BDBA) was effective in driving the aggregation of citrate-capped AuNPs through an interaction between α-hydroxycarboxylate of citrate and boronic acids of BDBA. The H2O2-mediated oxidation of BDBA resulted in the conversion of boronic acid groups to phenol groups. The oxidized BDBA was incapable of triggering the aggregation of citrate-capped AuNPs. Thus, the presence of H2O2 prohibited BDBA-induced aggregation of citrate-capped AuNPs. The BDBA-induced aggregation of citrate-capped AuNPs can be paired with the glucose oxidase (GOx)-glucose system to design a colorimetric probe for glucose. Moreover, a H2O2·BDBA·AuNP probe was integrated with sandwich immunoassay, biotinylated antibody, and avidin-conjugated GOx for the selective naked-eye detection of rabbit immunoglobulin G (IgG) and human-prostate-specific antigen (PSA). The lowest detectable concentrations of rabbit IgG and human PSA by the naked eye were down to 0.1 and 4 ng/mL, respectively. More importantly, the proposed plasmonic immunoassay allowed the naked-eye quantification of 0-10 ng/mL PSA at an interval of 2 ng/mL in plasma samples. PMID:27091002

  6. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  7. Detection of Hydrogen Peroxide by DAB Staining in Arabidopsis Leaves

    PubMed Central

    Daudi, Arsalan; O’Brien, Jose A.

    2016-01-01

    In this protocol, the in situ detection of hydrogen peroxide (one of several reactive oxygen species) is described in mature Arabidopsis rosette leaves by staining with 3,3′-diaminobenzidine (DAB) using an adaptation of previous methods (Thordal-Christensen et al., 1997; Bindschedler et al., 2006; Daudi et al., 2012). DAB is oxidized by hydrogen peroxide in the presence of some haem-containing proteins, such as peroxidases, to generate a dark brown precipitate. This precipitate is exploited as a stain to detect the presence and distribution of hydrogen peroxide in plant cells. The protocol can be modified slightly to detect hydrogen peroxide in different types of plant tissue.

  8. Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways.

    PubMed

    Alvarez-Vasco, Carlos; Zhang, Xiao

    2013-12-01

    This study investigated softwood hemicelluloses degradation pathways during alkaline hydrogen peroxide (AHP) pretreatment of Douglas fir. It was found that glucomannan is much more susceptible to alkaline pretreatment than xylan. Organic acids, including lactic, succinic, glycolic and formic acid are the predominant products from glucomannan degradation. At low treatment temperature (90°C), a small amount of formic acid is produced from glucomannan, whereas glucomannan degradation to lactic acid and succinic acid becomes the main reactions at 140°C and 180°C. The addition of H2O2 during alkaline pretreatment of D. fir led to a significant removal of lignin, which subsequently facilitated glucomannan solubilization. However, H2O2 has little direct effect on the glucomannan degradation reaction. The main degradation pathways involved in glucomannan conversion to organics acids are elucidated. The results from this study demonstrate the potential to optimize pretreatment conditions to maximize the value of biomass hemicellulose. PMID:24185034

  9. Simple, field portable colorimetric detection device for organic peroxides and hydrogen peroxide

    DOEpatents

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie; Reynolds, John G.; Nunes, Peter; Shields, Sharon J.

    2010-11-09

    A simple and effective system for the colorimetric determination of organic peroxides and hydrogen peroxide. A peroxide pen utilizing a swipe material attached to a polyethylene tube contains two crushable vials. The two crushable vials contain a colorimetric reagent separated into dry ingredients and liquid ingredients. After swiping a suspected substance or surface the vials are broken, the reagent is mixed thoroughly and the reagent is allowed to wick into the swipe material. The presence of organic peroxides or hydrogen peroxide is confirmed by a deep blue color.

  10. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  11. PROPULSE 980: A Hydrogen Peroxide Enrichment System

    NASA Technical Reports Server (NTRS)

    Boxwell, Robert; Bromley, G.; Wanger, Robert; Pauls, Dan; Maynard, Bryon; McNeal, Curtis; Dumbacher, D. L. (Technical Monitor)

    2000-01-01

    The PROPULSE 980 unit is a transportable processing plant that enriches aerospace grade hydrogen peroxide from 90% to 98% final concentration. The unit was developed by Degussa-H Is, in cooperation with Orbital, NASA Marshall Space Center, and NASA Stennis Space Center. The system is a self-contained unit that houses all of the process equipment, instrumentation and controls to perform the concentration operation nearly autonomously. It is designed to produce non-bulk quantities of 98% hydrogen peroxide. The enrichment unit design also maintains system, personnel and environmental safety during all aspects of the enrichment process and final product storage. As part of the Propulse 980 checkout and final buyoff, it will be disassembled at the Degussa-H Is Corporation plant in Theodore, AL, transported to the Stennis Space Center, reassembled and subjected to a series of checkout tests to verify design objectives have been met. This paper will summarize the basic project elements and provide an update on the present status of the project.

  12. Novel aqueous dual-channel aluminum-hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarization losses of 0.9 mV cm(exp 2) mA(exp -1), and power densities of 1 W/cm(exp 2). Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H2O2 + 2OH(-) yields 2AlO2(-) + 4H2O E = 2.3 V. The search for electrical propulsion sources which fit the requirements for electrically powered vehicles has blurred the standard characteristics associated with electrochemical storage systems. Presently, electrochemical systems comprised of mechanically rechargeable primary batteries, secondary batteries, and fuel cells are candidates for electrochemical propulsion sources. While important advances in energy and power density continue for nonaqueous and molten electrolytes, aqueous electrolyte batteries often have an advantage in simplicity, conductivity, cost effectiveness, and environmental impact. Systems coupling aluminum anodes and aqueous electrolytes have been investigated. These systems include: aluminum/silver oxide, aluminum/manganese dioxide, aluminum air, aluminum/hydrogen peroxide aqueous batteries, and the recently introduced aluminum/ferricyanide and aluminum sulfur aqueous batteries. Conventional aqueous systems such as the nickel cadmium and lead-acid batteries are characterized by their relatively low energy densities and adverse environmental impact. Other systems have substantially higher theoretical energy capacities. While aluminum-silver oxide has demonstrated the highest steady-state power density, its high cost is an impediment for widespread utilization for electric propulsion.

  13. Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    PubMed Central

    Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738

  14. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase

    PubMed Central

    2014-01-01

    Background Cytochrome P450 OleTJE from Jeotgalicoccus sp. ATCC 8456, a new member of the CYP152 peroxygenase family, was recently found to catalyze the unusual decarboxylation of long-chain fatty acids to form α-alkenes using H2O2 as the sole electron and oxygen donor. Because aliphatic α-alkenes are important chemicals that can be used as biofuels to replace fossil fuels, or for making lubricants, polymers and detergents, studies on OleTJE fatty acid decarboxylase are significant and may lead to commercial production of biogenic α-alkenes in the future, which are renewable and more environmentally friendly than petroleum-derived equivalents. Results We report the H2O2-independent activity of OleTJE for the first time. In the presence of NADPH and O2, this P450 enzyme efficiently decarboxylates long-chain fatty acids (C12 to C20) in vitro when partnering with either the fused P450 reductase domain RhFRED from Rhodococcus sp. or the separate flavodoxin/flavodoxin reductase from Escherichia coli. In vivo, expression of OleTJE or OleTJE-RhFRED in different E. coli strains overproducing free fatty acids resulted in production of variant levels of multiple α-alkenes, with a highest total hydrocarbon titer of 97.6 mg·l-1. Conclusions The discovery of the H2O2-independent activity of OleTJE not only raises a number of fundamental questions on the monooxygenase-like mechanism of this peroxygenase, but also will direct the future metabolic engineering work toward improvement of O2/redox partner(s)/NADPH for overproduction of α-alkenes by OleTJE. PMID:24565055

  15. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Conklin, Alfred R. Jr.; Kessinger, Angela

    1996-01-01

    Describes a demonstration known as Elephant's Toothpaste in which the decomposition of hydrogen peroxide is catalyzed by iodide. Oxygen is released and soap bubbles are produced. The foam produced is measured, and results show a good relationship between the amount of foam and the concentration of the hydrogen peroxide. (DDR)

  16. Carbon fiber cloth supported Au nano-textile fabrics as an efficient catalyst for hydrogen peroxide electroreduction in acid medium

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-09-01

    The size-controlled hierarchical textile-like Au nanostructures supported carbon fiber cloth (Au NTs/CFC) is successfully fabricated through a simple low-cost electrochemical route. The electrodes are characterised by scanning electron microscopy equipped with an energy dispersive X-ray spectrometer, transmission electron microscopy and X-ray diffractometer. Without any conducting carbons and polymer binders, the 3D electrode with unique structure is directly used as the electrocatalyst for H2O2 reduction in acid solution and the catalytic performance is evaluated by voltammetry and chronoamperometry. The Au NTs/CFC electrode exhibits much higher catalytic activity and remarkably improved utilization of Au than Au nanoparticles (Au NPs/CFC) prepared by the same method owing to its unique structure. In the solution of 3.0 mol L-1 H2SO4 + 0.1 mol L-1 H2O2, with the reduction potential of 0 V, the current of -0.72 A cm-2 mg-1 can be obtained on Au NTs/CFC electrode and only a current of -0.09 A cm-2 mg-1 can be achieved on Au NPs/CFC electrode. All these results reveal that the novel Au NTs/CFC electrode exhibits excellent catalytic performance and superior stability for H2O2 electroreduction in acid medium, benefitting from the unique 3D structure which can ensure high utilization of catalyst.

  17. Hydrogen Peroxide Storage in Small Sealed Tanks

    SciTech Connect

    Whitehead, J.

    1999-10-20

    Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results.

  18. Hydrogen peroxide biosensor based on titanium oxide

    NASA Astrophysics Data System (ADS)

    Halim, Nur Hamidah Abdul; Heng, Lee Yook; Hashim, Uda

    2015-09-01

    In this work, a biosensor utilizing modified titania, TiO2 particles using aminopropyl-triethoxy-silane, (APTS) for developing hydrogen peroxide biosensor is presented. The surface of Ti-APTS particles is used as a support for hemoglobin immobilization via covalent bonding. The performance of the biosensor is determined by differential pulse voltammetry. The linear response was observed at the reduction current of redox mediator probe [FeCN6]3-/4- at potential between 0.22 V to 0.24 V. The preliminary result for electrochemistry study on this modified electrode is reported. The preliminary linear range is obtained from 1×10-2 M to 1×10-8 M.

  19. Hydrogen Peroxide (HP) Potential for Space Applications

    NASA Astrophysics Data System (ADS)

    Grafwallner, F.

    2004-10-01

    Low toxicity or "green" propellants are now under study by organizations around the world. Especially ultra high concentrated hydrogen peroxide (HP) may be a significant step toward less toxic, storable und safer operation of upper stages and spacecrafts. HP can be used as a monopropellant, when catalytically decomposed or as a bipropellant constituting the propellant combination`s oxidizer. Serving as a monopropellant, catalytic decomposition will result in exhaust of superheated steam and oxygen which can be used to drive gas turbines and feed life support systems or provide thrust as a monopropellant, provide the oxidizer, or function as an igniter for bipropellant engines. HP can be used in fuel cells to produce electrical power, heat and water.

  20. Bactericidal effect of hydrogen peroxide on spacecraft isolates

    NASA Technical Reports Server (NTRS)

    Wardle, M. D.; Renninger, G. M.

    1975-01-01

    Results are presented for an experimental study designed to assess the effect of hydrogen peroxide on both sporeforming and nonsporeforming spacecraft isolates as an initial step in determining its suitability for microbiological decontamination of certain United States spacecraft. Survivor data were obtained for eight bacterial isolates (six sporeformers and two nonsporeformers) recovered before launch Mariner 9 and exposed to concentrations of 3, 10, and 15% hydrogen peroxide. The effects of various concentrations of hydrogen peroxide on the spores are presented in tabular form, along with the percentage of survival of nonsporeformers exposed to hydrogen peroxide. No viable vegetative cells were recovered after a 10-min exposure time to any of the three concentration of hydrogen peroxide.

  1. Neuroprotection of (+)-2-(1-Hydroxyl-4-Oxocyclohexyl) Ethyl Caffeate Against Hydrogen Peroxide and Lipopolysaccharide Induced Injury via Modulating Arachidonic Acid Network and p38-MAPK Signaling.

    PubMed

    Shen, Jiao-Ning; Xu, Liu-Xin; Shan, Lei; Zhang, Wei-Dong; Li, Hong-Lin; Wang, Rui

    2015-01-01

    Oxidative stress and neuroinflammation are highly relevant to the pathological processes of various neurodegenerative diseases including Alzheimer's disease (AD). (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a novel 5-lipoxygenase inhibitor, was isolated from the whole plant of Incarvillea mairei var granditlora (Wehrhahn) Grierson. In this study, we investigated the protective effect of HOEC on hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) -induced cytotoxicity and neuroinflammation in vitro and in vivo. MTT assay, LDH release assay, morphological observation and Hoechst 33342/PI dual staining followed by EIA, immunofluorescence staining and Western Blotting analysis were performed to elucidate the neuroprotective effect of HOEC. Treatment with HOEC at various concentrations prior to H2O2 exposure significantly enhanced cell viability, decreased LDH release, prevented cell morphologic changes and apoptosis. Instead of PGE2 reduction, HOEC markedly inhibited the production of LTB4 and suppressed the macrophage-mediated neurotoxicity. Western blotting and immunofluorescence staining showed that HOEC inhibited H2O2-induced p38 phosphorylation and NF-κB activation. Neuroprotective effect of HOEC was abolished by a p38 inhibitor. Further in vivo studies of LPS-induced neuroinflammation confirmed the anti-inflammatory effects of HOEC. These findings that HOEC protects SH-SY5Y cells from H2O2 and LPS-induced injury via arachidonic acid network modulation followed by p38 MAPK and NF-κB signaling, might make HOEC be considered as a therapeutic candidate for prevention and treatment of neurodegenerative diseases involving oxidative stress or/and inflammation. PMID:26510982

  2. Heterogeneous reactions of gaseous hydrogen peroxide on pristine and acidic gas-processed calcium carbonate particles: Effects of relative humidity and surface coverage of coating

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Chen, Zhongming; Shen, Xiaoli; Huang, Dao

    2013-03-01

    Atmospheric aging appears to alter physical and chemical properties of mineral dust aerosol and thus its role as reactive surface in the troposphere. Yet, previous studies in the atmosphere have mainly focused on the pristine surfaces of mineral dust aerosol, and the reactivity of aged mineral dust toward atmospheric trace gases is poorly recognized. This work presents the first laboratory investigation of heterogeneous reactions of gaseous hydrogen peroxide (H2O2), an important atmospheric oxidant, on the surfaces of HNO3 and SO2-processed calcium carbonate particles as surrogates of atmospheric mineral dust aged by acidic trace gases. It is found that the processing of the calcium carbonate particles with HNO3 and SO2 has a strong impact on their reactivity toward H2O2. On HNO3-processed particles, the presence of nitrate acts to either decrease or increase H2O2 uptake, greatly depending on RH and surface coverage of nitrate. On SO2-processed particles, the presence of surface sulfite appears to enhance the intrinsic reactivity of the mineral particles due to its affinity for H2O2, and the uptake of H2O2 increases significantly relative to the pristine particles, in particular at high RH. The mechanisms for heterogeneous reactions of H2O2 with these processed particles are discussed, as well as their potential implications on tropospheric chemistry. The results of our study suggest that the reactivity of mineral dust aerosol toward H2O2 and maybe other trace gases is markedly dependent on the chemical composition and coverage of the coatings as well as ambient RH, and thus will vary considerably in different polluted air masses.

  3. Protective efficacy of carnosic acid against hydrogen peroxide induced oxidative injury in HepG2 cells through the SIRT1 pathway.

    PubMed

    Hu, Yan; Zhang, Ning; Fan, Qing; Lin, Musen; Zhang, Ce; Fan, Guangjun; Zhai, Xiaohan; Zhang, Feng; Chen, Zhao; Yao, Jihong

    2015-08-01

    Carnosic acid (CA), found in rosemary, has been reported to have antioxidant and antiadipogenic properties. Here, we investigate the molecular mechanism by which CA inhibits hydrogen peroxide (H2O2)-induced injury in HepG2 cells. Cells were pretreated with 2.5-10 μmol/L CA for 2 h and then exposed to 3 mmol/L H2O2 for an additional 4 h. CA dose-dependently increased cell viability and decreased lactate dehydrogenase activities. Pretreatment with CA completely attenuated the inhibited expression of manganese superoxide dismutase (MnSOD) and the B-cell lymphoma-extra large (Bcl-xL), and reduced glutathione activity caused by H2O2, whereas it reversed reactive oxygen species accumulation and the increase in cleaved caspase-3. Importantly, sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, was significantly increased by CA. Considering the above results, we hypothesized that SIRT1 may play important roles in the protective effects of CA in injury induced by H2O2. As expected, SIRT1 suppression by Ex527 (6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) and siRNA-mediated SIRT1 silencing (si-SIRT1) significantly aggravated the H2O2-induced increased level of cleaved caspase-3 but greatly reduced the decreased expression of MnSOD and Bcl-xL. Furthermore, the positive regulatory effect of CA was inhibited by si-SIRT1. Collectively, the present study indicated that CA can alleviate H2O2-induced hepatocyte damage through the SIRT1 pathway. PMID:26059423

  4. Development of a multichannel Fourier-transform spectrometer to measure weak chemiluminescence: Application to the emission of singlet-oxygen dimol in the decomposition of hydrogen peroxide with gallic acid and K 3[Fe(CN) 6

    NASA Astrophysics Data System (ADS)

    Tsukino, Kazuo; Satoh, Toshihiro; Ishii, Hiroshi; Nakata, Munetaka

    2008-05-01

    A Fourier-transform spectrometer equipped with a Savart-plate polarization interferometer was developed for observation of weak chemiluminescence and applied to a measurement of emission spectra in the decomposition of hydrogen peroxide with gallic acid and K 3[Fe(CN) 6]. The band appearing at ˜580 nm in the chemiluminescence spectrum was assigned to the emission of singlet-oxygen dimol, the peak wavelength being shifted from that observed in the reaction of hydrogen peroxide with sodium hypochlorite, ˜633 nm. The band intensity was increased with the increasing concentration of K 3[Fe(CN) 6] up to ˜100 mM, and thereafter the peak wavelength was shifted from 580 to 700 nm with a decrease in the intensity.

  5. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  6. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    PubMed Central

    Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10–20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products. PMID:24260736

  7. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation

    PubMed Central

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A.; Jayaram, Hiremagalur N.; Crabb, David W.

    2008-01-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H2O2, 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H2O2 markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-ζ, LKB1, and AMPK caused by exposure to H2O2. This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H2O2-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-ζ and LKB1 phosphorylation and the activation of PP2A. PMID:18832448

  8. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    SciTech Connect

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  9. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide.

    PubMed

    Edwards, Jennifer K; Freakley, Simon J; Carley, Albert F; Kiely, Christopher J; Hutchings, Graham J

    2014-03-18

    Hydrogen peroxide is a widely used chemical but is not very efficient to make in smaller than industrial scale. It is an important commodity chemical used for bleaching, disinfection, and chemical manufacture. At present, manufacturers use an indirect process in which anthraquinones are sequentially hydrogenated and oxidized in a manner that hydrogen and oxygen are never mixed. However, this process is only economic at a very large scale producing a concentrated product. For many years, the identification of a direct process has been a research goal because it could operate at the point of need, producing hydrogen peroxide at the required concentration for its applications. Research on this topic has been ongoing for about 100 years. Until the last 10 years, catalyst design was solely directed at using supported palladium nanoparticles. These catalysts require the use of bromide and acid to arrest peroxide decomposition, since palladium is a very active catalyst for hydrogen peroxide hydrogenation. Recently, chemists have shown that supported gold nanoparticles are active when gold is alloyed with palladium because this leads to a significant synergistic enhancement in activity and importantly selectivity. Crucially, bimetallic gold-based catalysts do not require the addition of bromide and acids, but with carbon dioxide as a diluent its solubility in the reaction media acts as an in situ acid promoter, which represents a greener approach for peroxide synthesis. The gold catalysts can operate under intrinsically safe conditions using dilute hydrogen and oxygen, yet these catalysts are so active that they can generate peroxide at commercially significant rates. The major problem associated with the direct synthesis of hydrogen peroxide concerns the selectivity of hydrogen usage, since in the indirect process this factor has been finely tuned over decades of operation. In this Account, we discuss how the gold-palladium bimetallic catalysts have active sites for the

  10. Hydrogen peroxide mediates higher order chromatin degradation.

    PubMed

    Bai, H; Konat, G W

    2003-01-01

    Although a large body of evidence supports a causative link between oxidative stress and neurodegeneration, the mechanisms are still elusive. We have recently demonstrated that hydrogen peroxide (H(2)O(2)), the major mediator of oxidative stress triggers higher order chromatin degradation (HOCD), i.e. excision of chromatin loops at the matrix attachment regions (MARs). The present study was designed to determine the specificity of H(2)O(2) in respect to HOCD induction. Rat glioma C6 cells were exposed to H(2)O(2) and other oxidants, and the fragmentation of genomic DNA was assessed by field inversion gel electrophoresis (FIGE). S1 digestion before FIGE was used to detect single strand fragmentation. The exposure of C6 cells to H(2)O(2) induced a rapid and extensive HOCD. Thus, within 30 min, total chromatin was single strandedly digested into 50 kb fragments. Evident HOCD was elicited by H(2)O(2) at concentrations as low as 5 micro M. HOCD was mostly reversible during 4-8h following the removal of H(2)O(2) from the medium indicating an efficient relegation of the chromatin fragments. No HOCD was induced by H(2)O(2) in isolated nuclei indicating that HOCD-endonuclease is activated indirectly by cytoplasmic signal pathways triggered by H(2)O(2). The exposure of cells to a synthetic peroxide, i.e. tert-butyrylhydroperoxide (tBH) also induced HOCD, but to a lesser extent than H(2)O(2). Contrary to the peroxides, the exposure of cells to equitoxic concentration of hypochlorite and spermine NONOate, a nitric oxide generator, failed to induce rapid HOCD. These results indicate that rapid HOCD is not a result of oxidative stress per se, but is rather triggered by signaling cascades initiated specifically by H(2)O(2). Furthermore, the rapid and extensive HOCD was observed in several rat and human cell lines challenged with H(2)O(2), indicating that the process is not restricted to glial cells, but rather represents a general response of cells to H(2)O(2). PMID:12421592

  11. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  12. Intraoral chemical burn from use of 3% hydrogen peroxide.

    PubMed

    Rostami, Arash M; Brooks, John K

    2011-01-01

    Injudicious use of over-the-counter 3% hydrogen peroxide, a relatively potent oxidative agent, can result in a chemical burn to the oral mucosa. This article describes a patient who rinsed with 3% hydrogen peroxide for periods of more than two minutes as a self-prescribed remedy for oral discomfort following seafood ingestion. Subsequently, the patient experienced pain and extensive chemical burns of the sublingual and buccal mucosa and gingiva. In addition, the buccal mucosa underwent necrosis. Prolonged oral mucosal contact with 3% hydrogen peroxide is ill-advised. PMID:22313923

  13. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  14. Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide.

    PubMed

    Abdel-Monaim, Montaser Fawzy

    2013-03-01

    Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the

  15. Inactivation of rabies virus by hydrogen peroxide.

    PubMed

    Abd-Elghaffar, Asmaa A; Ali, Amal E; Boseila, Abeer A; Amin, Magdy A

    2016-02-01

    Development of safe and protective vaccines against infectious pathogens remains a challenge. Inactivation of rabies virus is a critical step in the production of vaccines and other research reagents. Beta-propiolactone (βPL); the currently used inactivating agent for rabies virus is expensive and proved to be carcinogenic in animals. This study aimed to investigate the ability of hydrogen peroxide (H2O2) to irreversibly inactivate rabies virus without affecting its antigenicity and immunogenicity in pursuit of finding safe, effective and inexpensive alternative inactivating agents. H2O2 3% rapidly inactivated a Vero cell adapted fixed rabies virus strain designated as FRV/K within 2h of exposure without affecting its antigenicity or immunogenicity. No residual infectious virus was detected and the H2O2-inactivated vaccine proved to be safe and effective when compared with the same virus harvest inactivated with the classical inactivating agent βPL. Mice immunized with H2O2-inactivated rabies virus produced sufficient level of antibodies and were protected when challenged with lethal CVS virus. These findings reinforce the idea that H2O2 can replace βPL as inactivating agent for rabies virus to reduce time and cost of inactivation process. PMID:26731189

  16. Materials Compatibility Testing in Concentrated Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Boxwell, R.; Bromley, G.; Mason, D.; Crockett, D.; Martinez, L.; McNeal, C.; Lyles, G. (Technical Monitor)

    2000-01-01

    Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.

  17. Locating bomb factories by detecting hydrogen peroxide.

    PubMed

    Romolo, Francesco Saverio; Connell, Samantha; Ferrari, Carlotta; Suarez, Guillaume; Sauvain, Jean-Jacques; Hopf, Nancy B

    2016-11-01

    The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices. The authors have developed the first analytical method based on a portable luminometer, specifically designed and validated to locate IE manufacturing sites using quantitative on-site vapour analysis for H2O2. The method was tested both indoor and outdoor. The results demonstrate that the detection of H2O2 vapours could allow police forces to locate the site, while terrorists are preparing an attack. The collected data are also very important in developing new sensors, able to give an early alarm if located at a proper distance from a site where an H2O2 based IE is prepared. PMID:27591582

  18. Vibrationally mediated photodissociation of hydrogen peroxide

    SciTech Connect

    Ticich, T.M.; Likar, M.D.; Duebal, H.; Butler, L.J.; Crim, F.F.

    1987-11-15

    Vibrationally mediated photodissociation is a means of studying the spectroscopy of bound vibrational overtone states and of probing the electronic photodissociation dynamics of highly vibrationally excited molecules. In these experiments, a highly vibrationally excited hydrogen peroxide molecule prepared by initial excitation in the region of the third (4..nu../sub OH/) or fourth (5..nu../sub OH/) overtone of the OH stretching vibration absorbs an additional photon to dissociate to OH fragments whose individual quantum state populations are measured by laser induced fluorescence. This technique is a means of obtaining excitation spectra for bound highly vibrationally excited states and confirms the accuracy of a model that incorporates the role of the torsional vibration in the vibrational overtone spectroscopy. The photodissociation dynamics of highly vibrationally excited molecules are substantially different from those observed for dissociation by single photons of comparable or greater energy. Approximately 11% of the OH fragments formed in the vibrationally mediated photodissociation through 4..nu../sub OH/ are vibrationally excited as compared to an unobservable amount (less than or equal to2%) in the single photon ultraviolet dissociation.

  19. Molecular evolution of hydrogen peroxide degrading enzymes.

    PubMed

    Zámocký, Marcel; Gasselhuber, Bernhard; Furtmüller, Paul G; Obinger, Christian

    2012-09-15

    For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three gene families. Ubiquitous typical (monofunctional) heme catalases are found in all domains of life showing a high structural conservation. Their evolution was directed from large subunit towards small subunit proteins and further to fused proteins where the catalase fold was retained but lost its original functionality. Bifunctional catalase-peroxidases were at the origin of one of the two main heme peroxidase superfamilies (i.e. peroxidase-catalase superfamily) and constitute a protein family predominantly present among eubacteria and archaea, but two evolutionary branches are also found in the eukaryotic world. Non-heme manganese catalases are a relatively small protein family with very old roots only present among bacteria and archaea. Phylogenetic analyses of the three protein families reveal features typical (i) for the evolution of whole genomes as well as (ii) for specific evolutionary events including horizontal gene transfer, paralog formation and gene fusion. As catalases have reached a striking diversity among prokaryotic and eukaryotic pathogens, understanding their phylogenetic and molecular relationship and function will contribute to drug design for prevention of diseases of humans, animals and plants. PMID:22330759

  20. [Accelerated senescence of fresh-cut Chinese water chestnut tissues in relation to hydrogen peroxide accumulation].

    PubMed

    Peng, Li-Tao; Jiang, Yue-Ming; Yang, Shu-Zhen; Pan, Si-Yi

    2005-10-01

    Accelerated senescence of fresh-cut Chinese water chestnut (CWC) tissues in relation to active oxygen species (AOS) metabolism was investigated. Fresh-cut CWC (2 mm thick) and intact CWC were stored at 4 degrees C in trays wrapped with plastic films. Changes in superoxide anion production rate, activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were monitored, while contents of hydrogen peroxide, ascorbic acid, MDA as well as electrolyte leakage were measured. Fresh-cutting of CWC induced activities of SOD, CAT and APX to a certain extent (Fig. 2B and Fig. 3), but simultaneously stimulated superoxide anion production markedly (Fig. 2A), enhanced hydrogen peroxide accumulation and accelerated loss in ascorbic acid (Figs. 4 and 5), which resulted in increased lipid peroxidation indicated by malondialdehyde (MDA) content and electrolyte leakage (Fig. 1). Statistics analysis indicated that there was a significantly positive correlation among hydrogen peroxide accumulation, MDA content and electrolyte leakage (Table 1). Histochemical detection with 3, 3'-diaminobenzidine further demonstrated that hydrogen peroxide accumulation increased in fresh-cut CWC during storage (Fig. 5). AOS production rate and activities of SOD, CAT and APX changed little while no obvious hydrogen peroxide accumulation was observed, in intact CWC during storage. PMID:16222096

  1. Acute toxicity of hydrogen peroxide treatments to selected lifestages of cold-, cool-, and warmwater fish

    USGS Publications Warehouse

    Gaikowski, M.P.; Rach, J.J.; Ramsay, R.T.

    1999-01-01

    Hatchery personnel depend on therapeutant treatments to control diseases. Currently, hatchery managers in the United States are limited to one approved therapeutant (formalin) and three compounds of Low Regulatory Priority (sodium chloride, hydrogen peroxide, and acetic acid) to control external diseases of cultured fish. Hydrogen peroxide has been used to effectively control external columnaris and bacterial gill disease in rainbow trout, however, definitive safe treatment concentrations for hydrogen peroxide are lacking for a variety of species. We report the acute toxicity of hydrogen peroxide treatments to 11 species of fry and 13 species of fingerling freshwater fish. Most mortality occurred within the first 30 h after the first exposure to hydrogen peroxide with little change in the overall shape of survival curves over time. Our data predict that in an actual therapeutic application of hydrogen peroxide, most treatment-related mortalities would be observed shortly after the initial exposure. Coolwater species were more sensitive than coldwater species but were generally similar to warmwater species tested. Based on our mortality data, coldwater species and largemouth bass may be treated for 60 min at concentrations of ??? 150 ??l/l without harmful effects; all muskellunge, walleye, bluegill, channel catfish, yellow perch, pallid sturgeon fingerlings, fathead minnow fingerlings, white sucker fingerlings, and northern pike fry may be treated for 60 min at ??? 100 ??l/l; and northern pike fingerlings and white sucker, yellow perch and fathead minnow fry may be treated for 60 min at ??? 50 ??l/l.

  2. Acute toxicity of hydrogen peroxide treatments to selected lifestages of cold-, cool-, and warmwater fish

    USGS Publications Warehouse

    Gaikowski, Mark P.; Rach, Jeffery J.; Ramsay, Robert T.

    1999-01-01

    Hatchery personnel depend on therapeutant treatments to control diseases. Currently, hatchery managers in the United States are limited to one approved therapeutant (formalin) and three compounds of Low Regulatory Priority (sodium chloride, hydrogen peroxide, and acetic acid) to control external diseases of cultured fish. Hydrogen peroxide has been used to effectively control external columnaris and bacterial gill disease in rainbow trout, however, definitive safe treatment concentrations for hydrogen peroxide are lacking for a variety of species. We report the acute toxicity of hydrogen peroxide treatments to 11 species of fry and 13 species of fingerling freshwater fish. Most mortality occurred within the first 30 h after the first exposure to hydrogen peroxide with little change in the overall shape of survival curves over time. Our data predict that in an actual therapeutic application of hydrogen peroxide, most treatment-related mortalities would be observed shortly after the initial exposure. Coolwater species were more sensitive than coldwater species but were generally similar to warmwater species tested. Based on our mortality data, coldwater species and largemouth bass may be treated for 60 min at concentrations of ≤ 150 (μl/1 without harmful effects; all muskellunge, walleye, bluegill, channel catfish, yellow perch, pallid sturgeon fingerlings, fathead minnow fingerlings, white sucker fingerlings, and northern pike fry may be treated for 60 min at ≤ 100 μl/l; and northern pike fingerlings and white sucker, yellow perch and fathead minnow fry may be treated for 60 min at ≤ 50μl/l.

  3. Prediction and assignment of the FIR spectrum of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Helminger, P.; Messer, J. K.; De Lucia, F. C.; Bowman, W. C.

    1984-01-01

    Millimeter and submillimeter microwave studies are used to predict and assign the FIR rotational-torsional spectrum of hydrogen peroxide. Special attention is given to the strong Q-branch features that have recently been used by Traub and Chance to place an upper limit on the atmospheric abundance of hydrogen peroxide. In addition, 67 new transitions are reported in the 400-1000 GHz region.

  4. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  5. Atmospheric hydrogen peroxide and Eoarchean iron formations.

    PubMed

    Pecoits, E; Smith, M L; Catling, D C; Philippot, P; Kappler, A; Konhauser, K O

    2015-01-01

    It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF. PMID:25324177

  6. Recent Development in Hydrogen Peroxide Pumped Propulsion

    SciTech Connect

    Ledebuhr, A G; Antelman, D R; Dobie, D W; Gorman, T S; Jones, M S; Kordas, J F; McMahon, D H; Ng, L C; Nielsen, D P; Ormsby, A E; Pittenger, L C; Robinson, J A; Skulina, K M; Taylor, W G; Urone, D A; Wilson, B A

    2004-03-22

    This paper describes the development of a lightweight high performance pump-fed divert and attitude control system (DACS). Increased kinetic Kill Vehicles (KV) capabilities (higher .v and acceleration capability) will especially be needed for boost phase engagements where a lower mass KV DACS enables smaller overall interceptors. To increase KV performance while reducing the total DACS dry mass (<10 kg), requires a design approach that more closely emulates those found in large launch vehicles, where pump-fed propulsion enables high propellant-mass-fraction systems. Miniaturized reciprocating pumps, on a scale compatible with KV applications, offer the potential of a lightweight DACS with both high {Delta}v and acceleration capability, while still enabling the rapid pulsing of the divert thrusters needed in the end-game fly-in. Pumped propulsion uses lightweight low-pressure propellant tanks, as the main vehicle structure and eliminates the need for high-pressure gas bottles, reducing mass and increasing the relative propellant load. Prior work used hydrazine and demonstrated a propellant mass fraction >0.8 and a vehicle propulsion dry mass of {approx}3 kg. Our current approach uses the non-toxic propellants 90% hydrogen peroxide and kerosene. This approach enables faster development at lower costs due to the ease of handling. In operational systems these non-toxic propellants can simplify the logistics for manned environments including shipboard applications. This DACS design configuration is expected to achieve sufficient mass flows to support divert thrusters in the 1200 N to 1330 N (270 lbf to 300 lbf) range. The DACS design incorporates two pairs of reciprocating differential piston pumps (oxidizer and fuel), a warm-gas drive system, compatible bi-propellant thrusters, lightweight valves, and lightweight low-pressure propellant tanks. This paper summarizes the current development status and plans.

  7. Hydrogen Peroxide in Groundwater at Rifle, Colorado

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Nico, P. S.; Williams, K. H.; Hobson, C.; Davis, J. A.

    2015-12-01

    Hydrogen peroxide (H2O2), as a reactive transient presenting ubiquitously in natural surface waters, can react with a large suite of biologically important and redox-sensitive trace elements. The dominant source of H2O2 in natural waters has long been thought to be photo-oxidation of chromophoric dissolved organic matter by molecular oxygen to produce superoxide radical, which then proceeds via dismutation to generate H2O2. However, recent studies have indicated that dark production of H2O2 in deep seawater, principally by biological production, is potentially on par with photochemical generation. Here, we present evidence for abiotic dark generation of H2O2 in groundwater in an alluvial aquifer adjacent to the Colorado River near Rifle, CO. Background H2O2 concentrations were determined in situ using a sensitive chemiluminescence-based method. Our results suggest H2O2 concentrations ranged from lower than the detection limit (1 nM) to 54 nM in different monitoring wells at the site, and the concentrations exhibited close correlations with profiles of dissolved oxygen and iron concentrations in the wells, indicating a possible metal redox cycling mechanism. In addition, dissolved natural organic matter, which could potentially coordinate the interconversion of ferric and ferrous species, might also play an important role in H2O2 formation. While biologically mediated activities have been recognized as the major sink of H2O2, the detected H2O2 pattern in groundwater suggests the existence of a balance between H2O2 source and decay, which potentially involves a cascade of biogeochemically significant processes, including the interconversion of ferrous/ferric species, the generation of more reactive oxygen species, such as hydroxyl radical, the depletion of dissolved oxygen and further transformation of natural organic matter and other chemical pollutants.

  8. Localised hydrogen peroxide sensing for reproductive health

    NASA Astrophysics Data System (ADS)

    Purdey, Malcolm S.; Schartner, Erik P.; Sutton-McDowall, Melanie L.; Ritter, Lesley J.; Thompson, Jeremy G.; Monro, Tanya M.; Abell, Andrew D.

    2015-05-01

    The production of reactive oxygen species (ROS) is known to affect the developmental competence of embryos. Hydrogen peroxide (H2O2) an important reactive oxygen species, is also known to causes DNA damage and defective sperm function. Current techniques require incubating a developing embryo with an organic fluorophore which is potentially hazardous for the embryo. What we need is a localised ROS sensor which does not require fluorophores in solution and hence will allow continuous monitoring of H2O2 production without adversely affect the development of the embryo. Here we report studies on such a fibre-based sensor for the detection of H2O2 that uses a surface-bound aryl boronate fluorophore carboxyperoxyfluor-1(CPF1). Optical fibres present a unique platform due to desirable characteristics as dip sensors in biological solutions. Attempts to functionalise the fibre tips using polyelectrolyte layers and (3-aminopropyl)triethoxysilane (APTES) coatings resulted in a limited signal and poor fluorescent response to H2O2 due to a low tip surface density of the fluorophore. To increase the surface density, CPF1 was integrated into a polymer matrix formed on the fibre tip by a UV-catalysed polymerisation process of acrylamide onto a methacrylate silane layer. The polyacrylamide containing CPF1 gave a much higher surface density than previous surface attachment methods and the sensor was found to effectively detect H2O2. Using this method, biologically relevant concentrations of H2O2 were detected, enabling remote sensing studies into ROS releases from embryos throughout early development.

  9. Atmospheric hydrogen peroxide and methyl hydroperoxide in Yanbian, China

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ji, B.; Lee, M.; Kim, K.; Lee, G.

    2003-04-01

    Hydrogen peroxide and organic peroxides are photochemical byproducts. They are referred as the indicator of oxidizing capacity of the atmosphere. Further, they are related with the production and removal of ozone in photochemistry. To better understand the photochemical processes in the troposphere, it is essential to know the correct concentration of hydroperoxides. Hydrogen peroxide and methyl Hydroperoxide were measured from 24 Aug to 3 Sep in Yanbian, China. Measurements were made for continuously during the whole course of the experiments. After collected in aqueous solution using continuous scrubbing coil, hydroperoxides were separated by HPLC, and then quantified by fluorescence produced using postcolumn enzyme derivatization. Collection and analysis were done automatically Average concentration of hydrogen peroxide and methyl hydroperoxide were 0.9ppbc and 1.6 ppb, respectively. In general, hydroperoxides showed typical diurnal variations with the maximum concentration during day. It was the first study of air pollution conducted in Yanbian, China. Detailed results will be presented in the meeting.

  10. Microbiologic evaluation of a hydrogen peroxide sterilization system.

    PubMed

    Wilkins, D L; Chung, P Y; Tsuchiya, P Y; Wessels, I F; Zuccarelli, A J

    1994-01-01

    The reliability of chemical sterilizers (acetone and/or 30-percent hydrogen peroxide at 25 degrees C and at 60 degrees C) was tested against Bacillus subtilis inoculated onto glass slides, commercial biological indicator discs (Bacillus stearothermophilus and B. subtilis), and B. subtilis spore survival. Acetone alone was not sporicidal. Hydrogen-peroxide-sterilized glass slides were sterile after 5 minutes. The indicator discs required 25 minutes at 25 degrees C, and less than 3 minutes at 60 degrees C (P < .0001). The D value of B. subtilis in 27-percent hydrogen peroxide at 25 degrees C is 2 minutes, with z values of 22 degrees C and 26 degrees C at 25 degrees C and 40 degrees C, respectively. For delicate instruments, a 30-percent peroxide solution followed by an acetone rinse provides an effective alternative to classic heat sterilization. PMID:7898862

  11. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  12. Simulated afterburner performance with hydrogen peroxide injection for thrust augmentation

    NASA Technical Reports Server (NTRS)

    Metzler, Allen J; Grobman, Jack S

    1956-01-01

    Combustion performance of three afterburner configurations was evaluated at simulated altitude flight conditions with liquid augmentation to the primary combustor. Afterburner combustion efficiency and stability were better with injection of high-strength hydrogen peroxide than with no injection or with water injection. Improvements were observed in afterburner configurations with and without flameholders and in a short-length afterburner. At a peroxide-air ratio of 0.3, combustion was stable and 85 to 90 percent efficient in all configurations tested. Calculated augmented net-thrust ratios for peroxide injection with afterburning were approximately 60 percent greater than those for water injection.

  13. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.

    PubMed

    Guinea, Elena; Arias, Conchita; Cabot, Pere Lluís; Garrido, José Antonio; Rodríguez, Rosa María; Centellas, Francesc; Brillas, Enric

    2008-01-01

    Solutions containing 164 mg L(-1) salicylic acid of pH 3.0 have been degraded by electrochemical advanced oxidation processes such as anodic oxidation, anodic oxidation with electrogenerated H(2)O(2), electro-Fenton, photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Their oxidation power has been comparatively studied in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and a graphite or O(2)-diffusion cathode. In the three latter procedures, 0.5mM Fe(2+) is added to the solution to form hydroxyl radical (()OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the O(2)-diffusion cathode. Total mineralization is attained for all methods with BDD and for photoelectro-Fenton and solar photoelectro-Fenton with Pt. The poor decontamination achieved in anodic oxidation and electro-Fenton with Pt is explained by the slow removal of most pollutants by ()OH formed from water oxidation at the Pt anode in comparison to their quick destruction with ()OH produced at BDD. ()OH generated from Fenton's reaction oxidizes rapidly all aromatic pollutants, but it cannot destroy final Fe(III)-oxalate complexes. Solar photoelectro-Fenton treatments always yield quicker degradation rate due to the very fast photodecarboxylation of these complexes by UVA irradiation supplied by solar light. The effect of current density on the degradation rate, efficiency and energy cost of all methods is examined. The salicylic acid decay always follows a pseudo-first-order kinetics. 2,3-Dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic, alpha-ketoglutaric, glycolic, glyoxylic, maleic, fumaric, malic, tartronic and oxalic acids are detected as oxidation products. A general reaction sequence for salicylic acid mineralization considering all these intermediates is proposed. PMID:17692891

  14. IMPROVED ANALYTICAL TECHNIQUE FOR THE DETERMINATION OF GAS AND AQUEOUS PHASE HYDROGEN PEROXIDE: INSTRUMENT MANUAL

    EPA Science Inventory

    The document describes the construction and operation of an automated instrument package designed to measure gaseous and aqueous phase hydrogen peroxide. The chemical determination relies on the peroxidase-mediated conversion of p-hydroxyphenylacetic acid to 6,6'-dihydroxy-3,3'-b...

  15. Selective electrochemical generation of hydrogen peroxide from water oxidation

    SciTech Connect

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  16. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGESBeta

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.« less

  17. Reactive oxygen species and hydrogen peroxide generation in cell migration

    PubMed Central

    Rudzka, Dominika A; Cameron, Jenifer M; Olson, Michael F

    2015-01-01

    Directional cell migration is a complex process that requires spatially and temporally co-ordinated regulation of actin cytoskeleton dynamics. In response to external cues, signals are transduced to elicit cytoskeletal responses. It has emerged that reactive oxygen species, including hydrogen peroxide, are important second messengers in pathways that influence the actin cytoskeleton, although the identities of key proteins regulated by hydrogen peroxide are largely unknown. We recently showed that oxidation of cofilin1 is elevated in migrating cells relative to stationary cells, and that the effect of this post-translational modification is to reduce cofilin1-actin binding and to inhibit filamentous-actin severing by cofilin1. These studies revealed that cofilin1 regulation by hydrogen peroxide contributes to directional cell migration, and established a template for discovering additional proteins that are regulated in an analogous manner. PMID:27066166

  18. Oxidative desulfurization of Tufanbeyli coal by hydrogen peroxide solution

    SciTech Connect

    Guru, M.; Sarioz, B.V.; Cakanyildirim, C.

    2008-07-01

    It is becoming popular to use fossil fuels efficiently since the necessary energy is mostly supplied from fossil fuels. Altough there are high lignite reserves, high sulfur content limits the efficient use of them. In this article, we aimed to convert combustible sulfur in coal to non-combustible sulfate form in the ash by oxidizing it with a hydrogen peroxide solution. The parameters affecting the sulfur conversion were determined to be: hydrogen peroxide concentration, reaction time, mean particle size at constant room temperature and shaking rate. The maximum desulfurization efficiency reached was 74% of the original combustible sulfur with 15% (w/w) hydrogen peroxide solution, 12 hours of reaction time, and 0.25 mm mean particle size.

  19. Modeling the oxidation of phenolic compounds by hydrogen peroxide photolysis.

    PubMed

    Zhang, Tianqi; Cheng, Long; Ma, Lin; Meng, Fanchao; Arnold, Robert G; Sáez, A Eduardo

    2016-10-01

    Hydrogen peroxide UV photolysis is among the most widely used advanced oxidation processes (AOPs) for the destruction of trace organics in waters destined for reuse. Previous kinetic models of hydrogen peroxide photolysis focus on the dynamics of hydroxyl radical production and consumption, as well as the reaction of the target organic with hydroxyl radicals. However, the rate of target destruction may also be affected by radical scavenging by reaction products. In this work, we build a predictive kinetic model for the destruction of p-cresol by hydrogen peroxide photolysis based on a complete reaction mechanism that includes reactions of intermediates with hydroxyl radicals. The results show that development of a predictive kinetic model to evaluate process performance requires consideration of the complete reaction mechanism, including reactions of intermediates with hydroxyl radicals. PMID:27448315

  20. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  1. Rapid determination of hydrogen peroxide in pulp bleaching effluents by headspace gas chromatography.

    PubMed

    Hu, Hui-Chao; Jin, Hui-Jun; Chai, Xin-Sheng

    2012-04-27

    A headspace gas chromatographic (HS-GC) method has been developed for the determination of residual hydrogen peroxide in pulp bleaching effluents. The method is based on the reaction of hydrogen peroxide and permanganate in an acidic medium (0.1 mol/L), in which hydrogen peroxide is quantitatively converted to oxygen within 10 min at 60°C in a sealed headspace sample vial. The released oxygen is then determined by GC equipped with a thermal conductivity detector. The method is robust, sensitive, and accurate, with reproducibility characterized by a relative standard deviation of <0.5%, a sensitivity whose limit of quantification (LOQ) is 0.96 μmol, and a demonstrated recovery ranging from 98 to 103%. Further, the method is simple, rapid, and automated. PMID:22444430

  2. Study of use of different types of hydrogen peroxides (2006-2008).

    PubMed

    Vissers, Marc; Van Parys, Pieter; Audenaert, Joachim; Kerger, Pierrot; De Windt, Wim; Dick, Jan; Gobin, Bruno

    2009-01-01

    Hydrogen peroxides are commonly used in greenhouses for cleaning purposes and disinfection of irrigation water systems, i.e., to prevent clogging by duckweed (Lemna minor), algae and other (micro)organisms. This use contains a potential risk of involuntary contact to the plants, e.g., to roots through irrigation or to the plant leaves through accidental droplets (spraying mist). To help growers to maximize disinfection with minimal risks, the efficacy and plant safety of a variety of commercial available peroxide formulations were compared, i.e., pure peroxide products, peroxide products with additives: Ag, performic acid, peracetic acid and sorbitol. Starting from pure (clean and without fertilizers) irrigation water the peroxides with Ag-stabilisers were most stable and most effective for algae prevention. In screenings for the curative effect on algae, duckweed and bacteria the best results were obtained with peroxide formulations with performic acid. In plant safety tests on potted Ficus benjamina, sprays and irrigations above the plants gave no toxicity till 500 ppm a.i.; irrigations below the plants didn't show toxicity but the plant growth was reduced with weekly applications of 2000 ppm a.i. On the contrary several applications were risky on herbaceous plants, sometimes even with very low dosages (12.5 ppm peroxide). PMID:20222582

  3. Formation of hydrogen peroxide in electron irradiated secondary effluent

    SciTech Connect

    Cooper, W.J.; Sosa, D.; Cadavid, E.M. ); Waite, T.D.; Kurucz, C.N. )

    1989-01-01

    The results of the formation of hydrogen peroxide in a chlorinated secondary wastewater are presented in this paper. This research project utilizes a large scale 1.5 MeV, 50 mA, electron accelerator located at the Virginia Key Wastewater Treatment Plant in Miami, Florida. Secondary chlorinated wastewater is connected to the influent of the electron beam facility and can be treated at 120 gpm. The formation of the oxidant hydrogen peroxide has been related to electron dose. Experimental results are presented and discussed.

  4. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.

    PubMed

    Yang, Wan Seok; Kim, Katherine J; Gaschler, Michael M; Patel, Milesh; Shchepinov, Mikhail S; Stockwell, Brent R

    2016-08-23

    Ferroptosis is form of regulated nonapoptotic cell death that is involved in diverse disease contexts. Small molecules that inhibit glutathione peroxidase 4 (GPX4), a phospholipid peroxidase, cause lethal accumulation of lipid peroxides and induce ferroptotic cell death. Although ferroptosis has been suggested to involve accumulation of reactive oxygen species (ROS) in lipid environments, the mediators and substrates of ROS generation and the pharmacological mechanism of GPX4 inhibition that generates ROS in lipid environments are unknown. We report here the mechanism of lipid peroxidation during ferroptosis, which involves phosphorylase kinase G2 (PHKG2) regulation of iron availability to lipoxygenase enzymes, which in turn drive ferroptosis through peroxidation of polyunsaturated fatty acids (PUFAs) at the bis-allylic position; indeed, pretreating cells with PUFAs containing the heavy hydrogen isotope deuterium at the site of peroxidation (D-PUFA) prevented PUFA oxidation and blocked ferroptosis. We further found that ferroptosis inducers inhibit GPX4 by covalently targeting the active site selenocysteine, leading to accumulation of PUFA hydroperoxides. In summary, we found that PUFA oxidation by lipoxygenases via a PHKG2-dependent iron pool is necessary for ferroptosis and that the covalent inhibition of the catalytic selenocysteine in Gpx4 prevents elimination of PUFA hydroperoxides; these findings suggest new strategies for controlling ferroptosis in diverse contexts. PMID:27506793

  5. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis

    PubMed Central

    Yang, Wan Seok; Kim, Katherine J.; Gaschler, Michael M.; Patel, Milesh; Shchepinov, Mikhail S.

    2016-01-01

    Ferroptosis is form of regulated nonapoptotic cell death that is involved in diverse disease contexts. Small molecules that inhibit glutathione peroxidase 4 (GPX4), a phospholipid peroxidase, cause lethal accumulation of lipid peroxides and induce ferroptotic cell death. Although ferroptosis has been suggested to involve accumulation of reactive oxygen species (ROS) in lipid environments, the mediators and substrates of ROS generation and the pharmacological mechanism of GPX4 inhibition that generates ROS in lipid environments are unknown. We report here the mechanism of lipid peroxidation during ferroptosis, which involves phosphorylase kinase G2 (PHKG2) regulation of iron availability to lipoxygenase enzymes, which in turn drive ferroptosis through peroxidation of polyunsaturated fatty acids (PUFAs) at the bis-allylic position; indeed, pretreating cells with PUFAs containing the heavy hydrogen isotope deuterium at the site of peroxidation (D-PUFA) prevented PUFA oxidation and blocked ferroptosis. We further found that ferroptosis inducers inhibit GPX4 by covalently targeting the active site selenocysteine, leading to accumulation of PUFA hydroperoxides. In summary, we found that PUFA oxidation by lipoxygenases via a PHKG2-dependent iron pool is necessary for ferroptosis and that the covalent inhibition of the catalytic selenocysteine in Gpx4 prevents elimination of PUFA hydroperoxides; these findings suggest new strategies for controlling ferroptosis in diverse contexts. PMID:27506793

  6. The electrochemistry of SIMFUEL in dilute alkaline hydrogen peroxide solutions

    NASA Astrophysics Data System (ADS)

    Goldik, Jon

    The work described in this thesis is a study of the electrochemistry of SIMFUEL (SIMulated nuclear FUEL) in dilute, alkaline hydrogen peroxide solutions. In the first set of experiments, the reaction of H2O 2 on SIMFUEL electrodes was studied electrochemically and under open circuit conditions in 0.1 mol L-1 NaCl solutions at pH 9.8. The composition of the oxidized UO2 surface was determined by X-ray photoelectron spectroscopy. Hydrogen peroxide reduction was found to be catalyzed by the formation of a mixed UIV/UV (UO 2+x) surface layer, but to be blocked by the accumulation of UVI species (UO3· yH2O or adsorbed (UO2)2+) on the electrode surface. The formation of this UVI layer blocks both H2O2 reduction and oxidation, thereby inhibiting the potentially rapid H2O2 decomposition reaction to H2O and O2. Decomposition is found to proceed at a rate controlled by the desorption of the adsorbed (UO2)2+ or reduction of adsorbed O2 species. Reduction of (O2) ads is coupled to the slow oxidative dissolution of UO2 and formation of a corrosion product deposit of UO3· yH2O. In the second series of experiments, the electrochemical reduction of hydrogen peroxide on SIMFUEL was studied using the steady-state polarization technique. Kinetic parameters for the reaction, such as Tafel slopes and reaction orders, were determined. The results were interpreted in terms of a chemical-electrochemical mechanism involving UIV/UV donor-acceptor reduction sites. The large values of the Tafel slopes and the fractional reaction orders with respect to H2O2 can be understood in terms of the potential-dependent surface coverage of active sites, similar to that observed in the reduction of hydrogen peroxide on oxidized copper surfaces. The effects of pH over the range 10-13 were also investigated. The H2O 2 reduction currents were nearly independent of pH in the range 10-11, but were slowed at more alkaline values. The change in pH dependence appears to be related to the acid-base properties

  7. The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life

    NASA Astrophysics Data System (ADS)

    Ball, Rowena; Brindley, John

    2016-03-01

    It is a remarkable observed fact that all life on Earth is homochiral, its biology using exclusively the D-enantiomer of ribose, the sugar moiety of the ribonucleic acids, and the L-enantiomers of the chiral amino acids. Motivated by concurrent work that elaborates further the role of hydrogen peroxide in providing an oscillatory drive for the RNA world (Ball & Brindley 2015a, J. R. Soc. Interface 12, 20150366, and Ball & Brindley 2015b, this journal, in press), we reappraise the structure and physical properties of this small molecule within this context. Hydrogen peroxide is the smallest, simplest molecule to exist as a pair of non-superimposable mirror images, or enantiomers, a fact which leads us to develop the hypothesis that its enantiospecific interactions with ribonucleic acids led to enantioselective outcomes. We propose a mechanism by which these chiral interactions may have led to amplification of D-ribonucleic acids and extinction of L-ribonucleic acids.

  8. A highly sensitive hydrogen peroxide sensor based on (Ag-Au NPs)/poly[o-phenylenediamine] modified glassy carbon electrode.

    PubMed

    Shamsipur, Mojtaba; Karimi, Ziba; Amouzadeh Tabrizi, Mahmoud

    2015-11-01

    Herein, the poly(o-phenylenediamine) decorated with gold-silver nanoparticle (Ag-Au NPs) nanocomposite modified glassy carbon was used for the determination of hydrogen peroxide. Electrochemical experiments indicated that the proposed sensor possesses an excellent sensitivity toward the reduction of hydrogen peroxide. The resulting sensor exhibited a good response to hydrogen peroxide over linear range from 0.2 to 60.0μM with a limit of detection of 0.08μM, good reproducibility, long-term stability and negligible interference from ascorbic acid, uric acid and dopamine. The proposed sensor was successfully applied to the determination of hydrogen peroxide in human serum sample. PMID:26249610

  9. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  10. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  11. A PORTABLE MICROREACTOR SYSTEM TO SYNTHESIZE HYDROGEN PEROXIDE - PHASE I

    EPA Science Inventory

    In the event that vehicles of buildings become contaminated by hazardous chemical or biological materials, a well-studied and effective decontaminant is hydrogen peroxide vapor (HPV).  Unfortunately, the current technology for generating HPV requires 35 weight percent hydro...

  12. Hydrogen Peroxide Producing Lactobacilli in Women with Cervical Neoplasia

    PubMed Central

    Kim, Ki Min; Kim, Chol Hong; Kim, Seok Mo; Oh, Jong Seok

    2006-01-01

    Purpose It is well known that human papillomavirus (HPV) is the main cause of cervical neoplasia, and hydrogen peroxide-producing lactobacilli are the most important microorganisms for maintaining the balance of the vaginal ecosystem. The purpose of our study was to investigate the relationship of hydrogen peroxide-producing lactobacilli, cervical neoplasia and high-risk HPV. Materials and Methods We enrolled 1138 women with abnormal cervical smears or cervicograms who were referred to the department of Obstetrics and Gynecology at Chonnam National University Medical School. In all of them, 1,138 vaginal swabs were collected for the qualitative assay of hydrogen peroxide producing lactobacilli and 150 cervical swabs were used for the HPV hybrid capture II test without regard to the subjects' pregnancy status. In the non-pregnant women, 880 cervical biopsies and/or loop electrosurgical excision procedures were performed for making the histological diagnosis. Results There was no significant difference not only between the distribution of H2O2 producing lactobacilli and the cervical histology, but also between the distribution of H2O2 producing lactobacilli and the positivity for high-risk HPV. Conclusions Both cervical neoplasia and high-risk HPV may not be influenced by the existence of hydrogen peroxide producing lactobacilli in the vagina. PMID:19771268

  13. RESPONSE OF PLANT-COLONIZING PSEUDOMONADS TO HYDROGEN PEROXIDE

    EPA Science Inventory

    Colonization of plant root surfaces by Pseudomonas putida may require mechanisms that protect this bacterium against superoxide anion and hydrogen peroxide produced by the root. atalase and superoxide dismutase may be important in this bacterial defense system. tationary-phase ce...

  14. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogen peroxide solution. 178.1005 Section 178.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Substances Utilized To Control the...

  15. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Federal Register approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... availability of this material at NARA, call 202-741-6030 or go to: http://www.archives.gov/federal-register/cfr... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide solution. 178.1005 Section...

  16. Hydrogen peroxide as a fungicide for fish culture

    USGS Publications Warehouse

    Dawson, V.K.; Rach, J.J.; Schreier, T.M.

    1994-01-01

    Antifungal agents are needed to maintain healthy stocks of fish in the intensive culture systems currently employed in fish hatcheries. Malachite green has been the most widely used antifungal agent; however, its potential for producing teratology in animals and fish precludes further use in fish culture. Preliminary studies at the National Fisheries Research Center, La Crosse, WI, USA (La Crosse Center) indicate that hydrogen peroxide is effective for control of Saprolegnia sp. fungus on incubating eggs of rainbow trout. It is also effective against a wide variety of other organisms such as bacteria, yeasts, viruses, and spores, and has been proposed as a treatment for sea lice on salmon. Hydrogen peroxide and its primary decomposition products, oxygen and water, are not systemic poisons and are considered environmentally compatible. In response to a petition from the La Crosse Center, the U.S. Food and Drug Administration (FDA) recently classified hydrogen peroxide as a 'low regulatory priority' when used for control of fungus on fish and fish eggs. Preliminary tests conducted at the La Crosse Center suggest that prophylactic treatments of 250 to 500 ppm (based on 100% active ingredient) for 15 minutes every other day will inhibit fungal infections on healthy rainbow trout (Oncorhynchus mykiss) eggs. This treatment regime also seems to inhibit fungal development and increase hatching success among infected eggs. Efficacy and safety of hydrogen peroxide as a fungicide for fish are currently being evaluated.

  17. Toxicity of hydrogen peroxide treatments to rainbow trout eggs

    USGS Publications Warehouse

    Gaikowski, M.P.; Rach, J.J.; Olson, J.J.; Ramsay, R.T.

    1998-01-01

    Hydrogen peroxide treatments of 0, 500, 1,000, and 3,000 I?L/L, concentrations that were multiples of the Low Regulatory Priority limit of 500 I?L/L, were administered for 15 min every weekday (Mondaya??Friday) to eggs of rainbow trout Oncorhynchus mykiss and steelhead (anadromous rainbow trout) to determine the margin of safety existing for standard egg treatments. All untreated and treated eggs remained free of fungal infection throughout incubation. Hydrogen peroxide treatment reduced the mean percent hatch of rainbow trout eggs by 1.4a??5.9% among those treated at 500 I?L/L, 6.8a??15.4% among those treated at 1,000 I?L/L, and 13.2a??25.3% among those treated at 3,000 I?L/L. Mean percent hatch of rainbow trout eggs treated at 1,000 I?L H2O2/L was 7% lower than that for eggs treated at 500 I?L H2O2/L. Mean percent hatch of Skamania strain steelhead was significantly reduced by hydrogen peroxide treatment, whereas the mean percent hatch of Ganaraska strain steelhead was similar to the mean percent hatch of rainbow trout eggs. Daily percent mortality of rainbow trout eggs increased significantly from day 6 to day 10 (78a??135 daily temperature units, DTUsA?C) of incubation. Discontinuing hydrogen peroxide treatments to Skamania strain steelhead eggs from day 7 to day 11 (78a??105 DTUsA?C) of incubation significantly increased the probability of eggs reaching the eyed egg stage. The mean percent hatch of rainbow trout eggs treated with hydrogen peroxide at concentrations up to 1,000 I?L/L may be increased if no treatments are administered between 70 and 140 DTUsA?C. Mortality of sac fry was not observed at hydrogen peroxide concentrations of 1,000 I?L/L or lower. Fish culturists should be aware that other species or strains may be more sensitive than rainbow trout. Other species and strains should be initially treated with hydrogen peroxide at 500 I?L/L until monitoring of egg mortality identifies the presence or absence of a sensitive period.

  18. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  19. 78 FR 73697 - New Animal Drugs; Hyaluronate Sodium; Hydrogen Peroxide; Imidacloprid and Moxidectin; Change of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ...; Hyaluronate Sodium; Hydrogen Peroxide; Imidacloprid and Moxidectin; Change of Sponsor AGENCY: Food and Drug... interest in, NADA 141-255 for PEROX-AID (hydrogen peroxide) 35% Solution to Western Chemical, Inc.,...

  20. Contact Lens Solutions With Hydrogen Peroxide: To Avoid Injury, Follow All Instructions

    MedlinePlus

    ... Products For Consumers Home For Consumers Consumer Updates Contact Lens Solutions With Hydrogen Peroxide: To Avoid Injury, ... warning label and red tip remind you that contact lens solutions with hydrogen peroxide require special handling. ( ...

  1. Regio- and stereo-chemical oxidation of linoleic acid by human myoglobin and hydrogen peroxide: Tyr103 affects rate and product distribution

    PubMed Central

    2004-01-01

    Mb (myoglobin) plus H2O2 catalyses the oxidation of various substrates via a peroxidase-like activity. A Y103F (Tyr103→Phe) variant of human Mb has been constructed to assess the effect of exchanging an electron-rich oxidizable amino acid on the peroxidase activity of human Mb. Steady-state analyses of reaction mixtures containing Y103F Mb, purified linoleic acid and H2O2 revealed a lower total yield of lipid oxidation products than mixtures containing the wild-type protein, consistent with the reported decrease in the rate constant for reaction of Y103F Mb with H2O2 [Witting, Mauk and Lay (2002) Biochemistry 41, 11495–11503]. Irrespective of the Mb employed, lipid oxidation yielded 9(R/S)-HODE [9(R,S)-hydroxy-10E,12Z-octadecadienoic acid] in preference to 13(R/S)-HODE [13(R,S)-hydroxy-9Z,11E-octadecadienoic acid], while 9- and 13-keto-octadecadienoic acid were formed in trace amounts. However, lipid oxidation by the Y103F variant of Mb proceeded with a lower Vmax value and an increased Km value relative to the wild-type control. Consistent with the increased Km, the product distribution from reactions with Y103F Mb showed decreased selectivity compared with the wild-type protein, as judged by the decreased yield of 9(S)-relative to 9(R)-HODE. Together, these data verify that Tyr103 plays a significant role in substrate binding and orientation in the haem pocket of human Mb. Also, the midpoint potential for the Fe(III)/(II) one-electron reduction was shifted slightly, but significantly, to a higher potential, confirming the importance of Tyr103 to the hydrogen-bonding network involving residues that line the haem crevice of human Mb. PMID:15035657

  2. Ternary Composite of Hemin, Gold Nanoparticles and Graphene for Highly Efficient Decomposition of Hydrogen Peroxide

    PubMed Central

    Lv, Xincong; Weng, Jian

    2013-01-01

    A ternary composite of hemin, gold nanoparticles and graphene is prepared by a two-step process. Firstly, graphene-hemin composite is synthesized through π-π interaction and then hydrogen tetracholoroauric acid is reduced in situ by ascorbic acid. This ternary composite shows a higher catalytic activity for decomposition of hydrogen peroxide than that of three components alone or the mixture of three components. The Michaelis constant of this composite is 5.82 times lower and the maximal reaction velocity is 1.81 times higher than those of horseradish peroxidase, respectively. This composite also shows lower apparent activation energy than that of other catalysts. The excellently catalytic performance could be attributed to the fast electron transfer on the surface of graphene and the synergistic interaction of three components, which is further confirmed by electrochemical characterization. The ternary composite has been used to determine hydrogen peroxide in three real water samples with satisfactory results. PMID:24257652

  3. Application of a newly developed hydrogen peroxide vapor phase sensor to HPV sterilizer.

    PubMed

    Taizo, I; Sinichi, A; Kawamura, K

    1998-01-01

    A new type of concentration sensor for hydrogen peroxide vapor has been developed by making use of a semiconductor. Output from the vapor sensor has been shown to have a good linear relationship with the logarithm of the concentration of hydrogen peroxide vapor. Concentration of hydrogen peroxide vapor introduced into the sterilization chamber could be kept constant by monitoring the concentration of the hydrogen peroxide vapor continuously and controlling the vapor supply. Temperature and humidity have also been kept constant. D-values for B. stearothermophilus ATCC 12980 at various concentrations of hydrogen peroxide vapor have been determined by using the combination system of the hydrogen peroxide vapor sensor, the hydrogen peroxide vapor supplier, thermosensor and humidity sensor. D-values at the temperature of 30 degrees C and the absolute humidity of 0.7 mg H2O/L thus obtained, were 0.2 minutes at hydrogen peroxide concentration of 600 ppm and 1.2 minutes at 200 ppm at the temperature of 30 degrees C and 0.7 mg/L absolute humidity. D-values for B. stearothermophilus ATCC 12980 at various temperatures, humidity and levels of hydrogen peroxide concentration have also been determined. These fundamental data indicate that the sterilization by hydrogen peroxide vapor can be validated as precisely as steam sterilization by measuring and controlling the concentration of hydrogen peroxide vapor using a combination of the hydrogen peroxide concentration sensor and the vapor generator. Influence of temperature and humidity have also been studied. The hydrogen peroxide sensor has been calibrated and standardized by using the standard hydrogen peroxide vapor whose concentration has been determined by calculating partial pressure of hydrogen peroxide over the water-hydrogen peroxide solution. PMID:9542409

  4. Investigation on regeneration of basic hydrogen peroxide by electrochemical methods

    NASA Astrophysics Data System (ADS)

    Ke, Changchun; Chen, Wenwu; Xu, Xiaobo; Wang, Jinglong; Liu, Yushi; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Two electrochemical methods for regeneration of Basic Hydrogen Peroxide (BHP) were investigated in this paper, which could be called one-step method and two-step method, respectively, distinguished by the number of steps during the regeneration process. The one-step method converts potassium chloride solution and oxygen directly to chlorine and BHP by a modified chlor-alkali cell with an oxygen cathode. For the one-step method, two reactors of different structure and corresponding regenerating process were designed. The experimental results showed that, for the continuous-type reactor, the highest peroxide concentration was 0.042 mol/L, while for batch-type reactor the highest peroxide concentration was 0.563 mol/L. The two-step method accomplishes the regeneration of BHP by a conventional chlor-alkali cell combined with a fuel cell reactor which could convert hydrogen and oxygen to peroxide in alkaline potassium hydroxide solution. A peroxide concentration of 2.450 mol/L was obtained for the two-step method.

  5. Hydrogen peroxide as a soil amendment for greenhouse nasturtium production (Tropaeolum majus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen peroxide, H2O2, is a highly reactive oxidizing agent naturally occurring in plants and animals. Plants produce hydrogen peroxide to destroy either infected plant cells or the pathogens within a plant. Hydrogen peroxide also acts as a stress signal to plants. It is approved for the contro...

  6. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  7. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  8. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  9. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  10. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  11. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  12. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  13. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  14. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  15. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  16. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    DOEpatents

    Nyman, May D.; Hobbs, David T.

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  17. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... agent. Wine vinegar Amount sufficient for the purpose Remove sulfur dioxide from wine prior to fermentation to produce vinegar. Emulsifiers containing fatty acid esters 1.25 Bleaching agent. (d)...

  18. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... agent. Wine vinegar Amount sufficient for the purpose Remove sulfur dioxide from wine prior to fermentation to produce vinegar. Emulsifiers containing fatty acid esters 1.25 Bleaching agent. (d)...

  19. Quantification of peroxide ion passage in dentin, enamel, and cementum after internal bleaching with hydrogen peroxide.

    PubMed

    Palo, R M; Bonetti-Filho, I; Valera, M C; Camargo, C H R; Camargo, Sea; Moura-Netto, C; Pameijer, C

    2012-01-01

    The aim of this study was to evaluate the amount of peroxide passage from the pulp chamber to the external enamel surface during the internal bleaching technique. Fifty bovine teeth were sectioned transversally 5 mm below the cemento-enamel junction (CEJ), and the remaining part of the root was sealed with a 2-mm layer of glass ionomer cement. The external surface of the samples was coated with nail varnish, with the exception of standardized circular areas (6-mm diameter) located on the enamel, exposed dentin, or cementum surface of the tooth. The teeth were divided into three experimental groups according to exposed areas close to the CEJ and into two control groups (n=10/group), as follows: GE, enamel exposure area; GC, cementum exposed area; GD, dentin exposed area; Negative control, no presence of internal bleaching agent and uncoated surface; and Positive control, pulp chamber filled with bleaching agent and external surface totally coated with nail varnish. The pulp chamber was filled with 35% hydrogen peroxide (Opalescence Endo, Ultradent). Each sample was placed inside of individual flasks with 1000 μL of acetate buffer solution, 2 M (pH 4.5). After seven days, the buffer solution was transferred to a glass tube, in which 100 μL of leuco-crystal violet and 50 μL of horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis and Dunn-Bonferroni tests (α=0.05). All experimental groups presented passage of peroxide to the external surface that was statistically different from that observed in the control groups. It was verified that the passage of peroxide was higher in GD than in GE (p<0.01). The GC group presented a significantly lower peroxide passage than did GD and GE (p<0.01). It can be concluded that the hydrogen peroxide placed into the pulp chamber passed through the

  20. Effect of ultrasonic pre-treatment of thermomechanical pulp on hydrogen peroxide bleaching

    NASA Astrophysics Data System (ADS)

    Loranger, E.; Charles, A.; Daneault, C.

    2012-12-01

    Ultrasound pre-treatments of softwood TMP had been carried to evaluate its impact on the efficiency of hydrogen peroxide bleaching. The trials were performed after a factorial design of experiment using frequency, power and time as variables. The experiments were conducted in an ultrasonic bath and then bleached with hydrogen peroxide. Measurements such as brightness, L*A*B* color system coordinate, residual hydrogen peroxide and metal content were evaluated on bleached pulp. The results indicate that the effect of ultrasonic treatment on brightness was dependent on the ultrasound frequency used; the brightness increased slightly at 68 kHz and decreased at 40 and 170 kHz. These results were correlated to the ultrasound effect on the generation of transition metals (copper, iron and manganese) which are responsible for catalytic decomposition of hydrogen peroxide. The influence of metal interference was minimized by using a chelating agent such as diethylene triamine pentaacetic acid (DTPA). With the results obtained in this study we have identified a set of option conditions, e.g. 1000 W, 40 kHz, 1.5 % consistency and 0.2% addition of DTPA prior to the bleaching stage (after ultrasonic pre-treatment) who improve brightness by 2.5 %ISO.

  1. Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation.

    PubMed Central

    Chang, I S; Kim, B H; Shin, P K

    1997-01-01

    Lactic acid bacteria isolated from an industrial-scale ethanol fermentation process were used to evaluate sulfite as a bacterial-contamination control agent in a cell-recycled continuous ethanol fermentation process. The viabilities of bacteria were decreased by sulfite at concentrations of 100 to 400 mg liter-1, while sulfite at the same concentrations did not change the viability of the Saccharomyces cerevisiae strain used in this process. Sulfite was effective only in the presence of oxygen. Bacteria showed differences in their susceptibilities to sulfite. Facultatively heterofermentative Lactobacillus casei 4-3 was more susceptible than was obligatory heterofermentative Lactobacillus fermentum 7-1. The former showed higher enzyme activities involved in the production and consumption of hydrogen peroxide than did the latter. The viability of L. fermentum 7-1 could be selectively controlled by hydrogen peroxide at concentrations of 1 to 10 mM. Based on these findings, it is hypothesized that the sulfur trioxide radical anions formed by peroxidase in the presence of hydrogen peroxide are responsible for the control of contaminating bacteria. Sulfite did not kill the yeast strain, which has catalase to degrade hydrogen peroxide. A cell-recycled continuous ethanol fermentation process was run successfully with sulfite treatments. PMID:8979332

  2. In vitro assessment of the chemotherapeutic action of a specific hydrogen peroxide, peracetic, acetic, and peroctanoic acid-based formulation against the free-living stages of Ichthyophthirius multifiliis (Ciliophora).

    PubMed

    Picón-Camacho, Sara M; Marcos-Lopez, Mar; Beljean, Alexandre; Debeaume, Sylvain; Shinn, Andrew P

    2012-02-01

    Traditionally, malachite green administrated as in-bath treatment was the most effective and common strategy used in freshwater aquaculture systems to control infections of the ciliate protozoan parasite Ichthyophthirius multifiliis Fouquet, 1876. After the ban of malachite green in the USA and Europe to be used in fish for human consumption, there has been extensive research destined to find efficacious replacements. Recently, peracetic acid-based compounds have demonstrated a strong cytotoxic effect in vitro and in vivo against I. multifiliis. In the present study, we tested the efficacy of a hydrogen peroxide, peracetic, acetic and peroctanoic acid-based formulation (HPPAPA) to eliminate the free-living stages of I. multifiliis (tomonts, cysts and theronts). The results obtained showed that the administration of low doses (8, 12 or 15 mg/l) of a specific HPPAPA-based product during a short window of exposure (60 min) kills nearly all free-living stages of I. multifiliis (theronts, tomonts and cysts) within the window of treatment (∼100% mortality for all the stages; one-way ANOVA, P ≤ 0.001). Of note, even the lowest concentration of HPPAPA tested (8 mg/l) was able to disrupt normal cyst development and therefore theront release. The demonstrated in vitro efficacy of the peracetic acid-based product tested on the present study suggests its great potential to control I. multifiliis infections in commercial aquacultural systems. PMID:21826488

  3. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  4. Ozonation of deciduous wood in the presence of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Kharlanov, A. N.; Fionov, A. V.; Lunin, V. V.

    2011-10-01

    The kinetic curves of the dependence of ozone specific absorption ( Q r, sp ) upon aspen wood ozonation in the presence and absence of hydrogen peroxide are obtained. It is established that the rate of ozone and Q r, sp absorption increase in the O3/H2O2 system. It is demonstrated by ESR, IR, and UV spectroscopy of diffuse reflection that wood ozonation in the O3/H2O2 system results in the destruction of lignin aromatic and quinoid structures. The ozonation process in the presence of H2O2 is accompanied by destruction of the carbohydrate component of the lignocarbohydrate complex. We conclude that O3/H2O2 can be used in the deep delignification of wood. It is shown that the presence of hydrogen peroxide upon ozonation increases the efficiency of the process, allowing its duration and total ozone consumption to be reduced.

  5. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  6. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored... Responsibilities of a Licensee § 420.66 Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored within an intraline...

  7. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored... Responsibilities of a Licensee § 420.66 Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored within an intraline...

  8. Ultraviolet absorption spectrum of hydrogen peroxide vapor. [for atmospheric abundances

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Schinke, S. D.; Molina, M. J.

    1977-01-01

    The ultraviolet absorption cross sections of hydrogen peroxide vapor have been determined over the wavelength range 210 to 350 nm at 296 K. At the longer wavelengths, the gas phase absorptivities are significantly larger than the corresponding values in condensed phase. The atmospheric H2O2 photodissociation rate for overhead sun at the earth's surface is estimated to be about 1.3 x 10 to the -5th/sec.

  9. SONEX-Hydrogen Peroxide, Methylhydroperoxide and Formaldehyde Measurements

    NASA Technical Reports Server (NTRS)

    Heikes, Brian

    1999-01-01

    We measured gas phase H2O2, CH3OOH, and CH2O on board the NASA DC-8 during the SONEX field mission, presented preliminary results at three scientific meetings, participated in two data workshops and contributed to joint publications of final results. The observations of peroxides and formaldehyde were instrumental in assessing odd-hydrogen radical chemistry, ozone chemistry, and in tracing meteorological transport paths.

  10. Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII-1)

    SciTech Connect

    Whitehead, J C

    1998-07-13

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable benchtop propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  11. Microsolvation of methyl hydrogen peroxide: Ab initio quantum chemical approach

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anant D.; Rai, Dhurba; Bartolotti, Libero J.; Pathak, Rajeev K.

    2009-08-01

    Methyl hydrogen peroxide (MHP), one of the simplest organic hydroperoxides, is a strong oxidant, with enhanced activity in aqueous ambience. The present study investigates, at the molecular level, the role of hydrogen bonding that is conducive to cluster formation of MHP with water molecules from its peroxide end, with the methyl group remaining hydrophobic for up to five water molecules. Ab initio quantum chemical computations on MHP⋯(H2O)n, [n =1-5] are performed at second order Møller-Plesset (MP2) perturbation theory employing the basis sets 6-31G(d,p) and 6-311++G(2d,2p) to study the cluster formation of MHP with water molecules from its peroxide end and hydrophobic hydration due to the methyl group. Successive addition of water molecules alters the hydrogen bonding pattern, which leads to changes in overall cluster geometry and in turn to IR vibrational frequency shifts. Molecular co-operativity in these clusters is gauged directly through a detailed many-body interaction energy analysis. Molecular electrostatic potential maps are shown to have a bearing on predicting further growth of these clusters, which is duly corroborated through sample calculations for MHP⋯(H2O)8. Further, a continuum solvation model calculation for energetically stable clusters suggests that this study should serve as a precursor for pathways to aqueous solvation of MHP.

  12. Improving the hydrogen peroxide bleaching efficiency of aspen chemithermomechanical pulp by using chitosan.

    PubMed

    Li, Zongquan; Dou, Hongyan; Fu, Yingjuan; Qin, Menghua

    2015-11-01

    The presence of transition metals during the hydrogen peroxide bleaching of pulp results in the decomposition of hydrogen peroxide, which decreases the bleaching efficiency. In this study, chitosans were used as peroxide stabilizer in the alkaline hydrogen peroxide bleaching of aspen chemithermomechanical pulp (CTMP). The results showed that the brightness of the bleached CTMP increased 1.5% ISO by addition of 0.1% chitosan with 95% degree of deacetylation during peroxide bleaching. Transition metals in the form of ions or metal colloid particles, such as iron, copper and manganese, could be adsorbed by chitosans. Chitosans could inhibit the decomposition of hydrogen peroxide catalyzed by different transition metals under alkaline conditions. The ability of chitosans to inhibit peroxide decomposition depended on the type of transition metals, chitosan concentration and degree of deacetylation applied. The addition of chitosan slightly reduced the concentration of the hydroxyl radical formed during the hydrogen peroxide bleaching of aspen CTMP. PMID:26256367

  13. Selenium-catalyzed oxidations with aqueous hydrogen peroxide. 2. Baeyer-Villiger reactions in homogeneous solution.

    PubMed

    ten Brink, G J; Vis, J M; Arends, I W; Sheldon, R A

    2001-04-01

    Several diselenides were tested for catalytic activity in Baeyer-Villiger reactions with 60% aqueous hydrogen peroxide. Bis[3,5-bis(trifluoromethyl)phenyl] diselenide forms the corresponding 3,5-bis(trifluoromethyl)benzene seleninic acid in situ, which is a highly reactive and selective catalyst for the oxidation of carbonyl compounds in 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol, or dichloromethane. PMID:11281784

  14. Prostaglandins attenuate cardiac contractile dysfunction produced by free radical generation but not by hydrogen peroxide.

    PubMed

    Zimmer, K M; Karmazyn, M

    1997-11-01

    The aim of this study was to examine and compare the potential influence of cyclooxygenase or lipoxygenase derived metabolites of arachidonic acid on myocardial injury produced either by a free radical generating system consisting of purine plus xanthine oxidase or that produced by hydrogen peroxide. A free radical generating system consisting of purine (2.3 mM) and xanthine oxidase (10 U/L) as well as hydrogen peroxide (75 microM) produced significant functional changes in the absence of either significant deficits in high energy phosphates or ultrastructural damage. Prostaglandin F2 alpha (30 nM) significantly attenuated both the negative inotropic effect of purine plus xanthine oxidase as well as the ability of the free radical generator to elevate diastolic pressure. An identical concentration of prostaglandin 12 (prostacyclin) significantly reduced diastolic pressure elevation only and had no effect on contractile depression. The salutary effects of the two PGs occurred in the absence of any inhibitory influence on superoxide anion generation produced by the purine and xanthine oxidase reaction. None of prostaglandins modulated the response to hydrogen peroxide. In addition, neither prostaglandin E2 nor leukotrienes exerted any effect on changes produced by either type of oxidative stress. A 5 fold elevation in the concentrations of free radical generators or hydrogen peroxide produced extensive injury as characterized by a virtual total loss in contractility, 400% elevation in diastolic pressure, ultrastructural damage and significant depletions in high energy phosphate content. None of these effects were modulated by eicosanoid treatment. Our results therefore demonstrate a selective ability of both prostaglandin F2 alpha and to a lesser extent prostacyclin, to attenuate dysfunction produced by purine plus xanthine oxidase but not hydrogen peroxide. It is possible that these eicosanoids may represent endogenous protective factors under conditions of enhanced

  15. Biochar-surface oxygenation with hydrogen peroxide.

    PubMed

    Huff, Matthew D; Lee, James W

    2016-01-01

    Biochar was produced from pinewood biomass by pyrolysis at a highest treatment temperature (HTT) of 400 °C. This biochar was then treated with varying concentrations of H2O2 solution (1, 3, 10, 20, 30% w/w) for a partial oxygenation study. The biochar samples, both treated and untreated, were then tested with a cation exchange capacity (CEC) assay, Fourier Transformed Infrared Resonance (FT-IR), elemental analysis, field water-retention capacity assay, pH assay, and analyzed for their capacity to remove methylene blue from solution. The results demonstrated that higher H2O2 concentration treatments led to higher CEC due to the addition of acidic oxygen functional groups on the surface of the biochar, which also corresponds to the resultant lowering of the pH of the biochar with respect to the H2O2 treatment. Furthermore, it was shown that the biochar methylene blue adsorption decreased with higher H2O2 concentration treatments. This is believed to be due to the addition of oxygen groups onto the aromatic ring structure of the biochar which in turn weakens the overall dispersive forces of π-π interactions that are mainly responsible for the adsorption of the dye onto the surface of the biochar. Elemental analysis revealed that there was no general augmentation of the elemental composition of the biochar samples through the treatment with H2O2, which suggests that the bulk property of biochar remains unchanged through the treatment. PMID:26402867

  16. Polyester Sulphonic Acid Interstitial Nanocomposite Platform for Peroxide Biosensor

    PubMed Central

    Al-Ahmed, Amir; Ndangili, Peter M.; Jahed, Nazeem; Baker, Priscilla G. L.; Iwuoha, Emmanuel I.

    2009-01-01

    A novel enzyme immobilization platform was prepared on a platinum disk working electrode by polymerizing aniline inside the interstitial pores of polyester sulphonic acid sodium salt (PESA). Scanning electron microscopy study showed the formation of homogeneous sulphonated polyaniline (PANI) nanotubes (∼90 nm) and thermogravimetric analysis (TGA) confirmed that the nanotubes were stable up to 230 °C. The PANI:PESA nanocomposite showed a quasi-reversible redox behaviour in phosphate buffer saline. Horseradish peroxidase (HRP) was immobilized on to this modified electrode for hydrogen peroxide detection. The biosensor gave a sensitivity of 1.33 μA (μM)-1 and a detection limit of 0.185 μM for H2O2. Stability experiments showed that the biosensor retained more than 64% of its initial sensitivity over four days of storage at 4 °C. PMID:22303157

  17. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  18. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight

    SciTech Connect

    Cooper, W.J.; Zika, R.G.

    1983-05-13

    A rapid increase in the concentration of hydrogen peroxide was observed when samples of natural surface and ground water from various locations in the United States were exposed to sunlight. The hydrogen peroxide is photochemically generated from organic constitutents present in the water; humic materials are believed to be the primary agent producing the peroxide. Studies with superoxide dismutase suggest that the superoxide anion is the precursor of the peroxide.

  19. At-home vital bleaching: a comparison of hydrogen peroxide and carbamide peroxide treatments.

    PubMed

    Berga-Caballero, Amparo; Forner-Navarro, Leopoldo; Amengual-Lorenzo, José

    2006-01-01

    Tray bleaching of vital teeth performed at home by the patient under the dentist s supervision, whether alone or in combination with any of the in-office techniques, provides an interesting alternative to other methods employed in this type of dental treatment. This bleaching procedure applies low-concentration peroxides to the enamel by means of a custom-made mouth tray specifically designed for this purpose. The aim of this study is to examine and compare two commercially-available bleaching products, at equivalent concentrations, for use in this technique: VivaStyle (Vivadent) and FKD (Kin); the former is a 10% carbamide peroxide and the latter a 3.5% hydrogen peroxide formulation. It examines the parameters that must be monitored during the application of this type of procedure and presents 6 cases (3 treated with one of the above-mentioned products and the other 3 with the other), establishing the bleaching power of the products and the appearance and intensity of post-operatory hypersensitivity. The results obtained show that both products are effective for the purpose for which they were designed. In general, dental hypersensitivity was minimal. PMID:16388304

  20. Resistance to Botrytis cinerea in sitiens, an Abscisic Acid-Deficient Tomato Mutant, Involves Timely Production of Hydrogen Peroxide and Cell Wall Modifications in the Epidermis1[C][W][OA

    PubMed Central

    Asselbergh, Bob; Curvers, Katrien; França, Soraya C.; Audenaert, Kris; Vuylsteke, Marnik; Van Breusegem, Frank; Höfte, Monica

    2007-01-01

    Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea, are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato (Solanum lycopersicum) mutant, which is highly resistant to B. cinerea, accumulation of hydrogen peroxide (H2O2) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens, H2O2 accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H2O2 started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H2O2-dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea. PMID:17573540

  1. One-pot assembly of metal/organic-acid sites on amine-functionalized ligands of MOFs for photocatalytic hydrogen peroxide splitting.

    PubMed

    Qin, Lei; Li, Zhaowen; Hu, Qiong; Xu, Zehai; Guo, Xinwen; Zhang, Guoliang

    2016-06-01

    A one-pot organic-acid-directed post-synthetic modification allows molecular iron/citric acid complexes to be anchored into amine-functionalized MOFs by a simple and rapid liquid spraying method. Amidation between organic acid and -NH2 groups of ligands can lead to more small nanoparticles (NPs) that are well-dispersed into MOFs and exhibit high activity for photocatalytic H2O2 splitting. PMID:27166081

  2. [Fatty acid and lipid peroxidation in human atherosclerosis].

    PubMed

    Loeper, J; Goy, J; Emerit, J; Rozensztajn, L; Jeny, C; Bedu, O

    1983-06-01

    Plasma fatty acids and lipid peroxidation were studied in human atherosclerosis. Analysis of fatty acids in 16 controls and 32 hyperlipidemic patients showed, in the latter, a decrease in saturated fatty acids, especially palmitic and stearic acids, and an increase in unsaturated fatty acids, especially arachidonic acid. Compared to hyperlipidemic patients without arterial injury, patients with arterial injury exhibit a significant increase in malonaldehyde (MDA). In the former, MDA concentrations are significantly increased compared to controls. Therefore, peroxidation of unsaturated fatty acids may have a deleterious effect on arteries in atheroma, through the release of toxic endoperoxydes and the metabolization of arachidonic acid into thromboxane, which is a platelet aggregator. Lipid peroxidation can also be demonstrated in other diseases: we found very high MDA concentration in 11 alcoholic patients (alcoholic hepatitis, cirrhosis) and 6 patients with inflammatory conditions such as Crohn disease. PMID:6308785

  3. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    NASA Astrophysics Data System (ADS)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    2008-09-01

    The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.

  4. Tempol inhibits neutrophil and hydrogen peroxide-mediated DNA damage.

    PubMed

    Hahn, S M; Mitchell, J B; Shacter, E

    1997-01-01

    Inflammatory conditions characterized by neutrophil activation are associated with a variety of chronic diseases. Reactive oxygen species are produced by activated neutrophils and produce DNA damage which may lead to tissue damage. Previous studies have shown that activated murine neutrophils induce DNA strand breaks in a target plasmacytoma cell, RIMPC 2394. We studied the effect of a water soluble nitroxide anti-oxidant, Tempol, on murine neutrophil induction of DNA strand breaks in this system. Murine neutrophils were isolated from the peritoneal cavity of BALB/cAn mice after an i.p. injection of pristane oil. Neutrophils were activated by the phorbol ester PMA and co-incubated with RIMPC 2394 cells. Control alkaline elution studies revealed progressive DNA strand breaks in RIMPC cells with time. The addition of Tempol to the incubation mixture prevented DNA damage in a dose dependent fashion. Five mM Tempol provided complete protection. Tempol protection against DNA strand breaks was similar for both stimulated neutrophils and exogenously added hydrogen peroxide. Measurement of hydrogen peroxide produced by stimulated neutrophils demonstrated that Tempol did not decrease hydrogen peroxide concentration. Oxidation of reduced metals, thereby interfering with the production of hydroxyl radical, is the most likely mechanism of nitroxide protection, although superoxide dismutase (SOD) like activity and scavenging of carbon-based free radicals may also account for a portion of the observed protection. The anti-oxidant activity of Tempol inhibited DNA damage by activated neutrophils. The nitroxides as a class of compounds may have a role in the investigation and modification of inflammatory conditions. PMID:9378367

  5. Efficacy of hydrogen peroxide for treating saprolegniasis in channel catfish

    USGS Publications Warehouse

    Howe, G.E.; Gingerich, W.H.; Dawson, V.K.; Olson, J.J.

    1999-01-01

    Hatchery-reared fish and their eggs are commonly afflicted with saprolegniasis, a fungal disease that can cause significant losses in production. Fish culturists need safe and effective fungicides to minimize losses and meet production demands. The efficacy of hydrogen peroxide was evaluated for preventing or controlling mortality associated with saprolegniasis in channel catfish Ictalurus punctatus. Saprolegniasis was systematically induced in channel catfish so various therapies could be evaluated in a controlled laboratory environment. Both prophylactic and therapeutic hydrogen peroxide bath treatments of 50, 100, and 150 ??L/L for 1 h were administered every other day for seven total treatments. All untreated positive control fish died of saprolegniasis during the prophylactic and therapeutic tests. Hydrogen peroxide treatments of 150 ??L/L were harmful (relative to lower concentrations) to test fish and resulted in 73-95% mortality. Mortality was attributed to a combination of abrasion, temperature, chemical treatment, and disease stressors. Treatments of 100 ??L/L were less harmful (relatively) but also appeared to contribute to mortality (60-79%). These treatments, however, significantly reduced the incidence of mortality and infection compared with those observed for fish of the positive control or 150-??L/L treatment groups. Overall, treatments of 50 ??L/L were found to be the most safe and effective of those tested. Mortality with this concentration ranged from 16% in therapeutic tests to 41% in prophylactic tests. The statistical model employed estimated that the optimum treatment concentration for preventing or controlling mortality, reducing the incidence of infections, and enhancing the recovery of infected fish was 75 ??L H2O2/L.

  6. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  7. APPARATUS AND METHOD FOR TREATING POLLUTANTS IN A GAS USING HYDROGEN PEROXIDE AND UV LIGHT

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clauseu, christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending there between. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  8. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives

    NASA Astrophysics Data System (ADS)

    Manivannan, R.; Ramanathan, S.

    2009-01-01

    The effect of hydrogen peroxide in chemical mechanical planarization slurries for shallow trench isolation was investigated. The various abrasives used in this study were ceria, silica, alumina, zirconia, titania, silicon carbide, and silicon nitride. Hydrogen peroxide suppresses the polishing of silicon dioxide and silicon nitride surfaces by ceria abrasives. The polishing performances of other abrasives were either unaffected or enhanced slightly with the addition of hydrogen peroxide. The ceria abrasives were treated with hydrogen peroxide, and the polishing of the work surfaces with the treated abrasive shows that the inhibiting action of hydrogen peroxide is reversible. It was found that the effect of hydrogen peroxide as an additive is a strong function of the nature of the abrasive particle.

  9. Hydrogen peroxide-based propulsion and power systems.

    SciTech Connect

    Melof, Brian Matthew; Keese, David L.; Ingram, Brian V.; Grubelich, Mark Charles; Ruffner, Judith Alison; Escapule, William Rusty

    2004-04-01

    Less toxic, storable, hypergolic propellants are desired to replace nitrogen tetroxide (NTO) and hydrazine in certain applications. Hydrogen peroxide is a very attractive replacement oxidizer, but finding acceptable replacement fuels is more challenging. The focus of this investigation is to find fuels that have short hypergolic ignition delays, high specific impulse, and desirable storage properties. The resulting hypergolic fuel/oxidizer combination would be highly desirable for virtually any high energy-density applications such as small but powerful gas generating systems, attitude control motors, or main propulsion. These systems would be implemented on platforms ranging from guided bombs to replacement of environmentally unfriendly existing systems to manned space vehicles.

  10. Hydrogen peroxide in inflammation: messenger, guide, and assassin.

    PubMed

    Wittmann, C; Chockley, P; Singh, S K; Pase, L; Lieschke, G J; Grabher, C

    2012-01-01

    Starting as a model for developmental genetics, embryology, and organogenesis, the zebrafish has become increasingly popular as a model organism for numerous areas of biology and biomedicine over the last decades. Within haematology, this includes studies on blood cell development and function and the intricate regulatory mechanisms within vertebrate immunity. Here, we review recent studies on the immediate mechanisms mounting an inflammatory response by in vivo analyses using the zebrafish. These recently revealed novel roles of the reactive oxygen species hydrogen peroxide that have changed our view on the initiation of a granulocytic inflammatory response. PMID:22737171

  11. Hydrogen Peroxide as an Effective Disinfectant for Pasteurella multocida

    PubMed Central

    Jung, In-Soo; Kim, Hyun-Jung; Jung, Won-Yong

    2014-01-01

    Pasteurella multocida (P. multocida) infections vary widely, from local infections resulting from animal bites and scratches to general infections. As of yet, no vaccine against P. multocida has been developed, and the most effective way to prevent pathogenic transmission is to clean the host environment using disinfectants. In this study, we identified which disinfectants most effectively inhibited environmental isolates of P. multocida. Three readily available disinfectants were compared: 3% hydrogen peroxide (HP), 70% isopropyl alcohol, and synthetic phenol. In suspension tests and zone inhibition tests, 3% HP was the most promising disinfectant against P. multocida. PMID:24954350

  12. Protective Effects of Chlorogenic Acid and its Metabolites on Hydrogen Peroxide-Induced Alterations in Rat Brain Slices: A Comparative Study with Resveratrol.

    PubMed

    Gul, Zulfiye; Demircan, Celaleddin; Bagdas, Deniz; Buyukuysal, Rifat Levent

    2016-08-01

    The effectiveness of chlorogenic acid and its main metabolites, caffeic and quinic acids, against oxidative stress was investigated. Resveratrol, another natural phenolic compound, was also tested for comparison. Rat cortical slices were incubated with 200 μM H2O2 for 1 h, and alterations in oxidative stress parameters, such as 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the production of both malondialdehyde (MDA) and reactive oxygen species (ROS), were assayed in the absence or presence of phenolic compounds. Additionally, the effectiveness of chlorogenic acid and other compounds on H2O2-induced increases in fluorescence intensities were also compared in slice-free incubation medium. Although quinic acid failed, chlorogenic and caffeic acids significantly ameliorated the H2O2-induced decline in TTC staining intensities. Although resveratrol also caused an increase in staining intensity, its effect was not dose-dependent; the high concentrations of resveratrol tested in the present study (10 and 100 μM) further lessened the staining of the slices. Additionally, all phenolic compounds significantly attenuated the H2O2-induced increases in MDA and ROS levels in cortical slices. When the IC50 values were compared to H2O2-induced alterations, chlorogenic acid was more potent than either its metabolites or resveratrol for all parameters studied under these experimental conditions. In slice-free experimental conditions, on the other hand, chlorogenic and caffeic acids significantly attenuated the fluorescence emission enhanced by H2O2 with a similar order of potency to that obtained in slice-containing physiological medium. These results indicate that chlorogenic acid is a more potent phenolic compound than resveratrol and its main metabolites caffeic and quinic acids against H2O2-induced alterations in oxidative stress parameters in rat cortical slices. PMID:27161374

  13. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione.

    PubMed Central

    Jamieson, D J

    1992-01-01

    Treatment of Saccharomyces cerevisiae cells with low concentrations of either hydrogen peroxide or menadione (a superoxide-generating agent) induces adaptive responses which protect cells from the lethal effects of subsequent challenge with higher concentrations of these oxidants. Pretreatment with menadione is protective against cell killing by hydrogen peroxide; however, pretreatment with hydrogen peroxide is unable to protect cells from subsequent challenge with menadione. This suggests that the adaptive responses to these two different oxidants may be distinct. PMID:1400218

  14. Hydrogen Peroxide Accidents and Incidents: What We Can Learn From History

    NASA Technical Reports Server (NTRS)

    Greene, Ben; Baker, David L.; Frazier, Wayne

    2005-01-01

    Historical accidents and incidents involving hydrogen peroxide are reviewed and presented. These hydrogen peroxide events are associated with storage, transportation, handling, and disposal and they include exposures, fires, and explosions. Understanding the causes and effects of these accident and incident examples may aid personnel currently working with hydrogen peroxide to mitigate and perhaps avoid similar situations. Lessons learned, best practices, and regulatory compliance information related to the cited accidents and incidents are also discussed.

  15. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    NASA Astrophysics Data System (ADS)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Liquid natural rubber (LNR) with molecular weight of lower than 105 and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA).

  16. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    SciTech Connect

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-25

    Liquid natural rubber (LNR) with molecular weight of lower than 10{sup 5} and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA)

  17. Time-course diffusion of hydrogen peroxide using modern technologies

    NASA Astrophysics Data System (ADS)

    Florez, F. L. E.; Vollet-Filho, J. D.; Oliveira-Junior, O. B.; Bagnato, V. S.

    2009-02-01

    The concern with the hydrogen penetration towards the pulp can be observed on the literature by the great number of papers published on this topic; Those measurements often uses chemical agents to quantify the concentration of the bleaching agent that cross the enamel and dentin. The objective of this work was the quantification of oxygen free radicals by fluorescence that are located in the interface between enamel and dentin. It was used to accomplish our objectives a Ruthenium probe (FOXY R - Ocean Optics) a 405nm LED, a bovine tooth and a portable diagnostic system (Science and support LAB - LAT - IFSC/USP). The fluorescence of the probe is suppressed in presence of oxygen free radicals in function of time. The obtained results clearly shows that the hydrogen peroxide when not catalyzed should be kept in contact with the tooth for longer periods of time.

  18. MEMS-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition

    NASA Technical Reports Server (NTRS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  19. Experimental study of combustion in hydrogen peroxide hybrid rockets

    NASA Astrophysics Data System (ADS)

    Wernimont, Eric John

    Combustion behavior in a hydrogen peroxide oxidized hybrid rocket motor is investigated with a series of experiments. Hybrid chemical rocket propulsion is presently of interest due to reduced system complexity compared to classical chemical propulsion systems. Reduced system complexity, by use of a storable oxidizer and a hybrid configuration, is expected to reduce propulsive costs. The fuel in this study is polyethylene which has the potential of continuous manufacture leading to further reduced system costs. The study investigated parameters of interest for nominal design of a full scale hydrogen peroxide oxidized hybrid rocket. Amongst these parameters is the influence of chamber pressure, mass flux, fuel molecular weight and fuel density on fuel regression rate. Effects of chamber pressure and aft combustion length on combustion efficiency and non-acoustic combustion oscillations are also examined. The fuel regression behavior is found to be strongly influenced by both chamber pressure and mass flux. Combustion efficiencies in the upper 90% range are attained by simple changes to the aft combustion chamber length as well as increased combustion pressure. Fuel burning surface is found to be influenced by the density of the polyethylene polymer as well as molecular weight. The combustion is observed to be exceptionally smooth (oscillations less than 5% zero-to-peak of mean) in all motors tested in this program. Tests using both a single port fuel gain and a novel radial flow hybrid are also performed.

  20. A low-volume microstructured optical fiber hydrogen peroxide sensor

    NASA Astrophysics Data System (ADS)

    Schartner, E. P.; Murphy, D. F.; Ebendorff-Heidepriem, H.; Monro, T. M.

    2011-05-01

    The ability to measure the concentration of hydrogen peroxide (H2O2) in solution is critical for quality assessment and control in many disparate applications, including wine, aviation fuels and IVF. The objective of this research is to develop a rapid test for the hydrogen peroxide content that can be performed on very low volume samples (i.e. sub-μL) that is relatively independent of other products within the sample. For H2O2 detection we use suspended core optical fibers to achieve a high evanescent field interaction with the fluid of interest, without the constraint of limited interaction length that is generally inherent with nanowire structures. By filling the holes of the fiber with an analyte/fluorophore solution we seek to create a quick and effective sensor that should enable detection of desired species within liquid media. By choosing a fluorophore that reacts with our target species to produce an increase in fluorescence, we can correlate observed fluorescence intensity with the concentration of the target molecule.

  1. Hydrogen Peroxide and Sodium Transport in the Lung and Kidney

    PubMed Central

    Shlyonsky, V.; Boom, A.; Mies, F.

    2016-01-01

    Renal and lung epithelial cells are exposed to some significant concentrations of H2O2. In urine it may reach 100 μM, while in the epithelial lining fluid in the lung it is estimated to be in micromolar to tens-micromolar range. Hydrogen peroxide has a stimulatory action on the epithelial sodium channel (ENaC) single-channel activity. It also increases stability of the channel at the membrane and slows down the transcription of the ENaC subunits. The expression and the activity of the channel may be inhibited in some other, likely higher, oxidative states of the cell. This review discusses the role and the origin of H2O2 in the lung and kidney. Concentration-dependent effects of hydrogen peroxide on ENaC and the mechanisms of its action have been summarized. This review also describes outlooks for future investigations linking oxidative stress, epithelial sodium transport, and lung and kidney function. PMID:27073804

  2. Concerning the electrosynthesis of hydrogen peroxide and peroxodisulfates. Section 2: Optimization of electrolysis cells using an electrolyzer for peroxodisulfuric acid as an example

    NASA Technical Reports Server (NTRS)

    Schleiff, M.; Thiele, W.; Matschiner, H.

    1986-01-01

    The model is presented of an electrolyzer for peroxodisulfuric acid, and it is analyzed mathematically. Its application for engineering and economic optimization is investigated in detail. The mathematical analysis leads to conclusions concerning the change in position of the optimum with respect to the various target functions due to changes of the individual design-caused and economic parameters.

  3. Iron prochelator BSIH protects retinal pigment epithelial cells against cell death induced by hydrogen peroxide.

    PubMed

    Charkoudian, Louise K; Dentchev, Tzvete; Lukinova, Nina; Wolkow, Natalie; Dunaief, Joshua L; Franz, Katherine J

    2008-12-01

    Dysregulation of localized iron homeostasis is implicated in several degenerative diseases, including Parkinson's, Alzheimer's, and age-related macular degeneration, wherein iron-mediated oxidative stress is hypothesized to contribute to cell death. Inhibiting toxic iron without altering normal metal-dependent processes presents significant challenges for standard small molecule chelating agents. We previously introduced BSIH (isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide) prochelators that are converted by hydrogen peroxide into SIH (salicylaldehyde isonicotinoyl hydrazone) chelating agents that inhibit iron-catalyzed hydroxyl radical generation. Here, we show that BSIH protects a cultured cell model for retinal pigment epithelium against cell death induced by hydrogen peroxide. BSIH is more stable than SIH in cell culture medium and is more protective during long-term experiments. Repetitive exposure of cells to BSIH is nontoxic, whereas SIH and desferrioxamine induce cell death after repeated exposure. Combined, our results indicate that cell protection by BSIH involves iron sequestration that occurs only when the cells are stressed by hydrogen peroxide. These findings suggest that prochelators discriminate toxic iron from healthy iron and are promising candidates for neuro- and retinal protection. PMID:18835041

  4. Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy.

    PubMed

    Shen, Yan; Träuble, Markus; Wittstock, Gunther

    2008-02-01

    The substrate-generation/tip-collection mode of scanning electrochemical microscopy was used to detect hydrogen peroxide formed as an intermediate during oxygen reduction at various electrodes. The experiment is conceptually similar to rotating ring-disk experiments but does not require the production of a ring-disk assembly for the specific electrode material in question. In order to limit the extension of the diffusion layer above the sample, the sample electrode potential is pulsed while the Pt ultramicroelectrode probe (UME) is held at a constant potential for oxidative amperometric detection of hydrogen peroxide. The signal at UME is influenced by the sample region within the diffusion length of hydrogen peroxide during the pulse of 2.5 s. The method is tested with three model electrodes showing different behavior with respect to the oxygen reduction reaction (ORR) in acidic solution. Simple analytical models were used to extract effective rate constants for the most important reaction paths of ORR at gold and palladium-cobalt samples from the chronoamperometric response of the UME to a reduction pulse at the sample electrode. PMID:18179180

  5. Analysis of hydrogen peroxide in an aqueous extract of cigarette smoke and effect of pH on the yield.

    PubMed

    Takanami, Yuichiro; Moriyama, Takako; Kosaka, Yasutaka; Nakayama, Tsutomu

    2009-10-01

    An analysis of hydrogen peroxide in an aqueous extract of cigarette smoke, which contains many redox-active compounds, requires a method with high selectivity. An aqueous extract of the particulate phase of cigarette smoke was analyzed by HPLC with an electrochemical detector (ECD). Samples were prepared by collecting the particulate phase of the cigarette smoke on a glass fiber filter and extracting it with a phosphate buffer. The obtained solution was purified by using a Waters Oasis MCX cation-exchange cartridge, and then analyzed by an HPLC-ECD system with a Shodex KS-801 mixed-mode resin column. Pre-injecting hydrogen peroxide at a high concentration into the HPLC instrument stabilized the analytical results. The recovery of hydrogen peroxide by using an extract of the particulate phase of the cigarette smoke was more than 80%. An increase in the amount of hydrogen peroxide was observed during extraction with the phosphate buffer at higher pH values. In contrast, extraction with phosphoric acid did not increase the amount of hydrogen peroxide during extraction. PMID:19809177

  6. Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish

    USGS Publications Warehouse

    Rach, J.J.; Schreier, T.M.; Howe, G.E.; Redman, S.D.

    1997-01-01

    Hydrogen peroxide is a drug of low regulatory priority status that is effective in treating fish and fish eggs infected by fungi. However, only limited information is available to guide fish culturists in administering hydrogen peroxide to diseased fish. Laboratory tests were conducted to determine (1) the sensitivity of brown trout Salmo trutta, lake trout Salvelinus namaycush, fathead minnow Pimephales promelas, walleye Stizostedion vitreum, channel catfish Ictalurus punctatus, and bluegill Lepomis, machrochirus to hydrogen peroxide treatments; (2) the sensitivity of various life stages of rainbow trout Oncorhynchus mykiss to hydrogen peroxide treatments; and (3) the effect of water temperature on the acute toxicity of hydrogen peroxide to three fish species. Fish were exposed to hydrogen peroxide concentrations ranging from 100 to 5,000 mu L/L (ppm) for 15-min or 45-min treatments every other day for four consecutive treatments to determine the sensitivity of various species and life stages of fish. Except for walleye, most species of fish tested (less than or equal to 2 g) tolerated hydrogen peroxide of 1,000 mu L/L or greater. Walleyes were sensitive to hydrogen peroxide concentrations as low as 100 mu L/L. A correlation was found between the toxicity of hydrogen peroxide and the life stages of rainbow trout; larger fish were more sensitive. Generally, the toxicity of hydrogen peroxide increased for all species as water temperature increased. The results of these experiments demonstrate that it is important to consider the effects of species, life stage, and water temperature when conducting hydrogen peroxide treatments.

  7. Peroxide test strips detect added hydrogen peroxide in raw milk at levels affecting bacterial load.

    PubMed

    Martin, Nicole H; Friedlander, Adam; Mok, Allen; Kent, David; Wiedmann, Martin; Boor, Kathryn J

    2014-10-01

    Hydrogen peroxide (H2O2) has a long-established history of use as a preservative in milk worldwide. The use of H2O2 to activate the inherent lactoperoxidase enzyme system has dramatically improved the quality of raw dairy products in areas in which cooling is not widely available. In the United States, however, where refrigeration is widely available, the addition of H2O2 to milk is not permitted, with the exception of certain applications prior to cheesemaking and during the preparation of modified whey. Due to the relatively quick deterioration of H2O2 in fluid milk, the detection of raw milk adulterated with the compound can be challenging. In this study we evaluated (i) total aerobic bacterial counts and (ii) ability of peroxide test strips to detect H2O2 in raw milk with various concentrations (0, 100, 300, 500, 700, and 900 ppm) of added H2O2, incubated at both 6 and 21°C for 0, 24, and 48 h. Results showed that at both 6 and 21°C the H2O2 concentration and time had a significant effect on bacterial loads in raw milk. Additionally, commercially available test strips were able to detect H2O2 in raw milk, with predicted probability of >90%, immediately after addition and after 24 and 48 h for the higher concentrations used, offering a viable method for detecting raw milk adulteration with H2O2. PMID:25285503

  8. Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid.

    PubMed

    Shah, Syed Niaz Ali; Li, Haifang; Lin, Jin-Ming

    2016-06-01

    A new sensitized chemiluminescence (CL) was developed to broaden the analytical application of KIO4-H2O2 system. The nitrogen doped carbon dots (N-CDs) dramatically boosted the CL intensity of KIO4-H2O2 system which was further enriched by basic medium. In light of EPR analysis, free radical scavenging studies and CL spectra the detail mechanism for the enhancement was conferred in the presence of N-CDs and NaOH. The results suggested that CL of KIO4-H2O2 system in the presence and absence of N-CDs and NaOH proceeds via radical pathway. The enhanced CL was used for the determination of pyrogallol and gallic acid in range of 1.0×10(-4)-1.0×10(-7)M with 4.6×10(-8) and 6.1×10(-8)M limit of detection respectively. The relative standard deviation (RSD) at a concentration of 10(-5) for gallic acid and pyrogallol was 1.4% and 2.3% respectively (n=11). The attained results unveil that the present method is sensitive, faster, simpler and less costly compared to other methods and could be applied to determine polyphenols in real samples. PMID:27130085

  9. Overexpression of cotton GhMKK4 enhances disease susceptibility and affects abscisic acid, gibberellin and hydrogen peroxide signalling in transgenic Nicotiana benthamiana.

    PubMed

    Li, Yuzhen; Zhang, Liang; Lu, Wenjing; Wang, Xiuling; Wu, Chang-Ai; Guo, Xingqi

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades are involved in plant development, stress responses and hormonal signal transduction. MAPK kinases (MAPKKs), as the key nodes in these cascades, link MAPKs and MAPKK kinases (MAPKKKs). In this study, GhMKK4, a novel group C MAPKK gene from cotton (Gossypium hirsutum), was isolated and identified. Its expression can be induced by various stresses and signalling molecules. The overexpression of GhMKK4 in Nicotiana benthamiana enhanced its susceptibility to bacterial and fungal pathogens, but had no significant effects on salt or drought tolerance. Notably, the overexpressing plants showed increased sensitivity to abscisic acid (ABA) and gibberellin A3 (GA3), and ABA and gibberellin (GA) signalling were affected on infection with Ralstonia solanacearum bacteria. Furthermore, the overexpressing plants showed more reactive oxygen species (ROS) accumulation and stronger inhibition of catalase (CAT), a ROS-scavenging enzyme, than control plants after salicylic acid (SA) treatment. Interestingly, two genes encoding ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC), the key enzymes in polyamine synthesis, exhibited reduced R. solanacearum-induced expression in overexpressing plants. These findings broaden our knowledge about the functions of MAPKKs in diverse signalling pathways and the negative regulation of disease resistance in the cotton crop. PMID:23980654

  10. The fate of aniline after a photo-fenton reaction in an aqueous system containing iron(III), humic acid, and hydrogen peroxide

    SciTech Connect

    Fukushima, Masami; Tatsumi, Kenji; Morimoto, Kengo

    2000-05-15

    The degradation of aniline (ArNH{sub 2}) was facilitated by light irradiation ({lambda} > 370 nm) of an aqueous solution, which contained Fe(III), humic acid(HA), and H{sub 2}O{sub 2}. The consumption of H{sub 2}O{sub 2} and the reduction of Fe(III) to Fe(II) was consistent with the degradation of ArNH{sub 2} via the photo-Fenton reaction, accompanied by the generation of hydroxyl radicals (HO{sm_bullet}). HPLC analysis of the reaction mixture indicated the presence of p-aminophenol, p-hydroquinone, and maleic and fumaric acids and the simultaneous release of NH{sub 4}{sup +} ion. However, the sum of the product concentrations, as determined by HPLC after the reaction, was much smaller than the ArNH{sub 2} concentration added initially. This can be attributed to the majority of the ArNH{sub 2} being incorporated into the polymeric structure in the HA after the reaction. The {sup 15}N NMR and pyrolysis-GC/MS studies indicated that, after the reaction, ArNH{sub 2} formed covalent bonds with quinone and the vinyl carbons in the HA, to form anilino-compounds, such as anilinoquinone and enaminone.

  11. Antimicrobial Activity of Chlorhexidine, Peracetic acid/ Peroxide hydrogen and Alcohol based compound on Isolated Bacteria in Madani Heart Hospital, Tabriz, Azerbaijan, Iran

    PubMed Central

    Ghotaslou, Reza; Bahrami, Nashmil

    2012-01-01

    Purpose: The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. Methods: The minimum bactericide concentration (MBC) of disinfectants including chlorhexidine (Fort), peracetic acid (Micro) and an alcohol based compound (Deconex) on selected bacteria at various dilutions were determined by the standard suspension technique. Results: MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. Conclusion: The results showed that these agents are able to eradicate the bacteria and they can be used lonely. PMID:24312771

  12. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus.

    PubMed

    Nováková, Miroslava; Šašek, Vladimír; Trdá, Lucie; Krutinová, Hana; Mongin, Thomas; Valentová, Olga; Balesdent, Marie-HelEne; Rouxel, Thierry; Burketová, Lenka

    2016-08-01

    To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans. PMID:26575525

  13. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal

    PubMed Central

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  14. Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress.

    PubMed

    Charkoudian, Louise K; Pham, David M; Kwon, Ashley M; Vangeloff, Abbey D; Franz, Katherine J

    2007-11-21

    Several new analogs of salicylaldehyde isonicotinoyl hydrazone (SIH) and salicylaldehyde benzoyl hydrazone (SBH) that contain an aryl boronic ester (BSIH, BSBH) or acid (BASIH) in place of an aryl hydroxide have been synthesized and characterized as masked metal ion chelators. These pro-chelators show negligible interaction with iron(III), although the boronic acid versions exhibit some interaction with copper(II), zinc(II) and nickel(II). Hydrogen peroxide oxidizes the aryl boronate to phenol, thus converting the pro-chelators to tridentate ligands with high affinity metal binding properties. An X-ray crystal structure of a bis-ligated iron(III) complex, [Fe(SBH(m-OMe)(3))(2)]NO(3), confirms the meridonal binding mode of these ligands. Modifications of the aroyl ring of the chelators tune their iron affinity, whereas modifications on the boron-containing ring of the pro-chelators attenuate their reaction rates with hydrogen peroxide. Thus, the methoxy derivative pro-chelator (p-OMe)BASIH reacts with hydrogen peroxide nearly 5 times faster than the chloro derivative (m-Cl)BASIH. Both the rate of pro-chelator to chelator conversion as well as the metal binding affinity of the chelator influence the overall ability of these molecules to inhibit hydroxyl radical formation catalyzed by iron or copper in the presence of hydrogen peroxide and ascorbic acid. This pro-chelator strategy has the potential to improve the efficacy of medicinal chelators for inhibiting metal-promoted oxidative stress. PMID:17992288

  15. New cytotoxic cyclic peroxide acids from Plakortis sp. marine sponge

    PubMed Central

    Hoye, Thomas R.; Alarif, Walied M.; Basaif, Salim S.; Abo-Elkarm, Mohamed; Hamann, Mark T.; Wahba, Amir E.; Ayyad, Seif-Eldin N.

    2016-01-01

    Bioassay-guided fractionation of the extract of Jamaican marine sponge Plakortis sp. followed by preparative TLC and HPLC yielded several known methyl ester cyclic peroxides (1a, 2a, 3a, 4, 5), known plakortides (6,7), known bicyclic lactone (8) and new cyclic peroxide acids (1b, 2b, 3b). The chemical structures were elucidated by extensive interpretation of their spectroscopic data. These natural products showed remarkable in vitro cytotoxicity against several cancer cell lines. PMID:26835518

  16. Development of vapor phase hydrogen peroxide sterilization process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Knight, J.; Quigley, M.; Forsberg, G.; Ganapathi, G.; Yarbrough, C.; Koukol, R.

    2001-01-01

    This paper will present test data and discussion on the work we are conducting at JPL to address the following issues: 1) efficacy of sterilization process; 2) diffusion of hydrogen peroxide under sterilization process conditions into hard to reach places; 3) materials and components compatibility with the sterilization process and 4) development of methodology to protect sensitive components from hydrogen peroxide vapor.

  17. Hydrogen peroxide and povidone-lodine solution--a dangerous combination.

    PubMed

    2011-02-01

    When mixed with povidone-iodine solution, hydrogen peroxide can release enough oxygen to cause sealed waste containers to burst open. Such risks can also result from using a sealed container to collect hydrogen peroxide that has mixed with body fluids (for instance, in a debridement procedure). Staff should be instructed to avoid both practices. PMID:23444560

  18. Evaluation of silica-coated tubing for the measurement of hydrogen peroxide in hot water.

    SciTech Connect

    Marin, T. W.; Bartels, D. M.; Jonah, C. D.; Chemistry

    2004-04-14

    A commercial silica coating for stainless steel tubing was investigated for its ability to inhibit the decomposition of aqueous hydrogen peroxide on the tubing surface. Although the coating proves effective at preventing decomposition up to 200 {sup o}C, above this temperature, the coating degrades, as evidenced by enhanced decomposition of the hydrogen peroxide.

  19. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    ERIC Educational Resources Information Center

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  20. Impact of the auxin signaling inhibitor p-chlorophenoxyisobutyric acid on short-term Cd-induced hydrogen peroxide production and growth response in barley root tip.

    PubMed

    Tamás, Ladislav; Bočová, Beáta; Huttová, Jana; Liptáková, Ľubica; Mistrík, Igor; Valentovičová, Katarína; Zelinová, Veronika

    2012-09-15

    Short-term treatment (30 min) of barley roots with a low 10 μM Cd concentration induced significant H(2)O(2) production in the elongation and differentiation zone of the root tip 3h after treatment. This elevated H(2)O(2) production was accompanied by root growth inhibition and probably invoked root swelling in the elongation zone of the root tip. By contrast, a high 60 μM Cd concentration induced robust H(2)O(2) production in the elongation zone of the root tip already 1h after short-term treatment. This robust H(2)O(2) generation caused extensive cell death 6 h after short-term treatment. Similarly to low Cd concentration, exogenously applied H(2)O(2) caused marked root growth inhibition, which at lower H(2)O(2) concentration was accompanied by root swelling. The auxin signaling inhibitor p-chlorophenoxyisobutyric acid effectively inhibited 10 μM Cd-induced root growth inhibition, H(2)O(2) production and root swelling, but was ineffective in the alleviation of 60 μM Cd-induced root growth inhibition and H(2)O(2) production. Our results demonstrated that Cd-induced mild oxidative stress caused root growth inhibition, likely trough the rapid reorientation of cell growth in which a crucial role was played by IAA signaling in the root tip. Strong oxidative stress induced by high Cd concentration caused extensive cell death in the elongation zone of the root tip, resulting in the cessation of root growth or even in root death. PMID:22795748

  1. Efficacy of Mouthwashes Containing Hydrogen Peroxide on Tooth Whitening

    PubMed Central

    Karadas, Muhammet; Hatipoglu, Omer

    2015-01-01

    The aim of this study was to analyze the efficacy of mouthwashes containing hydrogen peroxide compared with 10% carbamide peroxide (CP) gel. Fifty enamel-dentin samples were obtained from bovine incisors and then stained in a tea solution. The stained samples were randomly divided into five groups according to the whitening product applied (n = 10): AS: no whitening (negative control), with the samples stored in artificial saliva; CR: Crest 3D White mouthwash; LS: Listerine Whitening mouthwash; SC: Scope White mouthwash; and OP group: 10% CP Opalescence PF (positive control). Color measurements were carried out with a spectrophotometer before staining, after staining, and on the 7th, 28th, and 56th day of the whitening period. The data were analyzed using two-way analysis of variance followed by a Tukey post hoc test. The color change (ΔE) was significantly greater in all the groups compared to that of the AS group. After 56 days, no significant differences were found among the mouthwash products with respect to color change (P > 0.05). The whiteness of the teeth treated with the mouthwashes increased significantly over time. Nevertheless, the color change achieved with the mouthwashes was significantly lower than that achieved with the 10% CP at-home bleaching gel. PMID:26295061

  2. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues

    PubMed Central

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-01-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells. PMID:27482463

  3. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues.

    PubMed

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-12-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells. PMID:27482463

  4. Hydrogen peroxide treatment of eggshell membrane to control porosity.

    PubMed

    Hsieh, Shuchen; Chou, Hsuan-Hung; Hsieh, Chiung-Wen; Wu, Deng-Chyang; Kuo, Chao-Hung; Lin, Feng-Huei

    2013-12-01

    The eggshell membrane (ESM) is a naturally occurring biological polymer, which can be extracted from eggshells, and has been used for adsorption of dyes or heavy metals, as a semipermeable membrane to control particle transport, and as a natural biocompatible material for tissue replacement. In this study, we used hydrogen peroxide to control the pore size and fibre crossing density of the ESM. Structural and chemical properties were investigated using AFM, optical microscopy, contact angle, and FTIR. We show that the structure and permeability of the ESM can be controlled by timed exposure to H2O2 and we demonstrate this effect using red blood cells. This process provides a simple method for preparing biocompatible membranes, with controlled selectivity for biofiltration applications. PMID:23870936

  5. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression. PMID:22565543

  6. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Ermakova, Yulia G.; Bilan, Dmitry S.; Matlashov, Mikhail E.; Mishina, Natalia M.; Markvicheva, Ksenia N.; Subach, Oksana M.; Subach, Fedor V.; Bogeski, Ivan; Hoth, Markus; Enikolopov, Grigori; Belousov, Vsevolod V.

    2014-10-01

    Reactive oxygen species (ROS) are conserved regulators of numerous cellular functions, and overproduction of ROS is a hallmark of various pathological processes. Genetically encoded fluorescent probes are unique tools to study ROS production in living systems of different scale and complexity. However, the currently available recombinant redox sensors have green emission, which overlaps with the spectra of many other probes. Expanding the spectral range of recombinant in vivo ROS probes would enable multiparametric in vivo ROS detection. Here we present the first genetically encoded red fluorescent sensor for hydrogen peroxide detection, HyPerRed. The performance of this sensor is similar to its green analogues. We demonstrate the utility of the sensor by tracing low concentrations of H2O2 produced in the cytoplasm of cultured cells upon growth factor stimulation. Moreover, using HyPerRed we detect local and transient H2O2 production in the mitochondrial matrix upon inhibition of the endoplasmic reticulum Ca2+ uptake.

  7. Hydrogen peroxide and nitric oxide as signalling molecules in plants.

    PubMed

    Neill, Steven J; Desikan, Radhika; Clarke, Andrew; Hurst, Roger D; Hancock, John T

    2002-05-01

    It is now clear that hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) function as signalling molecules in plants. A wide range of abiotic and biotic stresses results in H(2)O(2) generation, from a variety of sources. H(2)O(2) is removed from cells via a number of antioxidant mechanisms, both enzymatic and non-enzymatic. Both biotic and abiotic stresses can induce NO synthesis, but the biosynthetic origins of NO in plants have not yet been resolved. Cellular responses to H(2)O(2) and NO are complex, with considerable cross-talk between responses to several stimuli. In this review the potential roles of H(2)O(2) and NO during various stresses and the signalling pathways they activate are discussed. Key signalling components that might provide targets for enhancing crop production are also identified. PMID:11997372

  8. Plasma Depolymerization of Chitosan in the Presence of Hydrogen Peroxide

    PubMed Central

    Ma, Fengming; Wang, Zhenyu; Zhao, Haitian; Tian, Shuangqi

    2012-01-01

    The depolymerization of chitosan by plasma in the presence of hydrogen peroxide (H2O2) was investigated. The efficiency of the depolymerization was demonstrated by means of determination of viscosity-average molecular weight and gel permeation chromatography (GPC). The structure of the depolymerized chitosan was characterized by Fourier-transform infrared spectra (FT-IR), ultraviolet spectra (UV) and X-ray diffraction (XRD). The results showed that chitosan can be effectively degradated by plasma in the presence of H2O2. The chemical structure of the depolymerized chitosan was not obviously modified. The combined plasma/H2O2 method is significantly efficient for scale-up manufacturing of low molecular weight chitosan. PMID:22837727

  9. Vapor Hydrogen Peroxide as Alternative to Dry Heat Microbial Reduction

    NASA Technical Reports Server (NTRS)

    Cash, Howard A.; Kern, Roger G.; Chung, Shirley Y.; Koukol, Robert C.; Barengoltz, Jack B.

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with appropriate specification, in NPG8020.12C as a low temperature complementary technique to the dry heat sterilization process. A series of experiments were conducted in vacuum to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. With this knowledge of D values, sensible margins can be applied in a planetary protection specification. The outcome of this study provided an optimization of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D value may be imposed, a process humidity range for which the worst case D value may be imposed, and robustness to selected spacecraft material substrates.

  10. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  11. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-01

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  12. Spatially-resolved intracellular sensing of hydrogen peroxide in living cells

    PubMed Central

    Warren, Emilie A. K.; Netterfield, Tatiana S.; Sarkar, Saheli; Kemp, Melissa L.; Payne, Christine K.

    2015-01-01

    Understanding intracellular redox chemistry requires new tools for the site-specific visualization of intracellular oxidation. We have developed a spatially-resolved intracellular sensor of hydrogen peroxide, HyPer-Tau, for time-resolved imaging in live cells. This sensor consists of a hydrogen peroxide-sensing protein tethered to microtubules. We demonstrate the use of the HyPer-Tau sensor for three applications; dose-dependent response of human cells to exogenous hydrogen peroxide, a model immune response of mouse macrophages to stimulation by bacterial toxin, and a spatially-resolved response to localized delivery of hydrogen peroxide. These results demonstrate that HyPer-Tau can be used as an effective tool for tracking changes in spatially localized intracellular hydrogen peroxide and for future applications in redox signaling. PMID:26585385

  13. Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy

    PubMed Central

    Chen, Rui; Zhang, Luzhong; Gao, Jian; Wu, Wei; Hu, Yong; Jiang, Xiqun

    2011-01-01

    Hydrogen peroxide is a signal molecule of the tumor, and its overproduction makes a higher concentration in tumor tissue compared to normal tissue. Based on the fact that peroxalates can make chemiluminescence with a high efficiency in the presence of hydrogen peroxide, we developed nanomicelles composed of peroxalate ester oligomers and fluorescent dyes, called peroxalate nanomicelles (POMs), which could image hydrogen peroxide with high sensitivity and stability. The potential application of the POMs in photodynamic therapy (PDT) for cancer was also investigated. It was found that the PDT-drug-loaded POMs were sensitive to hydrogen peroxide, and the PDT drug could be stimulated by the chemiluminescence from the reaction between POMs and hydrogen peroxide, which carried on a self-therapy of the tumor without the additional laser light resource. PMID:21765637

  14. Oxidation of polynuclear aromatic hydrocarbons in water. 4: Ozone combined with hydrogen peroxide

    SciTech Connect

    Beltran, F.J.; Rivas, J.; Ovejero, G.

    1996-03-01

    Three polynuclear aromatic hydrocarbons, fluorene, phenanthrene, and acenaphthene, have been treated in water with ozone combined with hydrogen peroxide. The effect of hydrogen peroxide concentration, pH, and bicarbonate ions has been investigated. The process goes through direct and radical reactions in the case of fluorene and phenanthrene oxidation, while acenaphthene is removed exclusively by direct ozonation. At concentrations of hydrogen peroxide higher than 10{sup {minus}5} M, ozone mass transfer controls the process rate, regardless of pH. In any case, however, the presence of hydrogen peroxide does not improve the oxidation rate compared to ozonation alone due to the importance of the direct reactions. Intermediate compounds identified during oxidation with ozone alone and combined with UV radiation or hydrogen peroxide are similar and justify the high consumption of ozone in these processes.

  15. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    SciTech Connect

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-15

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  16. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity

    PubMed Central

    Cuypers, Ann; Hendrix, Sophie; Amaral dos Reis, Rafaela; De Smet, Stefanie; Deckers, Jana; Gielen, Heidi; Jozefczak, Marijke; Loix, Christophe; Vercampt, Hanne; Vangronsveld, Jaco; Keunen, Els

    2016-01-01

    Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide (O2•-), hydrogen peroxide (H2O2) and the hydroxyl radical (•OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils. PMID:27199999

  17. Development of hydrogen peroxide technique for bioburden reduction

    NASA Astrophysics Data System (ADS)

    Rohatgi, N.; Schwartz, L.; Stabekis, P.; Barengoltz, J.

    In order to meet the National Aeronautics and Space Administration (NASA) Planetary Protection microbial reduction requirements for Mars in-situ life detection and sample return missions, entire planetary spacecraft (including planetary entry probes and planetary landing capsules) may have to be exposed to a qualified sterilization process. Presently, dry heat is the only NASA approved sterilization technique available for spacecraft application. However, with the increasing use of various man-made materials, highly sophisticated electronic circuit boards, and sensors in a modern spacecraft, compatibility issues may render this process unacceptable to design engineers and thus impractical to achieve terminal sterilization of the entire spacecraft. An alternative vapor phase hydrogen peroxide sterilization process, which is currently used in various industries, has been selected for further development. Strategic Technology Enterprises, Incorporated (STE), a subsidiary of STERIS Corporation, under a contract from the Jet Propulsion Laboratory (JPL) is developing systems and methodologies to decontaminate spacecraft using vaporized hydrogen peroxide (VHP) technology. The VHP technology provides an effective, rapid and low temperature means for inactivation of spores, mycobacteria, fungi, viruses and other microorganisms. The VHP application is a dry process affording excellent material compatibility with many of the components found in spacecraft such as polymers, paints and electronic systems. Furthermore, the VHP process has innocuous residuals as it decomposes to water vapor and oxygen. This paper will discuss the approach that is being used to develop this technique and will present lethality data that have been collected to establish deep vacuum VHP sterilization cycles. In addition, the application of this technique to meet planetary protection requirements will be addressed.

  18. Electrochemical regeneration of basic hydrogen peroxide for chemical oxygen iodine laser

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Hano, Masami; Wakita, Syuhei; Uno, Masaharu; Takeda, Shuzaburo

    2005-03-01

    A 3.6M basic hydrogen peroxide solution is electrochemically regenerated. The apparatus was originally developed for electrolytic H2O2 production, generating dilute (<0.2M) BHP for paper manufacturing. To suppress decomposition by various mechanisms, they are identified and quantified. Both caffeine and peracetic acid are found effective to suppress autodecomposition. Theoretical prediction of the current efficiency is made to find an optimum operational condition. A BHP of 3.614M is regenerated to 3.657M with a current efficiency of 67%.

  19. Fluorometric method for the determination of gas-phase hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Kok, Gregory L.; Lazrus, Allan L.

    1986-01-01

    The fluorometric gas-phase hydrogen peroxide procedure is based on the technique used by Lazrus et. al. for the determination of H2O2 in the liquid phase. The analytical method utilizes the reaction of H2O2 with horseradish peroxidase and p-hydroxphenylacetic acid (POPHA) to form the fluorescent dimer of POPHA. The analytical reaction responds stoichiometrically to both H2O2 and some organic hydroperoxides. To discriminate H2O2 from organic hydroperoxides, catalase is used to preferentially destroy H2O2. Using a dual-channel flow system the H2O2 concentration is determined by difference.

  20. Propanal synthesis from aqueous propylene glycol/hydrogen peroxide on a Ru/alumina catalyst

    SciTech Connect

    Disselkamp, Robert S.; Harris, Benjamin D.; Patel, Jayshribe N.; Hart, Todd R.; Peden, Charles HF

    2008-05-01

    The conversion of polyol materials, including 1,2-diols, into higher commodity chemicals is actively being pursued by many researchers. Here we report the production of propanal from propylene glycol and hydrogen peroxide using a Ru/alumina catalyst. Experiments were conducted by adding up to four peroxide equivalents under steady-state reflux conditions at 371 K. The product propanal and its subsequent reaction product with substrate, 1,3-dioxolane-2-ethyl-4-methyl, was observed to be an intermediate achieving a maximum concentration of 3% of substrate. Buffering using Mg(OH)2 at pH~10 resulted in propanal formation, whereas buffering at similar pH using Na2HSO4 did not, from which we propose that magnesium acts as a promoter in the reaction. The mechanism appears to be a dehydration to enol, followed by rearrangement to product. Experiments utilizing Ru/carbon did not yield any propanol suggesting that the acidic sites of alumina aid the dehydration reaction. To our knowledge, this represents the first time hydrogen peroxide has been used in an alcohol dehydration reaction.

  1. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    PubMed Central

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M.; Ferrández, Julia; Cano, Beatriz; Naranjo, Belén; Nájera, Victoria A.; González, Maricruz; Lindahl, Anna M.; Cejudo, Francisco J.

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs), thiol-based peroxidases able to reduce hydrogen and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide. PMID:23967002

  2. Antioxidant and Physicochemical Properties of Hydrogen Peroxide-Treated Sugar Beet Dietary Fibre.

    PubMed

    Mišan, Aleksandra; Sakač, Marijana; Medić, Đorđe; Tadić, Vanja; Marković, Goran; Gyura, Julliana; Pagano, Ester; Izzo, Angelo A; Borrelli, Francesca; Šarić, Bojana; Milovanović, Ivan; Milić, Nataša

    2016-05-01

    The aim of the present work was to examine if hydrogen peroxide treatment of sugar beet fibre that aimed at improving its physicochemical properties would impair its antioxidant potential. Three different sugar beet fibres were obtained from sugar beet - non-treated fibre (NTF) from sugar beet cossettes extracted with sulphurous acid, treated fibre (TF) from NTF treated with hydrogen peroxide in alkaline solution and commercially available Fibrex(®) . The antioxidant activity of extractable and non-extractable fibre fractions in ethanol/water mixture (80:20, v/v) of three fibre samples was estimated. Non-extractable fractions obtained after alkaline treatment of investigated fibres were much higher in phenolic compounds and possessed higher antioxidant potential than extractable fractions. Ferulic acid was proven to be the dominant phenolic acid. Regarding both extractable and non-extractable fractions, Fibrex(®) had the highest antioxidant activity in chemical tests, while NTF was superior in comparison with TF. Based on the results of Caco-2 cells-based test, all non-extractable fractions possessed potential for reactive oxygen species inhibition. Regarding the extractable fractions, only the TF manifested this effect.Copyright © 2016 John Wiley & Sons, Ltd. PMID:26929014

  3. Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and L-lactate detection.

    PubMed

    Hu, Ai-Ling; Liu, Yin-Huan; Deng, Hao-Hua; Hong, Guo-Lin; Liu, Ai-Lin; Lin, Xin-Hua; Xia, Xing-Hua; Chen, Wei

    2014-11-15

    A novel fluorescent hydrogen peroxide sensor was developed based on the peroxidase-like activity of cupric oxide nanoparticles. Cupric oxide nanoparticles effectively catalyzed the decomposition of hydrogen peroxide into hydroxyl radicals. Then terephthalic acid was oxidized by hydroxyl radical to form a highly fluorescent product. The linear range of hydrogen peroxide estimated to be 5.0 × 10(-6)-2.0 × 10(-4)M with a detection limit of 3.4 × 10(-7)M. Moreover, this detection system enabled the sensing of analytes which can enzymatically generate hydrogen peroxide. By coupling the oxidation of glucose or L-lactate catalyzed by their corresponding oxidase enzymes with terephthalic acid oxidation catalyzed by cupric oxide nanoparticles, sensitive assays of glucose and l-lactate with detection limits of 1.0 × 10(-6) and 4.5 × 10(-8)M were realized. The successful applications of this approach in human serum samples have also been demonstrated. PMID:24912038

  4. Evaluation of Extraradicular Diffusion of Hydrogen Peroxide during Intracoronal Bleaching Using Different Bleaching Agents

    PubMed Central

    Rokaya, Mohammad E.; Beshr, Khaled; Hashem Mahram, Abeer; Samir Pedir, Samah; Baroudi, Kusai

    2015-01-01

    Objectives. Extra radicular diffusion of hydrogen peroxide associated with intracoronal teeth bleaching was evaluated. Methods. 108 intact single rooted extracted mandibular first premolars teeth were selected. The teeth were instrumented with WaveOne system and obturated with gutta percha and divided into four groups (n = 27) according to the bleaching materials used. Each main group was divided into three subgroups (n = 9) according to the time of extra radicular hydrogen peroxide diffusion measurements at 1, 7, and 14 days: group 1 (35% hydrogen peroxide), group 2 (35% carbamide peroxide), group 3 (sodium perborate-30% hydrogen peroxide mixture), and group 4 (sodium perborate-water mixture). Four cemental dentinal defects were prepared just below the CEJ on each root surface. The amount of hydrogen peroxide that leached out was evaluated after 1, 7, and 14 days by spectrophotometer analysis. The results were analyzed using the ANOVA and Tukey's test. Results. Group 1 showed highest extra radicular diffusion, followed by group 3 and group 2, while group 4 showed the lowest mean extra radicular diffusion. Conclusion. Carbamide peroxide and sodium perborate-water mixture are the most suitable bleaching materials used for internal bleaching due to their low extra radicular diffusion of hydrogen peroxide. PMID:26257782

  5. Hydrogen Peroxide Sensing and Signaling by Protein Kinases in the Cardiovascular System

    PubMed Central

    Burgoyne, Joseph R.; Oka, Shin-ichi; Ale-Agha, Niloofar

    2013-01-01

    Abstract Significance: Oxidants were once principally considered perpetrators of injury and disease. However, this has become an antiquated view, with cumulative evidence showing that the oxidant hydrogen peroxide serves as a signaling molecule. Hydrogen peroxide carries vital information about the redox state of the cell and is crucial for homeostatic regulation during health and adaptation to stress. Recent Advances: In this review, we examine the contemporary concepts for how hydrogen peroxide is sensed and transduced into a biological response by introducing post-translational oxidative modifications on select proteins. Oxidant sensing and signaling by kinases are of particular importance as they integrate oxidant signals into phospho-regulated pathways. We focus on CAMKII, PKA, and PKG, kinases whose redox regulation has notable impact on cardiovascular function. Critical Issues: In addition, we examine the mechanism for regulating intracellular hydrogen peroxide, considering the net concentrations that may accumulate. The effects of endogenously generated oxidants are often modeled by applying exogenous hydrogen peroxide to cells or tissues. Here we consider whether model systems exposed to exogenous hydrogen peroxide have relevance to systems where the oxidant is generated endogenously, and if so, what concentration can be justified in terms of relevance to health and disease. Future Directions: Improving our understanding of hydrogen peroxide signaling and the sensor proteins that it can modify will help us develop new strategies to regulate intracellular signaling to prevent disease. Antioxid. Redox Signal. 18, 1042–1052. PMID:22867279

  6. Structural, functional and chemical changes in Pseudozyma antarctica lipase B on exposure to hydrogen peroxide.

    PubMed

    Törnvall, Ulrika; Hedström, Martin; Schillén, Karin; Hatti-Kaul, Rajni

    2010-12-01

    The effect on primary, secondary, tertiary and quaternary structure of Pseudozyma (formerly Candida) antarctica lipase B (PalB) on exposure to hydrogen peroxide was investigated using nano-electrospray ionization-mass spectrometry (nano-ESI-MS), liquid chromatography tandem mass spectrometry (LC/MS/MS), circular dichroism (CD), and dynamic light scattering (DLS). Treatment with hydrogen peroxide generated heavier protein variants, with a mass gain that increased with increasing incubation time. Furthermore, elevated concentration of H(2)O(2) was shown to result in partial fragmentation of the protein. Proteolytic digestion of the enzyme gave primary sequence coverage of more than 90%, revealing oxidation of methionine, tryptophan and cystine residues. The active site histidine was not observed in oxidized form in any of the experiments. However, oxidation of cystine to cysteic acid indicated disruption of disulphide bridges, and CD evaluations confirmed that severe changes to the secondary structure towards random coil had occurred. The structural changes could be an effect of the observed amino acid side chain oxidations, and was correlated with deactivation of the lipase. From DLS experiments, it was seen that the lipase exposed to both high temperature and H(2)O(2) formed large and intermediate sized aggregates, not observed for the heat-treated enzyme. The findings reported here could lay the basis for developing enzyme variants with higher oxidative stability. PMID:20654682

  7. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Mahmud, Maznah; Naziri, Muhammad Ihsan; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid

    2014-02-01

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1%-5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  8. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells.

    PubMed Central

    Weiss, S J; Young, J; LoBuglio, A F; Slivka, A; Nimeh, N F

    1981-01-01

    Human neutrophils stimulated with phorbol myristate acetate were able to destroy suspensions or monolayers of cultured human endothelial cells. Neutrophil-mediated cytotoxicity was related to phorbol myristate acetate concentration, time of incubation and neutrophil number. Cytolysis was prevented by the addition of catalase, while superoxide dismutase had no effect on cytotoxicity. The addition of the heme-enzyme inhibitors, azide or cyanide, markedly stimulated neutrophil-mediated damage while exogenous myeloperoxidase failed to stimulate cytolysis. Neutrophils isolated from patients with chronic granulomatous disease did not destroy the endothelial cell targets while myeloperoxidase-deficient neutrophils successfully mediated cytotoxicity. Endothelial cell damage mediated by the myeloperoxidase deficient cells was also inhibited by catalase but not superoxide dismutase. The addition of purified myeloperoxidase to the deficient cells did not stimulate cytotoxicity. Glucose-glucose oxidase, an enzyme system capable of generating hydrogen peroxide, could replace the neutrophil as the cytotoxic mediator. The addition of myeloperoxidase at low concentrations of glucose oxidase did not increase cytolysis, but at the higher concentrations of glucose oxidase it stimulated cytotoxicity. The destruction of endothelial cells by the glucose oxidase-myeloperoxidase system was inhibited by the addition of hypochlorous acid scavengers. In contrast, neutrophil-mediated cytolysis was not effectively inhibited by the hypochlorous acid scavengers. Based on these observations, we propose that human neutrophils can destroy cultured human endothelial cells by generating cytotoxic quantities of hydrogen peroxide. PMID:6268662

  9. Development of biological and nonbiological explanations for the Viking label release data. [hydrogen peroxide theory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The plausibility that hydrogen peroxide, widely distributed within the Mars surface material, was responsible for the evocative response obtained by the Viking Labeled Release (LR) experiment on Mars was investigated. Although a mixture of gamma Fe2O3 and silica sand stimulated the LR nutrient reaction with hydrogen peroxide and reduced the rate of hydrogen decomposition under various storage conditions, the Mars analog soil prepared by the Viking Inorganic Analysis Team to match the Mars analytical data does not cause such effects. Nor is adequate resistance to UV irradiation shown. On the basis of the results and consideration presented while the hydrogen peroxide theory remains the most, if not only, attractive chemical explanation of the LR data, it remains unconvincing on critical points. Until problems concerning the formation and stabilization of hydrogen peroxide on the surface of Mars can be overcome, adhere to the scientific evidence requires serious consideration of the biological theory.

  10. [Use of hydrogen peroxide in the treatment of sewage in antibiotic production].

    PubMed

    Polunina, E E; Zav'ialova, E V; Shchipanov, N P; Savina, N N

    1996-03-01

    The possible use of hydrogen peroxide as an oxidant in the local treatment of the sewage in antibiotic production was investigated. The data on oxidation of SASs and other pollutants in antibiotic production by hydrogen peroxide alone or in the presence of ferrous sulfate as a homogenous catalyst are presented. The influence of the sewage preliminary treatment by hydrogen peroxide on the foaming was studied. It was shown advisable to use the described process for the local treatment as the first stage followed by the sewage electrochemical treatment. PMID:8967796

  11. Dihydrolipoic acid inhibits 15-lipoxygenase-dependent lipid peroxidation.

    PubMed

    Lapenna, Domenico; Ciofani, Giuliano; Pierdomenico, Sante Donato; Giamberardino, Maria Adele; Cuccurullo, Franco

    2003-11-15

    The potential antioxidant effects of the hydrophobic therapeutic agent lipoic acid (LA) and of its reduced form dihydrolipoic acid (DHLA) on the peroxidation of either linoleic acid or human non-HDL fraction catalyzed by soybean 15-lipoxygenase (SLO) and rabbit reticulocyte 15-lipoxygenase (RR15-LOX) were investigated. DHLA, but not LA, did inhibit SLO-dependent lipid peroxidation, showing an IC(50) of 15 microM with linoleic acid and 5 microM with the non-HDL fraction. In specific experiments performed with linoleic acid, inhibition of SLO activity by DHLA was irreversible and of a complete, noncompetitive type. In comparison with DHLA, the well-known lipoxygenase inhibitor nordihydroguaiaretic acid and the nonspecific iron reductant sodium dithionite inhibited SLO-dependent linoleic acid peroxidation with an IC(50) of 4 and 100 microM, respectively, while the hydrophilic thiol N-acetylcysteine, albeit possessing iron-reducing and radical-scavenging properties, was ineffective. Remarkably, DHLA, but not LA, was also able to inhibit the peroxidation of linoleic acid and of the non-HDL fraction catalyzed by RR15-LOX with an IC(50) of, respectively, 10 and 5 microM. Finally, DHLA, but once again not LA, could readily reduce simple ferric ions and scavenge efficiently the stable free radical 1,1-diphenyl-2-pycrylhydrazyl in ethanol; DHLA was considerably less effective against 2,2'-azobis(2-amidinopropane) dihydrochloride-mediated, peroxyl radical-induced non-HDL peroxidation, showing an IC(50) of 850 microM. Thus, DHLA, at therapeutically relevant concentrations, can counteract 15-lipoxygenase-dependent lipid peroxidation; this antioxidant effect may stem primarily from reduction of the active ferric 15-lipoxygenase form to the inactive ferrous state after DHLA-enzyme hydrophobic interaction and, possibly, from scavenging of fatty acid peroxyl radicals formed during lipoperoxidative processes. Inhibition of 15-lipoxygenase oxidative activity by DHLA could occur in

  12. Optimization of Hydrogen Peroxide Detection for a Methyl Mercaptan Biosensor

    PubMed Central

    Li, Zhan-Hong; Guedri, Houssemeddine; Viguier, Bruno; Sun, Shi-Gang; Marty, Jean-Louis

    2013-01-01

    Several kinds of modified carbon screen printed electrodes (CSPEs) for amperometric detection of hydrogen peroxide (H2O2) are presented in order to propose a methyl mercaptan (MM) biosensor. Unmodified, carbon nanotubes (CNTs), cobalt phthalocyanine (CoPC), Prussian blue (PB), and Os-wired HRP modified CSPE sensors were fabricated and tested to detect H2O2, applying a potential of +0.6 V, +0.6 V, +0.4 V, −0.2 V and −0.1 V (versus Ag/AgCl), respectively. The limits of detection of these electrodes for H2O2 were 3.1 μM, 1.3 μM, 71 nM, 1.3 μM, 13.7 nM, respectively. The results demonstrated that the Os-wired HRP modified CSPEs gives the lowest limit of detection (LOD) for H2O2 at a working potential as low as −0.1 V. Os-wired HRP is the optimum choice for establishment of a MM biosensor and gives a detection limit of 0.5 μM. PMID:23591963

  13. Graphene Oxide Based Fluorometric Detection of Hydrogen Peroxide in Milk.

    PubMed

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-01-01

    We report a highly rapid, visual, precise, selective and sensitive analytical method for the determination of hydrogen peroxide (H₂O₂) in milk using Graphene oxide (GO) with 2',7'-dichlorfluorescein diacetate (DCFH-DA). A 1000 µL aliquots of 10-fold diluted samples (high and low-fat milk) directly onto the 100 µL of GO and 100 µL of 100 µM DCFH-DA produced green colour under Ultraviolet light at 365 nm. The analytical feature of our proposed method includes low detection limit (10 mmol mL⁻¹) and satisfactory recovery values for samples. The presence of H202 in milk is a major concern because it constitutes a public health hazard. Many milk indursties are using H₂O₂ as a preservative, but if the concentration increases then it causes so many health problems such as neurodegenerative disorders, cancer and diabetes. Present methods show an easy way for detecting H₂O₂ generally require considerable time and laboratory facilities. The chemical tests have sufficient sensitivity to detect wide linear range of H₂O₂ concentration. PMID:27398583

  14. Glutathione and γ-glutamylcysteine in hydrogen peroxide detoxification.

    PubMed

    Quintana-Cabrera, Ruben; Bolaños, Juan P

    2013-01-01

    Hydrogen peroxide (H2O2) is an important regulator of cell redox status and signaling pathways. However, if produced in excess, it can trigger oxidative damage, which can be counteracted by the antioxidant systems. Amongst these, the glutathione (GSH) precursor, γ-glutamylcysteine (γGC), has recently been shown to detoxify H2O2 in a glutathione peroxidase-1 (GPx1)-dependent fashion. To analyze how both γGC and GSH reduce H2O2, we have taken advantage of a colorimetric assay that allows simple and reliable quantification of H2O2 in the micromolar range. Whereas most assays rely on coupled enzymatic reactions, this method determines the formation of a ferric thiocyanate derivative after direct Fe(2+) oxidation by H2O2. Here, we detail the procedure and considerations to determine H2O2 reduction by both γGC and GSH, either from cell samples or in vitro reactions with purified enzymes from GSH metabolism. PMID:23830629

  15. Preliminary flight test of hydrogen peroxide retro-propulsion module

    NASA Astrophysics Data System (ADS)

    An, Sungyong; Jo, Sungkwon; Wee, Jeonghyun; Yoon, Hosung; Kwon, Sejin

    2010-09-01

    In this paper, we present the development of a retro-thruster, the design of a retro-propulsion module, and a preliminary flight of the module in a landing demonstration. First, a retro-monopropellant thruster with the maximum thrust of 350 N that employs hydrogen peroxide as a monopropellant was developed. It's thrust force, efficiency of characteristic velocity, and specific impulse were evaluated during the course of it's development. To control the thrust force, two solenoid valves and a pulse width modulation (PWM) flow control valve were incorporated into the thruster design. Second, a retro-propulsion module with a wet mass of 23 kg was designed and fabricated. All the required components including tanks, propellant tubes, a pressure regulator, valves, a retro-thruster, and support structure were integrated into the module. Finally, a preliminary flight test with thrust and altitude control was carried out successfully. In this test, the throttling of the thrust force and altitude control was performed manually for safety purposes.

  16. Hydrogen Peroxide-Induced Akt Phosphorylation Regulates Bax Activation

    PubMed Central

    Sadidi, Mahdieh; Lentz, Stephen I.; Feldman, Eva L.

    2009-01-01

    Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences posttranslational modification of Bax and inactivate a key component of the cell death machinery. PMID:19278624

  17. Hydrogen Peroxide Produced by Oral Streptococci Induces Macrophage Cell Death

    PubMed Central

    Okahashi, Nobuo; Nakata, Masanobu; Sumitomo, Tomoko; Terao, Yutaka; Kawabata, Shigetada

    2013-01-01

    Hydrogen peroxide (H2O2) produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 human macrophage cell line at multiplicities of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited the cytotoxic effect of S. oralis. S. oralis deletion mutants lacking the spxB gene, which encodes pyruvate oxidase, and are therefore deficient in H2O2 production, showed reduced cytotoxicity toward THP-1 macrophages. Furthermore, H2O2 alone was capable of inducing cell death. The cytotoxic effect seemed to be independent of inflammatory responses, because H2O2 was not a potent stimulator of tumor necrosis factor-α production in macrophages. These results indicate that streptococcal H2O2 plays a role as a cytotoxin, and is implicated in the cell death of infected human macrophages. PMID:23658745

  18. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  19. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide

    PubMed Central

    Ermakova, Yulia G.; Bilan, Dmitry S.; Matlashov, Mikhail E.; Mishina, Natalia M.; Markvicheva, Ksenia N.; Subach, Oksana M.; Subach, Fedor V.; Bogeski, Ivan; Hoth, Markus; Enikolopov, Grigori; Belousov, Vsevolod V.

    2015-01-01

    Reactive oxygen species (ROS) are conserved regulators of numerous cellular functions, and overproduction of ROS is a hallmark of various pathological processes. Genetically encoded fluorescent probes are unique tools to study ROS production in living systems of different scale and complexity. However, the currently available recombinant redox sensors have green emission, which overlaps with the spectra of many other probes. Expanding the spectral range of recombinant in vivo ROS probes would enable multiparametric in vivo ROS detection. Here we present the first genetically encoded red fluorescent sensor for hydrogen peroxide detection, HyPerRed. The performance of this sensor is similar to its green analogues. We demonstrate the utility of the sensor by tracing low concentrations of H2O2 produced in the cytoplasm of cultured cells upon growth factor stimulation. Moreover, using HyPerRed we detect local and transient H2O2 production in the mitochondrial matrix upon inhibition of the endoplasmic reticulum Ca2+ uptake. PMID:25330925

  20. Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication

    PubMed Central

    Ball, Rowena; Brindley, John

    2014-01-01

    This paper presents and tests a previously unrecognized mechanism for driving a replicating molecular system on the prebiotic earth. It is proposed that cell-free RNA replication in the primordial soup may have been driven by self-sustained oscillatory thermochemical reactions. To test this hypothesis, a well-characterized hydrogen peroxide oscillator was chosen as the driver and complementary RNA strands with known association and melting kinetics were used as the substrate. An open flow system model for the self-consistent, coupled evolution of the temperature and concentrations in a simple autocatalytic scheme is solved numerically, and it is shown that thermochemical cycling drives replication of the RNA strands. For the (justifiably realistic) values of parameters chosen for the simulated example system, the mean amount of replicant produced at steady state is 6.56 times the input amount, given a constant supply of substrate species. The spontaneous onset of sustained thermochemical oscillations via slowly drifting parameters is demonstrated, and a scheme is given for prebiotic production of complementary RNA strands on rock surfaces. PMID:24647902

  1. Mononuclear Iron Enzymes Are Primary Targets of Hydrogen Peroxide Stress*

    PubMed Central

    Anjem, Adil; Imlay, James A.

    2012-01-01

    This study tested whether nonredox metalloenzymes are commonly charged with iron in vivo and are primary targets of oxidative stress because of it. Indeed, three sample mononuclear enzymes, peptide deformylase, threonine dehydrogenase, and cytosine deaminase, were rapidly damaged by micromolar hydrogen peroxide in vitro and in live Escherichia coli. The first two enzymes use a cysteine residue to coordinate the catalytic metal atom; it was quantitatively oxidized by the radical generated by the Fenton reaction. Because oxidized cysteine can be repaired by cellular reductants, the effect was to avoid irreversible damage to other active-site residues. Nevertheless, protracted H2O2 exposure gradually inactivated these enzymes, consistent with the overoxidation of the cysteine residue to sulfinic or sulfonic forms. During H2O2 stress, E. coli defended all three proteins by inducing MntH, a manganese importer, and Dps, an iron-sequestration protein. These proteins appeared to collaborate in replacing the iron atom with nonoxidizable manganese. The implication is that mononuclear metalloproteins are common targets of H2O2 and that both structural and metabolic arrangements exist to protect them. PMID:22411989

  2. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA.

    PubMed

    Vilas-Boas, Filipe; Bagulho, Ana; Tenente, Rita; Teixeira, Vitor H; Martins, Gabriel; da Costa, Gonçalo; Jerónimo, Ana; Cordeiro, Carlos; Machuqueiro, Miguel; Real, Carla

    2016-01-01

    To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment. PMID:26603095

  3. Hydrogen peroxide photocycling in the Gulf of Aqaba, Red Sea.

    PubMed

    Shaked, Yeala; Harris, Raviv; Klein-Kedem, Nir

    2010-05-01

    The dynamics of hydrogen peroxide (H(2)O(2)) was investigated from December 2007 to October 2008 in the Gulf of Aqaba, which in the absence of H(2)O(2) contribution from biological production, rain and runoff, turned out to be a unique natural photochemical laboratory. A distinct seasonal pattern emerged, with highest midday surface H(2)O(2) concentrations in spring-summer (30-90 nM) as compared to winter (10-30 nM). Similarly, irradiation normalized net H(2)O(2) formation rates obtained in concurrent ship-board experiments were faster in spring-summer than in winter. These seasonal patterns were attributed to changes in water characteristics, namely elevated spring-summer chromophoric dissolved organic matter (CDOM). The role of trace elements in H(2)O(2) photoformation was studied by simultaneously measuring superoxide (O(2)(-)), Fe(II), and H(2)O(2) formation and loss in ambient seawater and in the presence of superoxide dismutase, iron and copper. O(2)(-) was found to decay fast in the Gulf water, with a half-life of 15-28 s, primarily due to catalytic reactions with trace metals (predominantly copper). Hence, H(2)O(2) formation in the Gulf involves metal-catalyzed O(2)(-) disproptionation. Added iron moderately lowered net H(2)O(2) photoformation, probably due to its participation in Fe(II) oxidation, a process that may also modify H(2)O(2) formation in situ. PMID:20377174

  4. Reusable sensor based on high magnetization carboxyl-modified graphene oxide with intrinsic hydrogen peroxide catalytic activity for hydrogen peroxide and glucose detection.

    PubMed

    Yang, Hung-Wei; Hua, Mu-Yi; Chen, Shi-Lian; Tsai, Rung-Ywan

    2013-03-15

    We propose a new strategy to improve the enzyme stability, construction and sensitivity of a multifunctional sensor. An exfoliated graphene oxide sheet with carboxyl-long-chains (GO-CLC) was prepared in one step from primitive graphite via Friedel-Crafts acylation. Magnetic nanoparticles, glucose oxidase (GOD) and poly[aniline-co-N-(1-one-butyric acid) aniline] (SPAnH) were then incorporated to form an electrochemical film (SPAnH-HMGO-CLC-GOD) for the detection of hydrogen peroxide (H(2)O(2)) and glucose. The GO and Fe(3)O(4) have intrinsic hydrogen peroxide catalytic activity and the activity will be enhanced by the combination of SPAnH coating and induces an amplification of electrochemical reduction current. This response can be used as a glucose sensor by tracing the released H(2)O(2) after enzymatic reaction of bound GOD. Our sensor was linear within the range from 0.01 mM to 1mM H(2)O(2) and 0.1mM to 1.4mM glucose, with high sensitivities of 4340.6 μA mM(-1) cm(-2) and 1074.6 μA mM(-1) cm(-2), respectively. The relative standard deviations (RSD) were 5.4% for H(2)O(2) detection and 5.8% for glucose detection. The true detecting range was 0.4-40 mM for H(2)O(2) and 4-56 mM for glucose, which multiplied by 40-fold of dilution. This sensor based on the catalysis of organic SPAnH and the enzymatic activity of GOD can be used for both H(2)O(2) and glucose sensing in potential clinical, environmental and industrial applications. PMID:22959012

  5. Optimization of two methods for the analysis of hydrogen peroxide: high performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode.

    PubMed

    Tarvin, Megan; McCord, Bruce; Mount, Kelly; Sherlach, Katy; Miller, Mark L

    2010-11-26

    Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC-FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC-ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400 mV vs. hydrogen reference electrode (Pd/H(2)). Both methods were linear across the range of 15-300 μM, and the electrochemical method was linear across a wider range of 7.4-15,000 μM. The limit of detection for hydrogen peroxide was 6 μM by HPLC/FD, and 0.6 μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris. PMID:21030031

  6. Nanoceria based electrochemical sensor for hydrogen peroxide detection.

    PubMed

    Ujjain, Sanjeev Kumar; Das, Anubhav; Srivastava, Gaurav; Ahuja, Preety; Roy, Manas; Arya, Aditya; Bhargava, Kalpana; Sethy, Niroj; Singh, Sushil Kumar; Sharma, Raj Kishore; Das, Mainak

    2014-09-01

    Oxidative stress is a condition when the concentration of free radicals and reactive molecular species rise above certain level in living systems. This condition not only perturbs the normal physiology of the system but also has been implicated in many diseases in humans and other animals. Hydrogen peroxide (H2O2) is known to be involved in induction of oxidative stress and has also been linked to a variety of ailments such as inflammation, rheumatoid arthritis, diabetes, and cancer in humans. It is one of the more stable reactive molecular species present in living systems. Because of its stability and links with various diseases, sensing the level of H2O2 can be of great help in diagnosing these diseases, thereby easing disease management and amelioration. Nanoceria is a potent candidate in free radical scavenging as well as sensing because of its unique redox properties. These properties have been exploited, in the reported work, to sense and quantify peroxide levels. Nanoceria has been synthesized using different capping agents: Hexamethylene-tetra-amine (HMTA) and fructose. CeO2-HMTA show rhombohedral and cubic 6.4 nm particles whereas CeO2-fructose are found to be spherical with average particle diameter size 5.8 nm. CeO2-HMTA, due to the better exposure of the active (200) and (220) planes relative to (111) plane, exhibits superior electrocatalytic activity toward H2O2 reduction. Amperometric responses were measured by increasing H2O2 concentration. The authors observed a sensitivity of 21.13 and 9.6 μA cm(-2) mM(-1) for CeO2-HMTA and CeO2-fructose, respectively. The response time of 4.8 and 6.5 s was observed for CeO2-HMTA and CeO2-fructose, respectively. The limit of detection is as low as 0.6 and 2.0 μM at S/N ratio 3 for CeO2-HMTA and CeO2-fructose, respectively. Ceria-HMTA was further tested for its antioxidant activity in an animal cell line in vitro and the results confirmed its activity. PMID:25280852

  7. ENHANCED BIOREMEDIATION UTILIZING HYDROGEN PEROXIDE AS A SUPPLEMENTAL SOURCE OF OXYGEN: A LABORATORY AND FIELD STUDY

    EPA Science Inventory

    Laboratory and field scale studies were conducted to investigate the feasibility of using hydrogen peroxide as a supplemental source of oxygen for bioremediation of an aviation gasoline fuel spill. Field samples of aviation gasoline contaminated aquifer material were artificially...

  8. [The Clinical Application Status and Development Trends of Hydrogen Peroxide Low Temperature Plasma Sterilizers].

    PubMed

    Zhuang, Min; Zheng, Yunxin; Chen, Ying; Hou, Bin; Xu, Zitian

    2016-01-01

    The hydrogen peroxide low temperature plasma sterilization technology solved the problems of thermo-sensitive materials' disinfection and sterilization based on its development and unique characteristics. This paper introduced the researches of clinical application quality control, and showed the hydrogen peroxide low temperature plasma sterilizers were being widely used in hospitals and highly recognized. According to the clinical data and the literatures of the domestic equipment in preliminary application, it could be concluded that the technology maturity of domestic hydrogen peroxide low temperature plasma sterilizers was in a high level. The advantages of using domestic hydrogen peroxide low temperature plasma sterilizers to do disinfection and sterilization included lower cost, safer, faster and non-toxic, etc. Also the management system should be improved and the clinical staff should master the technical essentials, obey the procedures strictly, verify periodically and offer full monitoring to upgrade the quality of sterilization. PMID:27197500

  9. An automated system for the measurement of hydrogen peroxide in industrial applications

    PubMed Central

    Westbroek, Philippe; Temmerman, Edward; Kiekens, Paul; Govaert, Filip

    1998-01-01

    An automated sensor system for the continuous and in-line measurement of hydrogen peroxide in industrial applications is described. The hydrogen peroxide concentration can be measured over the entire pH range, over a wide concentration range of hydrogen peroxide (10-3 70 g/l), from 0 to 70°C, and with high precision and accuracy (errors less than 1% ). The system consists of a bypass in which the necessary electrodes are positioned and electronically controlled. The sensor is very selective for hydrogen peroxide, easy to instal, and it is stable for at least two months after calibration. The calibration can be done in the process solution during a running process. PMID:18924833

  10. Certification of vapor phase hydrogen peroxide sterilization process for spacecraft application

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Koukol, R.; Foster, T. L.; Stabekis, P. D.

    2002-01-01

    This paper describes the selection process and research activities JPL is planning to conduct for certification of hydrogen peroxide as a NASA approved technique for sterilization of various spacecraft parts/components and entire modern spacecraft.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  12. FLOW INJECTION ANALYSIS OF TRACE HYDROGEN PEROXIDE USING AN IMMOBILIZED ENZYME REACTOR (JOURNAL VERSION)

    EPA Science Inventory

    Sub-parts per billion (ppb) levels of aqueous hydrogen peroxide have been determined with a flow injection analysis system employing a single bead string reactor composed of horseradish peroxidase covalently bound to an aminated macroporous polymeric absorbent with glutaraldehyde...

  13. SnFe2 O4 Nanocrystals as Highly Efficient Catalysts for Hydrogen-Peroxide Sensing.

    PubMed

    Lee, Kuan-Ting; Liu, Dai-Ming; Lu, Shih-Yuan

    2016-07-25

    SnFe2 O4 nanocrystals (NC), prepared with a simple one-step carrier-solvent-assisted interfacial reaction process, were developed as highly efficient catalysts for hydrogen peroxide sensing. These NCs, with a size of around 7 nm, served as the sensing catalyst and were decorated onto the pore surfaces of a porous fluorine-doped tin oxide (PFTO) host electrode, prepared from commercial FTO glass with a simple anodic treatment, to form the sensing electrode for hydrogen peroxide. The SnFe2 O4 NCs-loaded PFTO electrode exhibited an ultra-high sensitivity of 1027 mA m(-1)  cm(-2) toward hydrogen peroxide, outperforming Pt NCs-loaded PFTO electrodes. The SnFe2 O4 NCs-loaded PFTO electrode proved a promising relatively low cost, high performance sensing electrode for hydrogen peroxide. PMID:27346720

  14. HOMOGENEOUS CATALYSTS FOR THE PARTIAL-OXYGENATION OF SATURATED HYDROCARBONS WITH HYDROGEN PEROXIDE

    EPA Science Inventory

    The development of catalysts with the capacity to activate green oxidants, such as hydrogen peroxide and molecular oxygen, can offer an environmentally sound pathway for hydrocarbon oxidation. Furthermore, by including the concepts of green chemistry and pollution prevention one ...

  15. Developing Planetary Protection Technology: Recurrence of Hydrogen Peroxide Resistant Microbes from Spacecraft Assembly Facilities

    NASA Astrophysics Data System (ADS)

    Kempf, M. J.; Chen, F.; Quigley, M. S.; Pillai, S.; Kern, R.; Venkateswaran, K.

    2001-12-01

    Hydrogen peroxide vapor is currently the sterilant-of-choice for flight hardware because it is a low-heat sterilization process suitable for use with various spacecraft components. Hydrogen peroxide is a strong oxidizing agent that produces hydroxyl free radicals ( .OH) which attack essential cell components, including lipids, proteins, and DNA. Planetary protection research efforts at the Jet Propulsion Laboratory (JPL) are focused on developing cleaning and sterilization technologies for spacecraft preparation prior to launch. These efforts include research to assess the microbial diversity of spacecraft assembly areas and any extreme characteristics these microbes might possess. Previous studies have shown that some heat-tolerant Bacillus species isolated from the JPL Spacecraft Assembly Facility (SAF) are resistant to recommended hydrogen peroxide vapor sterilization exposures. A Bacillus species, which was related to a hydrogen peroxide resistant strain, was repeatedly isolated from various locations in the JPL-SAF. This species was found in both unclassified (entrance floors, ante-room, and air-lock) and classified (class 100K) (floors, cabinet tops, and air) areas. The phylogenetic affiliation of these strains was carried out using biochemical tests and 16S rDNA sequencing. The 16S rDNA analysis showed >99% sequence similarity to Bacillus pumilus. In order to understand the epidemiology of these strains, a more highly evolved gene (topoisomerase II β -subunit, gyrB) was also sequenced. Among 4 clades, one cluster, comprised of 3 strains isolated from the air-lock area, tightly aligned with the B. pumilus ATCC 7061 type strain (97%). The gyrB sequence similarity of this clade was only 91% with the 3 other clades. The genetic relatedness of these strains, as per pulse field gel electrophoresis patterns, will be presented. The vegetative cells and spores of a number of isolates were tested for their hydrogen peroxide resistance. Cells and spores were

  16. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco

    PubMed Central

    Vandenabeele, Steven; Van Der Kelen, Katrien; Dat, James; Gadjev, Ilya; Boonefaes, Tom; Morsa, Stijn; Rottiers, Pieter; Slooten, Luit; Van Montagu, Marc; Zabeau, Marc; Inzé, Dirk; Van Breusegem, Frank

    2003-01-01

    Hydrogen peroxide plays a central role in launching the defense response during stress in plants. To establish a molecular profile provoked by a sustained increase in hydrogen peroxide levels, catalase-deficient tobacco plants (CAT1AS) were exposed to high light (HL) intensities over a detailed time course. The expression kinetics of >14,000 genes were monitored by using transcript profiling technology based on cDNA-amplified fragment length polymorphism. Clustering and sequence analysis of 713 differentially expressed transcript fragments revealed a transcriptional response that mimicked that reported during both biotic and abiotic stresses, including the up-regulation of genes involved in the hypersensitive response, vesicular transport, posttranscriptional processes, biosynthesis of ethylene and jasmonic acid, proteolysis, mitochondrial metabolism, and cell death, and was accompanied by a very rapid up-regulation of several signal transduction components. Expression profiling corroborated by functional experiments showed that HL induced photoinhibition in CAT1AS plants and that a short-term HL exposure of CAT1AS plants triggered an increased tolerance against a subsequent severe oxidative stress. PMID:14671332

  17. Evaluation of cotton-fabric bleaching using hydrogen peroxide and Blue LED

    NASA Astrophysics Data System (ADS)

    de Oliveira, Bruno P.; Moriyama, Lilian T.; Bagnato, Vanderlei S.

    2015-06-01

    The raw cotton production requires multiple steps being one of them the removal of impurities acquired during previous processes. This procedure is widely used by textile industries around the world and is called bleaching. The raw cotton is composed by cellulosic and non-cellulosic materials like waxes, pectins and oils, which are responsible for its characteristic yellowish color. The bleaching process aims to remove the non-cellulosic materials concentration in the fabric, increasing its whiteness degree. The most used bleaching method utilizes a bath in an alkali solution of hydrogen peroxide, stabilizers and buffer solutions under high temperature. In the present study we evaluated the possibility of using a blue illumination for the bleaching process. We used blue LEDs (450 nm) to illuminate an acid hydrogen peroxide solution at room temperature. The samples treated by this method were compared with the conventional bleaching process through a colorimetric analysis and by a multiple comparison visual inspection by volunteers. The samples were also studied by a tensile test in order to verify the integrity of the cloth after bleaching. The results of fabric visual inspection and colorimetric analysis showed a small advantage for the sample treated by the standard method. The tensile test showed an increasing on the yield strength of the cloth after blue light bleaching. The presented method has great applicability potential due to the similar results compared to the standard method, with relative low cost and reduced production of chemical waste.

  18. Electrophilic activation of hydrogen peroxide: selective oxidation reactions in perfluorinated alcohol solvents.

    PubMed

    Neimann, K; Neumann, R

    2000-09-01

    [reaction; see text] The catalytic electrophilic activation of hydrogen peroxide with transition metal compounds toward reaction with nucleophiles is a matter of very significant research and practical interest. We have now found that use of perfluorinated alcoholic solvents such as 1,1, 1,3,3,3-hexafluoro-2-propanol in the absence of catalysts allowed electrophilic activation of hydrogen peroxide toward epoxidation of alkenes and the Baeyer-Villiger oxidation of ketones. PMID:10964384

  19. Safety issues of high-concentrated hydrogen peroxide production used as rocket propellant

    NASA Astrophysics Data System (ADS)

    Romantsova, O. V.; Ulybin, V. B.

    2015-04-01

    The article dwells on the possibility of production of high-concentrated hydrogen peroxide with the Russian technology of isopropyl alcohol autoxidation. Analysis of fire/explosion hazards and reasons of insufficient quality is conducted for the technology. Modified technology is shown. Non-standard fire/explosion characteristics required for integrated fire/explosion hazards rating for modified hydrogen peroxide production based on the autoxidation of isopropyl alcohol are defined.

  20. Efficacy of hydrogen peroxide to control saprolegniasis on channel catfish (Ictalurus punctatus) eggs

    USGS Publications Warehouse

    Rach, J.J.; Valentine, J.J.; Schreier, T.M.; Gaikowski, M.P.; Crawford, T.G.

    2004-01-01

    The efficacy of hydrogen peroxide to control mortality associated with saprolegniasis in channel catfish (Ictalurus punctatus) eggs was evaluated at the Lost Valley State Fish Hatchery (Warsaw, MO). Two efficacy trials were conducted. In Trial 1, channel catfish eggs in their natural gelatinous matrix were treated with hydrogen peroxide at 0, 500, and 750 mg l(-1). Channel catfish eggs in Trial 2 had the gelatinous matrix removed before treatment with hydrogen peroxide at 0 and 500 mg l(-1). Each treatment regimen was tested in triplicate and each egg jar contained similar to 17,400 eggs. Hydrogen peroxide was administered as a 15-min flow-through treatment applied once daily for a total of six applications. Control jars were similarly treated with culture water. Samples of exposure water were collected during each treatment and analyzed to verify actual treatment concentrations. Hydrogen peroxide treatment efficacy was assessed by comparing the percent egg hatch in the treatment group to the untreated control group in each trial. Mean percent hatch in Trial I was 44% (control), 54% (500 mg l(-1)), and 69% (750 mg l(-1)). Hydrogen peroxide treatment at either 500 or 750 mg l(-1) significantly (P<0.01) increased the percent hatch compared to the untreated control group. In Trial 2, hydrogen peroxide treatment at 500 mg l(-1) significantly (P<0.01) increased the percent egg hatch (67%) relative to the untreated controls (57%). Hydrogen peroxide treatment reduced egg mortality and increased the percent hatch of channel catfish eggs regardless of whether eggs were incubated in the gelatinous matrix or without the matrix in comparison to the untreated control. (C) 2004 Elsevier B.V. All rights reserved.

  1. Cerebral arterial gas embolism after pre-flight ingestion of hydrogen peroxide.

    PubMed

    Smedley, Ben L; Gault, Alan; Gawthrope, Ian C

    2016-06-01

    Cerebral arterial gas embolism (CAGE) is a feared complication of ambient depressurisation and can also be a complication of hydrogen peroxide ingestion. We present an unusual case of CAGE in a 57-year-old woman exposed to both of these risk factors. We describe her subsequent successful treatment with hyperbaric oxygen, despite a 72-hour delay in initial presentation and diagnosis, and discuss the safety of aero-medical transfer following hydrogen peroxide ingestions. PMID:27335000

  2. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  3. Sensitive hydrogen peroxide content measurement technology using refractive-index-based optical device

    NASA Astrophysics Data System (ADS)

    Peng, Bao-jin; Ying, Chao-Fu; Ye, Hui-qun; Zhao, Yong; Liu, Yun-Tao

    2005-01-01

    Monitoring of water quality is essential to modern life. Not only is it a major factor in safeguarding public health, high quality freshwater is also a key input in agriculture and many industrial process. A preliminary prototype for hydrogen peroxide content in water is setup and introduced. Based on the detection of beam deviation due to the refractive index changes of the aqueous hydrogen peroxide solution, hydrogen peroxide content can be measured by a position-sensitive detector. Measurement principle is theoretically described. Experimental results indicate the feasibility of the developed system. Not like intensity-modulated refractive index sensor which necessitates a stable light source, this sensor exploits the beam deviation due to optical refraction at the receiving end face of the measurement cell, which is caused by changes in refractive index with different hydrogen peroxide content in water. Hydrogen peroxide content measurement resolution can reach about 0.01% within the measurement range from distilled water to hydrogen peroxide content of 30%.

  4. In situ oxidation remediation technologies: kinetic of hydrogen peroxide decomposition on soil organic matter.

    PubMed

    Romero, Arturo; Santos, Aurora; Vicente, Fernando; Rodriguez, Sergio; Lafuente, A Lopez

    2009-10-30

    Rates of hydrogen peroxide decomposition were investigated in soils slurries. The interaction soil-hydrogen peroxide was studied using a slurry system at 20 degrees C and pH 7. To determine the role of soil organic matter (SOM) in the decomposition of hydrogen peroxide, several experiments were carried out with two soils with different SOM content (S1=15.1%, S2=10%). The influence of the oxidant dosage ([H2O2](o) from 10 to 30 g L(-1) and soil weight to liquid phase volume ratio=500 g L(-1)) was investigated using the two calcareous loamy sand soil samples. The results showed a rate dependency on both SOM and hydrogen peroxide concentration being the H2O2 decomposition rate over soil surface described by a second-order kinetic expression r(H2O2) = -dn(H2O2) / W(SOM) dt = kC(H2O2) C(SOM). Thermogravimetric analysis (TGA) was used to evaluate the effect caused by the application of this oxidant on the SOM content. It was found a slightly increase of SOM content after treatment with hydrogen peroxide, probably due to the incorporation of oxygen from the oxidant (hydrogen peroxide). PMID:19520509

  5. Can an LED-laser hybrid light help to decrease hydrogen peroxide concentration while maintaining effectiveness in teeth bleaching?

    NASA Astrophysics Data System (ADS)

    Martín, J.; Ovies, N.; Cisternas, P.; Fernández, E.; Oliveira Junior, O. B.; de Andrade, M. F.; Moncada, G.; Vildósola, P.

    2015-02-01

    The aim of this study was to compare the bleaching efficacy of 35% hydrogen peroxide and 15% hydrogen peroxide with nitrogen-doped titanium dioxide catalysed by an LED-laser hybrid light. We studied 70 patients randomized to two groups. Tooth shade and pulpal sensitivity were registered. Group 1: 15% hydrogen peroxide with nitrogen-doped titanium dioxide. Group 2: 35% hydrogen peroxide. Both groups were activated by an LED-laser light. No significant differences were seen in shade change immediately, one week or one month after treatment (p > 0.05). Differences were seen in pulpal sensitivity (p < 0.05). The use of an LED-laser hybrid light to activate 15% hydrogen peroxide gel with N_TiO2 permits decreasing the peroxide concentration with similar aesthetic results and less pulpal sensitivity than using 35% hydrogen peroxide for bleaching teeth.

  6. Hydrogen peroxide induced responses of cat tracheal smooth muscle cells

    PubMed Central

    Bauer, V; Oike, M; Tanaka, H; Inoue, R; Ito, Y

    1997-01-01

    The effects of hydrogen peroxide H2O2 (10−6 and 10−3 M) on membrane potential, membrane currents, intracellular calcium concentration, resting muscle tone and contractions elicited by electrical field stimulation (EFS) and carbachol were examined in cat tracheal strips and isolated smooth muscle cells. H2O2 (10−4 and 10−5 M) enhanced the amplitude of contractions and excitatory junction potentials (e.j.p.) evoked by EFS without changing muscle tone and resting membrane potential of the tracheal smooth muscle, and enhanced the contraction induced by carbachol (10−8 M). At an increased concentration (10−3 M), H2O2 elevated resting muscle tone and marginally hyperpolarized the membrane in the majority of the cells. In 51 out of 56 cells examined, H2O2 (10−6–10−3 M) elicited an outward current at a holding potential of −40 mV and enhanced the frequency of the spontaneous transient outward current (STOC). In 20 cells the outward current was preceded by a small inward current. In the other cells, H2O2 elicited only an inward current or did not affect the background current. In Ca2+ free solution the action of H2O2 on the resting muscle tone, STOCs, background current and on the current induced by ramp depolarization was significantly reduced. H2O2 (10−4 M) increased the intracellular ionized calcium concentration both in the absence and presence of external Ca2+. However, the effect developed faster and was of a higher amplitude in the presence of external Ca2+. These results suggest that H2O2 increases intracellular Ca2+, with a subsequent augmentation of stimulation-evoked contractions, and enhances Ca2+ and voltage-sensitive potassium conductance. PMID:9222542

  7. Impairment of phagocytic functions of alveolar macrophages by hydrogen peroxide

    SciTech Connect

    Oosting, R.S.; van Bree, L.; van Iwaarden, J.F.; van Golde, L.M.; Verhoef, J. )

    1990-08-01

    Hydrogen peroxide (H2O2) inhibited phagocytosis and superoxide anion production by rat alveolar macrophages. The inhibition was irreversible and concentration and exposure time dependent. The potential relationship between H2O2-induced biochemical perturbations and impaired alveolar macrophage phagocytic functions was investigated. Alveolar macrophage viability and Fc receptor binding capacity were not affected by H2O2. There was probably no correlation between a H2O2-induced rise in cytosolic (Ca2+) ((Ca2+)i) and the impairment of phagocytosis by alveolar macrophages, as was suggested by the following findings. First, the H2O2-induced rise in (Ca2+)i could be inhibited by chelation of extracellular Ca2+, whereas the H2O2-induced impairment of phagocytosis could not. Second, the H2O2-induced rise in (Ca2+)i was reversible, whereas the impairment of phagocytosis was not. And finally, a rise in (Ca2+)i by incubation of alveolar macrophages with the calcium ionophore A23187 did not affect phagocytosis. Various experiments suggested that ATP depletion may play an important role in the H2O2 toxicity for alveolar macrophages. Comparable concentrations of H2O2 caused an irreversible decrease both in cellular ATP and in phagocytosis and superoxide production by alveolar macrophages. In addition, time course of ATP depletion and induction of impaired alveolar macrophage function were similar. In view of the fact that the strong oxidant H2O2 may react with a large variety of biological substances, possible other toxic lesions may not be excluded as underlying mechanism for H2O2-induced inhibition of phagocytic functions of alveolar macrophages.

  8. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  9. Shock initiation studies on high concentration hydrogen peroxide

    SciTech Connect

    Sheffield, Stephen A; Dattelbaum, Dana M; Stahl, David B; Gibson, L. Lee; Bartram, Brian D.

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  10. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  11. Photochemistry of hydrogen peroxide in Kr and Xe matrixes

    NASA Astrophysics Data System (ADS)

    Khriachtchev, Leonid; Pettersson, Mika; Jolkkonen, Santtu; Pehkonen, Susanna; Räsänen, Markku

    2000-02-01

    UV photolysis of hydrogen peroxide (H2O2) in various rare-gas matrixes is comparatively studied. The photorecovery of H2O2 from the tight H2O⋯O complex is observed in Kr and Xe matrixes, in addition to this reaction in an Ar matrix found previously. The similarity of spectral position and efficiency of the photorecovery reaction in various rare-gas solids indicates its fundamental character, supports charge-transfer excitation of H2O⋯O as its origin, and preserves promises to find this photoreaction in media of environmental importance. In UV photolysis of H2O2, the relatively small concentration of isolated OH radicals is found in a Kr matrix, and no OH radicals appear in a Xe matrix, and this trend is discussed in terms of delayed cage exit. Moreover, additional species photogenerated from H2O2 in a Xe matrix as well as the absence of OH radicals might be connected with participation of some hidden intermediates (HOXeOH, HXeOOH, etc.) in the dynamics, thus, catalyzing new photodissociation channels. Among the photolysis products, the loose H2O//O complex is suggested to be stabilized in Kr and Xe matrixes. This loosely bound complex is quasistable and decomposes at relatively low temperatures (below 20 K) quantitatively forming the known tight H2O⋯O structure. This low-temperature process offers one additional example of short-range atomic mobility introduced recently in the literature.

  12. Considerations for Storage of High Test Hydrogen Peroxide (HTP) Utilizing Non-Metal Containers

    NASA Technical Reports Server (NTRS)

    Moore, Robin E.; Scott, Joseph P.; Wise, Harry

    2005-01-01

    When working with high concentrations of hydrogen peroxide, it is critical that the storage container be constructed of the proper materials, those which will not degrade to the extent that container breakdown or dangerous decomposition occurs. It has been suggested that the only materials that will safely contain the peroxide for a significant period of time are metals of stainless steel construction or aluminum use as High Test Hydrogen Peroxide (HTP) Containers. The stability and decomposition of HTP will be also discussed as well as various means suggested in the literature to minimize these problems. The dangers of excess oxygen generation are also touched upon.

  13. The effect of ammonium ions on oxygen reduction and hydrogen peroxide formation on polycrystalline Pt electrodes

    NASA Astrophysics Data System (ADS)

    Halseid, Rune; Heinen, Martin; Jusys, Zenonas; Jürgen Behm, R.

    The influence of ammonium ions on the activity and selectivity of the electrocatalytic oxygen reduction reaction (ORR) on polycrystalline Pt was investigated in model studies under continuous mass transport, both in sulfuric and perchloric acid solutions. Ammonium was found to increase the yield of hydrogen peroxide, particularly in sulfuric acid, but also in perchloric acid solutions, and also at higher potentials (0.80-0.90 V RHE) typical for fuel cell cathode operation, which may severely impair the long-term stability of membranes and electrodes in fuel cells exposed to fuel gases and/or air containing ammonia. Adsorbed species, assigned to ammonia and nitric oxide, were identified on a Pt film electrode using in situ FTIR spectroscopy. Adsorbed nitric oxide could only be observed in perchloric acid solutions. The higher coverage of adsorbed ammonia in sulfuric acid solution is attributed to a stabilization by coadsorbed (bi-)sulfate species; the higher total coverage in this electrolyte can explain the larger effect of ammonium ions on the ORR activity and selectivity in sulfuric compared to perchloric acid solution.

  14. Replacement of hydrogen peroxide cleaning with oxygen plasma

    NASA Astrophysics Data System (ADS)

    Adams, B. E.

    1992-03-01

    Comparison between the standard peroxide cleaning method and an oxygen plasma modified version was run on thin film bond monitors. The plasma modified version substituted oxygen plasma for the peroxide cleaning step in the process and reduced the DI rinse water temperature from 75 C to 25 C. A direct surface cleanliness comparison was made between the two cleaning methods using Auger spectroscopy. A beam lead and ribbon bonding experiment was also run on plasma-cleaned networks. Results of both experiments indicate that plasma cleaning is superior to peroxide cleaning and that reliable bonding can be done on plasma-cleaned thin film networks.

  15. Mechanism of the formation of hydrogen tetroxide and peroxide via low-temperature interaction between hydrogen atoms and molecular oxygen

    NASA Astrophysics Data System (ADS)

    Levanov, A. V.; Isaikina, O. Ya.; Antipenko, E. E.; Lunin, V. V.

    2014-09-01

    A mechanism and kinetic model for the synthesis of peroxide radical condensate via the low-temperature interaction of hydrogen atoms with O2 molecules is proposed. The main components of the reaction, hydrogen tetroxide H2O4 and hydrogen peroxide H2O2, are formed in a low-temperature liquid layer formed near the cold surface during synthesis. Molecules of H2O4 and H2O2 are stabilized by transitioning to the solid phase. The dependences of the ratio on the ratio of concentrations of H and O2 in the gas phase, calculated on the basis of the model, are consistent with the experimental data.

  16. Mechanical wounding-induced laticifer differentiation in rubber tree: An indicative role of dehydration, hydrogen peroxide, and jasmonates.

    PubMed

    Tian, Wei-Min; Yang, Shu-Guang; Shi, Min-Jing; Zhang, Shi-Xin; Wu, Ji-Lin

    2015-06-15

    The secondary laticifer in the secondary phloem of rubber tree are a specific tissue differentiating from vascular cambia. The number of the secondary laticifers is closely related to the rubber productivity of Hevea. Factors involved in the mechanical wounding-induced laticifer differentiation were analyzed by using paraffin section, gas chromatography-mass spectrometry (GC-MS), and Northern-blot techniques. Dehydration of the wounded bark tissues triggered a burst of hydrogen peroxide, abscisic acid, and jasmonates and up-regulated the expression of HbAOSa, which was associated with the secondary laticifer differentiation strictly limited to the wounded area. Application of exogenous hydrogen peroxide, methyl jasmonate, and polyethylene glycol 6000 (PEG6000) could induce the secondary laticifer differentiation, respectively. Moreover, 6-Benzylaminopurine, a synthetic cytokinin, enhanced the methyl jasmonate-induced secondary laticifer differentiation. However, the dehydration-induced secondary laticifer differentiation was inhibited by exogenous abscisic acid. Diphenyleneiodonium chloride (DPI), a specific inhibitor of NADPH oxidase, was effective in inhibiting the accumulation of hydrogen peroxide as well as of jasmonates upon dehydration. It blocked the dehydration-induced but not the methyl jasmonate-induced secondary laticifer differentiation. The results suggested a stress signal pathway mediating the wound-induced secondary laticifer differentiation in rubber tree. PMID:26070085

  17. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    PubMed

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. PMID:27311789

  18. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation.

    PubMed

    Charkoudian, Louise K; Pham, David M; Franz, Katherine J

    2006-09-27

    The synthesis and structural characterization of a new pro-chelating agent, isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide (BSIH), are presented. BSIH only weakly interacts with iron unless hydrogen peroxide (H2O2) is present to remove the boronic ester protecting group to reveal a phenol that is a key metal-binding group of tridentate salicylaldehyde isonicotinoyl hydrazone (SIH). BSIH prevents deoxyribose degradation caused by hydroxyl radicals that are generated from H2O2 and redox-active iron by sequestering Fe3+ and preventing iron-promoted hydroxyl radical formation. The rate-determining step for iron sequestration is conversion of BSIH to SIH, followed by rapid Fe3+ complexation. The pro-chelate approach of BSIH represents a promising strategy for chelating a specific pool of detrimental metal ions without disturbing healthy metal ion distribution. PMID:16984186

  19. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    PubMed

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators. PMID:25133545

  20. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite

    SciTech Connect

    Clerici, M.G.; Bellussi, G. ); Romano, U. )

    1991-05-01

    The epoxidation of propylene with hydrogen peroxide in the liquid phase, in the presence of titanium silicalite catalyst (TS-1), is described. The best solvents are methonol and methanol/water mixtures. The temperature is normally between room temperature and 60{degree}C. Under these conditions, reaction rates are fast, yields on H{sub 2}O{sub 2} are quantitative, and selectivity to propylene oxide is very high. Propylene glycol and its monomethyl ethers and trace amounts of formaldehyde are the only by-products formed. Selectivity is further improved and the hydrolysis of the epoxide is almost suppressed when the residual acidity of the catalyst is completely neutralized. The activity of spent catalyst is recovered by calcining at 550{degree}C or, more simply, by washing with solvents. Complete activity recovery shows that Ti is not removed from the crystalline framework during the epoxidation reactions.

  1. Prediction of Severe Neonatal Hyperbilirubinemia Using Cord Blood Hydrogen Peroxide: A Prospective Study

    PubMed Central

    Chou, Hung-Chieh; Chien, Chiang-Ting; Tsao, Po-Nien; Hsieh, Wu-Shiun; Chen, Chien-Yi; Chang, Mei-Hwei

    2014-01-01

    Background We hypothesized that cord blood hydrogen peroxide (H2O2) could be utilized to predict the severity of neonatal hyperbilirubinemia. Methods We prospectively enrolled term or near-term healthy neonates. Cord blood and capillary blood at three days of age were measured for hydrogen peroxide and bilirubin concentrations. For newborns with hyperbilirubinemia, further blood samples were obtained at five and seven days of age. Newborns were divided into severe or less severe hyperbilirubinemic groups (peak bilirubin ≥17 mg/dL or not). The sensitivity, specificity, and negative predictive values were determined. Results There were 158 neonates enrolled. The incidence of neonatal hyperbilirubinemia was 30.5% for a concentration ≥15 mg/dl. The rising patterns were similar among bilirubin concentrations and hydrogen peroxide levels during the first few days of life. There was a strong positive correlation between bilirubin concentrations and hydrogen peroxide levels after correlation analysis. The rate of severe hyperbilirubinemia was 13.3%. It revealed that a cord blood hydrogen peroxide signal level of 2500 counts/10 seconds was an appropriate cut-off for predicting severe hyperbilirubinemia. Sensitivity and the negative predictive value were 76.2% and 93.3%, respectively. Conclusions Our findings confirm that hydrogen peroxide levels and bilirubin concentrations in cord and neonatal blood are closely related. A cord blood hydrogen peroxide level above 2500 counts/10 seconds associated with a high predictive value for severe hyperbilirubinemia. This method provides information about which neonate should be closely followed after discharge from the nursery. PMID:24466244

  2. Trends in Selective Hydrogen Peroxide Production on Transition Metal Surfaces from First Principles

    SciTech Connect

    Rankin, Rees B.; Greeley, Jeffrey P.

    2012-10-19

    We present a comprehensive, Density Functional Theory-based analysis of the direct synthesis of hydrogen peroxide, H2O2, on twelve transition metal surfaces. We determine the full thermodynamics and selected kinetics of the reaction network on these metals, and we analyze these energetics with simple, microkinetically motivated rate theories to assess the activity and selectivity of hydrogen peroxide production on the surfaces of interest. By further exploiting Brønsted-Evans-Polanyi relationships and scaling relationships between the binding energies of different adsorbates, we express the results in the form of a two dimensional contour volcano plot, with the activity and selectivity being determined as functions of two independent descriptors, the atomic hydrogen and oxygen adsorption free energies. We identify both a region of maximum predicted catalytic activity, which is near Pt and Pd in descriptor space, and a region of selective hydrogen peroxide production, which includes Au. The optimal catalysts represent a compromise between activity and selectivity and are predicted to fall approximately between Au and Pd in descriptor space, providing a compact explanation for the experimentally known performance of Au-Pd alloys for hydrogen peroxide synthesis, and suggesting a target for future computational screening efforts to identify improved direct hydrogen peroxide synthesis catalysts. Related methods of combining activity and selectivity analysis into a single volcano plot may be applicable to, and useful for, other aqueous phase heterogeneous catalytic reactions where selectivity is a key catalytic criterion.

  3. Products of binary complex compounds thermolysis: Catalysts for hydrogen peroxide decomposition

    NASA Astrophysics Data System (ADS)

    Domonov, D. P.; Pechenyuk, S. I.; Gosteva, A. N.

    2014-06-01

    Samples are obtained via the thermolysis of binary complex compounds in a hydrogen atmosphere. Their catalytic activity in hydrogen peroxide decomposition is studied. The values of the rate constants and activation energies for the catalytic reaction are estimated. The correlation between catalytic activity, composition, specific surface area ( S sp), and particle size of the samples is analyzed.

  4. Enhanced recovery of injured Escherichia coli by compounds that degrade hydrogen peroxide or block its formation.

    PubMed Central

    McDonald, L C; Hackney, C R; Ray, B

    1983-01-01

    Escherichia coli LSUFS was injured either by freezing at -10 degrees C or by heating at 57 degrees C for 12 min. Surviving cells were recovered on nonselective tryptone-glucose extract agar and selective violet red bile agar supplemented with compounds that degrade hydrogen peroxide or block its formation. Various concentrations of the following compounds were tested: sodium pyruvate, 3,3'-thiodipropionic acid, catalase, ascorbic acid, potassium permanganate, sodium thioglycolate, dimethylsulfoxide, ethoxyquin, n-propyl gallate, alpha-tocopherol sodium metabisulfite, and ferrous sulfate. Sodium pyruvate and 3,3'-thiodipropionic acid, when added to either medium, significantly (P greater than 0.01) increased recovery of injured cells. More than 90% of the heat-injured cells and 40 to 90% of the freeze-injured cells failed to grow on unsupplemented tryptone-glucose extract agar. Supplementation of violet red bile agar increased recovery, but the counts remained considerably lower than the tryptone-glucose extract agar counts. The repair detection procedure of Speck et al. (M. Speck, B. Ray, R. Read, Jr., Appl. Microbiol. 29:549-550, 1975) was greatly improved by the addition of pyruvate or 3,3'-thiodipropionic acid. However, when this improved repair detection procedure was applied to foods, pyruvate-supplemented media showed some false-positives. We therefore recommend that 3,3'-thiodipropionic acid be used to supplement media in the repair detection procedure. PMID:6338823

  5. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    PubMed Central

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  6. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    SciTech Connect

    Mahmud, Maznah; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid; Naziri, Muhammad Ihsan

    2014-02-12

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H{sub 2}O{sub 2}), 1%–5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H{sub 2}O{sub 2} enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H{sub 2}O{sub 2}based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  7. Antioxidative Reaction of Carotenes against Peroxidation of Fatty Acids Initiated by Nitrogen Dioxide: A Theoretical Study.

    PubMed

    Chen, Shau-Jiun; Huang, Li-Yen; Hu, Ching-Han

    2015-07-30

    In this study, we investigated the antioxidative functions of carotenes (CARs) against the peroxidation of lipids initiated by nitrogen dioxide using density functional theory. The hydrogen-atom transfer (HAT), radical adduct formation (RAF), and electron transfer (ET) mechanisms were investigated. We chose β-carotene (β-CAR) and lycopene (LYC) and compared their NO2(•) initiations and peroxidations with those of linoleic acid (LAH), the model of the lipid. We found that for CARs ET is more likely to occur in the most polar (water) environment than are HAT and RAF. In less polar environments, CARs react more readily with NO2(•) via HAT and RAF than does the lipid model, LAH. Comparatively, reaction barriers for the RAF between CARs and NO2(•) are smaller than those for the HAT. The additions of O2 to the radical intermediates O2N-CAR(•) and CAR(-H)(•) involve sizable barriers and are endergonic. Other than HAT of LAH, we revealed that lipid peroxidation is likely to be initiated by -NO2 addition and the subsequent barrierless addition of O2. Finally, LYC is a more effective antioxidative agent against NO2(•)-initiated lipid peroxidation than is β-CAR. PMID:26106906

  8. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    NASA Astrophysics Data System (ADS)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  9. Light and hydrogen peroxide inhibit C. elegans Feeding through gustatory receptor orthologs and pharyngeal neurons.

    PubMed

    Bhatla, Nikhil; Horvitz, H Robert

    2015-02-18

    While gustatory sensing of the five primary flavors (sweet, salty, sour, bitter, and savory) has been extensively studied, pathways that detect non-canonical taste stimuli remain relatively unexplored. In particular, while reactive oxygen species cause generalized damage to biological systems, no gustatory mechanism to prevent ingestion of such material has been identified in any organism. We observed that light inhibits C. elegans feeding and used light as a tool to uncover molecular and neural mechanisms for gustation. Light can generate hydrogen peroxide, and we discovered that hydrogen peroxide similarly inhibits feeding. The gustatory receptor family members LITE-1 and GUR-3 are required for the inhibition of feeding by light and hydrogen peroxide. The I2 pharyngeal neurons increase calcium in response to light and hydrogen peroxide, and these responses require GUR-3 and a conserved antioxidant enzyme peroxiredoxin PRDX-2. Our results demonstrate a gustatory mechanism that mediates the detection and blocks ingestion of a non-canonical taste stimulus, hydrogen peroxide. PMID:25640076

  10. Hydrogen peroxide is the most toxic oxygen species for Onchocerca cervicalis microfilariae.

    PubMed

    Callahan, H L; Crouch, R K; James, E R

    1990-06-01

    The toxicity of the active oxygen species hydrogen peroxide, superoxide radical, hydroxyl radical and singlet oxygen to microfilariae (mf) has been studied in vitro, using active oxygen-generating systems and scavengers/inhibitors. Mf viability was monitored by uptake of the radiolabel, [3H]2-deoxy-D-glucose. Hydrogen peroxide and singlet oxygen, but not superoxide radical or hydroxyl radical, are toxic for mf. Hydrogen peroxide was toxic for mf within 2 h at concentrations as low as 5 microM, an amount eosinophils have been shown to release in vitro (Weiss et al. 1986). Catalase and thiourea, but not inactivated catalase, superoxide dismutase (SOD), singlet oxygen scavengers, or hydroxyl radical scavengers, protected mf. Mf have relatively high levels of endogenous SOD but no measurable glutathione peroxidase and low levels of catalase when compared with other parasites (Callahan, Crouch & James, 1988). The low levels of hydrogen peroxide-scavenging enzymes correlate well with mf sensitivity to hydrogen peroxide and the protective effect of exogenous catalase. PMID:2163503

  11. The hydrogen peroxide impact on larval settlement and metamorphosis of abalone Haliotis diversicolor supertexta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangjing; Yang, Zhihui; Cai, Zhonghua

    2008-08-01

    Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines’ autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.

  12. Light and hydrogen peroxide inhibit C. elegans feeding through gustatory receptor orthologs and pharyngeal neurons

    PubMed Central

    Bhatla, Nikhil; Horvitz, H. Robert

    2015-01-01

    SUMMARY While gustatory sensing of the five primary flavors (sweet, salty, sour, bitter, and savory) has been extensively studied, pathways that detect non-canonical taste stimuli remain relatively unexplored. In particular, while reactive oxygen species cause generalized damage to biological systems, no gustatory mechanism to prevent ingestion of such material has been identified in any organism. We observed that light inhibits C. elegans feeding and used light as a tool to uncover molecular and neural mechanisms for gustation. Light can generate hydrogen peroxide, and we discovered that hydrogen peroxide similarly inhibits feeding. The gustatory receptor family members LITE-1 and GUR-3 are required for the inhibition of feeding by light and hydrogen peroxide. The I2 pharyngeal neurons increase calcium in response to light and hydrogen peroxide, and these responses require GUR-3 and a conserved antioxidant enzyme peroxiredoxin PRDX-2. Our results demonstrate a gustatory mechanism that mediates the detection and blocks ingestion of a non-canonical taste stimulus, hydrogen peroxide. PMID:25640076

  13. Mushroom extract protects against hydrogen peroxide-induced toxicity in hepatic and neuronal human cultured cells.

    PubMed

    Guizani, Nejib; Waly, Mostafa I

    2012-11-15

    Hydrogen peroxide is an oxidative stress agent that is associated with depletion of intracellular glutathione and inhibition of antioxidant enzymes in different cell lines. Consumption of antioxidant-rich foods reduces cellular oxidative stress and its related health problems. This study aimed to assess the antioxidant properties of mushroom, Agaricus bisporous cultivar extract, against hydrogen peroxide induced oxidative stress in cultured human hepatic (HepG2) and neuronal (SH-SY5Y) cells. In this study, hydrogen peroxide caused significant oxidative stress in HepG2 and SH-SY5Y cells as demonstrated by glutathione depletion, impairment of total antioxidant capacity and inhibition of antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase). Agaricusbisporous extract ameliorated the observed hydrogen peroxide-induced oxidative cellular insult as indicated by restoring the activity of glutathione and the assayed antioxidant enzymes to control levels. The results suggest that mushroom extract as antioxidant properties and protects against the oxidative stress induced by hydrogen peroxide-in cultured human hepatic and neuronal cells. PMID:24261122

  14. Lipoxygenase-mediated hydrogen peroxide-dependent N-demethylation of N,N-dimethylaniline and related compounds.

    PubMed

    Hover, C G; Kulkarni, A P

    2000-02-01

    To date, studies of xenobiotic N-demethylation have focused on heme-proteins such as P450 and peroxidases. In this study we investigated the ability of non-heme iron proteins, namely soybean lipoxygenase (SLO) and human term placental lipoxygenase (HTPLO) to mediate N-demethylation of N,N-dimethylaniline (DMA) and related compounds in the presence of hydrogen peroxide. In addition to being hydrogen peroxide dependent, the reaction was also dependent on incubation time, concentration of enzyme and DMA and the pH of the medium. Using Nash reagent to estimate formaldehyde production, we determined the specific activity for SLO mediated N-demethylation of DMA to be 200 + 18 nmol HCHO/min per mg protein or 23 +/- 2 nmol/min per nmol of enzyme, while that of HTPLO was 33 +/- 4 nmol HCHO/min per mg protein. Nordihydroguaiaretic acid (NDGA), a classical inhibitor of lipoxygenase (LO), as well as antioxidants and free radical reducing agents, caused a marked reduction in the rate of production of formaldehyde from DMA by SLO. Besides N,N-dimethylaniline, N-methylaniline, N,N,N',N'-tetramethylbenzidine, N,N-dimethyl-p-phenylenediamine, N,N-dimethyl-3-nitroaniline and N,N-dimethyl-p-toluidine were also demethylated by SLO. The formation of a DMA N-oxide was not detected. Preliminary experiments suggested SLO-mediated hydrogen peroxide-dependent S-dealkylation of methiocarb or O-dealkylation of 4-nitroanisole does not occur. PMID:10728778

  15. Salivary thiocyanate/nitrite inhibits hydroxylation of 2-hydroxybenzoic acid induced by hydrogen peroxide/Fe(II) systems under acidic conditions: possibility of thiocyanate/nitrite-dependent scavenging of hydroxyl radical in the stomach.

    PubMed

    Takahama, Umeo; Oniki, Takayuki

    2004-11-18

    Formation of OH radicals in the stomach is possible by Fenton-type reactions, as gastric juice contains ascorbic acid (AA), iron ions and H2O2. An objective of the present study is to elucidate the effects of salivary SCN- and NO2- on the hydroxylation of salicylic acid which was induced by H2O2/Fe(II) and AA/H2O2/Fe(II) systems. Thiocyanate ion inhibited the hydroxylation of salicylic acid by the above systems in acidic buffer solutions and in acidified saliva. The inhibition by SCN- was deduced to be due to SCN- -dependent scavenging of OH radicals. Nitrite ion could enhance the SCN- -dependent inhibition of the hydroxylation induced by AA/H2O2/Fe(II) systems. The enhancement was suggested to be due to scavenging of OH radicals by NO which was formed by the reactions among AA, HNO2 and SCN- contained in the reaction mixture. The concentrations of SCN- and NO2-, which were effective for the inhibition, were in ranges of their normal salivary concentrations. These results suggest that salivary SCN- can cooperate with NO2- to protect stomach from OH radicals formed by AA/H2O2/Fe(II) systems under acidic conditions. PMID:15535976

  16. [Continuous Generation of Hydrogen Peroxide in Water Containing Very Low Concentrations of Unsymmetrical Dimethylhydrazine].

    PubMed

    Bruskov, V I; Yaguzhinsky, L S; Masalimov, Z K; Chernikov, A V; Emelyanenko, V I; Gudkov, S V

    2015-01-01

    Continuous generation of hydrogen peroxide catalyzed by low concentrations of 1,1-dimethylhydrazine (heptyl)--a rocket fuel component--in air saturated water was shown by the method of enhanced chemiluminescence in the system of luminol-p-iodophenol-peroxidase. The concentration dependence and the influence of heat and light on the formation of hydrogen peroxide in the water under the influence of dimethylhydrazine at concentrations considerably lower than maximum allowable concentrations were studied, and the physical-chemical mechanism of this process was considered. It is supposed that dimethylhydrazine at ultra-low concentrations is associated with air nanobubbles and represents a long-lived complex performing catalysis of hydrogen peroxide formation under the influence of heat and light. We put forward the new concept of.toxicity of dimethylhydrazine at very low concentrations due to violation of homeostasis of reactive oxygen species formation in aqueous solutions entering the body of humans and animals. PMID:26394466

  17. A novel aqueous dual-channel aluminum-hydrogen peroxide battery

    SciTech Connect

    Marsh, C. . Electric Propulsion); Licht, S. . Dept. of Chemistry)

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarized losses of 0.9 mV cm[sup 2]/mA, and power densities of 1 W/cm[sup 2]. Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H[sub 2]O[sub 2] + 2 OH[sup [minus

  18. The study of hydrogen peroxide level under cisplatin action using genetically encoded sensor hyper

    NASA Astrophysics Data System (ADS)

    Belova, A. S.; Orlova, A. G.; Maslennikova, A. V.; Brilkina, A. A.; Balalaeva, I. V.; Antonova, N. O.; Mishina, N. M.; Shakhova, N. M.; Belousov, V. V.

    2014-03-01

    The aim of the work was to study the participation of hydrogen peroxide in reaction of cervical cancer cell line HeLa Kyoto on cisplatin action. Determination of hydrogen peroxide level was performed using genetically encoded fluorescent sensor HyPer2. The dependence of cell viability on cisplatin concentration was determined using MTT assay. Mechanisms of cell death as well as HyPer2 reaction was revealed by flow cytometry after 6-hours of incubation with cisplatin in different concentrations. Cisplatin used in low concentrations had no effect on hydrogen peroxide level in HeLa Kyoto cells. Increase of HyPer2 fluorescence was detected only after exposure with cisplatin in high concentration. The reaction was not the consequence of cell death.

  19. Photopatternable and Photoactive Hydrogel for On-demand Generation of Hydrogen Peroxide in Cell Culture

    PubMed Central

    Garland, Shaun P.; Wang, Royal Y.; Raghunathan, Vijay Krishna; Lam, Kit S.; Murphy, Christopher J.; Russell, Paul; Sun, Gang; Pan, Tingrui

    2014-01-01

    Oxidative stress, largely mediated by reactive oxygen species (ROS), is a nearly ubiquitous component in complex biological processes such as aging and disease. Optimal in vitro methods used in elucidating disease mechanisms would deliver of low levels of hydrogen peroxide, emulating the in vivo pathological state, but current methods are limited by kinetic stability or accurate measurement of the dose administered. Here we present an in vitro platform that exploits anthraquinone catalysts for the photocatalytic production of hydrogen peroxide. This system can be dynamically tuned to provide constant generation of hydrogen peroxide at a desired physiologic rate over at least 14 days and is described using a kinetic model. Material characterization and stability is discussed along with a proof-of-concept in vitro study that assessed the viability of cells as they were oxidatively challenged over 24 h at different ROS generation rates. PMID:24290809

  20. Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation

    SciTech Connect

    Azzam, A.M. )

    1989-01-01

    Pretreatment of the agrocellulosic waste, cane bagasse with alkaline hydrogen peroxide greatly enhances its susceptibility to enzymatic cellulolysis and thus the ethanol production from it. Various process conditions have been studied to optimize the enzymate effectiveness. These conditions include the contact time, the hydrogen peroxide concentration and the pretreatment temperature. Results obtained show, that about 50% of lignin and most of hemicellulose content of can bagasse was solubilized, by 2% alkaline hydrogen peroxide at 30{sup 0}C within 8 h. The cellulose content was consequently increased from 42% in the original cane bagasse to 75% in the oxidized pulp. Saccharification of this pulp residue with cellulase from Trichorderma viride at 45{sup 0}C for 24 h, yielded glucose with 95% efficiency. The efficiency of ethanol production from the insoluble fraction with S. cervisiae was 90% compared to about 50% for untreated cane bagasse.

  1. Surface Passivation of CdZnTe Detector by Hydrogen Peroxide Solution Etching

    NASA Technical Reports Server (NTRS)

    Hayes, M.; Chen, H.; Chattopadhyay, K.; Burger, A.; James, R. B.

    1998-01-01

    The spectral resolution of room temperature nuclear radiation detectors such as CdZnTe is usually limited by the presence of conducting surface species that increase the surface leakage current. Studies have shown that the leakage current can be reduced by proper surface preparation. In this study, we try to optimize the performance of CdZnTe detector by etching the detector with hydrogen peroxide solution as function of concentration and etching time. The passivation effect that hydrogen peroxide introduces have been investigated by current-voltage (I-V) measurement on both parallel strips and metal-semiconductor-metal configurations. The improvements on the spectral response of Fe-55 and 241Am due to hydrogen peroxide treatment are presented and discussed.

  2. Ultrafast Shock Interrogation of Hydrogen Peroxide/Water Mixtures: Thermochemical Predictions of Shock Condition Chemistry

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Armstrong, Michael; Bastea, Sorin; Carter, Jeffrey; Kuo, I.-F. William; Crowhurst, Jonathan; Grant, Christian

    2012-02-01

    Hydrogen peroxide is a powerful oxidizer and its concentrated aqueous solutions exhibit very high reactivity, even sustaining detonation under strong enough confinement. Due to its simple composition and basic expected decomposition kinetics hydrogen peroxide is very suitable for studying the interplay of high pressures, temperatures and reactivity and their effect on the equation of state, particularly at the boundary between detonating and non-detonating behavior. To this end we performed speed of sound and picosecond time resolved shock measurements on solutions of hydrogen peroxide of concentrations from 30 to 90 percent, and analyzed the results in terms of common assumptions of chemical equilibrium in reactive fluid mixtures. Experimental shock states were achieved up to a maximum pressure of 20 GPa with corresponding shock velocities of 6-7 km/sec.

  3. Design of a hydrogen peroxide-activatable agent that specifically targets cancer cells

    PubMed Central

    Vadukoot, Anish K.; AbdulSalam, Safnas F.; Wunderlich, Mark; Pullen, Eboni D.; Landero-Figueroa, Julio

    2014-01-01

    Some cancers, like acute myeloid leukemia (AML), use reactive oxygen species to endogenously activate cell proliferation and angiogenic signaling cascades. Thus many cancers display increases in reactive oxygen like hydrogen peroxide concentrations. To translate this finding into a therapeutic strategy we designed new hydrogen peroxide-activated agents with two key molecular pharmacophores. The first pharmacophore is a peroxide-acceptor and the second is a pendant amine. The acceptor is an N-(2,5-dihydroxyphenyl)acetamide susceptible to hydrogen peroxide oxidation. We hypothesized that selectivity between AML and normal cells could be achieved by tuning the pendant amine. Synthesis and testing of fourteen compounds that differed at the pendent amine led to the identification of an agent (14) with 2 μM activity against AML cancer cells and an eleven fold-lower activity in healthy CD34+ blood stem cells. Interestingly, analysis shows that upon oxidation the pendant amine cyclizes, ejecting water, with the acceptor to give a bicyclic compound capable of reacting with nucleophiles. Preliminary mechanistic investigations show that AML cells made from addition of two oncogenes (NrasG12D and MLL-AF9) increase the ROS-status, is initially an anti-oxidant as hydrogen peroxide is consumed to activate the pro-drug, and cells respond by upregulating electrophilic defense as visualized by western blotting of KEAP1. Thus, using this chemical approach we have obtained a simple, potent, and selective ROS-activated anti-AML agent. PMID:25464887

  4. Hydrogen peroxide-dependent 4-t-butylphenol hydroxylation by tyrosinase--a new catalytic activity.

    PubMed

    Jiménez, M; García-Carmona, F

    1996-09-13

    The aim of this work was to study the hydroxylation by tyrosinase of 4-t-butylphenol to 4-t-butylcatechol, in the presence of hydrogen peroxide. This hydroxylation reaction does not take place without the addition of hydrogen peroxide. Some properties of this new hydroxylating activity have been analysed. The kinetic parameters of mushroom tyrosinase for hydrogen peroxide (K(m) = 4.9 mM, V(m) = 48.1 microM/min) and 4-t-butylphenol (K(m) = 16 microM/min, V(m) = 6.7 microM/min) were evaluated. A lag period appeared, which was similar to the characteristic lag of monophenolase activity at the expense of molecular oxygen. The length of the lag phase decreased with increasing hydrogen peroxide concentrations but was longer with higher 4-t-butylphenol concentrations. The pH optimum for this hydroxylating activity was close to 5.5. The lag also varied with pH, reaching its highest value at pH 4.8. The lag was shortened by the addition of increasing amounts of 4-t-butylcatechol, and was abolished at 24.5 microM of 4-t-butylcatechol. 4-t-Butylphenol was oxidized by mushroom tyrosinase in the presence of 24.5 microM 4-t-butylcatechol and in the absence of hydrogen peroxide although the enzymatic activity tailed off. The presence of hydrogen peroxide is necessary to maintain a constant steady-state rate of 4-t-butylphenol oxidation by tyrosinase. PMID:8841378

  5. Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027.

    PubMed

    Yao, Ri-Sheng; Sun, Min; Wang, Chun-Ling; Deng, Sheng-Song

    2006-09-01

    In this paper, the degradation of phenolic compounds using hydrogen peroxide as oxidizer and the enzyme extract from Serratia marcescens AB 90027 as catalyst was reported. With such an enzyme/H2O2 combination treatment, a high chemical oxygen demand (COD) removal efficiency was achieved, e.g., degradation of hydroquinone exceeded 96%. From UV-visible and IR spectra, the degradation mechanisms were judged as a process of phenyl ring cleavage. HPLC analysis shows that in the degradation p-benzoquinone, maleic acid and oxalic acid were formed as intermediates and that they were ultimately converted to CO2 and H2O. With the enzyme/H2O2 treatment, vanillin, hydroquinone, catechol, o-aminophenol, p-aminophenol, phloroglucinol and p-hydroxybenzaldehyde were readily degraded, whereas the degradation of phenol, salicylic acid, resorcinol, p-cholorophenol and p-nitrophenol were limited. Their degradability was closely related to the properties and positions of their side chain groups. Electron-donating groups, such as -OH, -NH2 and -OCH3 enhanced the degradation, whereas electron-withdrawing groups, such as -NO2, -Cl and -COOH, had a negative effect on the degradation of these compounds in the presence of enzyme/H2O2. Compounds with -OH at ortho and para positions were more readily degraded than those with -OH at meta positions. PMID:16890975

  6. Mechanism-based suicide inactivation of white Spanish broom (Cytisus multiflorus) peroxidase by excess hydrogen peroxide.

    PubMed

    Galende, Patricia Pérez; Cuadrado, Nazaret Hidalgo; Kostetsky, Eduard Ya; Roig, Manuel G; Kennedy, John F; Shnyrov, Valery L

    2015-11-01

    Suicide inactivation is a common mechanism observed for haem peroxidases, in which the enzyme is inactivated as a result of self-oxidation mediated by intermediate highly oxidizing enzyme forms during the catalytic cycle. The time-dependence and the inactivation mechanism of Cytisus multiflorus peroxidase (CMP) by hydrogen peroxide were studied kinetically with four co-substrates (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferulic acid, guaiacol and o-dianisidine). Catalytic activity decreased following the sequence ABTS>guaiacol>ferulic acid>o-dianisidine. Once the intermediate complex (compound III-H2O2) had been formed, competition was established between the catalytic pathway and the suicide inactivation pathway. One mole of CMP afforded around 3790 turnovers of H2O2 for ABTS before its complete inactivation. These results suggest that CMP follows a suicide mechanism, the enzyme not being protected in this case. The mechanism of suicide inactivation is discussed with a view to establishing a broad knowledge base for future rational protein engineering. PMID:26407901

  7. Caged mitochondrial uncouplers that are released in response to hydrogen peroxide.

    PubMed

    Quin, Caroline; Robertson, Linsey; McQuaker, Stephen J; Price, Nicholas C; Brand, Martin D; Hartley, Richard C

    2010-03-27

    Caged versions of the most common mitochondrial uncouplers (proton translocators) have been prepared that sense the reactive oxygen species (ROS) hydrogen peroxide to release the uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) from caged states with second order rate constants of 10 (+/-0.8) M(-1) s(-1) and 64.8 (+/-0.6) M(-1) s(-1), respectively. The trigger mechanism involves conversion of an arylboronate into a phenol followed by fragmentation. Hydrogen peroxide-activated uncouplers may be useful for studying the biological process of ageing. PMID:20418941

  8. Caged mitochondrial uncouplers that are released in response to hydrogen peroxide

    PubMed Central

    Quin, Caroline; Robertson, Linsey; McQuaker, Stephen J.; Price, Nicholas C.; Brand, Martin D.; Hartley, Richard C.

    2010-01-01

    Caged versions of the most common mitochondrial uncouplers (proton translocators) have been prepared that sense the reactive oxygen species (ROS) hydrogen peroxide to release the uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) from caged states with second order rate constants of 10 (±0.8) M−1 s−1 and 64.8 (±0.6) M−1 s−1, respectively. The trigger mechanism involves conversion of an arylboronate into a phenol followed by fragmentation. Hydrogen peroxide-activated uncouplers may be useful for studying the biological process of ageing. PMID:20418941

  9. Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase.

    PubMed

    Morse, D E; Duncan, H; Hooker, N; Morse, A

    1977-04-15

    Addition of hydrogen peroxide to seawater causes synchronous spawning in gravid male and female abalones, and certain other mollusks as well. This effect is blocked by exposure of the animals to aspirin, an inhibitor of the enzyme catalyzing oxidative synthesis of prostaglandin endoperoxide. Hydrogen peroxide activates this enzymatic reaction in cell-free extracts prepared from abalone eggs (a very rich source of the prostaglandin endoperoxide synthetase); this effect appears to reveal a fundamental property of prostaglandin endoperoxide synthesis. Applicability of these findings to both mariculture and medical purposes is suggested. PMID:403609

  10. Transformation of wood during ozonization in the presence of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Abrosimova, G. E.; Kharlanov, A. N.; Lunin, V. V.

    2013-07-01

    Samples of ozonized aspen wood pretreated with hydrogen peroxide solutions of various concentrations are investigated by UV diffuse reflectance spectroscopy, IR spectroscopy, and X-ray structural analysis. The general course of wood transformation under the action of the O3/H2O2 system is associated with the destruction of lignin and oxidation of carbohydrates, raising the fraction of the crystalline phase in a lignocarbohydrate material. The possibility of varying the depth of the chemical and structural transformation of the substrate upon changing the hydrogen peroxide concentration in the O3/H2O2 system is demonstrated.

  11. Inactivation of aflatoxin B1 by using the synergistic effect of hydrogen peroxide and gamma radiation.

    PubMed Central

    Patel, U D; Govindarajan, P; Dave, P J

    1989-01-01

    Inactivation of aflatoxin B1 was studied by using gamma radiation and hydrogen peroxide. A 100-krad dose of gamma radiation was sufficient to inactivate 50 micrograms of aflatoxin B1 in the presence of 5% hydrogen peroxide, and 400 krad was required for total degradation of 100 micrograms of aflatoxin in the same system. Degradation of aflatoxin B1 was confirmed by high-pressure liquid chromatographic and thin-layer chromatographic analysis. Ames microsomal mutagenicity test showed loss of aflatoxin activity. This method of detoxification also reduces the toxin levels effectively in artificially contaminated groundnuts. Images PMID:2497710

  12. Power generation in fuel cells using liquid methanol and hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)

    2002-01-01

    The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.

  13. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    PubMed Central

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  14. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype.

    PubMed

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  15. 7-Nitro-4-(phenylthio)benzofurazan is a potent generator of superoxide and hydrogen peroxide

    PubMed Central

    Eriksson, Emma S. E.; Penketh, Philip G.; Baumann, Raymond P.; Zhu, Rui; Shyam, Krishnamurthy; Eriksson, Leif A.; Sartorelli, Alan C.

    2013-01-01

    Here, we report on 7-nitro-4-(phenylthio) benzofurazan (NBF-SPh), the most potent derivative among a set of patented anticancer 7-nitrobenzofurazans (NBFs), which have been suggested to function by perturbing protein–protein interactions. We demonstrate that NBF-SPh participates in toxic redox-cycling, rapidly generating reactive oxygen species (ROS) in the presence of molecular oxygen, and this is the first report to detail ROS production for any of the anticancer NBFs. Oxygraph studies showed that NBF-SPh consumes molecular oxygen at a substantial rate, rivaling even plumbagin, menadione, and juglone. Biochemical and enzymatic assays identified superoxide and hydrogen peroxide as products of its redox-cycling activity, and the rapid rate of ROS production appears to be sufficient to account for some of the toxicity of NBF-SPh (LC50 = 12.1 µM), possibly explaining why tumor cells exhibit a sharp threshold for tolerating the compound. In cell cultures, lipid peroxidation was enhanced after treatment with NBF-SPh, as measured by 2-thiobarbituric acid-reactive substances, indicating a significant accumulation of ROS. Thioglycerol rescued cell death and increased survival by 15-fold to 20-fold, but pyruvate and uric acid were ineffective protectants. We also observed that the redox-cycling activity of NBF-SPh became exhausted after an average of approximately 19 cycles per NBF-SPh molecule. Electrochemical and computational analyses suggest that partial reduction of NBF-SPh enhances electrophilicity, which appears to encourage scavenging activity and contribute to electrophilic toxicity. PMID:22669514

  16. Thermal hazard evaluation of lauroyl peroxide mixed with nitric acid.

    PubMed

    Tsai, Lung-Chang; You, Mei-Li; Ding, Mei-Fang; Shu, Chi-Min

    2012-01-01

    Many thermal runaway incidents have been caused by organic peroxides due to the peroxy group, -O-O-, which is essentially unstable and active. Lauroyl peroxide (LPO) is also sensitive to thermal sources and is incompatible with many materials, such as acids, bases, metals, and ions. From the thermal decomposition reaction of various concentrations of nitric acid (HNO3) (from lower to higher concentrations) with LPO, experimental data were obtained as to its exothermic onset temperature (T0), heat of decomposition (ΔHd), isothermal time to maximum rate (TMRiso), and other safety parameters exclusively for loss prevention of runaway reactions and thermal explosions. As a novel finding, LPO mixed with HNO3 can produce the detonation product of 1-nitrododecane. We used differential scanning calorimetry (DSC), thermal activity monitor III (TAM III), and gas chromatography/mass spectrometer (GC/MS) analyses of the reactivity for LPO and itself mixed with HNO3 to corroborate the decomposition reactions and reaction mechanisms in these investigations. PMID:22763742

  17. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    PubMed

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26365231

  18. [The effect of cadmium chloride and hydrogen peroxide on the lipid peroxidation and fractional composition of lipids in hepatocytes of rats].

    PubMed

    Borikov, O Iu; Kaliman, P A

    2004-01-01

    The isolated hepatocytes were incubated in the medium, containing cadmium chloride or hydrogen peroxide. Influence of the latter on the intensity of lipid peroxidation and contents of some lipids fractions, as well as viability of hepatocytes in these conditions has been studied. It is shown that under such cultivation conditions the activation of lipid peroxidation in the hepatocytes takes place. Its activation in presence of cadmium chloride was one of the factors of the membranes damage. The changes in the content of some fractions of lipids were similar both under the incubations of the cells with cadmium chloride and hydrogen peroxide. This allows one to suppose that cadmium chloride causes changes in the lipid composition of membranes as a result of intensification of lipid peroxidation. PMID:15915720

  19. A note concerning acetate activation of peroxidative activity of catalases using 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid as a substrate.

    PubMed

    Baker, Warren L; Key, Christopher; Lonergan, Greg T

    2005-01-01

    Beef liver catalases showed peroxidative activity using 2,2'-azino-bis-(3-ethylbenzthiazoline)-6-sulfonic acid as the electron donor and hydrogen peroxide as the acceptor at a pH of 5. This activity was not observed at pH 7. The reaction depended on acetate concentration, although succinate and propionate could partly replace the acetate as a catalyst. Other haem proteins also catalyzed a peroxidative effect. The reaction using syringaldazine or the coupling between dimethylaminobenzoic acid and 3-methyl-2-benzothiazolinone hydrazone was less effective and less sensitive. Evidence is presented that the reaction is associated with a conformational change of the catalase. PMID:15932252

  20. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    ERIC Educational Resources Information Center

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  1. A kinetic and theoretical study of the borate catalysed reactions of hydrogen peroxide: the role of dioxaborirane as the catalytic intermediate for a wide range of substrates.

    PubMed

    Deary, Michael E; Durrant, Marcus C; Davies, D Martin

    2013-01-14

    Our recent work has provided new insights into the equilibria and species that exist in aqueous solution at different pHs for the boric acid - hydrogen peroxide system, and the role of these species in oxidation reactions. Most recently, (M. C. Durrant, D. M. Davies and M. E. Deary, Org. Biomol. Chem., 2011, 9, 7249-7254), we have produced strong theoretical and experimental evidence for the existence of a previously unreported monocyclic three membered peroxide species, dioxaborirane, that is the likely catalytic species in borate mediated electrophilic reactions of hydrogen peroxide in alkaline solution. In the present paper, we extend our study of the borate-peroxide system to look at a wide range of substrates that include substituted dimethyl anilines, methyl-p-tolyl sulfoxide, halides, hydrogen sulfide anion, thiosulfate, thiocyanate, and hydrazine. The unusual selectivity-reactivity pattern of borate catalysed reactions compared with hydrogen peroxide and inorganic or organic peracids previously observed for the organic sulfides (D. M. Davies, M. E. Deary, K. Quill and R. A. Smith, Chem.-Eur. J., 2005, 11, 3552-3558) is also seen with substituted dimethyl aniline nucleophiles. This provides evidence that the pattern is not due to any latent electrophilic tendency of the organic sulfides and further supports dioxaborirane being the likely reactive intermediate, thus broadening the applicability of this catalytic system. Moreover, density functional theory calculations on our proposed mechanism involving dioxaborirane are consistent with the experimental results for these substrates. Results obtained at high concentrations of both borate and hydrogen peroxide require the inclusion the diperoxodiborate dianion in the kinetic analysis. A scheme detailing our current understanding of the borate-peroxide system is presented. PMID:23188177

  2. Coupling of Solar Energy to Hydrogen Peroxide Production in the Cyanobacterium Anacystis nidulans

    PubMed Central

    Roncel, Mercedes; Navarro, José A.; De la Rosa, Miguel A.

    1989-01-01

    Hydrogen peroxide production by blue-green algae (cyanobacteria) under photoautotrophic conditions is of great interest as a model system for the bioconversion of solar energy. Our experimental system was based on the photosynthetic reduction of molecular oxygen with electrons from water by Anacystis nidulans 1402-1 as the biophotocatalyst and methyl viologen as a redox intermediate. It has been demonstrated that the metabolic conditions of the algae in their different growth stages strongly influence the capacity for hydrogen peroxide photoproduction, and so the initial formation rate and net peroxide yield became maximum in the mid-log phase of growth. The overall process can be optimized in the presence of certain metabolic inhibitors such as iodoacetamide and p-hydroxymercuribenzoate, as well as by permeabilization of the cellular membrane after drastic temperature changes and by immobilization of the cells in inert supports such as agar and alginate. PMID:16347855

  3. Use of hydrogen peroxide treatment and crystal violet agar plates for selective recovery of bacteriophages from natural environments

    SciTech Connect

    Asghari, A.; Farrah, S.R.; Bitton, G. )

    1992-04-01

    Hydrogen peroxide inactivated bacteriophages and bacteria at different rates. A concentration of 0.1% hydrogen peroxide reduced the numbers of several bacteria by an average of 94% but caused an average of 25% inactivation in the numbers of bacteriophages tested. Treating natural samples with hydrogen peroxide selectively reduced the indigenous bacterial flora and permitted better visualization of plaques of lawns of Escherichia coli C-3000. In some cases indigenous gram-positive bacteria were relatively resistant to hydrogen peroxide, but their growth could be limited by incorporation of crystal violet into the bottom agar used for plaque assays. The use of hydrogen peroxide treatment and crystal violet-containing plates permitted recovery of more phages from natural samples than did other procedures, such as chloroform pretreatment or the use of selective plating agar such as EC medium.

  4. Measurement of atmospheric hydrogen peroxide and organic peroxides in Beijing before and during the 2008 Olympic Games: Chemical and physical factors influencing their concentrations

    NASA Astrophysics Data System (ADS)

    He, S. Z.; Chen, Z. M.; Zhang, X.; Zhao, Y.; Huang, D. M.; Zhao, J. N.; Zhu, T.; Hu, M.; Zeng, L. M.

    2010-09-01

    For the 2008 Beijing Olympic Games full-scale control (FSC) of atmospheric pollution was implemented to improve the air quality from 20 July to 20 September 2008, resulting in a significant decrease in the emission of pollutants in urban Beijing, especially vehicular emissions. The combination of reduced emissions and weather condition changes provided us with a unique opportunity to investigate urban atmospheric chemistry. Hydrogen peroxide (H2O2) and organic peroxides play significant roles in atmospheric processes, such as the cycling of HOx radicals and the formation of secondary sulfate aerosols and secondary organic aerosols. We measured atmospheric H2O2 and organic peroxides in urban Beijing, at the Peking University campus, from 12 July to 30 September, before and during the FSC. The major peroxides observed were H2O2, methyl hydroperoxide (MHP), and peroxyacetic acid (PAA), having maximal mixing ratios of 2.34, 0.95, and 0.17 ppbv (parts per billion by volume), respectively. Other organic peroxides were detected occasionally, such as bis-hydroxymethyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and 1-hydroxyethyl hydroperoxide. On sunny days the concentrations of H2O2, MHP, and PAA exhibited pronounced diurnal variations, with a peak in the afternoon (1500-1900) and, occasionally, a second peak in the evening (2000-0200). The night peaks can be attributed to local night production from the ozonolysis of alkenes, coupled with the reaction between NO3 radicals and organic compounds. Sunny-day weather dominated during 16-26 July, and we found that the concentrations of H2O2, MHP, and PAA increased strikingly on 22-26 July, compared with the concentrations during 16-19 July. This effect was mainly attributed to the NOx (NO and NO2) decline because of the FSC, due to (i) the suppressing effect of NO and NO2 on the production of peroxides and (ii) the indirect effect of reduced NOx on the concentration of peroxides via O3 production in the

  5. Suicide inactivation of covalent peroxidase-mimicking DNAzyme with hydrogen peroxide and its protection by a reductant substrate.

    PubMed

    Gribas, Anastasia V; Zatsepin, Timofey S; Korolev, Sergey P; Gottikh, Marina B; Sakharov, Ivan Yu

    2016-08-01

    Recently a covalent peroxidase-mimicking DNAzyme (cPMDNAzyme) with the improved catalytic activity was prepared. Here we demonstrate that hydrogen peroxide, the oxidant substrate of cPMDNAzyme is an inactivating agent of this catalyst. Presence of the reductant substrate, 2,2'-azino-bis(3-ethylbenthothiazoline-6-sulfonic acid (ABTS) prevents the inactivation of cPMDNAzyme. The experimental conditions (pH-optimum, concentrations of ABTS and H2O2) for the determination of cPMDNAzyme activity were optimized that allows a construction of the colorimetric cPMDNAzyme-based biosensors and assays with improved sensitivity. PMID:27216675

  6. Melanin bleaching with dilute hydrogen peroxide: a simple and rapid method.

    PubMed

    Liu, Chia-Hsing; Lin, Chih-Hung; Tsai, Min-Jan; Chen, Wan-Tzu; Chai, Chee-Yin; Huang, Ya-Chun; Tsai, Kun-Bow

    2013-05-01

    Melanins are naturally occurring pigments in both normal and pathologic tissues. Two common bleaching processes are potassium permanganate followed by oxalic acid treatment and dilute hydrogen peroxide (H2O2) process. The potassium permanganate/oxalic acid method is faster and more easily incorporated in conventional daily immunostaining protocols, whereas the dilute H2O2 method requires 24 hours. This study aimed to reduce melanin bleaching time by using a 10% H2O2 dilution. First, reaction time was reduced to 30 minutes by raising the temperature to 65°C. Second, containers with high thermal conductivity were used to improve bleaching effectiveness. Experimental comparisons of melanin treatments with H2O2 contained in an iron jar, a glass coplin jar, and a plastic steel jar obtained bleaching time of 20, 30, and 40 minutes, respectively. These modifications of the conventional bleaching method significantly improve the speed and efficiency of the procedure and are recommended when performing immunohistochemical studies. PMID:23060296

  7. Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide.

    PubMed

    Sigg, Laura; Lindauer, Ursula

    2015-11-01

    Dissolution of silver nanoparticles (AgNP with carbonate or citrate coating, total Ag 1-5 μM) was examined in the presence of the ligands cysteine, chloride and fulvic acids and of the oxidant hydrogen peroxide (H2O2) at low concentrations at pH 7.5. Dissolved Ag was separated from AgNP by ultrafiltration. Cysteine in the concentration range 0.2-5 μM resulted in an initial increase of dissolved Ag within few hours. Chloride (up to 0.1 mM) and fulvic acids (up to 15 mg L(-1)) had little effect on the dissolution of AgNP within hours to days. In contrast, very rapid dissolution within 1-2 h of both carbonate and citrate coated AgNP was observed in the presence of H2O2 in the concentration range 0.1-10 μM, under dark or light conditions. The high efficiency of H2O2 in dissolving AgNP is likely to be of importance in toxic effects of AgNP to algae, as H2O2 is produced and released into solution by algae. PMID:26310977

  8. The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance.

    PubMed

    Fecht-Christoffers, Marion Maria; Führs, Hendrik; Braun, Hans-Peter; Horst, Walter Johannes

    2006-04-01

    The apoplast is considered the leaf compartment decisive for manganese (Mn) toxicity and tolerance in cowpea (Vigna unguiculata). Particularly apoplastic peroxidases (PODs) were proposed to be key enzymes in Mn toxicity-induced processes. The presented work focuses on the characterization of the role of hydrogen peroxide (H2O2)-producing (NADH peroxidase) and H2O2-consuming peroxidase (guaiacol POD) in the apoplastic washing fluid (AWF) of leaves for early stages of Mn toxicity and genotypic differences in Mn tolerance of cowpea. Leaf AWF of the Mn-sensitive cultivar (cv) TVu 91 but not of the Mn-tolerant cv 1987 showed an increase of guaiacol-POD and NADH-peroxidase activities at elevated AWF Mn concentrations. two-dimensional resolutions of AWF proteins revealed that cv TVu 91 expressed more and additional proteins at high Mn treatment, whereas Mn-tolerant cv TVu 1987 remained nearly unaffected. In both cultivars, NADH-peroxidase activity and accompanied H2O2 formation rate in vitro were significantly affected by Mn2+, p-coumaric acid, and metabolites occurring in the AWF. The total phenol concentration in the AWF was indicative of advanced stages of Mn toxicity but was rather unrelated to early stages of Mn toxicity and genotypic differences in Mn tolerance. The NADH oxidation by AWF PODs was significantly delayed or enhanced in the presence of the protein-free AWF from cv TVu 1987 or cv TVu 91, respectively. High-performance liquid chromatography analysis of AWF indicates the presence of phenols in cv TVu 1987 not observed in cv TVu 91. We conclude from our studies that the H2O2-producing NADH peroxidase and its modulation by stimulating or inhibiting phenolic compounds in the leaf apoplast play a major role for Mn toxicity and Mn tolerance in cowpea. PMID:16489137

  9. Antitumor effect of synergistic contribution of nitrite and hydrogen peroxide in the plasma activated medium

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumiaki; Kondo, Takashi; Mizuno, Masaaki; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-09-01

    Non-equilibrium atmospheric pressure plasmas (NEAPP) have been attracted attention in the noble application of cancer therapy. Although good effects of the Plasma-Activated-Medium (PAM) such as the selective antitumor effect and killing effect for the anticancer agent resistant cells were reported, a mechanism of this effect has not been still clarified yet. In this study, we have investigated a contribution of the reactive nitrogen and oxygen species (RNOS) generated in PAM such as hydrogen peroxide and nitrite. Those species generated in the PAM quantitatively measured by light absorbance of commercial regent. Moreover, viable cell count after cell culture with those RNOS intentionally added medium or PAM were also measured by MTS assay. Our NEAPP source generated hydrogen peroxide and nitrite with the generation ratio of 0.35 μM/s and 9.8 μM/s. In those RNOS, hydrogen peroxide has respective antitumor effect. On the other hands, nitrite has no antitumor effect singly. But, synergistically enhance the antitumor effect of hydrogen peroxide. Moreover, this effect of those RNOS also contribute for the selectively cancer killing effect of PAM.

  10. First Principles Modeling of the Performance of a Hydrogen-Peroxide-Driven Chem-E-Car

    ERIC Educational Resources Information Center

    Farhadi, Maryam; Azadi, Pooya; Zarinpanjeh, Nima

    2009-01-01

    In this study, performance of a hydrogen-peroxide-driven car has been simulated using basic conservation laws and a few numbers of auxiliary equations. A numerical method was implemented to solve sets of highly non-linear ordinary differential equations. Transient pressure and the corresponding traveled distance for three different car weights are…

  11. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.

    PubMed

    Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng

    2016-08-01

    The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera. PMID:27132221

  12. The Feasibility of Using Hydrogen Peroxide Decomposition Studies for High School Chemistry.

    ERIC Educational Resources Information Center

    Carter, Gillian E.

    1986-01-01

    Highlights difficulties that occur when teachers attempt to devise new experiments (use of hydrogen peroxide decomposition) and how seemingly useless results can be turned into productive student projects. Considers effects of ions present in tap water, pH, dust, and nature of vessel's surface. Reaction order and safety precautions are noted. (JN)

  13. OXIDATION OF ALCOHOLS OVER FE3+/MONTMORILLONITE-K10 USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various primary and secondary alcohols is studied in liquid phase at atmospheric pressure over Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a pH of 4 in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method ...

  14. AMBIENT AIR MEASUREMENTS OF HYDROGEN PEROXIDE IN THE CALIFORNIA SOUTH COAST AIR BASIN

    EPA Science Inventory

    Hydrogen peroxide (H2O2) concentrations have been measured at two locations (Claremont and Riverside) in the California South Coast Air Basin during the months of July and August 1977. Three different analytical methods were employed: a chemiluminescent method and two colorimetri...

  15. HYDROGEN PEROXIDE FORMATION FROM THE PHOTOOXIDATION OF FORMALDEHYDE AND ITS PRESENCE IN RAINWATER

    EPA Science Inventory

    The photooxidation of formaldehyde with sunlamps (E(max) = 3100 A) produces hydrogen peroxide (H2O2) at varying concentrations depending upon the amount of water vapor present. It is postulated that the variable production of H2O2 is a result of condensation on the reactor surfac...

  16. Lung edema due to hydrogen peroxide is independent of cyclooxygenase products

    SciTech Connect

    Burghuber, O.; Mathias, M.M.; McMurtry, I.F.; Reeves, J.T.; Voelkel, N.F.

    1984-01-01

    Active oxygen species can cause lung injury. Although a direct action on endothelial cells is proposed, the possibility exists that they might cause injury via mediators. We considered that active oxygen species would stimulate the generation of cyclooxygenase metabolites, which then alter pulmonary vasoreactivity and cause edema. We chemically produced hydrogen peroxide by adding glucose oxidase to a plasma- and cell-free, but ..beta..-D-glucose-containing, solution, which perfused isolated rat lungs. Addition of glucose oxidase to the perfusate caused a marked decrease in pulmonary vasoreactivity, accompanied by an increase in the concentrations of prostacyclin, thromboxane A/sub 2/, and prostaglandin F/sub 2..cap alpha../. Pretreatment with catalase, a specific scavenger of hydrogen peroxide, preserved pulomonary vasoreactivity, inhibited the increase of the concentration of the measured prostaglandins, and prevented edema formation. Indomethacin effectively blocked lung prostaglandin production but neither prevented the decrease in vasoreactivity nor inhibited edema formation. From these data we conclude the hydrogen peroxide impaired pulmonary vasoreactivity and subsequently caused edema. Depsite the fact that hydrogen peroxide stimulated lung prostaglandin production, cyclooxygenase-derived products neither caused the decrease in vasoreactivity nor the development of edema.

  17. Lung edema due to hydrogen peroxide is independent of cyclooxygenase products.

    PubMed

    Burghuber, O; Mathias, M M; McMurtry, I F; Reeves, J T; Voelkel, N F

    1984-04-01

    Active oxygen species can cause lung injury. Although a direct action on endothelial cells is proposed, the possibility exists that they might cause injury via mediators. We considered that active oxygen species would stimulate the generation of cyclooxygenase metabolites, which then alter pulmonary vasoreactivity and cause edema. We chemically produced hydrogen peroxide by adding glucose oxidase to a plasma- and cell-free, but beta-D-glucose-containing, solution, which perfused isolated rat lungs. Addition of glucose oxidase to the perfusate caused a marked decrease in pulmonary vasoreactivity, accompanied by an increase in the concentrations of prostacyclin, thromboxane A2, and prostaglandin F2 alpha. Pretreatment with catalase, a specific scavenger of hydrogen peroxide, preserved pulmonary vasoreactivity, inhibited the increase of the concentration of the measured prostaglandins, and prevented edema formation. Indomethacin effectively blocked lung prostaglandin production but neither prevented the decrease in vasoreactivity nor inhibited edema formation. From these data we conclude that hydrogen peroxide impaired pulmonary vasoreactivity and subsequently caused edema. Despite the fact that hydrogen peroxide stimulated lung prostaglandin production, cyclooxygenase-derived products neither caused the decrease in vasoreactivity nor the development of edema. PMID:6427146

  18. EXPOXIDATION OF OLEFINS AND α,β-UNSATURATED KEYTONES OVER SONOCHEMICALLY PREPARED HYDROXYAPATITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An effective and environmentally friendly protocol for the epoxidation of olefins and α,β-unsaturated ketones in the presence of hydroxyapatite as catalyst using hydrogen peroxide is described. The catalyst is active and reusable for the selective epoxidation of a variety...

  19. FIELD STUDY: IN SITU OXIDATION OF 1,4-DIOXANE WITH OZONE AND HYDROGEN PEROXIDE

    EPA Science Inventory

    A pilot-scale field evaluation is underway to assess the effectiveness of in situ oxidation (using ozone with and without hydrogen peroxide) for remediation of 1,4-dioxane and chlorinated volatile organic compounds in groundwater at the Cooper Drum Company Superfund Site located ...

  20. Reducing the Allergenic Properties of Peanut Allergens by Copper/Hydrogen Peroxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper ions (Cu2+) and hydrogen peroxide (H2O2) together are reported to catalyze the cross-linking of proteins through oxidation of their tyrosine residues. Such protein cross-links, which contain dityrosine, can also occur when proteins are treated with peroxidase (POD). Previously, we have shown ...

  1. SELECTIVE OXIDATION OF ALCOHOLS OVER VANADIUM PHOSPHORUS OXIDE CATALYST USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various alcohols is studied in liquid phase under nitrogen atmosphere over vanadium phosphorus oxide catalyst in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method are found to be suitable for the selective oxidation of a variet...

  2. Electrodeposited nanostructured MnO{sub 2} for non-enzymatic hydrogen peroxide sensing

    SciTech Connect

    Saha, B. Jana, S. K.; Banerjee, S.

    2015-06-24

    Electrodeposited MnO{sub 2} nanostructure was synthesized on indium tin oxide coated glass electrode by cyclic voltammetry. The as obtained samples were subsequently characterized by atomic force microscopy and their electro-catalytic response towards hydrogen peroxide in alkaline medium of 0.1M NaOH was studied using cyclic voltammetry and amperometry.

  3. Development of a sterilizing in-place application for a production machine using Vaporized Hydrogen Peroxide.

    PubMed

    Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H

    2004-01-01

    The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached. PMID:15233253

  4. Self-immolative phthalate esters sensitive to hydrogen peroxide and light.

    PubMed

    Mahoney, Kaitlyn M; Goswami, Pratik P; Syed, Aleem; Kolker, Patrick; Shannan, Brian; Smith, Emily A; Winter, Arthur H

    2014-12-01

    Self-immolative aryl phthalate esters were conjugated with cleavable masking groups sensitive to light and hydrogen peroxide. The phthalate linker releases the fluorescent dye 7-hydroxycoumarin upon exposure to light or H2O2, respectively, leading to an increase in fluorescence. The light-sensitive aryl phthalate ester is demonstrated as a pro-fluorophore in cultured S2 cells. PMID:25384091

  5. HYDROGEN PEROXIDE DECAY IN WATERS WITH SUSPENDED SOILS: EVIDENCE FOR BIOLOGICALLY MEDIATED PROCESSES

    EPA Science Inventory

    Hydrogen peroxide decay studies have been conducted in suspensions of several well-characterized soils and in natural water samples. inetic and product studies indicated that the decay was biologically mediated and could be described by psuedo first-order rate expressions. t an i...

  6. HYDROGEN PEROXIDE TREATMENT DURING EGG INCUBATION IMPROVES CHANNEL CATFISH HATCHING SUCCESS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three trials were conducted to evaluate the effect of hydrogen peroxide (H2O2) treatment on channel catfish Ictalurus punctatus hatching success when administered during egg incubation as a 15 min. bath or as a flow-through treatment. In the first trial, initial treatment with 100 ppm povidone iodi...

  7. Low-dose hydrogen peroxide application in closed recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present work was to simulate water treatment practice with hydrogen peroxide (HP) in recirculating aquaculture systems (RAS). Six identical 1700 L pilot scale RAS were divided into two experimental groups based on daily feed allocation and were operated under constant conditions durin...

  8. Mouthwashes with hydrogen peroxide are carcinogenic, but are freely indicated on the Internet: warn your patients!

    PubMed

    Consolaro, Alberto

    2013-01-01

    It all began in Ancient Egypt where people used to bleach their teeth with antiseptic mouthwashes made of urea from human urine. Teeth harmony is promoted by expression of feelings, communication, a real window of the brain and its content! Tooth bleaching products are medicines, not cosmetics! Mouth washing with hydrogen peroxide is an illogical and dangerous procedure! Hydrogen peroxide must be used in one's mouth only when employed by a dentist who has been properly instructed to protect the mucosa, preventing it from receiving these products. How and for how long these products are going to be used require caution in order to avoid or decrease any adverse effects on the tissues. Many websites instruct people on how to purchase and prepare hydrogen peroxide so that it is used as an antiseptic mouthwash and tooth bleaching agent. Some websites even refer to dentists as "exploiters", accusing them of not instructing patients properly. In this article, we aim at providing evidence and information upon which dentists and assistants may base their thinking as well as their opinion and procedures regarding "the indiscriminate and free use of hydrogen peroxide in the mouth, on teeth and oral mucosa". Those websites, blogs and social network profiles trespass the limits of public trust and should be immediately sued by the government for committing a crime against public health. PMID:24351145

  9. CATALYTIC OXIDATION OF ALCOHOLS AND EPOXIDATION OF OLEFINS WITH HYDROGEN PEROXIDE AS OXIDANT

    EPA Science Inventory

    Hydrogen peroxide (H2O2) is an ideal oxidant of choice for these oxidations due to economic and environmental reasons by giving water as a by-product. Two catalysts used are vanadium phosphorus oxide (VPO) and Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a...

  10. MINERALIZATION OF A SORBED POLYCYCLIC AROMATIC HYDROCARBON IN TWO SOILS USING CATALYZED HYDROGEN PEROXIDE. (R826163)

    EPA Science Inventory

    Hydrogen peroxide (H2O2) catalyzed by soluble iron or naturally occurring soil minerals, (i.e., modified Fenton's reagent) was investigated as a basis for mineralizing sorbed and NAPL-phase benzo[a]pyrene (BaP), a hydrophobic and toxic polycyclic a...

  11. An AIE-active fluorescence turn-on bioprobe mediated by hydrogen-bonding interaction for highly sensitive detection of hydrogen peroxide and glucose.

    PubMed

    Song, Zhegang; Kwok, Ryan T K; Ding, Dan; Nie, Han; Lam, Jacky W Y; Liu, Bin; Tang, Ben Zhong

    2016-08-21

    An AIE-active "turn-on" bioprobe is designed for hydrogen peroxide detection based on an imine-functionalized tetraphenylethene derivative. The linear fluorescence response enables quantification of hydrogen peroxide with superior sensitivity and selectivity. Meanwhile, glucose assay is also realized by taking advantage of GOx/glucose enzymatic reaction. PMID:27456815

  12. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimental and modeling investigations were conducted to examine the effect of hydrogen peroxide treatment on hydrothermally produced biochar (hydrochar) from peanut hull to remove aqueous heavy metals. Characterization measurements showed that hydrogen peroxide modification increased the oxygen-c...

  13. Monocyte and granulocyte-mediated tumor cell destruction. A role for the hydrogen peroxide-myeloperoxidase-chloride system.

    PubMed Central

    Weiss, S J; Slivka, A

    1982-01-01

    Human monocytes stimulated with phorbol myristate acetate were able to destroy a T lymphoblast cell target (CEM). Stimulated human granulocytes were also capable of mediating CEM cytotoxicity to a comparable degree as the monocyte. CEM destruction was dependent on the pH and the effector cell number. Both monocyte or granulocyte mediated cytotoxicity were inhibited by the addition of catalase, whereas superoxide dismutase had no inhibitory effect. In addition, CEM were protected from cytolysis by the effector cells by the myeloperoxidase inhibitors, azide and cyanide, or by performing the experiment under halide-free conditions. Glucose oxidase, an enzyme system capable of generating hydrogen peroxide, did not mediate CEM cytotoxicity, while the addition of purified myeloperoxidase dramatically enhanced cytolysis. Hypochlorous acid scavengers prevented CEM destruction by the glucose oxidase-myeloperoxidase-chloride system but neither hydroxyl radical nor singlet oxygen scavengers had any protective effect. These hypochlorous acid scavengers were also successful in inhibiting monocyte or granulocyte-mediated CEM cytotoxicity. Based on these observations we propose that human monocytes or granulocytes can utilize the hydrogen peroxide-myeloperoxidase-chloride system to generate hypochlorous acid or species of similar reactivity as a potential mediator of CEM destruction. PMID:6276438

  14. Proline dehydrogenase is essential for proline protection against hydrogen peroxide induced cell death

    PubMed Central

    Natarajan, Sathish Kumar; Zhu, Weidong; Liang, Xinwen; Zhang, Lu; Demers, Andrew J.; Zimmerman, Matthew C.; Simpson, Melanie A.; Becker, Donald F.

    2012-01-01

    Proline metabolism has an underlying role in apoptotic signaling that impacts tumorigenesis. Proline is oxidized to glutamate in the mitochondria with the rate limiting step catalyzed by proline dehydrogenase (PRODH). PRODH expression is inducible by p53 leading to increased proline oxidation, reactive oxygen species (ROS) formation, and induction of apoptosis. Paradoxical to its role in apoptosis, proline also protects cells against oxidative stress. Here we explore the mechanism of proline protection against hydrogen peroxide stress in melanoma WM35 cells. Treatment of WM35 cells with proline significantly increased cell viability, diminished oxidative damage of cellular lipids and proteins, and retained ATP and NADPH levels after exposure to hydrogen peroxide. Inhibition or siRNA-mediated knockdown of PRODH abolished proline protection against oxidative stress whereas knockdown of Δ1-pyrroline-5-carboxylate reductase, a key enzyme in proline biosynthesis, had no impact on proline protection. Potential linkages between proline metabolism and signaling pathways were explored. The combined inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and mTORC2 eliminated proline protection. A significant increase in Akt activation was observed in proline treated cells after hydrogen peroxide stress along with a corresponding increase in the phosphorylation of the fork head transcription factor class O3a (FoxO3a). The role of PRODH in proline mediated protection was validated in the prostate carcinoma cell line, PC3. Knockdown of PRODH in PC3 cells attenuated phosphorylated levels of Akt and FoxO3a and decreased cell survival during hydrogen peroxide stress. The results provide evidence that PRODH is essential in proline protection against hydrogen peroxide mediated cell death and that proline/PRODH helps activate Akt in cancer cells. PMID:22796327

  15. What are the sources of hydrogen peroxide production by heart mitochondria?

    PubMed Central

    Grivennikova, Vera G.; Kareyeva, Alexandra V.; Vinogradov, Andrei D.

    2010-01-01

    Coupled rat heart mitochondria produce externally hydrogen peroxide at the rates which correspond to about 0.8 and 0.3 per cent of the total oxygen consumption at State 4 with succinate and glutamate plus malate as the respiratory substrates, respectively. Stimulation of the respiratory activities by ADP (State 4–State 3 transition) decreases the succinate- and glutamate plus malate-supported H2O2 production 8- and 1.3-times, respectively. NH4+ strongly stimulates hydrogen peroxide formation with either substrate without any effect on State 4 and/or State 3 respiration. Rotenone-treated, alamethicin-permeabilized mitochondria catalyze NADH-supported H2O2 production at a rate about 10-fold higher than that seen in intact mitochondria under optimal (State 4 succinate-supported respiration in the presence of ammonium chloride) conditions. NADH-supported hydrogen peroxide production by the rotenone-treated mitochondria devoid of a permeability barrier for H2O2 diffusion by alamethicin treatment are only partially (~50%) sensitive to the Complex I NADH binding site-specific inhibitor, NADH-OH. The residual activity is strongly (~6-fold) stimulated by ammonium chloride. NAD+ inhibits both Complex I-mediated and ammonium-stimulated H2O2 production. In the absence of stimulatory ammonium about half of the total NADH-supported hydrogen peroxide production is catalyzed by Complex I. In the presence of ammonium about 90% of the total hydrogen peroxide production is catalyzed by matrix located, ammonium-dependent enzyme(s). PMID:20170624

  16. Hydrogen peroxide and the evolution of oxygenic photosynthesis

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Hartman, H.

    1991-01-01

    Possible pathways for the evolution of oxygenic photosynthesis in the early reducing atmosphere of the earth are discussed. It is suggested that the abiotic production of atmospheric oxidants could have provided a mechanism by which locally oxidizing conditions were sustained within spatially confined habitats thus removing the available reductants and forcing photosynthetic organisms to utilize water (rather than ferrous or sulfide ions) as the electron donor. It is argued that atmospheric H2O2 played the key role in inducing oxygenic photosynthesis, because, as peroxide concentrations local environments increased, primitive organisms would not only be faced with a loss of a reductant, but would be also forced to develop a biochemical apparatus (such as catalase) that would protect them against the products of oxygenic photosynthesis. This scenario allows for the early evolution of oxygenic photosynthesis at the time when global conditions were still anaerobic.

  17. Recent Advances in Hydrogen Peroxide Propulsion Test Capability at NASA's Stennis Space Center E-Complex

    NASA Technical Reports Server (NTRS)

    Jacks, Thomas E.; Beisler, Michele

    2003-01-01

    In recent years, the rocket propulsion test capability at NASA's John C. Stennis Space Center's (SSC) E-Complex has been enhanced to include facilitization for hydrogen peroxide (H2O2) based ground testing. In particular, the E-3 test stand has conducted numerous test projects that have been reported in the open literature. These include combustion devices as simple as small-scale catalyst beds, and larger devices such as ablative thrust chambers and a flight-type engine (AR2-3). Consequently, the NASA SSC test engineering and operations knowledge base and infrastructure have grown considerably in order to conduct safe H2O2 test operations with a variety of test articles at the component and engine level. Currently, the E-Complex has a test requirement for a hydrogen peroxide based stage test. This new development, with its unique set of requirements, has motivated the facilitization for hydrogen peroxide propellant use at the E-2 Cell 2 test position in addition to E-3. Since the E-2 Cell 2 test position was not originally designed as a hydrogen peroxide test stand, a facility modernization-improvement project was planned and implemented in FY 2002-03 to enable this vertical engine test stand to accomodate H2O2. This paper discusses the ongoing enhancement of E-Complex ground test capability, specifically at the E-3 stand (Cell 1 and Cell 2) and E-2 Cell 2 stand, that enable current and future customers considerable test flexibility and operability in conducting their peroxide based rocket R&D efforts.

  18. Expanding Hydrogen Peroxide Propulsion Test Capability at NASA's Stennis Space Center E-Complex

    NASA Technical Reports Server (NTRS)

    Jacks, Thomas E.; Beisler, Michele

    2003-01-01

    In recent years, the rocket propulsion test capability at NASA s John C. Stennis Space Center's (SSC) E-Complex has been enhanced to include facilitization for hydrogen peroxide (H2O2) based ground testing. In particular, the E-3 test stand has conducted numerous test projects that have been reported in the open literature. These include combustion devices as simple at small-scale catalyst beds, and larger devices such as ablative thrust chambers and a flight-type engine (AR2-3). Consequently, the NASA SSC test engineering and operations knowledge base and infrastructure have grown considerably in order to conduct safe H2O2 test operations with a variety of test articles at the component and engine level. Currently, the E-Complex has a test requirement for a hydrogen peroxide based stage test. This new development, with its unique set of requirements, has motivated the facilitization for hydrogen peroxide propellant use at the E-2 Cell 2 test position in addition to E-3. Since the E-2 Cell 2 test position was not originally designed as a hydrogen peroxide test stand, a facility modernization- improvement project was planned and implemented in FY 2002-03 to enable this vertical engine test stand to accommodate H2O2. This paper discusses the ongoing enhancement of E-Complex ground test capability, specifically at the E-3 stand (Cell 1 and Cell 2) and E-2 Cell 2 stand, that enable current and future customers considerable test flexibility and operability in conducting their peroxide based rocket R&D efforts.

  19. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

    NASA Astrophysics Data System (ADS)

    Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.

    2015-11-01

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene

  20. Influence of hydrogen peroxide bleaching gels on color, opacity, and fluorescence of composite resins.

    PubMed

    Torres, C R G; Ribeiro, C F; Bresciani, E; Borges, A B

    2012-01-01

    The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p<0.05). Color changes were significant for different tested bleaching therapies (p<0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p<0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration. PMID:22433032

  1. Schiff Base Substituent-Triggered Efficient Deboration Reaction and Its Application in Highly Sensitive Hydrogen Peroxide Vapor Detection.

    PubMed

    Fu, Yanyan; Yao, Junjun; Xu, Wei; Fan, Tianchi; Jiao, Zinuo; He, Qingguo; Zhu, Defeng; Cao, Huimin; Cheng, Jiangong

    2016-05-17

    The organic thin-film fluorescence probe, with the advantages of not polluting the analyte and fast response, has attracted much attention in explosive detection. Different with nitro explosives, the peroxide-based explosives are hardly to be detected because of their poor ultraviolet absorption and lack of an aromatic ring. As the signature compound of peroxide-based explosives, H2O2 vapor detection became more and more important. Boron ester or acid is considered to be a suitable functional group for the detection of hydrogen peroxide due to its reliable reactive activity. Its only drawback lies on its slow degradation velocity. In this work, we try to introduce some functional group to make the boron ester to be easily oxidized by H2O2. Herein, 4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)benzaldehyde (OTB) was synthesized and its imine derivatives, OTBXAs, were easily obtained just by putting OTB films in different primary amines vapors. OTBXAs show fast deboronation velocity in H2O2 vapor compared with OTB. The complete reaction time of (E)-N-phenyl-4-((propylimino)methyl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline (OTBPA) was even shortened 40 times with a response time of seconds. The detection limit for H2O2 vapor was as low as 4.1 parts per trillion (ppt). Further study showed that it is a general approach to enhance the sensing performance of borate to hydrogen peroxide (H2O2) vapor by introducing an imine into an aromatic borate molecule via a solid/vapor reaction. PMID:27094518

  2. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    PubMed

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and

  3. Evaluation of the toxicity and efficacy of hydrogen peroxide treatments on eggs of warm and cool water fishes

    USGS Publications Warehouse

    Rach, J.J.; Gaikowski, M.P.; Howe, G.E.; Schreier, T.M.

    1998-01-01

    The use of hydrogen peroxide in aquaculture is growing and there is a need to develop fundamental guidelines to effectively treat diseased fish. The safety (toxicity) of hydrogen peroxide treatments was determined on eggs of representative warm- and coolwater fish species. Eggs of northern pike (Esox lucius), walleye (Stizostedion vitreum), yellow perch (Pel ca flavescens), white sucker (Catostomus commersoni), lake sturgeon (Acipenser fulvescens), paddlefish (Polyodon spathula), common carp (Cyprinus carpio), and channel catfish (Ictalurus punctatus) were cultured in egg jars or aquaria. Treatments were initiated with non-eyed eggs and continued until all viable eggs had hatched. Eggs were treated daily for 15 min Monday through Friday with either 0, 500, 1000, 3000, or 6000 mu l l(-1) of hydrogen peroxide. For all species, the mean percent hatch was greater in eggs treated with 1000 mu l l(-1) hydrogen peroxide for 15 min than in the untreated controls. Common carp, lake sturgeon, and paddlefish were the least sensitive to hydrogen peroxide with percent hatch ranging from 40 to 48% in the 6000 mu l l(-1) hydrogen peroxide treatment. Fungal infections reduced or eliminated the hatch in most controls whereas nearly all treated eggs remained free of infection; hydrogen peroxide inhibited fungal infections on fish eggs. (C) 1998 Elsevier Science B.V. All rights reserved.

  4. Biomimetic iron-catalyzed asymmetric epoxidation of aromatic alkenes by using hydrogen peroxide.

    PubMed

    Gelalcha, Feyissa Gadissa; Anilkumar, Gopinathan; Tse, Man Kin; Brückner, Angelika; Beller, Matthias

    2008-01-01

    A novel and general biomimetic non-heme Fe-catalyzed asymmetric epoxidation of aromatic alkenes by using hydrogen peroxide is reported herein. The catalyst consists of ferric chloride hexahydrate (FeCl(3)6 H(2)O), pyridine-2,6-dicarboxylic acid (H(2)(pydic)), and readily accessible chiral N-arenesulfonyl-N'-benzyl-substituted ethylenediamine ligands. The asymmetric epoxidation of styrenes with this system gave high conversions but poor enantiomeric excesses (ee), whereas larger alkenes gave high conversions and ee values. For the epoxidation of trans-stilbene (1 a), the ligands (S,S)-N-(4-toluenesulfonyl)-1,2-diphenylethylenediamine ((S,S)-4 a) and its N'-benzylated derivative ((S,S)-5 a) gave opposite enantiomers of trans-stilbene oxide, that is, (S,S)-2 a and (R,R)-2 a, respectively. The enantioselectivity of alkene epoxidation is controlled by steric and electronic factors, although steric effects are more dominant. Preliminary mechanistic studies suggest the in situ formation of several chiral Fe-complexes, such as [FeCl(L*)(2)(pydic)]HCl (L*=(S,S)-4 a or (S,S)-5 a in the catalyst mixture), which were identified by ESIMS. A UV/Vis study of the catalyst mixture, which consisted of FeCl(3)6 H(2)O, H(2)(pydic), and (S,S)-4 a, suggested the formation of a new species with an absorbance peak at lambda=465 nm upon treatment with hydrogen peroxide. With the aid of two independent spin traps, we could confirm by EPR spectroscopy that the reaction proceeds via radical intermediates. Kinetic studies with deuterated styrenes showed inverse secondary kinetic isotope effects, with values of k(H)/k(D)=0.93 for the beta carbon and k(H)/k(D)=0.97 for the alpha carbon, which suggested an unsymmetrical transition state with stepwise O transfer. Competitive epoxidation of para-substituted styrenes revealed a linear dual-parameter Hammett plot with a slope of 1.00. Under standard conditions, epoxidation of 1 a in the presence of ten equivalents of H(2) (18)O resulted in an absence

  5. Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine.

    PubMed

    Chen, Liwei; Li, Xuchun; Zhang, Jing; Fang, Jingyun; Huang, Yanmin; Wang, Ping; Ma, Jun

    2015-09-01

    The production of the hydroxyl radical (HO·) is important in environmental chemistry. This study reports a new source of HO· generated solely from hydrogen peroxide (H2O2) activated by hydroxylamine (HA). Electron paramagnetic resonance analysis and the oxidation of a HO· probe, benzoic acid, were used to confirm the production of HO·. The production of HO· increased with increasing concentrations of either HA or H2O2 as well as decreasing pH. The second-order rate constant for the reaction was (2.2 ± 0.2) × 10(-4) M(-1) s(-1). HO· was probably produced in two steps: the activation of H2O2 by protonated HA and then reaction between the H2O2 and the intermediate protonated aminoxyl radical generated in the first step. Such a two-step oxidation can possibly be ascribed to the ionizable hydroxyl moiety in the molecular structure of HA, as is suggested by comparing the reactivity of a series of HA derivatives in HO· production. The results shed light on a previously unknown source of HO· formation, which broadens the understanding of its role in environmental processes. PMID:26274915

  6. Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose.

    PubMed

    Zhang, Weimin; Ma, Diao; Du, Jianxiu

    2014-03-01

    Prussian blue nanoparticles (PB NPs) exhibits an intrinsic peroxidase-like catalytic activity towards the hydrogen peroxide (H2O2)-mediated oxidation of classical peroxidase substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt to produce a colored product. The catalysis follows Michaelis-Menen kinetics and shows strong affinity for H2O2. Using PB NPs as a peroxidase mimetics, a colorimetric method was developed for the detection of 0.05-50.0 μM H2O2, with a detection limit of 0.031 μM. When the catalytic reaction of PB NPs was coupled with the reaction of glucose oxidation catalyzed by glucose oxidase, a sensitive and selective colorimetric method for the detection of glucose was realized. The limit of detection for glucose was determined to be as low as 0.03 μM and the linear range was from 0.1 μM to 50.0 μM. The method was successfully applied to the determination of glucose in human serum. Compared with other nanomaterials-based peroxidase mimetics, PB NPs provides 10-100 times higher sensitivity toward the detection of H2O2 and glucose. The detection platform developed showed great potential applications in varieties of physiological importance substances when merged with appropriate H2O2-producing oxidases. PMID:24468383

  7. Genome-Wide Fitness and Expression Profiling Implicate Mga2 in Adaptation to Hydrogen Peroxide

    PubMed Central

    Kelley, Ryan; Ideker, Trey

    2009-01-01

    Caloric restriction extends lifespan, an effect once thought to involve attenuation of reactive oxygen species (ROS) generated by aerobic metabolism. However, recent evidence suggests that caloric restriction may in fact raise ROS levels, which in turn provides protection from acute doses of oxidant through a process called adaptation. To shed light on the molecular mechanisms of adaptation, we designed a series of genome-wide deletion fitness and mRNA expression screens to identify genes involved in adaptation to hydrogen peroxide. Combined with known transcriptional interactions, the integrated data implicate Yap1 and Skn7 as central transcription factors of both the adaptive and acute oxidative responses. They also identify the transcription factors Mga2 and Rox1 as active exclusively in the adaptive response and show that Mga2 is essential for adaptation. These findings are striking because Mga2 and Rox1 have been thought to control the response to hypoxic, not oxidative, conditions. Expression profiling of mga2Δ and rox1Δ knockouts shows that these factors most strongly regulate targets in ergosterol, fatty-acid, and zinc metabolic pathways. Direct quantitation of ergosterol reveals that its basal concentration indeed depends on Mga2, but that Mga2 is not required for the decrease in ergosterol observed during adaptation. PMID:19503593

  8. Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2 -induced stomatal movement in tomato.

    PubMed

    Shi, Kai; Li, Xin; Zhang, Huan; Zhang, Guanqun; Liu, Yaru; Zhou, Yanhong; Xia, Xiaojian; Chen, Zhixiang; Yu, Jingquan

    2015-10-01

    Climate change as a consequence of increasing atmospheric CO2 influences plant photosynthesis and transpiration. Although the involvement of stomata in plant responses to elevated CO2 has been well established, the underlying mechanism of elevated CO2 -induced stomatal movement remains largely unknown. We used diverse techniques, including laser scanning confocal microscopy, transmission electron microscopy, biochemical methodologies and gene silencing to investigate the signaling pathway for elevated CO2 -induced stomatal movement in tomato (Solanum lycopersicum). Elevated CO2 -induced stomatal closure was dependent on the production of RESPIRATORY BURST OXIDASE 1 (RBOH1)-mediated hydrogen peroxide (H2 O2 ) and NITRATE REDUCTASE (NR)-mediated nitric oxide (NO) in guard cells in an abscisic acid (ABA)-independent manner. Silencing of OPEN STOMATA 1 (OST1) compromised the elevated CO2 -induced accumulation of H2 O2 and NO, upregulation of SLOW ANION CHANNEL ASSOCIATED 1 (SLAC1) gene expression and reduction of stomatal aperture, whereas silencing of RBOH1 or NR had no effects on the expression of OST1. Our results demonstrate that as critical signaling molecules, RBOH1-dependent H2 O2 and NR-dependent NO act downstream of OST1 that regulate SLAC1 expression and elevated CO2 -induced stomatal movement. This information is crucial to deepen the understanding of CO2 signaling pathway in guard cells. PMID:26308648

  9. Critical assessment of the formation of hydrogen peroxide in dough by fermenting yeast cells.

    PubMed

    Rezaei, Mohammad N; Dornez, Emmie; Verstrepen, Kevin J; Courtin, Christophe M

    2015-02-01

    Fermentation of bread dough leads to strengthening of the dough matrix. This effect has previously been ascribed to the action of hydrogen peroxide (H2O2) produced by yeast in dough. In this study, we re-evaluate the production of H2O2 by yeast in dough and aqueous fermentation broth. Results show that the previously reported high levels of H2O2 in fermenting dough were most probably due to the lack of specificity of the potassium dichromate/acetic acid-based method used. Using the chemiluminescent HyPerBlu assay, no yeast H2O2 production could be detected in fermented dough or broth. Even though the formation of low levels of H2O2 cannot be ruled out due to the presence of catalase in flour and the fast reaction of H2O2 with gluten proteins, our results suggest that the changes in dough matrix rheological properties upon fermentation are not due to production of H2O2 by yeast. PMID:25172698

  10. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment.

    PubMed

    Zhang, E W; Wang, Y B; Shuai, K G; Gao, F; Bai, Y J; Cheng, Y; Xiong, X L; Zheng, Y F; Wei, S C

    2011-04-01

    The present study aimed to evaluate the bioactivity of titanium surfaces sandblasted with large-grit corundum and acid etched (SLA) plus further alkali or hydrogen peroxide and heat treatment for dental implant application. Pure titanium disks were mechanically polished as control surface (Ti-control) and then sandblasted with large-grit corundum and acid etched (SLA). Further chemical modifications were conducted using alkali and heat treatment (ASLA) and hydrogen peroxide and heat treatment (HSLA) alternatively. The surface properties were characterized by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and contact angle and roughness measurements. Further evaluation of surface bioactivity was conducted by MC3T3-E1 cell attachment, proliferation, morphology, alkaline phosphatase (ALP) activity and calcium deposition on the sample surfaces. After insertion in the beagle's mandibula for a specific period, cylindrical implant samples underwent micro-CT examination and then histological examination. It was found that ASLA and HSLA surfaces significantly increased the surface wettability and MC3T3-E1 cell attachment percentage, ALP activity and the quality of calcium deposition in comparison with simple SLA and Ti-control surfaces. Animal studies showed good osseointegration of ASLA and HSLA surfaces with host bone. In conclusion, ASLA and HSLA surfaces enhanced the bioactivity of the traditional SLA surface by integrating the advantages of surface topography, composition and wettability. PMID:21293055

  11. Efficacy of hydrogen peroxide in controlling mortality associated with saprolegniasis on walleye, white sucker, and paddlefish eggs

    USGS Publications Warehouse

    Gaikowski, M.P.; Rach, J.J.; Drobish, M.; Hamilton, J.; Harder, T.; Lee, L.A.; Moen, C.; Moore, A.

    2003-01-01

    The efficacy of hydrogen peroxide in controlling saprolegniasis on eggs of walleye Stizostedion vitreum, white sucker Catostomus commersoni, and paddlefish Polyodon spathula was evaluated at four private, state, and federal production hatcheries participating in an Investigational New Animal Drug efficacy study (experiment 1; walleyes) and in a laboratory-based miniature egg jar incubation system (experiment 2; walleyes, white suckers, and paddlefish). Naturally occurring fungal infestations (saprolegniasis) were observed on eggs in both experiments. Confirmatory diagnosis of infested eggs from one hatchery in experiment 1 identified the pathogen as Saprolegnia parasitica. During experiment 1, eggs were treated daily for 15 min with either 0, 500, or 750 mg/L of hydrogen peroxide, and one trial compared a 500-mg/L hydrogen peroxide treatment with a formalin treatment at 1,667 mg/L. Saprolegniasis infestation was observed in control egg jars, whereas treatment with either formalin or hydrogen peroxide virtually eliminated the infestation. Hydrogen peroxide treatments of 500 mg/L either increased egg hatch or were as effective as physical removal of infested eggs in controlling mortality. Although treatment with formalin at 1,667 mg/L significantly increased the percent eye-up of walleye eggs compared with that of those treated with hydrogen peroxide at 500 mg/L, the difference was only 1.9-2.6%. In experiment 2, noneyed eggs were treated for 15 min every other day with 0, 283, 565, or 1,130 mg/L of hydrogen peroxide until the viable eggs hatched. Saprolegniasis infestation engulfed most control eggs, whereas infestation of treated eggs was either reduced or not visible. Hydrogen peroxide significantly increased egg hatch for all three species tested in experiment 2. Although hydrogen peroxide treatments as low as 283 mg/L significantly increased walleye and white sucker hatch, treatments between 500 and 1,000 mg/L are more likely to be effective in production egg

  12. [Acne therapy with topical benzoyl peroxide, antibiotics and azelaic acid].

    PubMed

    Worret, Wolf-Ingo; Fluhr, Joachim W

    2006-04-01

    Benzoyl peroxide (BPO) was introduced in the treatment of acne in 1934. Despite the fact that only few randomized trials have been published, BPO is considered the standard in topical acne treatment. Anaerobic bacteria are reduced by oxidative mechanisms and the induction of resistant strains is reduced. Topical formulations are available at concentrations of 2.5, 5, 10 and 20 %. The effect is dose-dependent, but the irritation increases with higher concentrations. Usually 5 % BPO is sufficient to control acne grade I-II. Due to its strong oxidative potential, patients should be advised that BPO may bleach colored and dark clothing, bedding and even hair. BPO is safe for use in pregnant and lactating females because it is degraded to benzoic acid. It is a cost-effective treatment for acne grade I-II. Patients with papulopustular acne grade I-II, particularly with marked inflammation, show satisfactory improvement with topical antibiotic treatment. The following compounds are available and effective: erythromycin, clindamycin and tetracycline (the latter being less frequently used). A review in 1990 suggested that topical tetracycline was ineffective in the treatment of acne. Along with eliminating Propionibacterium acnes, the main mechanism of topical antibiotics is their antiinflammatory effect. All three penetrate the epidermal barrier well and are similarly efficacious. Randomized trials have shown that in concentrations of 2-4 %, their effects are comparable to oral tetracycline and minocycline. Combination therapy with retinoids or benzoyl peroxide (BPO) increases efficacy. Retinoids increase penetration and reduce comedones, while topical antibiotics primarily address inflammation. One side effect of topical antibacterial treatment is an increase in drug-resistant resident skin flora with gram-negative microorganisms prevailing, which can lead to gram-negative folliculitis. All three antibiotics fluoresce under black light which may produce interesting

  13. Absolute rate constant of the reaction between chlorine /2P/ atoms and hydrogen peroxide from 298 to 424 K

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1980-01-01

    The absolute rate constant of the reaction between chlorine (2P) atoms and hydrogen peroxide was determined from 298 to 424 K, using the discharge flow resonance fluorescence technique. Pseudo-first-order conditions were used with hydrogen peroxide in large excess. A fast flow-sampling procedure limited hydrogen peroxide decomposition to less than 5% over the temperature range studied. At 298 K, the rate constant is (4.1 plus or minus 0.2) x 10 to the minus 13th cu cm/molecule-sec.

  14. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide

    PubMed Central

    Martin, Nancy L.; Bass, Paul; Liss, Steven N.

    2015-01-01

    Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8mg/L-1) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K+) and divalent (Ca+2) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of ionic

  15. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide.

    PubMed

    Martin, Nancy L; Bass, Paul; Liss, Steven N

    2015-01-01

    Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8 mg/L(-1)) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+)) and divalent (Ca(+2)) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of

  16. Degradation of the ethyl glucuronide content in hair by hydrogen peroxide and a non-destructive assay for oxidative hair treatment using infra-red spectroscopy.

    PubMed

    Ammann, Dominic; Becker, Roland; Kohl, Anka; Hänisch, Jessica; Nehls, Irene

    2014-11-01

    The assessment of quantification results of the alcohol abuse marker ethyl glucuronide (EtG) in hair in comparison to the cut-off values for the drinking behavior may be complicated by cosmetic hair bleaching. Thus, the impact of increasing exposure to hydrogen peroxide on the EtG content of hair was investigated. Simultaneously, the change of absorbance in the range of 1000-1100 cm(-1) indicative for the oxidation of cystine was investigated non-destructively by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) using pulverized portions of the respective hair samples. Hair samples treated with hydrogen peroxide consistently displayed a significantly increased absorbance at 1040 cm(-1) associated with the formation of cysteic acid. The EtG content decreased significantly if the hair was treated with alkaline hydrogen peroxide as during cosmetic bleaching. It could be shown that ATR-FTIR is capable of detecting an exposure to hydrogen peroxide when still no brightening was visible and already before the EtG content deteriorated significantly. Thus, hair samples suspected of having been exposed to oxidative treatment may be checked non-destructively by a readily available technique. This assay is also possible retrospectively after EtG extraction and using archived samples. PMID:25180828

  17. Reduction of combustion emissions using hydrogen peroxide in a pilot scale combustion chamber

    SciTech Connect

    Martinez, A.I.; Corredor, L.F.; Tamara, W.

    1997-12-31

    A hydrogen peroxide injection system was designed and installed in the stack of a 5,274 million J/hr industrial pilot plant scale combustion chamber using natural gas as fuel. The concentration of peroxide in the gas stream was precisely controlled by continuous injection using an electromagnetic dosage pump, the liquid 50% peroxide solution was finely dispersed into the gases by a water cooled custom designed delivery system with a spray nozzle at the tip. Residence times between 0.1 and 1.8 seconds and concentrations of H{sub 2}O{sub 2} between 280 ppm and 4,000 ppm were used during the test runs. CEMS for total hydrocarbons, carbon monoxide, nitrogen oxides, as well as an ultrasonic gas flow monitor were used to measure the effect of hydrogen peroxide in reducing the emissions of these pollutants. Destruction removal efficiencies between 25% and 100% were observed for hydrocarbons, and concentrations of CO, as well as NO{sub x}. were reduced about 50%. The results indicate that this labscale proved technology yields similar results in reducing combustion emissions in pilot applications, and also a reliable injection system has been developed and tested successfully.

  18. Massive Cerebral Gas Embolism under Discectomy due to Hydrogen Peroxide Irrigation

    PubMed Central

    Zhang, Junjie; Zhang, Chengliang; Yan, Jianqin

    2015-01-01

    Massive cerebral and spinal gas embolism occurs rarely as a complication of discectomy. We report a 54-year-old female who had undergone a discectomy (L3/4 and L4/5) under epidural anesthesia in a local hospital developed multiple massive gas embolisms. At closure, surgeons irrigated the incision wound with hydrogen peroxide. Soon after the irrigation, the patient suddenly developed tachycardia, hypotension, and rapid oxygen desaturation. Subsequently, patient progressed into unconsciousness and right hemianopsia quadriplegia. Computed tomography (CT) scan showed multiple hypointensity spots around the brain due to cerebral gas embolism, which indicated the pneumoencephalos. The likely mechanism was the absorption of hydrogen peroxide into blood. When the amount of oxygen evolved exceeded its maximal blood solubility, venous embolization occurred. Though the patient was treated with supportive treatments and hyperbaric oxygen, she did not get full recovery and was left with severe long-term cerebral injury. PMID:25688310

  19. Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment.

    PubMed

    Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek

    2015-09-01

    In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation. PMID:26086086

  20. Comparison of chemiluminescence methods for analysis of hydrogen peroxide and hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Pehrman, R.; Amme, M.; Cachoir, C.

    2006-01-01

    Assessment of alpha radiolysis influence on the chemistry of geologically disposed spent fuel demands analytical methods for radiolytic product determination at trace levels. Several chemiluminescence methods for the detection of radiolytic oxidants hydrogen peroxide and hydroxyl radicals are tested. Two of hydrogen peroxide methods use luminol, catalyzed by either μ-peroxidase or hemin, one uses 10-methyl-9-(p-formylphenyl)-acridinium carboxylate trifluoromethanesulfonate and one potassium periodate. All recipes are tested as batch systems in basic conditions. For hydroxyl radical detection luminophores selected are 3-hydroxyphthalic hydrazide and rutin. Both methods are tested as batch systems. The results are compared and the applicability of the methods for near-field dissolution studies is discussed.

  1. Determination of hydrogen peroxide by flow injection analysis with aryl oxalate-sulforhodamine 101 chemiluminescence

    SciTech Connect

    Katayama, M.; Takeuchi, H.; Tanigchi, H. )

    1991-06-01

    A flow injection analysis (FIA) method for the determination of hydrogen peroxide by aryl oxalate chemiluminescence detection was studied. The analyte was detected by using sulforhodamine 101 as a new fluorophore and bis (4-nitro-2-(3,6,9-trioxadecyloxycarbonyl)phenyl)oxalate (TDPO) in imidazole buffer (pH 7.0)-acetonitrile. The detection limit was 3.0 {times} 10{sup {minus}9}M. The relative standard deviation (n=6) for 1.0 {times} 10{sup {minus}6} M hydrogen peroxide was 2.8%. This FIA method was shown to be 20 to 2,500 times more sensitive than the previous FIA method with aryl oxalate chemiluminescence.

  2. Sensitivity of tropospheric hydrogen peroxide to global chemical and climate change

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Stewart, Richard W.; Owens, Melody A.

    1989-01-01

    The sensitivities of tropospheric HO2 and hydrogen peroxide (H2O2) levels to increases in CH4, CO, and NO emissions and to changes in stratospheric O3 and tropospheric O3 and H2O have been evaluated with a one-dimensional photochemical model. Specific scenarios of CH4-CO-NO(x) emissions and global climate changes are used to predict HO2 and H2O2 changes between 1980 and 2030. Calculations are made for urban and nonurban continental conditions and for low latitudes. Generally, CO and CH4 emissions will enhance H2O2; NO emissions will suppress H2O2 except in very low NO(x) regions. A global warming or stratospheric O3 depletion will add to H2O2. Hydrogen peroxide increases from 1980 to 2030 could be 100 percent or more in the urban boundary layer.

  3. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide)

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene; Koelbl, Mary E. (Technical Monitor)

    2002-01-01

    This paper discusses a study of two alternate oxidizers, liquid oxygen and hydrogen peroxide, for use in a rocket based combined cycle (RBCC) demonstrator vehicle. The flight vehicle is baselined as an airlaunched self-powered Mach 0.7 to 7 demonstration of an RBCC engine through all or its air breathing propulsion modes. Selection of an alternate oxidizer has the potential to lower overall vehicle size, system complexity/ cost and ultimately the total program risk. This trade study examined the oxidizer selection effects upon the overall vehicle performance, safety and operations. After consideration of all the technical and programmatic details available at this time, 90% hydrogen peroxide was selected over liquid oxygen for use in this program.

  4. Effects of Microstructure of Carbon Nanofibers for Amperometric Detection of Hydrogen Peroxide

    SciTech Connect

    Li, Zhizhou; Cui, Xiaoli; Zheng, Junsheng; Wang, Qingfei; Lin, Yuehe

    2007-08-10

    Carbon nanofibers (CNFs) with different microstructures, including platelet-carbon nanofibers (PCNFs), fish-bone-carbon nanofibers (FCNFs), and tube-carbon nanofibers (TCNFs), were synthesized, characterized, and evaluated for electrochemical sensing of hydrogen peroxide. The CNFs studied here can show several microstructures in which various stacked morphologies and their sizes and graphite-layer ordering can be well controlled. Glassy carbon (GC) electrodes modified by CNFs were fabricated and compared for amperometric detection of hydrogen peroxide. Sensors of PCNFs/GC, FCNFs/GC, and TCNFs/GC were used in the amperometric detection of H2O2 in a solution of 0.05 M phosphate buffered saline solution (pH 7.4).

  5. Compatibility Studies of Hydrogen Peroxide and a New Hypergolic Fuel Blend

    NASA Technical Reports Server (NTRS)

    Baldridge, Jennifer; Villegas, Yvonne

    2002-01-01

    Several preliminary materials compatibility studies have been conducted to determine the practicality of a new hypergolic fuel system. Hypergolic fuel ignites spontaneously as the oxidizer decomposes and releases energy in the presence of the fuel. The bipropellant system tested consists of high-test hydrogen peroxide (HTP) and a liquid fuel blend consisting of a hydrocarbon fuel, an ignition enhancer and a transition metal catalyst. In order for further testing of the new fuel blend to take place, some basic materials compatibility and HTP decomposition studies must be accomplished. The thermal decomposition rate of HTP was tested using gas evolution and isothermal microcalorimetry (IMC). Materials were analyzed for compatibility with hydrogen peroxide including a study of the affect welding has on stainless steel elemental composition and its relation to HTP decomposition. Compatibility studies of valve materials in the fuel blend were performed to determine the corrosion resistance of the materials.

  6. Preparation of activated carbons previously treated with hydrogen peroxide: Study of their porous texture

    NASA Astrophysics Data System (ADS)

    López de Letona Sánchez, M.; Macías-García, A.; Díaz-Díez, M. A.; Cuerda-Correa, E. M.; Gañán-Gómez, J.; Nadal-Gisbert, A.

    2006-06-01

    Cedar wood was used as raw material for the preparation of activated carbons by treatment with hydrogen peroxide of different concentrations. The samples were next carbonised and activated under CO 2 atmosphere. The activated carbons were characterised by means of the adsorption isotherms of N 2 at 77 K, as well as by applying the Density Functional Theory (DFT) method and mercury porosimetry. The experimental results corresponding to the activated samples indicate a more remarkable porous development as a consequence of the treatment with hydrogen peroxide, probably due to the elimination of surface complexes produced during the activation step. The DFT diagrams point out that the activating treatment favours the development of medium and narrow-size micropores whereas the carbonisation process leads to the development of wide micropores of size close to that corresponding to mesopores.

  7. Polarographic assay based on hydrogen peroxide scavenging in determination of antioxidant activity of strong alcohol beverages.

    PubMed

    Gorjanović, Stanislava Z; Novaković, Miroslav M; Vukosavljević, Predrag V; Pastor, Ferenc T; Tesević, Vele V; Suznjević, Desanka Z

    2010-07-28

    Total antioxidant (AO) activity of strong alcohol beverages such as wine and plum brandies, whiskeys, herbal and sweet fruit liqueurs have been assessed using a polarographic assay based on hydrogen peroxide scavenging (HPS). Rank of order of total AO activity, expressed as percentage of decrease of anodic oxidation current of hydrogen peroxide, was found analogous with total phenolic content estimated by Folin-Ciocalteau (FC) assay and radical scavenging capacity against the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). Application of the assay for surveying of a quarter century long maturation of plum brandy in oak barrel was demonstrated. In addition, influence of different storage conditions on preservation of AO activity of some herbal liqueurs was surveyed. Wide area of application of this simple, fast, low cost and reliable assay in analysis and quality monitoring of various strong alcohol beverages was confirmed. PMID:20604507

  8. Study on Kerosene Based Fuel with Hydrogen Peroxide for Hypergolic Application

    NASA Astrophysics Data System (ADS)

    Cong, Y.; Zhang, T.; Dou, H.; Wang, X.; Liang, D.; Lin, G.; Wang, S.; Wang, Y.; Chen, W.

    2004-10-01

    Hypergolicity is a very important characteristic for bipropellants. With hypergolic propellant, the design of engines and the handling of rocket systems are greatly simplified, and the rocket engine can be restarted repeatedly for a great number of times. Hydrogen peroxide and kerosene have been proposed as one of the best potential alternatives for replacing the toxic nitrogen tetroxide and unsymmetrical dimethyl hydrazine bipropellants currently in use. In this paper, composite hypergolic bipropellants have been developed by using high concentration hydrogen peroxide as the oxidizer for kerosene based fuels. The ignition-delay properties as well as the storage stability were extensively examined. Reliable ignitions and stable combustion performances were exhibited for over 500 times of cold start firing tests. In addition, satisfactory properties close to that of the traditional toxic hypergolic propellants have been observed in a 5 ton grade thruster.

  9. Preparation and catalytic ability to reduce hydrogen peroxide of Ag nanoparticles highly dispersed via hyperbranched copolymer

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Yang, Weiying; Yang, Jie; He, Linghao; Sun, Jing; Song, Rui; Ma, Zhi; Huang, Wei

    2011-03-01

    Highly dispersed Ag nanoparticles, stabilized by hyperbranched copolymers (HPCs), were prepared by chemical reduction in toluene. These Ag NPs were used further for the fabrication of a hydrogen peroxide (H2O2) sensor, by which a good catalytic ability for the reduction of H2O2 was found.Highly dispersed Ag nanoparticles, stabilized by hyperbranched copolymers (HPCs), were prepared by chemical reduction in toluene. These Ag NPs were used further for the fabrication of a hydrogen peroxide (H2O2) sensor, by which a good catalytic ability for the reduction of H2O2 was found. Electronic supplementary information (ESI) available: Structure and structure parameters of the HPCs, and UV-vis and XPS spectra of the NPs . See DOI: 10.1039/c0nr00567c

  10. Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells.

    PubMed

    Rastogi, Anshu; Pospísil, Pavel

    2010-01-01

    Biophotons spontaneously emitted from radish root cells were detected using highly sensitive photomultiplier tube. Freshly isolated radish root cells exhibited spontaneous photon emission of about 4 counts s(-1). Addition of hydrogen peroxide to the cells caused significant enhancement in biophoton emission to about 500 counts s(-1). Removal of molecular oxygen using glucose/glucose oxidase system and scavengering of reactive oxygen species by reducing agents such are sodium ascorbate and cysteine completely diminished biophoton emission. Spectral analysis of the hydrogen peroxide-induced biophoton emission indicates that biophotons are emitted mainly in green-red region of the spectra. The data provided by electron paramagnetic resonance spin-trapping technique showed that formation of singlet oxygen observed after addition of H2O2 correlates with enhancement in biophoton emission. These observations provide direct evidence that singlet oxygen is involved in biophoton emission from radish root cells. PMID:20106674

  11. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction.

    PubMed

    Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Klímová, Kateřina; Macková, Anna; Pumera, Martin

    2014-07-22

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in the fields of energy generation and sensing. Metal-doped graphenes, where metal serves as the catalytic center and graphene as the high area conductor, have been used as electrocatalysts for such applications. In this paper, we investigated the use of uranium-graphene and thorium-graphene hybrids prepared by a simple and scalable method. The hybrids were synthesized by the thermal exfoliation of either uranium- or thorium-doped graphene oxide in various atmospheres. The synthesized graphene hybrids were characterized by high-resolution XPS, SEM, SEM-EDS, combustible elemental analysis, and Raman spectroscopy. The influence of dopant and exfoliation atmosphere on electrocatalytic activity was determined by electrochemical measurements. Both hybrids exhibited excellent electrocatalytic properties toward oxygen and hydrogen peroxide reduction, suggesting that actinide-based graphene hybrids have enormous potential for use in energy conversion and sensing devices. PMID:24979344

  12. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment.

    PubMed

    Pierce, Brian C; Wichmann, Jesper; Tran, Tam H; Cheetamun, Roshan; Bacic, Antony; Meyer, Anne S

    2016-06-25

    In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than 70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation of soluble soy polysaccharides and opens a new range of opportunities for this abundant and underutilized material in future research and industrial applications. PMID:27083842

  13. Methods and apparatus for the on-site production of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Buschmann, Wayne E. (Inventor); James, Patrick I. (Inventor)

    2010-01-01

    Methods, apparatus, and applications for the on-site production of hydrogen peroxide are described. An embodiment of the apparatus comprises at least one anolyte chamber coupled to at least one anode, at least one catholyte chamber, wherein the at least one catholyte chamber is coupled to at least one cathode, at least one anode membrane and at least one cathode membrane, wherein the anode membrane is adjacent to the at least one anode, wherein the cathode membrane is adjacent to the at least one cathode, at least one central chamber disposed between the at least one anolyte chamber and the at least one catholyte chamber. Hydrogen peroxide is produced by reduction of an oxygen-containing gas at the cathode.

  14. Sensitivity of tropospheric hydrogen peroxide to global chemical and climate change

    SciTech Connect

    Thompson, A.M.; Stewart, R.W. ); Owens, M.A. )

    1989-01-01

    The sensitivities of tropospheric (H{sub 2}O{sub 2}) levels to increases in the CH{sub 4}, CO and NO emissions and to changes in stratospheric O{sub 3} and tropospheric O{sub 3} and H{sub 2}O have been evaluated with a one-dimensional photochemical model. Specific scenarios of CH{sub 4}-CO-NO{sub x} emissions and global climate changes are used to predict HO{sub 2} and H{sub 2}O{sub 2} changes between 1980 and 2030. Calculations are made for urban and nonurban continental conditions and for low latitudes. Generally, CO and CH{sub 4} emissions will suppress H{sub 2}O{sub 2} except in very low No{sub x} regions will suppress H{sub 2}O{sub 2} except in very low No{sub x} regions. A global warming (with increased H{sub 2}O vapor) or stratospheric O{sub 3} depletion will add to H{sub 2}O{sub 2}. Hydrogen peroxide increases from 1980 to 2030 could be 100% or more in the urban boundary layer. Increases in CH{sub 4}, CO and O{sub 3} that have occurred in the industrial era (since 1800) have probably produced temporal increases in background HO{sub 2} and H{sub 2}O{sub 2}. It might be possible to use H{sub 2}O{sub 2} in ice cores to track these changes. Where formation of sulfuric acid in cloudwater and precipitation is oxidant limited, H{sub 2}O{sub 2} and HO{sub 2} increases could be contributing to increases in acid precipitation.

  15. Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Liu, Danni; Chen, Tao; Zhu, Wenxin; Cui, Liang; Asiri, Abdullah M.; Lu, Qun; Sun, Xuping

    2016-08-01

    In this letter, we demonstrate for the first time that cobalt phosphide nanowires (CoP NWs) exhibit remarkable catalytic activity toward electrochemical detection of hydrogen peroxide (H2O2). As an enzymeless H2O2 sensor, such CoP NWs show a fast amperometric response within 5 s and a low detection limit of 0.48 μM. In addition, this nonenzymatic sensor displays good selectivity, long-term stability and excellent reproducibility.

  16. Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection.

    PubMed

    Liu, Danni; Chen, Tao; Zhu, Wenxin; Cui, Liang; Asiri, Abdullah M; Lu, Qun; Sun, Xuping

    2016-08-19

    In this letter, we demonstrate for the first time that cobalt phosphide nanowires (CoP NWs) exhibit remarkable catalytic activity toward electrochemical detection of hydrogen peroxide (H2O2). As an enzymeless H2O2 sensor, such CoP NWs show a fast amperometric response within 5 s and a low detection limit of 0.48 μM. In addition, this nonenzymatic sensor displays good selectivity, long-term stability and excellent reproducibility. PMID:27386800

  17. The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide.

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions were studied with the aid of a mass spectrometer. A pinhole bleed system provided continuous sampling of the gas mixture in the cell during the reaction. It was found that the homogeneous reactions of nitric oxide and nitrogen dioxide with hydrogen peroxide are too slow to be of any significance in the upper atmosphere. However, the heterogeneous reactions may be important in the conversion of nitric oxide to nitrogen dioxide in the case of polluted urban atmospheres.

  18. Improved sensing response of photo activated ZnO thin film for hydrogen peroxide detection.

    PubMed

    Parthasarathy, S; Nandhini, V; Jeyaprakash, B G

    2016-11-15

    The nanostructured ZnO thin films were deposited using spray pyrolysis technique. Formation of polycrystalinity with hexagonal wurtzite structure was observed from the structural study. Highly dense spherical shaped nanoparticles with fine crystallites were observed from the surface morphological studies. The light induced hydrogen peroxide vapour sensing was done using chemi-resistive method and its effect on the sensing response was studied and reported. PMID:27491004

  19. Chlorine monoxide radical, ozone, and hydrogen peroxide: stratospheric measurements by microwave limb sounding

    SciTech Connect

    Waters, J.W.; Hardy, J.C.; Jarnot, R.F.; Pickett, H.M.

    1981-10-02

    Profiles of stratospheric ozone and chlorine monoxide radical (ClO) were obtained from balloon measurements of atmospheric limb thermal emission at millimeter wavelengths. The ClO measurements, important for assessing the predicted depletion of stratospheric ozone by chlorine from industrial sources, are in close agreement with present theory. The predicted decrease of ClO at sunset was measured. A tentative value for the stratospheric abundance of hydrogen peroxide was also determined.

  20. New considerations on hydrogen peroxide and related substances as food additives in view of carcinogenicity.

    PubMed

    Ito, R

    1982-01-01

    The use of hydrogen peroxide as a labile and safe food preservative in fish cake and boiled noodles has recently been restricted by the Japanese government, since hyperplasia has been found in the duodenum of mice after long-term peroral study. The action of compounds with resembling mode of action, potassium bromate as an improving agent in bread, and sodium chlorate as a weed killer are discussed in this paper in view of developmental and environmental pharmacology. PMID:7078983