Sample records for acid hydrolysis gave

  1. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  3. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  4. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  5. The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars.

    PubMed

    Jiang, Liqun; Wu, Nannan; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin

    2016-01-01

    Fermentable sugars are important intermediates in the biological conversion of biomass. Hemicellulose and amorphous cellulose are easily hydrolyzed to fermentable sugars in dilute acid, whereas crystalline cellulose is more difficult to be hydrolyzed. Cellulose fast pyrolysis is an alternative method to liberate valuable fermentable sugars from biomass. The amount of levoglucosan generated from lignocellulose by fast pyrolysis is usually lower than the theoretical yield based on the cellulose fraction. Pretreatment is a promising route to improve the yield of levoglucosan from lignocellulose. The integration of dilute sulfuric acid hydrolysis and fast pyrolysis to obtain fermentable sugars was evaluated in this study. Dilute sulfuric acid hydrolysis could remove more than 95.1 and 93.4 % of xylan (the main component of hemicellulose) from sugarcane bagasse and corncob with high yield of xylose. On the other hand, dilute sulfuric acid hydrolysis was also an effective pretreatment to enhance levoglucosan yield from lignocellulose. Dilute acid hydrolysis could accumulate glucan (the component of cellulose) and remove most of the alkali and alkaline earth metals which were powerful catalysts during fast pyrolysis. Further increase in dilute acid concentration (from 0 to 2 %) in pretreatment could promote the yield of levoglucosan in fast pyrolysis. The acid pretreated sugarcane bagasse and corncob gave levoglucosan yields of 43.8 and 35.2 % which were obvious higher than those of raw sugarcane bagasse (12.0 %) and corncob (7.0 %). Obtaining fermentable sugars by combination dilute acid hydrolysis of xylan and fast pyrolysis of glucan could make full utilization of biomass, and get fermentable sugars economically from biomass for bio-refinery.

  6. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    PubMed

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  8. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.

    PubMed

    Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F

    2014-10-13

    The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis.

    PubMed

    Zhou, Shengfei; Runge, Troy M

    2014-11-04

    This work studied the two-step acid hydrolysis for determining carbohydrates in lignocellulosic biomass. Estimation of sugar loss based on acid hydrolyzed sugar standards or analysis of sugar derivatives was investigated. Four model substrates (starch, holocellulose, filter paper and cotton) and three levels of acid/material ratios (7.8, 10.3 and 15.4, v/w) were studied to demonstrate the range of test artifacts. The method for carbohydrates estimation based on acid hydrolyzed sugar standards having the most satisfactory carbohydrate recovery and relative standard deviation. Raw material and the acid/material ratio both had significant effect on carbohydrate hydrolysis, suggesting the acid to have impacts beyond a catalyst in the hydrolysis. Following optimal procedures, we were able to reach a carbohydrate recovery of 96% with a relative standard deviation less than 3%. The carbohydrates recovery lower than 100% was likely due to the incomplete hydrolysis of substrates, which was supported by scanning electron microscope (SEM) images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Mechanism of 1,4,5,8-naphthalene tetracarboxylic acid dianhydride hydrolysis and formation in aqueous solution.

    PubMed

    Barros, T C; Cuccovia, I M; Farah, J P S; Masini, J C; Chaimovich, H; Politi, M J

    2006-01-07

    The study of highly conjugated, carbonyl-containing molecules such as 1,4,5,8-naphthalene tetracarboxylic dianhydride, III, is of interest since reactivity differences and transmission of electronic effects through the conjugated framework can be evidenced. The kinetics of hydrolysis of III in aqueous solution were determined from 5 M acid to pH 10. In basic solution hydrolysis of III yields, sequentially, 1,4,5,8-naphthalene diacid monoanhydride, II, and 1,4,5,8-naphthalene tetracarboxylic acid, I. The second order rate constant for alkaline hydrolysis is 200 fold higher for the first ring opening. The water-catalyzed hydrolysis of III yields a pH-dependent mixture of ionic forms of I and II. The rate constant for water-catalyzed hydrolysis of III is 25 fold higher than that for II. In concentrated acid the rates for reaching equilibrium (I, II and III) increase and III is the major product. The pK(a)s of I (3.24, 5.13 and 6.25) and II (3.05, 5.90) were determined by potentiometric, fluorescence and UV spectroscopy titrations and by quantitative fit of the kinetic and equilibrium data. The apparent, pH-dependent, equilibrium constants, K(EqII), for anhydride formation between I and II were obtained from the UV spectra. The quantitative fit of kinetic and equilibrium data are consistent with the assumption that anhydride formation only proceeds with the fully protonated species for both I and II and permitted the estimation of the equilibrium constants for anhydride formation, K(EqII). The value of K(EqII) (I <==> II) between pH 1 and 6 was ca. 5. Geometry optimization calculations in the gas phase of the reactions of III in alkaline, neutral and acid conditions, at the DFT level of theory, gave electronic distributions that were qualitatively consistent with the experimental results.

  11. Acid hydrolysis of Jerusalem artichoke for ethanol fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Hamdy, M.K.

    1986-01-01

    An excellent substrate for ethanol production is the Jerusalem artichoke (JA) tuber (Helianthus tuberosus). This crop contains a high level of inulin that can be hydrolyzed mainly to D-fructose and has several distinct advantages as an energy source compared to others. The potential ethanol yield of ca. 4678 L/ha on good agricultural land is equivalent to that obtained from sugar beets and twice that of corn. When JA is to be used for ethanol fermentation by conventional yeast, it is first converted to fermentable sugars by enzymes or acids although various strains of yeast were used for the direct fermentationmore » of JA extracts. Fleming and GrootWassink compared various acids (hydrochloric, sulfuric, citric, and phosphoric) and strong cation exchange resin for their effectiveness on inulin hydrolysis and reported that no differences were noted among the acids or resin in their influence on inulin hydrolysis. Undesirable side reactions were noted during acid hydrolysis leading to the formation of HMF and 2-(2-hydroxy acetyl) furan. The HMF at a level of 0.1% is known to inhibit growth and ethanol fermentation by yeast. In this study the authors established optimal conditions for complete acid-hydrolysis of JA with minimum side reactions and maximum sugar-ethanol production. A material balance for the ethanol production was also determined.« less

  12. Enhanced functional properties of tannic acid after thermal hydrolysis

    USDA-ARS?s Scientific Manuscript database

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  13. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  14. In vitro enzymic hydrolysis of chlorogenic acids in coffee.

    PubMed

    da Encarnação, Joana Amarante; Farrell, Tracy L; Ryder, Alexandra; Kraut, Nicolai U; Williamson, Gary

    2015-02-01

    Coffee is rich in quinic acid esters of phenolic acids (chlorogenic acids) but also contains some free phenolic acids. A proportion of phenolic acids appear in the blood rapidly after coffee consumption due to absorption in the small intestine. We investigated in vitro whether this appearance could potentially be derived from free phenolic acids in instant coffee or from hydrolysis of chlorogenic acids by pancreatic or brush border enzymes. We quantified six free phenolic acids in instant coffees using HPLC-DAD-mass spectrometry. The highest was caffeic acid, but all were present at low levels compared to the chlorogenic acids. Roasting and decaffeination significantly reduced free phenolic acid content. We estimated, using pharmacokinetic modelling with previously published data, that the contribution of these compounds to small intestinal absorption is minimal. Hydrolysis of certain chlorogenic acids was observed with human-differentiated Caco-2 cell monolayers and with porcine pancreatin, which showed maximal rates on 3- and 5-O-caffeoylquinic acids, respectively. The amounts of certain free phenolic acids in coffee could only minimally account for small intestinal absorption based on modelling. The hydrolysis of caffeoylquinic, but not feruloylquinic acids, by enterocyte and pancreatic esterases is potentially a contributing mechanism to small intestinal absorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  16. Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species.

    PubMed

    Aguirre Santos, Elsa Anaheim; Schieber, Andreas; Weber, Fabian

    2018-07-01

    Hydroxycinnamic acids are a major group of phenolic compounds widely distributed in plants. Among them, chlorogenic acids and caffeic acid have been in the focus of interest due to their impact on food quality and their putative health benefits. Numerous microorganisms like lactic acid bacteria are able to hydrolyze chlorogenic acids by cinnamoyl esterase enzymes. Data on the specificity of theses enzymes regarding the cleavage of distinct isomers of mono- or dichlorogenic acids is lacking. Lactobacillus reuteri, Lactobacillus helveticus, and Lactobacillus fermentum were screened for their ability to hydrolyze chlorogenic acid isomers in culture medium. Concentrations of chlorogenic acids and the released caffeic acid were determined by UHPLC-ESI-MS. The highest hydrolysis rate (100%) was observed for the hydrolysis of 5-CQA by Lactobacillus helveticus. A so far unknown metabolic pathway for the cleavage of 4-CQA is proposed including isomerization to 5-CQA and 3-CQA followed by hydrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid.

    PubMed

    Wang, Ying; Yuan, Bo; Ji, Yingchao; Li, Hong

    2013-09-12

    In this paper, plasma acid was obtained by treating distilled water with dielectric barrier discharge to hydrolyze hemicellulose. The orthogonal experiment L₂₅(5(6)) was used to optimize such hydrolysis conditions. The total reducing sugar (TRS) was measured by the DNS method. To determine whether the oligosaccharide existed in the hydrolysis products, it was hydrolyzed by sulfuric acid for a second time following the same procedure as reported earlier. The monosaccharide compositions of the hydrolyzed sample were analyzed by high-performance liquid chromatography (HPLC) and Fourier transformed infrared spectroscopy (FTIR). The results showed that pH 2.81 of plasma acid, 100 °C and 50 min were assigned as an optimal hydrolysis condition by plasma acid. Under this condition, the hemicellulose was hydrolyzed completely to produce monosaccharides including xylose, glucose, and galactose with the mole ratio being 17:3:1. The yields of xylose, glucose, and galactose were 38.67%, 9.28% and 3.09%, respectively. Compared with the hemicellulose hydrolysis results by sulfuric acid, it is concluded that plasma acid is an environmental-friendly and efficient method to explore and hydrolyze the hemicellulose existed in biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Hydrolysis of tRNA(sup Phe) on Suspensions of Amino Acids

    NASA Technical Reports Server (NTRS)

    Gao, Kui; Orgel, Leslie E.

    2001-01-01

    RNA is adsorbed strongly on suspensions of many moderately soluble organic solids. In some cases, the hydrolysis of tRNA(sup Phe) is greatly accelerated by adsorption, and the major sites of hydrolysis are changed from those that are important in homogeneous solution. Here we show that the hydrolysis is greatly accelerated by suspensions of aspartic acid and beta-glutamic acid but not by suspensions of alpha-glutamic acid, asparagine, or glutamine. The non-enzymatic hydrolysis of RNA has been studied extensively, especially because of its relevance to the mechanisms of action of ribozymes and to biotechnology and therapy. Many ribonucleases, ribozymes, and non-biological catalysts function via acid-base catalysis of an intramolecular transesterification mechanism in which the 2'-OH group attacks the adjacent phosphate group. The pentacoordinated phosphorane intermediate may collapse back to starting material, or yield isomerized or cleaved products.

  19. Preparation of κ-carra-oligosaccharides with microwave assisted acid hydrolysis method

    NASA Astrophysics Data System (ADS)

    Li, Guangsheng; Zhao, Xia; Lv, Youjing; Li, Miaomiao; Yu, Guangli

    2015-04-01

    A rapid method of microwave assisted acid hydrolysis was established to prepare κ-carra-oligosaccharides. The optimal hydrolysis condition was determined by an orthogonal test. The degree of polymerization (DP) of oligosaccharides was detected by high performance thin layer chromatography (HPTLC) and polyacrylamide gel electrophoresis (PAGE). Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis was determined. The concentration of κ-carrageenan was 5 mg mL-1; the reaction solution was adjusted to pH 3 with diluted hydrochloric acid; the solution was hydrolyzed under microwave irradiation at 100 for 15 °C min. Oligosaccharides were separated by a Superdex 30 column (2.6 cm × 90 cm) using AKTA Purifier UPC100 and detected with an online refractive index detector. Each fraction was characterized by electrospray ionization mass spectrometry (ESI-MS). The data showed that odd-numbered κ-carra-oligosaccharides with DP ranging from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained by traditional mild acid hydrolysis. The new method was more convenient, efficient and environment-friendly than traditional mild acid hydrolysis. Our results provided a useful reference for the preparation of oligosaccharides from other polysaccharides.

  20. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  1. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    PubMed

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.

  2. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.

    2017-12-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  3. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG.

  4. Hydrolysis of oligosaccharides over solid acid catalysts: a review.

    PubMed

    Vilcocq, Léa; Castilho, Paula C; Carvalheiro, Florbela; Duarte, Luís C

    2014-04-01

    Mild fractionation/pretreatment processes are becoming the most preferred choices for biomass processing within the biorefinery framework. To further explore their advantages, new developments are needed, especially to increase the extent of the hydrolysis of poly- and oligosaccharides. A possible way forward is the use of solid acid catalysts that may overcome many current drawbacks of other common methods. In this Review, the advantages and limitations of the use of heterogeneous catalysis for the main groups of solid acid catalysts (zeolites, resins, carbon materials, clays, silicas, and other oxides) and their relation to the hydrolysis of model soluble disaccharides and soluble poly- and oligosaccharides are presented and discussed. Special attention is given to the hydrolysis of hemicelluloses and hemicellulose-derived saccharides into monosaccharides, the impact on process performance of potential catalyst poisons originating from biomass and biomass hydrolysates (e.g., proteins, mineral ions, etc.). The data clearly point out the need for studying hemicelluloses in natura rather than in model compound solutions that do not retain the relevant factors influencing process performance. Furthermore, the desirable traits that solid acid catalysts must possess for the efficient hemicellulose hydrolysis are also presented and discussed with regard to the design of new catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alyapyshev, M.; Paulenova, A.; Tkac, P.

    2007-07-01

    Aceto-hydroxamic acid (AHA) is used as a stripping agent In the UREX process. While extraction yields of uranium remain high upon addition of AHA, hexavalent plutonium and neptunium are rapidly reduced to the pentavalent state while the tetravalent species and removed from the product stream. However, under acidic conditions, aceto-hydroxamic acid undergoes hydrolytic degradation. In this study, the kinetics of the hydrolysis of aceto-hydroxamic acid in nitric and perchloric acid media was investigated at several temperatures. The decrease of the concentration of AHA was determined via its ferric complex using UV-Vis spectroscopy. The data obtained were analyzed using the methodmore » of initial rates. The data follow the pseudo-first order reaction model. Gamma irradiation of AHA/HNO{sub 3} solutions with 33 kGy/s caused two-fold faster degradation of AHA. The rate equation and thermodynamic data will be presented for the hydrolysis reaction with respect to the concentrations of aceto-hydroxamic acid, nitrate and hydronium ions, and radiation dose. (authors)« less

  6. Detection of diastereomer peptides as the intermediates generating D-amino acids during acid hydrolysis of peptides.

    PubMed

    Miyamoto, Tetsuya; Sekine, Masae; Ogawa, Tetsuhiro; Hidaka, Makoto; Watanabe, Hidenori; Homma, Hiroshi; Masaki, Haruhiko

    2016-11-01

    In this study, we investigated whether the amino acid residues within peptides were isomerized (and the peptides converted to diastereomers) during the early stages of acid hydrolysis. We demonstrate that the model dipeptides L-Ala-L-Phe and L-Phe-L-Ala are epimerized to produce the corresponding diastereomers at a very early stage, prior to their acid hydrolytic cleavage to amino acids. Furthermore, the sequence-inverted dipeptides were generated via formation of a diketopiperazine during hydrolytic incubation, and these dipeptides were also epimerized. The proportion of diastereomers increased rapidly during incubation for 0.5-2 h. During acid hydrolysis, C-terminal residues of the model dipeptides were isomerized faster than N-terminal residues, consistent with the observation that the D-amino acid values of the C-terminal residues determined by the 0 h-extrapolating method were larger than those of the N-terminal residues. Thus, the artificial D-amino acid contents determined by the 0 h-extrapolating method appear to be products of the isomerization of amino acid residues during acid hydrolysis.

  7. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).

    PubMed

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.

  8. Preparation and characterization of dialdehyde starch by one-step acid hydrolysis and oxidation.

    PubMed

    Zuo, Yingfeng; Liu, Wenjie; Xiao, Junhua; Zhao, Xing; Zhu, Ying; Wu, Yiqiang

    2017-10-01

    Dialdehyde starch was prepared by one-step synthesis of acid hydrolysis and oxidation, using corn starch as the raw material, sodium periodate (NaIO 4 ) as the oxidant, and hydrochloric acid (HCl) as the acid solution. The prepared dialdehyde starch was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The results confirmed that oxidation occurred between the starch and NaIO 4 . The acid hydrolysis reaction reduced the molecular weight of starch and effectively improved the aldehyde group contents (92.7%). Scanning electron microscope (SEM) analysis indicated that the average particle size decreased after acid hydrolysis and oxidation reaction. X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA) analysis demonstrated that the crystallinity of the obtained dialdehyde starch showed a downward trend and a decelerated thermal decomposition rate. The starch after acid hydrolysis and oxidation exhibited lower hot paste viscosity and higher reactivity. Copyright © 2017. Published by Elsevier B.V.

  9. Effect of Varying Acid Hydrolysis Condition in Gracilaria Sp. Fermentation Using Sasad

    NASA Astrophysics Data System (ADS)

    Mansuit, H.; Samsuri, M. D. C.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.; Mansa, R.

    2015-04-01

    Macroalgae or seaweed is being considered as promising feedstock for bioalcohol production due to high polysaccharides content. Polysaccharides can be converted into fermentable sugar through acid hydrolysis pre-treatment. In this study, the potential of using carbohydrate-rich macroalgae, Gracilaria sp. as feedstock for bioalcohol production via various acid hydrolysis conditions prior to the fermentation process was investigated and evaluated. The seaweed used in this research was from the red algae group, using species of Gracilaria sp. which was collected from Sg. Petani Kedah, Malaysia. Pre-treatment of substrate was done using H2SO4 and HCl with molarity ranging from 0.2M to 0.8M. The pretreatment time were varied in the range of 15 to 30 minutes. Fermentation was conducted using Sasad, a local Sabahan fermentation agent as a starter culture. Alcohol extraction was done using a distillation unit. Reducing sugar analysis was done by Benedict test method. Alcohol content analysis was done using specific gravity test. After hydrolysis, it was found out that acid hydrolysis at 0.2M H2SO4 and pre-treated for 20 minutes at 121°C has shown the highest reducing sugar content which has yield (10.06 mg/g) of reducing sugar. It was followed by other samples hydrolysis using 0.4M HCl with 30 minutes pre-treatment and 0.2M H2SO4, 15 minutes pre-treatment with yield of 8.06 mg/g and 5.75 mg/g reducing sugar content respectively. In conclusion, acid hydrolysis of Gracilaria sp. can produce higher reducing sugar yield and thus it can further enhance the bioalcohol production yield. Hence, acid hydrolysis of Gracilaria sp. should be studied more as it is an important step in the bioalcohol production and upscaling process.

  10. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.

    PubMed

    Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-06-01

    Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Role of bifidobacteria in the hydrolysis of chlorogenic acid

    PubMed Central

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-01-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  12. Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources.

    PubMed

    Nguyen, T A V; Le, Truong D; Phan, Hoa N; Tran, Lam B

    2018-01-01

    Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL).

  13. Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources

    PubMed Central

    Phan, Hoa N.; Tran, Lam B.

    2018-01-01

    Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL). PMID:29623233

  14. Dilute acid hydrolysis of paper birch : kinetics studies of xylan and acetyl-group hydrolysis

    Treesearch

    Mark T. Maloney; Thomas W. Chapman; Andrew J. Baker

    1985-03-01

    Batch hydrolysis kinetics of paper birch (Betula papyrifera) xylan and its associated acetyl groups in dilute sulfuric acid have been measured for acid concentrations of between 0.04 and 0.18 M and temperatures of between 100 and 170°C. Only 5% of the cellulose was hydrolyzed for up to 85% xylan removal. Rate data were correlated well by a parallel reaction model based...

  15. Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production

    PubMed Central

    Idrees, Muhammad; Adnan, Ahmad; Sheikh, Shahzad; Qureshic, Fahim Ashraf

    2013-01-01

    The present study was conducted for the optimization of pretreatment process that was used for enzymatic hydrolysis of lignocellulosic biomass (Water Hyacinth, WH), which is a renewable resource for the production of bioethanol with decentralized availability. Response surface methodology has been employed for the optimization of temperature (oC), time (hr) and different concentrations of maleic acid (MA), sulfuric acid (SA) and phosphoric acid (PA) that seemed to be significant variables with P < 0.05. High F and R2 values and low P-value for hydrolysis yield indicated the model predictability. The pretreated biomass producing 39.96 g/l, 39.86 g/l and 37.9 g/l of reducing sugars during enzymatic hydrolysis with yield 79.93, 78.71 and 75.9 % from PA, MA and SA treated respectively. The order of catalytic effectiveness for hydrolysis yield was found to be phosphoric acid > maleic acid > sulfuric acid. Mixture of sugars was obtained during dilute acid pretreatment with glucose being the most prominent sugar while pure glucose was obtained during enzymatic hydrolysis. The resulting sugars, obtained during enzymatic hydrolysis were finally fermented to ethanol, with yield 0.484 g/g of reducing sugars which is 95 % of theoretical yield (0.51 g/g glucose) by using commercial baker's yeast (Sacchromyces cerveasiae). PMID:26417215

  16. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  17. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.

  18. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors.

    PubMed

    Feng, Leiyu; Wang, Hua; Chen, Yinguang; Wang, Qin

    2009-01-01

    The effects of solids retention time (SRT) and temperature on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation were investigated in a series of continuous-flow reactors at pH 10. The experimental results showed that the increase of either SRT or temperature benefited the hydrolysis of WAS and the production of SCFAs. The changes in SRT gave also impact on the percentage of acetic and propionic acids in the fermentative SCFAs, but little influence on that of the slightly long-chain SCFAs, such as n-butyric, iso-butyric, n-valeric and iso-valeric acids. Compared with the control (pH unadjusted) experiment, at SRT of 12d and temperature of 20 degrees C the concentration of SCFAs produced at pH 10 increased from 261.2 to 933.5mg COD/L, and the propionic acid percentage improved from 11.7 to 16.0%. It can be concluded from this investigation that the efficient continuous production of SCFAs at pH 10 is feasible.

  19. On the Brønsted acid-catalyzed homogeneous hydrolysis of furans.

    PubMed

    Nikbin, Nima; Caratzoulas, Stavros; Vlachos, Dionisios G

    2013-11-01

    Furan affairs: Electronic structure calculations of the homogeneous Brønsted acid-catalyzed hydrolysis of 2,5-dimethylfuran show that proton transfer to the β-position is rate-limiting and provides support that the hydrolysis follows general acid catalysis. By means of projected Fukui indices, we show this to be the case for unsubstituted, 2-, and 2,5-substituted furans with electron-donating groups. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cellulose nanofiber isolation from palm oil Empty Fruit Bunches (EFB) through strong acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Setyaningsih, Dwi; Uju; Muna, Neli; Isroi; Budi Suryawan, Nyoman; Azid Nurfauzi, Ami

    2018-03-01

    The palm oil industry produces about 25-26% of palm oil empty fruit bunches. The empty fruit bunch of palm oil contains cellulose up to 36.67%. This is a good opportunity for the synthesis of cellulose nanofiber (CNF). Cellulose nanofiber is a nano-sized cellulose material that has unique physical and mechanical properties. The synthesis was performed using a strong acid method with sulfuric acid. Sulfuric acid removes the amorphous region of cellulose so that the crystalline part can be isolated. CNF yield measurement showed that temperature, time, acid concentration, and interaction between each factor were affecting significantly to CNF yield. The result showed that yield of 14.98 grams, was obtained by hydrolysis at 35°C for 6 hours and 55% acid concentration. The crystallinity measurement showed that the temperature, time, acid concentration, and interaction between each factor during hydrolysis were not affected significantly to percent value of CNF crystallinity. The result showed that 31.1% of crystallinity, was obtained by hydrolysis at 45°C for 3 hours and 55% of acid concentration. The size measurement showed that the temperature, time, acid concentration and interaction between each factor were affected significantly. The result showed 894.25 nm as the best result, obtained by hydrolysis with 35°C and 60% acid concentration for 6 hours. CNF color was white with the best dispersion of hydrolysis at 35°C of 55% for 6 hours.

  1. Role of bifidobacteria in the hydrolysis of chlorogenic acid.

    PubMed

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-02-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    PubMed

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  3. Effects of tempering (annealing), acid hydrolysis, low-citric acid substitution on chemical and physicochemical properties of starches of four yam (Dioscorea spp.) cultivars.

    PubMed

    Falade, Kolawole O; Ayetigbo, Oluwatoyin E

    2017-05-01

    The effects of tempering (annealing), acid hydrolysis and low-citric acid substitution on chemical and physicochemical properties of starches of four Nigerian yam cultivars were investigated. Crude fat and protein contents of the native starches decreased significantly after the modifications, while nitrogen-free extract increased significantly with acid hydrolysis and citric acid substitution. Acid hydrolysis and low-citric acid substitution reduced the least concentration for gel formation of the starches from 4 to 2% w/v, but tempering had no effect. Swelling power of the starches reduced significantly, and water solubility increased significantly at 75 and 85 °C, especially with acid hydrolysis and low-citric acid substitution. However, tempering significantly reduced starch solubility in the four cultivars. Paste clarity of starches of white (29.17%), water (18.90%), yellow (30.90%) and bitter (10.57%) yams reduced significantly with tempering to 14.43, 11.83, 16.93 and 7.27%, but increased significantly with acid hydrolysis to 41.40, 35.37, 28.77 and 32.33%, and low-citric acid substitution to 36.60, 44.17, 50.67 and 14.33%, respectively. Pasting properties such as peak, trough, breakdown, final, and setback viscosities and peak time of native starches reduced significantly with acid hydrolysis and low-citric acid substitution, however, tempering significantly increased their pasting temperature, peak time, setback and final viscosities.

  4. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    NASA Astrophysics Data System (ADS)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  5. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  6. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agu, R.C.; Amadife, A.E.; Ude, C.M.

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 Mmore » H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.« less

  7. Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose.

    PubMed

    Um, Byung-Hwan; van Walsum, G Peter

    2012-09-01

    The concept of reaction severity, which combines residence time and temperature, is often used in the pulp and paper and biorefining industries. The influence of corn stover pretreatment severity on yield of sugar and major degradation products and subsequent effects on enzymatic cellulose hydrolysis was investigated. The pretreatment residence time and temperature, combined into the severity factor (Log R(o)), were varied with constant acid concentration. With increasing severity, increasing concentrations of furfural and 5-hydroxymethylfurfural (5-HMF) coincided with decreasing yields of oligosaccharides. With further increase in severity factor, the concentrations of furans decreased, while the formation of formic acid and lactic acid increased. For example, from severity 3.87 to 4.32, xylose decreased from 6.39 to 5.26 mg/mL, while furfural increased from 1.04 to 1.33 mg/mL; as the severity was further increased to 4.42, furfural diminished to 1.23 mg/mL as formate rose from 0.62 to 1.83 mg/mL. The effects of dilute acid hydrolyzate, acetic acid, and lignin, in particular, on enzymatic hydrolysis were investigated with a rapid microassay method. The microplate method gave considerable time and cost savings compared to the traditional assay protocol, and it is applicable to a broad range of lignocellulosic substrates.

  8. Effect of an acid filler on hydrolysis and biodegradation of poly-lactic acid (PLA)

    NASA Astrophysics Data System (ADS)

    Iozzino, Valentina; Speranza, Vito; Pantani, Roberto

    2015-12-01

    The use of biodegradable polymers is certainly an excellent strategy to solve many of the problems related to the disposal of the traditional polymers, whose accumulation in the environment is harmful and damaging. In order to optimize the use of biodegradable polymers, it is very important to understand and control the transformation processes, the structures and the morphologies resulting from the process conditions used to produce the articles and, not least, the biodegradation. The latter is strictly dependent on the just mentioned variables. The poly-lactic acid, PLA, is a biodegradable polymer. Many studies have been carried out on the degradation process of this polymer. In the course of this work we performed degradation tests on the PLA, with a specific D-isomer content, having amorphous structure, and in particular of biodegradation and hydrolysis. An acid chemical, fumaric acid, was added to PLA with the objective of controlling the rate of hydrolysis and of biodegradation. The hydrolysis process was followed, as function of time, by means of different techniques: pH variation, variation of weight of samples and variation of crystallinity degree and glass transition temperature using DSC analysis. The samples were also analyzed in terms of biodegradability by means of a homemade respirometer apparatus, in controlled composting conditions.

  9. Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals

    Treesearch

    John F. Harris; Andrew J. Baker; Anthony H. Conner; Thomas W. Jeffries; James L. Minor; Roger C. Pettersen; Ralph W. Scott; Edward L Springer; Theodore H. Wegner; John I. Zerbe

    1985-01-01

    This paper presents a fundamental analysis of the processing steps in the production of methanol from southern red oak (Quercus falcata Michx.) by two-stage dilute sulfuric acid hydrolysis. Data for hemicellulose and cellulose hydrolysis are correlated using models. This information is used to develop and evaluate a process design.

  10. HCOOH-induced Controlled-release Hydrolysis of Microalgae (Scenedesmus) to Lactic Acid over Sn-Beta Catalyst.

    PubMed

    Zan, Yifan; Sun, Yuanyuan; Kong, Lingzhao; Miao, Gai; Bao, Liwei; Wang, Hao; Li, Shenggang; Sun, Yuhan

    2018-06-12

    Formic acid induced controlled-release hydrolysis of sugar-rich microalgae (Scenedesmus) over the Sn-Beta catalyst was found to be a highly efficient process for producing lactic acid as a platform chemical. One-pot reaction with a very high lactic acid yield of 83.0% was realized in a batch reactor using water as the solvent. Under the attack of formic acid, the cell wall of Scenedesmus was disintegrated, and hydrolysis of the starch inside the cell was strengthened in a controlled-release mode, resulting in a stable and relatively low glucose concentration. Subsequently, the Sn-Beta catalyst was employed for the efficient conversion of glucose into lactic acid with stable catalytic performance through isomerization, retro-aldol and de-/rehydration reactions. Thus, the hydrolysis of polysaccharides and the catalytic conversion of the monosaccharide into lactic acid was realized by the synergy between an organic Brønsted acid and a heterogeneous Lewis acid catalyst. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrolysis of Ketene Catalyzed by Formic Acid: Modification of Reaction Mechanism, Energetics, and Kinetics with Organic Acid Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, Matthew K.; Francisco, Joseph S.; Verdicchio, Marco

    2015-05-14

    The hydrolysis of ketene (H2C=C=O) to form acetic acid involving two water molecules and also separately in the presence of one to two water molecules and formic acid (FA) was investigated. Our results show that, while the currently accepted indirect mechanism, involving addition of water across the carbonyl C=O bond of ketene to form an ene-diol followed by tautomerization of the ene-diol to form acetic acid, is the preferred pathway when water alone is present, with formic acid as catalyst, addition of water across the ketene C=C double bond to directly produce acetic acid becomes the kinetically favored pathway formore » temperatures below 400 K. We find not only that the overall barrier for ketene hydrolysis involving one water molecule and formic acid (H2C2O + H2O + FA) is significantly lower than that involving two water molecules (H2C2O + 2H(2)O) but also that FA is able to reduce the barrier height for the direct path, involving addition of water across the C=C double bond, so that it is essentially identical with (6.4 kcal/mol) that for the indirect ene-diol formation path involving addition of water across the C=O bond. For the case of ketene hydrolysis involving two water molecules and formic acid (H2C2O + 2H(2)O + FA), the barrier for the direct addition of water across the C=C double bond is reduced even further and is 2.5 kcal/mol lower relative to the ene-diol path involving addition of water across the C=O bond. In fact, the hydrolysis barrier for the H2C2O + 2H(2)O + FA reaction through the direct path is sufficiently low (2.5 kcal/mol) for it to be an energetically accessible pathway for acetic acid formation under atmospheric conditions. Given the structural similarity between acetic and formic acid, our results also have potential implications for aqueous-phase chemistry. Thus, in an aqueous environment, even in the absence of formic acid, though the initial mechanism for ketene hydrolysis is expected to involve addition of water across the

  12. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors

    Treesearch

    Jae-Won Lee; Thomas W. Jeffries

    2011-01-01

    Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF)...

  13. Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production.

    PubMed

    Qi, Benkun; Chen, Xiangrong; Wan, Yinhua

    2010-07-01

    Pretreating wheat straw (WS) with combined use of varied sulfuric acid concentration (0-3%, w/v) and Tween 20 concentration (0-1%) was investigated in an attempt to enhance the hydrolysis and fermentability of pretreated WS. Enzymatic hydrolysis yield of glucan and xylan and ethanol production by simultaneous saccharification and fermentation (SSF) of water-insoluble solids (WIS) were significantly affected by the amount of Tween 20 added during acid pretreatment. Any further addition of Tween 20 in either hydrolysis stage or fermentation stage only led to small increase in glucan conversion and ethanol production. Determination of adsorption of cellulases during hydrolysis showed that Tween 20-assisted acid treated straw solution contained more free cellulases than individual acid treated straw solution, indicating that modification of lignin surface by Tween 20 added during pretreatment likely occurred. In addition, the effects of pretreatment conditions on overall recovery of glucose and xylose after pretreatment and enzymatic hydrolysis were also investigated. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Effect of acid hydrolysis on morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight.

    PubMed

    Wang, Xingchi; Wen, Fanting; Zhang, Shurong; Shen, Ruru; Jiang, Wei; Liu, Jun

    2017-03-01

    Effect of acid hydrolysis on the morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight was investigated in this study. The hydrolysis degree of C. auriculatum starch rapidly increased to 63.69% after 4days and reached 78.67% at the end of 9days. Morphology observation showed that the starch granules remained intact during the first 4days of hydrolysis. However, serious erosion phenomenon was observed after 5days and starch granules completely fell into pieces after 7days. During acid hydrolysis process, the crystal type of hydrolyzed starch changed from original C B -type to final A-type. Small-angle X-ray scattering patterns showed the semi-crystalline growth rings started to be hydrolyzed after 4days. The proportions of single helix and amorphous components as well as amylose content in starch gradually decreased, whereas the proportion of double helix components continuously increased during acid hydrolysis. However, the contents of rapidly digestible starch, slowly digestible starch and resistant starch were almost constant during acid hydrolysis process, indicating the in vitro digestion property of C. auriculatum starch was not affected by acid hydrolysis. Our results provided novel information on the inner structure of C. auriculatum starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis.

    PubMed

    Horikawa, Yoshiki; Shimizu, Michiko; Saito, Tsuguyuki; Isogai, Akira; Imai, Tomoya; Sugiyama, Junji

    2018-04-01

    Chara is a genus of freshwater alga that is evolutionarily observed at the aquatic-terrestrial boundary, whose cellulose microfibrils are similar to those of terrestrial plants regarding the crystallinity and biosynthesis of cellulose. Oven-dried and never-dried celluloses samples were prepared from chara. Terrestrial plant cellulose samples were used as references. The lengths and length distributions of oven-dried and never-dried chara cellulose microfibrils after acid hydrolysis with or without pretreatment by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, which was used for efficient fibrillation of acid-hydrolyzed products, were observed by transmission electron microscopy. All terrestrial plant celluloses and oven-dried chara cellulose had short nanocrystal-like morphologies of 100-300 nm in length after acid hydrolysis. In contrast, the never-dried chara cellulose had much longer microfibrils of ∼970 nm in length after acid hydrolysis. These results indicated that disordered regions present periodically along the cellulose microfibrils, which cause the formation of cellulose nanocrystals after acid hydrolysis, are not present in inherent chara cellulose microfibrils in water, but are formed artificially under drying or dehydration conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate.

    PubMed

    Chen, Hanchi; Liu, Shijie

    2015-09-01

    Liquid hot water (LHW) extraction was used as a pretreatment method to separate the hemicellulose fraction from dried distiller's grain with solubles (DDGS) into liquid phase. Acid hydrolysis using 3.264 % w/w sulfuric acid at 130 °C was performed to convert polysaccharides in LHW extract to monosaccharides. The structure characterization of DDGS in anomeric carbon region based on proton NMR and heteronuclear single quantum coherence (HSQC) during acid hydrolysis was studied in this work. It reveals that the sugar units in DDGS hemicelluloses are constructed with (1-4)-β-D-xylopyranose and α-L-arabinofuranosyl residues. A kinetic model is included to explain the changing concentration of monomer, oligomer, and sugar units. The model was further tested based on the changing concentration of five carbon sugar units during hydrolysis.

  17. The mechanism of hydrothermal hydrolysis for glycyrrhizic acid into glycyrrhetinic acid and glycyrrhetinic acid 3-O-mono-β-D-glucuronide in subcritical water.

    PubMed

    Fan, Rui; Li, Nan; Xu, Honggao; Xiang, Jun; Wang, Lei; Gao, Yanxiang

    2016-01-01

    To improve the bioactivity and sweetness properties of glycyrrhizic acid (GL), the hydrothermal hydrolysis of GL into glycyrrhetinic acid (GA) and glycyrrhetinic acid 3-O-mono-β-D-glucuronide (GAMG) in subcritical water was investigated. The effects of temperature, time and their interaction on the conversion ratios were analyzed and the reactions were elaborated with kinetics and thermodynamics. The results showed that GL hydrothermal hydrolysis was significantly (P < 0.05) affected by reaction time and temperature, as well as their interaction, and could be fitted into first-order kinetics. The thermodynamic analysis indicated that the hydrolysis of GL was endergonic and non-spontaneous. The hydrolytic pathways were composed of complex consecutive and parallel reactions. It was concluded that subcritical water may be a potential medium for producing GAMG and GA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    NASA Astrophysics Data System (ADS)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  20. Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs)

    Treesearch

    Qianqian Wang; Xuebing Zhao; J.Y. Zhu

    2014-01-01

    Cellulose nanocrytals (CNCs) are predominantly produced using the traditional strong acid hydrolysis process. In most reported studies, the typical CNC yield is low (approximately 30%) despite process optimization. This study investigated the hydrolysis of a bleached kraft eucalyptus pulp using sulfuric acid between 50 and 64 wt % at temperatures of 35−80 °C...

  1. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.

    PubMed

    Sun, Yonghui; Liu, Pengtao; Liu, Zhong

    2016-05-20

    The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    PubMed

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  4. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control.

    PubMed

    Ra, Chae Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    Optimal hyper-thermal (HT) acid hydrolysis conditions for Gelidium amansii were determined to be 12% (w/v) seaweed slurry content and 144 mM H 2 SO 4 at 150 °C for 10 min. HT acid hydrolysis-treated G. amansii hydrolysates produced low concentrations of inhibitory compounds and adsorption treatment using 3% activated carbon. An adsorption time of 5 min was subsequently used to remove the inhibitory 5-hydroxymethylfurfural from the medium. A final maximum monosaccharide concentration of 44.6 g/L and 79.1% conversion from 56.4 g/L total fermentable monosaccharides with 120 g dw/L G. amansii slurry was obtained from HT acid hydrolysis, enzymatic saccharification, and adsorption treatment. This study demonstrates the potential for butyric acid production from G. amansii hydrolysates under non-pH-controlled as well as pH-controlled fermentation using Clostridium acetobutylicum KCTC 1790. The activated carbon treatment and pH-controlled fermentation showed synergistic effects and produced butyric acid at a concentration of 11.2 g/L after 9 days of fermentation.

  5. Enhanced enzymatic hydrolysis of kenaf core using irradiation and dilute acid

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Min; Jeun, Joon-Pyo; Kang, Phil-Hyun

    2017-01-01

    This study was performed to determine the effect of electron beam dose and enzymatic hydrolysis time for production of sugar such as glucose and xylose. After kenaf core was exposed to an irradiation dose that ranged from 0 to 500 kGy, the irradiated kenaf core was treated with a 3% (v/v) sulfuric acid solution using an autoclave for 5 h at 120 °C. The pretreated kenaf core was subsequently subjected to enzymatic hydrolysis at 50 °C in a shaking water bath at 150 rpm for 12, 24, 48, and 72 h. The determined enzyme activity rates were 70 FPU (Celluclast 1.5 L) and 40 CBU (Novozyme-188). The crystallinity index decreased from 50.6% in a non-pretreated kenaf core to 27.7% in kenaf core that was subjected to the two-stage pretreatment at dose of 500 kGy. The sugar yield of the two-stage pretreated kenaf core increased with an increase in irradiation dose. The sugar yield after 72 h of enzymatic hydrolysis was 73.6% at its highest with an irradiation dose of 500 kGy. The enhancement of enzymatic hydrolysis by two-stage pretreatment was more effective than non- and single pretreatment (36.9%, 40.6% and 44.0% in non-pretreatment, electron beam and dilute acid, respectively).

  6. Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast

    NASA Astrophysics Data System (ADS)

    Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.

    2018-03-01

    The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.

  7. Pretreatment and hydrolysis methods for recovery of fermentable sugars from de-oiled Jatropha waste.

    PubMed

    Kumar, Gopalakrishnan; Sen, Biswarup; Lin, Chiu-Yue

    2013-10-01

    The release of reducing sugars (RS) upon various pretreatments and hydrolysis methods from de-oiled Jatropha waste (DJW) was studied. The highest RS concentration of 12.9 g/L was observed at 10% enzyme hydrolysis. The next highest RS of 8.0 g/L and 7.8 g/L were obtained with 10% HCl and 2.5% H2SO4, respectively. The NaOH (2.5%), ultrasonication and heat (90°C for 60 min) treatments showed the RS concentration of 2.5 g/L, 1.1 g/L and 2.0 g/L, respectively. Autoclave treatment slightly enhanced the sugar release (0.9 g/L) compared to no treatment (0.7 g/L). Glucose release (11.4 g/L) peaked in enzyme hydrolysis. Enzyme treated acid unhydrolysed biomass showed 11.1 g/L RS. HCl and H2SO4 pretreatment gave maximal xylose (6.89 g/L and 6.16 g/L, respectively). Combined (acid and enzyme) hydrolysis employed was efficient and its subsequent batch hydrogen fermentation showed a production 3.1 L H2/L reactor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Gas phase hydrolysis of formaldehyde to form methanediol: impact of formic acid catalysis.

    PubMed

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2013-11-21

    We find that formic acid (FA) is very effective at facilitating diol formation through its ability to reduce the barrier for the formaldehyde (HCHO) hydrolysis reaction. The rate limiting step in the mechanism involves the isomerization of a prereactive collision complex formed through either the HCHO···H2O + FA and/or HCHO + FA···H2O pathways. The present study finds that the effective barrier height, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state (TS) and the HCHO···H2O + FA and HCHO + FA···H2O starting reagents, are respectively only ∼1 and ∼4 kcal/mol. These barriers are substantially lower than the ∼17 kcal/mol barrier associated with the corresponding step in the hydrolysis of HCHO catalyzed by a single water molecule (HCHO + H2O + H2O). The significantly lower barrier heights for the formic acid catalyzed pathway reveal a new important role that organic acids play in the gas phase hydrolysis of atmospheric carbonyl compounds.

  9. Acid hydrolysis of crude tannins from infructescence of Platycarya strobilacea Sieb. et Zucc to produce ellagic acid.

    PubMed

    Zhang, Liangliang; Wang, Yongmei; Xu, Man

    2014-01-01

    The infructescence of Platycarya strobilacea Sieb. et Zucc is a well-known traditional medicine in China, Japan and Korea. The infructescence of P. strobilacea Sieb. et Zucc is a rich source of ellagitannins that are composed of ellagic acid (EA) and gallic acid, linked to a sugar moiety. The aim of this study was to prepare EA by acid hydrolysis of crude tannins from the infructescence of P. strobilacea Sieb. et Zucc, and establish a new technological processing method for EA. The natural antioxidant EA was prepared by using the water extraction of infructescence of P. strobilacea Sieb. et Zucc, evaporation, condensation, acid hydrolysis and prepared by the process of crystallisation. The yield percentage of EA from crude EA was more than 20% and the purity of the product was more than 98%, as identified by using HPLC. The structure was identified on the basis of spectroscopic analysis and comparison with authentic compound.

  10. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis

    Treesearch

    Ruibin Wang; Liheng Chen; J.Y. Zhu; Rendang Yang

    2017-01-01

    This study demonstrates the feasibility of tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) from bleached pulp fibers through hydrolysis using a recyclable dicarboxylic acid. Hydrolysis experiments were conducted using ranges of 15–75 wt% maleic acid concentrations, 60–120°C temperatures, and 5–300 min reaction...

  11. Hydrolysis of glyoxal in water-restricted environments: formation of organic aerosol precursors through formic acid catalysis.

    PubMed

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2014-06-12

    The hydrolysis of glyoxal involving one to three water molecules and also in the presence of a water molecule and formic acid has been investigated. Our results show that glyoxal-diol is the major product of the hydrolysis and that formic acid, through its ability to facilitate intermolecular hydrogen atom transfer, is considerably more efficient than water as a catalyst in the hydrolysis process. Additionally, once the glyoxal-diol is formed, the barrier for further hydrolysis to form the glyoxal-tetrol is effectively reduced to zero in the presence of a single water and formic acid molecule. There are two important implications arising from these findings. First, the results suggest that under the catalytic influence of formic acid, glyoxal hydrolysis can impact the growth of atmospheric aerosols. As a result of enhanced hydrogen bonding, mediated through their polar OH functional groups, the diol and tetrol products are expected to have significantly lower vapor pressure than the parent glyoxal molecule; hence they can more readily partition into the particle phase and contribute to the growth of secondary organic aerosols. In addition, our findings provide insight into how glyoxal-diol and glyoxal-tetrol might be formed under atmospheric conditions associated with water-restricted environments and strongly suggest that the formation of these precursors for secondary organic aerosol growth is not likely restricted solely to the bulk aqueous phase as is currently assumed.

  12. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  13. Enzymatic hydrolysis and fermentation of dilute acid pretreated cornstalk to biohydrogen

    NASA Astrophysics Data System (ADS)

    Pan, C. M.; Fan, Y. T.; Hou, H. W.

    2010-03-01

    The coupling method of acid pretreatment and enzymatic hydrolysis of cornstalk for hydrogen production was investigated in this study. Experimental results showed that temperature, pH and enzyme loading all had an individual significant influence on soluble sugar yield and Ps. The optimum condition for soluble sugar was close to that for Ps. The maximum hydrogen yield from cornstalk by anaerobic mixed microflora was 209.8 ml/g-TVS on the optimum enzymatic hydrolysis condition which was 52 °C of temperature, pH4.8 and 9.4 IU/g of enzyme loading.

  14. High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis.

    PubMed

    Redding, Arthur P; Wang, Ziyu; Keshwani, Deepak R; Cheng, Jay J

    2011-01-01

    Dilute sulfuric acid was used to pretreat coastal Bermuda grass at high temperature prior to enzymatic hydrolysis. After both pretreatment and enzymatic hydrolysis processes, the highest yield of total sugars (combined xylose and glucose) was 97% of the theoretical value. The prehydrolyzate liquor was analyzed for inhibitory compounds (furfural, hydroxymethylfurfural (HMF)) in order to assess potential risk for inhibition during the following fermentation. Accounting for the formation of the inhibitory compounds, a pretreatment with 1.2% acid at 140 °C for 30 min with a total sugar yield of 94% of the theoretical value may be more favorable for fermentation. From this study, it can be concluded that dilute sulfuric acid pretreatment can be successfully applied to coastal Bermuda grass to achieve high yields of monomeric glucose and xylose with acceptable levels of inhibitory compound formation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Continuous-flow electro-assisted acid hydrolysis of granular potato starch via inductive methodology.

    PubMed

    Li, Dandan; Yang, Na; Jin, Yamei; Guo, Lunan; Zhou, Yuyi; Xie, Zhengjun; Jin, Zhengyu; Xu, Xueming

    2017-08-15

    The induced electric field assisted hydrochloric acid (IEF-HCl) hydrolysis of potato starch was investigated in a fluidic system. The impact of various reaction parameters on the hydrolysis rate, including reactor number (1-4), salt type (KCl, MgCl 2 , FeCl 3 ), salt concentration (3-12%), temperature (40-55°C), and hydrolysis time (0-60h), were comprehensively assessed. Under optimal conditions, the maximum reducing sugar content in the hydrolysates was 10.59g/L. X-ray diffraction suggested that the crystallinity of IEF-HCl-modified starches increased with the intensification of hydrolysis but was lower than that of native starch. Scanning electron microscopy indicated that the surface and interior regions of starch granules were disrupted by the hydrolysis. The solubility of IEF-HCl-modified starches increased compared to native starch while their swelling power decreased, contributing to a decline in paste viscosity. These results suggest that IEF is a notable potential electrotechnology to conventional hydrolysis under mild conditions without any electrode touching the subject. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  17. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, Yessica; Ellis, Joshua T.; Miller, Charles D.

    2015-02-01

    Exploring and developing sustainable and efficient technologies for biofuel production are crucial for averting global consequences associated with fuel shortages and climate change. Optimization of sugar liberation from wastewater algae through acid hydrolysis was determined for subsequent fermentation to acetone, butanol, and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4. Acid concentration, retention time, and temperature were evaluated to determine optimal hydrolysis conditions by assessing the sugar and ABE yield as well as the associated costs. Sulfuric acid concentrations ranging from 0-1.5 M, retention times of 40-120 min, and temperatures from 23°C- 90°C were combined to form a full factorial experiment. Acidmore » hydrolysis pretreatment of 10% dried wastewater microalgae using 1.0 M sulfuric acid for 120 min at 80-90°C was found to be the optimal parameters, with a sugar yield of 166.1 g for kg of dry algae, concentrations of 5.23 g/L of total ABE, and 3.74 g/L of butanol at a rate of USD $12.83 per kg of butanol.« less

  18. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.

    PubMed

    Jeong, Tae Su; Choi, Chang Ho; Lee, Ji Ye; Oh, Kyeong Keun

    2012-07-01

    Acid-catalyzed hydrothermal hydrolysis is one path to cellulosic glucose and subsequently to its dehydration end products such as hydroxymethyl furfural (HMF), formic acid and levulinic acid. The effect of sugar decomposition not only lowers the yield of fermentable sugars but also forms decomposition products that inhibit subsequent fermentation. The present experiments were conducted with four different acid catalysts (H(2)SO(4), HNO(3), HCl, and H(3)PO(4)) at various acid normalities (0.5-2.1N) in batch reactors at 180-210 °C. From the results, H(2)SO(4) was the most suitable catalyst for glucose production, but glucose decomposition occurred during the hydrolysis. The glucose production was maximized at 160.7 °C, 2.0% (w/v) H(2)SO(4), and 40 min, but resulted in a low glucan yield of 33.05% due to the decomposition reactions, which generated formic acid and levulinic acid. The highest concentration of levulinic acid, 7.82 g/L, was obtained at 181.2 °C, 2.0% (w/v) H(2)SO(4), and 40 min. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release.

    PubMed

    Moran, Ernesto E; Timerghazin, Qadir K; Kwong, Elizabeth; English, Ann M

    2011-03-31

    The denitrosation of three primary S-nitrosothiols (RSNO; S-nitrosocysteine, S-nitroso-N-acetylcysteine, and S-nitrosoglutathione) and two tertiary RSNOs (S-nitrosopenicillamine and S-nitroso-N-acetylpenicillamine) was investigated in 3.75 M H(2)SO(4) to probe the mechanism of acid-catalyzed RSNO hydrolysis and its dependence on RSNO structure. This reversible reaction was forced to proceed in the denitrosation direction by trapping the nitrosating agent with HN(3). The primary RSNOs exhibited hydrolysis k(obs) values of ∼2 × 10(-4) s(-1), and the tertiary RSNO k(obs) values were an order of magnitude higher. Product analysis by HPLC revealed that the parent thiols (RSHs) were formed in 90-100% yield on 79-99% RSNO denitrosation. Possible hydrolysis mechanisms were studied computationally at the CBS-QB3 level using S-nitrosomethanethiol (MeSNO) as a model RSNO. Consideration of RSNOs as a combination of conventional R-S-N═O, zwitterionic R-S(+)═N-O(-), and RS(-)/NO(+) ion-pair resonance structures was key in understanding the mechanistic details of acid-catalyzed hydrolysis. Protonation of the S-nitroso oxygen or nitrogen activates the sulfur and nucleophilic attack by H(2)O at this atom leads to the formation of the sulfoxide-protonated N-hydroxysulfinamide, MeS(+)(OH)NHOH, with barriers of 19 and 29 kcal/mol, respectively. Proton loss and reprotonation at the nitrogen lead to secondary hydrolysis that produces the sulfinic acid MeS(═O)OH and NH(2)OH. Notably, no low-energy RSNO hydrolysis pathway for HNO release was found in the computational analysis. Protonation of the S-nitroso sulfur gives rise to NO(+) release with a low activation barrier (ΔH(double dagger)(calc) ≈ 6 kcal/mol) and the formation of MeSH in agreement with experiment. The experimental k(obs) can be expressed as K(a)k(1), where K(a) is the acid dissociation constant for protonation of the S-nitroso sulfur and k(1) the pseudo-first-order hydrolysis rate constant. Given the low

  20. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Formic acid catalyzed hydrolysis of SO3 in the gas phase: a barrierless mechanism for sulfuric acid production of potential atmospheric importance.

    PubMed

    Hazra, Montu K; Sinha, Amitabha

    2011-11-02

    Computational studies at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels are performed to explore the changes in reaction barrier height for the gas phase hydrolysis of SO(3) to form H(2)SO(4) in the presence of a single formic acid (FA) molecule. For comparison, we have also performed calculations for the reference reaction involving water assisted hydrolysis of SO(3) at the same level. Our results show that the FA assisted hydrolysis of SO(3) to form H(2)SO(4) is effectively a barrierless process. The barrier heights for the isomerization of the SO(3)···H(2)O···FA prereactive collision complex, which is the rate limiting step in the FA assisted hydrolysis, are found to be respectively 0.59 and 0.08 kcal/mol at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels. This is substantially lower than the ~7 kcal/mol barrier for the corresponding step in the hydrolysis of SO(3) by two water molecules--which is currently the accepted mechanism for atmospheric sulfuric acid production. Simple kinetic analysis of the relative rates suggests that the reduction in barrier height facilitated by FA, combined with the greater stability of the prereactive SO(3)···H(2)O···FA collision complex compared to SO(3)···H(2)O···H(2)O and the rather plentiful atmospheric abundance of FA, makes the formic acid mediated hydrolysis reaction a potentially important pathway for atmospheric sulfuric acid production.

  2. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  3. Optimization of pineapple pulp residue hydrolysis for lipid production by Rhodotorula glutinis TISTR5159 using as biodiesel feedstock.

    PubMed

    Tinoi, Jidapha; Rakariyatham, Nuansri

    2016-08-01

    The higher lipid productivity of Rhodotorula glutinis TISTR5159 was achieved by optimizing the pineapple pulp hydrolysis for releasing the high sugars content. The sequential simplex method operated by varied; solid-to-liquid ratio, sulfuric acid concentration, temperature, and hydrolysis time were successfully applied and the highest sugar content (83.2 g/L) evaluated at a solid-to-liquid ratio of 1:10.8, 3.2% sulfuric acid, 105 °C for 13.9 min. Moreover, the (NH4)2SO4 supplement enhanced the lipid productivity and gave the maximum yields of biomass and lipid of 15.2 g/L and 9.15 g/L (60.2%), respectively. The C16 and C18 fatty acids were found as main components included oleic acid (55.8%), palmitic acid (16.6%), linoleic acid (11.9%), and stearic acid (7.8%). These results present the possibility to convert the sugars in pineapple pulp hydrolysate to lipids. The fatty acid profile was also similar to vegetable oils. Thus, it could be used as potential feedstock for biodiesel production.

  4. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylanmore » that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.« less

  5. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  6. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formationmore » and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)« less

  7. Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.

    PubMed

    Michielssens, Servaas; Tien Trung, Nguyen; Froeyen, Matheus; Herdewijn, Piet; Tho Nguyen, Minh; Ceulemans, Arnout

    2009-09-07

    L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.

  8. Quantitation of Indoleacetic Acid Conjugates in Bean Seeds by Direct Tissue Hydrolysis 1

    PubMed Central

    Bialek, Krystyna; Cohen, Jerry D.

    1989-01-01

    Gas chromatography-selected ion monitoring-mass spectral analysis using [13C6]indole-3-acetic acid (IAA) as an internal standard provides an effective means for quantitation of IAA liberated during direct strong basic hydrolysis of bean (Phaseolus vulgaris L.) seed powder, provided that extra precautions are undertaken to exclude oxygen from the reaction vial. Direct seed powder hydrolysis revealed that the major portion of amide IAA conjugates in bean seeds are not extractable by aqueous acetone, the solvent used commonly for IAA conjugate extraction from seeds and other plant tissues. Strong basic hydrolysis of plant tissue can be used to provide new information on IAA content. Images Figure 1 PMID:16666783

  9. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  10. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Comparison of cell wall polysaccharide hydrolysis by a dilute acid/enzymatic saccharification process and rumen microorganisms

    USDA-ARS?s Scientific Manuscript database

    Evaluation of biomass crops for breeding or pricing purposes requires an assay that predicts performance of biomass in the bioenergy conversion process. Cell wall polysaccharide hydrolysis by dilute sulfuric acid pretreatment at 121 degrees C followed by cellulase hydrolysis for 72 h (CONV) and in v...

  12. Hydrolysis kinetics of secoisolariciresinol diglucoside oligomers from flaxseed.

    PubMed

    Yuan, Jian-Ping; Li, Xin; Xu, Shi-Ping; Wang, Jiang-Hai; Liu, Xin

    2008-11-12

    Flaxseed is the richest dietary source of the lignan secoisolariciresinol diglucoside (SDG) and contains the largest amount of SDG oligomers, which are often hydrolyzed to break the ester linkages for the release of SDG and the glycosidic bonds for the release of secoisolariciresinol (SECO). The alkaline hydrolysis reaction kinetics of SDG oligomers from flaxseed and the acid hydrolysis process of SDG and other glucosides were investigated. For the kinetic modeling, a pseudo-first-order reaction was assumed. The results showed that the alkaline hydrolysis of SDG oligomers followed first-order reaction kinetics under mild alkaline hydrolytic conditions and that the concentration of sodium hydroxide had a strong influence on the activation energy of the alkaline hydrolysis of SDG oligomers. The results also indicated that the main acid hydrolysates of SDG included secoisolariciresinol monoglucoside (SMG), SECO, and anhydrosecoisolariciresinol (anhydro-SECO) and that the extent and the main hydrolysates of the acid hydrolysis reaction depended on the acid concentration, hydrolysis temperature, and time. In addition, the production and change of p-coumaric acid glucoside, ferulic acid glucoside and their methyl esters and p-coumaric acid, ferulic acid, and their methyl esters during the process of hydrolysis was also investigated.

  13. Preparation of micro-fibrillated cellulose based on sugar palm ijuk (Arenga pinnata) fibres through partial acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Saputro, A.; Verawati, I.; Ramahdita, G.; Chalid, M.

    2017-07-01

    The aim of this study was to isolate and characterized micro-fibrillated cellulose (MFC) from sugar palm/ijuk fibre (Arenga pinnata) by partial sulfuric acid hydrolysis. Cellulose fibre was prepared by repeated treatments with 5 wt% sodium hydroxide 2 h at 80°C, followed by bleaching with 1.7 wt% sodium chlorite for 2 h at 80°C in acidic environment under stirring. MFC was prepared by partial hydrolysis with sulfuric acid in various concentrations (30, 40, 50, and 60 % for 45 min at 45 °C) under stirring. Fourier Transform Infrared, Field Emission Scanning Electron Microscope, Thermo Gravimetric Analyzer and X-ray Diffraction characterized cellulose fibre and MFC. FTIR measurements showed that alkaline and bleaching treatments were effective to remove non-cellulosic constituents such as wax, lignin and hemicellulose. FESEM observation revealed conversion into more clear surface and defibrillation of cellulosic fibre after pre-treatments. XRD measurement revealed increase in crystallinity after pre-treatments and acid hydrolysis from 54.4 to 87.8%. Thermal analysis showed that increasing acid concentration reduced thermal stability.

  14. Impact of electrical conductivity on acid hydrolysis of guar gum under induced electric field.

    PubMed

    Li, Dandan; Zhang, Yao; Yang, Na; Jin, Zhengyu; Xu, Xueming

    2018-09-01

    This study aimed to improve induced electric field (IEF)-assisted hydrolysis of polysaccharide by controlling electrical conductivity. As the conductivity of reaction medium was increased, the energy efficiency of IEF was increased because of deceased impedance, as well as enhanced output voltage and temperature, thus the hydrolysis of guar gum (GG) was accelerated under IEF. Changes in weight-average molecular weight (Mw) suggested that IEF-assisted hydrolysis of GG could be described by the first-order kinetics 1/Mw ∝ kt, with the rate constant (k), varying directly with the medium conductivity. Although IEF-assisted hydrolysis largely disrupted the morphological structure of GG, it had no impact on the chemical structure. In comparison to native GG, the steady shear viscosity of hydrolyzed GG dramatically declined while the thermal stability slightly decreased. This study extended the knowledge of electrical conductivity upon IEF-assisted acid hydrolysis of GG and might contribute to a better utilization of IEF for polysaccharide modification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production.

    PubMed

    El-Tayeb, T S; Abdelhafez, A A; Ali, S H; Ramadan, E M

    2012-10-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained.

  16. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production

    PubMed Central

    El-Tayeb, T.S.; Abdelhafez, A.A.; Ali, S.H.; Ramadan, E.M.

    2012-01-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker’s yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker’s yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984

  17. Interaction of the acid soap of triethanolamine stearate and stearic acid with water.

    PubMed

    Zhu, S; Pudney, P D A; Heppenstall-Butler, M; Butler, M F; Ferdinando, D; Kirkland, M

    2007-02-08

    Stearic acid and triethanolamine (TEA) in a molar ratio of 2:1 were mixed in aqueous solution at 80 degrees C and subsequently cooled to ambient temperature. The structural evolution of the resultant sample during storage was characterized by using light microscopy, Cryo-SEM, differential scanning calorimetery, pH, infrared spectroscopy, elemental analysis, and simultaneous small and wide-angle X-ray diffraction. It was found that a lamellar liquid crystalline phase was formed when stearic acid and TEA solution were mixed at 80 degrees C and multilamellar spheres of a few microns diameter were formed initially after cooling. A hydrolysis reaction (i.e., the reverse reaction of neutralization between stearic acid and TEA) occurred thereafter that caused the breakdown of the lamellar gel phase and the formation of platelet stearic acid crystals. Three polymorphs of stearic acid (defined following previous work as the A, C, and E forms) were formed as the result of hydrolysis reaction, which gave rise to a strong optically pearlescent appearance.

  18. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter. Copyright © 2013. Published by Elsevier Ltd.

  19. Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system.

    PubMed

    Malihan, Lenny B; Nisola, Grace M; Chung, Wook-Jin

    2012-08-01

    The amenability of three brown algal species, Sargassum fulvellum, Laminaria japonica and Undaria pinnatifida, to hydrolysis were investigated using the ionic liquid (IL), 1-n-butyl-3-methylimidazolium chloride ([BMIM]Cl). Compositional analyses of the brown algae reveal that sufficient amounts of sugars (15.5-29.4 wt.%) can be recovered. Results from hydrolysis experiments show that careful selection of the type of mineral acid as catalyst and control of acid loading could maximize the recovery of sugars. Optimal reaction time and temperature were determined from the kinetic studies on the sequential reducing sugar (TRS) formation and degradation. Optimal reaction times were determined based on the extent of furfurals formation as TRS degradation products. X-ray diffraction and environmental scanning electron microscopy confirmed the suitability of [BMIM]Cl as solvent for the hydrolysis of the three brown algae. Overall results show the potential of brown algae as renewable energy resources for the production of valuable chemicals and biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effect of hydrolysis enzymatic process of corn using protease crude (Rhizopus oligosporus-C1) to produce corn hydrolisate rich folic acid

    NASA Astrophysics Data System (ADS)

    Maryati, Yati; Susilowati, Agustine; Melanie, Hakiki; Lotulung, Puspa D.

    2017-11-01

    Corn hydrolyzate (Zea mays L) as a functional food fortificant derived from natural folic acid has been evaluated through a hydrolysis process using protease enzyme Rhizopus oligosporus strain C1. Enzymatic hydrolysis was carried out on two types of corn; yellow and white pearl variety corn, at concentration of protease enzyme (rough) 0.025; 0.125; and 0.225% (v/w of soluble nixtamal corn protein) with a hydrolysis time of 24 h at 30 °C, and pH 5.0. The results showed that the concentration of protease enzymes can increase the folic acid to the optimum condition, from the beginning to the end of the process time. Folic acid optimization of hydrolysis results in each corn was at the concentration of protease enzyme 0.225% (v/w of soluble nixtamal corn protein) in white corn and yellow corn at 24 hours hydrolysis, with folic acid composition, 283.56 µg/mL and 412.52 µg/mL, 1.07 and 1.04 mg/mL of soluble proteins, proteolytic activity 2.09 and 2.06 U/mL, total solids of 21.74 and 17.85%, total sugars of 0.56 and 2.22 mg/mL, and reducing sugar 91.72 and 48.47 mg/mL. In this condition, the increase of optimum folic acid for white corn was 33.57% and for yellow corn was 71.60% after hydrolysis.

  1. A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC.

    PubMed

    Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir

    2015-11-01

    Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines.

  2. High yield hydrolysis of seaweed-waste biomass using peracetic acid and ionic liquid treatments

    NASA Astrophysics Data System (ADS)

    Uju, Wijayanta, Agung Tri; Goto, Masahiro; Kamiya, Noriho

    2018-02-01

    Seaweed is one of the most promising bioethanol feedstocks. This water plant has high carbohydrate content but low lignin content, as a result it will be easier to be hydrolysed. This paper described hydrolysis of seaweed-waste biomass from the carrageenan (SWBC) industry using enzymatic saccharification or ionic liquids-HCl hydrolysis. In the first work, SWBC pretreated by peracetic acid (PAA) followed by ionic liquid (IL) caused enhance the cellulose conversion of enzymatic saccharification. At 48h saccharification, the value conversion almost reached 100%. In addition, the untreated SWBC also produced the cellulose conversion 77%. In the second work, SWBC or Bagasse with or without pretreated by PAA was hydrolyzed using ILs-HCl hydrolysis. The ILs used were 1-buthyl-3-methylpyridium chloride, [Bmpy][Cl] and 1-butyl-3-metyl imidazolium chloride ([Bmim][Cl]). [Bmpy][Cl]-HCl hydrolysis produced higher cellulose conversion than [Bmim][Cl]-HCl hydrolysis. The phenomenon was clearly observed on the Bagasse, which without pretreated by PAA. Furthermore, SWBC hydrolyzed by both ILs in the presence low concentration of HCl produced cellulose conversion 70-98% at 60-90 min of hydrolysis time. High cellulose conversion of SWBC on the both hydrolysis was caused by SWBC had the low lignin (4%). Moreover, IL treatments caused lowering of cellulose hydrogen bonds or even changed the cellulose characteristics from cellulose I to cellulose II which easily to be hydrolyzed. In the case of [Bmpy][Cl], this IL may reduce the degree polymerization of celluloses.

  3. Effect of bisulfite treatment on composition, structure, enzymatic hydrolysis and cellulase adsorption profiles of sugarcane bagasse.

    PubMed

    Liu, Z J; Lan, T Q; Li, H; Gao, X; Zhang, H

    2017-01-01

    The effect of sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on composition, structure, enzymatic hydrolysis and cellulase adsorption profiles of sugarcane bagasse (SCB) was investigated. SPORL gave a higher SCB hydrolysis yield (85.33%) compared to dilute acid pretreatment (DA) (64.39%). The SEM pictures showed that SPORL SCB structure became more disordered and looser, suggesting SPORL SCB was more accessible to cellulase. The zeta potential of SPORL SCB suspension (-21.89mV) was significantly different from that of DA SCB (-12.87mV), which demonstrated the lignin in SPORL SCB was more hydrophilic. With regard to cellulase adsorption profiles, SPORL SCB had a lower non-productive adsorption (14.87mg/glignin) and a higher productive adsorption (37.67 mg/gcarbohydrate) compared with DA SCB (17.05mg/glignin; 25.79mg/gcarbohydrate). These results indicated that SPORL SCB had better accessibility to cellulase and the higher productive cellulase adsorption of SPORL SCB had improved hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hydrolysis of proteins with methanesulfonic acid for improved HPLC-ICP-MS determination of seleno-methionine in yeast and nuts.

    PubMed

    Wrobel, Katarzyna; Kannamkumarath, Sasi S; Wrobel, Kazimierz; Caruso, Joseph A

    2003-01-01

    In this work, the use of methanesulfonic acid for protein hydrolysis is proposed for evaluation of Se-methionine in yeast, Brazil nuts, and possibly other selenium-rich biological samples. The hydrolysis was carried out by heating the sample with 4 mol L(-1) acid at reflux for 8 h. Two chromatographic techniques (size-exclusion and ion-pairing) coupled with ICP-MS detection were used to compare the release of Se-methionine from proteins by enzymatic (proteinase K, protease XIV) and acid hydrolyses. A more efficient liberation of Se-methionine was observed by acid hydrolysis. For quantification, the sample extracts were introduced onto a C8 Alltima column, and the separation was achieved with a mobile phase containing 5 mmol L(-1) hexanesulfonic acid in citrate buffer (pH 4.5)/methanol (95:5). The results obtained by standard addition showed 816+/-17 micro g g(-1) and 36.2+/-1.5 micro g g(-1) of selenium in the form of Se-methionine in yeast and nuts, respectively (65% and 75% of total selenium).

  5. Ruminal bacteria and protozoa composition, digestibility, and amino acid profile determined by multiple hydrolysis times.

    PubMed

    Fessenden, S W; Hackmann, T J; Ross, D A; Foskolos, A; Van Amburgh, M E

    2017-09-01

    Microbial samples from 4 independent experiments in lactating dairy cattle were obtained and analyzed for nutrient composition, AA digestibility, and AA profile after multiple hydrolysis times ranging from 2 to 168 h. Similar bacterial and protozoal isolation techniques were used for all isolations. Omasal bacteria and protozoa samples were analyzed for AA digestibility using a new in vitro technique. Multiple time point hydrolysis and least squares nonlinear regression were used to determine the AA content of omasal bacteria and protozoa, and equivalency comparisons were made against single time point hydrolysis. Formalin was used in 1 experiment, which negatively affected AA digestibility and likely limited the complete release of AA during acid hydrolysis. The mean AA digestibility was 87.8 and 81.6% for non-formalin-treated bacteria and protozoa, respectively. Preservation of microbe samples in formalin likely decreased recovery of several individual AA. Results from the multiple time point hydrolysis indicated that Ile, Val, and Met hydrolyzed at a slower rate compared with other essential AA. Singe time point hydrolysis was found to be nonequivalent to multiple time point hydrolysis when considering biologically important changes in estimated microbial AA profiles. Several AA, including Met, Ile, and Val, were underpredicted using AA determination after a single 24-h hydrolysis. Models for predicting postruminal supply of AA might need to consider potential bias present in postruminal AA flow literature when AA determinations are performed after single time point hydrolysis and when using formalin as a preservative for microbial samples. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Hydrolysis of Indole-3-Acetic Acid Esters Exposed to Mild Alkaline Conditions 1

    PubMed Central

    Baldi, Bruce G.; Maher, Barbara R.; Cohen, Jerry D.

    1989-01-01

    Ester conjugates of indole-3-acetic acid are hydrolyzed easily in basic solutions; however, quantitative data have not been available on the relationship between pH and rate of hydrolysis of the known ester conjugates. The use of basic conditions during extraction or purification of IAA by several laboratories suggested that a more systematic analysis of this process was needed. In this report we present data indicating: (a) that measurable hydrolysis of IAA-glucose (from standard solutions) and IAA-esters (from maize kernel extracts) occurs with only a few hours of treatment at pH 9 or above; (b) that the lability of some ester conjugates is even greater than that of IAA-glucose; and (c) that ester hydrolysis of standard compounds, IAA-glucose and IAA-p-nitrophenol, occurs in the `three phase extraction system' proposed by Liu and Tillberg ([1983] Physiol Plant 57: 441-447). These data indicate that the potential for problems with inadvertent hydrolysis of ester conjugates of IAA exists even at moderate pH values and in the multiphase system where exposure to basic conditions was thought to be limited. PMID:16667049

  7. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  8. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  9. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor.

    PubMed

    Aziz, Marya; Husson, Florence; Kermasha, Selim

    2015-01-01

    Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  10. Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis.

    PubMed

    Santos, Daniel; Silva, Ubiratan F; Duarte, Fabio A; Bizzi, Cezar A; Flores, Erico M M; Mello, Paola A

    2018-01-01

    In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO 3 , H 2 SO 4 , HCl and H 2 C 2 O 4 . The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70°C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8molL -1 HNO 3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance ( 1 H and 13 C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4molL -1 HNO 3 solution, sonicated for 60min at 30°C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The computational analysis and modelling of substitution effects on hydrolysis of formanilides in acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lukeš, Vladimír; Škorňa, Peter; Michalík, Martin; Klein, Erik

    2017-11-01

    Various para, meta and ortho substituted formanilides have been theoretically studied. For trans and cis-isomers of non-substituted formanilide, the calculated B3LYP vibration normal modes were analyzed. Substituent effect on the selected normal modes was described and the comparison with the available experimental data is presented. The calculated B3LYP proton affinities were correlated with Hammett constants, Fujita-Nishioka equation and the rate constants of the hydrolysis in 1 M HCl. Found linear dependences allow predictions of dissociation constants (pKBH+) and hydrolysis rate constants. Obtained results indicate that protonation of amide group may represent the rate determining step of acid catalyzed hydrolysis.

  12. The hydrolysis of polyimides

    NASA Technical Reports Server (NTRS)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  13. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    PubMed

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  14. Mechanism of Orlistat Hydrolysis by the Thioesterase of Human Fatty Acid Synthase

    PubMed Central

    2015-01-01

    Fatty acid synthase (FASN), the sole protein capable of de novo synthesis of free fatty acids, is overexpressed in a wide variety of human cancers and is associated with poor prognosis and aggressiveness of these cancers. Orlistat, an FDA-approved drug for obesity treatment that inhibits pancreatic lipases in the GI tract, also inhibits the thioesterase (TE) of human FASN. The cocrystal structure of TE with orlistat shows a pseudo TE dimer containing two different forms of orlistat in the active site, an intermediate that is covalently bound to a serine residue (Ser2308) and a hydrolyzed and inactivated product. In this study, we attempted to understand the mechanism of TE-catalyzed orlistat hydrolysis by examining the role of the hexyl tail of the covalently bound orlistat in water activation for hydrolysis using molecular dynamics simulations. We found that the hexyl tail of the covalently bound orlistat undergoes a conformational transition, which is accompanied by destabilization of a hydrogen bond between a hydroxyl moiety of orlistat and the catalytic His2481 of TE that in turn leads to an increased hydrogen bonding between water molecules and His2481 and increased chance for water activation to hydrolyze the covalent bond between orlistat and Ser2308. Thus, the conformation of the hexyl tail of orlistat plays an important role in orlistat hydrolysis. Strategies that stabilize the hexyl tail may lead to the design of more potent irreversible inhibitors that target FASN and block TE activity with greater endurance. PMID:25309810

  15. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0.

    PubMed

    Yan, Yuanyuan; Feng, Leiyu; Zhang, Chaojie; Wisniewski, Christelle; Zhou, Qi

    2010-06-01

    Volatile fatty acids (VFA), the preferred carbon source for biological nutrients removal, can be produced by waste activated sludge (WAS) anaerobic fermentation. However, because the rate of VFA accumulation is limited by that of WAS hydrolysis and VFA is always consumed by methanogens at acidic or neutral pHs, the ultrasonic pretreatment which can accelerate the rate of WAS hydrolysis, and alkaline adjustment which can inhibit the activities of methanogens, were, therefore, used to improve WAS hydrolysis and VFA accumulation in this study. Experiment results showed that the combination of ultrasonic pretreatment and alkaline adjustment caused significant enhancements of WAS hydrolysis and VFA accumulation. The study of ultrasonic energy density effect revealed that energy density influenced not only the total VFA accumulation but also the percentage of individual VFA. The maximal VFA accumulation (3109.8mg COD/L) occurred at ultrasonic energy density of 1.0kW/L and fermentation time of 72h, which was more than two times that without ultrasonic treatment (1275.0mg COD/L). The analysis of VFA composition showed that the percentage of acetic acid ranked the first (more than 40%) and those of iso-valeric and propionic acids located at the second and third places, respectively. Thus, the suitable ultrasonic conditions combined with alkaline adjustment for VFA accumulation from WAS were ultrasonic energy density of 1.0kW/L and fermentation time of 72h. Also, the key enzymes related to VFA formation exhibited the highest activities at ultrasonic energy density of 1.0kW/L, which resulted in the greatest VFA production during WAS fermentation at pH 10.0. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF)

    Treesearch

    W. Zhu; Carl J. Houtman; J.Y. Zhu; Roland Gleisner; K.F. Chen

    2012-01-01

    A combined hydrolysis factor (CHF) was developed to predict xylan hydrolysis during pretreatments of native aspen (Populus tremuloides) wood chips. A natural extension of previously developed kinetic models allowed us to account for the effect of catalysts by dilute acid and two sulfite pretreatments at different pH values....

  17. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    PubMed

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater.

    PubMed

    Masse, L; Massé, D I; Kennedy, K J; Chou, S P

    2002-07-05

    Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.

  19. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis.

    PubMed

    Xin, Donglin; Yang, Zhong; Liu, Feng; Xu, Xueru; Zhang, Junhua

    2015-01-01

    The effect of two pretreatments methods, aqueous ammonia (SAA) and dilute acid (DA), on the chemical compositions, cellulose crystallinity, morphologic change, and enzymatic hydrolysis of bamboo fractions (bamboo yellow, timber, green, and knot) was compared. Bamboo fractions with SAA pretreatment had better hydrolysability than those with DA pretreatment. High crystallinity index resulted in low hydrolysis yield in the conversion of SAA pretreated bamboo fractions, not DA pretreated fractions. The increase of cellulase loading had modestly positive effect in the hydrolysis of both SAA and DA pretreated bamboo fractions, while supplement of xylanase significantly increased the hydrolysis of the pretreated bamboo fractions, especially after SAA pretreatment. The results indicated that SAA pretreatment was more effective than DA pretreatment in conversion of bamboo fractions, and supplementation of xylanase was necessary in effective conversion of the SAA pretreated fractions into fermentable sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Assessment of the hydrolysis process for the determination of okadaic acid-group toxin ester: presence of okadaic acid 7-O-acyl-ester derivates in Spanish shellfish.

    PubMed

    Villar-González, A; Rodríguez-Velasco, M L; Ben-Gigirey, B; Yasumoto, T; Botana, L M

    2008-04-01

    The contamination of different types of shellfish by okadaic acid (OA)-group toxin esters is an important problem that presents serious risk for human health. During previous investigations carried out in our laboratory by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS), the occurrence of a high percentage of esters in relation to the total OA equivalents has been observed in several shellfish species. The determination of these kinds of toxins using LC/MS or other chemical methods requires a hydrolysis step in order to convert the sterified compounds into the parent toxins, OA, dinophysistoxins-1 (DTX-1) and dinophysistoxins-2 (DTX-2). Most of the hydrolysis procedures are based on an alkaline hydrolysis reaction. However, despite hydrolysis being a critical step within the analysis, it has not been studied in depth up to now. The present paper reports the results obtained after evaluating the hydrolysis process of an esterified form of OA by using a standard of 7-O-acyl ester with palmitoyl as the fatty acid (palOA). Investigations were focused on checking the effectiveness of the hydrolysis for palOA using methanol as solvent standard and matrices matched standards. From the results obtained, no matrix influence on the hydrolysis process was observed and the quantity of palOA converted into OA was always above 80%. The analyses of different Spanish shellfish samples showed percentages of palOA in relation to the total OA esters ranging from 27% to 90%, depending on the shellfish specie.

  1. Optimisation of enzymatic hydrolysis of apple pomace for production of biofuel and biorefinery chemicals using commercial enzymes.

    PubMed

    Gama, Repson; Van Dyk, J Susan; Pletschke, Brett I

    2015-12-01

    Apple pomace, a waste product from the apple juice industry is a potential feedstock for biofuel and biorefinery chemical production. Optimisation of hydrolysis conditions for apple pomace hydrolysis using Viscozyme L and Celluclast 1.5L was investigated using 1 L reaction volumes. The effects of temperature, pH, β-glucosidase supplementation and substrate feeding regimes were determined. Hydrolysis at room temperature using an unbuffered system gave optimal performance. Reactors in batch mode resulted in a better performance (4.2 g/L glucose and 16.8 g/L reducing sugar, 75 % yield for both) than fed-batch (3.2 g/L glucose and 14.6 g/L reducing sugar, 65.5 and 73.1 % yield respectively) in 72 h. The addition of Novozyme 188 to the core mixture of Viscozyme L and Celluclast 1.5L resulted in the doubling of glucose released. The main products (yield %) released from apple pomace hydrolysis were galacturonic acid (78 %), glucose (75 %), arabinose (90 %) and galactose (87 %). These products are potential raw materials for biofuel and biorefinery chemical production.

  2. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil.

    PubMed

    Salimon, Jumat; Abdullah, Bashar Mudhaffar; Salih, Nadia

    2011-11-01

    Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil. The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time. This study showed that ethanolic KOH concentration was significant variable for J. curcas seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed J. curcas seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC.

  3. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.

    PubMed

    Parmar, Indu; Rupasinghe, H P Vasantha

    2013-02-01

    Enzymatic hydrolysis of cellulose present in apple pomace was investigated using process variables such as enzyme activity of commercial cellulase, pectinase and β-glucosidase, temperature, pH, time, pre-treatments and end product separation. The interaction of enzyme activity, temperature, pH and time had a significant effect (P<0.05) on release of glucose. Optimal conditions of enzymatic saccharification were: enzyme activity of cellulase, 43units; pectinase, 183units; β-glucosidase, 41units/g dry matter (DM); temperature, 40°C; pH 4.0 and time, 24h. The sugars were fermented using Saccharomyces cerevisae yielding 19.0g ethanol/100g DM. Further bio-conversion using Acetobacter aceti resulted in the production of acetic acid at a concentration of 61.4g/100g DM. The present study demonstrates an improved process of enzymatic hydrolysis of apple pomace to yield sugars and concomitant bioconversion to produce ethanol and acetic acid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Forms of acid hydrolysis and gley formation and their role in the development of light-colored acid eluvial (Podzolic) horizons

    NASA Astrophysics Data System (ADS)

    Zaidel'Man, F. R.

    2010-04-01

    Nowadays, three processes, namely lessivage, acid hydrolysis, and gleying, are considered as responsible for the development of loamy and clayey podzolic soils. However, as was shown earlier, lessivage is not obligatory for their origin. In view of assessing the reasons for the formation of light-colored acid eluvial horizons, this article deals with the role of acid hydrolysis under aerobic conditions against the background of a percolative water regime and of two forms of gleying in the development of the horizons mentioned above. One form of gleying occurs under permanent anaerobic conditions against the background of a stagnant water regime; the other one is formed under pulsating anaerobic-aerobic conditions against the background of a stagnant-percolative water regime. As a result, three large genetically individual groups of soils are formed: nondifferentiated brown and gley, and differentiated podzolic soils on different parent rocks. The two latter forms of gleying are identical in their effects on the mineral substrates. They cause the iron removal from the soils. Among the three processes considered, the last one (gleying under a stagnant-percolative water regime) is the single reason for the leaching of most of the metals, the formation of light-colored acid eluvial horizons and their clay depletion, and for the differentiation of the soil profile.

  5. Hydrolysis of substance P in the presence of the osteosarcoma cell line SaOS-2: release of free amino acids.

    PubMed

    Cavazza, Antonella; Marini, Mario; Roda, L Giorgio; Tarantino, Umberto; Valenti, Angela

    2011-12-01

    The possible hydrolysis of substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met) in presence of the osteoblastic cell line SaOS-2 was measured by capillary electrophoresis coupled to mass detection. The results obtained indicate that a very rapid disappearance of the intact undecapeptide was associated to a slower appearance of seven of its eight component amino acids. These results can be interpreted as indicating that an extremely fast hydrolysis of substance P by endopeptidases, which released peptidic by-products, was followed by a noticeably slower secondary degradation which released free amino acids. In decreasing quantitative importance, these phenomena appear to originate by the hydrolysis of the Pro(4)-Gln(5) bond, followed by C-terminal sequential degradation of the Arg(1)-Pro(4) tetrapeptide; by the hydrolysis of or Phe(7)-Phe(8) bond (or, possibly, of Gln(6)-Phe(7)) leading to release of free Phe and Gln; by hydrolysis of the Gly(9)-Leu(10) bond with subsequent release of Met and Leu. Results obtained appear to be compatible with the expression by SaOS-2 cells of enzymes already known to catalyze substance P hydrolysis, together with an apparent low efficiency of aminopeptidases. Because of the activity of C-terminal fragments on NK1 receptors, the delay between primary hydrolysis of substance P and secondary hydrolysis of its peptidic fragments indicated by the data shown implies a possible persistence of substance P physiological effects even after degradation of the intact peptide.

  6. Hydrolysis of chicoric and caftaric acids with esterases and Lactobacillus johnsonii in Vitro and in a gastrointestinal model.

    PubMed

    Bel-Rhlid, Rachid; Pagé-Zoerkler, Nicole; Fumeaux, René; Ho-Dac, Thang; Chuat, Jean-Yves; Sauvageat, Jean Luc; Raab, Thomas

    2012-09-12

    Chicoric acid (ChA) and caftaric acid (CafA) were identified as bioactive components of chicory and have been ascribed a number of health benefits. This study investigated the hydrolysis of ChA and CafA with enzymes and a probiotic bacterium Lactobacillus johnsonii (La1). Esterase from Aspergillus japonicus (24 U/mg) hydrolyzed 100% of ChA (5 mM) and CafA (5 mM) after 3 h, at pH 7.0 and 37 °C. Under the same reaction conditions, 100% hydrolysis of ChA and CafA was achieved with a spray-dried preparation of La1. The addition of La1 (100 mg/mL, 3.3 E9 cfu/g) to CafA solution in a gastrointestinal model (GI model) resulted in 65% hydrolysis of CafA. This model simulates the physicochemical conditions of the human gastrointestinal tract. No hydrolysis of CafA was observed after passage through the GI model in the absence of La1. The results of this study support the hypothesis that ChA and CafA are degraded by gut microflora before absorption and metabolization.

  7. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.

    PubMed

    Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan

    2016-10-01

    The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.

  8. Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products

    NASA Astrophysics Data System (ADS)

    Dhungana, Suraj; Anthony, Charles R.; Hersman, Larry E.

    2007-12-01

    Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10 -6 mol m -2 h -1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H 2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.

  9. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    PubMed

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.

  10. Improving the performance of enzymes in hydrolysis of high solids paper pulp derived from MSW.

    PubMed

    Puri, Dhivya J; Heaven, Sonia; Banks, Charles J

    2013-01-01

    The research aimed to improve the overall conversion efficiency of the CTec® family of enzymes by identifying factors that lead to inhibition and seeking methods to overcome these through process modification and manipulation. The starting material was pulp derived from municipal solid waste and processed in an industrial-scale washing plant. Analysis of the pulp by acid hydrolysis showed a ratio of 55 : 12 : 6 : 24 : 3 of glucan : xylan : araban/galactan/mannan : lignin : ash. At high total solids content (>18.5% TS) single-stage enzyme hydrolysis gave a maximum glucan conversion of 68%. It was found that two-stage hydrolysis could give higher conversion if sugar inhibition was removed by an intermediate fermentation step between hydrolysis stages. This, however, was not as effective as direct removal of the sugar products, including xylose, by washing of the residual pulp at pH 5. This improved the water availability and allowed reactivation of the pulp-bound enzymes. Inhibition of enzyme activity could further be alleviated by replenishment of β-glucosidase which was shown to be removed during the wash step. The two-stage hydrolysis process developed could give an overall glucan conversion of 88%, with an average glucose concentration close to 8% in 4 days, thus providing an ideal starting point for ethanol fermentation with a likely yield of 4 wt%. This is a significant improvement over a single-step process. This hydrolysis configuration also provides the potential to recover the sugars associated with residual solids which are diluted when washing hydrolysed pulp.

  11. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea

    PubMed Central

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-01-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested. PMID:22592820

  13. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea.

    PubMed

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-10-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, (15)N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested.

  14. The hydrolysis of proteins by microwave energy

    PubMed Central

    Margolis, Sam A.; Jassie, Lois; Kingston, H. M.

    1991-01-01

    Microwave energy, at manually-adjusted, partial power settings has been used to hydrolyse bovine serum albumin at 125 °C. Hydrolysis was complete within 2 h, except for valine and isoleucine which were completely liberated within 4 h. The aminoacid destruction was less than that observed at similar hydrolysis conditions with other methods and complete hydrolysis was achieved more rapidly. These results provide a basis for automating the process of amino-acid hydrolysis. PMID:18924889

  15. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger.

    PubMed

    Hu, Wei; Li, Wenjian; Chen, Hao; Liu, Jing; Wang, Shuyang; Chen, Jihong

    2017-01-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research.

  16. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger

    PubMed Central

    Li, Wenjian; Chen, Hao; Liu, Jing; Wang, Shuyang; Chen, Jihong

    2017-01-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research. PMID:28650980

  17. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  18. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis.

    PubMed

    Shaheen, Th I; Emam, Hossam E

    2018-02-01

    Cellulose nanocrystal (CNC) is a unique material obtained from naturally occurring cellulose fibers. Owing to their mechanical, optical, chemical, and rheological properties, CNC gained significant interest. Herein, we investigate the potential of commercially non-recyclable wood waste, in particular, sawdust as a new resource for CNC. Isolation of CNC from sawdust was conducted as per acid hydrolysis which induced by ultrasonication technique. Thus, sawdust after being alkali delignified prior sodium chlorite bleaching, was subjected to sulfuric acid with concentration of 65% (w/w) at 60 ° C for 60min. After complete reaction, CNC were collected by centrifugation followed by dialyzing against water and finally dried via using lyophilization technique. The CNC yield attained values of 15% from purified sawdust. Acid hydrolysis mechanism exactly referred that, the amorphous regions along with thinner as well as shorter crystallites spreaded throughout the cellulose structure are digested by the acid leaving CNC suspension. The latter was freeze-dried to produce CNC powder. A thorough investigation pertaining to nanostructural characteristics of CNC was performed. These characteristics were monitored using TEM, SEM, AFM, XRD and FTIR spectra for following the changes in functionality. Based on the results obtained, the combination of sonication and chemical treatment was great effective in extraction of CNC with the average dimensions (diameter×length) of 35.2±7.4nm×238.7±81.2nm as confirmed from TEM. Whilst, the XRD study confirmed the crystal structure of CNC is obeyed cellulose type I with crystallinity index ∼90%. Cellulose nanocrystals are nominated as the best candidate within the range studied in the area of reinforcement by virtue of their salient textural features. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dilute phosphoric acid-catalysed hydrolysis of municipal bio-waste wood shavings using autoclave parr reactor system.

    PubMed

    Orozco, Angela M; Al-Muhtaseb, Ala'a H; Albadarin, Ahmad B; Rooney, David; Walker, Gavin M; Ahmad, Mohammad N M

    2011-10-01

    The visibility of using municipal bio-waste, wood shavings, as a potential feedstock for ethanol production was investigated. Dilute acid hydrolysis of wood shavings with H₃PO₄ was undertaken in autoclave parr reactor. A combined severity factor (CSF) was used to integrate the effects of hydrolysis times, temperature and acid concentration into a single variable. Xylose concentration reached a maximum value of 17 g/100 g dry mass corresponding to a yield of 100% at the best identified conditions of 2.5 wt.% H₃PO₄, 175 °C and 10 min reaction time corresponding to a CSF of 1.9. However, for glucose, an average yield of 30% was obtained at 5 wt.% H₃PO₄, 200 °C and 10 min. Xylose production increased with increasing temperature and acid concentration, but its transformation to the degradation product furfural was also catalysed by those factors. The maximum furfural formed was 3 g/100 g dry mass, corresponding to the 24% yield. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Hydrolysis and nucleophilic substitution of model and ultimate carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmick, J.S.

    1992-01-01

    The hydrolysis reaction of the Model Carcinogen O-pivaloyl-N-(4-chlorophenyl)hydroxylamine in aqueous buffer (pH 7.0-10.0) proceeds by was of a nitrenium ion intermediate. The products formed from this process are predominately 2,4-dichloroaniline, and 2-hydroxy-4-chloro-pivalanilide. At pH 10-13 the rate becomes dependent upon hydroxide. The product that is formed is 4-chlorophenylhydroxylamine. 4-Chlorophenyl-hydroxylamine is formed by basic ester hydrolysis determined by an [sup 18]O GC-MS experiment. The reaction of O-pivaloyl-N-(4-chlorophenyl)hydroxylamine in an aqueous diethylamine (pH 11.3) buffer gave 4-chlorophenyl-N,N-diethylhydrazine as the substitution product in a 16% yield. The reaction of O-pivaloyl-N-(4-methylphenyl)hydroxylamine with diethylamine gave a 1% yield of the hydrazine product. The reaction ofmore » N,N-dimethylanline and aniline with ring-substituted O-pivaloyl-N-arylhydroxylamines in MeOH generates products of nucleophilic attack on the nitrogen of the hydroxylamine derivative. The hydrolysis of the ultimate carcinogen N-(sulfonatooxy)-N-4-aminobiphenyl proceeds by two consecutive pseudo-first-order processes and generates predominately a product of nucleophilic attack by chloride ion at the ortho position of the aromatic ring. A labile intermediate identified as N-acetypl-4-hydroxy-4-phenyl-2,5-cyclohexadienone imine has been detected by NMR. This intermediate rearranges to form 4-hydroxy-3-phenylacetanilide. The hydrolysis of N-benzoyl-4-hydroxy-4-hydroxy-4-phenyl-2,5-cyclohexadienone imine proceeds by way of two consecutive pseudo-first-order processes. The hydrolysis of N-benzoyl-4-methoxy-4-phenyl-2,5-cyclohexadienone imine also proceeds by two consecutive pseudo-first-order processes. Spectroscopic evidence of two diastereomeric intermediates formed from the hydrolysis of the N-benzoyl imines were tentatively identified as N-benzoyl-N-hydroxy-4-hydroxy-4-phenyl-2,5-cyclohexadienone imine.« less

  1. Synthesis, characterization and in vitro hydrolysis of a gemfibrozil-nicotinic acid codrug for improvement of lipid profile.

    PubMed

    Qandil, Amjad M; Rezigue, Meriem M; Tashtoush, Bassam M

    2011-06-14

    Combination therapy of fibrates and nicotinic acid has been reported to be synergistic. Herein, we describe a covalent codrug of gemfibrozil (GEM) and nicotinic acid (NA) that was synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, MS analysis and elemental analysis. A validated HPLC method was developed that allows for the accurate quantitative determination of the codrug and its hydrolytic products that are formed during the in vitro chemical and enzymatic hydrolysis. The physico-chemical properties of codrug were improved compared to its parent drugs in term of water solubility and partition coefficient. The kinetics of hydrolysis of the codrug was studied using accelerated hydrolysis experiments at high temperatures in aqueous phosphate buffer solution in pH 1.2, 6.8 and 7.4. Using the Arrhenius equation, the extrapolated half-life at 37°C were 289 days at pH 1.2 for the codrug and 130 and 20,315 days at pH 6.8 for the codrug and gemfibrozil 2-hydroxyethyl ester (GHEE), respectively. The shortest half-lives were at pH 7.4; 42 days for the codrug and 5837 days for GHEE, respectively. The hydrolysis of the latter was studied, alone, at 80°C and pH 1.2 and compared to its hydrolysis when it is produced from the codrug using similar conditions. The k(obs) was found in both cases to be 1.60×10(-3)h(-1). The half-lives in plasma were 35.24 min and 26.75 h for the codrug and GHEE, respectively. With regard to liver homogenate, the hydrolysis half-lives were 1.96 min and 48.13 min for the codrug and GHEE, respectively. It can be expected that in vivo, the codrug will liberate NA immediately in plasma then GEM will be liberated from its 2-hydroxyethyl ester in the liver. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution.

    PubMed

    Zheng, Yajun; Li, Yan

    2018-08-15

    Effects of cellulase hydrolysis, acid treatment and particle size distribution on the structure, physicochemical and functional properties of coconut cake dietary fiber (DCCDF) were studied. Results showed that both the cellulase hydrolysis and acid treatment contributed to the structural modification of DCCDF as evident from XRD, FT-IR and SEM analysis. Moreover, the cellulase hydrolysis enhanced soluble carbohydrate content, water holding capacity (WHC) and swelling capacity (WSC), α-amylase inhibition activity (α-AAIR), glucose dialysis retardation index (GDRI) and cation-exchange capacity (CEC) of DCCDF; but it had undesirable effects on colour, oil holding capacity (OHC) and emulsifying capacity (EC). On other hand, acid treatment decreased the WHC, WSC and GDRI, but improved the colour, CEC, OHC and emulsion stability of DCCDF. Furthermore, the WHC, WSC and EC of DCCDF increased as the particle size reduced from 250 to 167 μm, while the GDRI, OHC, α-AAIR and emulsion stability decreased with decreasing particle size. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Acidic 1,3-propanediaminetetraacetato lanthanides with luminescent and catalytic ester hydrolysis properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen

    2014-11-15

    In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]{sub n}·2Cl{sub n}·3nH{sub 2}O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H{sub 4}pdta=1,3-propanediaminetetraacetic acid, C{sub 11}H{sub 18}N{sub 2}O{sub 8}) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 3}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 2}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd,more » 14] were isolated at 70 °C. When the crystals of 1–4 were hydrothermally heated at 180 °C with 1–2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]{sub n}·nH{sub 2}O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H{sub 2}O)]{sub n}·4nH{sub 2}O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1–5 are soluble in water and 1 was traced by solution {sup 13}C({sup 1}H) NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature. - Graphical abstract: A

  4. Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge.

    PubMed

    Park, Junghoon; Park, Seyong; Kim, Moonil

    2014-01-01

    The anaerobic degradation of each amino acid that could be generated through the hydrolysis of sewage sludge was evaluated. Stickland reaction as an intermediate reaction between two kinds of amino acids was restricted in order to evaluate each amino acid. Changes in the chemical oxygen demand (COD), T-N, NH4(+)-N, biogas, and CH4 were analysed for the anaerobic digestion process. The initial nitrogen concentration of all amino acids is adjusted as 1000 mg/L. The degradation rate of the amino acids was determined based on the ammonia form of nitrogen, which is generated by the deamination of amino acids. Among all amino acids, such as alpha-alanine, beta-alanine, lysine, arginine, glycine, histidine, cysteine, methionine, and leucine, deamination rates of cysteine, leucine, and methionine were just 61.55%, 54.59%, and 46.61%, respectively, and they had low removal rates of organic matter and showed very low methane production rates of 13.55, 71.04, and 80.77 mL CH4/g CODin, respectively. Especially for cysteine, the methane content was maintained at approximately 7% during the experiment. If wastewater contains high levels of cysteine, leucine, and methionine and Stickland reaction is not prepared, these amino acids may reduce the efficiency of the anaerobic digestion.

  5. Synthesis of 7-(2,4-dichlorophenyl)-D-erythro-3-hydroxy-5-heptanolide, 6-(2,4-dichlorophenyl)-D-erythro-2,4-dihydroxyhexane-1-sulfonic acid, and 6-(2,4-dichlorophenyl)-D-erythro-2,4-dihydroxyhexylphosphonic acid.

    PubMed

    Hodosi, G; Galambos, G; Podányi, B; Kuszmann, J

    1992-03-02

    6-(2,4-Dichlorophenyl)-D-erythro-1,2,4-hexanetriol, synthesised from D-glucose, was partially silylated, then reacted with 2-methoxypropene to afford 1-O-tert-butyldimethylsilyl-6-(2,4- dichlorophenyl)-2,4-O-isopropylidene-D-erythro-1,2,4-hexanetriol (17). Desilylation of 17 gave 6-(2,4-dichlorophenyl)-2,4-O-isopropylidene-D- erythro-1,2,4-hexanetriol, which was converted into the 1-tosylate 18 and the 1-bromo derivative 19. Reaction of 18 with potassium thiolbenzoate gave, after debenzoylation, oxidation, and deprotection, 6-(2,4-dichlorophenyl)-D-erythro-2,4-dihydroxyhexane-1-sulfonic acid (4). Reaction of 18 or 19 with triethyl phosphite gave, after deprotection, 6-(2,4-dichlorophenyl)-D-erythro-2,4-dihydroxyhexyl-phosphonic acid (5), and reaction of 19 with potassium cyanide gave, after subsequent hydrolysis and deprotection, 7-(2,4-dichlorophenyl)-D-erythro-3-hydroxy-5-heptanolide (3).

  6. Assessment on proximate composition, dietary fiber, phytic acid and protein hydrolysis of germinated Ecuatorian brown rice.

    PubMed

    Cáceres, Patricio J; Martínez-Villaluenga, Cristina; Amigo, Lourdes; Frias, Juana

    2014-09-01

    Germinated brown rice (GBR) is considered healthier than brown rice (BR) but its nutritive value has been hardly studied. Since nutritive quality of GBR depends on genetic diversity and germination conditions, six Ecuadorian BR varieties were germinated at 28 and 34 ºC for 48 and 96 h in darkness and proximate composition, dietary fiber fractions, phytic acid content as well as degree of protein hydrolysis and peptide content were studied. Protein, lipids, ash and available carbohydrate ranged 7.3-10.4%, 2.0-4.0%, 0.8-1.5% and 71.6 to 84.0%, respectively, in GBR seedlings. Total dietary fiber increased during germination (6.1-13.6%), with a large proportion of insoluble fraction, while phytic acid was reduced noticeably. In general, protein hydrolysis occurred during germination was more accused at 28 ºC for 48 h. These results suggest that GBR can be consumed directly as nutritive staple food for a large population worldwide contributing to their nutritional requirements.

  7. Development of C-reactive protein certified reference material NMIJ CRM 6201-b: optimization of a hydrolysis process to improve the accuracy of amino acid analysis.

    PubMed

    Kato, Megumi; Kinumi, Tomoya; Yoshioka, Mariko; Goto, Mari; Fujii, Shin-Ichiro; Takatsu, Akiko

    2015-04-01

    To standardize C-reactive protein (CRP) assays, the National Metrology Institute of Japan (NMIJ) has developed a C-reactive protein solution certified reference material, CRM 6201-b, which is intended for use as a primary reference material to enable the SI-traceable measurement of CRP. This study describes the development process of CRM 6201-b. As a candidate material of the CRM, recombinant human CRP solution was selected because of its higher purity and homogeneity than the purified material from human serum. Gel filtration chromatography was used to examine the homogeneity and stability of the present CRM. The total protein concentration of CRP in the present CRM was determined by amino acid analysis coupled to isotope-dilution mass spectrometry (IDMS-AAA). To improve the accuracy of IDMS-AAA, we optimized the hydrolysis process by examining the effect of parameters such as the volume of protein samples taken for hydrolysis, the procedure of sample preparation prior to the hydrolysis, hydrolysis temperature, and hydrolysis time. Under optimized conditions, we conducted two independent approaches in which the following independent hydrolysis and liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) were combined: one was vapor-phase acid hydrolysis (130 °C, 24 h) and hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) method, and the other was microwave-assisted liquid-phase acid hydrolysis (150 °C, 3 h) and pre-column derivatization liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The quantitative values of the two different amino acid analyses were in agreement within their uncertainties. The certified value was the weighted mean of the results of the two methods. Uncertainties from the value-assignment method, between-method variance, homogeneity, long-term stability, and short-term stability were taken into account in evaluating the uncertainty for a certified value. The certified value and the

  8. Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline-urea systems.

    PubMed

    Padzil, Farah Nadia Mohammad; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Kaco, Hatika; Gan, Sinyee; Ng, Peivun

    2015-06-25

    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    PubMed

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  10. The enzymic hydrolysis of amygdalin

    PubMed Central

    Haisman, D. R.; Knight, D. J.

    1967-01-01

    Chromatographic examination has shown that the enzymic hydrolysis of amygdalin by an almond β-glucosidase preparation proceeds consecutively: amygdalin was hydrolysed to prunasin and glucose; prunasin to mandelonitrile and glucose; mandelonitrile to benzaldehyde and hydrocyanic acid. Gentiobiose was not formed during the enzymic hydrolysis. The kinetics of the production of mandelonitrile and hydrocyanic acid from amygdalin by the action of the β-glucosidase preparation favour the probability that three different enzymes are involved, each specific for one hydrolytic stage, namely, amygdalin lyase, prunasin lyase and hydroxynitrile lyase. Cellulose acetate electrophoresis of the enzyme preparation showed that it contained a number of enzymically active components. PMID:4291788

  11. Kinetics and mechanism of imazosulfuron hydrolysis.

    PubMed

    Morrica, P; Barbato, F; Della Iacovo, R; Seccia, S; Ungaro, F

    2001-08-01

    Knowledge of the kinetics and pathways of hydrolytic degradation is crucial to the prediction of the fate and transport mechanism of chemicals. This work first describes the kinetics of the chemical hydrolysis of imazosulfuron, a new sulfonylurea herbicide, and evaluates the results to propose a degradation pathway. The hydrolysis of imazosulfuron has been studied in aqueous buffers both within the pH range 1.9-12.3 at ambient temperature (thermostated at 25 +/- 2 degrees C) and at pH 3.6 within the temperature range of 15-55 degrees C. The hydrolysis rate of imazosulfuron was characterized by a first-order kinetics, pH- and temperature-dependent, and accelerated by acidic conditions and higher temperatures. The calculated half-lives at pH 4.5 and 5.9 were 36.5 and 578 days, respectively. At pH 6.6, 7.4, 9.2, and 12.3 no significant change in imazosulfuron concentration was observed after 150 days. Half-lives were much lower at pH <4 (= imazosulfuron pK(a)), at which they ranged from 3.3 to 6.3 days. Moreover, a change in temperature from 15 to 25 degrees C in acidic conditions (pH 3.6) decreased the half-life of imazosulfuron by a factor of approximately 4.0; in any case, a 3-5-fold increase in the rate of hydrolysis was found for each 10 degrees C increase in temperature. In acidic conditions the only hydrolysis products were the two molecules resulting from the cleavage of the sulfonylurea bridge.

  12. Modification of cassava starch using combination process lactic acid hydrolysis and micro wave heating to increase coated peanut expansion quality

    NASA Astrophysics Data System (ADS)

    Sumardiono, Siswo; Pudjihastuti, Isti; Jos, Bakti; Taufani, Muhammad; Yahya, Faad

    2017-05-01

    Modified cassava starch is very prospective products in the food industry. The main consideration of this study is the increasing volume of imported wheat and the demand for modified cassava starch industry. The purpose of this study is the assessing of lactic acid hydrolysis and microwave heating impact to the physicochemical and rheological properties of modified cassava starch, and test applications of modified cassava starch to coated peanut expansion quality. Experimental variables include the concentration of lactic acid (0.5% w/w, 1% w/w; 2% w/w), a time of hydrolysis (15, 30, 45 minutes), a time of microwave heating (1, 2, 3 hours). The research step is by dissolving lactic acid using aquadest in the stirred tank reactor, then added cassava starch. Hydrolysed cassava starch was then heated by microwave. Physicochemical properties and rheology of the modified cassava starch is determined by the solubility, swelling power, and test congestion. The optimum obtained results indicate that solubility, swelling power, congestion test, respectively for 19.75%; 24.25% and 826.10% in the hydrolysis treatment for 15 minutes, 1% w lactic acid and microwave heating 3 hours. The physicochemical and rheological properties of modified cassava starch have changed significantly when compared to the native cassava starch. Furthermore, these modified cassava starch are expected to be used for the substitution of food products.

  13. Hydrolysis of rosmarinic acid from rosemary extract with esterases and Lactobacillus johnsonii in vitro and in a gastrointestinal model.

    PubMed

    Bel-Rhlid, Rachid; Crespy, Vanessa; Pagé-Zoerkler, Nicole; Nagy, Kornél; Raab, Thomas; Hansen, Carl-Erik

    2009-09-09

    Rosmarinic acid (RA) was identified as one of the main components of rosemary extracts and has been ascribed to a number of health benefits. Several studies suggested that after ingestion, RA is metabolized by gut microflora into caffeic acid and derivatives. However, only limited information on the microorganisms and enzymes involved in this biotransformation is available. In this study, we investigated the hydrolysis of RA from rosemary extract with enzymes and a probiotic bacterium Lactobacillus johnsonii NCC 533. Chlorogenate esterase from Aspergillus japonicus (0.02 U/mg) hydrolyzed 90% of RA (5 mg/mL) after 2 h at pH 7.0 and 40 degrees C. Complete hydrolysis of RA (5 mg/mL) was achieved with a preparation of L. johnsonii (25 mg/mL, 3.3 E9 cfu/g) after 2 h of incubation at pH 7.0 and 37 degrees C. No hydrolysis of RA was observed after the passage of rosemary extract through the gastrointestinal tract model (GI model). Thus, RA is hydrolyzed neither chemically under the conditions of the GI model (temperature, pH, and bile salts) nor by secreted enzymatic activity (lipase and pancreatic enzymes). The addition of L. johnsonii cells to rosemary extract in the GI model resulted in substantial hydrolysis of RA (up to 99%).

  14. Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid.

    PubMed

    Li, Kai; Song, Xin; Zhu, Tingting; Wang, Chi; Sun, Xin; Ning, Ping; Tang, Lihong

    2018-01-01

    The catalytic hydrolysis of carbonyl sulfide (COS) and the effect of small clusters of H 2 O and H 2 SO 4 have been studied by theoretical calculations. The addition of H 2 SO 4 could increase the enthalpy change (ΔH<0) and decrease relative energy of products (relative energy<0), resulting in hydrolysis reaction changed from an endothermic reaction to an exothermic reaction. Further, H 2 SO 4 decreases the energy barrier by 5.25 kcal/mol, and it enhances the catalytic hydrolysis through the hydrogen transfer effect. The (COS + H 2 SO 4 -H 2 O) reaction has the lowest energy barrier of 29.97 kcal/mol. Although an excess addition of H 2 O and H 2 SO 4 increases the energy barrier, decreases the catalytic hydrolysis, which is consistent with experimental observations. The order of the energy barriers for the three reactions from low to high are as follows: COS + H 2 SO 4 -H 2 O < COS + H 2 O + H 2 SO 4 -H 2 O < COS + H 2 O+(H 2 SO 4 ) 2 . Kinetic simulations show that the addition of H 2 SO 4 can increase the reaction rate constants. Consequently, adding an appropriate amount of sulfuric acid promotes the catalytic hydrolysis of COS both kinetically and thermodynamically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    PubMed

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Adenosine receptor activation potentiates phosphoinositide hydrolysis and arachidonic acid release in DDT1-MF2 cells: putative interrelations.

    PubMed

    Schachter, J B; Yasuda, R P; Wolfe, B B

    1995-09-01

    Studies were undertaken in an effort to discern possible mechanisms by which the A1 adenosine receptor agonist cyclopentyladenosine (CPA) enhances the norepinephrine-stimulated (NE-stimulated) hydrolysis of phosphoinositides in DDT1-MF2 cells. Measurements of arachidonic acid release revealed similar behaviours to those observed in measurements of phosphoinositide hydrolysis. In the presence of NE, both second messenger responses were potentiated by the addition of CPA, whereas in the absence of NE, CPA had little or no effect on either second messenger. The stimulation and potentiation of both second messenger responses were enhanced in the presence of extracellular calcium, and in each case these effects were persistent over time. For either second messenger system the stimulation by NE and the potentiation by CPA appeared to utilize separate mechanisms as evidenced by the fact that the potentiations by CPA were selectively antagonized by a cAMP analogue or by pertussis toxin, whereas the stimulations by NE were essentially unaffected by these agents. Inhibition of phospholipase A2 (PLA2) also blocked the potentiation of PLC by CPA, without affecting NE-stimulated phosphoinositide hydrolysis. Furthermore, in the presence of CPA, the exogenous administration of PLA2 was found to stimulate phosphoinositide hydrolysis in these cells. These data are consistent with a hypothesis whereby the apparent potentiation of NE-stimulated phosphoinositide hydrolysis by CPA is actually due to the stimulation by CPA of a second pathway of phospholipase C activity which is additive to that of NE. The activation of PLC and PLA2 by NE produces phospholipid products which may play a permissive role in the pathway coupling adenosine A1 receptors to these phospholipases. The formation of lysophosphatidic acid is suggested as one possible mediator of this permissive effect.

  17. Two-steps microwave-assisted treatment on acid hydrolysis of sago pith for bioethanol production

    NASA Astrophysics Data System (ADS)

    Sunarti, T. C.; Yanti, S. D.; Ruriani, E.

    2017-05-01

    Sago is a genus of palm that can be utilized to produce fermentable sugars as substrate for bioethanol. Sago pith is a heterogeneous substrate consists of starch and fiber. Acid hydrolysis by microwave heating radiation can break down starch and fibers together in a very short time, so it is considered to be very efficient process. The use of microwave energy (as power level) and variation of heating time can produce fermentable sugar with certain characteristics. This study included the preparation and analysis of sago pith flour; process of acid hydrolysis (0.3 M and 0.5 M H2SO4) using two steps microwave heating, first with power level 30% (1, 2 and 3 min) and second with power level 70% (3 min); and ethanol production. The conventional treatment (autoclaving at 121°C for 15 min) was carried for the comparison. The highest fermentable sugar (105.7 g/l) was resulted from microwave heating with power level 30% for 2 min followed by the power level 70% for 3 min. This hydrolyzate then used as substrate for bioethanol fermentation and partially neutralized (pH 3, 4, 5) by using yeast Issatchenkia orientalis, and the highest ethanol (2.8 g/l) was produced in pH 5.

  18. Evaluation of abalone β-glucuronidase substitution in current urine hydrolysis procedures.

    PubMed

    Malik-Wolf, Brittany; Vorce, Shawn; Holler, Justin; Bosy, Thomas

    2014-04-01

    This study examined the potential of abalone β-glucuronidase as a viable and cost effective alternative to current hydrolysis procedures using acid, Helix pomatia β-glucuronidase and Escherichia coli β-glucuronidase. Abalone β-glucuronidase successfully hydrolyzed oxazepam-glucuronide and lorazepam-glucuronide within 5% of the spiked control concentration. Benzodiazepines present in authentic urine specimens were within 20% of the concentrations obtained with the current hydrolysis procedure using H. pomatia β-glucuronidase. JWH 018 N-(5-hydroxypentyl) β-d-glucuronide was hydrolyzed within 10% of the control concentration. Authentic urine specimens showed improved glucuronide cleavage using abalone β-glucuronidase with up to an 85% increase of drug concentration, compared with the results obtained using E. coli β-glucuronidase. The JWH 018 and JWH 073 carboxylic acid metabolites also showed increased drug concentrations of up to 24%. Abalone β-glucuronidase was able to completely hydrolyze a morphine-3-glucuronide control, but only 82% of total morphine was hydrolyzed in authentic urine specimens compared with acid hydrolysis results. Hydrolysis of codeine and hydromorphone varied between specimens, suggesting that abalone β-glucuronidase may not be as efficient in hydrolyzing the glucuronide linkages in opioid compounds compared with acid hydrolysis. Abalone β-glucuronidase demonstrates effectiveness as a low cost option for enzyme hydrolysis of benzodiazepines and synthetic cannabinoids.

  19. Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin.

    PubMed

    Matsushita, Yasuyuki; Yasuda, Seiichi

    2005-03-01

    In order to effectively utilize a by-product of the acid saccharification process of woody materials, the chemical conversion of guaiacyl sulfuric acid lignin (SAL), one of the acid hydrolysis lignins, into water-soluble sulfonated products with high dispersibitity was investigated. At first, SAL was phenolated (P-SAL) to enhance the solubility and reactivity. Lignosulfonates were prepared from P-SAL by three methods of hydroxymethylation followed by neutral sulfonation (two-step method), sulfomethylation (one-step method) and arylsulfonation. Surprisingly, all prepared lignosulfonates possessed 30 to 70% higher dispersibility for gypsum paste than the commercial lignosulfonate. Evaluation of the preparations for gypsum paste suggested that the higher molecular weights and sulfur contents of the preparations increased their dispersibility.

  20. Research in Energetic Compounds.

    DTIC Science & Technology

    1980-03-01

    SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) ,2 ABSTRACT (cont’d.) chloroperbenzoic acid gave 3-nitrooxetane. Fluoronitromalonate esters were...tetrahydropyranyl ethers. Base hydrolysis of the ester groups followed by acid hydrolysis of the tetrahydropyranyl groups gave 2-fluo- ro-2-nitroethanol...of 3-allyloxyoxetane.3 Treatment of allyl alcohol with 0.25 equivalunt of t-butyl h-pochlorite and a catalytic amount of p-toluenesulfonic acid was

  1. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.

    PubMed

    Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M

    2015-07-01

    The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by isocratic high-pressure liquid chromatography with post-column hydrolysis and fluorescence detection.

    PubMed

    Hobl, Eva-Luise; Jilma, Bernd; Ebner, Josef; Schmid, Rainer W

    2013-06-01

    A selective, sensitive and rapid high-performance liquid chromatography method with post-column hydrolysis and fluorescence detection was developed for the simultaneous quantification of acetylsalicylic acid and its metabolite salicylic acid in human plasma. Following the addition of 2-hydroxy-3-methoxybenzoic acid as internal standard and simple protein precipitation with acetonitrile, the analytes were separated on a ProntoSIL 120 C18 ace-EPS column (150 × 2 mm, 3 µm) protected by a C8 guard column (5 µm). The mobile phase, 10 mm formic acid in water (pH 2.9) and acetonitrile (70:30, v/v), was used at a flow rate of 0.35 mL/min. After on-line post-column hydrolysis of acetylsalicylic acid (ASA) to salicylic acid (SA) by addition of alkaline solution, the analytes were measured at 290 nm (λex ) and 400 nm (λem ). The method was linear in the concentration ranges between 0.05 and 20 ng/μL for both ASA and SA with a lower limit of quantification of 25 pg/μL for SA and 50 pg/μL for ASA. The limit of detection was 15 pg/μL for SA and 32.5 pg/μL for ASA. The analysis of ASA and SA can be carried out within 8 min; therefore this method is suitable for measuring plasma concentrations of salicylates in clinical routine. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Hydrolysis reactor for hydrogen production

    DOEpatents

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  4. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis.

    PubMed

    Kapoor, Manali; Raj, Tirath; Vijayaraj, M; Chopra, Anju; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2015-06-25

    To overcome the recalcitrant nature of biomass several pretreatment methodologies have been explored to make it amenable to enzymatic hydrolysis. These methodologies alter cell wall structure primarily by removing/altering hemicelluloses and lignin. In this work, alkali, dilute acid, steam explosion pretreatment are systematically studied for mustard stalk. To assess the structural variability after pretreatment, chemical analysis, surface area, crystallinity index, accessibility of cellulose, FT-IR and thermal analysis are conducted. Although the extent of enzymatic hydrolysis varies upon the methodologies used, nevertheless, cellulose conversion increases from <10% to 81% after pretreatment. Glucose yield at 2 and 72h are well correlated with surface area and maximum adsorption capacity. However, no such relationship is observed for xylose yield. Mass balance of the process is also studied. Dilute acid pretreatment is the best methodology in terms of maximum sugar yield at lower enzyme loading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.

    PubMed

    Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu

    2015-01-01

    Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Dipeptide transport and hydrolysis in isolated loops of rat small intestine: effects of stereospecificity.

    PubMed Central

    Lister, N; Sykes, A P; Bailey, P D; Boyd, C A; Bronk, J R

    1995-01-01

    1. Isolated jejunal loops of rat small intestine were perfused by a single pass of bicarbonate Krebs-Ringer solution containing either D- or L-phenylalanine or one of eight dipeptides formed from D- or L-alanine plus D- or L-phenylalanine. 2. At 0.5 mM L-phenylalanyl-L-alanine increased serosal phenylalanine appearance to forty times the control rate giving a value similar to that found with 0.5 mM free L-phenylalanine. No serosal dipeptide could be detected. 3. Perfusions with the two mixed dipeptides with N-terminal D-amino acids (D-alanyl-L-phenylalanine and D-phenylalanyl-L-alanine) gave rise to the appearance of intact dipeptides in the serosal secretions although there were substantial differences in their rates of absorption and subsequent hydrolysis. 4. L-Alanyl-D-phenylalanine was absorbed from the lumen three to five times as fast as L-phenylalanyl-D-alanine. At 1 mM L-alanyl-D-phenylalanine transferred D-phenylalanine across the epithelial layer at more than seven times the rate found with the same concentration of the free D-amino acid. 5. Perfusions with D-alanyl-D-phenylalanine or D-phenylalanyl-D-alanine showed that these two dipeptides are poor substrates for both transport and hydrolysis by the rat small intestine. 6. Analysis of mucosal tissue extracts after perfusion with the two mixed dipeptides with N-terminal D-amino acids revealed that both dipeptides were accumulated within the mucosa and suggested that exit across the basolateral membrane was rate limiting for transepithelial dipeptide transport. Images Figure 5 PMID:7602518

  7. Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis.

    PubMed

    Alftrén, Johan; Hobley, Timothy John

    2013-04-01

    β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter. The performance and recyclability of immobilized β-glucosidase on more complex substrate (pretreated spruce) was also studied. It was shown that adding immobilized β-glucosidase (16 U/g dry matter) to free cellulases (8 FPU/g dry matter) increased the hydrolysis yield of pretreated spruce from ca. 44 % to ca. 65 %. In addition, it was possible to re-use the immobilized β-glucosidase in the spruce and retain activity for at least four cycles. The immobilized enzyme thus shows promise for lignocellulose hydrolysis.

  8. Effects of substrate fatty acids on products of lecithin hydrolysis and acyl-CoA-independent transacylation with cholesterol by aortic enzyme preparations.

    PubMed

    Patelski, J; Pioruńska-Stolzmann, M

    1985-01-01

    The acyl composition of substrates and products of enzymatic hydrolysis and transacylation of lecithin with cholesterol in the arterial wall was investigated. Saturated acyl residues predominated in lysolecithin and unsaturated ones in acids released by hydrolysis of egg lecithin. In the reaction system with cholesterol, saturated acyls predominated in both lysolecithin and acids released whereas unsaturated ones were more abundant in newly formed acylcholesterols. Mainly unsaturated acyls were present in the hydrolysis products from soybean lecithin in the reaction systems with and without cholesterol. For acylcholesterols formed in the presence of either lecithin, the percent values are in the numerical order of C18:2 greater than C18:1 greater than C16:0 greater than or equal to C18:0. It It is concluded that acyl preferences and interactions in the enzyme-catalyzed reactions studied may contribute to the different accumulation and removal of the compounds involved from the artery.

  9. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation.

    PubMed

    Park, Jeong-Hoon; Hong, Ji-Yeon; Jang, Hyun Chul; Oh, Seung Geun; Kim, Sang-Hyoun; Yoon, Jeong-Jun; Kim, Yong Jin

    2012-03-01

    A facile continuous method for dilute-acid hydrolysis of the representative red seaweed species, Gelidium amansii was developed and its hydrolysate was subsequently evaluated for fermentability. In the hydrolysis step, the hydrolysates obtained from a batch reactor and a continuous reactor were systematically compared based on fermentable sugar yield and inhibitor formation. There are many advantages to the continuous hydrolysis process. For example, the low melting point of the agar component in G. amansii facilitates improved raw material fluidity in the continuous reactor. In addition, the hydrolysate obtained from the continuous process delivered a high sugar and low inhibitor concentration, thereby leading to both high yield and high final ethanol titer in the fermentation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Hydrolysis reaction of 2,4-dichlorophenoxyacetic acid. A kinetic and computational study

    NASA Astrophysics Data System (ADS)

    Romero, Jorge Marcelo; Jorge, Nelly Lidia; Grand, André; Hernández-Laguna, Alfonso

    2015-10-01

    The degradation of the 2,4-dichlorophenoxyacetic acid in aqueous solution is an hydrolysis reaction. Two products are identified: 2,4-dichlorophenol and glycolic acid. Reaction is investigated as a function of pH and temperature, and it is first-order kinetics and pH-dependent. Reaction is modeled in gas phase, where a proton catalyses the reaction. Critical points of PES are calculated at B3LYP/6-311++G(3df,2p), and aug-cc-pvqz//6-311++G(3df,2p) levels plus ZPE at 6-311++G(3df,2p) level. The activation barrier is 21.2 kcal/mol. Theoretical results agree with the experimental results. A second mechanism related with a Cl2Phsbnd Osbnd CH2sbnd COOH⋯H2O complex is found, but with a rate limiting step of 38.4 kcal/mol.

  11. Effect of hot acid hydrolysis and hot chlorine dioxide stage on bleaching effluent biodegradability.

    PubMed

    Gomes, C M; Colodette, J L; Delantonio, N R N; Mounteer, A H; Silva, C M

    2007-01-01

    The hot acid hydrolysis followed by chlorine dioxide (A/D*) and hot chlorine dioxide (D*) technologies have proven very useful for bleaching of eucalyptus kraft pulp. Although the characteristics and biodegradability of effluents from conventional chlorine dioxide bleaching are well known, such information is not yet available for effluents derived from hot acid hydrolysis and hot chorine dioxide bleaching. This study discusses the characteristics and biodegradability of such effluents. Combined whole effluents from the complete sequences DEpD, D*EpD, A/D*EpD and ADEpD, and from the pre-bleaching sequences DEp, D*Ep, A/D*Ep and ADEp were characterized by quantifying their colour, AOX and organic load (BOD, COD, TOC). These effluents were also evaluated for their treatability by simulation of an activated sludge system. It was concluded that treatment in the laboratory sequencing batch reactor was efficient for removal of COD, BOD and TOC of all effluents. However, colour increased after biological treatment, with the greatest increase found for the effluent produced using the AD technology. Biological treatment was less efficient at removing AOX of effluents from the sequences with D*, A/D* and AD as the first stages, when compared to the reference D stage; there was evidence of the lower treatability of these organochlorine compounds from these sequences.

  12. Kinetic Modelling and Experimental Studies for the Effects of Fe 2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis

    DOE PAGES

    Wei, Hui; Chen, Xiaowen; Shekiro, Joseph; ...

    2018-01-20

    High-temperature (150-170 degrees C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe 2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorilymore » modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe 2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ⁰C/30 min with 0.75 mM Fe 2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 degrees C with 0.75 mM Fe 2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe 2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by

  13. Kinetic Modelling and Experimental Studies for the Effects of Fe 2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Hui; Chen, Xiaowen; Shekiro, Joseph

    High-temperature (150-170 degrees C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe 2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorilymore » modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe 2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ⁰C/30 min with 0.75 mM Fe 2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 degrees C with 0.75 mM Fe 2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe 2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by

  14. RAPESEED PHOSPHATIDYLCHOLINE HYDROLYSIS TO PHOSPHATIDIC ACID USING PLANT EXTRACTS WITH PHOPSPHOLIPASE D.

    PubMed

    Pasker, Beata; Sosada, Marian; Fraś, Paweł; Boryczka, Monika; Górecki, Michał; Zych, Maria

    2015-01-01

    Phosphatidic acid (PA) has a crucial role in cell membrane structure and function. For that reason it has a possible application in the treatment of some health disorders in humans, can be used as a natural and non toxic emulsifier and the component of drug carriers in pharmaceuticals and cosmetics as well as a component for synthesis of some new phospholipids. PA is short-lived in the cell and is difficult to extract directly from the biological material. PA may be easily prepared by hydrolysis of phospholipids, especially phosphatidylcholine (PC), using cabbage phospholipase D (PLD). Hydrolytic activity of purified by us PLD extracts from cabbage towards rapeseed phosphatidylcholine (RPC) was investigated. Hydrolysis was carried out in the biphasic system (water/diethyl ether) at pH 6,5 and temp 30°C. Influence of enzymatic extracts from three cabbage varieties, reaction time, Ca2+ concentration and enzyme extracts/PC ratio, on activity towards RPC resulting in rapeseed phosphatidic acid (RPA) formation were examined. Our study shows that the PLD extracts from savoy cabbage (PLDsc), white cabbage (PLDwc) and brussels sprouts (PLDbs) used in experiments exhibit hydrolytic activity towards RPC resulting in rapeseed RPA with different yield. The highest activity towards RPC shows PLD extract from PLDsc with the RPC conversion degree to RPA (90%) was observed at 120 mM Ca2+ concentration, reaction time 60 min and ratio of PLD extract to RPC 6 : 1 (w/w). Our study shows that purified by us PLDsc extracts exhibit hydrolytic activity towards RPC giving new RPA with satisfying conversion degree for use in pharmacy, cosmetics and as a standard in analytical chemistry.

  15. Steric analysis of epoxyalcohol and trihydroxy derivatives of 9-hydroperoxy-linoleic acid from hematin and enzymatic synthesis

    PubMed Central

    Thomas, Christopher P.; Boeglin, William E.; Garcia-Diaz, Yoel; O’Donnell, Valerie B.; Brash, Alan R.

    2013-01-01

    We characterize the allylic epoxyalcohols and their trihydroxy hydrolysis products generated from 9R- and 9S-hydroperoxy-octadecenoic acid (HPODE) under non-enzymatic conditions, reaction with hematin and subsequent acid hydrolysis, and enzymatic conditions, incubation with Beta vulgaris containing a hydroperoxide isomerase and epoxide hydrolase. The products were resolved by HPLC and the regio and stereo-chemistry of the transformations were determined through a combination of 1H NMR and GC-MS analysis of dimethoxypropane derivatives. Four trihydroxy isomers were identified upon mild acid hydrolysis of 9S,10S-trans-epoxy-11E-13S-hydroxyoctadecenoate: 9S,10R,13S, 9S,12R,13S, 9S,10S,13S and 9S,12S,13S-trihydroxy-octadecenoic acids, in the ratio 40:26:22:12. We also identified a prominent -ketol rearrangement product from the hydrolysis as mainly the 9-hydroxy-10E-13-oxo isomer. Short incubation (5 min) of 9R- and 9S-HPODE with Beta vulgaris extract yielded the 9R- and 9S-hydroxy-10E-12R,13S-cis-epoxy products respectively. Longer incubation (60 min) gave one specific hydrolysis product via epoxide hydrolase, the 9R/S,12S,13S-trihydroxyoctadecenoate. These studies provide a practical approach for the isolation and characterization of allylic epoxy alcohol and trihydroxy products using a combination of HPLC, GC-MS and 1H NMR. PMID:23352713

  16. Switching catalysis from hydrolysis to perhydrolysis in P. fluorescens esterase

    PubMed Central

    Yin, De Lu (Tyler); Bernhardt, Peter; Morley, Krista L.; Jiang, Yun; Cheeseman, Jeremy D.; Purpero, Vincent; Schrag, Joseph D.; Kazlauskas, Romas J.

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis – the reversible formation of per-acids from carboxylic acids and hydrogen peroxide. Recently we showed that a single amino acid substitution in the alcohol binding pocket - L29P - in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. Angew. Chem. Intl. Ed. 2005, 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two x-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active-site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of ε-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction – hydrolysis of peracetic acid to acetic acid and hydrogen peroxide – occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed two fold higher kcat, but Km also increased so the specificity constant, kcat/Km, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate), but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of ε-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for

  17. Activation Energies for an Enzyme-Catalyzed and Acid-Catalyzed Hydrolysis: An Introductory Interdisciplinary Experiment for Chemists and Biochemists.

    ERIC Educational Resources Information Center

    Adams, K. R.; Meyers, M. B.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students determine and compare the Arrhenius activation energies (Ea) for the hydrolysis of salicin. This reaction is subject to catalysis both by acid and by the enzyme emulsin (beta-d-glucoside glycohydrolase). (JN)

  18. Hydrolysis of virgin coconut oil using immobilized lipase in a batch reactor.

    PubMed

    Chua, Lee Suan; Alitabarimansor, Meisam; Lee, Chew Tin; Mat, Ramli

    2012-01-01

    Hydrolysis of virgin coconut oil (VCO) had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme) in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v). Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v) of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v). A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C.

  19. Hydrolysis of Virgin Coconut Oil Using Immobilized Lipase in a Batch Reactor

    PubMed Central

    Chua, Lee Suan; Alitabarimansor, Meisam; Lee, Chew Tin; Mat, Ramli

    2012-01-01

    Hydrolysis of virgin coconut oil (VCO) had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme) in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v). Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v) of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v). A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C. PMID:22953055

  20. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    PubMed

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Use of an algal hydrolysate to improve enzymatic hydrolysis of anaerobically digested fiber

    USDA-ARS?s Scientific Manuscript database

    This study investigated the use of acid hydrolyzed algae to enhance the enzymatic hydrolysis of cellulosic biomass. We first characterized wastewater-grown algal samples and determined the optimal conditions (acid concentration, reaction temperature, and reaction time) for algal hydrolysis using di...

  2. Optimization of High Solids Dilute Acid Hydrolysis of Spent Coffee Ground at Mild Temperature for Enzymatic Saccharification and Microbial Oil Fermentation.

    PubMed

    Wang, Hui-Min David; Cheng, Yu-Shen; Huang, Chi-Hao; Huang, Chia-Wei

    2016-10-01

    Soluble coffee, being one of the world's most popular consuming drinks, produces a considerable amount of spent coffee ground (SCG) along with its production. The SCG could function as a potential lignocellulosic feedstock for production of bioproducts. The objective of this study is to investigate the possible optimal condition of dilute acid hydrolysis (DAH) at high solids and mild temperature condition to release the reducing sugars from SCG. The optimal condition was found to be 5.3 % (w/w) sulfuric acid concentration and 118 min reaction time. Under the optimal condition, the mean yield of reducing sugars from enzymatic saccharification of defatted SCG acid hydrolysate was 563 mg/g. The SCG hydrolysate was then successfully applied to culture Lipomyces starkeyi for microbial oil fermentation without showing any inhibition. The results suggested that dilute acid hydrolysis followed by enzymatic saccharification has the great potential to convert SCG carbohydrates to reducing sugars. This study is useful for the further developing of biorefinery using SCG as feedstock at a large scale.

  3. Cassava starch maltodextrinization/monomerization through thermopressurized aqueous phosphoric acid hydrolysis.

    PubMed

    Fontana, J D; Passos, M; Baron, M; Mendes, S V; Ramos, L P

    2001-01-01

    Kinetic conditions were established for the depolymerization of cassava starch for the production of maltodextrins and glucose syrups. Thin-layer chromatography and high-performance liquid chromatography analyses corroborated that the proper H3PO4 strength and thermopressurization range (e.g., 142-170 degrees C; 2.8-6.8 atm) can be successfully explored for such hydrolytic purposes of native starch granules. Because phosphoric acid can be advantageously maintained in the hydrolysate and generates, after controlled neutralization with ammonia, the strategic nutrient triplet for industrial fermentations (C, P, N), this pretreatment strategy can be easily recognized as a recommended technology for hydrolysis and upgrading of starch and other plant polysaccharides. Compared to the classic catalysts, the mandatory desalting step (chloride removal by expensive anion-exchange resin or sulfate precipitation as the calcium-insoluble salt) can be avoided. Furthermore, properly diluted phosphoric acid is well known as an allowable additive in several popular soft drinks such as colas since its acidic feeling in the mouth is compatible and synergistic with both natural and artificial sweeteners. Glycosyrups from phosphorolyzed cassava starch have also been upgraded to high-value single-cell protein such as the pigmented yeast biomass of Xanthophyllomyces dendrorhous (Phaffia rhodozyma), whose astaxanthin (diketo-dihydroxy-beta-carotene) content may reach 0.5-1.0 mg/g of dry yeast cell. This can be used as an ideal complement for animal feeding as well as a natural staining for both fish farming (meat) and poultry (eggs).

  4. Organosolv pretreatment for enzymatic hydrolysis of poplars: I. enzyme hydrolysis of cellulosic residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, H.L.; Johnson, D.K.; Black, S.

    1988-01-01

    Aspen (Populus tremuloides) and black cottonwood (Populus trichocarpa) organosolv pulps produced in a wide range of solvent composition (between 30 and 70% by volume of methanol) and catalysts (H/sub 2/SO/sub 4/ and H/sub 3/PO/sub 4/) such that the cooking liquor pH less than or equal to 3 are easily digested by enzymes. The total yields of hydrolysis residues (pulps) are in the 40-60% range; the acid-catalyzed delignification followed by enzyme hydrolysis can generate 70-88% of the original six-carbon sugars contained in the wood. Glucomannan and arabinogalactan are dissolved in to the pulping liquor in the pH range of 2-4.5. Lowermore » pH (less than or equal to 3) leads to additional solubilization of six-carbon sugars. These sugars may be fermented directly. From the insoluble hydrolysis residues, 36-41% conversions of wood into fermentable sugars were obtained after enzyme hydrolysis; the starting feedstocks contain 50.8 and 46.6% hexosans, respectively, for aspen and black cottonwood. The kinetics of enzymatic hydrolysis of cellulose can be formally treated as two simultaneous pseudo-first-order reactions in which fast and slow hydrolysis of cellulose occur. Correlations between the glucan digestibility and the effect of the pretreatment have been made. The higher residual xylan content reduces the amount of the rapidly hydrolyzable glucan fraction and lowers the glucan digestibility. The proposed simple kinetic treatment is very helpful in assessing the effect of the pretreatment on pulp enzyme hydrolyzability.« less

  5. Galactomannans from Brazilian seeds: characterization of the oligosaccharides produced by mild acid hydrolysis.

    PubMed

    Ganter, J L; Heyraud, A; Petkowicz, C L; Rinaudo, M; Reicher, F

    1995-02-01

    Galactomannans with Man:Gal ratios ranging from 1.1:1 to 3:1, obtained from the seeds of Mimosa scabrella, Stryphnodendron barbatiman, Schizolobium parahybum and Schizolobium amazonicum, were submitted to mild acid hydrolysis. The products were fractionated by gel permeation chromatography on BioGel P2 yielding fractions with degrees of polymerization (DP) of 1 to 6. Those with DP 2 to 6 from each species were analysed by ion-exchange high-performance liquid chromatography and characterized by 13C- and 1H-nuclear magnetic resonance (NMR) spectroscopy. The distribution of the oligosaccharides of each degree of polymerization was very similar for the products from S. parahybum and S. amazonicum, indicating the same D-galactosyl distribution on the D-mannan backbone, in agreement with the 13C-NMR splitting in the C4 region of the D-mannosyl units in the original polymers. The hydrolytic conditions adopted allowed characterization of compounds that are not generally produced by enzymatic treatments. The results show that the structures of the oligosaccharides, even if there is a preferential hydrolysis of Gal-Man linkages, reflect the composition of the parent polymer.

  6. Potential Prebiotic Oligosaccharide Mixtures from Acidic Hydrolysis of Rice Bran and Cassava Pulp.

    PubMed

    Hansawasdi, Chanida; Kurdi, Peter

    2017-12-01

    Two agricultural wastes, rice bran and cassava pulp were subjected to acidic hydrolysis by 2 M sulfuric acid which resulted in hemicellulosic oligosaccharide mixtures. Monosaccharide component analysis of these mixtures revealed that the oligosaccharides of rice bran acid hydrolysate (RAHF) composed of glucose and arabinose while cassava pulp acid hydrolysate (CAHF) was found to be comprised of glucose, galactose and arabinose. Both RAHF and CAHF were able to fuel all of the tested three Lactobacillus, five Bifidobacterium and three Bacteroides strains indicating the prebiotic potential of these oligosaccharide mixtures. Moreover, Lb. gasseri grew significantly better on RAHF than on inulin, a benchmark prebiotic oligo- and polysaccharide mixture. When the digestibility of RAHF and CAHF were tested it was found that these oligosaccharide mixtures were only slightly hydrolyzed upon exposure to simulated human gastric (by less than 8%) and pancreatic juices (by less than 3%). Additionally, most sensory attributes of the above obtained oligosaccharide mixtures supplemented two model cereal drink formulations were generally not different from those of the control, while the overall acceptance was not affected significantly in one cereal drink formulation.

  7. Evaluation of Bacto TB hydrolysis reagent (Tween 80) for the identification of Branhamella catarrhalis.

    PubMed Central

    Weiner, M; Penha, P D

    1990-01-01

    An investigation of the hydrolysis of Tween 80 reagent by Branhamella catarrhalis and related organisms (Neisseria and Moraxella species) revealed that only B. catarrhalis gave a positive result. A total of 226 strains, including reference organisms and clinical isolates, were studied. B. catarrhalis changed the color of the reagent from amber to pink-red after overnight incubation. We recommend this simple and cost-effective test as an alternative procedure to DNase testing or tributyrin hydrolysis or as a supplemental procedure for the identification of B. catarrhalis in clinical specimens. PMID:2105335

  8. Hydrolysis of alkaline pretreated banana peel

    NASA Astrophysics Data System (ADS)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  9. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.

    PubMed

    Siripong, Premjet; Duangporn, Premjet; Takata, Eri; Tsutsumi, Yuji

    2016-03-01

    Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.

    PubMed

    Shang, Yaqian; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-06-13

    This paper describes a new method to prepare spherulites from normal corn starch by a combination of enzymatic (mixtures of α-amylase and amyloglucosidase) and acid hydrolysis followed by recrystallization of the hydrolyzed products. The resulting spherulites contained a higher proportion of chains with a degree of polymerization (DP) of 6-12 and a lower proportion of chains with DP of 25-36, compared to those of native starch. The spherulites had an even particle size of about 2 μm and a typical B-type crystallinity. The amounts of long- and short-range molecular order of double helices in starch spherulites were larger, but the quality of starch crystallites was poorer, compared to that of native starch. This study showed an efficient method for preparing starch spherulites with uniform granule morphology and small particle size from normal corn starch. The ratios of α-amylase and amyloglucosidase in enzymatic hydrolysis had little effect on the structure of the starch spherulites.

  11. Theoretical study of the alkaline hydrolysis of an aza-β-lactam derivative of clavulanic acid

    NASA Astrophysics Data System (ADS)

    Garcías, Rafael C.; Coll, Miguel; Donoso, Josefa; Muñoz, Francisco

    2003-04-01

    DFT calculations based on the hybrid functional B3LYP/6-31+G * were used to study the alkaline hydrolysis of an aza-clavulanic acid, which results from the substitution of the carbon atom at position 6 in clavulanic acid by a nitrogen atom. The presence of the nitrogen atom endows the compound with special properties; in fact, once formed, the tetrahedral intermediate can evolve with cleavage of the N 4-C 7 or N 6-C 7 bond, which obviously leads to different reaction products. These differential bond cleavages may play a central role in the inactivation of β-lactamases, so the compound may be a powerful inactivator of these enzymes.

  12. Acid Hydrolysis of Wheat Gluten Induces Formation of New Epitopes but Does Not Enhance Sensitizing Capacity by the Oral Route: A Study in “Gluten Free” Brown Norway Rats

    PubMed Central

    Kroghsbo, Stine; Andersen, Nanna B.; Rasmussen, Tina F.; Madsen, Charlotte B.

    2014-01-01

    Background Acid hydrolyzed wheat proteins (HWPs) are used in the food and cosmetic industry as emulsifiers. Cases of severe food allergic reactions caused by HWPs have been reported. Recent data suggest that these reactions are caused by HWPs produced by acid hydrolysis. Objectives To examine the sensitizing capacity of gluten proteins per se when altered by acid or enzymatic hydrolysis relative to unmodified gluten in rats naïve to gluten. Methods High IgE-responder Brown Norway (BN) rats bred on a gluten-free diet were sensitized without the use of adjuvant to three different gluten products (unmodified, acid hydrolyzed and enzymatic hydrolyzed). Rats were sensitized by intraperitoneal (i.p.) immunization three times with 200 µg gluten protein/rat or by oral dosing for 35 days with 0.2, 2 or 20 mg gluten protein/rat/day. Sera were analyzed for specific IgG and IgE and IgG-binding capacity by ELISA. IgE functionality was measured by rat basophilic leukemia (RBL) assay. Results Regardless of the route of dosing, all products had sensitizing capacity. When sensitized i.p., all three gluten products induced a strong IgG1 response in all animals. Acid hydrolyzed gluten induced the highest level of specific IgE but with a low functionality. Orally all three gluten products induced specific IgG1 and IgE but with different dose-response relations. Sensitizing rats i.p. or orally with unmodified or enzymatic hydrolyzed gluten induced specific IgG1 responses with similar binding capacity which was different from that of acid hydrolyzed gluten indicating that acid hydrolysis of gluten proteins induces formation of ‘new’ epitopes. Conclusions In rats not tolerant to gluten acid hydrolysis of gluten enhances the sensitizing capacity by the i.p. but not by the oral route. In addition, acid hydrolysis induces formation of new epitopes. This is in contrast to the enzymatic hydrolyzed gluten having an epitope pattern similar to unmodified gluten. PMID:25207551

  13. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    PubMed

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production.

    PubMed

    Chen, Wen-Hua; Pen, Ben-Li; Yu, Ching-Tsung; Hwang, Wen-Song

    2011-02-01

    The combined pretreatment of rice straw using dilute-acid and steam explosion followed by enzymatic hydrolysis was investigated and compared with acid-catalyzed steam explosion pretreatment. In addition to measuring the chemical composition, including glucan, xylan and lignin content, changes in rice straw features after pretreatment were investigated in terms of the straw's physical properties. These properties included crystallinity, surface area, mean particle size and scanning electron microscopy imagery. The effect of acid concentration on the acid-catalyzed steam explosion was studied in a range between 1% and 15% acid at 180°C for 2 min. We also investigated the influence of the residence time of the steam explosion in the combined pretreatment and the optimum conditions for the dilute-acid hydrolysis step in order to develop an integrated process for the dilute-acid and steam explosion. The optimum operational conditions for the first dilute-acid hydrolysis step were determined to be 165°C for 2 min with 2% H(2)SO(4) and for the second steam explosion step was to be carried out at 180°C for 20 min; this gave the most favorable combination in terms of an integrated process. We found that rice straw pretreated by the dilute-acid/steam explosions had a higher xylose yield, a lower level of inhibitor in the hydrolysate and a greater degree of enzymatic hydrolysis; this resulted in a 1.5-fold increase in the overall sugar yield when compared to the acid-catalyzed steam explosion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues.

    PubMed

    Ben Taher, Imen; Fickers, Patrick; Chniti, Sofien; Hassouna, Mnasser

    2017-03-01

    The aim of this work was the optimization of the enzyme hydrolysis of potato peel residues (PPR) for bioethanol production. The process included a pretreatment step followed by an enzyme hydrolysis using crude enzyme system composed of cellulase, amylase and hemicellulase, produced by a mixed culture of Aspergillus niger and Trichoderma reesei. Hydrothermal, alkali and acid pretreatments were considered with regards to the enhancement of enzyme hydrolysis of potato peel residues. The obtained results showed that hydrothermal pretreatment lead to a higher enzyme hydrolysis yield compared to both acid and alkali pretreatments. Enzyme hydrolysis was also optimized for parameters such as temperature, pH, substrate loading and surfactant loading using a response surface methodology. Under optimized conditions, 77 g L -1 of reducing sugars were obtained. Yeast fermentation of the released reducing sugars led to an ethanol titer of 30 g L -1 after supplementation of the culture medium with ammonium sulfate. Moreover, a comparative study between acid and enzyme hydrolysis of potato peel residues was investigated. Results showed that enzyme hydrolysis offers higher yield of bioethanol production than acid hydrolysis. These results highlight the potential of second generation bioethanol production from potato peel residues treated with onsite produced hydrolytic enzymes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:397-406, 2017. © 2017 American Institute of Chemical Engineers.

  16. Continuous enzymatic hydrolysis of lignocellulosic biomass with simultaneous detoxification and enzyme recovery.

    PubMed

    Gurram, Raghu N; Menkhaus, Todd J

    2014-07-01

    Recovering hydrolysis enzymes and/or alternative enzyme addition strategies are two potential mechanisms for reducing the cost during the biochemical conversion of lignocellulosic materials into renewable biofuels and biochemicals. Here, we show that enzymatic hydrolysis of acid-pretreated pine wood with continuous and/or fed-batch enzyme addition improved sugar conversion efficiencies by over sixfold. In addition, specific activity of the hydrolysis enzymes (cellulases, hemicellulases, etc.) increased as a result of continuously washing the residual solids with removal of glucose (avoiding the end product inhibition) and other enzymatic inhibitory compounds (e.g., furfural, hydroxymethyl furfural, organic acids, and phenolics). As part of the continuous hydrolysis, anion exchange resin was tested for its dual application of simultaneous enzyme recovery and removal of potential enzymatic and fermentation inhibitors. Amberlite IRA-96 showed favorable adsorption profiles of inhibitors, especially furfural, hydroxymethyl furfural, and acetic acid with low affinity toward sugars. Affinity of hydrolysis enzymes to adsorb onto the resin allowed for up to 92 % of the enzymatic activity to be recovered using a relatively low-molar NaCl wash solution. Integration of an ion exchange column with enzyme recovery into the proposed fed-batch hydrolysis process can improve the overall biorefinery efficiency and can greatly reduce the production costs of lignocellulosic biorenewable products.

  17. Non-catalytic steam hydrolysis of fats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steammore » mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.« less

  18. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  19. Validated Method for the Characterization and Quantification of Extractable and Nonextractable Ellagitannins after Acid Hydrolysis in Pomegranate Fruits, Juices, and Extracts.

    PubMed

    García-Villalba, Rocío; Espín, Juan Carlos; Aaby, Kjersti; Alasalvar, Cesarettin; Heinonen, Marina; Jacobs, Griet; Voorspoels, Stefan; Koivumäki, Tuuli; Kroon, Paul A; Pelvan, Ebru; Saha, Shikha; Tomás-Barberán, Francisco A

    2015-07-29

    Pomegranates are one of the main highly valuable sources of ellagitannins. Despite the potential health benefits of these compounds, reliable data on their content in pomegranates and derived extracts and food products is lacking, as it is usually underestimated due to their complexity, diversity, and lack of commercially available standards. This study describes a new method for the analysis of the extractable and nonextractable ellagitannins based on the quantification of the acid hydrolysis products that include ellagic acid, gallic acid, sanguisorbic acid dilactone, valoneic acid dilactone, and gallagic acid dilactone in pomegranate samples. The study also shows the occurrence of ellagitannin C-glycosides in pomegranates. The method was optimized using a pomegranate peel extract. To quantify nonextractable ellagitannins, freeze-dried pomegranate fruit samples were directly hydrolyzed with 4 M HCl in water at 90 °C for 24 h followed by extraction of the pellet with dimethyl sulfoxide/methanol (50:50, v/v). The method was validated and reproducibility was assessed by means of an interlaboratory trial, showing high reproducibility across six laboratories with relative standard deviations below 15%. Their applicability was demonstrated in several pomegranate extracts, different parts of pomegranate fruit (husk, peels, and mesocarp), and commercial juices. A large variability has been found in the ellagitannin content (150-750 mg of hydrolysis products/g) and type (gallagic acid/ellagic acid ratios between 4 and 0.15) of the 11 pomegranate extracts studied.

  20. Kinetics of moisture-induced hydrolysis in powder blends stored at and below the deliquescence relative humidity: investigation of sucrose-citric acid mixtures.

    PubMed

    Kwok, Kaho; Mauer, Lisa J; Taylor, Lynne S

    2010-11-24

    Previous studies have shown that deliquescent organic compounds frequently exhibit chemical instability when stored in environmental conditions above their deliquescence relative humidity (RH). The goal of the current study was to investigate the effect of atmospheric moisture on the long-term chemical stability of crystalline sucrose-citric acid mixtures following storage at RHs at and below the mutual deliquescence relative humidity (MDRH). Interestingly, it was found that sucrose hydrolysis can occur below the MDRH of 64% and was observed for samples stored at 54% RH. However, hydrolysis was not seen for samples stored at 33 or 43% RH. The rate of sucrose hydrolysis could be modeled by taking into account the rate and extent of moisture uptake, which in turn was dependent on the composition of the powder and the storage RH. A reaction mechanism initiated by capillary condensation and involving additional deliquescence lowering by the degradation products formed as a result of sucrose hydrolysis (glucose and fructose) was proposed.

  1. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  2. MTBE Hydrolysis in Dilute Aqueous Solution Using Heterogeneous Strong Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Rixey, W. G.

    2003-12-01

    The objective of this research has been the development of a potential in situ catalytic process for the hydrolysis of methyl tertiary butyl ether (MTBE) to tertiary butyl alcohol (TBA) and methanol in ground water. Bench-scale batch reactor studies were conducted over a temperature range of 23 deg C to 50 deg C with several heterogeneous strong acid catalysts to obtain rates of hydrolysis of MTBE to TBA and methanol at dilute concentrations in water. Continuous flow experiments were then conducted to obtain kinetic data over a temperature range of 15 deg C to 50 deg C for various flow rates for the most active catalysts. It was found that the batch and continuous flow experiments yielded similar intrinsic kinetic rate constants when sorption of MTBE to the catalyst was accounted for. Additional fixed-bed experiments were conducted with deionized water and 0.005 M CaCl2 feed solutions containing 100 mg/L MTBE, respectively, to assess the deactivation of the catalyst, and deactivation was found to be controlled by ion exchange of H+ in the catalyst with Ca+2 in the feed. Our results indicate that, for low to moderate groundwater velocities and cation concentrations at ambient temperatures, an in situ reactive barrier process using the most active catalysts studied in this research could be a viable process in terms of both suitable conversion of MTBE and catalyst life. Although application to in situ remediation is emphasized, the results of this research are also applicable to ex-situ groundwater treatment.

  3. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    PubMed

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Site- and species-specific hydrolysis rates of heroin.

    PubMed

    Szöcs, Levente; Orgován, Gábor; Tóth, Gergő; Kraszni, Márta; Gergó, Lajos; Hosztafi, Sándor; Noszál, Béla

    2016-06-30

    The hydroxide-catalyzed non-enzymatic, simultaneous and consecutive hydrolyses of diacetylmorphine (DAM, heroin) are quantified in terms of 10 site- and species-specific rate constants in connection with also 10 site- and species-specific acid-base equilibrium constants, comprising all the 12 coexisting species in solution. This characterization involves the major and minor decomposition pathways via 6-acetylmorphine and 3-acetylmorphine, respectively, and morphine, the final product. Hydrolysis has been found to be 18-120 times faster at site 3 than at site 6, depending on the status of the amino group and the rest of the molecule. Nitrogen protonation accelerates the hydrolysis 5-6 times at site 3 and slightly less at site 6. Hydrolysis rate constants are interpreted in terms of intramolecular inductive effects and the concomitant local electron densities. Hydrolysis fraction, a new physico-chemical parameter is introduced and determined to quantify the contribution of the individual microspecies to the overall hydrolysis. Hydrolysis fractions are depicted as a function of pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of citric acid concentration and hydrolysis time on physicochemical properties of sweet potato starches.

    PubMed

    Surendra Babu, Ayenampudi; Parimalavalli, Ramanathan; Rudra, Shalini Gaur

    2015-09-01

    Physicochemical properties of citric acid treated sweet potato starches were investigated in the present study. Sweet potato starch was hydrolyzed using citric acid with different concentrations (1 and 5%) and time periods (1 and 11 h) at 45 °C and was denoted as citric acid treated starch (CTS1 to CTS4) based on their experimental conditions. The recovery yield of acid treated starches was above 85%. The CTS4 sample displayed the highest amylose (around 31%) and water holding capacity its melting temperature was 47.66 °C. The digestibility rate was slightly increased for 78.58% for the CTS3 and CTS4. The gel strength of acid modified starches ranged from 0.27 kg to 1.11 kg. RVA results of acid thinned starches confirmed a low viscosity profile. CTS3 starch illustrated lower enthalpy compared to all other modified starches. All starch samples exhibited a shear-thinning behavior. SEM analysis revealed that the extent of visible degradation was increased at higher hydrolysis time and acid concentration. The CTS3 satisfied the criteria required for starch to act as a fat mimetic. Overall results conveyed that the citric acid treatment of sweet potato starch with 5% acid concentration and 11h period was an ideal condition for the preparation of a fat replacer. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Hydrolysis of tert-butyl formate: Kinetics, products, and implications for the environmental impact of methyl tert-butyl ether

    USGS Publications Warehouse

    Church, Clinton D.; Pankow, James F.; Tratnyek, Paul G.

    1999-01-01

    Asessing the environmental fate of methyl tert-butyl ether (MTBE) has become a subject of renewed interest because of the large quantities of this compound that are being used as an oxygenated additive in gasoline. Various studies on the fate of MTBE have shown that it can be degraded to tert-butyl formate (TBF), particularly in the atmosphere. Although it is generally recognized that TBF is subject to hydrolysis, the kinetics and products of this reaction under environmentally relevant conditions have not been described previously. In this study, we determined the kinetics of TBF hydrolysis as a function of pH and temperature. Over the pH range of 5 to 7, the neutral hydrolysis pathway predominates, with kN = (1.0 ± 0.2) × 10−6/s. Outside this range, strong pH effects were observed because of acidic and basic hydrolyses, from which we determined that kA = (2.7 ± 0.5) × 10−3/(M·s) and kB = 1.7 ± 0.3/(M·s). Buffered and unbuffered systems gave the same hydrolysis rates for a given pH, indicating that buffer catalysis was not significant under the conditions tested. The activation energies corresponding to kN, kA, and kBwere determined to be 78 ± 5, 59 ± 4, and 88 ±11 kJ/mol, respectively. In all experiments, tert-butyl alcohol was found at concentrations corresponding to stoichiometric formation from TBF. Based on our kinetics data, the expected half-life for hydrolysis of TBF at pH = 2 and 4°C (as per some standard preservation protocols for water sampling) is 6 h. At neutral pH and 22°C, the estimated half-life is 5 d, and at pH = 11 and 22°C, the value is only 8 min.

  7. Study on treatment technology of wastewater from hydrolysis of acid oil

    NASA Astrophysics Data System (ADS)

    Li, Yuejin; Lin, Zhiyong; Han, Yali

    2017-06-01

    In this paper, the degumming of ferric chloride, calcium hydroxide after the removal of acid acidification hydrolysis of waste oil as raw material, through the treatment process to purify the wastewater. Choose different chemical additives, investigation of different temperature, pH value and other factors, find the best extraction condition. Through the orthogonal test of sodium carbonate, sodium oxalate, barium carbonate, compared with three kinds of chemical additives. The best chemical assistant is sodium carbonate, the best treatment temperature is 80 degrees Celsius, pH value is 8.0. After the reaction, the content of calcium and iron ions were determined by suitable methods. The removal rate of calcium ion is 98%, the removal rate of iron ion is 99%, and the effect of calcium and iron ion precipitation on the subsequent evaporation operation is reduced. Finally, the comparison is made to clarify the Dilute Glycerol water solution.

  8. Probing the Influence of Acidity and Temperature to Th(IV) on Hydrolysis, Nucleation, and Structural Topology.

    PubMed

    Lin, Jian; Qie, Meiying; Zhang, Linjuan; Wang, Xiaomei; Lin, Yuejian; Liu, Wei; Bao, Hongliang; Wang, Jianqiang

    2017-11-20

    Systematic control of the molar ratio between thorium hydroxides and selenic acid and their reaction temperature under hydrothermal conditions results in four novel thorium-based selenate complexes, namely, [Th 8 O 4 (OH) 8 (SeO 4 ) 6 (H 2 O) 16 ]·(SeO 4 ) 2 ·13H 2 O (Th-1), [Th 8 O 4 (OH) 8 (SeO 4 ) 8 (H 2 O) 13 ]·7H 2 O (Th-2), Th(OH) 2 (SeO 4 )H 2 O (Th-3), and Th 3 (SeO 4 ) 6 (H 2 O) 6 ·2.5H 2 O (Th-4), as well as the thorium mixed selenite selenate compound Th(SeO 3 )(SeO 4 ) (Th-5). Smaller [H 2 SeO 4 ]/[Th(IV)] ratio or lower temperature give rise to the formation of octameric [Th 8 (μ 3 -O) 4 (μ 2 -OH) 8 ] 16+ cores in Th-1/Th-2 and infinite [Th(μ 2 -OH) 2 H 2 O] 2+ chains in Th-3, respectively. Increasing the [H 2 SeO 4 ]/[Th(IV)] ratio or elevating the temperature generates a microporous (11.3 Å voids) open-framework Th-4, a monomeric thorium species without oxo/hydroxyl ligands, and a three-dimensional thorium structure Th-5. Formation of these compounds suggests that variables including acidity and temperature play a critical role in the hydrolysis and oligomerization of Th IV ions. Increasing acidity limits the deprotonation of water molecules and formation of nucleophilic hydroxo/oxo-aquo Th species, and high temperature appears to suppress the olation/oxolation hydrolysis reactions, which in both ways limit the formation of the thorium oligomers.

  9. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  10. Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin.

    PubMed

    Akimkulova, Ardak; Zhou, Yan; Zhao, Xuebing; Liu, Dehua

    2016-05-01

    Eleven salts were selected to screen the possible metal ions for blocking the non-productive adsorption of cellulase onto the lignin of dilute acid pretreated wheat straw. Mg(2+) was screened finally as the promising candidate. The optimal concentration of MgCl2 was 1 mM, but the beneficial action was also dependent on pH, hydrolysis time and cellulase loading. Significant improvement of glucan conversion (19.3%) was observed at low cellulase loading (5 FPU/g solid). Addition of isolated lignins, tannic acid and lignin model compounds to pure cellulose hydrolysis demonstrated that phenolic hydroxyl group (Ph-OH) was the main active site blocked by Mg(2+). The interaction between Mg(2+) and Ph-OH of lignin monomeric moieties followed an order of p-hydroxyphenyl (H)>guaiacyl (G)>syringyl (S). Mg(2+) blocking made the lignin surface less negatively charged, which might weaken the hydrogen bonding and electrostatically attractive interaction between lignin and cellulase enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Internal Hydrolysis Indicator for Sample Specific Monitoring of β-Glucuronidase Activity.

    PubMed

    Taylor, Lacy L; Flint, Noah A; Ma, Vinh; Hill, Brandy M; Clark, Chantry J; Strathmann, Frederick G

    2017-06-01

    Metabolized forms of benzodiazepines (benzos) can cause issues with mass spectrometry identification. Benzodiazepines undergo a process called glucuronidation during metabolism that attaches a glucuronic acid for increased solubility. Often in clinical testing an enzymatic hydrolysis step is implemented to increase the sensitivity of benzodiazepines by hydrolyzing β-D-glucuronic acid from benzodiazepine-glucuronide conjugates in urine samples using the β-Glucuronidase enzyme. In this study resorufin β-D-glucuronide, a substrate of the β-Glucuronidase enzyme, was added to patient samples to determine if proper hydrolysis had occurred. The presence of resorufin as an Internal Hydrolysis Indicator (IHI) shows the activity and efficiency of the enzyme in each patient sample. Synthetic/patient urine samples were obtained and mixed with hydrolysis buffer containing resorufin β-D-glucuronide. The β-Glucuronidase enzyme was used to hydrolyze the benzodiazepine analytes as well as resorufin β-D-glucuronide. The enzymatic hydrolysis addition increased the positivity rate of benzodiazepines by 42.5%. The β-Glucuronidase substrate resorufin (IHI) displayed variability in area counts between patient samples. Comparative studies with internal standards and resorufin (IHI) showed no correlation between recovery and analyte variability. Hydrolysis reactions greatly improved the sensitivity of benzodiazepines by liquid chromatography time-of-flight mass spectrometry analysis. The large variation in resorufin (IHI) area counts amongst patient samples indicates possible variability in enzymatic hydrolysis activity. The enzymatic hydrolysis step is a part of the extraction procedure and should be controlled for in each patient sample. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media.

    PubMed

    Kristianto, Ivan; Limarta, Susan Olivia; Lee, Hyunjoo; Ha, Jeong-Myeong; Suh, Dong Jin; Jae, Jungho

    2017-06-01

    Lignin isolated by two-step concentrated acid hydrolysis of empty fruit bunch (EFB) was effectively depolymerized into a high-quality bio-oil using formic acid (FA) as an in-situ hydrogen source and Ru/C as a catalyst in supercritical ethanol. A bio-oil yield of 66.3wt% with an average molecular weight of 822g/mol and an aromatic monomer content of 6.1wt% was achieved at 350°C and a FA-to-lignin mass ratio of 3 after a reaction time of 60min. The combination of Ru/C and FA also resulted in a significant reduction in the oxygen content of the bio-oil by ∼60% and a corresponding increase in the higher heating value (HHV) to 32.7MJ/kg due to the enhanced hydrodeoxygenation activity. An examination of the FA decomposition characteristics revealed that Ru/C provides a greater increase in the rate of hydrogen production from FA, explaining the efficient depolymerization of lignin in a combined system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin.

    PubMed

    Huang, Yanqin; Wei, Zhiguo; Yin, Xiuli; Wu, Chuangzhi

    2012-01-01

    Pyrolytic characteristics of acid hydrolysis residue (AHR) of corncob and pinewood (CAHR, WAHR) were investigated using a thermo-gravimetric analyzer (TGA) and a self-designed pyrolysis apparatus. Gasification reactivity of CAHR char was then examined using TGA and X-ray diffractometer. Result of TGA showed that thermal degradation curves of AHR descended smoothly along with temperature increasing from 150 °C to 850 °C, while a "sharp mass loss stage" for original biomass feedstock (OBF) was observed. Char yield from AHR (42.64-30.35 wt.%) was found to be much greater than that from OBF (26.4-19.15 wt.%). In addition, gasification reactivity of CAHR char was lower than that of corncob char, and there was big difference in micro-crystallite structure. It was also found that CAHR char reactivity decreased with pyrolysis temperature, but increased with pyrolysis heating rate and gasification temperature at 850-950 °C. Furthermore, CAHR char reactivity performed better under steam atmosphere than under CO2 atmosphere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce D(-)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus coryniformis subsp. torquens.

    PubMed

    de Oliveira Moraes, Anelize; Ramirez, Ninoska Isabel Bojorge; Pereira, Nei

    2016-12-01

    Lactic acid is widely used in chemical, pharmaceutical, cosmetic, and food industries, besides it is the building block to produce polylactic acid, which is a sustainable alternative biopolymer to synthetic plastic due to its biodegradability. Aiming at producing an optically pure isomer, the present work evaluated the potential of pulp mill residue as feedstock to produce D(-)-lactic acid by a strain of the bacterium Lactobacillus coryniformis subsp. torquens using separate hydrolysis and fermentation process. Enzymatic hydrolysis, optimized through response surface methodology for 1 g:4 mL solid/liquid ratio and 24.8 FPU/g cellulose enzyme loading, resulted in 140 g L -1 total reducing sugar and 110 g L -1 glucose after 48 h, leading to 61 % of efficiency. In instrumented bioreactor, 57 g L -1 of D(-)-lactic acid was achieved in 20 h of fermentation, while only 0.5 g L -1 of L(+)-lactic acid was generated. Furthermore, product yield of 0.97 g/g and volumetric productivity of 2.8 g L -1  h -1 were obtained.

  15. Regiospecific Ester Hydrolysis by Orange Peel Esterase - An Undergraduate Experiment.

    NASA Astrophysics Data System (ADS)

    Bugg, Timothy D. H.; Lewin, Andrew M.; Catlin, Eric R.

    1997-01-01

    A simple but effective experiment has been developed to demonstrate the regiospecificity of enzyme catalysis using an esterase activity easily isolated from orange peel. The experiment involves the preparation of diester derivatives of para-, meta- and ortho-hydroxybenzoic acid (e.g. methyl 4-acetoxy-benzoic acid). The derivatives are incubated with orange peel esterase, as a crude extract, and with commercially available pig liver esterase and porcine pancreatic lipase. The enzymatic hydrolysis reactions are monitored by thin layer chromatography, revealing which of the two ester groups is hydrolysed, and the rate of the enzyme-catalysed reaction. The results of a group experiment revealed that in all cases hydrolysis was observed with at least one enzyme, and in most cases the enzymatic hydrolysis was specific for production of either the hydroxy-ester or acyl-acid product. Specificity towards the ortho-substituted series was markedly different to that of the para-substituted series, which could be rationalised in the case of pig liver esterase by a published active site model.

  16. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.

    PubMed

    Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei

    2017-01-01

    In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  19. Rapid Quantitative Analysis of Naringenin in the Fruit Bodies of Inonotus vaninii by Two-phase Acid Hydrolysis Followed by Reversed Phase-high Performance Liquid Chromatography-ultra Violet.

    PubMed

    Guohua, Xia; Pan, Ruirong; Bao, Rui; Ge, Yanru; Zhou, Cunshan; Shen, Yuping

    2017-01-01

    Sanghuang is one of mystical traditional Chinese medicines recorded earliest 2000 years ago, that included various fungi of Inonotus genus and was well-known for antitumor effect in modern medicine. Inonotus vaninii is grown in natural forest of Northeastern China merely and used as Sanghuang commercially, but it has no quality control specification until now. This study was to establish a rapid method of two-phase acid hydrolysis followed by reversed phase-high performance liquid chromatography-ultra violet (RP-HPLC-UV) to quantify naringenin in the fruit body of I. vaninii . Sample solution was prepared by pretreatment of raw material in two-phase acid hydrolysis and the hydrolysis technology was optimized. After reconstitution, analysis was performed using RP-HPLC-UV. The method validation was investigated and the naringenin content of sample and comparison were determined. The naringenin was obtained by two-phase acid hydrolysis method, namely, 10.0 g of raw material was hydrolyzed in 200 mL of 1% sulfuric acid aqueous solution (v/v) and 400 mL of chloroform in oil bath at 110°C for 2 h. Good linearity ( r = 0.9992) was achieved between concentration of analyte and peak area. The relative standard deviation (RSD) of precision was 2.47% and the RSD of naringenin contents for repeatability was 3.13%. The accuracy was supported with recoveries at 96.37%, 97.30%, and 99.31%. The sample solution prepared using the proposed method contained higher content of naringenin than conventional method and was stable for 8 h. Due to the high efficiency of sample preparation and high reliability of the HPLC method, it is feasible to use this method for routine analysis of naringenin in the fungus. A convenient two-phase acid hydrolysis was employed to produce naringenin from raw material, and then an efficient and reliable reversed phase-high performance liquid chromatography-ultra violet method was established to monitor naringenin in the fruit bodies of Inonotus vaninii

  20. Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of Tannase from Lactobacillus plantarum.

    PubMed

    Curiel, Jose Antonio; Betancor, Lorena; de las Rivas, Blanca; Muñoz, Rosario; Guisan, Jose M; Fernández-Lorente, Gloria

    2010-05-26

    A recombinant tannase from Lactobacillus plantarum , overexpressed in Escherichia coli , was purified in a single step by metal chelate affinity chromatography on poorly activated nickel supports. It was possible to obtain 0.9 g of a pure enzyme by using only 20 mL of chromatographic support. The pure enzyme was immobilized and stabilized by multipoint covalent immobilization on highly activated glyoxyl agarose. Derivatives obtained by multipoint and multisubunit immobilization were 500- and 1000-fold more stable than both the soluble enzyme and the one-point-immobilized enzyme in experiments of thermal and cosolvent inactivation, respectively. In addition, up to 70 mg of pure enzyme was immobilized on 1 g of wet support. The hydrolysis of tannic acid was optimized by using the new immobilized tannase derivative. The optimal reaction conditions were 30% diglyme at pH 5.0 and 4 degrees C. Under these conditions, it was possible to obtain 47.5 mM gallic acid from 5 mM tannic acid as substrate. The product was pure as proved by HPLC. On the other hand, the immobilized biocatalyst preserved >95% of its initial activity after 1 month of incubation under the optimal reaction conditions.

  1. Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase.

    PubMed

    Mahendran, B; Raman, N; Kim, D-J

    2006-04-01

    An extracellular tannase (tannin acyl hydrolase) was isolated from Paecilomyces variotii and purified from cell-free culture filtrate using ammonium sulfate precipitation followed by ion exchange and gel filtration chromatography. Fractional precipitation of the culture filtrate with ammonium sulfate yielded 78.7% with 13.6-folds purification, and diethylaminoethyl-cellulose column chromatography and gel filtration showed 19.4-folds and 30.5-folds purifications, respectively. Molecular mass of tannase was found 149.8 kDa through native polyacrylamide gel electrophoresis (PAGE) analysis. Sodium dodecyl sulphate-PAGE revealed that the purified tannase was a monomeric enzyme with a molecular mass of 45 kDa. Temperature of 30 to 50 degrees C and pH of 5.0 to 7.0 were optimum for tannase activity and stability. Tannase immobilized on alginate beads could hydrolyze tannic acid even after extensive reuse and retained about 85% of the initial activity. Thin layer chromatography, high performance liquid chromatography, and (1)H-nuclear magnetic resonance spectral analysis confirmed that gallic acid was formed as a byproduct during hydrolysis of tannic acid.

  2. A process for producing lignin and volatile compounds from hydrolysis liquor.

    PubMed

    Khazraie, Tooran; Zhang, Yiqian; Tarasov, Dmitry; Gao, Weijue; Price, Jacquelyn; DeMartini, Nikolai; Hupa, Leena; Fatehi, Pedram

    2017-01-01

    Hot water hydrolysis process is commercially applied for treating wood chips prior to pulping or wood pellet production, while it produces hydrolysis liquor as a by-product. Since the hydrolysis liquor is dilute, the production of value-added materials from it would be challenging. In this study, acidification was proposed as a viable method to extract (1) furfural and acetic acid from hot water hydrolysis liquor and (2) lignin compounds from the liquor. The thermal properties of the precipitates made from the acidification of hydrolysis liquor confirmed the volatile characteristics of precipitates. Membrane dialysis was effective in removing inorganic salts associated with lignin compounds. The purified lignin compounds had a glass transition temperature (Tg) of 180-190 °C, and were thermally stable. The results confirmed that lignin compounds present in hot water hydrolysis liquor had different characteristics. The acidification of hydrolysis liquor primarily removed the volatile compounds from hydrolysis liquor. Based on these results, a process for producing purified lignin and precipitates of volatile compounds was proposed.

  3. Nutritional composition of different grades of edible bird's nest and its enzymatic hydrolysis

    NASA Astrophysics Data System (ADS)

    Noor, Hidayati Syamimi Mohd; Babji, Abdul Salam; Lim, Seng Joe

    2018-04-01

    Edible bird nest (EBN) is a powerful and nutritious food usually consumed by the Chinese Community and it is considered among the most expensive animal products which are made up by salivation of swiftlets (Aerodramus fuciphagus). The other 5% to 10% are made up of foreign matters such as feathers, faecal matter and dirt. The EBN is graded based on its aesthetics as well as its cleaning processes. The aim of this study were to determine and compare EBN of different grades (A, B, C, D) in terms of proximate composition and amino acid profile, and next to enzymatically hydrolyse and determine the degree of hydrolysis (DH) and the recovery percentage of EBN hydrolysates. The enzymatic hydrolysis were performed as an alternative cleaning process of the various grades of EBN, where the glycoproteins were hydrolysed to glycopeptides, making them soluble and leaving behind other insoluble impurities. The results in this study showed that EBN contained high crude protein content: 60.59% (EBNA), 59.50% (EBNB), 54.29% (EBNC) and 56.57% (EBND). Lower grade EBNs (EBNC and EBND) has much higher ash content, i.e. impurities, compared to higher grade EBNs (EBNA and EBNB). In terms of amino acid profile, EBND showed the highest total amino acids compared to EBNA, EBNB and EBNC, with serine and aspartic acid being the main amino acids. Treating the EBN with alcalase for 1.0 - 4.0 hours produced hydrolysates with different degree of hydrolysis (DH), ranging from 10.83 %DH (EBNA) to 13.79 %DH (EBNC). The recovery of EBN after enzymatic hydrolysis range from 89 % (EBNB) to 99% (EBNA). Overall, results showed nutritional composition and amino acid profile of EBN of various grades were significantly different in its nutritional quality, while the enzymatic hydrolysis has successfully separated the impurities from the lower grades EBN.

  4. Impact of recycled effluent on the hydrolysis during anaerobic digestion of vegetable and flower waste.

    PubMed

    Lü, F; He, P J; Hao, L P; Shao, L M

    2008-01-01

    Two trials were established to investigate the effect of recycled effluent on hydrolysis during anaerobic co-digestion of vegetable and flower waste. Trial I evaluated the effect by regulating the flow rate of recycled effluent, while Trial II regulated the ratio of hydrolytic effluent to methanogenic effluent, which were recycled to hydrolysis reactor. Results showed that the recirculation of methanogenic effluent could enhance the buffer capability and operation stability of hydrolysis reactor. Higher recycled flow rate was favourable for microbial anabolism and further promoted hydrolysis. After 9 days of hydrolysis, the cumulative SCOD in the hydrolytic effluent reached 334, 407, 413, 581 mg/g at recycled flow rates of 0.1, 0.5, 1.0, 2.0 m3/(m3 x d), respectively. It was feasible to recycling a mixture of hydrolytic and methanogenic effluent to the hydrolysis reactor. This research showed that partially introducing hydrolytic effluent into the recycled liquid could enhance hydrolysis, while excessive recirculation of hydrolytic effluent will inhibit the hydrolysis. The flow ratio 1:3 of hydrolytic to methanogenic effluent was found to provide the highest hydrolysis efficiency and degradation rate of lignocelluloses-type biomass, among four ratios of 0:1, 1:3, 1:1 and 3:1. Under this regime, after 9 days of hydrolysis, the cumulative TOC and TN in the hydrolytic effluent reached 162 mg/g and 15 mg/g, the removal efficiency of TS, VS, C and cellulose in the solid phase were 60.66%, 62.88%, 58.35% and 49.12%, respectively. The flow ratio affected fermentation pathways, i.e. lower ratio favoured propionic acid fermentation and the generation of lactic acid while higher ratio promoted butyric acid fermentation. IWA Publishing 2008.

  5. New method for a two-step hydrolysis and chromatographic analysis of pectin neutral sugar chains.

    PubMed

    Garna, Haikel; Mabon, Nicolas; Wathelet, Bernard; Paquot, Michel

    2004-07-28

    A new method for the determination of the main neutral sugars in pectin has been developed. The sample preparation involves a mild chemical attack followed by an enzymatic hydrolysis. The completeness and nondestructive character of the method are demonstrated by comparison of the results obtained with different acids such as H2SO4, HCl, and trifluoroacetic acid (TFA) at different concentrations (2, 1, or 0.2 M) at two temperatures (80 or 100 degrees C). The chemical hydrolysis of pectin neutral sugar chains with strong acid (1 or 2 M) and high temperature (100 degrees C) shows that the liberation of the pectin sugars is not realized at the same rate for each sugar. Different optimum conditions are thus obtained. However, the chemical pectin hydrolysis with 0.2 M TFA at 80 degrees C is characterized by the liberation of pectin neutral sugar side chains without any degradation within 72 h of hydrolysis. Under these conditions, the liberation of some pectin sugars, essentially galactose, glucose, and rhamnose, was not complete. An enzymatic hydrolysis is necessary to obtain a complete release of all the sugars. The combination of the two treatments, a chemical hydrolysis realized with diluted acid (0.2 M) for 72 h at low temperature (80 degrees C) on one hand and an enzymatic hydrolysis on the other hand, allow a total liberation of pectin sugars. The quantitative analysis of the carbohydrates is realized with accuracy, high selectivity, and sensitivity with high-performance anion-exchange chromatography with pulsed-amperometric detection. The sugars can be analyzed without any derivatization with a limit of quantification of 0.1 mM. Copyright 2004 American Chemical Society

  6. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy.

    PubMed

    Lo, Yung-Chung; Bai, Ming-Der; Chen, Wen-Ming; Chang, Jo-Shu

    2008-11-01

    In this study, cellulose hydrolysis activity of two mixed bacterial consortia (NS and QS) was investigated. Combination of NS culture and BHM medium exhibited better hydrolytic activity under the optimal condition of 35 degrees C, initial pH 7.0, and 100rpm agitation. The NS culture could hydrolyze carboxymethyl cellulose (CMC), rice husk, bagasse and filter paper, among which CMC gave the best hydrolysis performance. The CMC hydrolysis efficiency increased with increasing CMC concentration from 5 to 50g/l. With a CMC concentration of 10g/l, the total reducing sugar (RS) production and the RS producing rate reached 5531.0mg/l and 92.9mg/l/h, respectively. Furthermore, seven H2-producing bacterial isolates (mainly Clostridium species) were used to convert the cellulose hydrolysate into H2 energy. With an initial RS concentration of 0.8g/l, the H2 production and yield was approximately 23.8ml/l and 1.21mmol H2/g RS (0.097mmol H2/g cellulose), respectively.

  7. Non-catalytic steam hydrolysis of fats. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steammore » mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.« less

  8. Effects of Chemical Structure on Hydrolysis Pathways of Small Peptides in Coastal Seawater

    NASA Astrophysics Data System (ADS)

    Liu, S.; Reyna, N. E.; Hamdan, L. J.; Liu, Z.

    2016-02-01

    Deciphering peptide hydrolysis pathways is key to understanding the mechanism of peptide hydrolysis, in particular the types of extracellular enzymes that are active in seawater. From the hydrolyzed fragments of small peptides, one can estimate the role of amino-, carboxy-, and endopeptidases in a quantitative way. In this study, we incubated several small peptides with different amino acid compositions, alanine-valine-phenylalanine-alanine (AVFA), phenylalanine-alanine-serine-tryptophan-glycine-alanine (FASWGA), VFA, SWGA, VVFA, arginine-valine-phenylalanine-alanine (RVFA), SVFA, aspartic acid-valine-phenylalanine-alanine (DVFA), trialanine (AAA), and AVF in two coastal seawaters (ship channel seawater in the western Gulf of Mexico and Sta. C6 seawater in the northern Gulf of Mexico). In both seawaters, aminopeptidases played a more dominant role (22-67%) in hydrolyzing peptides with hydrophobic amino acid at the N-terminus, such as AVFA, VVFA, VFA, and AAA, or with basic amino acid at the N-terminus (RVFA), as compared to those with N-terminal polar amino acid (SVFA, SWGA) or acidic amino acid (DVFA) (0-24%). This result indicates that amino acid composition in a peptide structure affects how the peptide is hydrolyzed. We also found that peptides in the C6 seawater were hydrolyzed dominantly by aminopeptidases (10-59%), while those in the ship channel seawater also by endo- or carboxypeptidases (9-69%). This pattern suggests that peptide hydrolysis pathways depend on specific environment conditions, such as bacterial community structure, that can lead to variations in abundances or activities among amino-, carboxy- and endopeptidases. Overall, the results provide insights into the effects of chemical structure and seawater environment on peptide hydrolysis pathways.

  9. Determination of amino acids in two Polysiphonia species and study of enzymatic hydrolysis method

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Xin; Fan, Xiao; Wei, Yu-Xi

    2002-09-01

    The total content of the rich amino acids in two common red algae, Polysiphonia urceolata and Polysiphonia japonica growing in the Qingdao seashore were determined. The algae powder was hydrolyzed by 6 mol/L HCl at 110°C for 48 h and determined by amino acid analyzer. The content was 25.35% and 24.16%, respectively, much higher than that of some other species. In addition, a nutritive liquid with abundant amino acids was prepared (by the enzymatic hydrolysis method using Polysiphonia urceolata) as raw material for a kind of health beverage. The dried seaweed was decolored by 0.25% KMnO4 and 0.5% active carbon, then enzymalized. In the selection of enzymalizing condition, the orthogonal experimental design was used. Four factors including kinds of enzyme, quantity of enzyme, temperature and time were studied at 3 levels. According to the orthogonal design results, we can choose an optimal condition: hydrolyzing at 45°C by neutral proteinase (0.25%, w/w) for 2h, adjusting pH to 8.5, then adding trypsin (0.25%, w/w) and hydrolyzing for 2 h. Finally the above solution was alkalized by NaOH and neutralized by casein. After the hydrolyzed liquid was filtered and concentrated, suitable additives were added. The final products contain rich amino acids.

  10. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    PubMed

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.

  11. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.

    PubMed

    Camarero Espinosa, Sandra; Kuhnt, Tobias; Foster, E Johan; Weder, Christoph

    2013-04-08

    On account of their intriguing mechanical properties, low cost, and renewable nature, high-aspect-ratio cellulose nanocrystals (CNCs) are an attractive component for many nanomaterials. Due to hydrogen bonding between their surface hydroxyl groups, unmodified CNCs (H-CNCs) aggregate easily and are often difficult to disperse. It is shown here that on account of ionic repulsion between charged surface groups, slightly phosphorylated CNCs (P-CNCs, average dimensions 31 ± 14 × 316 ± 127 nm, surface charge density = 10.8 ± 2.7 mmol/kg cellulose), prepared by controlled hydrolysis of cotton with phosphoric acid, are readily dispersible and form stable dispersions in polar solvents such as water, dimethyl sulfoxide, and dimethylformamide. Thermogravimetric analyses reveal that these P-CNCs exhibit a much higher thermal stability than partially sulfated CNCs (S-CNCs), which are frequently employed, but suffer from limited thermal stability. Nanocomposites of an ethylene oxide-epichlorohydrin copolymer and H-CNCs, S-CNCs, and P-CNCs were prepared, and their mechanical properties were studied by dynamic mechanical thermal analysis. The results show that P-CNCs offer a reinforcing capability that is comparable to that of H-CNCs or S-CNCs.

  12. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  13. Effect of phosphoric acid pretreatment of corncobs on the fermentability of Clostridium beijerinckii TISTR 1461 for biobutanol production.

    PubMed

    Boonsombuti, Akarin; Luengnaruemitchai, Apanee; Wongkasemjit, Sujitra

    2015-01-01

    Corncobs pretreated with H2SO4, HNO3, and H3PO4 were compared to evaluate the fermentation ability of Clostridium beijerinckii TISTR 1461 to produce biobutanol via acetone-butanol-ethanol (ABE) fermentation. It was found that the hydrolysate from H3PO4 pretreatment could be used as a substrate without any inhibitor removal methods. However, in terms of sugar yield, it gave the lowest total sugars in both pretreatment and enzymatic hydrolysis. Response surface methodology was applied to optimize enzymatic hydrolysis of the pretreated corncobs. The optimized conditions reduced the consumption of enzymes and hydrolysis time to 7.68 FPU/g biomass and 63.88 hr, respectively, and yielded 51.82 g/L reducing sugars. The Celluclast 1.5 L and Novozyme 188 enzyme ratio were varied to maximize the hydrolyzed sugars. The ABE fermentation, using substrate from phosphoric acid pretreatment of corncobs, with 10 g/L glucose supplementation produced 11.64 g/L of total ABE, which was close to the control experiment using synthetic medium. This study showed that corncobs pretreated with phosphoric acid could potentially be used as a substrate without using a detoxification process.

  14. Effects of Limited Hydrolysis and High-Pressure Homogenization on Functional Properties of Oyster Protein Isolates.

    PubMed

    Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Du, Ming

    2018-03-22

    In this study, the effects of limited hydrolysis and/or high-pressure homogenization (HPH) treatment in acid conditions on the functional properties of oyster protein isolates (OPI) were studied. Protein solubility, surface hydrophobicity, particle size distribution, zeta potential, foaming, and emulsifying properties were evaluated. The results showed that acid treatment led to the dissociation and unfolding of OPI. Subsequent treatment such as limited proteolysis, HPH, and their combination remarkably improved the functional properties of OPI. Acid treatment produced flexible aggregates, as well as reduced particle size and solubility. On the contrary, limited hydrolysis increased the solubility of OPI. Furthermore, HPH enhanced the effectiveness of the above treatments. The emulsifying and foaming properties of acid- or hydrolysis-treated OPI significantly improved. In conclusion, a combination of acid treatment, limited proteolysis, and HPH improved the functional properties of OPI. The improvements in the functional properties of OPI could potentiate the use of oyster protein and its hydrolysates in the food industry.

  15. Acidogenic digestion of food waste in a thermophilic leach bed reactor: Effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production.

    PubMed

    Hussain, Abid; Filiatrault, Mélissa; Guiot, Serge R

    2017-12-01

    The effect of pH control (4, 5, 6, 7) on volatile fatty acids (VFA) production from food waste was investigated in a leach bed reactor (LBR) operated at 50°C. Stabilisation of pH at 7 resulted in hydrolysis yield of 530g soluble chemical oxygen demand (sCOD)/kg total volatile solids (TVS) added and VFA yield of 247gCOD/kg TVS added, which were highest among all pH tested. Butyric acid dominated the VFA mix (49-54%) at pH of 7 and 6, while acetate composed the primary VFA (41-56%) at pH of 4 and 5. A metabolic shift towards lactic acid production was observed at pH of 5. Improving leachate recirculation rate further improved the hydrolysis and degradation efficiency by 10-16% and the acidification yield to 340gCOD/kgTVS added. The butyric acid concentration of 16.8g/L obtained at neutral pH conditions is among the highest reported in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover.

    PubMed

    Chen, Longjian; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Zhang, Haiyan; Han, Lujia

    2016-05-05

    Corn stover was pretreated with acid under moderate conditions (1.5%, w/w, 121°C, 60min), and kinetic enzymolysis experiments were performed on the pretreated substrate using a mixture of Celluclast 1.5L (20FPU/g dry substrate) and Novozyme 188 (40CBU/g dry substrate). Integrated chemical and multi-scale structural methods were then used to characterize both processes. Chemical analysis showed that acid pretreatment removed considerable hemicellulose (from 19.7% in native substrate to 9.28% in acid-pretreated substrate) and achieved a reasonably high conversion efficiency (58.63% of glucose yield) in the subsequent enzymatic hydrolysis. Multi-scale structural analysis indicated that acid pretreatment caused structural changes via cleaving acetyl linkages, solubilizing hemicellulose, relocating cell wall surfaces and enlarging substrate porosity (pore volume increased from 0.0067cm(3)/g in native substrate to 0.019cm(3)/g in acid-pretreated substrate), thereby improving the polysaccharide digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis

    Treesearch

    Jijiao Zeng; Zhaohui Tong; Letian Wang; J.Y. Zhu; Lonnie Ingram

    2014-01-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation...

  18. Stepwise hydrolysis to improve carbon releasing efficiency from sludge.

    PubMed

    Liu, Hongbo; Wang, Yuanyuan; Wang, Ling; Yu, Tiantian; Fu, Bo; Liu, He

    2017-08-01

    Based on thermal alkaline hydrolysis (TAH), a novel strategy of stepwise hydrolysis was developed to improve carbon releasing efficiency from waste activated sludge (WAS). By stepwise increasing hydrolysis intensity, conventional sludge hydrolysis (the control) was divided into four stages for separately recovering sludge carbon sources with different bonding strengths, namely stage 1 (60 °C, pH 6.0-8.0), stage 2 (80 °C, pH 6.0-8.0), stage 3 (80 °C, pH 10.0) and stage 4 (90 °C, pH 12.0). Results indicate stepwise hydrolysis could enhance the amount of released soluble chemical oxygen demand (SCOD) for almost 2 times, from 7200 to 14,693 mg/L, and the released carbon presented better biodegradability, with BOD/COD of 0.47 and volatile fatty acids (VFAs) yield of 0.37 g VFAs/g SCOD via anaerobic fermentation. Moreover, stepwise hydrolysis also improved the dewaterability of hydrolyzed sludge, capillary suction time (CST) reducing from 2500 to 1600 s. Economic assessment indicates stepwise hydrolysis shows less alkali demand and lower thermal energy consumption than those of the control. Furthermore, results of this study help support the concepts of improving carbon recovery in wastewater by manipulating WAS composition and the idea of classifiably recovering the nutrients in WAS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Superactivity of MOF-808 toward Peptide Bond Hydrolysis.

    PubMed

    Ly, Hong Giang T; Fu, Guangxia; Kondinski, Aleksandar; Bueken, Bart; De Vos, Dirk; Parac-Vogt, Tatjana N

    2018-05-03

    MOF-808, a Zr(IV)-based metal-organic framework, has been proven to be a very effective heterogeneous catalyst for the hydrolysis of the peptide bond in a wide range of peptides and in hen egg white lysozyme protein. The kinetic experiments with a series of Gly-X dipeptides with varying nature of amino acid side chain have shown that MOF-808 exhibits selectivity depending on the size and chemical nature of the X side chain. Dipeptides with smaller or hydrophilic residues were hydrolyzed faster than those with bulky and hydrophobic residues that lack electron rich functionalities which could engage in favorable intermolecular interactions with the btc linkers. Detailed kinetic studies performed by 1 H NMR spectroscopy revealed that the rate of glycylglycine (Gly-Gly) hydrolysis at pD 7.4 and 60 °C was 2.69 × 10 -4 s -1 ( t 1/2 = 0.72 h), which is more than 4 orders of magnitude faster compared to the uncatalyzed reaction. Importantly, MOF-808 can be recycled several times without significantly compromising the catalytic activity. A detailed quantum-chemical study combined with experimental data allowed to unravel the role of the {Zr 6 O 8 } core of MOF-808 in accelerating Gly-Gly hydrolysis. A mechanism for the hydrolysis of Gly-Gly by MOF-808 is proposed in which Gly-Gly binds to two Zr(IV) centers of the {Zr 6 O 8 } core via the oxygen atom of the amide group and the N-terminus. The activity of MOF-808 was also demonstrated toward the hydrolysis of hen egg white lysozyme, a protein consisting of 129 amino acids. Selective fragmentation of the protein was observed with 55% yield after 25 h under physiological pH.

  20. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil.

    PubMed

    Johansen, Henrik; Rasmussen, Lars Holm; Olsen, Carl Erik; Bruun Hansen, Hans Christian

    2007-02-01

    Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-beta-d-glucoside) produced by sorghum has been studied in order to assess its fate in soil. The log K(ow) of dhurrin was -1.18+/-0.08 (22 degrees C). Hydrolysis was a first-order reaction with respect to dhurrin and hydroxyl ion concentrations. Half lives ranged from 1.2h (pH 8.6; 25 degrees C) to 530d (pH 4; 25 degrees C). The activation energy of hydrolysis was 112+9kJ. At pH 5.8 and room temperature, addition of humic acids (50gl(-1)) increased the rate of hydrolysis tenfold, while addition of kaolinite or goethite (100-250gl(-1)) both decreased the rate considerably. No significant sorption to soil components could be observed. The degradation rates of dhurrin in top and subsoils of Oxisols, Ultisols, Alfisols and Mollisols were studied at 22 degrees C (25mgl(-1), soil:liquid 1:1 (w:V), pH 3.8-8.1). Half-lives were 0.25-2h for topsoils, and 5-288h in subsoils. Hydrolysis in solution explained up to 45% of the degradation in subsoils whereas the contribution in topsoils was less than 14%, indicating the importance of enzymatic degradation processes. The highest risk of dhurrin leaching will take place when the soil is a low activity acid shallow soil with low content of clay minerals, iron oxides and humic acids.

  1. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine

    Treesearch

    Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke

    2012-01-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...

  2. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation.

    PubMed

    Gullón, Beatriz; Yáñez, Remedios; Alonso, José Luis; Parajó, J C

    2008-01-01

    The potential of apple pomace (a solid waste from cider and apple juice making factories) as a source of sugars and other compounds for fermentation was evaluated. The effect of the cellulase-to-solid ratio (CSR) and the liquor-to-solid ratio (LSR) on the kinetics of glucose and total monosaccharide generation was studied. Mathematical models suitable for reproducing and predicting the hydrolyzate composition were developed. When samples of apple pomace were subjected to enzymatic hydrolysis, the glucose and fructose present in the raw material as free monosaccharides were extracted at the beginning of the process. Using low cellulase and cellobiase charges (8.5 FPU/g-solid and 8.5 IU/g-solid, respectively), 79% of total glucan was saccharified after 12 h, leading to solutions containing up to 43.8 g monosaccharides/L (glucose, 22.8 g/L; fructose, 14.8 g/L; xylose+mannose+galactose, 2.5 g/L; arabinose+rhamnose, 2.8g/L). These results correspond to a monosaccharide/cellulase ratio of 0.06 g/FPU and to a volumetric productivity of 3.65 g of monosaccharides/L h. Liquors obtained under these conditions were used for fermentative lactic acid production with Lactobacillus rhamnosus CECT-288, leading to media containing up to 32.5 g/L of L-lactic acid after 6 h (volumetric productivity=5.41 g/L h, product yield=0.88 g/g).

  3. Modeling and simulation of an enzymatic reactor for hydrolysis of palm oil.

    PubMed

    Bhatia, S; Naidu, A D; Kamaruddin, A H

    1999-01-01

    Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.

  4. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-05

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Formation of amino acids and nucleic acid constituents from simulated primitive planetary atmospheres by irradiation with high-energy protons

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Yamanashi, H.; Ohashi, A.; Kaneko, T.; Miyakawa, S.; Saito, T.

    It is suggested that primitive Earth atmosphere was only slightly reduced, which w as composed of carbon dioxide, carbon monoxide, nitrogen and water. It has been shown that bioorganic compounds can be hardly formed by energies as UV light, heat and spark discharges. We therefore examined possible formation pat hways of bioorganic compounds in the primitive E arth. A mixt ure of carbon monoxide, nitrogen and water was irradiated with high-energy prot ons generated by a van de Graaff accelerator, whi c h simulated an action of cosm ic rays. Aqueous solution of the product was hydr olyzed, and then analyzed by chromatography and mass spectrometry. A wide variety of amino acids and uracil, one of the nucle ic acid bases, wer e identified. Ribose, the RNA sugar, has not been identified, but formation of reducing polyols was suggested. A mino acids and uracil were also formed from a mixture of carbo n dioxide, carbon monoxide, nitrogen and water, and their yields correlated to the ratio of carbon monoxide and nitrogen in the mixture. Since a certain percentage of carbon monoxide could be expected to be in it [1], cosmic radiation can be regarded as an effective energ so urce for prebiotic formation of life's building blocks in they primitive Earth [2]. In the conventional scenario of chemical evolution, amino acids were formed in t he primitive ocean from such intermediates as HCN an d HCHO formed in t he atmosphere. T his scenario seem s not to be possible due to the following reasons: (1) The irradiation products were quit e complex organic com pound s whose molecular weights were ca. 1000, and they gave amino acids after hydrolysis. (2) Energy yields of amino ac ids in the hydrolysates were comparable to those of HCN and HCHO in the irradiation pro duct s. (3) Irradiation products from a mixture of carbon monoxide and nitrogen without water als o gave amino acids aft er hydrolysis. T hes e observations strongly sugge s t e d that complex precursors of bioor ganic com

  6. The structure of an acylated inositol mannoside in the lipids of propionic acid bacteria

    PubMed Central

    Shaw, N.; Dinglinger, F.

    1969-01-01

    1. Lipids were extracted from five strains of Propionibacterium with chloroform–methanol mixtures and fractionated by chromatography on silicic acid. 2. All five extracts contained a glycolipid composed of fatty acids, inositol and mannose in the molar proportions 2:1:1. 3. Hydrolysis of the glycolipid with alkali gave a mixture of fatty acids and O-α-d-mannopyranosyl-(1→2)-myoinositol. 4. Analysis of the fatty acids by g.l.c. showed that they were predominantly straight- and branched-chain isomers of pentadecanoic acid and heptadecanoic acid. 5. The location and distribution of the fatty acid residues in the molecule was established by periodate oxidation studies and mass spectrometry. The structure of the major glycolipid is 1-O-pentadecanoyl-2-O-(6-O-heptadecanoyl-α-d-mannopyranosyl)myoinositol. 6. The glycolipids are located in the membrane; the cell walls are devoid of lipid. 7. Possible functions of the glycolipid are discussed. PMID:5821733

  7. The hydrolysis of epoxides catalyzed by inorganic ammonium salts in water: kinetic evidence for hydrogen bond catalysis.

    PubMed

    Nozière, B; Fache, F; Maxut, A; Fenet, B; Baudouin, A; Fine, L; Ferronato, C

    2018-01-17

    Naturally-occurring inorganic ammonium ions have been recently reported as efficient catalysts for some organic reactions in water, which contributes to the understanding of the chemistry in some natural environments (soils, seawater, atmospheric aerosols, …) and biological systems, and is also potentially interesting for green chemistry as many of their salts are cheap and non-toxic. In this work, the effect of NH 4 + ions on the hydrolysis of small epoxides in water was studied kinetically. The presence of NH 4 + increased the hydrolysis rate by a factor of 6 to 25 compared to pure water and these catalytic effects were shown not to result from other ions, counter-ions or from acid or base catalysis, general or specific. The small amounts of amino alcohols produced in the reactions were identified as the actual catalysts by obtaining a strong acceleration of the reactions when adding these compounds directly to the epoxides in water. Replacing the amino alcohols by other strong hydrogen-bond donors, such as trifluoroethanol (TFE) or hexafluoroisopropanol (HFIP) gave the same results, demonstrating that the kinetics of these reactions was driven by hydrogen-bond catalysis. Because of the presence of many hydrogen-bond donors in natural environments (for instance amines and hydroxy-containing compounds), hydrogen-bond catalysis is likely to contribute to many reaction rates in these environments.

  8. Surface-enhanced Raman spectroscopic monitor of triglyceride hydrolysis in a skin pore phantom

    NASA Astrophysics Data System (ADS)

    Weldon, Millicent K.; Morris, Michael D.

    1999-04-01

    Bacterial hydrolysis of triglycerides is followed in a sebum probe phantom by microprobe surface-enhanced Raman scattering (SERS) spectroscopy. The phantom consists of a purpose-built syringe pump operating at physiological flow rates connected to a 300 micron i.d. capillary. We employ silicon substrate SERS microprobes to monitor the hydrolysis products. The silicon support allows some tip flexibility that makes these probes ideal for insertion into small structures. Propionibacterium acnes are immobilized on the inner surface of the capillary. These bacteria hydrolyze the triglycerides in a model sebum emulsion flowing through the capillary. The transformation is followed in vitro as changes in the SERS caused by hydrolysis of triglyceride to fatty acid. The breakdown products consists of a mixture of mono- and diglycerides and their parent long chain fatty acids. The fatty acids adsorb as their carboxylates and can be readily identified by their characteristic spectra. The technique can also confirm the presence of bacteria by detection of short chain carboxylic acids released as products of glucose fermentation during the growth cycle of these cells. Co-adsorption of propionate is observed. Spatial localization of the bacteria is obtained by ex-situ line imaging of the probe.

  9. Estimation of hydrolysis rate constants for carbamates ...

    EPA Pesticide Factsheets

    Cheminformatics based tools, such as the Chemical Transformation Simulator under development in EPA’s Office of Research and Development, are being increasingly used to evaluate chemicals for their potential to degrade in the environment or be transformed through metabolism. Hydrolysis represents a major environmental degradation pathway; unfortunately, only a small fraction of hydrolysis rates for about 85,000 chemicals on the Toxic Substances Control Act (TSCA) inventory are in public domain, making it critical to develop in silico approaches to estimate hydrolysis rate constants. In this presentation, we compare three complementary approaches to estimate hydrolysis rates for carbamates, an important chemical class widely used in agriculture as pesticides, herbicides and fungicides. Fragment-based Quantitative Structure Activity Relationships (QSARs) using Hammett-Taft sigma constants are widely published and implemented for relatively simple functional groups such as carboxylic acid esters, phthalate esters, and organophosphate esters, and we extend these to carbamates. We also develop a pKa based model and a quantitative structure property relationship (QSPR) model, and evaluate them against measured rate constants using R square and root mean square (RMS) error. Our work shows that for our relatively small sample size of carbamates, a Hammett-Taft based fragment model performs best, followed by a pKa and a QSPR model. This presentation compares three comp

  10. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Utilization of the dilute acidic sulfate effluent as resources by coupling solvent extraction-oxidation-hydrolysis.

    PubMed

    Ren, Xiulian; Wei, Qifeng; Chen, Yongxing; Guo, Jingjing; Wei, Sijie; Wang, Xiaofei

    2015-12-15

    The pollution risk of dilute acidic sulfate effluent (DASE),which is discharged from titanium dioxide factories heavily every year, has sparked the recycling of sulfuric acid, iron and water. In this study, a new green recovery process for the DASE is proposed based on coupling solventextraction-oxidation-hydrolysis. Compared to the conventional ways, this innovative method allows the effective extraction of sulfuric acid and the precipitation of FexOy·nH2O in onestep without adding inorganic neutralizer or precipitant. Trioctylamine (TOA) in kerosene (20-50%) was used as an organic phase for solvent extraction. The hydrolytic productions and the raffinate purified by a cation exchange were evaluated using XRD and ICP-OES, respectively. The initial pH of 0.63 and Fe(II) concentration of 0.1 mol/L in the DASE, the volume ratio of organic toaqueous phase (O/A) of 3/1, and reaction temperature of 25 °C were determined as the optimal conditions. Under this conditions, Fe(II) was transformed as yellow precipitation which was characterized as α-FeOOH, and pH of raffinate was in the range of 3.6-3.8. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Rapid and improved gas-liquid chromatography technique for detection of hippurate hydrolysis by Campylobacter jejuni and Campylobacter coli.

    PubMed Central

    Bär, W; Fricke, G

    1987-01-01

    A gas-liquid chromatographic method which requires no chloroform extraction of the split products has been investigated for the detection of hippurate hydrolysis by Campylobacter spp. This technique gave better reproducibility than other tests also used in this study and allows the routine use of the gas-liquid chromatographic method for identification of Campylobacter isolates. PMID:3654950

  13. Chemometrics-assisted Spectrofluorimetric Determination of Two Co-administered Drugs of Major Interaction, Methotrexate and Aspirin, in Human Urine Following Acid-induced Hydrolysis.

    PubMed

    Maher, Hadir M; Ragab, Marwa A A; El-Kimary, Eman I

    2015-01-01

    Methotrexate (MTX) is widely used to treat rheumatoid arthritis (RA), mostly along with non-steroidal anti-inflammatory drugs (NSAIDs), the most common of which is aspirin or acetyl salicylic acid (ASA). Since NSAIDs impair MTX clearance and increase its toxicity, it was necessary to develop a simple and reliable method for the monitoring of MTX levels in urine samples, when coadministered with ASA. The method was based on the spectrofluorimetric measurement of the acid-induced hydrolysis product of MTX, 4-amino-4-deoxy-10-methylpteroic acid (AMP), along with the strongly fluorescent salicylic acid (SA), a product of acid-induced hydrolysis of aspirin and its metabolites in urine. The overlapping emission spectra were resolved using the derivative method (D method). In addition, the corresponding derivative emission spectra were convoluted using discrete Fourier functions, 8-points sin xi polynomials, (D/FF method) for better elimination of interferences. Validation of the developed methods was carried out according to the ICH guidelines. Moreover, the data obtained using derivative and convoluted derivative spectra were treated using the non-parametric Theil's method (NP), compared with the least-squares parametric regression method (LSP). The results treated with Theil's method were more accurate and precise compared with LSP since the former is less affected by the outliers. This work offers the potential of both derivative and convolution using discrete Fourier functions in addition to the effectiveness of using the NP regression analysis of data. The high sensitivity obtained by the proposed methods was promising for measuring low concentration levels of the two drugs in urine samples. These methods were efficiently used to measure the drugs in human urine samples following their co-administration.

  14. Simultaneous pretreatment and enzymatic hydrolysis of forage biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henk, L.; Linden, J.C.

    1993-12-31

    Sweet sorghum is an attractive fermentation feedstock because as much as 40% of the dry weight consists of readily femented sugars such as sucrose, glucose and frutose. Cellulose and hemicellulose comprise another 50%. However, if this material is to be used a year-round feedstock for ethanol production, a stable method of storage must be developed to maintain the sugar content. A modified version of the traditional ensiling process is made effective by the addition of cellulolytic/hemicellulolytic enzymes and lactic acid bacteria to freshly chopped sweet sorghum prior to the production of silage. In situ hydrolysis of cellulose and hemicellulose occursmore » concurrently with the acidic ensiling fementation. By hydolyzing the acetyl groups using acetyl xylan esterase and 3-0-methyl glucuronyl side chains using pectinase from hemicellulose, cellulose becomes accessible to hydrolysis by cellulase, both during in situ ensiling with enzymes and in the simultaneous saccharification and fermentation (SSF) to ethanol.« less

  15. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    NASA Astrophysics Data System (ADS)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg-1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  16. Theoretical studies of the ATP hydrolysis mechanism of myosin.

    PubMed

    Okimoto, N; Yamanaka, K; Ueno, J; Hata, M; Hoshino, T; Tsuda, M

    2001-11-01

    The ATP hydrolysis mechanism of myosin was studied using quantum chemical (QM) and molecular dynamics calculations. The initial model compound for QM calculations was constructed on the basis of the energy-minimized structure of the myosin(S1dc)-ATP complex, which was determined by molecular mechanics calculations. The result of QM calculations suggested that the ATP hydrolysis mechanism of myosin consists of a single elementary reaction in which a water molecule nucleophilically attacked gamma-phosphorus of ATP. In addition, we performed molecular dynamics simulations of the initial and final states of the ATP hydrolysis reaction, that is, the myosin-ATP and myosin-ADP.Pi complexes. These calculations revealed roles of several amino acid residues (Lys185, Thr186, Ser237, Arg238, and Glu459) in the ATPase pocket. Lys185 maintains the conformation of beta- and gamma-phosphate groups of ATP by forming the hydrogen bonds. Thr186 and Ser237 are coordinated to a Mg(2+) ion, which interacts with the phosphates of ATP and therefore contributes to the stabilization of the ATP structure. Arg238 and Glu459, which consisted of the gate of the ATPase pocket, retain the water molecule acting on the hydrolysis at the appropriate position for initiating the hydrolysis.

  17. Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover.

    PubMed

    Duguid, K B; Montross, M D; Radtke, C W; Crofcheck, C L; Wendt, L M; Shearer, S A

    2009-11-01

    Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require a low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated manually and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0%, 0.4%, or 0.8% NaOH for 2 h at room temperature, washed, autoclaved and saccharified. In addition, dilute sulfuric acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.

  18. Reaction Kinetic Model of Dilute Acid-Catalyzed Hemicellulose Hydrolysis of Corn Stover under High-Solid Conditions

    DOE PAGES

    Shi, Suan; Guan, Wenjian; Kang, Li; ...

    2017-09-13

    High solid conditions are desirable in pretreatment of lignocellulosic biomass. An advanced dilute-acid pretreatment reactor has been developed at National Renewable Energy Laboratory (NREL). It is a continuous auger-driven reactor that can be operated with high-solid charge at high temperature and with short residence time resulting high productivity and high sugar concentration. Here, we investigated the kinetics of the reactions associated with dilute-acid pretreatment of corn stover, covering the reaction conditions of the NREL reactor operation: 155-185 C, 1-2 wt% sulfuric acid concentration, and 1:2 solid to liquid ratio. The experimental data were fitted to a first-order biphasic model whichmore » assumes that xylan is comprised of two different fragments: fast and slow reacting fractions. Due to the high solid loading condition, significant amount of xylose oligomers was observed during the pretreatment. We also included the oligomers as an intermediate entity in the kinetic model. The effect of acid concentration was incorporated into the pre-exponential factor of Arrhenius equation. The kinetic model with bestfit kinetic parameters has shown good agreement with experimental data. The kinetic parameter values of the proposed model were noticeably different from those previously reported. The activation energies of xylan hydrolysis are lower and the acid exponents are higher than the average of literature values. The proposed model can serve as a useful tool for design and operation of pretreatment system pertaining to corn stover.« less

  19. Reaction Kinetic Model of Dilute Acid-Catalyzed Hemicellulose Hydrolysis of Corn Stover under High-Solid Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Suan; Guan, Wenjian; Kang, Li

    High solid conditions are desirable in pretreatment of lignocellulosic biomass. An advanced dilute-acid pretreatment reactor has been developed at National Renewable Energy Laboratory (NREL). It is a continuous auger-driven reactor that can be operated with high-solid charge at high temperature and with short residence time resulting high productivity and high sugar concentration. Here, we investigated the kinetics of the reactions associated with dilute-acid pretreatment of corn stover, covering the reaction conditions of the NREL reactor operation: 155-185 C, 1-2 wt% sulfuric acid concentration, and 1:2 solid to liquid ratio. The experimental data were fitted to a first-order biphasic model whichmore » assumes that xylan is comprised of two different fragments: fast and slow reacting fractions. Due to the high solid loading condition, significant amount of xylose oligomers was observed during the pretreatment. We also included the oligomers as an intermediate entity in the kinetic model. The effect of acid concentration was incorporated into the pre-exponential factor of Arrhenius equation. The kinetic model with bestfit kinetic parameters has shown good agreement with experimental data. The kinetic parameter values of the proposed model were noticeably different from those previously reported. The activation energies of xylan hydrolysis are lower and the acid exponents are higher than the average of literature values. The proposed model can serve as a useful tool for design and operation of pretreatment system pertaining to corn stover.« less

  20. Aquivion Perfluorosulfonic Superacid as an Efficient Pickering Interfacial Catalyst for the Hydrolysis of Triglycerides.

    PubMed

    Shi, Hui; Fan, Zhaoyu; Hong, Bing; Pera-Titus, Marc

    2017-09-11

    Rational design of the surface properties of heterogeneous catalysts can boost the interfacial activity in biphasic reactions through the generation of Pickering emulsions. This concept, termed Pickering interfacial catalysis (PIC), has shown promising credentials in acid-catalyzed transesterification, ester hydrolysis, acetalization, etherification, and alkylation reactions. PIC has now been applied to the efficient, solvent-free hydrolysis of the triglyceride glyceryl trilaurate to lauric acid, catalyzed by Aquivion perfluorosulfonic superacid at mild conditions (100 °C and ambient pressure). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin.

    PubMed

    Mitchell, Shannon M; Ullman, Jeffrey L; Teel, Amy L; Watts, Richard J

    2015-09-01

    Antibiotics that enter the environment can present human and ecological health risks. An understanding of antibiotic hydrolysis rates is important for predicting their environmental persistence as biologically active contaminants. In this study, hydrolysis rates and Arrhenius constants were determined as a function of pH and temperature for two amphenicol (chloramphenicol and florfenicol) and two macrolide (spiramycin and tylosin) antibiotics. Antibiotic hydrolysis rates in pH 4-9 buffer solutions at 25°C, 50°C, and 60°C were quantified, and degradation products were characterized. All of the antibiotics tested remained stable and exhibited no observable hydrolysis under ambient conditions typical of aquatic ecosystems. Acid- and base-catalyzed hydrolysis occurred at elevated temperatures (50-60°C), and hydrolysis rates increased considerably below pH 5 and above pH 8. Hydrolysis rates also increased approximately 1.5- to 2.9-fold for each 10°C increase in temperature. Based on the degradation product masses found, the functional groups that underwent hydrolysis were alkyl fluoride, amide, and cyclic ester (lactone) moieties; some of the resultant degradation products may remain bioactive, but to a lesser extent than the parent compounds. The results of this research demonstrate that amphenicol and macrolide antibiotics persist in aquatic systems under ambient temperature and pH conditions typical of natural waters. Thus, these antibiotics may present a risk in aquatic ecosystems depending on the concentration present. Copyright © 2015. Published by Elsevier Ltd.

  2. Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.).

    PubMed

    Laohakunjit, Natta; Selamassakul, Orrapun; Kerdchoechuen, Orapin

    2014-09-01

    An enzymatic bromelain seaweed protein hydrolysate (eb-SWPH) was characterised as the precursor for thermally processed seafood flavour. Seaweed (Gracilaria fisheri) protein after agar extraction was hydrolysed using bromelain (enzyme activity=119,325 U/g) at 0-20% (w/w) for 0.5-24 h. Optimal hydrolysis conditions were determined using response surface methodology. The proposed model took into account the interaction effect of the enzyme concentration and hydrolysis time on the physicochemical properties and volatile components of eb-SWPH. The optimal hydrolysis conditions for the production of eb-SWPH were 10% bromelain for 3h, which resulted in a 38.15% yield and a 62.91% degree of hydrolysis value. Three free amino acids, arginine, lysine, and leucine, were abundant in the best hydrolysate. Ten volatile flavours of the best eb-SWPH were identified using gas chromatography/mass spectrometry. The predominant odourants were hexanal, hexanoic acid, nonanoic acid, and dihydroactinidiolide. The thermally processed seafood flavour produced from eb-SWPH exhibited a roasted seafood-like flavouring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Comparative studies of cutins from lime (Citrus aurantifolia) and grapefruit (Citrus paradisi) after TFA hydrolysis.

    PubMed

    Hernández Velasco, Brenda Liliana; Arrieta-Baez, Daniel; Cortez Sotelo, Pedro Iván; Méndez-Méndez, Juan Vicente; Berdeja Martínez, Blanca Margarita; Gómez-Patiño, Mayra Beatriz

    2017-12-01

    Grapefruit and lime cutins were analyzed and compared in order to obtain information about their cutin architecture. This was performed using a sequential hydrolysis, first with trifluoroacetic acid to remove most of the polysaccharides present in the cutins, followed by an alkaline hydrolysis in order to obtain the main aliphatic compounds. Analysis by CPMAS 13 C NMR and ATR FT-IR of the cutins after 2.0 M TFA revealed that grapefruit cutin has independent aliphatic and polysaccharide domains while in the lime cutin these components could be homogeneously distributed. These observations were in agreement with an AFM analysis of the cutins obtained in the hydrolysis reactions. The main aliphatic compounds were detected and characterized as 16-hydroxy-10-oxo-hexadecanoic acid and 10,16-dihydroxyhexadecanoic acid. These were present in grapefruit cutin at 35.80% and 21.86% and in lime cutin at 20.44% and 40.36% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Removal of chromophore in enzymatic hydrolysis by acid precipitation to improve the quality of xylo-oligosaccharides from corn stalk.

    PubMed

    Wang, Yue-Hai; Zhang, Jie; Qu, Yong-Shui; Li, Hong-Qiang

    2018-02-01

    As the most representative functional sugar, the application areas and market demands of xylo-oligosaccharides (XOS) have been expanding year by year. Owing to the complex structure of corn stalk (CS), XOS obtained from CS are accompanied by problems such as low purity and high color value, which degrade the product. To improve the quality of XOS from CS, the enzymatic hydrolysis was precipitated by acid; then, the ethanol elution concentration was systematically investigated after optimizing the adsorption conditions. The results showed that the purity of XOS was increased to 87.28% from 67.31%, and the color value was decreased to 1050 from 4682 when the acid precipitation pH was 2. On the basis of acid precipitation, if the corresponding optimal conditions of XOS adsorption and elution were used, the highest purity of XOS was 97.87% obtained, with the lowest color value, 780, which reached the standard of the commercial XOS. Copyright © 2017. Published by Elsevier Ltd.

  5. Inhibitors of sterol synthesis. Chemical syntheses and spectral properties of 26-oxygenated derivatives of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells.

    PubMed

    Siddiqui, A U; Wilson, W K; Ruecker, K E; Pinkerton, F D; Schroepfer, G J

    1992-11-01

    26-Oxygenated derivatives of delta 8(14)-15-ketosterols have been synthesized from (25R)-3 beta,26-diacetoxy-5 alpha-cholest-8(14)-en-15-one (IX) as part of a program to prepare potential metabolites and analogs of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I), a potent regulator of cholesterol metabolism. Partial hydrolysis of IX gave a mixture, from which the 3 beta,26-diol II and the 26-acetate (XI) and 3 beta-acetate (X) monoesters were isolated. Mitsunobu reaction of XI followed by hydrolysis gave (25R)-3 alpha,26-dihydroxy-5 alpha-cholest-8(14)-en-15-one (VI). Oxidation of XI with pyridinium chlorochromate followed by hydrolysis of the acetate gave (25R)-26-hydroxy-5 alpha-cholest-8(14)-ene-3,15-dione (VII). Oxidation of X with Jones reagent followed by hydrolysis of the acetate gave (25R)-3 beta-hydroxy-15-keto-5 alpha-cholest-8(14)-en-26-oic acid (IVa). Jones oxidation of II gave (25R)-3,15-diketo-5 alpha-cholest-8(14)-en-26-oic acid (VII). 1H and 13C nuclear magnetic resonance assignments and analyses of mass spectral fragmentation data are presented for each of the new compounds and their derivatives. The 3,15-diketone VII was found to be highly active in lowering the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells, with a potency comparable to that of I. In contrast, 3 alpha,26-diol VI was less potent than I or VII. The two carboxylic acid analogs IVa and VIII were considerably less potent than VI in lowering the levels of HMG-CoA reductase activity.

  6. The Effects of Alkali and Temperature on the Hydrolysis Rate of N-methylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Ou, Yu Jing; Wang, Xiao Mei; Lei Li, Chun; Zhu, Ya Long; Li, Xiao Long

    2017-12-01

    By studying the hydrolysis of N-methylpyrrolidone, it was found that the effects of NaOH concentration and temperature on N-methylpyrrolidone's hydrolysis were remarkable. Fourier transform infrared (FTIR) and Gel Permeation Chromatography (GPC) detected that the mainly hydrolyzate was 4-(methylamino)butyric acid, and the hydrolyzate can generate polymers, which of molecular weight increases with temperature rising. The results of Gas Chromatography (GC) and moisture meter test showed that adding alkaline and raising temperature can aggravate hydrolysis of NMP. This study provide theoretical basis for recycling solvent (NMP) in the production of polyphenylene sulfide (PPS).

  7. The Effect of Acid Neutralization on Analytical Results Produced from SW846 Method 8330 after the Alkaline Hydrolysis of Explosives in Soil

    DTIC Science & Technology

    2012-09-01

    basic form of phosphoric acid or sodium phosphate NO2- Nitrite OH- Hydroxide ion ERDC/EL TR-12-14 1 1 Introduction Alkaline hydrolysis has...into amber sample vials and refrigerated until analyzed. TNT analyses were conducted by high performance liquid chromatography (HPLC) with a C-18...The explosives concentrations of the different soils were quantified using a DIONEX HPLC system equipped with a C-18 reverse phase column and a

  8. Scope and limitations of carbohydrate hydrolysis for de novo glycan sequencing using a hydrogen peroxide/metallopeptide-based glycosidase mimetic.

    PubMed

    Peng, Tianyuan; Wooke, Zachary; Pohl, Nicola L B

    2018-03-22

    Acidic hydrolysis is commonly used as a first step to break down oligo- and polysaccharides into monosaccharide units for structural analysis. While easy to set up and amenable to mass spectrometry detection, acid hydrolysis is not without its drawbacks. For example, ring-destruction side reactions and degradation products, along with difficulties in optimizing conditions from analyte to analyte, greatly limits its broad utility. Herein we report studies on a hydrogen peroxide/CuGGH metallopeptide-based glycosidase mimetic design for a more efficient and controllable carbohydrate hydrolysis. A library of methyl glycosides consisting of ten common monosaccharide substrates, along with oligosaccharide substrates, was screened with the artificial glycosidase for hydrolytic activity in a high-throughput format with a robotic liquid handling system. The artificial glycosidase was found to be active towards most screened linkages, including alpha- and beta-anomers, thus serving as a potential alternative method for traditional acidic hydrolysis approaches of oligosaccharides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther

    2015-07-01

    Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Growth condition and bacterial community for maximum hydrolysis of suspended organic materials in anaerobic digestion of food waste-recycling wastewater.

    PubMed

    Kim, Man Deok; Song, Minkyung; Jo, Minho; Shin, Seung Gu; Khim, Jee Hyeong; Hwang, Seokhwan

    2010-02-01

    This paper reports the effects of changing pH (5-7) and temperature (T, 40-60 degrees C) on the efficiencies of bacterial hydrolysis of suspended organic matter (SOM) in wastewater from food waste recycling (FWR) and the changes in the bacterial community responsible for this hydrolysis. Maximum hydrolysis efficiency (i.e., 50.5% reduction of volatile suspended solids) was predicted to occur at pH 5.7 and T = 44.5 degrees C. Changes in short-chain volatile organic acid profiles and in acidogenic bacterial communities were investigated under these conditions. Propionic and butyric acids concentrations increased rapidly during the first 2 days of incubation. Several band sequences consistent with Clostridium spp. were detected using denaturing gel gradient electrophoresis. Clostridium thermopalmarium and Clostridium novyi seemed to contribute to butyric acid production during the first 1.5 days of acidification of FWR wastewater, and C. thermopalmarium was a major butyric acid producer afterward. C. novyi was an important propionic acid producer. These two species appear to be important contributors to hydrolysis of SOM in the wastewater. Other acidogenic anaerobes, Aeromonas sharmana, Bacillus coagulans, and Pseudomonas plecoglossicida, were also indentified.

  11. Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading.

    PubMed

    Li, Xin; Zhou, Jin; Ouyang, Shuiping; Ouyang, Jia; Yong, Qiang

    2017-02-01

    Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.

  12. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    PubMed Central

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-01-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134–57.500 gr ethanol kg−1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis. PMID:27291594

  13. Enzymatic Hydrolysis of Pretreated Fibre Pressed Oil Palm Frond by using Sacchariseb C6

    NASA Astrophysics Data System (ADS)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Rahman, R. A.; Illias, R. M.

    2017-06-01

    Enzymatic hydrolysis becomes a prominent technology for conversion of cellulosic biomass to its glucose monomers that requires an action of cellulolytic enzymes in a sequential and synergistic manner. In this study, the effect of agitation speed, glucan loading, enzyme loading, temperature and reaction time on the production of glucose from fibre pressed oil palm frond (FPOPF) during enzymatic hydrolysis was screened by a half factorial design 25-1 using Response Surface Methodology (RSM). The FPOPF sample was first delignified by alkaline pretreatment at 4.42 (w/v) sodium hydroxide for an hour prior to enzymatic hydrolysis using commercial cellulase enzyme, Sacchariseb C6. The effect of enzymatic hydrolysis on the structural of FPOPF has been evaluated by Scanning Electron Microscopy (SEM) analysis. Characterization of raw FPOPF comprised of 4.5 extractives, 40.7 glucan, 26.1 xylan, 26.2 lignin and 1.8 ash, whereas for pretreated FPOPF gave 0.3 extractives, 61.4 glucan, 20.4 xylan, 13.3 lignin and 1.3 ash. From this study, it was found that the best enzymatic hydrolysis condition yielded 33.01 ± 0.73 g/L of glucose when performed at 200 rpm of agitation speed, 60 FPU/mL of enzyme loading, 4 (w/w) of glucan loading, temperature at 55 □ and 72 hours of reaction time. The model obtained was significant with p-value <0.0001 as verified by the analysis of variance (ANOVA). The coefficient of determination (R2) from ANOVA study was 0.9959. Overall, it can be concluded that addition of Sacchariseb C6 during enzymatic hydrolysis from pretreated FPOPF produce high amount of glucose that enhances it potential for industrial application. This glucose can be further used to produce high-value products.

  14. Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes.

    PubMed

    Ramírez, Eva; Brenes, Manuel; García, Pedro; Medina, Eduardo; Romero, Concepción

    2016-09-01

    The bitter taste of olives is mainly caused by the phenolic compound named oleuropein and the mechanism of its hydrolysis during the processing of natural green olives was studied. First, a rapid chemical hydrolysis of oleuropein takes place at a high temperature of 40°C and at a low pH value of 2.8, but the chemical hydrolysis of the bitter compound is slow at the common range of pH for these olives (3.8-4.2). However, decarboxymethyl elenolic acid linked to hydroxytyrosol and hydroxytyrosol have been found in a high concentration during the elaboration of natural green olives. When olives were heated at 90°C for 10min before brining, these compounds are not formed. Hence, the debittering process in natural green olives is due to the activity of β-glucosidase and esterase during the first months of storage and then a slow chemical hydrolysis of oleuropein happens throughout storage time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of kaolinite on chiral hydrolysis of methyl dichlorprop enantiomers*

    PubMed Central

    Fang, Zhao-hua; Wen, Yue-zhong; Liu, Wei-ping

    2005-01-01

    The effect of kaolinite on the enzymatic chiral hydrolysis of methyl dichlorprop enantiomers ((R,S)-methyl-2-(2,4-dichlorophenoxy) propanoic acid, 2,4-DPM) was investigated using chiral gas chromatography. Compared with the control without kaolinite, the enantiomeric ratio (ER) increased from 1.35 to 8.33 and the residual ratio of 2,4-DPM decreased from 60.89% to 41.55% in the presence of kaolinite. Kaolinite likely had emotion influence on lipase activity and its enantioselectivity. Moreover, the amount of kaolinite added was also found to be a sensitive factor affecting the enantioselective hydrolysis of 2,4-DPM. Fourier transform infrared (FTIR) spectroscopy studies of the interaction of lipase with kaolinite provided insight into the molecular structure of the complex and offered explanation of the effects of kaolinite on enzymatic hydrolysis of 2,4-DPM. Spectra showed that the effect of kaolinite on the hydrolysis of 2,4-DPM was affected by adsorption of lipase on kaolinite and changes of adsorbed lipase conformation, which led to the modified enantioselectivity. PMID:16187418

  16. Hydrolysis, adsorption, and biodegradation of bensulfuron methyl under methanogenic conditions.

    PubMed

    Zhu, Fan-Ping; Duan, Jian-Lu; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Han, Zhen-Lian; Wang, Shu-Guang

    2018-05-01

    Bensulfuron methyl (BSM), one of the most widely used herbicides in paddy soils, is frequently detected in natural and artificial aquatic systems. However, BSM transformation under methanogenic conditions has not been given sufficient attention. In this study, BSM elimination and transformation by anaerobic enrichment cultures were investigated. The results showed that BSM can be mineralized to methane through hydrolysis, adsorption, and biodegradation under a methanogenic environment. The adsorption led to protein static quenching in the extracellular polymeric substances (EPSs) of the enrichment cultures. Specifically, BSM mainly reacted with the amine, amide, amino acid, and amino sugar functional groups in proteins. BSM hydrolysis and biodegradation occurred through the breakage of the sulfonylurea bridge and sulfonyl amide linkage. The cleavage of the sulfonylurea bridge occurred in both hydrolysis and biodegradation, while the cleavage of the sulfonyl amide linkage only occurred in hydrolysis. These results elucidated the complex transformation of BSM under methanogenic conditions, which will advance the studies on sulfonylurea herbicide biotransformation and hazard assessment in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. In vitro stereoselective hydrolysis of diacylglycerols by hormone-sensitive lipase.

    PubMed

    Rodriguez, Jorge A; Ben Ali, Yassine; Abdelkafi, Slim; Mendoza, Lilia D; Leclaire, Julien; Fotiadu, Frédéric; Buono, Gerard; Carrière, Frédéric; Abousalham, Abdelkarim

    2010-01-01

    Hormone-sensitive lipase (HSL) contributes importantly to the mobilization of fatty acids in adipocytes and shows a substrate preference for the diacylglycerols (DAGs) originating from triacylglycerols. To determine whether HSL shows any stereopreference during the hydrolysis of diacylglycerols, racemic 1,2(2,3)-sn-diolein was used as a substrate and the enantiomeric excess (ee%) of residual 1,2-sn-diolein over 2,3-sn-diolein was measured as a function of DAG hydrolysis. Enantiomeric DAGs were separated by performing chiral-stationary-phase HPLC after direct derivatization from lipolysis product extracts. The fact that the ee% of 1,2-sn-diolein over 2,3-sn-diolein increased with the level of hydrolysis indicated that HSL has a preference for 2,3-sn-diolein as a substrate and therefore a stereopreference for the sn-3 position of dioleoylglycerol. The ee% of 1,2-sn-diolein reached a maximum value of 36% at 42% hydrolysis. Among the various mammalian lipases tested so far, HSL is the only lipolytic carboxylester hydrolase found to have a pronounced stereospecificity for the sn-3 position of dioleoylglycerol.

  18. Assay of 6-thioinosinic acid and 6-thioguanine nucleotides, active metabolites of 6-mercaptopurine, in human red blood cells.

    PubMed

    Lennard, L

    1987-12-25

    A highly sensitive reversed-phase high-performance liquid chromatographic assay, with ultraviolet detection, for 6-thioinosinic acid and the 6-thioguanine nucleotides (6TGNs) was developed. The 6TGNs are major red blood cell metabolites of the immunosuppressive agent azathioprine and the cytotoxic drugs 6-thioguanine and 6-mercaptopurine. The assay is based on the specific extraction, via phenyl mercury adduct formation, of the thiopurine released on acid hydrolysis of the thionucleotide metabolite. Red blood cell 6TGN concentrations in eighteen leukaemic children receiving chronic 6-mercaptopurine chemotherapy were measured and compared to a previously published spectrophotofluorometric assay. Linear regression analysis gave r = 0.991; P less than 0.001; y = 40 + 0.94x.

  19. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    PubMed

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    NASA Astrophysics Data System (ADS)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  1. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass.

    PubMed

    Wu, Fang-Chen; Wu, Jane-Yii; Liao, Yi-Jyun; Wang, Man-Ying; Shih, Ing-Lung

    2014-03-01

    Gracilaria sp., a red alga, was used as a feedstock for the production of bioethanol. Saccharification of Gracilaria sp. by sequential acid and enzyme hydrolysis in situ produced a high quality hydrolysate that ensured its fermentability to produce ethanol. The optimal saccharification process resulted in total 11.85g/L (59.26%) of glucose and galactose, Saccharomyces cerevisiae Wu-Y2 showed a good performance on co-fermentability of glucose and galactose released in the hydrolysate from Gracilaria sp. The final ethanol concentrations of 4.72g/L (0.48g/g sugar consumed; 94% conversion efficiency) and the ethanol productivity 4.93g/L/d were achieved. 1g of dry Gracilaria can be converted to 0.236g (23.6%) of bioethanol via the processes developed. Efficient alcohol production by immobilized S. cerevisiae Wu-Y2 in batch and repeated batch fermentation was also demonstrated. The findings of this study revealed that Gracilaria sp. can be a potential feedstock in biorefinery for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    PubMed

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Immobilization of BSA, enzymes and cells of Bacillus stearothermophilus onto cellulose polygalacturonic acid and starch based graft copolymers containing maleic arhydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beddows, C.G.; Gil, M.H.; Guthrie, J.T.

    1986-01-01

    Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatasemore » using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.« less

  4. Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil.

    PubMed

    Gan, Suyin; Ng, Hoon Kiat; Ooi, Chun Weng; Motala, Nafisa Osman; Ismail, Mohd Anas Farhan

    2010-10-01

    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq). Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water.

    PubMed

    Daorattanachai, Pornlada; Viriya-empikul, Nawin; Laosiripojana, Navadol; Faungnawakij, Kajornsak

    2013-09-01

    The effect of Kraft lignin presenting on the hydrolysis and dehydration of C5 and C6 sugars, cellulose, hemicelluloses and biomass under hot compressed water (HCW) in the presence of H3PO4 catalyst was intensively studied. The lignin strongly inhibited the acid hydrolysis of cellulose and hemicellulose to glucose and xylose, respectively. Interestingly, the admixed lignin markedly promoted the isomerization of glucose to fructose, and dehydration of fructose (except at the low catalyst loading), resulting in high 5-hydroxymethylfurfural yields. Nonetheless, lignin inhibited the hydrolysis of xylan to xylose and dehydration of xylose to furfural. Moreover, the acidity of the system significantly affects the hydrolysis/dehydration of biomass. It was revealed that the presence of lignin strongly interfered the yields of sugars and furans produced from raw corncob, while the delignified corncob provided significant improvement of product yields, confirming the observed role of lignin in the biomass conversion system via sugar platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The Effect of Sugarcane Bagassès Size on the Properties of Pretreatment and Enzymatic Hydrolysis

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhou, Guoqiang; Li, Jun

    2017-06-01

    The influence of milled bagasse particle size on their reducing sugar and lignin content during dilute acid hydrolysis followed by enzymolysis was investigated. The biomass crystal structures of hydrolyzed residues and enzymolyzed substrates were studied with X-ray diffractometry (XRD). The results showed that the conversion ratio of reducing sugar declined with decreasing milled bagasse particle size. The conversion ratio of reducing sugar after acid hydrolysis decreased from 31.3% to 28.9%. The smaller of the milled bagasse particle size was, the higher of the klason lignin content of hydrolyzed residuals was, which resulted in a decline in conversion ratio of reducing sugar during enzymolysis. In this study, the optimal size of milled bagasse particles was 10 to 20 meshes. The total reducing sugar conversion ratio was 61.5%, consisting of 31.3% in hydrolysis and 30.2% in enzymolysis. After hydrolysis, the specific surface area and pore size increased, and the fiber length was shortened. The inner microfiber bundles were exposed, which improved the accessibility of cellulase and the efficiency of enzymolysis.

  7. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  8. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    NASA Technical Reports Server (NTRS)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  9. Alkaline thermal sludge hydrolysis.

    PubMed

    Neyens, E; Baeyens, J; Creemers, C

    2003-02-28

    The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46

  10. Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis.

    PubMed

    Xiao, Zhiping; Cheng, Chu; Bao, Teng; Liu, Lujie; Wang, Bin; Tao, Wenjing; Pei, Xun; Yang, Shang-Tian; Wang, Minqi

    2018-01-01

    Butyric acid is an important chemical currently produced from petrochemical feedstocks. Its production from renewable, low-cost biomass in fermentation has attracted large attention in recent years. In this study, the feasibility of corn husk, an abundant agricultural residue, for butyric acid production by using Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was evaluated. Hydrolysis of corn husk (10% solid loading) with 0.4 M H 2 SO 4 at 110 °C for 6 h resulted in a hydrolysate containing ~ 50 g/L total reducing sugars (glucose:xylose = 1.3:1.0). The hydrolysate was used for butyric acid fermentation by C. tyrobutyricum in a FBB, which gave 42.6 and 53.0% higher butyric acid production from glucose and xylose, respectively, compared to free-cell fermentations. Fermentation with glucose and xylose mixture (1:1) produced 50.37 ± 0.04 g L -1 butyric acid with a yield of 0.38 ± 0.02 g g -1 and productivity of 0.34 ± 0.03 g L -1  h -1 . Batch fermentation with corn husk hydrolysate produced 21.80 g L -1 butyric acid with a yield of 0.39 g g -1 , comparable to those from glucose. Repeated-batch fermentations consistently produced 20.75 ± 0.65 g L -1 butyric acid with an average yield of 0.39 ± 0.02 g g -1 in three consecutive batches. An extractive fermentation process can be used to produce, separate, and concentrate butyric acid to > 30% (w/v) sodium butyrate at an economically attractive cost for application as an animal feed supplement. A high concentration of total reducing sugars at ~ 50% (w/w) yield was obtained from corn husk after acid hydrolysis. Stable butyric acid production from corn husk hydrolysate was achieved in repeated-batch fermentation with C. tyrobutyricum immobilized in a FBB, demonstrating that corn husk can be used as an economical substrate for butyric acid production.

  11. The influence of cosolvent and heat on the solubility and reactivity of organophosphorous pesticide DNAPL alkaline hydrolysis.

    PubMed

    Muff, Jens; MacKinnon, Leah; Durant, Neal D; Bennedsen, Lars Frausing; Rügge, Kirsten; Bondgaard, Morten; Pennell, Kurt

    2016-11-01

    The presented research concerned the compatibility of cosolvents with in situ alkaline hydrolysis (ISAH) for treatment of organophosphorous (OPP) pesticide contaminated sites. In addition, the influence of moderate temperature heat increments was studied as a possible enhancement method. A complex dense non-aqueous phase liquid (DNAPL) of primarily parathion (~50 %) and methyl parathion (~15 %) obtained from the Danish Groyne 42 site was used as a contaminant source, and ethanol and propan-2-ol (0, 25, and 50 v/v%) was used as cosolvents in tap water and 0.34 M NaOH. Both cosolvents showed OPP solubility enhancement at 50 v/v% cosolvent content, with slightly higher OPP concentrations reached with propan-2-ol. Data on hydrolysis products did not show a clear trend with respect to alkaline hydrolysis reactivity in the presence of cosolvents. Results indicated that the hydrolysis rate of methyl-parathion (MP3) decreased with addition of cosolvent, whereas the hydrolysis rate of ethyl-parathion (EP3) remained constant, and overall indications were that the hydrolysis reactions were limited by the rate of hydrolysis rather than NAPL dissolution. In addition to cosolvents, the influence of low-temperature heating on ISAH was studied. Increasing reaction temperature from 10 to 30 °C provided an average rate of hydrolysis enhancement by a factor of 1.4-4.8 dependent on the base of calculation. When combining 50 v/v% cosolvent addition and heating to 30 °C, EP3 solubility was significantly enhanced and results for O,O-diethyl-thiophosphoric acid (EP2 acid) showed a significant enhancement of hydrolysis as well. However, this could not be supported by para-nitrophenol (PNP) data indicating the instability of this product in the presence of cosolvent.

  12. Preparation of bioactive neoagaroligosaccharides through hydrolysis of Gracilaria lemaneiformis agar: A comparative study.

    PubMed

    Xu, Xin-Qi; Su, Bing-Mei; Xie, Jin-Sheng; Li, Ren-Kuan; Yang, Jie; Lin, Juan; Ye, Xiu-Yun

    2018-02-01

    Hydrolysis of Gracilaria lemaneiformis agar by β-agarase was compared with HCl hydrolysis. The results showed that optimum catalysis conditions for the β-agarase were pH 7.0 at 45°C. Mass spectroscopy, thin-layer chromatography and GPC results showed that the polymerization degrees of the hydrolysis products by the β-agarase were mainly four, six and eight (more specific than the hydrolysate by HCl). The enzymatic degradation products of agar were distinctly different from those of HCl hydrolysis in the ratios among galactose and 3,6-anhydro-galactose and sulfate group contents. The NMR spectrometry proved that the products of β-agarase were neoagaroligosaccharides, which was not found in the agarolytic products by HCl. The neoagarotetraose inhibited tyrosinase activity competitively with the K I value of 16.0mg/ml. Hydroxyl radical-scavenging ability of neoagaroligosaccharides was much greater than that of agar HCl hydrolysate. This work suggests that neoagaroligosaccharide products produced by our β-agarase could be more effective in function than products from acid hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. DFT STUDY OF THE HYDROLYSIS OF SOME S-TRIAZINES

    EPA Science Inventory

    The acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines was investigated using the B3LYP hybrid density functional theory method. Gas-phase calculations were performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of ...

  14. The effect of pH control and 'hydraulic flush' on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate.

    PubMed

    Cysneiros, Denise; Banks, Charles J; Heaven, Sonia; Karatzas, Kimon-Andreas G

    2012-11-01

    The effect of hydraulic flush and pH control on hydrolysis, Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors was investigated for the first time. Six reactors were operated under different regimes for two consecutive batches of 28days each. Buffering at pH ∼6.5 improved hydrolysis (Volatile Solid (VS) degradation) and VFA production by ∼50%. Butyric and acetic acid were dominant when reactors were buffered, while only butyric acid was produced at low pH. Hydraulic flush enhanced VS degradation and VFA production by ∼15% and ∼32%, respectively. Most Probable Number (MPN) of cellulolytic microorganisms indicated a wash out when hydraulic flush was applied, but pH control helped to counteract this. The highest VS degradation (∼89%), VFA yield (0.84kgCODkg(-1)VS(added)) and theoretical methane potential (0.37m(3)CH(4)kg(-1)VS(added)) were obtained when pH control and hydraulic flush were applied, and therefore, these conditions are recommended. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis.

    PubMed

    Kim, Soo-Jin; Dwiatmoko, Adid Adep; Choi, Jae Wook; Suh, Young-Woong; Suh, Dong Jin; Oh, Moonhyun

    2010-11-01

    This study has been focused on developing a cellulose pretreatment process using 1-n-butyl-3-methylimidazolium chloride ([bmim]Cl) for subsequent hydrolysis over Nafion(R) NR50. Thus, several pretreatment variables such as the pretreatment period and temperature, and the [bmim]Cl amount were varied. Additionally, the [bmim]Cl-treated cellulose samples were characterized by X-ray diffraction analysis, and their crystallinity index values including CI(XD), CI(XD-CI) and CI(XD-CII) were then calculated. When correlated with these values, the concentrations of total reducing sugars (TRS) obtained by the pretreatment of native cellulose (NC) and glucose produced by the hydrolysis reaction were found to show a distinct relationship with the [CI(NC)-CI(XD)] and CI(XD-CII) values, respectively. Consequently, the cellulose pretreatment step with [bmim]Cl is to loosen a crystalline cellulose through partial transformation of cellulose I to cellulose II and, furthermore, the TRS release, while the subsequent hydrolysis of [bmim]Cl-treated cellulose over Nafion(R) NR50 is effective to convert cellulose II to glucose. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    ERIC Educational Resources Information Center

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  17. The chemical nature of the products obtained by the action of cabbage-leaf phospholipase D on lysolecithin: the structure of lysolecithin

    PubMed Central

    Long, C.; Odavić, R.; Sargent, Elizabeth J.

    1967-01-01

    1. Lysolecithin, prepared by the action of snake-venom phospholipase A on ovolecithin, when incubated with Savoy-cabbage phospholipase D, in the presence of Ca2+ ions, gave two degradation products (designated A and B) in the form of their calcium salts. 2. These calcium salts were separated quantitatively by solvent fractionation and converted into the corresponding sodium salts. 3. Substance B proved to be a lysophosphatidic acid of conventional structure (1-monoacyl-l-3-glycerophosphoric acid). When the phosphate group was removed by means of prostatic acid phosphomonoesterase, a 1-monoglyceride was formed quantitatively. Alkaline hydrolysis gave the theoretical yield of l-3-glycerophosphate. 4. Substance A, on the other hand, had all the properties expected for a cyclic phosphate of a 1-monoglyceride. It was unaffected by phosphomonoesterase. On alkaline hydrolysis, the acyl group was removed and ring opening of the presumed cyclic phosphate group gave an approximately equimolar mixture of 2- and l-3-glycerophosphates. 5. The structures of substances A and B confirm lysolecithin as 1-monoacyl-l-3-glycerylphosphorylcholine. PMID:4291559

  18. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Buch, Arnaud; Raulin, François; Coll, Patrice; Poch, Olivier; Ramirez, Sandra

    2014-05-01

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Urea has been identified as one of the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins. One explanation is a possible oxygen leak in the PLASMA reactor during the tholins synthesis[2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. Once we confirmed the non-presence of oxygen in tholins, we performed alkaline pH hydrolysis of oxygen-free tholins. Then we verify that the organic compounds cited above are still produced in-situ. Moreover, a recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less[3]), than the one used until now in this kind of experimental study[2, 4]. Thus, we have carried out new hydrolysis experiments which take this lower value into account. Additional studies have provided new highlights on the bulk composition of Titan for various gas species. Indeed, the observed Saturn's atmosphere enrichment constrains the composition of the planetesimals present in the feeding zone of Saturn. The enrichment in volatiles in Saturn's atmosphere has been reproduced by assuming the presence of specific gas species[5, 6], in particular CO2 and H2S. In the present study we assume that those gas species have

  19. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    PubMed Central

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649

  20. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE PAGES

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; ...

    2015-02-20

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  1. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  2. Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xianzhi; Sun, Qining; Kosa, Matyas

    Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and themore » DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a “peeling off” mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. In conclusion, the fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate.« less

  3. Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis

    DOE PAGES

    Meng, Xianzhi; Sun, Qining; Kosa, Matyas; ...

    2016-07-27

    Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and themore » DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a “peeling off” mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. In conclusion, the fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate.« less

  4. Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric Acid for bioethanol production.

    PubMed

    Rocha, Maria Valderez Ponte; Rodrigues, Tigressa Helena Soares; de Macedo, Gorete Ribeiro; Gonçalves, Luciana R B

    2009-05-01

    The aim of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cashew apple bagasse (CAB) after diluted acid (CAB-H) and alkali pretreatment (CAB-OH), and to evaluate its fermentation to ethanol using Saccharomyces cerevisiae. Glucose conversion of 82 +/- 2 mg/g CAB-H and 730 +/- 20 mg/g CAB-OH was obtained when 2% (w/v) of solid and 30 FPU/g bagasse was used during hydrolysis at 45 degrees C, 2-fold higher than when using 15 FPU/g bagasse, 44 +/- 2 mg/g CAB-H, and 450 +/- 50 mg/g CAB-OH, respectively. Ethanol concentration and productivity, achieved after 6 h of fermentation, were 20.0 +/- 0.2 g L(-1) and 3.33 g L(-1) h(-1), respectively, when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g L(-1)). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g L(-1)), ethanol concentration and productivity were 8.2 +/- 0.1 g L(-1) and 2.7 g L(-1) h(-1) in 3 h, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 and 0.47 g/g glucose with pretreated CAB-OH and CAB-H, respectively. Ethanol concentration and productivity, obtained using CAB-OH hydrolyzate, were close to the values obtained in the conventional ethanol fermentation of cashew apple juice or sugar cane juice.

  5. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : IX. EVIDENCE OF HYDROLYSIS OF BACTERIAL PROTEIN DURING LYSIS.

    PubMed

    Hetler, D M; Bronfenbrenner, J

    1928-07-31

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein.

  6. Enhancing emulsification and antioxidant ability of egg albumin by moderately acid hydrolysis: Modulating an emulsion-based system for mulberry seed oil.

    PubMed

    Chang, Jing; Kang, Xu; Yuan, Jiang-Lan

    2018-07-01

    Mulberry seed oil (MSO) is a kind of potential health-care lipids. This study, we investigated unsaturated fatty acids profiles of freshly squeezed MSO by GC-MS and modulated an oil-in-water emulsion system stabilized by acid hydrolyzed egg albumin (AHEA) to protect MSO from oxidation. The results showed that the content of total unsaturated fatty acids in MSO was almost 80%, of which 9, 12- and 10, 13-linoleic acid was over 60% and 10% respectively. In the case of the MSO-in-AHEA emulsions, it was observed that acid hydrolysis improved emulsifying effect, emulsifying stability and antioxidant activity of egg albumin (EA). The hydrolysates of EA (1%, w/w) acid hydrolyzed for 4 h at 85 °C had the best DPPH radical scavenging efficiency. It was suitable for EA to hydrolyze for 4 to 12 h at pH 2.5 and 85 °C because of their better emulsification and oxidation stability than the others. The results about AHEA could be valuable for designing delivery and protect systems for MSO or other bioactive component to avoid their oxidative damage or control their release. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    ERIC Educational Resources Information Center

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  8. Esculin hydrolysis by Gram positive bacteria. A rapid test and it's comparison with other methods.

    PubMed

    Qadri, S M; Smith, J C; Zubairi, S; DeSilva, M I

    1981-01-01

    A number of bacteria hydrolyze esculin enzymatically to esculetin. This characteristic is used by taxonomists and clinical microbiologists in the differentiation and identification of bacteria, especially to distinguish Lance-field group D streptococci from non-group D organisms and Listeria monocytogenes from morphologically similar Erysipelothrix rhusipoathiae and diphtheroids. Conventional methods used for esculin hydrolysis require 4--48 h for completion. We developed and evaluated a medium which gives positive results more rapidly. The 2,330 isolates used in this study consisted of 1,680 esculin positive and 650 esculin negative organisms. The sensitivity and specificity of this method were compared with the PathoTec esculin hydrolysis strip and the procedure of Vaughn and Levine (VL). Of the 1,680 esculin positive organisms, 97% gave positive reactions within 30 minutes with the rapid test whereas PathoTec required 3--4 h incubation for the same number of organisms to yield a positive reaction.

  9. Aqueous fractionation of biomass based on novel carbohydrate hydrolysis kinetics

    DOEpatents

    Torget, Robert W.

    2001-01-01

    A multi-function process for hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components comprising extractives and proteins; a portion of a solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising: a) introducing either solid fresh biomass or partially fractioned lignocellulosic biomass material with entrained acid or water into a reactor and heating to a temperature of up to about 185.degree. C.-205.degree. C. b) allowing the reaction to proceed to a point where about 60% of the hemicellulose has been hydrolyzed in the case of water or complete dissolution in case of acid; c) adding a dilute acid liquid at a pH below about 5 at a temperature of up to about 205.degree. C. for a period ranging from about 5 to about 10 minutes; to hydrolyze the remaining 40% of hemicellulose if water is used. d) quenching the reaction at a temperature of up to about 140.degree. C. to quench all degradation and hydrolysis reactions; and e) introducing into said reaction chamber and simultaneously removing from said reaction chamber, a volumetric flow rate of dilute acid at a temperature of up to about 140.degree. C. to wash out the majority of the solubilized biomass components, to obtain improved hemicellosic sugar yields.

  10. DNA-Catalyzed Amide Hydrolysis.

    PubMed

    Zhou, Cong; Avins, Joshua L; Klauser, Paul C; Brandsen, Benjamin M; Lee, Yujeong; Silverman, Scott K

    2016-02-24

    DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.

  11. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    PubMed

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and

  12. A kinetic study of Trichoderma reesei Cel7B catalyzed cellulose hydrolysis.

    PubMed

    Song, Xiangfei; Zhang, Shujun; Wang, Yefei; Li, Jingwen; He, Chunyan; Yao, Lishan

    2016-06-01

    One prominent feature of Trichoderma reesei (Tr) endoglucanases catalyzed cellulose hydrolysis is that the reaction slows down quickly after it starts (within minutes). But the mechanism of the slowdown is not well understood. A structural model of Tr- Cel7B catalytic domain bound to cellulose was built computationally and the potentially important binding residues were identified and tested experimentally. The 13 tested mutants show different binding properties in the adsorption to phosphoric acid swollen cellulose and filter paper. Though the partitioning parameter to filter paper is about 10 times smaller than that to phosphoric acid swollen cellulose, a positive correlation is shown for two substrates. The kinetic studies show that the reactions slow down quickly for both substrates. This slowdown is not correlated to the binding constant but anticorrelated to the enzyme initial activity. The amount of reducing sugars released after 24h by Cel7B in phosphoric acid swollen cellulose, Avicel and filter paper cellulose hydrolysis is correlated with the enzyme activity against a soluble substrate p-nitrophenyl lactoside. Six of the 13 tested mutants, including N47A, N52D, S99A, N323D, S324A, and S346A, yield ∼15-35% more reducing sugars than the wild type (WT) Cel7B in phosphoric acid swollen cellulose and filter paper hydrolysis. This study reveals that the slowdown of the reaction is not due to the binding of the enzyme to cellulose. The activity of Tr- Cel7B against the insoluble substrate cellulose is determined by the enzyme's capability in hydrolyzing the soluble substrate. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases.

    PubMed Central

    Summerer, Stephan; Hanano, Abdulsamie; Utsumi, Shigeru; Arand, Michael; Schuber, Francis; Blée, Elizabeth

    2002-01-01

    cis-9,10-epoxystearic acid was used as a tool to probe the active sites of epoxide hydrolases (EHs) of mammalian and plant origin. We have compared the stereochemical features of the hydrolysis of this substrate catalysed by soluble and membrane-bound rat liver EHs, by soluble EH (purified to apparent homogeneity) obtained from maize seedlings or celeriac roots, and by recombinant soybean EH expressed in yeast. Plant EHs were found to differ in their enantioselectivity, i.e. their ability to discriminate between the two enantiomers of 9,10-epoxystearic acid. For example, while the maize enzyme hydrated both enantiomers at the same rate, the EH from soybean exhibited very high enantioselectivity in favour of 9R,10S-epoxystearic acid. This latter enzyme also exhibited a strict stereoselectivity, i.e. it hydrolysed the racemic substrate with a very high enantioconvergence, yielding a single chiral diol product, threo-9R,10R-dihydroxystearic acid. Soybean EH shared these distinctive stereochemical features with the membrane-bound rat liver EH. The stereochemical outcome of these enzymes probably results from a stereoselective attack by the nucleophilic residue on the oxirane ring carbon having the (S)-configuration, leading to the presumed (in plant EH) covalent acyl-enzyme intermediate. In sharp contrast, the reactions catalysed by cytosolic rat liver EH exhibited a complete absence of enantioselectivity and enantioconvergence; this latter effect might be ascribed to a regioselective formation of the acyl-enzyme intermediate involving C-10 of 9,10-epoxystearic acid, independent of its configuration. Thus, compared with soybean EH, the active site of rat liver soluble EH displays a very distinct means of anchoring the oxirane ring of the fatty acid epoxides, and therefore appears to be a poor model for mapping the catalytic domain of plant EHs. PMID:12020347

  14. PLA recycling by hydrolysis at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  15. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses.

    PubMed

    Monschein, Mareike; Nidetzky, Bernd

    2016-01-01

    Focusing on continuous steam explosion, the influence of pretreatment severity due to varied acid loading on hydrolysis of wheat straw by Trichoderma reesei cellulases was investigated based on kinetic evaluation of the saccharification of each pretreated substrate. Using semi-empirical descriptors of the hydrolysis time course, key characteristics of saccharification efficiency were captured in a quantifiable fashion. Not only hydrolysis rates per se, but also the transition point of their bi-phasic decline was crucial for high saccharification degree. After 48h the highest saccharification was achieved for substrate pretreated at relatively low severity (1.2% acid). Higher severity increased enzyme binding to wheat straw, but reduced the specific hydrolysis rates. Higher affinity of the lignocellulosic material for cellulases does not necessarily result in increased saccharification, probably because of lignin modifications occurring at high pretreatment severities. At comparable severity, continuous pretreatment produced a substrate more susceptible to enzymatic hydrolysis than the batch process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.

    PubMed

    Yang, Bin; Wyman, Charles E

    2006-07-05

    Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis. (c) 2006 Wiley Periodicals, Inc.

  18. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation.

    PubMed

    Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B

    2016-08-08

    The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the

  19. Enzymatic hydrolysis of organic phosphorus in swine manure and soil.

    PubMed

    He, Zhongqi; Griffin, Timothy S; Honeycutt, C Wayne

    2004-01-01

    Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.

  20. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.

    PubMed

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D; Williams, Daniel L; Magee, Timothy D; Kaeppler, Shawn M; de Leon, Natalia; Hodge, David B

    2015-07-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach

    PubMed Central

    Wilson, Charlotte M.; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M.; O'Toole, Paul W.; Zomer, Aldert

    2014-01-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. PMID:25063664

  3. Lactobacillus reuteri 100-23 modulates urea hydrolysis in the murine stomach.

    PubMed

    Wilson, Charlotte M; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M; O'Toole, Paul W; Zomer, Aldert; Tannock, Gerald W

    2014-10-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Efficient production of fermentable sugars from oil palm empty fruit bunch by combined use of acid and whole cell culture-catalyzed hydrolyses.

    PubMed

    Li, Qingxin; Ng, Wei Ting; Puah, Sze Min; Bhaskar, Ravindran Vijay; Soh, Loon Siong; MacBeath, Calum; Parakattil, Pius; Green, Phil; Wu, Jin Chuan

    2014-01-01

    Empty fruit bunch (EFB) of oil palm trees was converted to fermentable sugars by the combined use of dilute acids and whole fungal cell culture-catalyzed hydrolyses. EFB (5%, w/v) was hydrolyzed in the presence of 0.5% H2 SO4 and 0.2% H3 PO4 at 160 °C for 10 Min. The solid fraction was separated from the acid hydrolysate by filtration and subjected to enzymatic hydrolysis at 50 °C using the whole cell culture of Trichoderma reesei RUT-C30 (2%, w/v), which was prepared by cultivation at 30 °C for 7 days to reach its maximal cellulase activity. The combined hydrolyses of EFB gave a total sugar yield of 82.0%. When used as carbon sources for cultivating Escherichia coli in M9 medium at 37 °C, the combined EFB hydrolysates were shown to be more favorable or at least as good as pure glucose for cell growth in terms of the higher (1.1 times) optical density of E. coli cells. The by-products generated during the acid-catalyzed hydrolysis did not seem to obviously affect cell growth. The combined use of acid and whole cell culture hydrolyses might be a commercially promising method for pretreatment of lignocellulose to get fermentable sugars. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  5. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies.

    PubMed

    Neves, P V; Pitarelo, A P; Ramos, L P

    2016-05-01

    The production of cellulosic ethanol was carried out using samples of native (NCB) and ethanol-extracted (EECB) sugarcane bagasse. Autohydrolysis (AH) exhibited the best glucose recovery from both samples, compared to the use of both H3PO4 and H2SO4 catalysis at the same pretreatment time and temperature. All water-insoluble steam-exploded materials (SEB-WI) resulted in high glucose yields by enzymatic hydrolysis. SHF (separate hydrolysis and fermentation) gave ethanol yields higher than those obtained by SSF (simultaneous hydrolysis and fermentation) and pSSF (pre-hydrolysis followed by SSF). For instance, AH gave 25, 18 and 16 g L(-1) of ethanol by SHF, SSF and pSSF, respectively. However, when the total processing time was taken into account, pSSF provided the best overall ethanol volumetric productivity of 0.58 g L(-1) h(-1). Also, the removal of ethanol-extractable materials from cane bagasse had no influence on the cellulosic ethanol production of SEB-WI, regardless of the fermentation strategy used for conversion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Jun; Akram, Kashif; Shahbaz, Hafiz Muhammad; Kwon, Joong-Ho

    2014-12-01

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0-10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets.

  7. Dissecting the effect of chemical additives on the enzymatic hydrolysis of pretreated wheat straw.

    PubMed

    Monschein, Mareike; Reisinger, Christoph; Nidetzky, Bernd

    2014-10-01

    Chemical additives were examined for ability to increase the enzymatic hydrolysis of thermo-acidically pretreated wheat straw by Trichoderma reesei cellulase at 50 °C. Semi-empirical descriptors derived from the hydrolysis time courses were applied to compare influence of these additives on lignocellulose bioconversion on a kinetic level, presenting a novel view on their mechanism of action. Focus was on rate retardation during hydrolysis, substrate conversion and enzyme adsorption. PEG 8000 enabled a reduction of enzyme loading by 50% while retaining the same conversion of 67% after 24h. For the first time, a beneficial effect of urea is reported, increasing the final substrate conversion after 48 h by 16%. The cationic surfactant cetyl-trimethylammonium bromide (CTAB) enhanced the hydrolysis rate at extended reaction time (rlim) by 34% and reduced reaction time by 28%. A combination of PEG 8000 and urea increased sugar release more than additives used individually. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Phospholipids and products of their hydrolysis as dietary preventive factors for civilization diseases.

    PubMed

    Parchem, Karol; Bartoszek, Agnieszka

    2016-12-31

    The results of numerous epidemiological studies indicate that phospholipids play an important role in the prevention of chronic diseases faced by contemporary society. Firstly, these compounds are responsible for the proper functioning of cell membranes, by ensuring liquidity and permeability, which is pivotal for normal activity of membrane proteins, including receptors. These mechanisms are at the core of prevention of cancer, autoimmune or neurological disorders. Secondly, structure and properties of phospholipids cause that they are highly available source of biologically active fatty acids. Thirdly, also products of endogenous hydrolysis of phospholipids exhibit biological activity. These include lysophospholipids formed as a result of disconnecting free fatty acid from glycerophospholipids in the reaction catalyzed by phospholipase A, phosphatidic acid and hydrophilic subunits released by the activity of phospholipase D. The bioactive products of hydrolysis also include ceramides liberated from phosphosphingolipids after removal of a hydrophilic unit catalyzed by sphingomyelinase. Phospholipids are supplied to the human body with food. A high content of phospholipids is characteristic for egg yolk, liver, pork and poultry, as well as some soy products. Particularly beneficial are phospholipids derived from seafood because they are a rich source of essential fatty acids of the n-3 family.

  9. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    PubMed Central

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  10. Hydrolysis mechanisms for the organopalladium complex [Pd(CNN)P(OMe)3]BF4 in sulfuric acid.

    PubMed

    García, Begoña; Hoyuelos, Francisco J; Ibeas, Saturnino; Muñoz, María S; Peñacoba, Indalecio; Leal, José M

    2009-08-13

    The acid-catalyzed hydrolysis of the organopalladium complex [Pd(CNN)P(OMe)3]BF4 species was monitored spectrophotometrically at different sulfuric acid concentrations (3.9 and 11.0 M) in 10% v:v ethanol-water over the 25-45 degrees C temperature range and in 30% and 50% (v/v) ethanol-water at 25 degrees C. Two acidity regions (I and II) could be differentiated. In each of the two regions the kinetic data pairs yielded two different rate constants, k(1obs) and k(2obs), the former being faster. These constants were fitted by an Excess Acidity analysis to different hydrolyses mechanisms: A-1, A-2, and A-SE2. In region I ([H2SO4] < 7.0 M), the k(1obs) values remained constant k(1obs)(av) = 1.6 x 10(-3) s(-1) and the set of k(2obs) values nicely matched an A-SE2 mechanism, yielding a rate-determining constant k(0,ASE2) = 2.4 x 10(-7) M(-1) s(-1). In region II ([H2SO4] > 7.0 M), a switchover was observed from an A-1 mechanism (k(0,A1) = 1.3 x 10(-4) s(-1)) to an A-2 mechanism (k(0,A2) = 3.6 x 10(-3) M(-1) s(-1)). The temperature effect on the rate constants in 10% (v/v) ethanol-water yielded positive DeltaH and negative DeltaS values, except for the A-1 mechanism, where DeltaS adopted positive values throughout. The solvent permittivity effect, epsilonr, revealed that k(1obs)(av) and k(0,A2) dropped with a fall in epsilonr, whereas the k(0,ASE2) value remained unaffected. The set of results deduced is in line with the schemes put forward.

  11. Pseudomonas aeruginosa arylsulfatase: a purified enzyme for the mild hydrolysis of steroid sulfates.

    PubMed

    Stevenson, Bradley J; Waller, Christopher C; Ma, Paul; Li, Kunkun; Cawley, Adam T; Ollis, David L; McLeod, Malcolm D

    2015-10-01

    The hydrolysis of sulfate ester conjugates is frequently required prior to analysis for a range of analytical techniques including gas chromatography-mass spectrometry (GC-MS). Sulfate hydrolysis may be achieved with commercial crude arylsulfatase enzyme preparations such as that derived from Helix pomatia but these contain additional enzyme activities such as glucuronidase, oxidase, and reductase that make them unsuitable for many analytical applications. Strong acid can also be used to hydrolyze sulfate esters but this can lead to analyte degradation or increased matrix interference. In this work, the heterologously expressed and purified arylsulfatase from Pseudomonas aeruginosa is shown to promote the mild enzyme-catalyzed hydrolysis of a range of steroid sulfates. The substrate scope of this P. aeruginosa arylsulfatase hydrolysis is compared with commercial crude enzyme preparations such as that derived from H. pomatia. A detailed kinetic comparison is reported for selected examples. Hydrolysis in a urine matrix is demonstrated for dehydroepiandrosterone 3-sulfate and epiandrosterone 3-sulfate. The purified P. aeruginosa arylsulfatase contains only sulfatase activity allowing for the selective hydrolysis of sulfate esters in the presence of glucuronide conjugates as demonstrated in the short three-step chemoenzymatic synthesis of 5α-androstane-3β,17β-diol 17-glucuronide (ADG, 1) from epiandrosterone 3-sulfate. The P. aeruginosa arylsulfatase is readily expressed and purified (0.9 g per L of culture) and thus provides a new and selective method for the hydrolysis of steroid sulfate esters in analytical sample preparation. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Effect of pretreatment on the enzymatic hydrolysis of kitchen waste for xanthan production.

    PubMed

    Li, Panyu; Zeng, Yu; Xie, Yi; Li, Xiang; Kang, Yan; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui

    2017-01-01

    The study was carried out to gain insight into the effect of pretreatment on enzymatic hydrolysis of kitchen waste (KW) for xanthan fermentation. Herein, various pretreatments were applied and it was found that chemical pretreatment had positive effect on the following enzymatic or overall hydrolysis process. The highest reducing sugar concentration was obtained as 51.87g/L from 2% HCl (90°C) pretreated sample, while the Kjeldahl nitrogen (KDN) concentration was 7.79g/L. Kinetic study showed that first order kinetic model was suitable to describe the enzymatic hydrolysis process. The obtained kitchen waste hydrolysate (KWH) was successfully applied for xanthan fermentation. Xanthan concentration reached 4.09-6.46g/L when KWH with 2% HCl (90°C) pretreatment was applied as medium. In comparison, a xanthan concentration of 3.25-5.57g/L was obtained from KWH without pretreatment. Therefore, pretreatment of KW using diluted acid is favorable for the overall hydrolysis process and effective for xanthan fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    PubMed

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments.

  14. Modeling cereal starch hydrolysis during simultaneous saccharification and lactic acid fermentation; case of a sorghum-based fermented beverage, gowé.

    PubMed

    Mestres, Christian; Bettencourt, Munanga de J C; Loiseau, Gérard; Matignon, Brigitte; Grabulos, Joël; Achir, Nawel

    2017-10-01

    Gowé is an acidic beverage obtained after simultaneous saccharification and fermentation (SSF) of sorghum. A previous paper focused on modeling the growth of lactic acid bacteria during gowé processing. This paper focuses on modeling starch amylolysis to build an aggregated SSF model. The activity of α-amylase was modeled as a function of temperature and pH, and the hydrolysis rates of both native and soluble starch were modeled via a Michaelis-Menten equation taking into account the maltose and glucose inhibition constants. The robustness of the parameter estimators was ensured by step by step identification in sets of experiments conducted with different proportions of native and gelatinized starch by modifying the pre-cooking temperature. The aggregated model was validated on experimental data and showed that both the pre-cooking and fermentation parameters, particularly temperature, are significant levers for controlling not only acid and sugar contents but also the expected viscosity of the final product. This generic approach could be used as a tool to optimize the sanitary and sensory quality of fermentation of other starchy products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Enhanced enzymatic hydrolysis of waste paper for ethanol production using separate saccharification and fermentation.

    PubMed

    Guerfali, Mohamed; Saidi, Adel; Gargouri, Ali; Belghith, Hafedh

    2015-01-01

    Ethanol produced from lignocellulosic biomass is a renewable alternative to diminishing petroleum-based liquid fuels. In this study, the feasibility of ethanol production from waste paper using the separate hydrolysis and fermentation (SHF) was investigated. Two types of waste paper materials, newspaper and office paper, were evaluated for their potential to be used as a renewable feedstock for the production of fermentable sugars via enzymatic hydrolysis of their cellulose fractions. Hydrolysis step was conducted with a mixture of cellulolytic enzymes produced locally by Trichoderma reesei Rut-C30 (cellulase-overproducing mutant) and Aspergillus niger F38 cultures. Surfactant pretreatment effect on waste paper enzymatic digestibility was studied and Triton X-100 at 0.5 % (w w(-1)) has improved the digestibility of newspaper about 45 %. The effects of three factors (dry matter quantity, phosphoric acid pretreatment and hydrolysis time) on the extent of saccharification were also assessed and quantified by using a methodical approach based on response surface methodology. Under optimal hydrolysis conditions, maximum degrees of saccharification of newspaper and office paper were 67 and 92 %, respectively. Sugars released from waste paper were subsequently converted into ethanol (0.38 g ethanol g(-1) sugar) with Saccharomyces cerevisiae CTM-30101.

  16. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  17. Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates.

    PubMed

    Venuste, Muhamyankaka; Zhang, Xiaoming; Shoemaker, Charles F; Karangwa, Eric; Abbas, Shabbar; Kamdem, Patrick Eugene

    2013-04-30

    Nutritional and antioxidant properties of pumpkin meal and their hydrolysates prepared by hydrolysis with alcalase, flavourzyme, protamex or neutrase were evaluated. The hydrolysis process significantly increased protein content from 67.07% to 92.22%. All the essential amino acids met the Food and Agriculture Organization of United Nations/World Health Organization (WHO/FAO) suggested requirements for children and adults. The amino acid score (AAS) of meal was increased from 65.59 to 73.00 except for flavourzyme (62.97) and protamex (62.50). The Biological Value (BV) was increased from 53.18 to 83.44 except for protamex (40.97). However hydrolysis decreased the Essential Amino Acid/Total Amino Acid ratio (EAA/TAA) from 32.98% to 29.43%. Protein Efficiency Ratio (PER) was comparable to that of good quality protein (1.5) except for flavourzyme hydrolysate which had PER1 = 0.92, PER2 = 1.03, PER3 = 0.38. The in vitro protein digestibility (IVPD) increased from 71.32% to 77.96%. Antioxidant activity increased in a dose-dependent manner. At 10 mg mL(-1), the hydrolysates had increased 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activities from 21.89% to 85.27%, the reducing power increased from Abs(700nm) 0.21 to 0.48. Metal (Iron) chelating ability was improved from 30.50% to 80.03% at 1 mg mL(-1). Hydrolysates also showed better capabilities to suppress or delay lipid peroxidation in a linoleic acid model system. Different proteases lead to different Degrees of Hydrolysis (DH), molecular weight (MW) distribution, amino acid composition and sequence, which influenced the nutritional properties and antioxidant activities of the hydrolysates. Alcalase was the most promising protease in production of pumpkin protein hydrolysates with improved nutritional quality, while flavourzyme was best in production of hydrolysates with improved antioxidative activity among various assays. These results showed that hydrolysates from by-products of pumpkin oil

  18. Hydrolysis of triolein in phospholipid vesicles and microemulsions by a purified rat liver acid lipase.

    PubMed

    Burrier, R E; Brecher, P

    1983-10-10

    An acid lipase was purified from rat liver lysosomes. Lipase purification involved affinity chromatography, gel filtration, and stabilization of the purified preparation using ethylene glycol and Triton X-100. A molecular weight of 67,000-69,000 was determined independently using density gradient centrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gel filtration. To study enzyme action, model substrates were prepared by incorporating radiolabeled triolein into either unilamellar vesicles or microemulsions. Substrates were prepared by cosonicating aqueous dispersions of lecithin and triolein. Formation of vesicles or emulsions depended on the relative amount of each lipid and on sonication conditions. Vesicles were prepared at molar ratios between 70:1 and 26:1 (lecithin:triolein) and the microemulsion preparation at a molar ratio of 1:1. The substrate particles were of similar size (220-250 A) as determined by Bio-Gel A-15m chromatography. Hydrolysis of triolein contained in vesicles or emulsions was similar with respect to pH, temperature, and reaction products. Kinetic studies on vesicles with increasing triolein content showed progressively greater Vmax values (0-0.6 mumol/min/mg), and Vmax for the emulsion was 3.1 mumol/min/mg. Addition of human very low or low density lipoprotein produced a dose-dependent inhibition with both substrates. The results show that synthetically prepared microemulsions are stable and effective substrates for the acid lipase and indicate that surface-oriented triolein is hydrolyzed in both preparations.

  19. Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis.

    PubMed

    Zianor Azrina, Z A; Beg, M Dalour H; Rosli, M Y; Ramli, Ridzuan; Junadi, Norhafzan; Alam, A K M Moshiul

    2017-04-15

    Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate.

    PubMed

    Yang, Chu-Fang; Huang, Ci-Ruei

    2016-08-01

    Thermal acid hydrolysis is often used to deal with lignocellulosic biomasses, but 5-hydroxy-methylfurfural (5-HMF) formed during hydrolysis deeply influences downstream fermentation. 2,5-Furan-dicarboxylic acid (FDCA), which is in the list of future important biomass platform molecules can be obtained using 5-HMF biotransformation. Based on the connection between 5-HMF removal in acid hydrolysate and FDCA production, the optimum thermal acid hydrolysis condition for macroalgae Chaetomorpha linum was established. Potential microbes capable of transforming 5-HMF into FDCA were isolated and characterized under various parameters and inoculated into algal hydrolysate to perform 5-HMF biotransformation. The optimum hydrolysis condition was to apply 0.5M HCl to treat 3% algal biomass under 121°C for 15min. Isolated Burkholderia cepacia H-2 could transform 2000mg/L 5-HMF at the initial pH of 7 at 28°C and 1276mg/L FDCA was received. Strain B. cepacia H-2 was suitable for treating the algal hydrolysate without dilution, receiving 989.5mg/L FDCA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria.

    PubMed

    Guo, Liang; Lu, Mingmin; Li, Qianqian; Zhang, Jiawen; Zong, Yan; She, Zonglian

    2014-11-01

    The hydrolysis effect of waste sludge after multi-enzyme and thermophilic bacteria pretreatments is investigated using excitation-emission matrix (EEM) with fluorescence regional integration (FRI) in this study. The compositional characteristics of extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed to evaluate the sludge disintegration. The EPS and cell wall in sludge were disrupted after hydrolysis which led to carbohydrate, protein and soluble chemical oxygen demand (SCOD) of DOM increasing in sludge supernatant. The bio-degradability level in the extracted fractions of EPS and DOM depending on the fluorescence zones was found after hydrolysis. The highest proportion of percent fluorescence response (Pi,n) in EPS and DOM was soluble microbial by-product and humic acid-like organics. A significant increase of humic acid-like organics in DOM after thermophilic bacteria hydrolysis was obtained. The assessment of hydrolysis using EEM coupled with FRI provided a new insight toward the bio-utilization process of waste sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Processing of micro-nano bacterial cellulose with hydrolysis method as a reinforcing bioplastic

    NASA Astrophysics Data System (ADS)

    Maryam, Maryam; Dedy, Rahmad; Yunizurwan, Yunizurwan

    2017-01-01

    Nanotechnology is the ability to create and manipulate atoms and molecules on the smallest of scales. Their size allows them to exhibit novel and significantly improved physical, chemical, biological properties, phenomena, and processes because of their size. The purpose of this research is obtaining micro-nano bacterial cellulose as reinforcing bioplastics. Bacterial cellulose (BC) was made from coconut water for two weeks. BC was dried and grinded. Bacterial cellulose was given purification process with NaOH 5% for 6 hours. Making the micro-nano bacterial cellulose with hydrolysis method. Hydrolysis process with hydrochloric acid (HCl) at the conditions 3,5M, 55°C, 6 hours. Drying process used spray dryer. The hydrolysis process was obtained bacterial cellulose with ±7 μm. The addition 2% micro-nano bacterial cellulose as reinforcing in bioplastics composite can improve the physical characteristics.

  3. Quantitation of sugar content in pyrolysis liquids after acid hydrolysis using high-performance liquid chromatography without neutralization.

    PubMed

    Johnston, Patrick A; Brown, Robert C

    2014-08-13

    A rapid method for the quantitation of total sugars in pyrolysis liquids using high-performance liquid chromatography (HPLC) was developed. The method avoids the tedious and time-consuming sample preparation required by current analytical methods. It is possible to directly analyze hydrolyzed pyrolysis liquids, bypassing the neutralization step usually required in determination of total sugars. A comparison with traditional methods was used to determine the validity of the results. The calibration curve coefficient of determination on all standard compounds was >0.999 using a refractive index detector. The relative standard deviation for the new method was 1.13%. The spiked sugar recoveries on the pyrolysis liquid samples were between 104 and 105%. The research demonstrates that it is possible to obtain excellent accuracy and efficiency using HPLC to quantitate glucose after acid hydrolysis of polymeric and oligomeric sugars found in fast pyrolysis bio-oils without neutralization.

  4. Is enzymatic hydrolysis a reliable analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites in human fluids?

    PubMed

    Quifer-Rada, Paola; Martínez-Huélamo, Miriam; Lamuela-Raventos, Rosa M

    2017-07-19

    Phenolic compounds are present in human fluids (plasma and urine) mainly as glucuronidated and sulfated metabolites. Up to now, due to the unavailability of standards, enzymatic hydrolysis has been the method of choice in analytical chemistry to quantify these phase II phenolic metabolites. Enzymatic hydrolysis procedures vary in enzyme concentration, pH and temperature; however, there is a lack of knowledge about the stability of polyphenols in their free form during the process. In this study, we evaluated the stability of 7 phenolic acids, 2 flavonoids and 3 prenylflavanoids in urine during enzymatic hydrolysis to assess the suitability of this analytical procedure, using three different concentrations of β-glucuronidase/sulfatase enzymes from Helix pomatia. The results indicate that enzymatic hydrolysis negatively affected the recovery of the precursor and free-form polyphenols present in the sample. Thus, enzymatic hydrolysis does not seem an ideal analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites.

  5. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Esculin hydrolysis by Enterobacteriaceae.

    PubMed

    Edberg, S C; Pittman, S; Singer, J M

    1977-08-01

    Literature reports disagree concerning esculin hydrolysis in the family Enterobacteriaceae. A total of 2,490 strains of the family were investigated for esculin hydrolysis by two methods, the esculin spot test and the PathoTec incubation strip, which measures constitutive enzyme, and five growth-supporting methods, which determine both constitutive and inducible enzymes. The five growth-supporting media studied were: Vaughn-Levine, the standard esculin hydrolysis medium (P. R. Edwards and W. H. Ewing, Identification of Enterobacteriaceae, 3rd ed., 1972); Vaughn-Levine without iron; Vaughn-Levine without Andrade's indicator; and bile-esculin medium. Growth media were incubated at 35 degrees C and checked every 24 h for 120 h. On growth media, 0.3% of Escherichia coli were positive in 24 h, 34% in 48 h, and 61% in 120 h. No strains were positive on the "nongrowth" tests. It appeared that the esculin hydrolysis enzyme(s) of E. coli was inducible rather than constitutive. All esculin hydrolyzers, which yielded positive tests on "constitutive tests" and 24-h tests, were limited to the genera Klebsiella, Enterobacter, and Serratia and species of Proteus vulgaris, Proteus rettgeri, and Citrobacter diversus. When used with standardized inoculum size and incubation time, the esculin hydrolysis test is very useful for differentiation within the family Enterobacteriaceae.

  7. Esculin hydrolysis by Enterobacteriaceae.

    PubMed Central

    Edberg, S C; Pittman, S; Singer, J M

    1977-01-01

    Literature reports disagree concerning esculin hydrolysis in the family Enterobacteriaceae. A total of 2,490 strains of the family were investigated for esculin hydrolysis by two methods, the esculin spot test and the PathoTec incubation strip, which measures constitutive enzyme, and five growth-supporting methods, which determine both constitutive and inducible enzymes. The five growth-supporting media studied were: Vaughn-Levine, the standard esculin hydrolysis medium (P. R. Edwards and W. H. Ewing, Identification of Enterobacteriaceae, 3rd ed., 1972); Vaughn-Levine without iron; Vaughn-Levine without Andrade's indicator; and bile-esculin medium. Growth media were incubated at 35 degrees C and checked every 24 h for 120 h. On growth media, 0.3% of Escherichia coli were positive in 24 h, 34% in 48 h, and 61% in 120 h. No strains were positive on the "nongrowth" tests. It appeared that the esculin hydrolysis enzyme(s) of E. coli was inducible rather than constitutive. All esculin hydrolyzers, which yielded positive tests on "constitutive tests" and 24-h tests, were limited to the genera Klebsiella, Enterobacter, and Serratia and species of Proteus vulgaris, Proteus rettgeri, and Citrobacter diversus. When used with standardized inoculum size and incubation time, the esculin hydrolysis test is very useful for differentiation within the family Enterobacteriaceae. PMID:330558

  8. Hydrolysis and acidification of agricultural waste in a non-airtight system: Effect of solid content, temperature, and mixing mode.

    PubMed

    Yu, Jiadong; Zhao, Yubin; Zhang, Huan; Hua, Binbin; Yuan, Xufeng; Zhu, Wanbin; Wang, Xiaofen; Cui, Zongjun

    2017-01-01

    A two-phase digestion system for treating agricultural waste is beneficial for methane production. This study explored the effect of solid content, temperature, and mixing mode on the process of hydrolysis and acidification using rice straw and cow dung launched in non-airtight acidogenic system. The results showed that the substrate could be hydrolyzed efficiently in the initial stage, the hydrolysis coefficient (k) of maximum cellulose and hemicellulose can be increased by 217.9% and 290.5%, respectively, compared with those of middle and last stages. High solid content played a leading role in promoting hydrolysis, resulted in hydrolysate content (sCOD) that was significantly higher than in treatments with low solid content (P<0.01), and led to organic acids accumulation up to 5.8 and 6.7g/L at mesophilic and thermophilic temperatures. Thermophilic temperature stimulated the hydrolysis and acidification of low solid content (P<0.05), and improved organic acid accumulation of high solid content only during the middle stage (P<0.01). Mixing mode was not a major factor, but increasing the mixing time was necessary for organic acid accumulation during the last stage (P<0.05). In addition, the study comprehensively analyzed a series of corresponding relationships among each operating parameter during the whole treatment process using canonical correspondence analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of different enzymatic hydrolysis methods on the bioactivity of peptidoglycan in Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Song, Xiaoling; Zhang, Yue; Wei, Song; Huang, Jie

    2013-03-01

    The effects of different hydrolysis methods on peptidoglycan (PG) were assessed in terms of their impact on the innate immunity and disease resistance of Pacific white shrimp, Litop enaeus vannamei. PG derived from Bifidobacterium thermophilum was prepared in the laboratory and processed with lysozyme and protease under varying conditions to produce several different PG preparations. A standard shrimp feed was mixed with 0.05% PG preparations to produce a number of experimental diets for shrimp. The composition, concentration, and molecular weight ranges of the soluble PG were analyzed. Serum phenoloxidase and acid phosphatase activity in the shrimp were determined on Days 6—31 of the experiment. The protective activity of the PG preparations was evaluated by exposing shrimp to white spot syndrome virus (WSSV). Data on the composition of the PG preparations indicated that preparations hydrolyzed with lysozyme for 72 h had more low-molecular-weight PG than those treated for 24 h, and hydrolysis by protease enhanced efficiency of hydrolysis compared to lysozyme. SDS-PAGE showed changes in the molecular weight of the soluble PG produced by the different hydrolysis methods. Measurements of serum phenoloxidase and acid phosphatase activity levels in the shrimp indicated that the PG preparations processed with enzymes were superior to the preparation which had not undergone hydrolysis in enhancing the activity of the two serum enzymes. In addition, the preparation containing more low-molecular-weight PG enhanced the resistance of the shrimp to WSSV, whereas no increased resistance was observed for preparations containing less low-molecular-weight PG. These findings suggest that the immunity-enhancing activity of PG is related to its molecular weight and that increasing the quantity of low-molecular-weight PG can fortify the effect of immunity enhancement.

  10. Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils

    NASA Astrophysics Data System (ADS)

    Salome, Kathleen R.; Beazley, Melanie J.; Webb, Samuel M.; Sobecky, Patricia A.; Taillefert, Martial

    2017-01-01

    The bioreduction of uranium may immobilize a significant fraction of this toxic contaminant in reduced environments at circumneutral pH. In oxic and low pH environments, however, the low solubility of U(VI)-phosphate minerals also makes them good candidates for the immobilization of U(VI) in the solid phase. As inorganic phosphate is generally scarce in soils, the biomineralization of U(VI)-phosphate minerals via microbially-mediated organophosphate hydrolysis may represent the main immobilization process of uranium in these environments. In this study, contaminated sediments were incubated aerobically in two pH conditions to examine whether phytate, a naturally-occurring and abundant organophosphate in soils, could represent a potential phosphorous source to promote U(VI)-phosphate biomineralization by natural microbial communities. While phytate hydrolysis was not evident at pH 7.0, nearly complete hydrolysis was observed both with and without electron donor at pH 5.5, suggesting indigenous microorganisms express acidic phytases in these sediments. While the rate of hydrolysis of phytate generally increased in the presence of uranium, the net rate of inorganic phosphate production in solution was decreased and inositol phosphate intermediates were generated in contrast to similar incubations conducted without uranium. These findings suggest uranium stress enhanced the phytate-metabolism of the microbial community, while simultaneously inhibiting phosphatase production and/or activity by the indigenous population. Finally, phytate hydrolysis drastically decreased uranium solubility, likely due to formation of ternary sorption complexes, U(VI)-phytate precipitates, and U(VI)-phosphate minerals. Overall, the results of this study provide evidence for the ability of natural microbial communities to liberate phosphate from phytate in acidic sediments, possibly as a detoxification mechanism, and demonstrate the potential utility of phytate-promoted uranium

  11. Effect of cooking temperature on the crystallinity of acid hydrolysed-oil palm cellulose

    NASA Astrophysics Data System (ADS)

    Kuthi, Fatin Afifah Binti Ahmad; Badri, Khairiah Haji

    2014-09-01

    In this research, we studied the effect of acid hydrolysis temperature on the crystallinity of cellulose produced from empty fruit bunch (EFB). The hydrolysis temperature was studied from 120 to 140 °C at a fixed time and sulfuric acid, H2SO4 concentration which were 1 h and 1% (v/v) respectively. X-ray diffractometry (XRD) was carried out to measure the crystallinity of cellulose produced at varying hydrolysis temperatures. During hydrolysis, the amorphous region of α-cellulose was removed and the crystalline region was obtained. Percentage of crystallinity (CrI) for acid hydrolysed cellulose at 120, 130 and 140 °C were 54.21, 50.59 and 50.55 % respectively. Morphological studies using scanning electron microscope (SEM) showed that acid hydrolysis defibrilised to microfibrils in α-cellulose. The extraction process to produce α-cellulose has also been successfully carried out as the impurities at the outer surface, lignin and hemicellulose were removed. These findings were supported by the disappearance of peaks at 1732, 1512 and 1243 cm-1 on Fourier Transform infrared (FTIR) spectrum of α-cellulose. Similar peaks were identified in both the commercial microcrystalline cellulose (C-MCC) and acid hydrolysed cellulose (H-EFB), indicating the effectiveness of heat-catalysed acid hydrolysis.

  12. Phytochemical composition and effects of commercial enzymes on the hydrolysis of gallic acid glycosides in mango (Mangifera indica L. cv. 'Keitt') pulp.

    PubMed

    Krenek, Kimberly A; Barnes, Ryan C; Talcott, Stephen T

    2014-10-01

    A detailed characterization of mango pulp polyphenols and other minor phytochemicals was accomplished for the first time in the cultivar 'Keitt' whereby the identification and semiquantification of five hydroxybenzoic acids, four cinnamic acids, two flavonoids, and six apocarotenoids was accomplished. Among the most abundant compounds were two monogalloyl glucosides (MGG) identified as having an ester- or ether-linked glucose, with the ester-linked moiety present in the highest concentration among nontannin polyphenolics. Additionally, the impact of side activities of three commercial cell-wall degrading enzymes during 'Keitt' mango pulp processing was evaluated to determine their role on the hydrolysis of ester- and ether-linked phenolic acids. The use of Crystalzyme 200XL reduced the concentration of ester-linked MGG by 66%, and the use of Rapidase AR 2000 and Validase TRL completely hydrolyzed ether-linked MGG after 4 h of treatment at 50 °C. Fruit quality, in vivo absorption rate, and bioactivity of mango phytochemicals rely on their chemical characterization, and characterizing changes in composition is critical for a complete understanding of in vivo mechanisms.

  13. Enzymatic saccharification of pretreated wheat straw: comparison of solids-recycling, sequential hydrolysis and batch hydrolysis.

    PubMed

    Pihlajaniemi, Ville; Sipponen, Satu; Sipponen, Mika H; Pastinen, Ossi; Laakso, Simo

    2014-02-01

    In the enzymatic hydrolysis of lignocellulose materials, the recycling of the solid residue has previously been considered within the context of enzyme recycling. In this study, a steady state investigation of a solids-recycling process was made with pretreated wheat straw and compared to sequential and batch hydrolysis at constant reaction times, substrate feed and liquid and enzyme consumption. Compared to batch hydrolysis, the recycling and sequential processes showed roughly equal hydrolysis yields, while the volumetric productivity was significantly increased. In the 72h process the improvement was 90% due to an increased reaction consistency, while the solids feed was 16% of the total process constituents. The improvement resulted primarily from product removal, which was equally efficient in solids-recycling and sequential hydrolysis processes. No evidence of accumulation of enzymes beyond the accumulation of the substrate was found in recycling. A mathematical model of solids-recycling was constructed, based on a geometrical series. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Metal-Catalyzed Oxidation of Protein Methionine Residues in Human Parathyroid Hormone (1-34): Formation of Homocysteine and a Novel Methionine-Dependent Hydrolysis Reaction

    PubMed Central

    Mozziconacci, Olivier; Ji, Junyan A.; Wang, Y. John; Schöneich, Christian

    2013-01-01

    The oxidation of PTH(1-34) catalyzed by ferrous ethylenediaminetetraacetic acid (EDTA) is site-specific. The oxidation of PTH(1-34) is localized primarily to the residues Met[8] and His[9]. Beyond the transformation of Met[8] and His[9] into methionine sulfoxide and 2-oxo-histidine, respectively, we observed a hydrolytic cleavage between Met[8] and His[9]. This hydrolysis requires the presence of FeII and oxygen and can be prevented by diethylenetriaminepentaacetic acid (DTPA) and phosphate buffer. Conditions leading to this site-specific hydrolysis also promote the transformation of Met[8] into homocysteine, indicating that the hydrolysis and transformation of homocysteine may proceed through a common intermediate. PMID:23289936

  15. Use of the SPARC software program to calculate hydrolysis rate constants for the polymeric brominated flame retardants BC-58 and FR-1025.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program was used to estimate the acid-catalyzed, neutral, and base-catalyzed hydrolysis rate constants for the polymeric brominated flame retardants BC-58 and FR-1025. Relatively rapid hydrolysis of BC-58, producing 2,4,6-tribromophenol-and ultimately tetrabromobisphenol A-as the hydrolytically stable end products from all potential hydrolysis reactions, is expected in both environmental and biological systems with starting material hydrolytic half-lives (t(1/2,hydr)) ranging from less than 1 h in marine systems, several hours in cellular environments, and up to several weeks in slightly acid fresh waters. Hydrolysis of FR-1025 to give 2,3,4,5,6-pentabromobenzyl alcohol is expected to be slower (t(1/2,hydr) less than 0.5 years in marine systems up to several years in fresh waters) than BC-58, but is also expected to occur at rates that will contribute significantly to environmental and in vivo loadings of this compound.

  16. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition.

    PubMed

    Jeong, Tae Su; Kim, Young Soo; Oh, Kyeong Keun

    2011-11-01

    Two-stage acid hydrolysis was conducted on easy reacting cellulose and resistant reacting cellulose of fractionated Gelidium amansii (f-GA). Acid hydrolysis of f-GA was performed at between 170 and 200 °C for a period of 0-5 min, and an acid concentration of 2-5% (w/v, H2SO4) to determine the optimal conditions for acid hydrolysis. In the first stage of the acid hydrolysis, an optimum glucose yield of 33.7% was obtained at a reaction temperature of 190 °C, an acid concentration of 3.0%, and a reaction time of 3 min. In the second stage, a glucose yield of 34.2%, on the basis the amount of residual cellulose from the f-GA, was obtained at a temperature of 190 °C, a sulfuric acid concentration of 4.0%, and a reaction time 3.7 min. Finally, 68.58% of the cellulose derived from f-GA was converted into glucose through two-stage acid saccharification under aforementioned conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Kinetic study of microwave-assisted alkaline hydrolysis of Jatropha curcas oil

    NASA Astrophysics Data System (ADS)

    Yusuf, Nur'aini Raman; Kamil, Ruzaimah Nik Mohamad; Yusup, Suzana

    2016-11-01

    The kinetics of hydrolysis of Jatropha curcas oil under microwave irradation in the presence of alkaline solution was studied. The temperature of 50°C, 65°C and 80°C were studied in the range of optimum condition of 1.75 M catalyst, solvent/oil ratio of (1: 68) and 15 minutes reaction time. The rate constants of oil hydrolysis are corresponding to triglyceride disappearance concentration. The rates of reaction for fatty acids production was determined by pseudo first order. The activation energy (Ea) achieved at 30.61 kJ/mol is lower using conventional method. This conclude that the rate of reaction via microwave heating is less temperature sensitive therefore reaction can be obtained at lower temperature.

  18. Synthesis and biological activity of amino acid conjugates of abscisic acid.

    PubMed

    Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro

    2011-03-01

    We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Determination of glucose and ethanol after enzymatic hydrolysis and fermentation of biomass using Raman spectroscopy.

    PubMed

    Shih, Chien-Ju; Smith, Emily A

    2009-10-27

    Raman spectroscopy has been used for the quantitative determination of the conversion efficiency at each step in the production of ethanol from biomass. The method requires little sample preparation; therefore, it is suitable for screening large numbers of biomass samples and reaction conditions in a complex sample matrix. Dilute acid or ammonia-pretreated corn stover was used as a model biomass for these studies. Ammonia pretreatment was suitable for subsequent measurements with Raman spectroscopy, but dilute acid-pretreated corn stover generated a large background signal that surpassed the Raman signal. The background signal is attributed to lignin, which remains in the plant tissue after dilute acid pretreatment. A commercial enzyme mixture was used for the enzymatic hydrolysis of corn stover, and glucose levels were measured with a dispersive 785 nm Raman spectrometer. The glucose detection limit in hydrolysis liquor by Raman spectroscopy was 8 g L(-1). The mean hydrolysis efficiency for three replicate measurements obtained with Raman spectroscopy (86+/-4%) was compared to the result obtained using an enzymatic reaction with UV-vis spectrophotometry detection (78+/-8%). The results indicate good accuracy, as determined using a Student's t-test, and better precision for the Raman spectroscopy measurement relative to the enzymatic detection assay. The detection of glucose in hydrolysis broth by Raman spectroscopy showed no spectral interference, provided the sample was filtered to remove insoluble cellulose prior to analysis. The hydrolysate was further subjected to fermentation to yield ethanol. The detection limit for ethanol in fermentation broth by Raman spectroscopy was found to be 6 g L(-1). Comparison of the fermentation efficiencies measured by Raman spectroscopy (80+/-10%) and gas chromatography-mass spectrometry (87+/-9%) were statistically the same. The work demonstrates the utility of Raman spectroscopy for screening the entire conversion process to

  20. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    PubMed

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis.

    PubMed

    Jia, Honghua; Shao, Tingting; Zhong, Chao; Li, Hengxiang; Jiang, Min; Zhou, Hua; Wei, Ping

    2016-10-20

    In this paper, we produced hemicellulosic hydrolysate from corncob by tetrabutylammonium hydroxide (TBAH) extraction and dilute acid hydrolysis combined, further evaluating the feasibility of the resultant corncob hemicellulosic hydrolysate used in xylitol production by Candida tropicalis. Optimized conditions for corncob hemicellulose extraction by TBAH was obtained via response surface methodology: time of 90min, temperature of 60°C, liquid/solid ratio of 12 (v/w), and TBAH concentration of 55%, resulting in a hemicellulose extraction of 80.07% under these conditions. The FT-IR spectrum of the extracted corncob hemicellulose is consistent with that of birchwood hemicellulose and exhibits specific absorbance of hemicelluloses at 1380, 1168, 1050, and 900cm(-1). In addition, we found that C. tropicalis can ferment the resulting corncob hemicellulosic hydrolysate with pH adjustment and activated charcoal treatment leading to a high xylitol yield and productivity of 0.77g/g and 2.45g/(Lh), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Active-Site Residues of Escherichia coli DNA Gyrase Required in Coupling ATP Hydrolysis to DNA Supercoiling and Amino Acid Substitutions Leading to Novobiocin Resistance

    PubMed Central

    Gross, Christian H.; Parsons, Jonathan D.; Grossman, Trudy H.; Charifson, Paul S.; Bellon, Steven; Jernee, James; Dwyer, Maureen; Chambers, Stephen P.; Markland, William; Botfield, Martyn; Raybuck, Scott A.

    2003-01-01

    DNA gyrase is a bacterial type II topoisomerase which couples the free energy of ATP hydrolysis to the introduction of negative supercoils into DNA. Amino acids in proximity to bound nonhydrolyzable ATP analog (AMP · PNP) or novobiocin in the gyrase B (GyrB) subunit crystal structures were examined for their roles in enzyme function and novobiocin resistance by site-directed mutagenesis. Purified Escherichia coli GyrB mutant proteins were complexed with the gyrase A subunit to form the functional A2B2 gyrase enzyme. Mutant proteins with alanine substitutions at residues E42, N46, E50, D73, R76, G77, and I78 had reduced or no detectable ATPase activity, indicating a role for these residues in ATP hydrolysis. Interestingly, GyrB proteins with P79A and K103A substitutions retained significant levels of ATPase activity yet demonstrated no DNA supercoiling activity, even with 40-fold more enzyme than the wild-type enzyme, suggesting that these amino acid side chains have a role in the coupling of the two activities. All enzymes relaxed supercoiled DNA to the same extent as the wild-type enzyme did, implying that only ATP-dependent reactions were affected. Mutant genes were examined in vivo for their abilities to complement a temperature-sensitive E. coli gyrB mutant, and the activities correlated well with the in vitro activities. We show that the known R136 novobiocin resistance mutations bestow a significant loss of inhibitor potency in the ATPase assay. Four new residues (D73, G77, I78, and T165) that, when changed to the appropriate amino acid, result in both significant levels of novobiocin resistance and maintain in vivo function were identified in E. coli. PMID:12604539

  3. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis.

    PubMed

    Wang, Feng-Qin; Xie, Hui; Chen, Wei; Wang, En-Tao; Du, Feng-Guang; Song, An-Dong

    2013-09-01

    Aiming at increasing the efficiency of transferring corn stover into sugars, a biological pretreatment was developed and investigated in this study. The protocol was characterized by the pretreatment with crude ligninolytic enzymes from Phanerochete chrysosporium and Coridus versicolor to break the lignin structure in corn stover, followed by a washing procedure to eliminate the inhibition of ligninolytic enzyme on cellulase. By a 2 d-pretreatment, sugar yield from corn stover hydrolysis could be increased by 50.2% (up to 323 mg/g) compared with that of the control. X-ray diffractometry and FT-IR analysis revealed that biological pretreatment could partially remove the lignin of corn stover, and consequently enhance the enzymatic hydrolysis efficiency of cellulose and hemeicellulose. In addition, the amount of microbial inhibitors, such as acetic acid and furfural, were much lower in biological pretreatment than that in acid pretreatment. This study provided a promising pretreatment method for biotransformation of corn stovers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid hydrolysis lignin, a saccharification by-product from woody materials.

    PubMed

    Matsushita, Yasuyuki; Imai, Masanori; Iwatsuki, Ayuko; Fukushima, Kazuhiko

    2008-05-01

    In this study, water-soluble anionic and cationic polymers were prepared from sulfuric acid lignin (SAL), an acid hydrolysis lignin, and the relationship between the surface tension of these polymers and industrial performance was examined. The SAL was phenolized (P-SAL) to enhance its solubility and reactivity. Sulfonation and the Mannich reaction with aminocarboxylic acids produced water-soluble anionic polymers and high-dispersibility gypsum paste. The dispersing efficiency increased as the surface tension decreased, suggesting that the fluidity of the gypsum paste increased with the polymer adsorption on the gypsum particle surface. Water-soluble cationic polymers were prepared using the Mannich reaction with dimethylamine. The cationic polymers showed high sizing efficiency under neutral papermaking conditions; the sizing efficiency increased with the surface tension. This suggests that the polymer with high hydrophilicity spread in the water and readily adhered to the pulp surface and the rosin, showing good retention.

  5. The effect of enzymatic pre-hydrolysis of dairy wastewater on the granular and immobilized microbial community in anaerobic bioreactors.

    PubMed

    Cammarota, Magali C; Rosa, Daniela R; Duarte, Iolanda C S; Saavedra, Nora K; Varesche, Maria B A; Zaiat, Marcelo; Freire, Denise M G

    2013-01-01

    The effect of a lipase-rich enzyme preparation produced by the fungus Penicillium sp. on solid-state fermentation was evaluated in two anaerobic bioreactors (up-flow anaerobic sludge blanket (UASB) and horizontal-flow anaerobic immobilized biomass (HAIB)) treating dairy wastewater with 1200 mg oil and grease/L. The oil and grease hydrolysis step was carried out with 0.1% (w/v) of the solid enzymatic preparation at 30 degrees C for 24 h. This resulted in a final concentration of free acids eight times higher than the initial value. The bioreactors operated at 30 degrees C with hydraulic retention times of 12 h (HAIB) and 20 h (UASB) for a period of 430 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. There was, however, an increase in the effluent oil and grease concentration (from values as low as 17 mg/L to values above 150 mg/L in the UASB bioreactor, and from 38-242 mg/L in the HAIB bioreactor), and oil and grease accumulation in the biomass throughout the operational period (the oil and grease content reached 1.7 times that found in the inoculum of the UASB bioreactor). The HAIB bioreactor gave better results because the support for biomass immobilization acted as a filter, retaining oil and grease at the entry of the bioreactor. The molecular analysis of the Bacteria and Archaea domains revealed significant differences in the microbial profiles in experiments conducted with and without the pre-hydrolysis step. The differences observed in the overall parameters could be related to the microbial diversity of the anaerobic sludge.

  6. Papain hydrolysis of X-phenyl-N-methanesulfonyl glycinates: a quantitative structure-activity relationship and molecular graphics analysis.

    PubMed

    Carotti, A; Smith, R N; Wong, S; Hansch, C; Blaney, J M; Langridge, R

    1984-02-15

    The hydrolysis of 32 X-phenyl-N-methanesulfonyl glycinates by papain was investigated. It was found that the variation in the Michaelis constants could be rationalized by the following correlation equation: log 1/Km = 0.61 pi '3 + 0.46 MR4 + 0.55 sigma + 2.00 with a correlation coefficient of 0.945. In this expression, pi '3 is the hydrophobic constant for the more lipophilic of the two possible meta substituents, MR4 is the molar refractivity of 4-substituents, and sigma is the Hammett constant summed for all substituents. Using this equation, we designed, synthesized, and successfully predicted Km for a new congener intended to maximize binding (1/Km). The interactions involved in enzyme-substrate binding, as characterized by the correlation equation, are interpreted using a computer-constructed color three-dimensional-graphics molecular model of the enzyme active site. The nonenzymatic hydrolysis (both acid and basic) of phenyl hippurates yield rate constants which are well correlated by Hammett equations; however, log k for both acid and alkaline hydrolysis are not linearly related to log 1/Km or log kcat/Km.

  7. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters.

    PubMed

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2016-03-01

    Food industry processing wastes are produced in enormous amounts every year, such wastes are usually disposed with the corresponding economical cost it implies, in the best scenario they can be used for pet food or composting. However new promising technologies and tools have been developed in the last years aimed at recovering valuable compounds from this type of materials. In particular, sub-critical water hydrolysis (SWH) has been revealed as an interesting way for recovering high added-value molecules, and its applications have been broadly referred in the bibliography. Special interest has been focused on recovering protein hydrolysates in form of peptides or amino acids, from both animal and vegetable wastes, by means of SWH. These recovered biomolecules have a capital importance in fields such as biotechnology research, nutraceuticals, and above all in food industry, where such products can be applied with very different objectives. Present work reviews the current state of art of using sub-critical water hydrolysis for protein recovering from food industry wastes. Key parameters as reaction time, temperature, amino acid degradation and kinetic constants have been discussed. Besides, the characteristics of the raw material and the type of products that can be obtained depending on the substrate have been reviewed. Finally, the application of these hydrolysates based on their functional properties and antioxidant activity is described. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis.

    PubMed

    Zhang, Hongyu; Xu, Yong; Yu, Shiyuan

    2017-06-01

    A novel and green approach for the coproduction of xylooligosaccharides (XOS), in terms of a series of oligosaccharide components from xylobiose to xylohexose, and fermentable sugars was developed using the prehydrolysis of acetic acid that was fully recyclable and environmentally friendly, followed by enzymatic hydrolysis. Compared to hydrochloric acid and sulfuric acid, acetic acid hydrolysis provided the highest XOS yield of 45.91% and the highest enzymatic hydrolysis yield. More than 91% conversion of cellulose was achieved in a batch-hydrolysis using only a cellulase loading of 20FPU/g cellulose and even a high solid loading of 20% without any special strategies. The acetic acid pretreated corncob should be washed adequately before saccharification to achieve complete hydrolysis. Consequently, a mass balance analysis showed that 139.8g XOS, 328.1g glucose, 25.1g cellobiose, and 147.8g xylose were produced from 1000g oven dried raw corncob. Copyright © 2017. Published by Elsevier Ltd.

  9. Catalytic hydrolysis of cellulose into furans

    NASA Astrophysics Data System (ADS)

    Shi, Chengmei; Tao, Furong; Cui, Yuezhi

    2016-12-01

    Chromium chloride in 4-(3-methylimidazolium-1-yl)butane-1-sulfonic acid hydrogen sulfate (IL-1) was found to effectively catalyze the hydrolysis of microcrystalline cellulose (MCC) at 150°C for 300 min to achieve 87.8% conversion to a slate of products. With a catalytic amount of CrCl3, the yields of 5-hydroxymethyl furfural (HMF) and furfural were up to 32.4 and 15.2%, respectively, small molecules levulinic acid (LA, 10.8%) and the total reducing sugars (TRS, 10.7%) were also generated. Through LC-MSD analysis and mass spectra, dimer of furan compounds as the main by-products were speculated, and the components of gas products were methane, ethane, CO, CO2, and H2. We suggested that IL-1 and CrCl3 exhibited a coordination interaction; the formation of the intermediate via the hydride shift played a key role in the formation of HMF. The catalyst was recycled and exhibited constant activity for five successive trials.

  10. Conversion of rice husk into fermentable sugar by two stage hydrolysis

    NASA Astrophysics Data System (ADS)

    Salimi, M. N.; Lim, S. E.; Yusoff, A. H. M.; Jamlos, M. F.

    2017-10-01

    Rice husks, a complex lignocellulosic biomass which comprised of high cellulose content (38-50%), hemicellulose (23-32%) and lignin (15-25%) possesses the potential to pursue as low cost feedstock for production of ethanol. Dilute sulfuric acid at concentration of 1, 2, 3 (%, v/v) were used for pretreatments at varied hydrolysis time (15-60 min) and enzymatic saccharification at range of 45-60˚C and pH 4.5-6.0 were evaluated for conversion of rice husk’s cellulose and hemicellulose to fermentable sugars. The maximum yield of fermentable sugars from rice husks by dilute sulfuric acid (2%, 60 minutes) was 0.0751 g/l. Total fermentable sugar was identified using dinitrosalicylic acid (DNS) method and expressed in g/l. Enzymatic hydrolysis for conversion of cellulose to fermentable sugar has been studied by applying response surface methodology (RSM) and Analysis of Variance (ANOVA). Two independent variables namely initial pH and incubation temperature were considered using Central Composite Design (CCD). The determination coefficient, R2 obtained was 0.9848. This indicates that 98.48% capriciousness in the respond could be clarified by the ANOVA. Based on the data shown by Design Expert software, the optimum condition for total sugar production was at pH 6.0 and temperature 45˚C as it produced 0.5086 g/l of total sugar.

  11. Simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero by on-line postcolumn derivation fluorescence detection and ultraviolet detection coupled two-dimensional high-performance liquid chromatography.

    PubMed

    Cheng, Cheanyeh; Wu, Shing-Chen

    2011-05-20

    An innovative two-dimensional high-performance liquid chromatography system was developed for the simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero. A C8 reversed-phase chromatographic column with ultraviolet detection was used as the first dimension for the determination of aspartame, and a ligand-exchange chromatographic column with on-line postcolumn derivation fluorescence detection was employed as the second dimension for the analysis of amino acid enantiomers. The fluorimetric derivative reagent of amino acid enantiomers was o-phthaldialdehyde. The hydrolysis of aspartame in Coca-Cola Zero was induced by electric-heating or microwave heating. Aspartame was quantified by the matrix matched external standard calibration curve with a linear concentration range of 0-50 μg mL(-1) (r(2)=0.9984). The limit of detection (LOD) and the limit of quantification (LOQ) were 1.3 μg mL(-1) and 4.3 μg mL(-1), respectively. The amino acid enantiomers was analyzed by the matrix matched internal standard calibration method (D-leucine as the internal standard) with a linear concentration range of 0-10 μg mL(-1) (r(2)=0.9988-0.9997). The LODs and LOQs for L- and D-aspartic acid and L- and D-phenylalanine were 0.16-0.17 μg mL(-1) and 0.52-0.55 μg mL(-1), respectively, that was 12-13 times more sensitive than ultraviolet detection. The overall analysis accuracy for aspartame and amino acid enantiomers was 90.2-99.2% and 90.4-96.2%, respectively. The overall analysis precision for aspartame and amino acid enantiomers was 0.1-1.7% and 0.5-6.7%, respectively. Generally, the extent of aspartame hydrolysis increases with the increase of electro-thermal temperature, microwave power, and the duration of hydrolysis time. D-aspartic acid and D-phenylalanine can be observed with the electro-thermal racemization at the hydrolysis temperature 120°C for 1 day and only D-aspartic acid can be observed at the hydrolysis temperature 90°C for 2 and 3 days. For

  12. Effects of high-pressure extruding pretreatment on MSW upgrading and hydrolysis enhancement.

    PubMed

    Xu, Shuang; Kong, Xin; Liu, Jianguo; Zhao, Ke; Zhao, Guangqi; Bahdolla, Amanjol

    2016-12-01

    High-pressure extruding (HPE) is an efficient technology used to separate municipal solid waste (MSW) into wet (biodegradable) and dry (combustible) fractions. Effects of pressure, 10, 20, 30, and 40MPa on quality upgrading of the MSW and hydrolysis of the wet fraction were examined. TS of the dry fraction increased from 48.5% to 59.4% when the extruding pressure increased from 10 to 40MPa, meanwhile the biochemical methane potential (BMP) of the wet fraction extruded under 40MPa was 674mL CH 4 /g·VS, 33% higher than that of the organic fraction of the MSW (OFMSW) control. Furthermore, in the initial stage of hydrolysis experiment, the extruded wet fractions had lower pH and higher COD, volatile fatty acids (VFAs) and COD/VFA than those of the OFMSW control. The results confirmed that HPE upgraded the MSW and enhanced hydrolysis of the wet fractions. However, high extruding pressure as 40MPa aggravated the excessive acidification of the wet fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Analysis of free and bound chlorophenoxy acids in cereals.

    PubMed

    Lokke, H

    1975-06-01

    Extraction of the chlorophenoxy acids 2,4-D and dichlorprop in cereals has been examined by analyzing barley from spraying experiments. A procedure has been set up by combination of acid hydrolysis and enzymatic degradation followed by extraction and clean up on either silica gel or basic aluminum oxide. The final determination is based on reaction with diazomethane and subsequently GLC with ECD. This procedure was compared with two different extraction procedures previously described in the literature. The one comparative procedure uses a mixture of 50% diethyl ether/hexane in presence of sulphuric acid and resulted in residues up to ten times lower than found after the combined acid hydrolysis/enzymatic degradation procedure. In the second comparison a direct extraction was made with a mixture of 65% (v/v) acetonitrile in water. No differences were found between this and the combined acid hydrolysis/enzymatic degradation procedure.

  14. Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production

    PubMed Central

    2014-01-01

    Background Carbon sources for biofuel production are wide-ranging and their availability depends on the climate and soil conditions of the land where the production chain is located. Henequen (Agave fourcroydes Lem.) is cultivated in Yucatán, Mexico to produce natural fibers from the leaves, and a juice containing fructans is produced during this process. Fructans can be hydrolyzed to fructose and glucose and metabolized into ethanol by appropriate yeasts. In Mexico, different Agave species provide the carbon source for (distilled and non-distilled) alcoholic beverage production using the stem of the plant, whilst the leaves are discarded. In this work, we investigated the effect of thermal acid and enzymatic hydrolysis of the juice on the amount of reducing sugars released. Growth curves were generated with the yeasts Saccharomyces cerevisiae and Kluyveromyces marxianus and fermentations were then carried out with Kluyveromyces marxianus to determine alcohol yields. Results With thermal acid hydrolysis, the greatest increase in reducing sugars (82.6%) was obtained using 5% H2SO4 at 100°C with a 30 min reaction time. Statistically similar results can be obtained using the same acid concentration at a lower temperature and with a shorter reaction time (60°C, 15 min), or by using 1% H2SO4 at 100°C with a 30 min reaction time. In the case of enzymatic hydrolysis, the use of 5.75, 11.47 and 22.82 U of enzyme did not produce significant differences in the increase in reducing sugars. Although both hydrolysis processes obtained similar results, the difference was observed after fermentation. Ethanol yields were 50.3 ± 4 and 80.04 ± 5.29% of the theoretical yield respectively. Conclusions Final reducing sugars concentrations obtained with both thermal acid and enzymatic hydrolysis were similar. Saccharomyces cerevisiae, a good ethanol producer, did not grow in the hydrolysates. Only Kluyveromyces marxianus was able to grow in them, giving a higher ethanol

  15. Preparation of icariside II from icariin by enzymatic hydrolysis method.

    PubMed

    Xia, Quan; Xu, Dujuan; Huang, Zhaogang; Liu, Jianjun; Wang, Xinqun; Wang, Xiu; Liu, Shangquan

    2010-07-01

    It has been reported that icariin and icariside II, two flavonoid glycosides coming from herba epimedii, which have a closely structural relationship, show some pharmacological effects such as preventing osteoporosis, cancer and depression. The content of natural icariside II is very low in herba epimedii, but it is the main component in vivo after the administration of herba epimedii. More icariside II can be obtained from icariin by enzymatic hydrolysis method than by traditional isolation method. This study focuses on finding a simple and feasible method to prepare icariside II from icariin by enzymatic hydrolysis, so as to meet the request for further pharmacologic actions study. Icariin was obtained successively with 90% ethanol extraction, isolation on macroporous resin and purification on silica gel chromatography. Enzymatic hydrolysis conditions were tested for the bioconversion of icariin into icariside II by orthogonal array design. The structures of isolated icariin and produced icariside II were identified by UV, IR, ESIMS, (1)H NMR, (13)C NMR, and DEPT spectroscope. Enzymatic hydrolysis experiment showed that icariin could be transformed into icariside II with the action of beta-glucosidase and the optimum reaction conditions were determined as follows: 50 degrees C, 0.2 M disodium hydrogen phosphate and citric acid buffer system (pH6.0), the ratio of icariin/enzyme is 1:1 and reaction time 5 h. By using this enzymatic condition, 95.5 mg icariside II (with the purity of 99.1%) was obtained eventually by transforming 200 mg icariin. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Surface acid-base behaviors of Chinese loess.

    PubMed

    Chu, Zhaosheng; Liu, Wenxin; Tang, Hongxiao; Qian, Tianwei; Li, Shushen; Li, Zhentang; Wu, Guibin

    2002-08-15

    Acid-base titration was applied to investigate the surface acid-base properties of a Chinese loess sample at different ionic strengths. The acidimetric supernatant was regarded as the system blank of titration to correct the influence of particle dissolution on the estimation of proton consumption. The titration behavior of the system blank could be described by the hydrolysis of Al3+ and Si(OH)4 in aqueous solution as well as the production of hydroxyaluminosilicates. The formation of Al-Si species on homogeneous surface sites by hydrous aluminum and silicic acid, released from solid substrate during the acidic titration, was considered in the model description of the back-titration procedure. A surface reaction model was suggested as follows: >SOH<-->SO(-)+H+, pK(a)(int)=3.48-3.98;>SOH+Al(3+)+H4SiO4<-->SOAl(OSi(OH)3(+)+2H+, pK(SC)=3.48-4.04. Two simple surface complexation models accounted for the interfacial structure, i.e., the constant capacitance model (CCM) and the diffuse layer model (DLM), and gave a satisfactory description of the experimental data. Considering the effect of ionic strength on the electrostatic profile at the solid-aqueous interface, the DLM was appropriate at the low concentrations (0.01 and 0.005 mol/L) of background electrolyte (NaNO3 in this study), while the CCM was preferable in the case of high ionic strength (0.1 mol/L).

  17. Elucidation of hydrolysis mechanisms for fatty acid amide hydrolase and its Lys142Ala variant via QM/MM simulations.

    PubMed

    Tubert-Brohman, Ivan; Acevedo, Orlando; Jorgensen, William L

    2006-12-27

    Fatty acid amide hydrolase (FAAH) is a serine hydrolase that degrades anandamide, an endocannabinoid, and oleamide, a sleep-inducing lipid, and has potential applications as a therapeutic target for neurological disorders. Remarkably, FAAH hydrolyzes amides and esters with similar rates; however, the normal preference for esters reemerges when Lys142 is mutated to alanine. To elucidate the hydrolysis mechanisms and the causes behind this variation of selectivity, mixed quantum and molecular mechanics (QM/MM) calculations were carried out to obtain free-energy profiles for alternative mechanisms for the enzymatic hydrolyses. The methodology features free-energy perturbation calculations in Monte Carlo simulations with PDDG/PM3 as the QM method. For wild-type FAAH, the results support a mechanism, which features proton transfer from Ser217 to Lys142, simultaneous proton transfer from Ser241 to Ser217, and attack of Ser241 on the substrate's carbonyl carbon to yield a tetrahedral intermediate, which subsequently undergoes elimination with simultaneous protonation of the leaving group by a Lys142-Ser217 proton shuttle. For the Lys142Ala mutant, a striking multistep sequence is proposed with simultaneous proton transfer from Ser241 to Ser217, attack of Ser241 on the carbonyl carbon of the substrate, and elimination of the leaving group and its protonation by Ser217. Support comes from the free-energy results, which well reproduce the observation that the Lys142Ala mutation in FAAH decreases the rate of hydrolysis for oleamide significantly more than for methyl oleate.

  18. Laser-Based Measurement of Refractive Index Changes: Kinetics of 2,3-Epoxy-1-propanol Hydrolysis.

    ERIC Educational Resources Information Center

    Spencer, Bert; Zare, Richard N.

    1988-01-01

    Describes an experiment in which a simple laser-based apparatus is used for measuring the change in refractive index during the acid-catalyzed hydrolysis of glycidol into glycerine. Gives a schematic of the experimental setup and discusses the kinetic analysis. (MVL)

  19. Sugar loss and enzyme inhibition due to oligosaccharides accumulation during high solids-loading enzymatic hydrolysis

    USDA-ARS?s Scientific Manuscript database

    Oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, ammonia fiber expansion: AFEX and extractive ammonia: EA). The methodology for large-scale separation of ...

  20. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    PubMed

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-02-11

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  1. Hydrolysis of short-chain phosphatidylcholines by bee venom phospholipase A2.

    PubMed

    Raykova, D; Blagoev, B

    1986-01-01

    In order to find out the aggregation state of the substrate, preferred by bee venom phospholipase A2 (EC 3.1.1.4), its action on short-chain phosphatidylcholines with two identical (C6-C10) fatty acids has been tested. The rate of hydrolysis as a function of acyl chain length showed a maximum at dioctanoylphosphatidylcholine. The effects of alcohols, NaCl and Triton X-100, which affect the aggregation state of phospholipids in water, were also studied. The addition of n-alcohol led to a significant inhibition of the hydrolysis of the substrates present in micellar form and activated the hydrolysis of substrates which form liposomes. The inhibitory effect increased with increasing length of the aliphatic carbon chain of the alcohol. Triton X-100 at low Triton/phospholipid molar ratios enhanced enzyme activity. These results do not agree with the accepted idea that bee venom phospholipase A2 hydrolyzes short-chain lecithins in their molecularly dispersed form and that micelles cannot act as substrates. The data indicate that short-chain lecithins in the aggregated state are hydrolyzed and that the requirements of bee venom phospholipase A2 for the aggregation state of the substrate are not strict.

  2. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.

    PubMed

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-11-15

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jewell, Christopher; Prusakiewicz, Jeffery J.; Ackermann, Chrisita

    2007-12-01

    Parabens are esters of 4-hydroxybenzoic acid and used as anti-microbial agents in a wide variety of toiletries, cosmetics and pharmaceuticals. It is of interest to understand the dermal absorption and hydrolysis of parabens, and to evaluate their disposition after dermal exposure and their potential to illicit localised toxicity. The use of minipig as a surrogate model for human dermal metabolism and toxicity studies, justifies the comparison of paraben metabolism in human and minipig skin. Parabens are hydrolysed by carboxylesterases to 4-hydroxybenzoic acid. The effects of the carboxylesterase inhibitors paraoxon and bis-nitrophenylphosphate provided evidence of the involvement of dermal carboxylesterases inmore » paraben hydrolysis. Loperamide, a specific inhibitor of human carboxylesterase-2 inhibited butyl- and benzylparaben hydrolysis in human skin but not methylparaben or ethylparaben. These results show that butyl- and benzylparaben are more selective substrates for human carboxylesterase-2 in skin than the other parabens examined. Parabens applied to the surface of human or minipig skin were absorbed to a similar amount and metabolised to 4-hydroxybenzoic acid during dermal absorption. These results demonstrate that the minipig is a suitable model for man for assessing dermal absorption and hydrolysis of parabens, although the carboxylesterase profile in skin differs between human and minipig.« less

  4. Determination of polyadipates migrating from lid gaskets of glass jars. Hydrolysis to adipic acid and measurement by LC-MS/MS.

    PubMed

    Driffield, M; Bradley, E L; Harmer, N; Castle, L; Klump, S; Mottier, P

    2010-10-01

    Polyadipate plasticizers can be present in the polyvinylchloride (PVC) gaskets used to seal the lids of glass jars. As the gaskets can come into direct contact with the foodstuffs inside the jar, the potential exists for polyadipate migration into the food. The procedure and performance characteristics of a test method for the analysis of polyadipates in food simulants (3% aqueous acetic acid and 10% aqueous ethanol) and the volatile test media used in substitute fat tests (isooctane and 95% aqueous ethanol) are described. The PVC gaskets were exposed to the food simulants or their substitutes under standard test conditions. Studies were initially carried out using direct measurement of the polyadipate oligomers by liquid chromatography with time-of-flight mass spectrometric detection (LC-TOF-MS) but this was not practical due to the number of peaks detected. Instead, the migrating polyadipates were hydrolysed to adipic acid and measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). The amount of polyadipate that this measurement of adipic acid represents was then calculated. Method performance was assessed by analysis of gaskets from two types of jar lids by single-laboratory validation. Linearity, sensitivity, repeatability, intermediate reproducibility and recovery were determined to be suitable for checking compliance with the 30 mg/kg specific migration limits for polyesters of 1,2-propane diol and/or 1,3- and/or 1,4-butanediol and/or polypropylene-glycol with adipic acid, which may be end-capped with acetic acid or fatty acids C(12)-C(18) or n-octanol and/or n-decanol. The method was found to be much quicker than previous methods involving extraction, clean-up, hydrolysis, esterification, derivatisation and GC measurement, consequently saving time and money.

  5. Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars.

    PubMed

    Kapu, N U S; Manning, M; Hurley, T B; Voigt, J; Cosgrove, D J; Romaine, C P

    2012-06-01

    Spent mushroom compost (SMC), a byproduct of commercial mushroom cultivation, poses serious environmental problems that have hampered the growth of this important agro-industry. In an effort to develop new applications for SMC, we explored its use as a feedstock for bioethanol production. SMC constitutes approximately 30%w/w polysaccharides, 66% of which is glucan. Following dilute-acid pretreatment and enzymatic hydrolysis, both in the presence of PEG 6000, 97% of glucan and 44% of xylan in SMC were converted into the corresponding monosaccharides. Incorporation of PEG 6000 reduced the cellulase requirement by 77%. Zwittergent 3-12 and 3-14 also significantly increased the efficacy of acid pretreatment and enzymatic hydrolysis. The use of SMC in bioethanol production represents a potential mitigation solution for the critical environmental issues associated with the stockpiling of the major byproduct of the mushroom industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts.

    PubMed

    Azman, Samet; Khadem, Ahmad F; Zeeman, Grietje; van Lier, Jules B; Plugge, Caroline M

    2015-03-25

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  7. Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation.

    PubMed

    de Araújo, Cynthia Kérzia Costa; de Oliveira Campos, Alan; de Araújo Padilha, Carlos Eduardo; de Sousa Júnior, Francisco Canindé; do Nascimento, Ruthinéia Jéssica Alves; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino

    2017-08-01

    This work investigated the influence of chemical (Triton X-100) and biological surfactant preparation (rhamnolipids) in coconut husk hydrolysis that was subjected to pretreatment with acid-alkali or alkaline hydrogen peroxide. The natural and pretreated biomass was characterized using the National Renewable Energy Laboratory protocol analysis as well as X-ray diffraction and scanning electron microscopy. The results demonstrated that in terms of the total reducing sugars, there was no significant difference between the hydrolysis using Triton X-100 and rhamnolipids, regardless of the pretreatment. A cellulosic conversion value as high as 33.0% was obtained in experiments with rhamnolipids. The coconut husk was observed to be a potential biomass that could produce second generation ethanol, and the rhamnolipid preparation can be used to support for the enzymatic hydrolysis, enhancing the advantage of cellulose conversion into glucose over chemical surfactants because it is an environmentally friendly approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Rapid determination of collagen in meat-based foods by microwave hydrolysis of proteins and HPAEC-PAD analysis of 4-hydroxyproline.

    PubMed

    Messia, M C; Di Falco, T; Panfili, G; Marconi, E

    2008-10-01

    A rapid microwave procedure for protein hydrolysis coupled with High Performance Anion Exchange Chromatography and Pulsed Amperometric Detection (HPAEC-PAD) was developed to quantify the amino acid 4-hydroxyproline in meat and meat-based products. This innovative approach was successfully applied to determine collagen content (4-hydroxyproline×8) as the index quality of meat material employed in the preparation of typical meat sausages ("Mortadella di Bologna PGI" and "Salamini italiani alla cacciatora PDO") and fresh filled pastas. Microwave hydrolysis showed a precision and accuracy similar to traditional hydrolysis (RSD% from 0.0 to 6.4; relative error 1.4-10.0%) with a reduction in the hydrolysis time from 24h to 20min. HPAEC-PAD allowed detection of 4-hydroxyproline without pre or post-column derivatization and the use of non-toxic eluents.

  9. A mechanistic investigation of ethylene oxide hydrolysis to ethanediol.

    PubMed

    Lundin, Angelica; Panas, Itai; Ahlberg, Elisabet

    2007-09-20

    The B3LYP/6-311+G(d,p) description is employed to study the heterolytic ring opening mechanisms under microsolvation conditions for ethylene oxide in acidic, neutral, and alkaline environments. In acid and alkaline media, a concerted trans S(N)2 reaction is strongly favored as compared to the corresponding cis reaction. The importance of the nucleophile, water in acidic media and hydroxide ion in alkaline media, for lowering the activation enthalpy is emphasized and activation energies of approximately 80 and approximately 60 kJ mol(-1) are obtained under acid and alkaline conditions, respectively. Under neutral conditions, the trans S(N)2 mechanism becomes inaccessible because it invokes the formation of a transient H+ and OH- pair across the 1,2-ethanediol molecule. Rather, epoxide ring opening is achieved by hydrolysis of a single water molecule. The latter mechanism displays significantly greater activation enthalpy (205 kJ mol(-1)) than those in acid and alkaline environments. This is in agreement with experiment. Product distributions of simple olefins in neutral aqueous media, as well as the detrimental impact of acid/base conditions for the selectivity of epoxidation catalysts in aqueous media, are discussed.

  10. Study of a specific lignin model: γ-oxidation and how it influences the hydrolysis efficiency of alcohol-aldehyde dehydrogenation copolymers.

    PubMed

    Bouxin, Florent; Baumberger, Stéphanie; Renault, Jean-Hugues; Dole, Patrice

    2011-05-01

    Six coniferyl alcohol-coniferaldehyde dehydrogenation copolymers (DHcoPs) were synthesized in order to determine the influence of an increased number of aldehyde functions on hydrolysis. After heterogeneous hydrolysis using acidic Montmorillonite K10 clay, the DHcoPs were thioacidolyzed and analyzed by gel permeation chromatography (GPC). Comparison of the thioacidolyzed products, with and without the hydrolysis step, showed that there was a greater proportion of condensation reaction in the absence of aldehyde. When the coniferaldehyde content in the initial synthetic mixture was more than 30% (w/w), only a low fraction of condensed products was generated during the K10 clay hydrolysis step. This suggests that condensation pathways are mainly due to the alcohol present in the γ-position in the DHcoPs. Investigation of the reactivity and the potential condensation of aldehyde and alcohol monomers under hydrolysis conditions showed the important conversion of coniferyl alcohol and conversely the stability of coniferaldehyde. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features.

    PubMed

    Liljeblad, Arto; Kallio, Pauli; Vainio, Marita; Niemi, Jarmo; Kanerva, Liisa T

    2010-02-21

    Various commercial lyophilized and immobilized preparations of lipase A from Candida antarctica (CAL-A) were studied for their ability to catalyze the hydrolysis of amide bonds in N-acylated alpha-amino acids, 3-butanamidobutanoic acid (beta-amino acid) and its ethyl ester. The activity toward amide bonds is highly untypical of lipases, despite the close mechanistic analogy to amidases which normally catalyze the corresponding reactions. Most CAL-A preparations cleaved amide bonds of various substrates with high enantioselectivity, although high variations in substrate selectivity and catalytic rates were detected. The possible role of contaminant protein species on the hydrolytic activity toward these bonds was studied by fractionation and analysis of the commercial lyophilized preparation of CAL-A (Cat#ICR-112, Codexis). In addition to minor impurities, two equally abundant proteins were detected, migrating on SDS-PAGE a few kDa apart around the calculated size of CAL-A. Based on peptide fragment analysis and sequence comparison both bands shared substantial sequence coverage with CAL-A. However, peptides at the C-terminal end constituting a motile domain described as an active-site flap were not identified in the smaller fragment. Separated gel filtration fractions of the two forms of CAL-A both catalyzed the amide bond hydrolysis of ethyl 3-butanamidobutanoate as well as the N-acylation of methyl pipecolinate. Hydrolytic activity towards N-acetylmethionine was, however, solely confined to the fractions containing the truncated form of CAL-A. These fractions were also found to contain a trace enzyme impurity identified in sequence analysis as a serine carboxypeptidase. The possible role of catalytic impurities versus the function of CAL-A in amide bond hydrolysis is further discussed in the paper.

  12. Enzymatic hydrolysis of 1-monoacyl-SN-glycerol-3-phosphoryl-choline (1-lysolecithin) by phospholipases from peanut seeds.

    PubMed

    Strauss, H; Leibovitz-Ben Gershon, Z; Heller, M

    1976-06-01

    Hydrolysis of 1-lysolecithin (1-acyl glycerophosphorylcholine [1-acyl GPC]) by preparations of phospholipase D from peanut seeds was investigated. 1-Lysolecithin was hydrolyzed at a much slower rate than phosphatidylcholine (lecithin). Although Ca+2 ions are required for the cleavage of lecithin by the enzyme, their effect on the hydrolysis of lysolecithin depended upon the concentration of the substrate: at 0.2 mM 1-lysolecithin, Ca+2 ions increased the reaction rates, whereas at concentrations of the substrate lower than 0.1 mM, Ca+2 ions were inhibitory. A broad pH activity curve between 5 and 8 was obtained with higher rates in the alkaline range, both in the absence and presence of Ca+2 ions. The increased hydrolysis of lysolecithin due to Ca+2 was noticed over the entire pH range. Upon storage of the enzyme solutions at 4 C, decreased rates of hydrolysis of lecithin were observed, with t 1/2 values of ca. 50 and 100 days depending on the purity of the preparation. During the same period, no reduction occurred in the activity of these preparations on lysolecithin as substrate. The effects of Ca+2 ions and the analysis of the products of 1-acyl GPC cleavage by the enzyme preparations revealed the presence of more than one enzyme and the formation of the following compounds: lysophosphatidic acids (1 acyl glycerophosphoric acids), free fatty acids, glycerophosphorylcholine, and choline. The possible pathways leading to the degradation of lysolecithin and the formation of these products include reactions catalyzed by lysophospholipase A1 (lysophosphatidylcholine 1-acyl hydrolase, E.C. 3.1.1.5) and a phosphodiesterase (L-3-glycerylphosphorylcholine glycerophosphohydrolase, E.C.3.1.4.2), in addition to phospholipase D (phosphatidyl-choline phosphatidohydrolase, E.C. 3.1.4.4).

  13. One-Step Extraction and Hydrolysis of Flavonoid Glycosides in Rape Bee Pollen Based on Soxhlet-Assisted Matrix Solid Phase Dispersion.

    PubMed

    Tu, Xijuan; Ma, Shuangqin; Gao, Zhaosheng; Wang, Jing; Huang, Shaokang; Chen, Wenbin

    2017-11-01

    Flavonoids are frequently found as glycosylated derivatives in plant materials. To determine contents of flavonoid aglycones in these matrices, procedures for the extraction and hydrolysis of flavonoid glycosides are required. The current sample preparation method is both labour and time consuming. Develop a modified matrix solid phase dispersion (MSPD) procedure as an alternative methodology for the one-step extraction and hydrolysis of flavonoid glycosides. HPLC-DAD was applied for demonstrating the one-step extraction and hydrolysis of flavonoids in rape bee pollen. The obtained contents of flavonoid aglycones (quercetin, kaempferol, isorhamnetin) were used for the optimisation and validation of the method. The extraction and hydrolysis were accomplished in one step. The procedure completes in 2 h with silica gel as dispersant, a 1:2 ratio of sample to dispersant, and 60% aqueous ethanol with 0.3 M hydrochloric acid as the extraction solution. The relative standard deviations (RSDs) of repeatability were less than 5%, and the recoveries at two fortified levels were between 88.3 and 104.8%. The proposed methodology is simple and highly efficient, with good repeatability and recovery. Compared with currently available methods, the present work has advantages of using less time and labour, higher extraction efficiency, and less consumption of the acid catalyst. This method may have applications for the one-step extraction and hydrolysis of bioactive compounds from plant materials. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Toxicity of binary chemical munition destruction products: methylphosphonic acid, methylphosphinic acid, 2-diisopropylaminoethanol, DF neutralent, and QL neutralent.

    PubMed

    Watson, Rebecca E; Hafez, Ahmed M; Kremsky, Jonathan N; Bizzigotti, George O

    2007-01-01

    This paper reports the toxicity and environmental impact of neutralents produced from the hydrolysis of binary chemical agent precursor chemicals DF (methylphosphonic difluoride) and QL (2-[bis(1-methylethyl)amino]ethyl ethyl methylphosphonite). Following a literature review of the neutralent mixtures and constituents, basic toxicity tests were conducted to fill data gaps, including acute oral and dermal median lethal dose assays, the Ames mutagenicity test, and ecotoxicity tests. For methylphosphonic acid (MPA), a major constituent of DF neutralent, the acute oral LD(50) in the Sprague-Dawley rat was measured at 1888 mg/kg, and the Ames test using typical tester strains of Salmonella typhimurium and Escherichia coli was negative. The 48-h LC(50) values for pH-adjusted DF neutralent with Daphnia magna and Cyprinodon variegatus were > 2500 mg/L and 1593 mg/L, respectively. The acute oral LD(50) values in the rat for QL neutralent constituents methylphosphinic acid (MP) and 2-diisopropylaminoethanol (KB) were both determined to be 940 mg/kg, and the Ames test was negative for both. Good Laboratory Practice (GLP)-compliant ecotoxicity tests for MP and KB gave 48-h D. magna EC(50) values of 6.8 mg/L and 83 mg/L, respectively. GLP-compliant 96-h C. variegatus assays on MP and KB gave LC(50) values of 73 and 252 mg/L, respectively, and NOEC values of 22 and 108 mg/L. QL neutralent LD(50) values for acute oral and dermal toxicity tests were both > 5000 mg/kg, and the 48-h LD(50) values for D. magna and C. variegatus were 249 and 2500 mg/L, respectively. Using these data, the overall toxicity of the neutralents was assessed.

  15. Crystallization and alkaline hydrolysis of poly(3- hydroxybutyrate) films probed by thermal analysis and infrared spectroscopy.

    PubMed

    Tapadiya, Asish; Vasanthan, Nadarajah

    2017-09-01

    Poly(3-hydroxybutyrate) (PHB) is a microbially synthesized polymer, which is often purified by alkaline treatment. The effect of microstructure on alkaline hydrolysis has been studied by varying concentration of base and the temperature. The morphologies of PHB films before and after degradation were evaluated using DSC and FTIR spectroscopy. The hydrolytic degradation study by weight loss measurement revealed that the crystallinity of PHB greatly decreased the hydrolytic ability of PHB. The crystallization of PHB and the effect of base on hydrolysis was investigated by time dependent FTIR spectroscopy. The normalized absorbance of 3010cm -1 and 1183cm -1 were used to characterize the crystalline and the amorphous phases of PHB. FTIR spectroscopy reveal that the extent of hydrolysis decreased with increasing crystallinity. The crotonic acid was detected as a major product after hydrolysis, confirmed by UV/Visible and proton NMR spectroscopy. The normalized absorbance of the crystalline band at 3010cm -1 band remained constant, suggesting that there is no significant change in crystallinity with degradation. The normalized amorphous band at 1183cm -1 showed a decrease in absorbance ratio, suggesting degradation of the amorphous phase. Our data suggests that alkaline hydrolysis depends on concentration of base and the crystallinity of PHB. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis of (±)-Bistellettadine A

    PubMed Central

    Yu, Min; Pochapsky, Susan S.

    2010-01-01

    Esterification of the trienoic acid with o-xylylene dibromide gave the bis ester that underwent a templated Diels-Alder reaction to afford the macrodiolide stereospecifically in a single step. The synthesis of bistellettadine A was completed in four steps by hydrolysis and side chain elaboration. PMID:20078082

  17. Enhancement of anaerobic biodegradability of flower stem wastes with vegetable wastes by co-hydrolysis.

    PubMed

    Zhang, Bo; He, Pinjing; Lü, Fan; Shao, Liming

    2008-01-01

    The vegetable wastes and flower stems were co-digested to evaluate the anaerobic hydrolysis performance of difficultly biodegradable organic wastes by introducing readily biodegradable organic wastes. The experiments were carried out in batches. When the vegetable wastes were mixed with the flower stems at the dry weight ratio of 1 to 13, the overall hydrolysis rate increased by 8%, 12%, and 2% according to the carbon, nitrogen, and total solid (TS) conversion rate, respectively. While the dry weight ratio was designed as 1 to 3, there was a respective rise of 5%, 15%, and 4% in the conversion rate of carbon, nitrogen, and TS. The enhancement of anaerobic hydrolysis from the mixed vegetable wastes and flower stems can be attributed to the formation of volatile fatty acids (VFA) and nutrient supplement like nitrogen content. The maximum VFA concentration can achieve 1.7 g/L owing to the rapid acidification of vegetable wastes, loosing the structure of lignocellulose materials. The statistic bivariate analysis revealed that the hydrolysis performance was significantly related to the physical and biochemical compositions of the feeding substrate. Especially, the soluble carbon concentration in the liquid was significantly positively correlated to the concentration of nitrogen and hemicellulose, and negatively correlated to the concentration of carbon and lignocellulose in the feeding substrate, suggesting that the regulation and control of feedstock can have an important influence on the anaerobic hydrolysis of organic wastes.

  18. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    PubMed

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Electrospray ionization mass spectrometry for the hydrolysis complexes of cisplatin: implications for the hydrolysis process of platinum complexes.

    PubMed

    Feifan, Xie; Pieter, Colin; Jan, Van Bocxlaer

    2017-07-01

    Non-enzyme-dependent hydrolysis of the drug cisplatin is important for its mode of action and toxicity. However, up until today, the hydrolysis process of cisplatin is still not completely understood. In the present study, the hydrolysis of cisplatin in an aqueous solution was systematically investigated by using electrospray ionization mass spectrometry coupled to liquid chromatography. A variety of previously unreported hydrolysis complexes corresponding to monomeric, dimeric and trimeric species were detected and identified. The characteristics of the Pt-containing complexes were investigated by using collision-induced dissociation (CID). The hydrolysis complexes demonstrate distinctive and correlative CID characteristics, which provides tools for an informative identification. The most frequently observed dissociation mechanism was sequential loss of NH 3 , H 2 O and HCl. Loss of the Pt atom was observed as the final step during the CID process. The formation mechanisms of the observed complexes were explored and experimentally examined. The strongly bound dimeric species, which existed in solution, are assumed to be formed from the clustering of the parent compound and its monohydrated or dihydrated complexes. The role of the electrospray process in the formation of some of the observed ions was also evaluated, and the electrospray ionization-related cold clusters were identified. The previously reported hydrolysis equilibria were tested and subsequently refined via a hydrolysis study resulting in a renewed mechanistic equilibrium system of cisplatin as proposed from our results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    PubMed Central

    Azman, Samet; Khadem, Ahmad F.; Zeeman, Grietje; van Lier, Jules B.; Plugge, Caroline M.

    2015-01-01

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid. PMID:28955013

  2. Combined effects of π-π stacking and hydrogen bonding on the (N1) acidity of uracil and hydrolysis of 2'-deoxyuridine.

    PubMed

    Kellie, Jennifer L; Navarro-Whyte, Lex; Carvey, Matthew T; Wetmore, Stacey D

    2012-03-01

    M06-2X/6-31+G(d,p) is used to study the simultaneous effects of π-π stacking interactions with phenylalanine (modeled as benzene) and hydrogen bonding with small molecules (HF, H(2)O, and NH(3)) on the N1 acidity of uracil and the hydrolytic deglycosylation of 2'-deoxyuridine (dU) (facilitated by fully (OH(-)) or partially (HCOO(-)···H(2)O) activated water). When phenylalanine is complexed with isolated uracil, the proton affinity of all acceptor sites significantly increases (by up to 28 kJ mol(-1)), while the N1 acidity slightly decreases (by ~6 kJ mol(-1)). When small molecules are hydrogen bound to uracil, addition of the phenylalanine ring can increase or decrease the acidity of uracil depending on the number and nature (acidity) of the molecules bound. Furthermore, a strong correlation between the effects of π-π stacking on the acidity of U and the dU deglycosylation reaction energetics is found, where the hydrolysis barrier can increase or decrease depending on the nature and number of small molecules bound, the nucleophile considered (which dictates the negative charge on U in the transition state), and the polarity of the (bulk) environment. These findings emphasize that the catalytic (or anticatalytic) role of the active-site aromatic amino acid residues is highly dependent on the situation under consideration. In the case of uracil-DNA glycosylase (UNG), which catalyzes the hydrolytic excision of uracil from DNA, the type of discrete hydrogen-bonding interactions with U, the nature of the nucleophile, and the anticipated weak, nonpolar environment in the active site suggest that phenylalanine will be slightly anticatalytic in the chemical step, and therefore experimentally observed contributions to catalysis may entirely result from associated structural changes that occur prior to deglycosylation.

  3. Isolation, Solubility, and Characterization of D-Mannitol Esters of 4-Methoxybenzeneboronic Acid.

    PubMed

    Lopalco, Antonio; Marinaro, William A; Day, Victor W; Stella, Valentino J

    2017-02-01

    The purpose of this study was to determine the aqueous solubility of a model phenyl boronic acid, 4-methoxybenzeneboronic acid, as a function of pH both in the absence and in the presence of varying D-mannitol concentration. Solid isolated D-mannitol esters were characterized by differential scanning calorimetry, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray studies, and the boronic acid-to-D-mannitol ratio was quantified by HPLC. Hydrolysis of the monoester was studied using UV spectral differences between the monoester and the parent boronic acid. Two D-mannitol esters of 4-methoxybenzeneboronic acid were isolated. The triboronate ester was very insoluble whereas a symmetrical monoboronate monohydrate was also less soluble than the parent. Both esters were crystalline. The monoboronate monohydrate was, however, more soluble than the parent at alkaline pH values due to its lower pKa value (6.53) compared to the parent acid (9.41). Hydrolysis of the monoboronate was extremely fast when even small amount of water was added to dry acetonitrile solutions of the ester. The hydrolysis was buffer concentration dependent and apparent pH sensitive with hydrolysis accelerated by acid. Implications affecting the formulation of future boronic acid drugs are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Sun, Han; Shen, Qiuting; Li, Xiang; Chen, Hong

    2015-04-15

    Adding alkyl polyglucose (APG) into an anaerobic treatment system of waste activated sludge (WAS) was reported to remarkably improve the production of short-chain fatty acids (SCFAs), especially propionic acid via simultaneously accelerating solubilization and hydrolysis, enhancing acidification, inhibiting methanogenesis and balancing carbon to nitrogen (C/N) ratio of substrate. Not only the production of SCFAs, especially propionic acid, was significantly improved by APG, but also the feasible operation time was shortened. The SCFAs yield at 0.3 g APG per gram of total suspended solids (TSS) within 4 d was 2988 ± 60 mg chemical oxygen demand (COD) per liter, much higher than that those from sole WAS or sole WAS plus sole APG. The corresponding yield of propionic acid was 1312 ± 25 mg COD/L, 7.9-fold of sole WAS. Mechanism investigation showed that during anaerobic treatment of WAS in the presence of APG both the solubilization and hydrolysis were accelerated and the acidification was enhanced, while the methanogenesis was inhibited. Moreover, the activities of key enzymes involved in WAS hydrolysis and acidification were improved through the adjustment of C/N ratio of substrates with APG. The abundance of microorganisms responsible for organic compounds hydrolysis and SCFAs production was also observed to be greatly enhanced with APG via 454 high-throughput pyrosequencing analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Structure, hydrolysis, and diffusion of aqueous vanadium ions from Car-Parrinello molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen; Klyukin, Konstantin; Alexandrov, Vitaly

    2016-09-01

    A molecular level understanding of the properties of electroactive vanadium species in aqueous solution is crucial for enhancing the performance of vanadium redox flow batteries. Here, we employ Car-Parrinello molecular dynamics simulations based on density functional theory to investigate the hydration structures, first hydrolysis reaction, and diffusion of aqueous V2+, V3+, VO2+, and VO 2+ ions at 300 K. The results indicate that the first hydration shell of both V2+ and V3+ contains six water molecules, while VO2+ is coordinated to five and VO 2+ to three water ligands. The first acidity constants (pKa) estimated using metadynamics simulations are 2.47, 3.06, and 5.38 for aqueous V3+, VO 2+ , and VO2+, respectively, while V2+ is predicted to be a fairly weak acid in aqueous solution with a pKa value of 6.22. We also show that the presence of chloride ions in the first coordination sphere of the aqueous VO 2+ ion has a significant impact on water hydrolysis leading to a much higher pKa value of 4.8. This should result in a lower propensity of aqueous VO 2+ for oxide precipitation reaction in agreement with experimental observations for chloride-based electrolyte solutions. The computed diffusion coefficients of vanadium species in water at room temperature are found to increase as V 3 + < VO 2 + < V O 2 + < V 2 + and thus correlate with the simulated hydrolysis constants, namely, the higher the pKa value, the greater the diffusion coefficient.

  6. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Joint action of ultrasonic and Fe³⁺ to improve selectivity of acid hydrolysis for microcrystalline cellulose.

    PubMed

    Li, Jinbao; Qiang, Dandan; Zhang, Meiyun; Xiu, Huijuan; Zhang, Xiangrong

    2015-09-20

    In this study, the combination of Fe(3+)/HCl and ultrasonic treatment was applied to selectively hydrolyze cellulose for the preparation of microcrystalline cellulose (MCC). It was found that the crystallinity and specific surface area of hydrocellulose samples were higher (78.92% and 2.23581 m(2)g(-1), respectively), compared with the method that only used Fe(3+)/HCl catalyst without ultrasonic treatment. Meanwhile, the hydrolysate can be extracted and reused for cellulose hydrolysis for three runs, which was effective in saving the dosage of chemicals and reducing the pollution of the environment without affecting the properties of hydrocellulose. Moreover, the increased concentration of total reducing sugar (TRS) after three runs may be used as a valuable source in biofuels production. The technology of cellulose hydrolysis, by retaining the crystalline region for MCC products while promoting hydrolysis of amorphous region for further utilization is of great novelty, which may prove valuable in converting biomass into chemicals and biofuels, environmentally and economically. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  9. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    PubMed

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enzymatic Hydrolysis of Cellulosic Materials to Fermentable Sugars for the Production of Ethanol

    DTIC Science & Technology

    1980-10-12

    Pretreatment . • . . • . . . . . • . . . 19 5. Enzyme Production (Prepilot Scale) • . • ·. • • . . . . . • • • • 29 6. Saccharification (Prepilot...hour hydrolysis of 15% substrate. TASK II 1. Poplar shavings were compression mill pretreated most effectively at an initial moisture content of 12...concentration, pretreatment of.cellulose substrates, glucose syrup concentration, temperature, acidity, residence time, recovery of enzymes, fungi, glucose

  11. Water-soluble cavitands promote hydrolyses of long-chain diesters

    PubMed Central

    Shi, Qixun; Mower, Matthew P.; Blackmond, Donna G.; Rebek, Julius

    2016-01-01

    Water-soluble, deep cavitands serve as chaperones of long-chain diesters for their selective hydrolysis in aqueous solution. The cavitands bind the diesters in rapidly exchanging, folded J-shape conformations that bury the hydrocarbon chain and expose each ester group in turn to the aqueous medium. The acid hydrolyses in the presence of the cavitand result in enhanced yields of monoacid monoester products. Product distributions indicate a two- to fourfold relative decrease in the hydrolysis rate constant of the second ester caused by the confined space in the cavitand. The rate constant for the first acid hydrolysis step is enhanced approximately 10-fold in the presence of the cavitand, compared with control reactions of the molecules in bulk solution. Hydrolysis under basic conditions (saponification) with the cavitand gave >90% yields of the corresponding monoesters. Under basic conditions the cavitand complex of the monoanion precipitates from solution and prevents further reaction. PMID:27482089

  12. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    PubMed

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Microwave Pretreatment For Hydrolysis Of Cellulose

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; George, Clifford E.; Lightsey, George R.

    1993-01-01

    Microwave pretreatment enhances enzymatic hydrolysis of cellulosic wastes into soluble saccharides used as feedstocks for foods, fuels, and other products. Low consumption of energy, high yield, and low risk of proposed hydrolysis process incorporating microwave pretreatment makes process viable alternative to composting.

  14. Effect of hydrolysis on identifying prenatal cannabis exposure

    PubMed Central

    Gray, Teresa R.; Barnes, Allan J.

    2011-01-01

    Identification of prenatal cannabis exposure is important due to potential cognitive and behavioral consequences. A two-dimensional gas chromatography–mass spectrometry method for cannabinol, Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 8β,11-dihydroxy-THC, and 11-nor-9-carboxy-THC (THCCOOH) quantification in human meconium was developed and validated. Alkaline, enzymatic, and enzyme–alkaline tandem hydrolysis conditions were optimized with THC- and THCCOOH-glucuronide reference standards. Limits of quantification ranged from 10 to 15 ng/g, and calibration curves were linear to 500 ng/g. Bias and intra-day and inter-day imprecision were <12.3%. Hydrolysis efficiencies were analyte-dependent; THC-glucuronide was effectively cleaved by enzyme, but not base. Conversely, THCCOOH-glucuronide was most sensitive to alkaline hydrolysis. Enzyme–alkaline tandem hydrolysis maximized efficiency for both glucuronides. Identification of cannabinoid-positive meconium specimens nearly doubled following alkaline and enzyme–alkaline hydrolysis. Although no 11-OH-THC glucuronide standard is available, enzymatic hydrolysis improved 11-OH-THC detection in authentic specimens. Maximal identification of cannabis-exposed neonates and the widest range of cannabis biomarkers are achieved with enzyme–alkaline tandem hydrolysis. PMID:20517601

  15. Hydrolysis rate constants at 10-25 °C can be more than doubled by a short anaerobic pre-hydrolysis at 35 °C.

    PubMed

    Zhang, L; Gao, R; Naka, A; Hendrickx, T L G; Rijnaarts, H H M; Zeeman, G

    2016-11-01

    Hydrolysis is the first step of the anaerobic digestion of complex wastewater and considered as the rate limiting step especially at low temperature. Low temperature (10-25 °C) hydrolysis was investigated with and without application of a short pre-hydrolysis at 35 °C. Batch experiments were executed using cellulose and tributyrin as model substrates for carbohydrates and lipids. The results showed that the low temperature anaerobic hydrolysis rate constants increased by a factor of 1.5-10, when the short anaerobic pre-hydrolysis at 35 °C was applied. After the pre-hydrolysis phase at 35 °C and decreasing the temperature, no lag phase was observed in any case. Without the pre-hydrolysis, the lag phase for cellulose hydrolysis at 35-10 °C was 4-30 days. Tributyrin hydrolysis showed no lag phase at any temperature. The hydrolysis efficiency of cellulose increased from 40 to 62%, and from 9.6 to 40% after 9.1 days at 15 and 10 °C, respectively, when the pre-hydrolysis at 35 °C was applied. The hydrolysis efficiency of tributyrin at low temperatures with the pre-hydrolysis at 35 °C was similar to those without the pre-hydrolysis. The hydrolytic activity of the supernatant collected from the digestate after batch digestion of cellulose and tributyrin at 35 °C was higher than that of the supernatants collected from the low temperature (≤25 °C) digestates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China.

    PubMed

    Zhou, Yingjun; Takaoka, Masaki; Wang, Wei; Liu, Xiao; Oshita, Kazuyuki

    2013-07-01

    Co-digestion of wasted sewage sludge, restaurant kitchen waste, and fruit-vegetable waste was carried out in a pilot plant with thermal hydrolysis pre-treatment. Steam was used as heat source for thermal hydrolysis. It was found 38.3% of volatile suspended solids were dissolved after thermal hydrolysis, with digestibility increased by 115%. These results were more significant than those from lab studies using electricity as heat source due to more uniform heating. Anaerobic digesters were then operated under organic loading rates of about 1.5 and 3 kg VS/(m³ d). Little difference was found for digesters with and without thermal pre-treatment in biogas production and volatile solids removal. However, when looking into the digestion process, it was found digestion rate was almost doubled after thermal hydrolysis. Digester was also more stable with thermal hydrolysis pre-treatment. Less volatile fatty acids (VFAs) were accumulated and the VFAs/alkalinity ratio was also lower. Batch experiments showed the lag phase can be eliminated by thermal pre-treatment, implying the advantage could be more significant under a shorter hydraulic retention time. Moreover, it was estimated energy cost for thermal hydrolysis can be partly balanced by decreasing viscosity and improving dewaterability of the digestate. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Quantification of quercetin glycosides in 6 onion cultivars and comparisons of hydrolysis-HPLC and spectrophotometric methods in measuring total quercetin concentrations.

    PubMed

    Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S

    2010-03-01

    This study was performed to purify and quantify quercetin glycosides (QG) and aglycone (free) quercetin (Q) in 6 selected onion cultivars and to compare analytical approaches based on high-performance liquid chromatography (HPLC) and spectrophotometry for the quantification of total quercetin (TQ) concentrations. Individual mono- and di-glycoside Q compounds were purified using a semipreparative HPLC and identified by comparing spectral data and by confirming corresponding peaks of QG and Q after incomplete enzyme-hydrolysis. Purified QG were quantified as Q by enzyme-hydrolysis/HPLC. TQ concentrations obtained from 20 onion bulbs with enzyme-hydrolysis/HPLC, no-hydrolysis/HPLC, and a spectrophotometric method without prior hydrolysis were significantly correlated (r(2)= 0.99) and were about 15% higher, identical, or 10% less than those concentrations by a standard acid-hydrolysis/HPLC method, respectively. During enzyme-hydrolysis of onion extracts, progressive reduction of the QG and formation of the corresponding mono-glycosides and Q were monitored using an analytical HPLC. TQ ranged from 83 to 330 microg/g F.W. in 6 selected cultivars of long-day or short-day onions. Q3,4'G and Q4'G were the 2 major compounds and comprised approximately between 94% and 97% of TQ in onions.

  18. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid

    NASA Astrophysics Data System (ADS)

    Suganuma, Satoshi; Nakajima, Kiyotaka; Kitano, Masaaki; Yamaguchi, Daizo; Kato, Hideki; Hayashi, Shigenobu; Hara, Michikazu

    2010-06-01

    SO 3H-bearing amorphous carbon, prepared by partial carbonization of cellulose followed by sulfonation in fuming H 2SO 4, was applied as a solid catalyst for the acid-catalyzed hydrolysis of β-1,4 glucan, including cellobiose and crystalline cellulose. Structural analyses revealed that the resulting carbon material consists of graphene sheets with 1.5 mmol g -1 of SO 3H groups, 0.4 mmol g -1 of COOH, and 5.6 mmol g -1 of phenolic OH groups. The carbon catalyst showed high catalytic activity for the hydrolysis of β-1,4 glycosidic bonds in both cellobiose and crystalline cellulose. Pure crystalline cellulose was not hydrolyzed by conventional strong solid Brønsted acid catalysts such as niobic acid, Nafion ® NR-50, and Amberlyst-15, whereas the carbon catalyst efficiently hydrolyzes cellulose into water-soluble saccharides. The catalytic performance of the carbon catalyst is due to the large adsorption capacity for hydrophilic reactants and the adsorption ability of β-1,4 glucan, which is not adsorbed to other solid acids.

  19. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  20. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    PubMed

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Treesearch

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  2. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

    PubMed

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-08-01

    Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme

  3. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.

    PubMed

    Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang

    2012-11-01

    An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The Effect of Moisture on the Hydrolysis of Basic Salts.

    PubMed

    Shi, Xiaoyang; Xiao, Hang; Chen, Xi; Lackner, Klaus S

    2016-12-19

    A great deal of information exists concerning the hydration of ions in bulk water. Much less noticeable, but equally ubiquitous is the hydration of ions holding on to several water molecules in nanoscopic pores or in natural air at low relative humidity. Such hydration of ions with a high ratio of ions to water molecules (up to 1:1) are essential in determining the energetics of many physical and chemical systems. Herein, we present a quantitative analysis of the energetics of ion hydration in nanopores based on molecular modeling of a series of basic salts associated with different numbers of water molecules. The results show that the degree of hydrolysis of basic salts in the presence of a few water molecules is significantly different from that in bulk water. The reduced availability of water molecules promotes the hydrolysis of divalent and trivalent basic ions (S 2 - , CO 3 2- , SO 3 2- , HPO 4 2- , SO 4 2- , PO 4 3- ), which produces lower valent ions (HS - , HCO 3 - , HSO 3 - , H 2 PO 4 - , HSO 4 - , HPO 4 2- ) and OH - ions. However, reducing the availability of water inhibits the hydrolysis of monovalent basic ions (CN - , HS - ). This finding sheds some light on a vast number of chemical processes in the atmosphere and on solid porous surfaces. The discovery has wide potential applications including designing efficient absorbents for acidic gases. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Formation of organic compounds from simulated Titan atmosphere: perspectives of the Cassini mission.

    PubMed

    Koike, Toshiyuki; Kaneko, Takeo; Kobayashi, Kensei; Miyakawa, Shin; Takano, Yoshinori

    2003-10-01

    Gas mixtures of methane and nitrogen were subjected to proton irradiation (PI), gamma irradiation (GI), UV irradiation (UV) or spark discharges (SD), and the products were analyzed to compare possible energy sources for synthesis of organics in Titan. SD mainly gave unsaturated hydrocarbons, while PI gave saturated hydrocarbons. N-containing organics were detected in PI, GI and SD, but not in UV. The formers yielded amino acids after acid-hydrolysis of solid phase products (tholin). Comparison of the present results with those by Cassini-Huygens [correction of Heygens] mission will make it possible to prove major energy sources for organic synthesis in Titan atmosphere.

  6. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid.

    PubMed

    Li, Xiaoming; Zhao, Jianwei; Wang, Dongbo; Yang, Qi; Xu, Qiuxiang; Deng, Yongchao; Yang, Weiqiang; Zeng, Guangming

    2016-02-01

    Short-chain fatty acid (SCFA) production from waste activated sludge (WAS) anaerobic fermentation is often limited by the slow hydrolysis rate and poor substrate availability, thus a long fermentation time is required. This paper reports a new pretreatment approach, i.e., using free nitrous acid (FNA) to pretreat sludge, for significantly enhanced SCFA production. Experimental results showed the highest SCFA production occurred at 1.8 mg FNA/L with time of day 6, which was 3.7-fold of the blank at fermentation time of day 12. Mechanism studies revealed that FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. It was also found that FNA pretreatment benefited hydrolysis and acidification processes but inhibited the activities of methanogens, thereby promoting the yield of SCFA. In addition, the FNA pretreatment substantially stimulated the activities of key enzymes responsible for hydrolysis and acidification, which were consistent with the improvement of solubilization, hydrolysis and acidification of WAS anaerobic fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Enzymatic hydrolysis of potato pulp.

    PubMed

    Lesiecki, Mariusz; Białas, Wojciech; Lewandowicz, Grażyna

    2012-01-01

    Potato pulp constitutes a complicated system of four types of polysaccharides: cellulose, hemicellulose, pectin and starch. Its composition makes it a potential and attractive raw material for the production of the second generation bioethanol. The aim of this research project was to assess the usefulness of commercial enzymatic preparations for the hydrolysis of potato pulp and to evaluate the effectiveness of hydrolysates obtained in this way as raw materials for ethanol fermentation. Sterilised potato pulp was subjected to hydrolysis with commercial enzymatic preparations. The effectiveness of the preparations declared as active towards only one fraction of potato pulp (separate amylase, pectinase and cellulase activity) and mixtures of these preparations was analysed. The monomers content in hydrolysates was determined using HPLC method. The application of amylolytic enzymes for potato pulp hydrolysis resulted in the release of only 18% of raw material with glucose as the dominant (77%) constituent of the formed product. In addition, 16% galactose was also determined in it. The hydrolysis of the cellulose fraction yielded up to 35% raw material and the main constituents of the obtained hydrolysate were glucose (46%) and arabinose (40%). Simultaneous application of amylolytic, cellulolytic and pectinolytic enzymes turned out to be the most effective way of carrying out the process as its efficiency in this case reached 90%. The obtained hydrolysate contained 63% glucose, 25% arabinose and 12% other simple substances. The application of commercial enzymatic preparations made it possible to perform potato pulp hydrolysis with 90% effectiveness. This was achieved by the application of a complex of amylolytic, cellulolytic and pectinolytic enzymes and the hydrolysate obtained in this way contained, primarily, glucose making it a viable substrate for ethanol fermentation.

  8. Reactivity of Dimeric Tetrazirconium(IV) Wells-Dawson Polyoxometalate toward Dipeptide Hydrolysis Studied by a Combined Experimental and Density Functional Theory Approach.

    PubMed

    Ly, Hong Giang T; Mihaylov, Tzvetan; Absillis, Gregory; Pierloot, Kristine; Parac-Vogt, Tatjana N

    2015-12-07

    Detailed kinetic studies on the hydrolysis of glycylglycine (Gly-Gly) in the presence of the dimeric tetrazirconium(IV)-substituted Wells-Dawson-type polyoxometalate Na14[Zr4(P2W16O59)2(μ3-O)2(OH)2(H2O)4] · 57H2O (1) were performed by a combination of (1)H, (13)C, and (31)P NMR spectroscopies. The catalyst was shown to be stable under a broad range of reaction conditions. The effect of pD on the hydrolysis of Gly-Gly showed a bell-shaped profile with the fastest hydrolysis observed at pD 7.4. The observed rate constant for the hydrolysis of Gly-Gly at pD 7.4 and 60 °C was 4.67 × 10(-7) s(-1), representing a significant acceleration as compared to the uncatalyzed reaction. (13)C NMR data were indicative for coordination of Gly-Gly to 1 via its amide oxygen and amine nitrogen atoms, resulting in a hydrolytically active complex. Importantly, the effective hydrolysis of a series of Gly-X dipeptides with different X side chain amino acids in the presence of 1 was achieved, and the observed rate constant was shown to be dependent on the volume, chemical nature, and charge of the X amino acid side chain. To give a mechanistic explanation of the observed catalytic hydrolysis of Gly-Gly, a detailed quantum-chemical study was performed. The theoretical results confirmed the nature of the experimentally suggested binding mode in the hydrolytically active complex formed between Gly-Gly and 1. To elucidate the role of 1 in the hydrolytic process, both the uncatalyzed and the polyoxometalate-catalyzed reactions were examined. In the rate-determining step of the uncatalyzed Gly-Gly hydrolysis, a carboxylic oxygen atom abstracts a proton from a solvent water molecule and the nascent OH nucleophile attacks the peptide carbon atom. Analogous general-base activity of the free carboxylic group was found to take place also in the case of polyoxometalate-catalyzed hydrolysis as the main catalytic effect originates from the -C═O···Zr(IV) binding.

  9. Hydrolysis of substance p and neurotensin by converting enzyme and neutral endopeptidase.

    PubMed

    Skidgel, R A; Engelbrecht, S; Johnson, A R; Erdös, E G

    1984-01-01

    Angiotensin I converting enzyme (ACE) and neutral endopeptidase ("enkephalinase"; NEP), were purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln6-Phe7,-Phe8, and Gly9-Leu10 and neurotensin (NT) at Pro10-Tyr11 and Tyr11-Ile12. NEP hydrolyzed 0.1 mM SP, NT and their C-terminal fragments at the following rates (mumol/min/mg): SP1-11 = 7.8, SP4-11 = 11.7, SP5-11 = 15.4, SP6-11 = 15.6, SP8-11 = 6.7, NT1-13 = 2.9, and NT8-13 = 4.0. Purified ACE rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe8-Gly9 and Gly9-Leu10 to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl- dependent and inhibited by captopril. ACE released mainly C-terminal tripeptide from SP methyl ester, but only dipeptide from SP free acid. Modification of arginine residues in ACE with cyclohexanedione or butanedione similarly inhibited hydrolysis of SP, bradykinin and Bz-Gly-Phe-Arg (80-93%) indicating an active site arginine is required for hydrolysis of SP. ACE hydrolyzed NT at Tyr11-Ile12 to release Ile12-Leu13. SP, NT and their derivatives (0.1 mM) were cleaved by ACE at the following rates (mumol/min/mg): SP1-11 = 1.2, SP methyl ester = 0.7, SP free acid = 8.5, SP4-11 = 2.4, SP5-11 = 0.9, SP6-11 = 1.4, SP8-11 = 0, NT1-13 = 0.2, and NT8-13 = 1.3. Peptide substrates were used as inhibitors of ACE (substrate = FA-Phe-Gly-Gly) and NEP (substrate = Leu5-enkephalin).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Study of an Acid-Free Technique for the Preparation of Glycyrrhetinic Acid from Ammonium Glycyrrhizinate in Subcritical Water.

    PubMed

    Lekar, Anna V; Borisenko, Sergey N; Vetrova, Elena V; Filonova, Olga V; Maksimenko, Elena V; Borisenko, Nikolai I; Minkin, Vladimir I

    2015-11-01

    The aim of this work was to study an application of a previously developed expedient acid-free technique for the preparation of glycyrrhetinic acid from ammonium glycyrrhizinate that requires no use of acids and toxic organic solvents. Subcritical water that serves as a reactant and a solvent was used in order to obtain glycyrrhetinic acid in good yields starting from ammonium glycyrrhizinate. It has been shown that variation of only one parameter of the process (temperature) allows alteration to thecomposition of the hydrolysis products. A new method was used for the synthesis of glycyrrhetinic acid (glycyrrhizic acid aglycone) and its monoglycoside. HPLC combined with mass spectrometry and NMR spectroscopy were used to determine the quantitative and qualitative compositions of the obtained products. The method developed for the production of glycyrrhetinic acid in subcritical water is environmentally friendly and faster than conventional hydrolysis methods that use acids and-expensive and toxic organic solvents. The proposed technique has a potential for the future development of inexpensive and environmentally friendly technologies for production of new pharmaceutical plant-based substances.

  11. Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates.

    PubMed

    Miersch, L; Rüffer, T; Schlesinger, M; Lang, H; Mehring, M

    2012-09-03

    Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) Å, b = 13.4298(9) Å, c = 17.8471(14) Å, β = 94.531(6)°, V = 2210.5(3) Å(3); 2, a = 9.0149(3) Å, b = 16.9298(4) Å, c = 15.6864(4) Å, β = 90.129(3)°, V = 2394.06(12) Å(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1 both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) Å, b = 20.3871(9) Å, c = 34.9715(15) Å, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) Å(3); 5, a = 20.0329(4) Å, b = 20.0601(4) Å, c = 34.3532(6) Å, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) Å(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.

  12. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

    PubMed Central

    2013-01-01

    Background During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydrolysis profile under various scenarios can act as an important forecasting tool to improve the hydrolysis process. However, multiple factors affecting hydrolysis: cellulose structure and complex enzyme-substrate interactions during hydrolysis make it diffucult to develop mathematical kinetic models that can simulate hydrolysis in presence of multiple enzymes with high fidelity. In this study, a comprehensive hydrolysis model based on stochastic molecular modeling approch in which each hydrolysis event is translated into a discrete event is presented. The model captures the structural features of cellulose, enzyme properties (mode of actions, synergism, inhibition), and most importantly dynamic morphological changes in the substrate that directly affect the enzyme-substrate interactions during hydrolysis. Results Cellulose was modeled as a group of microfibrils consisting of elementary fibrils bundles, where each elementary fibril was represented as a three dimensional matrix of glucose molecules. Hydrolysis of cellulose was simulated based on Monte Carlo simulation technique. Cellulose hydrolysis results predicted by model simulations agree well with the experimental data from literature. Coefficients of determination for model predictions and experimental values were in the range of 0.75 to 0.96 for Avicel hydrolysis by CBH I action. Model was able to simulate the synergistic action of multiple enzymes during hydrolysis. The model simulations captured the important experimental observations: effect of structural properties, enzyme inhibition and enzyme loadings on the

  13. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  14. ATP hydrolysis is critical for induction of conformational changes in GroEL that expose hydrophobic surfaces.

    PubMed

    Gorovits, B M; Ybarra, J; Horowitz, P M

    1997-03-14

    The degree of hydrophobic exposure in the molecular chaperone GroEL during its cycle of ATP hydrolysis was analyzed using 1,1'-bis(4-anilino)naphthalene-5,5'disulfonic acid (bisANS), a hydrophobic probe, whose fluorescence is highly sensitive to the environment. In the presence of 10 mM MgCl2 and 10 mM KCl the addition of ATP, but not ADP or AMP-PNP, resulted in a time-dependent, linear increase in the bisANS fluorescence. The rate of the increase in the bisANS fluorescence depended on the concentrations of both GroEL and the probe. The effect could be substantially inhibited by addition of excess ADP or by converting ATP to ADP using hexokinase, showing that the increase in the bisANS fluorescence was correlated with ATP hydrolysis. The rate of ATP hydrolysis catalyzed by GroEL was uncompetitively inhibited in the presence of bisANS. This uncompetitive inhibition suggests that the probe can interact with the GroEL-ATP complex. The inability of the nonhydrolyzable ATP analog, AMP-PNP, to cause a similar effect is explained by the interaction of bisANS with a transient conformational state of GroEL formed consequent to ATP hydrolysis. It is suggested that this short lived hydrophobic exposure reflects a conformational shift in GroEL that results from electrostatic repulsion between the bound products of ATP hydrolysis, and it plays an important role in the mechanism of the chaperonin cycle.

  15. Kinetic studies and predictions on the hydrolysis and aminolysis of esters of 2-S-phosphorylacetates.

    PubMed

    Trmčić, Milena; Hodgson, David R W

    2010-08-16

    Heterobifunctional cross-linking agents are useful in both protein science and organic synthesis. Aminolysis of reactive esters in aqueous systems is often used in bioconjugation chemistry, but it must compete against hydrolysis processes. Here we study the kinetics of aminolysis and hydrolysis of 2-S-phosphorylacetate ester intermediates that result from displacement of bromide by a thiophosphate nucleophile from commonly used bromoacetate ester cross-linking agents. We found cross-linking between uridine-5'-monophosphorothioate and D-glucosamine using N-hydroxybenzotriazole and N-hydroxysuccinimde bromoacetates to be ineffective. In order to gain insight into these shortfalls, 2-S-(5'-thiophosphoryluridine)acetic acid esters were prepared using p-nitrophenyl bromoacetate or m-nitrophenyl bromoacetate in combination with uridine-5'-monophosphorothioate. Kinetics of hydrolysis and aminolysis of the resulting p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates were determined by monitoring the formation of phenolate ions spectrophotometrically as a function of pH. The p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates showed similar reactivity profiles despite the significant difference in the pK(aH) values of their nitrophenolate leaving groups. Both were more reactive with respect to hydrolysis and aminolysis in comparison to their simple acetate progenitors, but their calculated selectivity towards aminolysis vs hydrolysis, while reasonable, would not lead to clean reactions that do not require purification. Extrapolations of the kinetic data were used to predict leaving group pK(a) values that could lead to improved selectivity towards aminolysis while retaining reasonable reaction times. Both p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates show some selectivity towards aminolysis over hydrolysis, with the m-nitrophenolate system displaying slightly better selectivity. Extrapolation of the data for hydrolysis and aminolysis of these

  16. Properties of the polysaccharide and mucopeptide components of the cell wall of Lactobacillus casei

    PubMed Central

    Hall, Elizabeth A.; Knox, K. W.

    1965-01-01

    1. The polysaccharide and mucopeptide components of the cell wall of Lactobacillus casei have been separated by mild conditions of acid hydrolysis. 2. Removal of the polysaccharide renders the mucopeptide susceptible to lysozyme. 3. The mucopeptide and polysaccharide components have been analysed and the results compared with those obtained previously. 4. The polysaccharides responsible for group specificity have a terminal reducing N-acetylgalactosamine residue substituted on C(3) by the adjacent sugar; estimation of this component gave an indication of the molecular weight of the polysaccharides. 5. Evidence has been obtained for the presence of rhamnosyl-(1→3)-N-acetylgalactosamine among the products of acid hydrolysis of the group B polysaccharide. ImagesFig. 2. PMID:5837778

  17. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  18. Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent

    PubMed Central

    Ibrahim, Khalid A.; El-Eswed, Bassam I.; Abu-Sbeih, Khaleel A.; Arafat, Tawfeeq A.; Al Omari, Mahmoud M. H.; Darras, Fouad H.; Badwan, Adnan A.

    2016-01-01

    An increasing interest has recently been shown to use chitin/chitosan oligomers (chito-oligomers) in medicine and food fields because they are not only water-soluble, nontoxic, and biocompatible materials, but they also exhibit numerous biological properties, including antibacterial, antifungal, and antitumor activities, as well as immuno-enhancing effects on animals. Conventional depolymerization methods of chitosan to chito-oligomers are either chemical by acid-hydrolysis under harsh conditions or by enzymatic degradation. In this work, hydrolysis of chitosan to chito-oligomers has been achieved by applying adsorption-separation technique using diluted HCl in the presence of different types of zeolite as adsorbents. The chito-oligomers were retrieved from adsorbents and characterized by differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC/MS), and ninhydrin test. PMID:27455287

  19. Recovery of Whey Proteins and Enzymatic Hydrolysis of Lactose Derived from Casein Whey Using a Tangential Flow Ultrafiltration Module

    NASA Astrophysics Data System (ADS)

    Das, Bipasha; Bhattacharjee, Sangita; Bhattacharjee, Chiranjib

    2013-09-01

    In this study, ultrafiltration (UF) of pretreated casein whey was carried out in a cross-flow module fitted with 5 kDa molecular weight cut-off polyethersulfone membrane to recover whey proteins in the retentate and lactose in the permeate. Effects of processing conditions, like transmembrane pressure and pH on permeate flux and rejection were investigated and reported. The polarised layer resistance was found to increase with time during UF even in this high shear device. The lactose concentration in the permeate was measured using dinitro salicylic acid method. Enzymatic kinetic study for lactose hydrolysis was carried out at three different temperatures ranging from 30 to 50 °C using β-galactosidase enzyme. The glucose formed during lactose hydrolysis was analyzed using glucose oxidase-peroxidase method. Kinetics of enzymatic hydrolysis of lactose solution was found to follow Michaelis-Menten model and the model parameters were estimated by Lineweaver-Burk plot. The hydrolysis rate was found to be maximum (with Vmax = 5.5091 mmol/L/min) at 30 °C.

  20. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    PubMed

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore

  1. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    PubMed

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    PubMed

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.

  3. Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation.

    PubMed

    Wang, Wen; Chen, Xiaoyan; Tan, Xuesong; Wang, Qiong; Liu, Yunyun; He, Minchao; Yu, Qiang; Qi, Wei; Luo, Yu; Zhuang, Xinshu; Yuan, Zhenhong

    2017-03-01

    The black liquor (BL) generated in the alkaline pretreatment process is usually thought as the environmental pollutant. This study found that the pure alkaline lignin hardly inhibited the enzymatic hydrolysis of cellulose (EHC), which led to the investigation on the feasibility of reusing BL as the buffer via pH adjustment for the subsequent enzymatic hydrolysis and fermentation. The pH value of BL was adjusted from 13.23 to 4.80 with acetic acid, and the alkaline lignin was partially precipitated. It deposited on the surface of cellulose and negatively influenced the EHC via blocking the access of cellulase to cellulose and adsorbing cellulase. The supernatant separated from the acidified BL scarcely affected the EHC, but inhibited the ethanol fermentation. The 4-times diluted supernatant and the last-time waste wash water of the alkali-treated sugarcane bagasse didn't inhibit the EHC and ethanol production. This work gives a clue of saving water for alkaline pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Chundawat, Shishir P S; Balan, Venkatesh; Dale, Bruce E

    2008-04-15

    Several factors will influence the viability of a biochemical platform for manufacturing lignocellulosic based fuels and chemicals, for example, genetically engineering energy crops, reducing pre-treatment severity, and minimizing enzyme loading. Past research on biomass conversion has focused largely on acid based pre-treatment technologies that fractionate lignin and hemicellulose from cellulose. However, for alkaline based (e.g., AFEX) and other lower severity pre-treatments it becomes critical to co-hydrolyze cellulose and hemicellulose using an optimized enzyme cocktail. Lignocellulosics are appropriate substrates to assess hydrolytic activity of enzyme mixtures compared to conventional unrealistic substrates (e.g., filter paper, chromogenic, and fluorigenic compounds) for studying synergistic hydrolysis. However, there are few, if any, high-throughput lignocellulosic digestibility analytical platforms for optimizing biomass conversion. The 96-well Biomass Conversion Research Lab (BCRL) microplate method is a high-throughput assay to study digestibility of lignocellulosic biomass as a function of biomass composition, pre-treatment severity, and enzyme composition. The most suitable method for delivering milled biomass to the microplate was through multi-pipetting slurry suspensions. A rapid bio-enzymatic, spectrophotometric assay was used to determine fermentable sugars. The entire procedure was automated using a robotic pipetting workstation. Several parameters that affect hydrolysis in the microplate were studied and optimized (i.e., particle size reduction, slurry solids concentration, glucan loading, mass transfer issues, and time period for hydrolysis). The microplate method was optimized for crystalline cellulose (Avicel) and ammonia fiber expansion (AFEX) pre-treated corn stover. Copyright 2008 Wiley Periodicals, Inc.

  5. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1061 Lactic acid. (a) Lactic acid (C3H6O3, CAS Reg. Nos.: dl mixture, 598-82-3; l-isomer, 79-33-4; d... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lactic acid. 184.1061 Section 184.1061 Food and... hydrolysis to lactic acid. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed...

  6. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid

    Treesearch

    Huiyang Bian; Liheng Chen; Hongqi Dai; J.Y. Zhu

    2017-01-01

    Here we demonstrate di-carboxylic acid hydrolysis for the integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using two unbleached hardwood chemical pulps of lignin contents of 3.9 and 17.2%. Acid hydrolysis experiments used maleic acid solution of 60 wt% concentration at 120°C for 120 min under ambient pressure. Yields of...

  7. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.

    PubMed

    Zhang, Bo; Cai, Wei-min; He, Pin-jing

    2007-01-01

    To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.

  8. Short-time ultrasonication treatment in enzymatic hydrolysis of biomass

    Treesearch

    Zengqian Shi; Zhiyong Cai; Siqun Wang; Qixin Zhong; Joseph J. Bozell

    2013-01-01

    To improve the conversion of enzymatic hydrolysis of biomass in an energy-efficient manner, two shorttime ultrasonication strategies were applied on six types of biomass with different structures and components. The strategies include pre-sonication before the hydrolysis and intermittent sonication during the ongoing hydrolysis. The microstructures of each type of...

  9. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass

    DOE PAGES

    Inoue, Hiroyuki; Decker, Stephen R.; Taylor, Larry E.; ...

    2014-10-09

    Background: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. Results: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysismore » of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. In Conclusion: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A

  10. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Hiroyuki; Decker, Stephen R.; Taylor, Larry E.

    Background: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. Results: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysismore » of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. In Conclusion: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A

  11. Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment.

    PubMed

    Martín Juárez, Judit; Lorenzo Hernando, Ana; Muñoz Torre, Raúl; Blanco Lanza, Saúl; Bolado Rodríguez, Silvia

    2016-10-01

    An enzymatic method for the carbohydrate hydrolysis of different microalgae biomass cultivated in domestic (DWB) and pig manure (PMWB) wastewaters, at different storage conditions (fresh, freeze-dried and reconstituted), was evaluated. The DWB provided sugars yields between 40 and 63%, although low xylose yields (< 23.5%). Approximately 2% of this biomass was converted to byproducts as succinic, acetic and formic acids. For PMWB, a high fraction of the sugars (up to 87%) was extracted, but mainly converted into acetic, butyric and formic acids, which was attributed to the bacterial action. In addition, the performance of an alkaline-peroxide pretreatment, conducted for 1h, 50°C and H2O2 concentrations from 1 to 7.5% (w/w), was essayed. The hydrolysis of pretreated microalgae supported a wide range of sugars extraction for DWB (55-90%), and 100% for PMWB. Nevertheless, a large fraction of these sugars (∼30% for DWB and 100% for PMWB) was transformed to byproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo

    2014-10-10

    An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Apolipoproteins regulate the kinetics of endothelial lipase-mediated hydrolysis of phospholipids in reconstituted high-density lipoproteins.

    PubMed

    Caiazza, Daniela; Jahangiri, Anisa; Rader, Daniel J; Marchadier, Dawn; Rye, Kerry-Anne

    2004-09-21

    Endothelial lipase (EL) is a newly identified member of the triglyceride lipase gene family that hydrolyzes high-density lipoprotein (HDL) phospholipids. This study investigates the ability of the major apolipoproteins of rHDL to regulate the kinetics of EL-mediated phospholipid hydrolysis in well-characterized, homogeneous preparations of spherical rHDL. The rHDL contained either apoA-I as the only apolipoprotein, (A-I)rHDL, apoA-II as the only apolipoprotein, (A-II)rHDL, or apoA-I as well as apoA-II, (A-I/A-II)rHDL. The rHDL were comparable in terms of size and lipid composition and contained cholesteryl esters (CE) as their sole core lipid. Phospholipid hydrolysis was quantitated as the mass of nonesterified fatty acids (NEFA) released from the rHDL during incubation with EL. The V(max) of phospholipid hydrolysis for (A-I/A-II)rHDL [391.9 +/- 12.9 nmol of NEFA formed (mL of EL)(-1) h(-1)] was greater than (A-I)rHDL [152.8 +/- 4.7 nmol of NEFA formed (mL of EL)(-1) h(-1)]. The energy of activation (E(a)) for the hydrolysis reactions was calculated to be 52.1 and 34.8 kJ mol(-1) for (A-I)rHDL and (A-I/A-II)rHDL, respectively. Minimal phospholipid hydrolysis was observed for the (A-II)rHDL. Kinetic analysis showed that EL has a higher affinity for the phospholipids in (A-I)rHDL [K(m)(app) = 0.10 +/- 0.01 mM] than in (A-I/A-II)rHDL [K(m)(app) = 0.27 +/- 0.03 mM]. Furthermore, (A-I)rHDL is a competitive inhibitor of the EL-mediated phospholipid hydrolysis of (A-I/A-II)rHDL. These results establish that apolipoproteins are major determinants of the kinetics of EL-mediated phospholipid hydrolysis in rHDL.

  14. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    PubMed

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  15. HCN - A plausible source of purines, pyrimidines and amino acids on the primitive earth

    NASA Technical Reports Server (NTRS)

    Ferris, J.-P.; Joshi, P. C.; Edelson, E. H.; Lawless, J. G.

    1978-01-01

    Dilute (0.1 M) solutions of HCN condense to oligomers at pH 9.2, and hydrolysis of these oligomers yields 4,5-dihydroxypyrimidine, orotic acid, 5-hydroxyuracil, adenine, 4-aminoimidazole-5-carboxamide, and amino acids. It is suggested that the three main classes of nitrogen-containing biomolecules - purines, pyrimidines, and amino acids may have originated from HCN on the primitive earth. It is also suggested that the presence of orotic acid and 4-aminoimidazole-5-carboxamide might indicate that contemporary biosynthetic pathways for nucleotides evolved from the compounds released on hydrolysis of HCN oligomers.

  16. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  17. An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk.

    PubMed

    Muharja, Maktum; Junianti, Fitri; Ranggina, Dian; Nurtono, Tantular; Widjaja, Arief

    2018-02-01

    The objective of this work is to develop an integrated green process of subcritical water (SCW), enzymatic hydrolysis and fermentation of coconut husk (CCH) to biohydrogen. The maximum sugar yield was obtained at mild severity factor. This was confirmed by the degradation of hemicellulose, cellulose and lignin. The tendency of the changing of sugar yield as a result of increasing severity factor was opposite to the tendency of pH change. It was found that CO 2 gave a different tendency of severity factor compared to N 2 as the pressurizing gas. The result of SEM analysis confirmed the structural changes during SCW pretreatment. This study integrated three steps all of which are green processes which ensured an environmentally friendly process to produce a clean biohydrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing.

    PubMed

    Kadisch, Marvin; Schmid, Andreas; Bühler, Bruno

    2017-03-01

    Fatty acid methyl esters (FAMEs) originating from plant oils are most interesting renewable feedstocks for biofuels and bio-based materials. FAMEs can also be produced and/or functionalized by engineered microbes to give access to, e.g., polymer building blocks. Yet, they are often subject to hydrolysis yielding free fatty acids, which typically are degraded by microbes. We identified BioH as the key enzyme responsible for the hydrolysis of medium-chain length FAME derivatives in different E. coli K-12 strains. E. coli ΔbioH strains showed up to 22-fold reduced FAME hydrolysis rates in comparison with respective wild-type strains. Knockout strains showed, beside the expected biotin auxotrophy, unchanged growth behavior and biocatalytic activity. Thus, high specific rates (~80 U g CDW -1 ) for terminal FAME oxyfunctionalization catalyzed by a recombinant alkane monooxygenase could be combined with reduced hydrolysis. Biotransformations in process-relevant two-liquid phase systems profited from reduced fatty acid accumulation and/or reduced substrate loss via free fatty acid metabolization. The BioH knockout strategy was beneficial in all tested strains, although its effect was found to differ according to specific strain properties, such as FAME hydrolysis and FFA degradation activities. BioH or functional analogs can be found in virtually all microorganisms, making bioH deletion a broadly applicable strategy for efficient microbial bioprocessing involving FAMEs.

  19. Hydrolysis of membrane phospholipids by phospholipases of rat liver lysosomes

    PubMed Central

    Richards, Donald E.; Irvine, Robin F.; Dawson, Rex M. C.

    1979-01-01

    (1) The hydrolysis of 32P- or myo-[2-3H]inositol-labelled rat liver microsomal phospholipids by rat liver lysosomal enzymes has been studied. (2) The relative rates of hydrolysis of phospholipids at pH4.5 are: sphingomyelin>phosphatidylethanolamine>phosphatidylcholine> phosphatidylinositol. (3) The predominant products of phosphatidylcholine and phosphatidylethanolamine hydrolysis are their corresponding lyso-compounds, indicating a slow rate of total deacylation. (4) Ca2+ inhibits the hydrolysis of all phospholipids, though only appreciably at high (>5mm) concentration. The hydrolysis of sphingomyelin is considerably less sensitive to Ca2+ than that of glycerophospholipids. (5) Analysis of the water-soluble products of phosphatidylinositol hydrolysis (by using myo-[3H]inositol-labelled microsomal fraction as a substrate) produced evidence that more than 95% of the product is phosphoinositol, which was derived by direct cleavage from phosphatidylinositol, rather than by hydrolysis of glycerophosphoinositol. (6) This production of phosphoinositol, allied with negligible lysophosphatidylinositol formation and a detectable accumulation of diacylglycerol, indicates that lysosomes hydrolyse membrane phosphatidylinositol almost exclusively in a phospholipase C-like manner. (7) Comparisons are drawn between the hydrolysis by lysosomal enzymes of membrane substrates and that of pure phospholipid substrates, and also the possible role of phosphatidylinositol-specific lysosomal phospholipase C in cellular phosphatidylinositol catabolism is discussed. PMID:508301

  20. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment.

    PubMed

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Dąbkowska, Katarzyna; Angelidaki, Irini

    2018-05-29

    The aim of this study was to develop an integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production process from rapeseed straw after dilute-acid pretreatment. Rapeseed straw pretreatment at 20% (w/v) solid loading and subsequent hydrolysis with Cellic® CTec2 resulted in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10% compared to the process with Cellic® CTec2. Significantly higher amounts of succinic acid were produced after fermentation of pretreatment liquor (48 kg/Mg of rapeseed straw, succinic acid yield: 60%) compared to fermentation of xylose-rich residue after ethanol production (35-37 kg/Mg of rapeseed straw, succinic yield: 68-71%). Results obtained in this study clearly proved the biorefinery potential of rapeseed straw. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Separation of Glucose and Pentose Sugars by Selective Enzyme Hydrolysis of AFEX-Treated Corn Fiber

    NASA Astrophysics Data System (ADS)

    Hanchar, Robert J.; Teymouri, Farzaneh; Nielson, Chandra D.; McCalla, Darold; Stowers, Mark D.

    A process was developed to fractionate corn fiber into glucose- and pentose-rich fractions. Corn fiber was ammonia fiber explosion treated at 90°C, using 1 g anhydrous ammonia per gram of dry biomass, 60% moisture, and 30-min residence time. Twenty four hour hydrolysis of ammonia fiber explosion-treated corn fiber with cellulase converted 83% of available glucanto-glucose. In this hydrolysis the hemicellulose was partially broken down with 81% of the xylan and 68% of the arabinan being contained in the hydrolysate after filtration to remove lignin and other insoluble material. Addition of ethanol was used to precipitate and recover the solubilized hemicellulose from the hydrolysate, followed by hydrolysis with 2% (v/v) sulfuric acid to convert the recovered xylan and arabinan to monomeric sugars. Using this method, 57% of xylose and 54% of arabinose available in corn fiber were recovered in a pentose-rich stream. The carbohydrate composition of the pentose-enriched stream was 5% glucose, 57% xylose, 27% arabinose, and 11% galactose. The carbohydrate composition of the glucose-enriched stream was 87% glucose, 5% xylose, 6% arabinose, and 1% galactose, and contained 83% of glucose available from the corn fiber.

  2. Monoglyceride lipase as a drug target: At the crossroads of arachidonic acid metabolism and endocannabinoid signaling.

    PubMed

    Grabner, Gernot F; Zimmermann, Robert; Schicho, Rudolf; Taschler, Ulrike

    2017-07-01

    Monoglyerides (MGs) are short-lived, intermediary lipids deriving from the degradation of phospho- and neutral lipids, and monoglyceride lipase (MGL), also designated as monoacylglycerol lipase (MAGL), is the major enzyme catalyzing the hydrolysis of MGs into glycerol and fatty acids. This distinct function enables MGL to regulate a number of physiological and pathophysiological processes since both MGs and fatty acids can act as signaling lipids or precursors thereof. The most prominent MG species acting as signaling lipid is 2-arachidonoyl glycerol (2-AG) which is the most abundant endogenous agonist of cannabinoid receptors in the body. Importantly, recent observations demonstrate that 2-AG represents a quantitatively important source for arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. Accordingly, MGL-mediated 2-AG degradation affects lipid signaling by cannabinoid receptor-dependent and independent mechanisms. Recent genetic and pharmacological studies gave important insights into MGL's role in (patho-)physiological processes, and the enzyme is now considered as a promising drug target for a number of disorders including cancer, neurodegenerative and inflammatory diseases. This review summarizes the basics of MG (2-AG) metabolism and provides an overview on the therapeutic potential of MGL. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Enzymatic modification of natural and synthetic polymers using lipases and proteases

    NASA Astrophysics Data System (ADS)

    Chakraborty, Soma

    Enzymatic modification of natural/synthetic polymers [starch nanoparticles, poly (n-alkyl acrylates) and poly(vinyl formamide)] was studied. Enzymes used for catalysis were lipases and proteases. Starch nanoparticles (40nm diameter) were incorporated into AOT-coated reverse micelles. Reactions performed with the acylating agents vinyl stearate, epsilon-caprolactone and maleic anhydride in toluene in presence of Novozyme-435 at 40°C for 36h gave products with degrees of substitution of 0.8, 0.6 and 0.4 respectively. DEPT-135 NMR spectra revealed that the modification occurred regioselectively at the C-6 position of the glucose units. Infrared microspectroscopy showed that the surfactant coated starch nanoparticles diffuse into pores of Novozyme-435 beads, coming in close proximity with CALB to promote modification. The modified products retained nanoscale dimensions. Catalysis of amide bond formation between a low molar mass amine and ester side groups of poly(n-alkyl acrylates)[poly(ethyl acrylate), poly(methyl acrylate) and poly(butyl acrylate)] was also examined. The nucleophiles were mono and diamines. Among the poly(n-alkyl acrylates) and the lipases studied, poly(ethyl acrylate) was the preferred substrate and Novozyme-435 the most active lipase. Poly(ethyl acrylate) in 80% by-volume toluene was reacted with 1 equivalent per repeat unit of hexyl amine at 70°C in presence of Novozyme-435. The product contained 10.6 mol% amide groups. Attempts to increase the amidation beyond 10--11 mol% by increasing the reaction time or use of fresh enzyme were unsuccessful, showing that poly(ethylacrylate-co-10mol%hexylacrylamide) is a poor substrate for further acylation. When chiral amines ([R,S]-alpha-methyl benzylamine, [R,S]-beta-methyl phenyl amine) were used as nucleophiles, Novozyme-435 enantioselectively catalyzed amidation of poly(ethyl acrylate). Poly(vinyl formamide), P(VfAm) by acid or base-catalyzed hydrolysis leads to poly(vinylamine), P(VAm), and

  4. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures.

    PubMed

    Huijghebaert, S M; Hofmann, A F

    1986-07-01

    The influence of the chemical structure of the amino acid (or amino acid analogue) moiety of a number of synthetic cholyl amidates on deconjugation by cholylglycine hydrolase from Clostridium perfringens was studied in vitro at pH 5.4. Conjugates with alkyl homologues of glycine were hydrolyzed more slowly as the number of methylene units increased (cholylglycine greater than cholyl-beta-alanine greater than cholyl-gamma-aminobutyrate). In contrast, for conjugates with the alkyl homologues of taurine, cholylaminopropane sulfonate was hydrolyzed slightly faster than cholyltaurine, whereas cholylaminomethane sulfonate was hydrolyzed much more slowly. When glycine was replaced by other neutral alpha-amino acids, rates of hydrolysis decreased with increasing steric hindrance near the amide bond (cholyl-L-alpha-alanine much much greater than cholyl-L-leucine much greater than cholyl-L-valine greater than cholyl-L-tyrosine much greater than cholyl-D-valine). Conjugation with acidic or basic amino acids also greatly reduced the rates of hydrolysis, as cholyl-L-aspartate, cholyl-L-cysteate, cholyl-L-lysine, and cholyl-L-histidine were all hydrolyzed at a rate less than one-tenth that of cholylglycine. Methyl esterification of the carboxylic group of the amino acid moiety reduced the hydrolysis, but such substrates (cholylglycine methyl ester and cholyl-beta-alanine methyl ester) were completely hydrolyzed after overnight incubation with excess of enzyme. In contrast, cholyl-cholamine was not hydrolyzed at all, suggesting that a negative charge at the end of the side chain is required for optimal hydrolysis. Despite the lack of specificity for the amino acid moiety, a bile salt moiety was required, as the cholylglycine hydrolase did not display general carboxypeptidase activity for other non-bile acid substrates containing a terminal amide bond: hippuryl-L-phenylalanine and hippuryl-L-arginine, as well as oleyltaurine and oleylglycine, were not hydrolyzed. Fecal bacterial

  5. Isotopic analyses of nitrogenous compounds from the Murchison meteorite: ammonia, amines, amino acids, and polar hydrocarbons

    NASA Technical Reports Server (NTRS)

    Pizzarello, S.; Feng, X.; Epstein, S.; Cronin, J. R.

    1994-01-01

    The combined volatile bases (ammonia, aliphatic amines, and possibly other bases), ammonia, amino acids, and polar hydrocarbons were prepared from the Murchison meteorite for isotopic analyses. The volatile bases were obtained by cryogenic transfer after acid-hydrolysis of a hot-water extract and analyzed by combined gas chromatography-mass spectrometry of pentafluoropropionyl derivatives. The aliphatic amines present in this preparation comprise a mixture that includes both primary and secondary isomers through C5 at a total concentration of > or = 100 nmoles g-1. As commonly observed for meteoritic organic compounds, almost all isomers through C5 are present, and the concentrations within homologous series decrease with increasing chain length. Ammonia was chromatographically separated from the other volatile bases and found at a concentration of 1.1-1.3 micromoles g-1 meteorite. The ammonia analyzed includes contributions from ammonium salts and the hydrolysis of extractable organic compounds, e.g., carboxamides. Stable isotope analyses showed the volatile bases to be substantially enriched in the heavier isotopes, relative to comparable terrestrial compounds delta D < or = +1221%; delta 13C = +22%; delta 15N = +93%). Ammonia, per se, was found to have a somewhat lower delta 15N value (+69%) than the total volatile bases; consequently, a higher delta 15N (>93%) can be inferred for the other bases, which include the amines. Solvent-extractable polar hydrocarbons obtained separately were found to be enriched in 15N (delta 15N = +104%). Total amino acids, prepared from a hydrolyzed hot-water extract by cation exchange chromatography, gave a delta 15N of +94%, a value in good agreement with that obtained previously. Nitrogen isotopic data are also given for amino acid fractions separated chromatographically. The delta 15N values of the Murchison soluble organic compounds analyzed to date fall within a rather narrow range (delta 15N = +94 +/- 8%), an observation

  6. Kinetics of non-catalyzed hydrolysis of tannin in high temperature liquid water*

    PubMed Central

    Lu, Li-li; Lu, Xiu-yang; Ma, Nan

    2008-01-01

    High temperature liquid water (HTLW) has drawn increasing attention as an environmentally benign medium for organic chemical reactions, especially acid-/base-catalyzed reactions. Non-catalyzed hydrolyses of gallotannin and tara tannin in HTLW for the simultaneous preparation of gallic acid (GA) and pyrogallol (PY) are under investigation in our laboratory. In this study, the hydrolysis kinetics of gallotannin and tara tannin were determined. The reaction is indicated to be a typical consecutive first-order one in which GA has formed as a main intermediate and PY as the final product. Selective decomposition of tannin in HTLW was proved to be possible by adjusting reaction temperature and time. The present results provide an important basic data and reference for the green preparation of GA and PY. PMID:18500780

  7. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  8. Measurement of pyrimidine (6-4) photoproducts in DNA by a mild acidic hydrolysis-HPLC fluorescence detection assay.

    PubMed

    Douki, T; Voituriez, L; Cadet, J

    1995-03-01

    Pyrimidine (6-4) pyrimidone photoproducts constitute one of the major classes of DNA lesions induced by far-UV irradiation. However, their biological role remains difficult to assess partly because of the lack of a specific and sensitive assay for monitoring their formation in DNA. Here is presented a measurement method based on the release of the (6-4) base adducts from DNA followed by an HPLC separation associated with a sensitive and specific fluorescence detection. The quantitative and mechanistic aspects of the chemical hydrolysis, based on the use of hydrogen fluoride stabilized in pyridine, were investigated, using dinucleoside monophosphate (6-4) photoproducts as model compounds. The final hydrolysis products were isolated and characterized by UV, fluorescence, mass, and 1H NMR spectroscopies. Application of the assay to far-UV irradiated calf thymus DNA provided information on the sequence effect on the rate of formation of three of the four possible bipyrimidine (6-4) photoproducts.

  9. Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides

    PubMed Central

    2015-01-01

    Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis. PMID:24617596

  10. On-line characterization using ultrasound of pectin hydrolysis catalyzed by the enzyme pectinmethylesterase

    NASA Astrophysics Data System (ADS)

    Aparicio, C.; Resa, P.; Sierra, C.; Elvira, L.

    2012-12-01

    The major problem in the fruit juice industry is associated with juice quality deterioration due to the cloud loss of juice concentrates by the enzymatic reaction of pectinmethylesterase enzyme (PME, EC 3.1.1.11). During pectin hydrolysis, pectin and water are transformed into polygalacturonic acid (pectate) and methanol by the action of PME. In this work, a low-intensity ultrasonic technique is used to monitor this enzymatic reaction, with PME both from orange peel and from Aspergillus niger. Changes in sound velocity during pectin hydrolysis (1% concentration of pectin, T = 30°C and pH = 4.5 and 7) with 0.25 ml of enzyme solution (PME) have been measured using a through-transmission technique. Sound velocity decreases as pectin is transformed into pectate and methanol and at the end of the process, the change in sound velocity reaches 0.3 m/s with PME from orange peel and 0.33 m/s with PME from Aspergillus niger.

  11. Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst.

    PubMed

    Jeong, Hanseob; Park, Yong-Cheol; Seong, Yeong-Je; Lee, Soo Min

    2017-12-01

    The aim of this study were to efficiently produce fermentable sugars by continuous type supercritical water hydrolysis (SCWH) of Quercus mongolica at the pilot scale with varying acid catalyst loading and to use the obtained sugars for ethanol production. The SCWH of biomass was achieved in under one second (380°C, 230bar) using 0.01-0.1% H 2 SO 4 . With 0.05% H 2 SO 4 , 49.8% of sugars, including glucose (16.5% based on biomass) and xylose monomers (10.8%), were liberated from biomass. The hydrolysates were fermented with S. cerevisiae DXSP and D452-2 to estimate ethanol production. To prepare the fermentation medium, the hydrolysates were detoxified using activated charcoal and then concentrated. The ethanol yield of fermentation with S. cerevisiae DXSP was 14.1% (based on biomass). The proposed system has potential for improvement in yield through process optimization. After further development, it is expected to be a competitive alternative to traditional systems for ethanol production from woody biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis

    PubMed Central

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K.; Dean, Dennis R.; Hoffman, Brian M.; Antony, Edwin; Seefeldt, Lance C.

    2013-01-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  13. Esculin hydrolysis by Vibrio vulnificus.

    PubMed

    Tison, D L

    1986-01-01

    A clinical isolate of Vibrio vulnificus was found to hydrolyze esculin when tested on bile-esculin-azide agar during the initial characterization of the strain. Reports in the literature of esculin hydrolysis by V. vulnificus are conflicting. We tested herein 52 strains of V. vulnificus from clinical and environmental sources for the ability to hydrolyze esculin. Seventy-eight percent of the strains hydrolyzed esculin on bile-esculin-azide agar, whereas all strains of V. vulnificus tested were positive for esculin hydrolysis in a noninhibitory medium, whereas some strains failed to hydrolyze esculin on media containing inhibitory compounds.

  14. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase.

    PubMed

    Liu, Lei; Zhang, Ruifen; Deng, Yuanyuan; Zhang, Yan; Xiao, Juan; Huang, Fei; Wen, Wei; Zhang, Mingwei

    2017-04-15

    In this study, rice bran was successively steamed with α-amylase, fermented with lactic acid bacteria, and hydrolyzed with complex enzymes. The changes in phenolic profiles and antioxidant activities of the corresponding aqueous solutions from three stages were investigated. Compared to the first stage, fermentation and complex enzyme hydrolysis significantly increased the total phenolics, total flavonoids, total FRAP and ORAC values by 59.2%, 56.6%, 73.6% and 45.4%, respectively. Twelve individual phenolics present in free or soluble conjugate forms were also analyzed during the processing. Ferulic acid was released in the highest amount among different phenolics followed by protocatechuic acid. Moreover, a major proportion of phenolics existed as soluble conjugates. The results showed that fermentation and complex enzyme hydrolysis enhanced total phenolics and antioxidant activities of aqueous solution from rice bran pretreated by steaming with α-amylase. This research could provide basis for the processing of rice bran beverage rich in phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water.

    PubMed

    Zhang, Taiying; Kumar, Rajeev; Wyman, Charles E

    2013-01-30

    Dilute oxalic acid pretreatment was applied to maple wood to improve compatibility with downstream operations, and its performance in pretreatment and subsequent enzymatic hydrolysis was compared to results for hydrothermal and dilute hydrochloric and sulfuric acid pretreatments. The highest total xylose yield of ∼84% of the theoretical maximum was for both 0.5% oxalic and sulfuric acid pretreatment at 160 °C, compared to ∼81% yield for hydrothermal pretreatment at 200 °C and for 0.5% hydrochloric acid pretreatment at 140 °C. The xylooligomer fraction from dilute oxalic acid pretreatment was only 6.3% of the total xylose in solution, similar to results with dilute hydrochloric and sulfuric acids but much lower than the ∼70% value for hydrothermal pretreatment. Combining any of the four pretreatments with enzymatic hydrolysis with 60 FPU cellulase/g of glucan plus xylan in the pretreated maple wood resulted in virtually the same total glucose plus xylose yields of ∼85% of the maximum possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... glucose, sucrose, or lactose, or by a procedure involving formation of lactonitrile from acetaldehyde and hydrogen cyanide and subsequent hydrolysis to lactic acid. (b) The ingredient meets the specifications of...

  17. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... glucose, sucrose, or lactose, or by a procedure involving formation of lactonitrile from acetaldehyde and hydrogen cyanide and subsequent hydrolysis to lactic acid. (b) The ingredient meets the specifications of...

  18. [Impact of liquid volume of recycled methanogenic effluent on anaerobic hydrolysis].

    PubMed

    Hao, Li-ping; Lü, Fan; He, Pin-jing; Shao, Li-ming

    2008-09-01

    Methanogenic effluent was recycled to regulate hydrolysis during two-phase anaerobic digestion of organic solid wastes. In order to study the impact of recycled effluent's volume on hydrolysis, four hydrolysis reactors filled with vegetable and flower wastes were constructed, with different liquid volumes of recycled methanogenic effluent, i.e., 0.1, 0.5, 1.0, 2.0 m3/(m3 x d), respectively. The parameters related to hydrolytic environment (pH, alkalinity, ORP, concentrations of ammonia and reducing sugar), microbial biomass and hydrolysis efficiency (accumulated SCOD, accumulated reducing sugar, and hydrolysis rate constants) were monitored. This research shows that recycling methanogenic effluent into the hydrolysis reactor can enhance its buffer capability and operation stability; higher recycled volume is favorable for microbial anabolism and further promotes hydrolysis. After 9 days of reaction, the accumulated SCOD in the hydrolytic effluent reach 334, 407, 413, 581 mg/g at recycled volumes of 0.1, 0.5, 1.0, 2.0 m3/(m3 x d) and their first-order hydrolysis rate kinetic constants are 0.065, 0.083, 0.089, 0.105 d(-1), respectively.

  19. Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology.

    PubMed

    Seo, Hyun-Woo; Jung, Eun-Young; Go, Gwang-Woong; Kim, Gap-Don; Joo, Seon-Tea; Yang, Han-Sul

    2015-10-15

    The purpose of this study was to establish optimal conditions for the hydrolysis of bovine plasma protein. Response surface methodology was used to model and optimize responses [degree of hydrolysis (DH), 2,2-diphenyl-1-picrydrazyl (DPPH) radical-scavenging activity and Fe(2+)-chelating activity]. Hydrolysis conditions, such as hydrolysis temperature (46.6-63.4 °C), hydrolysis time (98-502 min), and hydrolysis pH (6.32-9.68) were selected as the main processing conditions in the hydrolysis of bovine plasma protein. Optimal conditions for maximum DH (%), DPPH radical-scavenging activity (%) and Fe(2+)-chelating activity (%) of the hydrolyzed bovine plasma protein, were respectively established. We discovered the following three conditions for optimal hydrolysis of bovine plasma: pH of 7.82-8.32, temperature of 54.1 °C, and time of 338.4-398.4 min. We consequently succeeded in hydrolyzing bovine plasma protein under these conditions and confirmed the various desirable properties of optimal hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Synthesis and enzymatic susceptibility of a series of novel GM2 analogs.

    PubMed

    Fuse, Tomoaki; Ando, Hiromune; Imamura, Akihiro; Sawada, Naoki; Ishida, Hideharu; Kiso, Makoto; Ando, Takayuki; Li, Su-Chen; Li, Yu-Teh

    2006-07-01

    A series of GM2 analogs in which GM2 epitope was coupled to a variety of glycosyl lipids were designed and synthesized to investigate the mechanism of enzymatic hydrolysis of GM2 ganglioside. The coupling of N-Troc-protected sialic acid and p-methoxyphenyl galactoside acceptor gave the crystalline disaccharide, which was further coupled with galactosamine donor to give the desired GM2 epitope trisaccharide. After conversion into the corresponding glycosyl donor, the trisaccharide was coupled with galactose, glucose and artificial ceramide (B30) to give the final compounds. The result on hydrolysis of GM2 analogs indicates that GM2 activator protein requires one spacer sugar between GM2 epitope and the lipid moiety to assist the hydrolysis of the terminal GalNAc residue.

  1. Modeling of Anaerobic Digestion with a Focus on Estimation of Hydrolysis Constants at 35, 55, and 60 °C.

    PubMed

    Haghighatafshar, Salar; Ossiansson, Elin; Koch, Konrad; Kjerstadius, Hamse; Jansen, Jes la Cour; Davidsson, Åsa

    2015-07-01

    Hydrolysis constants of mixed sludge at 35, 55, and 60 °C were found to be 0.32, 0.44, and 0.50 1/d, respectively, in pilot-scale, semicontinuously operated anaerobic digesters. The hydrolysis constants and estimated chemical oxygen demand fractions in the feed were introduced to a mathematical model for anaerobic digestion published by Siegrist et al. (2002), which is similar to Anaerobic Digestion Model No. 1. First-order and Monod-type kinetics were tested for estimation of hydrolysis constants. The applied kinetics were found to affect the outcome of the regression study. Moreover, the free ammonia inhibition model was excluded for both propionate oxidation and acetate conversion, thanks to the apparent acclimatized biomass. No substantial accumulation of volatile fatty acids was observed in the reactors at 35, 55, and 60 °C, corresponding to free ammonia nitrogen concentrations of about 20, 110, and 130 g N/m³, respectively.

  2. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  3. Adsorption of acetanilide herbicides on soil and its components. II. Adsorption and catalytic hydrolysis of diethatyl-ethyl on saturated Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite.

    PubMed

    Liu, W P; Fang, Z; Liu, H J; Yang, W C

    2001-04-01

    Adsorption and catalytic hydrolysis of the herbicide diethatyl-ethyl [N-chloroacetyl-N-(2,6-diethylphenyl)glycine ethyl ester] on homoionic Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite clays were investigated in water solution. The Freundlich adsorption coefficient, Ki, got from isotherms on clay followed the order of Na+ approximately K+ > Mg2+ approximately Ca2+. Analysis of FT-IR spectra of diethatyl-ethyl adsorbed on clay suggests probable bonding at the carboxyl and amide carbonyl groups of the herbicide. The rate of herbicide hydrolysis in homoionic clay suspensions followed the same order as that for adsorption, indicating that adsorption may have preceded and thus caused hydrolysis. Preliminary product identification showed that hydrolysis occurred via nucleophilic substitution at the carboxyl carbon, causing the cleavage of the ester bond and formation of diethatyl and its dechlorinated derivative, and at the amide carbon, yielding an ethyl ester derivative and its acid. These pathways also suggest that hydrolysis of diethatyl-ethyl was catalyzed by adsorption on the clay surface.

  4. Reversible formation of intermediates during H/sub 3/O/sup +/-catalyzed hydrolysis of amides. Observation of substantial /sup 18/O exchange accompanying the hydrolysis of acetanilide and N-cyclohexylacetamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slebocka-Tilk, H.; Brown, R.S.; Olekszyk, J.

    1987-07-22

    Careful mass spectrometric analysis of the /sup 18/O content of approx. 50% enriched acetanilide (2) and N-cyclohexylacetamide (3) recovered from acidic media during the course of hydrolysis reveals that both species suffer /sup 18/O loss. The percent of /sup 18/O exchange per t/sub 1/2/ of hydrolysis increases as (H/sub 3/O/sup +/) decreases. For 2 at 72/sup 0/C the amount of exchange increases from 0.5 +/- 0.5% (per t/sub 1/2/) in 1 M HCl to 9.4 +/- 0.5% in glycine buffer, (H/sub 3/O/sup +/) = 0.003 M. For 3 at 100/sup 0/C the exchange is 1.05 +/- 0.3% (per t/sub 1/2/)more » at 1 M HCl and 9.0 +/- 0.4% in 0.01 M HCl. When these data are used to compute k/sub ex/ (the exchange rate constant), it shows a first-order dependence on (H/sub 3/O/sup +/) followed by a plateau at high (H/sub 3/O/sup +/) for both 2 and 3.« less

  5. Site-directed mutagenesis of α-L-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design.

    PubMed

    Xu, Li; Liu, Xiaohong; Yin, Zhenhao; Liu, Qian; Lu, Lili; Xiao, Min

    2016-12-01

    The α-L-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-L-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp 252 , Asp 257 , Asp 264 , Glu 530 , Arg 548 , His 553 , and Trp 555 ) and may form the hydrophobic pocket in stabilizing donor (Trp 261 , Tyr 302 , Tyr 316 , and Trp 369 ) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp 257 . Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.

  6. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile.

    PubMed

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-09-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile

    PubMed Central

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-01-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[3H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [3H]cholesterol from HDL-[3H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2−/− mice. Increased flux of HDL-[3H]CE to biliary FC was noted with FABP1 overexpression and in SCP2−/− mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[3H]CE to biliary FC or bile acids in FABP1−/− mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. PMID:27381048

  8. Fatty Acids Present in the Lipopolysaccharide of Rhizobium trifolii

    PubMed Central

    Russa, R.; Lorkiewicz, Z.

    1974-01-01

    Approximately 70% of the fatty acids recovered after acid or alkaline hydrolysis of the lipopolysaccharide of Rhizobium trifolii were hydroxy fatty acids identified as hydroxymyristic and hydroxypalmitic acids. Palmitic acid was the only saturated fatty acid found in the lipopolysaccharide of R. trifolii. Octadecenoic and a small amount of hexadecenoic acids were also identified. The results of BF3 methanolysis and hydroxylaminolysis suggest that hydroxypalmitic acid is N-acyl bound. PMID:4852028

  9. Dipeptidyl peptidase-4 greatly contributes to the hydrolysis of vildagliptin in human liver.

    PubMed

    Asakura, Mitsutoshi; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-04-01

    The major metabolic pathway of vildagliptin in mice, rats, dogs, and humans is hydrolysis at the cyano group to produce a carboxylic acid metabolite M20.7 (LAY151), whereas the major metabolic enzyme of vildagliptin has not been identified. In the present study, we determined the contribution rate of dipeptidyl peptidase-4 (DPP-4) to the hydrolysis of vildagliptin in the liver. We performed hydrolysis assay of the cyano group of vildagliptin using mouse, rat, and human liver samples. Additionally, DPP-4 activities in each liver sample were assessed by DPP-4 activity assay using the synthetic substrate H-glycyl-prolyl-7-amino-4-methylcoumarin (Gly-Pro-AMC). M20.7 formation rates in liver microsomes were higher than those in liver cytosol. M20.7 formation rate was significantly positively correlated with the DPP-4 activity using Gly-Pro-AMC in liver samples (r = 0.917, P < 0.01). The formation of M20.7 in mouse, rat, and human liver S9 fraction was inhibited by sitagliptin, a selective DPP-4 inhibitor. These findings indicate that DPP-4 is greatly involved in vildagliptin hydrolysis in the liver. Additionally, we established stable single expression systems of human DPP-4 and its R623Q mutant, which is the nonsynonymous single-nucleotide polymorphism of human DPP-4, in human embryonic kidney 293 (HEK293) cells to investigate the effect of R623Q mutant on vildagliptin-hydrolyzing activity. M20.7 formation rate in HEK293 cells expressing human DPP-4 was significantly higher than that in control HEK293 cells. Interestingly, R623Q mutation resulted in a decrease of the vildagliptin-hydrolyzing activity. Our findings might be useful for the prediction of interindividual variability in vildagliptin pharmacokinetics. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.

    1991-04-02

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in ({sup 3}H)glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked themore » later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 {mu}M sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.« less

  11. Reversible Hydrolysis Reaction with the Spore Photoproduct under Alkaline Conditions.

    PubMed

    Adhikari, Surya; Lin, Gengjie; Li, Lei

    2016-09-16

    DNA lesions may reduce the electron density at the nucleobases, making them prone to further modifications upon the alkaline treatment. The dominant DNA photolesion found in UV-irradiated bacterial endospores is a thymine dimer, 5-thyminyl-5,6-dihydrothymine, i.e., the spore photoproduct (SP). Here we report a stepwise addition/elimination reaction in the SP hydrolysis product under strong basic conditions where a ureido group is added to the carboxyl moiety to form a cyclic amide, regenerating SP after eliminating a hydroxide ion. Direct amidation of carboxylic acids by reaction with amines in the presence of a catalyst is well documented; however, it is very rare for an amidation reaction to occur without activation. This uncatalyzed SP reverse reaction in aqueous solution is even more surprising because the carboxyl moiety is not a good electrophile due to the negative charge it carries. Examination of the base-catalyzed hydrolyses of two other saturated pyrimidine lesions, 5,6-dihydro-2'-deoxyuridine and pyrimidine (6-4) pyrimidone photoproduct, reveals that neither reaction is reversible even though all three hydrolysis reactions may share the same gem-diol intermediate. Therefore, the SP structure where the two thymine residues maintain a stacked conformation likely provides the needed framework enabling this highly unusual carboxyl addition/elimination reaction.

  12. Combined alkaline hydrolysis and ultrasound-assisted extraction for the release of nonextractable phenolics from cauliflower (Brassica oleracea var. botrytis) waste.

    PubMed

    Gonzales, Gerard Bryan; Smagghe, Guy; Raes, Katleen; Van Camp, John

    2014-04-16

    Cauliflower waste contains high amounts phenolic compounds, but conventional solvent extraction misses high amounts of nonextractable phenolics (NEP), which may contribute more to the valorization of these waste streams. In this study, the NEP content and composition of cauliflower waste were investigated. The ability of alkaline hydrolysis, sonication, and their combination to release NEP was assessed. Alkaline hydrolysis with sonication was found to extract the highest NEP content (7.3 ± 0.17 mg gallic acid equivalents (GAE)/g dry waste), which was higher than the extractable fraction. The highest yield was obtained after treatment of 2 M NaOH at 60 °C for 30 min of sonication. Quantification and identification were done using U(H)PLC-DAD and U(H)PLC-ESI-MS(E). Kaempferol and quercetin glucosides along with several phenolic acids were found. The results of the study show that there are higher amounts of valuable health-promoting compounds from cauliflower waste than what is currently described in the literature.

  13. Enhanced hydrolysis of cellulose hydrogels by morphological modification.

    PubMed

    Alfassi, Gilad; Rein, Dmitry M; Cohen, Yachin

    2017-11-01

    Cellulose is one of the most abundant bio-renewable materials on earth, yet the potential of cellulosic bio-fuels is not fully exploited, primarily due to the high costs of conversion. Hydrogel particles of regenerated cellulose constitute a useful substrate for enzymatic hydrolysis, due to their porous and amorphous structure. This article describes the influence of several structural aspects of the cellulose hydrogel on its hydrolysis. The hydrogel density was shown to be directly proportional to the cellulose concentration in the initial solution, thus affecting its hydrolysis rate. Using high-resolution scanning electron microscopy, we show that the hydrogel particles in aqueous suspension exhibit a dense external surface layer and a more porous internal network. Elimination of the external surface layer accelerated the hydrolysis rate by up to sixfold and rendered the process nearly independent of cellulose concentration. These findings may be of practical relevance to saccharification processing costs, by reducing required solvent quantities and enzyme load.

  14. Energetic approach of biomass hydrolysis in supercritical water.

    PubMed

    Cantero, Danilo A; Vaquerizo, Luis; Mato, Fidel; Bermejo, M Dolores; Cocero, M José

    2015-03-01

    Cellulose hydrolysis can be performed in supercritical water with a high selectivity of soluble sugars. The process produces high-pressure steam that can be integrated, from an energy point of view, with the whole biomass treating process. This work investigates the integration of biomass hydrolysis reactors with commercial combined heat and power (CHP) schemes, with special attention to reactor outlet streams. The innovation developed in this work allows adequate energy integration possibilities for heating and compression by using high temperature of the flue gases and direct shaft work from the turbine. The integration of biomass hydrolysis with a CHP process allows the selective conversion of biomass into sugars with low heat requirements. Integrating these two processes, the CHP scheme yield is enhanced around 10% by injecting water in the gas turbine. Furthermore, the hydrolysis reactor can be held at 400°C and 23 MPa using only the gas turbine outlet streams. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors.

    PubMed

    Hassan, Hammad Ali; Rani, Sadaf; Fatima, Tabeer; Kiani, Farooq Ahmad; Fischer, Stefan

    2017-11-01

    Hydrolysis of phosphate groups is a crucial reaction in living cells. It involves the breaking of two strong bonds, i.e. the O a H bond of the attacking water molecule, and the PO l bond of the substrate (O a and O l stand for attacking and leaving oxygen atoms). Mechanism of the hydrolysis reaction can proceed either by a concurrent or a sequential mechanism. In the concurrent mechanism, the breaking of O a H and PO l bonds occurs simultaneously, whereas in the sequential mechanism, the O a H and PO l bonds break at different stages of the reaction. To understand how protonation affects the mechanism of hydrolysis of phosphate monoester, we have studied the mechanism of hydrolysis of protonated and deprotonated phosphate monoester at M06-2X/6-311+G**//M06-2X/6-31+G*+ZPE level of theory (where ZPE stands for zero point energy). Our calculations show that in both protonated and deprotonated cases, the breaking of the water O a H bond occurs before the breaking of the PO l bond. Because the two events are not separated by a stable intermediate, the mechanism can be categorized as semi-concurrent. The overall energy barrier is 41kcalmol -1 in the unprotonated case. Most (5/6th) of this is due to the initial breaking of the water O a H bond. This component is lowered from 34 to 25kcalmol -1 by adding one proton to the phosphate. The rest of the overall energy barrier comes from the subsequent breaking of the PO l bond and is not sensitive to protonation. This is consistent with previous findings about the effect of triphosphate protonation on the hydrolysis, where the equivalent protonation (on the γ-phosphate) was seen to lower the barrier of breaking the water O a H bond and to have little effect on the PO l bond breaking. Hydrolysis pathways of phosphate monoester with initial breaking of the PO l bond could not be found here. This is because the leaving group in phosphate monoester cannot be protonated, unlike in triphosphate hydrolysis, where protonation of the

  16. Hydrolysis and fractionation of lignocellulosic biomass

    DOEpatents

    Torget, Robert W.; Padukone, Nandan; Hatzis, Christos; Wyman, Charles E.

    2000-01-01

    A multi-function process is described for the hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components such as extractives and proteins; a portion of the solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising one or more of the following: optionally, as function 1, introducing a dilute acid of pH 1.0-5.0 into a continual shrinking bed reactor containing a lignocellulosic biomass material at a temperature of about 94 to about 160.degree. C. for a period of about 10 to about 120 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of extractives, lignin, and protein by keeping the solid to liquid ratio constant throughout the solubilization process; as function 2, introducing a dilute acid of pH 1.0-5.0, either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing either fresh biomass or the partially fractionated lignocellulosic biomass material from function 1 at a temperature of about 94-220.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of hemicellulosic sugars, semisoluble sugars and other compounds, and amorphous glucans by keeping the solid to liquid ratio constant throughout the solubilization process; as function 3, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 2 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process; and as function 4

  17. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOEpatents

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  18. Influence of temperature on the hydrolysis, acidogenesis and methanogenesis in mesophilic anaerobic digestion: parameter identification and modeling application.

    PubMed

    Donoso-Bravo, A; Retamal, C; Carballa, M; Ruiz-Filippi, G; Chamy, R

    2009-01-01

    The effect of temperature on the kinetic parameters involved in the main reactions of the anaerobic digestion process was studied. Batch tests with starch, glucose and acetic acid as substrates for hydrolysis, acidogenesis and methanogenesis, respectively, were performed in a temperature range between 15 and 45 degrees C. First order kinetics was assumed to determine the hydrolysis rate constant, while Monod and Haldane kinetics were considered for acidogenesis and methanogenesis, respectively. The results obtained showed that the anaerobic process is strongly influenced by temperature, with acidogenesis exerting the highest effect. The Cardinal Temperature Model 1 with an inflection point (CTM1) fitted properly the experimental data in the whole temperature range, except for the maximum degradation rate of acidogenesis. A simple case-study assessing the effect of temperature on an anaerobic CSTR performance indicated that with relatively simple substrates, like starch, the limiting reaction would change depending on temperature. However, when more complex substrates are used (e.g. sewage sludge), the hydrolysis might become more quickly into the limiting step.

  19. Determination of effect factor for effective parameter on saccharification of lignocellulosic material by concentrated acid

    NASA Astrophysics Data System (ADS)

    Aghili, Sina; Nodeh, Ali Arasteh

    2015-12-01

    Tamarisk usage as a new group of lignocelluloses material to produce fermentable sugars in bio ethanol process was studied. The overall aim of this work was to establish the optimum condition for acid hydrolysis of this new material and a mathematical model predicting glucose release as a function of operation variable. Sulfuric acid concentration in the range of 20 to 60%(w/w), process temperature between 60 to 95oC, hydrolysis time from 120 to 240 min and solid content 5,10,15%(w/w) were used as hydrolysis conditions. HPLC was used to analysis of the product. This analysis indicated that glucose was the main fermentable sugar and was increase with time, temperature and solid content and acid concentration was a parabola influence in glucose production. The process was modeled by a quadratic equation. Curve study and model were found that 42% acid concentration, 15 % solid content and 90oC were optimum condition.

  20. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    PubMed

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association