Sample records for acid hydrolysis procedure

  1. Analysis of free and bound chlorophenoxy acids in cereals.

    PubMed

    Lokke, H

    1975-06-01

    Extraction of the chlorophenoxy acids 2,4-D and dichlorprop in cereals has been examined by analyzing barley from spraying experiments. A procedure has been set up by combination of acid hydrolysis and enzymatic degradation followed by extraction and clean up on either silica gel or basic aluminum oxide. The final determination is based on reaction with diazomethane and subsequently GLC with ECD. This procedure was compared with two different extraction procedures previously described in the literature. The one comparative procedure uses a mixture of 50% diethyl ether/hexane in presence of sulphuric acid and resulted in residues up to ten times lower than found after the combined acid hydrolysis/enzymatic degradation procedure. In the second comparison a direct extraction was made with a mixture of 65% (v/v) acetonitrile in water. No differences were found between this and the combined acid hydrolysis/enzymatic degradation procedure.

  2. Evaluation of abalone β-glucuronidase substitution in current urine hydrolysis procedures.

    PubMed

    Malik-Wolf, Brittany; Vorce, Shawn; Holler, Justin; Bosy, Thomas

    2014-04-01

    This study examined the potential of abalone β-glucuronidase as a viable and cost effective alternative to current hydrolysis procedures using acid, Helix pomatia β-glucuronidase and Escherichia coli β-glucuronidase. Abalone β-glucuronidase successfully hydrolyzed oxazepam-glucuronide and lorazepam-glucuronide within 5% of the spiked control concentration. Benzodiazepines present in authentic urine specimens were within 20% of the concentrations obtained with the current hydrolysis procedure using H. pomatia β-glucuronidase. JWH 018 N-(5-hydroxypentyl) β-d-glucuronide was hydrolyzed within 10% of the control concentration. Authentic urine specimens showed improved glucuronide cleavage using abalone β-glucuronidase with up to an 85% increase of drug concentration, compared with the results obtained using E. coli β-glucuronidase. The JWH 018 and JWH 073 carboxylic acid metabolites also showed increased drug concentrations of up to 24%. Abalone β-glucuronidase was able to completely hydrolyze a morphine-3-glucuronide control, but only 82% of total morphine was hydrolyzed in authentic urine specimens compared with acid hydrolysis results. Hydrolysis of codeine and hydromorphone varied between specimens, suggesting that abalone β-glucuronidase may not be as efficient in hydrolyzing the glucuronide linkages in opioid compounds compared with acid hydrolysis. Abalone β-glucuronidase demonstrates effectiveness as a low cost option for enzyme hydrolysis of benzodiazepines and synthetic cannabinoids.

  3. Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis.

    PubMed

    Zhou, Shengfei; Runge, Troy M

    2014-11-04

    This work studied the two-step acid hydrolysis for determining carbohydrates in lignocellulosic biomass. Estimation of sugar loss based on acid hydrolyzed sugar standards or analysis of sugar derivatives was investigated. Four model substrates (starch, holocellulose, filter paper and cotton) and three levels of acid/material ratios (7.8, 10.3 and 15.4, v/w) were studied to demonstrate the range of test artifacts. The method for carbohydrates estimation based on acid hydrolyzed sugar standards having the most satisfactory carbohydrate recovery and relative standard deviation. Raw material and the acid/material ratio both had significant effect on carbohydrate hydrolysis, suggesting the acid to have impacts beyond a catalyst in the hydrolysis. Following optimal procedures, we were able to reach a carbohydrate recovery of 96% with a relative standard deviation less than 3%. The carbohydrates recovery lower than 100% was likely due to the incomplete hydrolysis of substrates, which was supported by scanning electron microscope (SEM) images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Activation Energies for an Enzyme-Catalyzed and Acid-Catalyzed Hydrolysis: An Introductory Interdisciplinary Experiment for Chemists and Biochemists.

    ERIC Educational Resources Information Center

    Adams, K. R.; Meyers, M. B.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students determine and compare the Arrhenius activation energies (Ea) for the hydrolysis of salicin. This reaction is subject to catalysis both by acid and by the enzyme emulsin (beta-d-glucoside glycohydrolase). (JN)

  5. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid.

    PubMed

    Wang, Ying; Yuan, Bo; Ji, Yingchao; Li, Hong

    2013-09-12

    In this paper, plasma acid was obtained by treating distilled water with dielectric barrier discharge to hydrolyze hemicellulose. The orthogonal experiment L₂₅(5(6)) was used to optimize such hydrolysis conditions. The total reducing sugar (TRS) was measured by the DNS method. To determine whether the oligosaccharide existed in the hydrolysis products, it was hydrolyzed by sulfuric acid for a second time following the same procedure as reported earlier. The monosaccharide compositions of the hydrolyzed sample were analyzed by high-performance liquid chromatography (HPLC) and Fourier transformed infrared spectroscopy (FTIR). The results showed that pH 2.81 of plasma acid, 100 °C and 50 min were assigned as an optimal hydrolysis condition by plasma acid. Under this condition, the hemicellulose was hydrolyzed completely to produce monosaccharides including xylose, glucose, and galactose with the mole ratio being 17:3:1. The yields of xylose, glucose, and galactose were 38.67%, 9.28% and 3.09%, respectively. Compared with the hemicellulose hydrolysis results by sulfuric acid, it is concluded that plasma acid is an environmental-friendly and efficient method to explore and hydrolyze the hemicellulose existed in biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase of the total quantity of amino acids after acid hydrolysis, due to the formation/release of amino acids during the whole water extraction / liquid-phase acid hydrolysis, could have hidden a loss of amino acids. Thus, in extraterrestrial material studies involving liquid-phase acid hydrolysis, the quantities of total amino acids may have been underestimated.

  7. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... glucose, sucrose, or lactose, or by a procedure involving formation of lactonitrile from acetaldehyde and hydrogen cyanide and subsequent hydrolysis to lactic acid. (b) The ingredient meets the specifications of...

  8. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... glucose, sucrose, or lactose, or by a procedure involving formation of lactonitrile from acetaldehyde and hydrogen cyanide and subsequent hydrolysis to lactic acid. (b) The ingredient meets the specifications of...

  9. A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC.

    PubMed

    Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir

    2015-11-01

    Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines.

  10. One-Step Extraction and Hydrolysis of Flavonoid Glycosides in Rape Bee Pollen Based on Soxhlet-Assisted Matrix Solid Phase Dispersion.

    PubMed

    Tu, Xijuan; Ma, Shuangqin; Gao, Zhaosheng; Wang, Jing; Huang, Shaokang; Chen, Wenbin

    2017-11-01

    Flavonoids are frequently found as glycosylated derivatives in plant materials. To determine contents of flavonoid aglycones in these matrices, procedures for the extraction and hydrolysis of flavonoid glycosides are required. The current sample preparation method is both labour and time consuming. Develop a modified matrix solid phase dispersion (MSPD) procedure as an alternative methodology for the one-step extraction and hydrolysis of flavonoid glycosides. HPLC-DAD was applied for demonstrating the one-step extraction and hydrolysis of flavonoids in rape bee pollen. The obtained contents of flavonoid aglycones (quercetin, kaempferol, isorhamnetin) were used for the optimisation and validation of the method. The extraction and hydrolysis were accomplished in one step. The procedure completes in 2 h with silica gel as dispersant, a 1:2 ratio of sample to dispersant, and 60% aqueous ethanol with 0.3 M hydrochloric acid as the extraction solution. The relative standard deviations (RSDs) of repeatability were less than 5%, and the recoveries at two fortified levels were between 88.3 and 104.8%. The proposed methodology is simple and highly efficient, with good repeatability and recovery. Compared with currently available methods, the present work has advantages of using less time and labour, higher extraction efficiency, and less consumption of the acid catalyst. This method may have applications for the one-step extraction and hydrolysis of bioactive compounds from plant materials. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    ERIC Educational Resources Information Center

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  12. Is enzymatic hydrolysis a reliable analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites in human fluids?

    PubMed

    Quifer-Rada, Paola; Martínez-Huélamo, Miriam; Lamuela-Raventos, Rosa M

    2017-07-19

    Phenolic compounds are present in human fluids (plasma and urine) mainly as glucuronidated and sulfated metabolites. Up to now, due to the unavailability of standards, enzymatic hydrolysis has been the method of choice in analytical chemistry to quantify these phase II phenolic metabolites. Enzymatic hydrolysis procedures vary in enzyme concentration, pH and temperature; however, there is a lack of knowledge about the stability of polyphenols in their free form during the process. In this study, we evaluated the stability of 7 phenolic acids, 2 flavonoids and 3 prenylflavanoids in urine during enzymatic hydrolysis to assess the suitability of this analytical procedure, using three different concentrations of β-glucuronidase/sulfatase enzymes from Helix pomatia. The results indicate that enzymatic hydrolysis negatively affected the recovery of the precursor and free-form polyphenols present in the sample. Thus, enzymatic hydrolysis does not seem an ideal analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites.

  13. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  14. Combined enzymatic and colorimetric method for determining the uronic acid and methylester content of pectin: Application to tomato products.

    PubMed

    Anthon, Gordon E; Barrett, Diane M

    2008-09-01

    A simple procedure for determining the galacturonic acid and methanol contents of soluble and insoluble pectins, relying on enzymatic pectin hydrolysis and colorimetric quantification, is described. Pectin samples are incubated with a commercial pectinase preparation, Viscozyme, then the galacturonic acid content of the hydrolyzed pectin is quantified colorimetrically using a modification of the Cu reduction procedure originally described by Avigad and Milner. This modification, substituting the commonly used Folin-Ciocalteau reagent for the arsenic containing Nelson reagent, gives a response that is linear, sensitive, and selective for uronic acids over neutral sugars. This method also avoids the use of concentrated acids needed for the commonly used m-phenylphenol method. Methanol, released by the action of the pectin methylesterase found in the Viscozyme, is quantified using alcohol oxidase and Purpald. This combined enzymatic and colorimetric procedure correctly determined the galacturonic acid and methanol content of purified, soluble citrus pectin. Application of the procedure to water insoluble pectins was evaluated with water insoluble material from apples and oranges. In both cases good agreement was obtained between this method and commonly used methods based on chemical pectin hydrolysis. Good agreement between these procedures was also found in the analysis of both soluble and insoluble pectins from several tomato products. Copyright © 2008 Elsevier Ltd. All rights reserved.

  15. A new method for the quantification of monosaccharides, uronic acids and oligosaccharides in partially hydrolyzed xylans by HPAEC-UV/VIS.

    PubMed

    Lorenz, Dominic; Erasmy, Nicole; Akil, Youssef; Saake, Bodo

    2016-04-20

    A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Assessment of the hydrolysis process for the determination of okadaic acid-group toxin ester: presence of okadaic acid 7-O-acyl-ester derivates in Spanish shellfish.

    PubMed

    Villar-González, A; Rodríguez-Velasco, M L; Ben-Gigirey, B; Yasumoto, T; Botana, L M

    2008-04-01

    The contamination of different types of shellfish by okadaic acid (OA)-group toxin esters is an important problem that presents serious risk for human health. During previous investigations carried out in our laboratory by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS), the occurrence of a high percentage of esters in relation to the total OA equivalents has been observed in several shellfish species. The determination of these kinds of toxins using LC/MS or other chemical methods requires a hydrolysis step in order to convert the sterified compounds into the parent toxins, OA, dinophysistoxins-1 (DTX-1) and dinophysistoxins-2 (DTX-2). Most of the hydrolysis procedures are based on an alkaline hydrolysis reaction. However, despite hydrolysis being a critical step within the analysis, it has not been studied in depth up to now. The present paper reports the results obtained after evaluating the hydrolysis process of an esterified form of OA by using a standard of 7-O-acyl ester with palmitoyl as the fatty acid (palOA). Investigations were focused on checking the effectiveness of the hydrolysis for palOA using methanol as solvent standard and matrices matched standards. From the results obtained, no matrix influence on the hydrolysis process was observed and the quantity of palOA converted into OA was always above 80%. The analyses of different Spanish shellfish samples showed percentages of palOA in relation to the total OA esters ranging from 27% to 90%, depending on the shellfish specie.

  17. Synthesis of the Fatty Esters of Solketal and Glycerol-Formal: Biobased Specialty Chemicals.

    PubMed

    Perosa, Alvise; Moraschini, Andrea; Selva, Maurizio; Noè, Marco

    2016-01-30

    The caprylic, lauric, palmitic and stearic esters of solketal and glycerol formal were synthesized with high selectivity and in good yields by a solvent-free acid catalyzed procedure. No acetal hydrolysis was observed, notwithstanding the acidic reaction conditions.

  18. Automated synthesis of N-(2-[18 F]Fluoropropionyl)-l-glutamic acid as an amino acid tracer for tumor imaging on a modified [18 F]FDG synthesis module.

    PubMed

    Liu, Shaoyu; Sun, Aixia; Zhang, Zhanwen; Tang, Xiaolan; Nie, Dahong; Ma, Hui; Jiang, Shende; Tang, Ganghua

    2017-06-15

    N-(2-[ 18 F]Fluoropropionyl)-l-glutamic acid ([ 18 F]FPGLU) is a potential amino acid tracer for tumor imaging with positron emission tomography. However, due to the complicated multistep synthesis, the routine production of [ 18 F]FPGLU presents many challenging laboratory requirements. To simplify the synthesis process of this interesting radiopharmaceutical, an efficient automated synthesis of [ 18 F]FPGLU was performed on a modified commercial fluorodeoxyglucose synthesizer via a 2-step on-column hydrolysis procedure, including 18 F-fluorination and on-column hydrolysis reaction. [ 18 F]FPGLU was synthesized in 12 ± 2% (n = 10, uncorrected) radiochemical yield based on [ 18 F]fluoride using the tosylated precursor 2. The radiochemical purity was ≥98%, and the overall synthesis time was 35 minutes. To further optimize the radiosynthesis conditions of [ 18 F]FPGLU, a brominated precursor 3 was also used for the preparation of [ 18 F]FPGLU, and the improved radiochemical yield was up to 20 ± 3% (n = 10, uncorrected) in 35 minutes. Moreover, all these results were achieved using the similar on-column hydrolysis procedure on the modified fluorodeoxyglucose synthesis module. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Biomonitoring of carcinogenic substances: enzymatic digestion of globin for detecting alkylated amino acids

    NASA Astrophysics Data System (ADS)

    Bader, Michael; Rauscher, Dankwart; Geibel, Kurt; Angerer, Juergen

    1993-03-01

    We report the application of proteases for the total hydrolysis of globin with subsequent determination of amino acids. Optimization of the proteolysis was made with respect to enzyme concentration, time of incubation and type of protease. Ethylene oxide modified globin was used to compare the results of the analysis of the N-terminal amino acid valine after enzymatic cleavage to those obtained from the widely used modified Edman procedure. It is shown that the cleavage is of good reproducibility and yields more alkylated amino acid than the Edman procedure.

  20. An alternative analytical method based on ultrasound micro bath hydrolysis and GC-MS analysis for the characterization of organic biomarkers in archaeological ceramics.

    PubMed

    Blanco-Zubiaguirre, Laura; Olivares, Maitane; Castro, Kepa; Iñañez, Javier G; Madariaga, Juan Manuel

    2016-11-01

    The analysis of organic biomarkers in ancient and valuable archaeological remains provides a worthwhile source of information regarding their management. This work was focused on the development of an analytical procedure to characterize organic residues that have remained in archaeological ceramic samples. A novel analytical approach based on an alkaline hydrolysis by means of an ultrasound micro bath followed by liquid extraction was proposed to isolate saturated and unsaturated fatty acids, degradation products such as dihydroxy acids or dienoic fatty acids, isoprenoid fatty acids, and many other biomarkers from archaeological remains. This main goal has been achieved after the optimization of the main parameters affecting the hydrolysis step, the extraction procedure, and the derivatization step prior to the gas chromatography-mass spectrometry analysis. In this work, archaeological ceramic remains suspected to have been used by Basque Whalers to store whale oil in the period from the sixteenth to the seventeenth century were studied. Nevertheless, the proposed method is useful to determine the organic remains preserved in many other archaeological ceramic remains. Moreover, this methodology can be used to determine organic remains in any porous ceramic, archaeological or not. The preliminary results of the analysis of ceramic vessels led to the determination of some interesting unsaturated compounds such as 11-eicosenoic acid, an important biomarker of marine commodities, and several saturated fatty acids, which could be indicative of having used the vessels to store whale oil. Graphical abstract ᅟ.

  1. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE PAGES

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.; ...

    2017-09-01

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  2. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  3. Development of C-reactive protein certified reference material NMIJ CRM 6201-b: optimization of a hydrolysis process to improve the accuracy of amino acid analysis.

    PubMed

    Kato, Megumi; Kinumi, Tomoya; Yoshioka, Mariko; Goto, Mari; Fujii, Shin-Ichiro; Takatsu, Akiko

    2015-04-01

    To standardize C-reactive protein (CRP) assays, the National Metrology Institute of Japan (NMIJ) has developed a C-reactive protein solution certified reference material, CRM 6201-b, which is intended for use as a primary reference material to enable the SI-traceable measurement of CRP. This study describes the development process of CRM 6201-b. As a candidate material of the CRM, recombinant human CRP solution was selected because of its higher purity and homogeneity than the purified material from human serum. Gel filtration chromatography was used to examine the homogeneity and stability of the present CRM. The total protein concentration of CRP in the present CRM was determined by amino acid analysis coupled to isotope-dilution mass spectrometry (IDMS-AAA). To improve the accuracy of IDMS-AAA, we optimized the hydrolysis process by examining the effect of parameters such as the volume of protein samples taken for hydrolysis, the procedure of sample preparation prior to the hydrolysis, hydrolysis temperature, and hydrolysis time. Under optimized conditions, we conducted two independent approaches in which the following independent hydrolysis and liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) were combined: one was vapor-phase acid hydrolysis (130 °C, 24 h) and hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) method, and the other was microwave-assisted liquid-phase acid hydrolysis (150 °C, 3 h) and pre-column derivatization liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The quantitative values of the two different amino acid analyses were in agreement within their uncertainties. The certified value was the weighted mean of the results of the two methods. Uncertainties from the value-assignment method, between-method variance, homogeneity, long-term stability, and short-term stability were taken into account in evaluating the uncertainty for a certified value. The certified value and the expanded uncertainty (k = 2) of CRM 6201-b are (40.0 ± 1.6) μmol kg(-1).

  4. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    NASA Technical Reports Server (NTRS)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  5. Hexeneuronic acid content of chemical pulp

    Treesearch

    Junyong Zhu; X.S. Chai

    2007-01-01

    This method describes a procedure to determine hexeneuronic acid groups (HexA) in chemical pulps. HexA affects the kappa number determination by reaction with permanganate, and can react with certain bleaching chemicals, e.g. chlorine dioxide and ozone, but not with some others such as oxygen and peroxide. The method is based on the highly selective hydrolysis of HexA...

  6. Pretreatment of different biological matrices for exogenous testosterone analysis: a review.

    PubMed

    Pizzato, Edna Carolina; Filonzi, Marcelo; Rosa, Hemerson Silva da; de Bairros, André Valle

    2017-11-01

    The presence of exogenous testosterone has been monitored mainly in the urine and blood. However, other biological matrices such as hair, nail, and saliva samples can be used successfully for in vivo measurement. Chromatographic analysis requires pretreatment to obtain free testosterone and its metabolites. Among the pretreatment procedures, digestion, hydrolysis and solvolysis steps are conducted to reach the analytical purpose. Digestion assay is indicated for hair and nail samples. First, it is recommended to perform the decontamination step. After that, alkaline solution (NaOH), organic solvents and other reagents can be added to the samples and incubated under determined conditions for the digestion step. Hydrolysis assay is recommended to urine and blood samples. Acid hydrolysis cleaves conjugated testosterone and its metabolites using HCl or H 2 SO 4 solution at appropriate time and temperature. However, there is formation of interferent compounds, degradation of dehydroepiandrosterone and decrease of peak resolution for epitestosterone. Enzymatic hydrolysis is an alternative technique able to promote free testosterone and its metabolites with low degradation. It is important to establish the best conditions according to the biological fluid and the amount of the sample. Sulfatase enzyme is recommended together with β-glucuronidase to cleave sulfoconjugate steroids. Solvolysis assay is similar to acid hydrolysis, but organic solvents are responsible to promote steroid deconjugation. Other approaches such as combination of different pretreatments, surface response or ultrasonic energy have been used to obtain the total of free steroids. So, the biological matrix defines the best procedure for pretreatment to achieve the analytical purpose, knowing its advantages and limitations.

  7. Internal Hydrolysis Indicator for Sample Specific Monitoring of β-Glucuronidase Activity.

    PubMed

    Taylor, Lacy L; Flint, Noah A; Ma, Vinh; Hill, Brandy M; Clark, Chantry J; Strathmann, Frederick G

    2017-06-01

    Metabolized forms of benzodiazepines (benzos) can cause issues with mass spectrometry identification. Benzodiazepines undergo a process called glucuronidation during metabolism that attaches a glucuronic acid for increased solubility. Often in clinical testing an enzymatic hydrolysis step is implemented to increase the sensitivity of benzodiazepines by hydrolyzing β-D-glucuronic acid from benzodiazepine-glucuronide conjugates in urine samples using the β-Glucuronidase enzyme. In this study resorufin β-D-glucuronide, a substrate of the β-Glucuronidase enzyme, was added to patient samples to determine if proper hydrolysis had occurred. The presence of resorufin as an Internal Hydrolysis Indicator (IHI) shows the activity and efficiency of the enzyme in each patient sample. Synthetic/patient urine samples were obtained and mixed with hydrolysis buffer containing resorufin β-D-glucuronide. The β-Glucuronidase enzyme was used to hydrolyze the benzodiazepine analytes as well as resorufin β-D-glucuronide. The enzymatic hydrolysis addition increased the positivity rate of benzodiazepines by 42.5%. The β-Glucuronidase substrate resorufin (IHI) displayed variability in area counts between patient samples. Comparative studies with internal standards and resorufin (IHI) showed no correlation between recovery and analyte variability. Hydrolysis reactions greatly improved the sensitivity of benzodiazepines by liquid chromatography time-of-flight mass spectrometry analysis. The large variation in resorufin (IHI) area counts amongst patient samples indicates possible variability in enzymatic hydrolysis activity. The enzymatic hydrolysis step is a part of the extraction procedure and should be controlled for in each patient sample. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Rapid determination of collagen in meat-based foods by microwave hydrolysis of proteins and HPAEC-PAD analysis of 4-hydroxyproline.

    PubMed

    Messia, M C; Di Falco, T; Panfili, G; Marconi, E

    2008-10-01

    A rapid microwave procedure for protein hydrolysis coupled with High Performance Anion Exchange Chromatography and Pulsed Amperometric Detection (HPAEC-PAD) was developed to quantify the amino acid 4-hydroxyproline in meat and meat-based products. This innovative approach was successfully applied to determine collagen content (4-hydroxyproline×8) as the index quality of meat material employed in the preparation of typical meat sausages ("Mortadella di Bologna PGI" and "Salamini italiani alla cacciatora PDO") and fresh filled pastas. Microwave hydrolysis showed a precision and accuracy similar to traditional hydrolysis (RSD% from 0.0 to 6.4; relative error 1.4-10.0%) with a reduction in the hydrolysis time from 24h to 20min. HPAEC-PAD allowed detection of 4-hydroxyproline without pre or post-column derivatization and the use of non-toxic eluents.

  9. [Improved device and method for determination of protein digestibility in vitro].

    PubMed

    Lipatov, N N; Iudina, S B; Lisitsyn, A B

    1994-01-01

    The ten-cells device for modelling of ferment hydrolysis of food proteins by acid basic proteases of human alimentary canal is described. The new procedure for the calculation of quantitative characteristic of proteins digestion "in vitro" is presented.

  10. Assay of phenolic compounds from four species of Ber (Ziziphus mauritiana L.) Fruits: Comparision of three base hydrolysis procedure for quantification of total phenolic acids

    USDA-ARS?s Scientific Manuscript database

    The present study was undertaken to investigate the flavonoids profile in four species of ber (Ziziphus mauritiana Lamk) fruit and to compare various techniques for the analysis of total phenolic acids. The 12 flavonoids identified were quercetin 3-O-robinobioside, quercetin 3-O-rutinoside, querceti...

  11. Specific radioisotopic assay for cholinesterase. Technical report, December 1987-March 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talbot, B.G.; Anderson, D.R.; Harris, L.W.

    1990-05-01

    The radiometric method (I) for measuring ChE activity was modified to preclude the use of p-dioxane, a hazardous material. The modified procedure (II) uses 0.4 N perchloric acid (PCA), instead of p-dioxane, to denature the ChE and stop hydrolysis of 14C-acetylcholine (ACh). The unreacted substrate (ACh) is removed by cationic exchange resin suspended in water. The supernatant (acidic water solution) containing the product of hydrolysis, 14C-acetic acid, is mixed with nonhazardous scintillation cocktail and counted. The incubation mixture (37 degrees C) for II is similar to I and is composed of 0.1 ml of buffer-salt solution (pH 7.8), 0.1 mlmore » of guinea pig whole blood (WB)-water suspension and 0.1 ml of 3mM ACh solution.« less

  12. Bioconversion of Agave tequilana fructans by exo-inulinases from indigenous Aspergillus niger CH-A-2010 enhances ethanol production from raw Agave tequilana juice.

    PubMed

    Huitrón, Carlos; Pérez, Rosalba; Gutiérrez, Luís; Lappe, Patricia; Petrosyan, Pavel; Villegas, Jesús; Aguilar, Cecilia; Rocha-Zavaleta, Leticia; Blancas, Abel

    2013-01-01

    Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme(®) (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol.

  13. Ultra-high performance supercritical fluid chromatography-mass spectrometry procedure for analysis of monosaccharides from plant gum binders.

    PubMed

    Pauk, Volodymyr; Pluháček, Tomáš; Havlíček, Vladimír; Lemr, Karel

    2017-10-09

    The ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) procedure for analysis of native monosaccharides was developed. Chromatographic conditions were investigated to separate a mixture of four hexoses, three pentoses, two deoxyhexoses and two uronic acids. Increasing water content in methanol modifier to 5% and formic acid to 4% improved peak shapes of neutral monosaccharides and allowed complete elution of highly polar uronic acids in a single run. An Acquity HSS C18SB column outperformed other three tested stationary phases (BEH (silica), BEH 2-ethylpyridine, CSH Fluoro-Phenyl) in terms of separation of isomers and analysis time (4.5 min). Limits of detection were in the range 0.01-0.12 ng μL -1 . Owing to separation of anomers, identification of critical pairs (arabinose-xylose and glucose-galactose) was possible. Feasibility of the new method was demonstrated on plant-derived polysaccharide binders. Samples of watercolor paints, painted paper and three plant gums widely encountered in painting media (Arabic, cherry and tragacanth) were decomposed prior the analysis by microwave-assisted hydrolysis at 40 bar initial pressure using 2 mol L -1 trifluoroacetic acid. Among tested temperatures, 120 °C ensured appropriate hydrolysis efficiency for different types of gum and avoided excessive degradation of labile monosaccharides. Procedure recovery tested on gum Arabic was 101% with an RSD below 8%. Aqueous hydrolysates containing monosaccharides in different ratios specific to each type of plant gum were diluted or analyzed directly. Filtration of samples before hydrolysis reduced interferences from a paper support and identification of gum Arabic in watercolor-painted paper samples was demonstrated. Successful identification of pure gum Arabic was confirmed for sample quantities as little as 1 μg. Two classification approaches were compared and principal component analysis was superior to analysis based on peak area ratios of monosaccharides. The proposed procedure using UHPSFC/MS represents an interesting alternative which can compete with other chromatographic methods in the field of saccharide analysis in terms of speed, sensitivity and simplicity of workflow. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis.

    PubMed

    Wang, Feng-Qin; Xie, Hui; Chen, Wei; Wang, En-Tao; Du, Feng-Guang; Song, An-Dong

    2013-09-01

    Aiming at increasing the efficiency of transferring corn stover into sugars, a biological pretreatment was developed and investigated in this study. The protocol was characterized by the pretreatment with crude ligninolytic enzymes from Phanerochete chrysosporium and Coridus versicolor to break the lignin structure in corn stover, followed by a washing procedure to eliminate the inhibition of ligninolytic enzyme on cellulase. By a 2 d-pretreatment, sugar yield from corn stover hydrolysis could be increased by 50.2% (up to 323 mg/g) compared with that of the control. X-ray diffractometry and FT-IR analysis revealed that biological pretreatment could partially remove the lignin of corn stover, and consequently enhance the enzymatic hydrolysis efficiency of cellulose and hemeicellulose. In addition, the amount of microbial inhibitors, such as acetic acid and furfural, were much lower in biological pretreatment than that in acid pretreatment. This study provided a promising pretreatment method for biotransformation of corn stovers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. HPTLC determination of diosgenin in fenugreek seeds.

    PubMed

    Król-Kogus, Barbara; Lamine, Khenifi Mohammed; Migas, Piotr; Boudjeniba, Messaoud; Krauze-Baranowska, Mirosława

    2018-03-01

    A new HPTLC-densitometric method for diosgenin determination in fenugreek seeds was established after optimization of the conditions for efficient saponin extraction and acid hydrolysis. Several procedures were tested, the best of which was a three-step Soxhlet extraction, followed by hydrolysis of the obtained methanolic extract with 2 mol L-1 H2SO4. Best diosgenin separation from other hydrolysis products was obtained on HPTLC Si60F254 plates u sing a mixture of n-heptane/ethyl acetate (7:3, V/V) and modified anisaldehyde as a spraying reagent. The method was preliminarily validated and the determined amounts of diosgenin in fenugreek seeds of Polish and African origin were found to be similar and ranged from 0.12-0.18 %.

  16. Specific radioisotopic assay for cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talbot, B.G.; Anderson, D.R.; Harris, L.W.

    1992-02-01

    The authors have developed a radiometric method (1) for measuring cholinesterase (ChE) activity that uses 0.4 N perchloric acid (PCA), instead of p-dioxane (method 2), to denature the ChE and stop hydrolysis of acetyl-1-{sup 14}C-choline (ACh). The unreacted ACh is removed by IRP-69 cationic exchange resin suspended in water, instead of dioxane. The supernatant containing the hydrolysis product, {sup 14}C-acetic acid, is mixed with nonhazardous scintillation cocktail and counted. The incubation mixture of 1 is similar to 2 and contains 0.1 ml of buffer-salt solution 0.1 ml of guinea pig whole blood (WB)-water suspension and 0.1 ml of 3 mMmore » ACh solution. Procedures 1 and 2 were compared to a titragraphic assay for ChE activity; specific activity values of WB (mmol ACh hydrolyzed/ml/hr) were found to be 137.6, 72.4 and 135.0, respectively. When {sup 14}C-acetic acid was processed through procedures 1 and 2, significantly less {sup 14}C was found in the supernatant from 2, whereas all of the expected {sup 14}C was found in the supernatant from 1, suggesting that IRP-69 resin in dioxane will remove significant amounts of {sup 14}C-acetic acid.« less

  17. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods

    PubMed Central

    2010-01-01

    As interest in lignocellulosic biomass feedstocks for conversion into transportation fuels grows, the summative compositional analysis of biomass, or plant-derived material, becomes ever more important. The sulfuric acid hydrolysis of biomass has been used to measure lignin and structural carbohydrate content for more than 100 years. Researchers have applied these methods to measure the lignin and structural carbohydrate contents of woody materials, estimate the nutritional value of animal feed, analyze the dietary fiber content of human food, compare potential biofuels feedstocks, and measure the efficiency of biomass-to-biofuels processes. The purpose of this paper is to review the history and lineage of biomass compositional analysis methods based on a sulfuric acid hydrolysis. These methods have become the de facto procedure for biomass compositional analysis. The paper traces changes to the biomass compositional analysis methods through time to the biomass methods currently used at the National Renewable Energy Laboratory (NREL). The current suite of laboratory analytical procedures (LAPs) offered by NREL is described, including an overview of the procedures and methodologies and some common pitfalls. Suggestions are made for continuing improvement to the suite of analyses. PMID:20669951

  18. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  19. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.

    PubMed

    Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F

    2014-10-13

    The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Hydrolysis kinetics of secoisolariciresinol diglucoside oligomers from flaxseed.

    PubMed

    Yuan, Jian-Ping; Li, Xin; Xu, Shi-Ping; Wang, Jiang-Hai; Liu, Xin

    2008-11-12

    Flaxseed is the richest dietary source of the lignan secoisolariciresinol diglucoside (SDG) and contains the largest amount of SDG oligomers, which are often hydrolyzed to break the ester linkages for the release of SDG and the glycosidic bonds for the release of secoisolariciresinol (SECO). The alkaline hydrolysis reaction kinetics of SDG oligomers from flaxseed and the acid hydrolysis process of SDG and other glucosides were investigated. For the kinetic modeling, a pseudo-first-order reaction was assumed. The results showed that the alkaline hydrolysis of SDG oligomers followed first-order reaction kinetics under mild alkaline hydrolytic conditions and that the concentration of sodium hydroxide had a strong influence on the activation energy of the alkaline hydrolysis of SDG oligomers. The results also indicated that the main acid hydrolysates of SDG included secoisolariciresinol monoglucoside (SMG), SECO, and anhydrosecoisolariciresinol (anhydro-SECO) and that the extent and the main hydrolysates of the acid hydrolysis reaction depended on the acid concentration, hydrolysis temperature, and time. In addition, the production and change of p-coumaric acid glucoside, ferulic acid glucoside and their methyl esters and p-coumaric acid, ferulic acid, and their methyl esters during the process of hydrolysis was also investigated.

  1. Accumulated analyses of amino acid precursors in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Harada, K.; Hare, P. E.

    1973-01-01

    Six amino acids (glycine, alanine, aspartic acid, glutamic acid, serine, and threonine) obtained by hydrolysis of extracts have been quantitatively determined in ten collections of fines from five Apollo missions. Although the amounts found, 7-45 ng/g, are small, the lunar amino acid/carbon ratios are comparable to those of the carbonaceous chondrites, Murchison and Murray, as analyzed by the same procedures. Since both the ratios of amino acid to carbon, and the four or five most common types of proteinous amino acid found, are comparable for the two extraterrestrial sources despite different cosmophysical histories of the moon and meteorites, common cosmochemical processes are suggested.

  2. Effects of tempering (annealing), acid hydrolysis, low-citric acid substitution on chemical and physicochemical properties of starches of four yam (Dioscorea spp.) cultivars.

    PubMed

    Falade, Kolawole O; Ayetigbo, Oluwatoyin E

    2017-05-01

    The effects of tempering (annealing), acid hydrolysis and low-citric acid substitution on chemical and physicochemical properties of starches of four Nigerian yam cultivars were investigated. Crude fat and protein contents of the native starches decreased significantly after the modifications, while nitrogen-free extract increased significantly with acid hydrolysis and citric acid substitution. Acid hydrolysis and low-citric acid substitution reduced the least concentration for gel formation of the starches from 4 to 2% w/v, but tempering had no effect. Swelling power of the starches reduced significantly, and water solubility increased significantly at 75 and 85 °C, especially with acid hydrolysis and low-citric acid substitution. However, tempering significantly reduced starch solubility in the four cultivars. Paste clarity of starches of white (29.17%), water (18.90%), yellow (30.90%) and bitter (10.57%) yams reduced significantly with tempering to 14.43, 11.83, 16.93 and 7.27%, but increased significantly with acid hydrolysis to 41.40, 35.37, 28.77 and 32.33%, and low-citric acid substitution to 36.60, 44.17, 50.67 and 14.33%, respectively. Pasting properties such as peak, trough, breakdown, final, and setback viscosities and peak time of native starches reduced significantly with acid hydrolysis and low-citric acid substitution, however, tempering significantly increased their pasting temperature, peak time, setback and final viscosities.

  3. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  4. Effect of Maillard browning reaction on protein utilization and plasma amino acid response by rainbow trout (Salmo gairdneri).

    PubMed

    Plakas, S M; Lee, T C; Wolke, R E; Meade, T L

    1985-12-01

    The effect of the Maillard browning reaction in the diet of rainbow trout (Salmo gairdneri) on growth and amino acid availability was investigated. Chemical and enzymatic hydrolysis methods were applied for the detection of the losses of amino acids in a model protein browning system. Arginine and lysine exhibited the greatest losses in the mixture of fish protein isolate and glucose stored for 40 d at 37 degrees C. The apparent digestibility and absorption of individual amino acids, particularly lysine, was lower in trout fed browned protein than in those fed the control protein. Plasma lysine levels were significantly depressed, while the plasma levels of glucose and most other amino acids were elevated in relation to the loss in nutritive value of dietary protein after browning. The early Maillard reaction derivative of lysine, epsilon-deoxy-fructosyl-lysine, was recovered from browned protein (by using the in vitro enzymatic hydrolysis procedure) and from the plasma of trout fed browned protein. Analysis of plasma free amino acids provided an indication of lysine bioavailability and identified lysine as the first-limiting amino acid in the diets containing browned protein.

  5. Isolation of Cholesterol from an Egg Yolk

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  6. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).

    PubMed

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.

  7. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  8. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.

    2017-12-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  9. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors

    Treesearch

    Jae-Won Lee; Thomas W. Jeffries

    2011-01-01

    Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF)...

  10. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  11. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production

    PubMed Central

    Idrees, Muhammad; Adnan, Ahmad; Sheikh, Shahzad; Qureshic, Fahim Ashraf

    2013-01-01

    The present study was conducted for the optimization of pretreatment process that was used for enzymatic hydrolysis of lignocellulosic biomass (Water Hyacinth, WH), which is a renewable resource for the production of bioethanol with decentralized availability. Response surface methodology has been employed for the optimization of temperature (oC), time (hr) and different concentrations of maleic acid (MA), sulfuric acid (SA) and phosphoric acid (PA) that seemed to be significant variables with P < 0.05. High F and R2 values and low P-value for hydrolysis yield indicated the model predictability. The pretreated biomass producing 39.96 g/l, 39.86 g/l and 37.9 g/l of reducing sugars during enzymatic hydrolysis with yield 79.93, 78.71 and 75.9 % from PA, MA and SA treated respectively. The order of catalytic effectiveness for hydrolysis yield was found to be phosphoric acid > maleic acid > sulfuric acid. Mixture of sugars was obtained during dilute acid pretreatment with glucose being the most prominent sugar while pure glucose was obtained during enzymatic hydrolysis. The resulting sugars, obtained during enzymatic hydrolysis were finally fermented to ethanol, with yield 0.484 g/g of reducing sugars which is 95 % of theoretical yield (0.51 g/g glucose) by using commercial baker's yeast (Sacchromyces cerveasiae). PMID:26417215

  13. Effect of acid hydrolysis on morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight.

    PubMed

    Wang, Xingchi; Wen, Fanting; Zhang, Shurong; Shen, Ruru; Jiang, Wei; Liu, Jun

    2017-03-01

    Effect of acid hydrolysis on the morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight was investigated in this study. The hydrolysis degree of C. auriculatum starch rapidly increased to 63.69% after 4days and reached 78.67% at the end of 9days. Morphology observation showed that the starch granules remained intact during the first 4days of hydrolysis. However, serious erosion phenomenon was observed after 5days and starch granules completely fell into pieces after 7days. During acid hydrolysis process, the crystal type of hydrolyzed starch changed from original C B -type to final A-type. Small-angle X-ray scattering patterns showed the semi-crystalline growth rings started to be hydrolyzed after 4days. The proportions of single helix and amorphous components as well as amylose content in starch gradually decreased, whereas the proportion of double helix components continuously increased during acid hydrolysis. However, the contents of rapidly digestible starch, slowly digestible starch and resistant starch were almost constant during acid hydrolysis process, indicating the in vitro digestion property of C. auriculatum starch was not affected by acid hydrolysis. Our results provided novel information on the inner structure of C. auriculatum starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Rapid classification of enzymes in cleaning products by hydrolysis, mass spectrometry and linear discriminant analysis.

    PubMed

    Beneito-Cambra, Miriam; Herrero-Martínez, José Manuel; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo

    2008-11-01

    A method for the rapid classification of proteases, lipases, amylases and cellulases used as enhancers in cleaning products, based on precipitation with acetone, hydrolysis with HCl, dilution of the hydrolysates with ethanol, and direct infusion into the electrospray ion source of an ion-trap mass spectrometer, has been developed. The abundances of the ([M+H]+ ions of the amino acids, from the hydrolysates of both the enzyme industrial concentrates and the detergent bases spiked with them, were used to construct linear discriminant analysis models, capable of distinguishing between the enzyme classes. For this purpose, the variables were normalized as follows: (A) the ion abundance of each amino acid was divided by the sum of the ion abundances of all the amino acids in the corresponding mass spectrum; (B) the ratios of pairs of ion abundances were obtained by dividing the ion abundance of each amino acid by each one of the ion abundances of the other 17 amino acids in the corresponding mass spectrum. Using normalization procedure B, excellent class-resolution between proteases, lipases, amylases and cellulases was achieved. In all cases, enzymes in industrial concentrates and manufactured cleaning products were correctly classified with >98% assignment probability.

  15. Determination of the structure of lecithins via the formation of acetylated 1,2-diglycerides.

    PubMed

    Privett, O S; Nutter, L J

    1967-03-01

    A detailed procedure for quantitative determinations of molecular species of lecithins is described and applied to several lecithins isolated from natural sources. The method is based on the conversion of lecithin to acetylated 1,2-diglycerides and analysis of these compounds by methodology used for the determination of triglyceride structure.The preparation of the acetylated 1,2-diglycerides was carried out via hydrolysis with phospholipase C and acetylation of the resultant, 1,2-diglycerides with pyridine-acetic anhydride. Preparation of acetylated 1,2-diglycerides from lecithin by acetolysis with acetic acid-acetic anhydride was shown to be accompanied by intermolecular as well as intramolecular rearrangement of the fatty acids.The structure of the acetylated 1,2-diglycerides was determined by a combination of argentation-TLC and pancreatic lipase hydrolysis using internal standards for quantification. The method was applied to lecithins isolated from milk serum, egg, soybean, safflower seed and wheat germ lipids.

  16. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    PubMed

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  17. Lignocellulosic biomass pretreatment using AFEX.

    PubMed

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P S; Marshall, Derek; Dale, Bruce E

    2009-01-01

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  18. Lignocellulosic Biomass Pretreatment Using AFEX

    NASA Astrophysics Data System (ADS)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  19. Enhanced functional properties of tannic acid after thermal hydrolysis

    USDA-ARS?s Scientific Manuscript database

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  20. Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production.

    PubMed

    Qi, Benkun; Chen, Xiangrong; Wan, Yinhua

    2010-07-01

    Pretreating wheat straw (WS) with combined use of varied sulfuric acid concentration (0-3%, w/v) and Tween 20 concentration (0-1%) was investigated in an attempt to enhance the hydrolysis and fermentability of pretreated WS. Enzymatic hydrolysis yield of glucan and xylan and ethanol production by simultaneous saccharification and fermentation (SSF) of water-insoluble solids (WIS) were significantly affected by the amount of Tween 20 added during acid pretreatment. Any further addition of Tween 20 in either hydrolysis stage or fermentation stage only led to small increase in glucan conversion and ethanol production. Determination of adsorption of cellulases during hydrolysis showed that Tween 20-assisted acid treated straw solution contained more free cellulases than individual acid treated straw solution, indicating that modification of lignin surface by Tween 20 added during pretreatment likely occurred. In addition, the effects of pretreatment conditions on overall recovery of glucose and xylose after pretreatment and enzymatic hydrolysis were also investigated. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Preparation and characterization of dialdehyde starch by one-step acid hydrolysis and oxidation.

    PubMed

    Zuo, Yingfeng; Liu, Wenjie; Xiao, Junhua; Zhao, Xing; Zhu, Ying; Wu, Yiqiang

    2017-10-01

    Dialdehyde starch was prepared by one-step synthesis of acid hydrolysis and oxidation, using corn starch as the raw material, sodium periodate (NaIO 4 ) as the oxidant, and hydrochloric acid (HCl) as the acid solution. The prepared dialdehyde starch was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The results confirmed that oxidation occurred between the starch and NaIO 4 . The acid hydrolysis reaction reduced the molecular weight of starch and effectively improved the aldehyde group contents (92.7%). Scanning electron microscope (SEM) analysis indicated that the average particle size decreased after acid hydrolysis and oxidation reaction. X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA) analysis demonstrated that the crystallinity of the obtained dialdehyde starch showed a downward trend and a decelerated thermal decomposition rate. The starch after acid hydrolysis and oxidation exhibited lower hot paste viscosity and higher reactivity. Copyright © 2017. Published by Elsevier B.V.

  2. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  3. Hydrolysis of tRNA(sup Phe) on Suspensions of Amino Acids

    NASA Technical Reports Server (NTRS)

    Gao, Kui; Orgel, Leslie E.

    2001-01-01

    RNA is adsorbed strongly on suspensions of many moderately soluble organic solids. In some cases, the hydrolysis of tRNA(sup Phe) is greatly accelerated by adsorption, and the major sites of hydrolysis are changed from those that are important in homogeneous solution. Here we show that the hydrolysis is greatly accelerated by suspensions of aspartic acid and beta-glutamic acid but not by suspensions of alpha-glutamic acid, asparagine, or glutamine. The non-enzymatic hydrolysis of RNA has been studied extensively, especially because of its relevance to the mechanisms of action of ribozymes and to biotechnology and therapy. Many ribonucleases, ribozymes, and non-biological catalysts function via acid-base catalysis of an intramolecular transesterification mechanism in which the 2'-OH group attacks the adjacent phosphate group. The pentacoordinated phosphorane intermediate may collapse back to starting material, or yield isomerized or cleaved products.

  4. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agu, R.C.; Amadife, A.E.; Ude, C.M.

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 Mmore » H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.« less

  5. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    PubMed

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  6. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis.

    PubMed

    Zhang, Hongyu; Xu, Yong; Yu, Shiyuan

    2017-06-01

    A novel and green approach for the coproduction of xylooligosaccharides (XOS), in terms of a series of oligosaccharide components from xylobiose to xylohexose, and fermentable sugars was developed using the prehydrolysis of acetic acid that was fully recyclable and environmentally friendly, followed by enzymatic hydrolysis. Compared to hydrochloric acid and sulfuric acid, acetic acid hydrolysis provided the highest XOS yield of 45.91% and the highest enzymatic hydrolysis yield. More than 91% conversion of cellulose was achieved in a batch-hydrolysis using only a cellulase loading of 20FPU/g cellulose and even a high solid loading of 20% without any special strategies. The acetic acid pretreated corncob should be washed adequately before saccharification to achieve complete hydrolysis. Consequently, a mass balance analysis showed that 139.8g XOS, 328.1g glucose, 25.1g cellobiose, and 147.8g xylose were produced from 1000g oven dried raw corncob. Copyright © 2017. Published by Elsevier Ltd.

  7. Treatment of supermarket vegetable wastes to be used as alternative substrates in bioprocesses.

    PubMed

    Díaz, Ana Isabel; Laca, Amanda; Laca, Adriana; Díaz, Mario

    2017-09-01

    Fruits and vegetables have the highest wastage rates at retail and consumer levels. These wastes have promising potential for being used as substrates in bioprocesses. However, an effective hydrolysis of carbohydrates that form these residues has to be developed before the biotransformation. In this work, vegetable wastes from supermarket (tomatoes, green peppers and potatoes) have been separately treated by acid, thermal and enzymatic hydrolysis processes in order to maximise the concentration of fermentable sugars in the final broth. For all substrates, thermal and enzymatic processes have shown to be the most effective. A new combined hydrolysis procedure including these both treatments was also assayed and the enzymatic step was successfully modelled. With this combined hydrolysis, the percentage of reducing sugars extracted was increased, in comparison with the amount extracted from non-hydrolysed samples, approximately by 30% in the case of tomato and green peeper wastes. For potato wastes this percentage increased from values lower than 1% to 77%. In addition, very low values of fermentation inhibitors were found in the final broth. Copyright © 2017. Published by Elsevier Ltd.

  8. Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs)

    Treesearch

    Qianqian Wang; Xuebing Zhao; J.Y. Zhu

    2014-01-01

    Cellulose nanocrytals (CNCs) are predominantly produced using the traditional strong acid hydrolysis process. In most reported studies, the typical CNC yield is low (approximately 30%) despite process optimization. This study investigated the hydrolysis of a bleached kraft eucalyptus pulp using sulfuric acid between 50 and 64 wt % at temperatures of 35−80 °C...

  9. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.

    PubMed

    Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-06-01

    Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effect of cooking temperature on the crystallinity of acid hydrolysed-oil palm cellulose

    NASA Astrophysics Data System (ADS)

    Kuthi, Fatin Afifah Binti Ahmad; Badri, Khairiah Haji

    2014-09-01

    In this research, we studied the effect of acid hydrolysis temperature on the crystallinity of cellulose produced from empty fruit bunch (EFB). The hydrolysis temperature was studied from 120 to 140 °C at a fixed time and sulfuric acid, H2SO4 concentration which were 1 h and 1% (v/v) respectively. X-ray diffractometry (XRD) was carried out to measure the crystallinity of cellulose produced at varying hydrolysis temperatures. During hydrolysis, the amorphous region of α-cellulose was removed and the crystalline region was obtained. Percentage of crystallinity (CrI) for acid hydrolysed cellulose at 120, 130 and 140 °C were 54.21, 50.59 and 50.55 % respectively. Morphological studies using scanning electron microscope (SEM) showed that acid hydrolysis defibrilised to microfibrils in α-cellulose. The extraction process to produce α-cellulose has also been successfully carried out as the impurities at the outer surface, lignin and hemicellulose were removed. These findings were supported by the disappearance of peaks at 1732, 1512 and 1243 cm-1 on Fourier Transform infrared (FTIR) spectrum of α-cellulose. Similar peaks were identified in both the commercial microcrystalline cellulose (C-MCC) and acid hydrolysed cellulose (H-EFB), indicating the effectiveness of heat-catalysed acid hydrolysis.

  12. Cellulose nanofiber isolation from palm oil Empty Fruit Bunches (EFB) through strong acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Setyaningsih, Dwi; Uju; Muna, Neli; Isroi; Budi Suryawan, Nyoman; Azid Nurfauzi, Ami

    2018-03-01

    The palm oil industry produces about 25-26% of palm oil empty fruit bunches. The empty fruit bunch of palm oil contains cellulose up to 36.67%. This is a good opportunity for the synthesis of cellulose nanofiber (CNF). Cellulose nanofiber is a nano-sized cellulose material that has unique physical and mechanical properties. The synthesis was performed using a strong acid method with sulfuric acid. Sulfuric acid removes the amorphous region of cellulose so that the crystalline part can be isolated. CNF yield measurement showed that temperature, time, acid concentration, and interaction between each factor were affecting significantly to CNF yield. The result showed that yield of 14.98 grams, was obtained by hydrolysis at 35°C for 6 hours and 55% acid concentration. The crystallinity measurement showed that the temperature, time, acid concentration, and interaction between each factor during hydrolysis were not affected significantly to percent value of CNF crystallinity. The result showed that 31.1% of crystallinity, was obtained by hydrolysis at 45°C for 3 hours and 55% of acid concentration. The size measurement showed that the temperature, time, acid concentration and interaction between each factor were affected significantly. The result showed 894.25 nm as the best result, obtained by hydrolysis with 35°C and 60% acid concentration for 6 hours. CNF color was white with the best dispersion of hydrolysis at 35°C of 55% for 6 hours.

  13. Titania Deposition on PMR-15

    NASA Technical Reports Server (NTRS)

    Meador, Mary B.; Sutter, James K.; Pizem, Hillel; Gershevitz, Olga; Goffer, Yossi; Frimer, Aryeh A.; Sukenik, Chaim N.; Sampathkumaran, Uma; Milhet, Xavier; McIlwain, Alan

    2005-01-01

    The formation, degree of crystallinity and adherence of dense titania (TiO2) thin film coatings on a high-temperature polyimide resin (PMR-15) can be influenced by the chemical composition of the polymer surface. Furthermore, solution deposition conditions can be adjusted to provide additional control over the morphology and crystallinity of the titania films. Recipes for solution-based titania deposition that used a slowly-hydrolyzing titanium fluoride salt in the presence of boric acid as a fluoride scavenger allowed growth of films up to 750 nm thick in 22 h. By adjusting solution pH and temperature, either amorphous titania or oriented crystalline anatase films could be formed. Surface sulfonate groups enhance the adhesion of solution-deposited oxide thin film coatings. While most sulfonation procedures severely damaged the PMR-15 surface, the use of chlorosulfonic acid followed by hydrolysis of the installed chlorosulfonyl groups provided effective surface sulfonation without significant surface damage. In some cases, the oxide deposition solution caused partial hydrolysis of the polymer surface, which itself was sufficient to allow adhesion of the titania film through chelation of titanium ions by exposed benzoic acid groups on the polymer surface.

  14. Spectrophotometric Quantification of Flavonoids in Herbal Material, Crude Extract, and Fractions from Leaves of Eugenia uniflora Linn.

    PubMed

    Ramos, Rhayanne T M; Bezerra, Isabelle C F; Ferreira, Magda R A; Soares, Luiz Alberto Lira

    2017-01-01

    The traditional use of Eugenia uniflora L. ("Pitanga") is reported due to several properties, which have often been related to its flavonoid content. The aim was to evaluate analytical procedures for quantification of total flavonoids content (TFCs) by ultraviolet-visible (UV-Vis) spectrophotometry in the herbal material (HM), crude extract (CE), and fractions from leaves of E. uniflora . The method for quantification of flavonoids after complexation with aluminum chloride (AlCl 3 ) was evaluated: amount of sample (0.25-1.5 g); solvent (40%-80% ethanol); reaction time and AlCl 3 concentration (2.5%-7.5%). The procedures by direct dilution (DD) and after acid hydrolysis (AH) were used and validated for HM and CE and applied to the aqueous fraction (AqF), hexane fraction, and ethyl acetate fractions (EAF). The ideal conditions of analysis were ethanol 80% as solvent; 0.5 g of sample; λmax of 408 (DD) and 425 nm (AH); 25 min after addition of AlCl 3 5%. The procedures validated for standards and samples showed linearity ( R 2 > 0.99) with limit of detection and limit of quantification between 0.01 and 0.17 mg/mL (rutin and quercetin); and 0.03 and 0.09 mg/mL (quercetin), for DD and AH, respectively. The procedures were accurate (detect, practice, and repair < 5% and recovery >90%), and stable under robustness conditions (luminosity, storage, reagents, and equipment). The TFCs in AqF and EAF were 0.65 g% and 17.72 g%, calculated as rutin. UV-Vis methods for quantification of TFC in HM, CE, and fractions from leaves of E. uniflora were suitably validated. Regarding the analysis of fractions, the EAF achieved enrichment of about nine times in the content of flavonoids. The total flavonoids content (TFCs) of herbal material, crude extract, and fractions from Eugenia uniflora can be quantified by ultraviolet-visibleThe spectrophotometric methods (direct dilution and acid hydrolysis) were reproducible and able to quantify TFC in raw material and derivatives from leaves of E. uniflora Higher flavonoids content was observed in ethyl acetate fractions after enrichment. Abbreviations Used : HM: Herbal material, CE: Crude extract, AqF: Aqueous fraction, HF: Hexanic fraction, EAF: Ethyl acetate fraction, TFC: Total flavonoids content, HCl: Hydrochloric acid, DD: Direct dilution, AH: After hydrolysis, RSD: Relative standard, A.U.: Absorption units.

  15. Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species.

    PubMed

    Aguirre Santos, Elsa Anaheim; Schieber, Andreas; Weber, Fabian

    2018-07-01

    Hydroxycinnamic acids are a major group of phenolic compounds widely distributed in plants. Among them, chlorogenic acids and caffeic acid have been in the focus of interest due to their impact on food quality and their putative health benefits. Numerous microorganisms like lactic acid bacteria are able to hydrolyze chlorogenic acids by cinnamoyl esterase enzymes. Data on the specificity of theses enzymes regarding the cleavage of distinct isomers of mono- or dichlorogenic acids is lacking. Lactobacillus reuteri, Lactobacillus helveticus, and Lactobacillus fermentum were screened for their ability to hydrolyze chlorogenic acid isomers in culture medium. Concentrations of chlorogenic acids and the released caffeic acid were determined by UHPLC-ESI-MS. The highest hydrolysis rate (100%) was observed for the hydrolysis of 5-CQA by Lactobacillus helveticus. A so far unknown metabolic pathway for the cleavage of 4-CQA is proposed including isomerization to 5-CQA and 3-CQA followed by hydrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  17. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  18. HCOOH-induced Controlled-release Hydrolysis of Microalgae (Scenedesmus) to Lactic Acid over Sn-Beta Catalyst.

    PubMed

    Zan, Yifan; Sun, Yuanyuan; Kong, Lingzhao; Miao, Gai; Bao, Liwei; Wang, Hao; Li, Shenggang; Sun, Yuhan

    2018-06-12

    Formic acid induced controlled-release hydrolysis of sugar-rich microalgae (Scenedesmus) over the Sn-Beta catalyst was found to be a highly efficient process for producing lactic acid as a platform chemical. One-pot reaction with a very high lactic acid yield of 83.0% was realized in a batch reactor using water as the solvent. Under the attack of formic acid, the cell wall of Scenedesmus was disintegrated, and hydrolysis of the starch inside the cell was strengthened in a controlled-release mode, resulting in a stable and relatively low glucose concentration. Subsequently, the Sn-Beta catalyst was employed for the efficient conversion of glucose into lactic acid with stable catalytic performance through isomerization, retro-aldol and de-/rehydration reactions. Thus, the hydrolysis of polysaccharides and the catalytic conversion of the monosaccharide into lactic acid was realized by the synergy between an organic Brønsted acid and a heterogeneous Lewis acid catalyst. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Use of an algal hydrolysate to improve enzymatic hydrolysis of anaerobically digested fiber

    USDA-ARS?s Scientific Manuscript database

    This study investigated the use of acid hydrolyzed algae to enhance the enzymatic hydrolysis of cellulosic biomass. We first characterized wastewater-grown algal samples and determined the optimal conditions (acid concentration, reaction temperature, and reaction time) for algal hydrolysis using di...

  1. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  2. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues.

    PubMed

    Ben Taher, Imen; Fickers, Patrick; Chniti, Sofien; Hassouna, Mnasser

    2017-03-01

    The aim of this work was the optimization of the enzyme hydrolysis of potato peel residues (PPR) for bioethanol production. The process included a pretreatment step followed by an enzyme hydrolysis using crude enzyme system composed of cellulase, amylase and hemicellulase, produced by a mixed culture of Aspergillus niger and Trichoderma reesei. Hydrothermal, alkali and acid pretreatments were considered with regards to the enhancement of enzyme hydrolysis of potato peel residues. The obtained results showed that hydrothermal pretreatment lead to a higher enzyme hydrolysis yield compared to both acid and alkali pretreatments. Enzyme hydrolysis was also optimized for parameters such as temperature, pH, substrate loading and surfactant loading using a response surface methodology. Under optimized conditions, 77 g L -1 of reducing sugars were obtained. Yeast fermentation of the released reducing sugars led to an ethanol titer of 30 g L -1 after supplementation of the culture medium with ammonium sulfate. Moreover, a comparative study between acid and enzyme hydrolysis of potato peel residues was investigated. Results showed that enzyme hydrolysis offers higher yield of bioethanol production than acid hydrolysis. These results highlight the potential of second generation bioethanol production from potato peel residues treated with onsite produced hydrolytic enzymes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:397-406, 2017. © 2017 American Institute of Chemical Engineers.

  3. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  4. Enzymatic hydrolysis of organic phosphorus in swine manure and soil.

    PubMed

    He, Zhongqi; Griffin, Timothy S; Honeycutt, C Wayne

    2004-01-01

    Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.

  5. Ion chromatography characterization of polysaccharides in ancient wall paintings.

    PubMed

    Colombin, Maria Perla; Ceccarini, Alessio; Carmignani, Alessia

    2002-08-30

    An analytical procedure for the characterisation of polysaccharides and the identification of plant gums in old polychrome samples is described. The procedure is based on hydrolysis with 2 M trifluoroacetic acid assisted by microwaves (20 min, 120 degrees C, 500 W), clean-up of the hydrolysate by an ion-exchange resin, and analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Using this method the hydrolysis time was reduced to 20 min and the chromatographic separation of seven monosaccharides (fucose, rhamnose, arabinose, galactose, glucose, mannose, xylose) and two uronic acids (galacturonic and glucuronic) was achieved in 40 min. The whole analytical procedure allows sugar determination in plant gums at picomole levels, with an average recovery of 72% with an RSD of 8% as tested on arabic gum. The analytical procedure was tested with several raw gums, watercolour samples and reference painting specimens prepared according to old recipes at the Opificio delle Pietre Dure of Florence (Italian Ministry of Cultural Heritage, Italy). All the data collected expressed in relative sugar percentage contents were submitted to principal components analysis for gum identification: five groups were spatially separated and this enabled the identification of arabic, tragacanth, karaya, cherry+ghatty, and guar+locust bean gum. Wall painting samples from Macedonian tombs (Greece) of the 4th-3rd Centuries B.C., processed by the suggested method, showed the presence of a complex paint media mainly consisting of tragacanth and fruit tree gums. Moreover, starch had probably been added to plaster as highlighted by the presence of a huge amount of glucose.

  6. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis

    Treesearch

    Ruibin Wang; Liheng Chen; J.Y. Zhu; Rendang Yang

    2017-01-01

    This study demonstrates the feasibility of tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) from bleached pulp fibers through hydrolysis using a recyclable dicarboxylic acid. Hydrolysis experiments were conducted using ranges of 15–75 wt% maleic acid concentrations, 60–120°C temperatures, and 5–300 min reaction...

  9. Preparation of κ-carra-oligosaccharides with microwave assisted acid hydrolysis method

    NASA Astrophysics Data System (ADS)

    Li, Guangsheng; Zhao, Xia; Lv, Youjing; Li, Miaomiao; Yu, Guangli

    2015-04-01

    A rapid method of microwave assisted acid hydrolysis was established to prepare κ-carra-oligosaccharides. The optimal hydrolysis condition was determined by an orthogonal test. The degree of polymerization (DP) of oligosaccharides was detected by high performance thin layer chromatography (HPTLC) and polyacrylamide gel electrophoresis (PAGE). Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis was determined. The concentration of κ-carrageenan was 5 mg mL-1; the reaction solution was adjusted to pH 3 with diluted hydrochloric acid; the solution was hydrolyzed under microwave irradiation at 100 for 15 °C min. Oligosaccharides were separated by a Superdex 30 column (2.6 cm × 90 cm) using AKTA Purifier UPC100 and detected with an online refractive index detector. Each fraction was characterized by electrospray ionization mass spectrometry (ESI-MS). The data showed that odd-numbered κ-carra-oligosaccharides with DP ranging from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained by traditional mild acid hydrolysis. The new method was more convenient, efficient and environment-friendly than traditional mild acid hydrolysis. Our results provided a useful reference for the preparation of oligosaccharides from other polysaccharides.

  10. Detection of diastereomer peptides as the intermediates generating D-amino acids during acid hydrolysis of peptides.

    PubMed

    Miyamoto, Tetsuya; Sekine, Masae; Ogawa, Tetsuhiro; Hidaka, Makoto; Watanabe, Hidenori; Homma, Hiroshi; Masaki, Haruhiko

    2016-11-01

    In this study, we investigated whether the amino acid residues within peptides were isomerized (and the peptides converted to diastereomers) during the early stages of acid hydrolysis. We demonstrate that the model dipeptides L-Ala-L-Phe and L-Phe-L-Ala are epimerized to produce the corresponding diastereomers at a very early stage, prior to their acid hydrolytic cleavage to amino acids. Furthermore, the sequence-inverted dipeptides were generated via formation of a diketopiperazine during hydrolytic incubation, and these dipeptides were also epimerized. The proportion of diastereomers increased rapidly during incubation for 0.5-2 h. During acid hydrolysis, C-terminal residues of the model dipeptides were isomerized faster than N-terminal residues, consistent with the observation that the D-amino acid values of the C-terminal residues determined by the 0 h-extrapolating method were larger than those of the N-terminal residues. Thus, the artificial D-amino acid contents determined by the 0 h-extrapolating method appear to be products of the isomerization of amino acid residues during acid hydrolysis.

  11. Effect of hydrolysis enzymatic process of corn using protease crude (Rhizopus oligosporus-C1) to produce corn hydrolisate rich folic acid

    NASA Astrophysics Data System (ADS)

    Maryati, Yati; Susilowati, Agustine; Melanie, Hakiki; Lotulung, Puspa D.

    2017-11-01

    Corn hydrolyzate (Zea mays L) as a functional food fortificant derived from natural folic acid has been evaluated through a hydrolysis process using protease enzyme Rhizopus oligosporus strain C1. Enzymatic hydrolysis was carried out on two types of corn; yellow and white pearl variety corn, at concentration of protease enzyme (rough) 0.025; 0.125; and 0.225% (v/w of soluble nixtamal corn protein) with a hydrolysis time of 24 h at 30 °C, and pH 5.0. The results showed that the concentration of protease enzymes can increase the folic acid to the optimum condition, from the beginning to the end of the process time. Folic acid optimization of hydrolysis results in each corn was at the concentration of protease enzyme 0.225% (v/w of soluble nixtamal corn protein) in white corn and yellow corn at 24 hours hydrolysis, with folic acid composition, 283.56 µg/mL and 412.52 µg/mL, 1.07 and 1.04 mg/mL of soluble proteins, proteolytic activity 2.09 and 2.06 U/mL, total solids of 21.74 and 17.85%, total sugars of 0.56 and 2.22 mg/mL, and reducing sugar 91.72 and 48.47 mg/mL. In this condition, the increase of optimum folic acid for white corn was 33.57% and for yellow corn was 71.60% after hydrolysis.

  12. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts.

    PubMed

    Azman, Samet; Khadem, Ahmad F; Zeeman, Grietje; van Lier, Jules B; Plugge, Caroline M

    2015-03-25

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  13. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    PubMed Central

    Azman, Samet; Khadem, Ahmad F.; Zeeman, Grietje; van Lier, Jules B.; Plugge, Caroline M.

    2015-01-01

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid. PMID:28955013

  14. The mechanism of hydrothermal hydrolysis for glycyrrhizic acid into glycyrrhetinic acid and glycyrrhetinic acid 3-O-mono-β-D-glucuronide in subcritical water.

    PubMed

    Fan, Rui; Li, Nan; Xu, Honggao; Xiang, Jun; Wang, Lei; Gao, Yanxiang

    2016-01-01

    To improve the bioactivity and sweetness properties of glycyrrhizic acid (GL), the hydrothermal hydrolysis of GL into glycyrrhetinic acid (GA) and glycyrrhetinic acid 3-O-mono-β-D-glucuronide (GAMG) in subcritical water was investigated. The effects of temperature, time and their interaction on the conversion ratios were analyzed and the reactions were elaborated with kinetics and thermodynamics. The results showed that GL hydrothermal hydrolysis was significantly (P < 0.05) affected by reaction time and temperature, as well as their interaction, and could be fitted into first-order kinetics. The thermodynamic analysis indicated that the hydrolysis of GL was endergonic and non-spontaneous. The hydrolytic pathways were composed of complex consecutive and parallel reactions. It was concluded that subcritical water may be a potential medium for producing GAMG and GA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of Varying Acid Hydrolysis Condition in Gracilaria Sp. Fermentation Using Sasad

    NASA Astrophysics Data System (ADS)

    Mansuit, H.; Samsuri, M. D. C.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.; Mansa, R.

    2015-04-01

    Macroalgae or seaweed is being considered as promising feedstock for bioalcohol production due to high polysaccharides content. Polysaccharides can be converted into fermentable sugar through acid hydrolysis pre-treatment. In this study, the potential of using carbohydrate-rich macroalgae, Gracilaria sp. as feedstock for bioalcohol production via various acid hydrolysis conditions prior to the fermentation process was investigated and evaluated. The seaweed used in this research was from the red algae group, using species of Gracilaria sp. which was collected from Sg. Petani Kedah, Malaysia. Pre-treatment of substrate was done using H2SO4 and HCl with molarity ranging from 0.2M to 0.8M. The pretreatment time were varied in the range of 15 to 30 minutes. Fermentation was conducted using Sasad, a local Sabahan fermentation agent as a starter culture. Alcohol extraction was done using a distillation unit. Reducing sugar analysis was done by Benedict test method. Alcohol content analysis was done using specific gravity test. After hydrolysis, it was found out that acid hydrolysis at 0.2M H2SO4 and pre-treated for 20 minutes at 121°C has shown the highest reducing sugar content which has yield (10.06 mg/g) of reducing sugar. It was followed by other samples hydrolysis using 0.4M HCl with 30 minutes pre-treatment and 0.2M H2SO4, 15 minutes pre-treatment with yield of 8.06 mg/g and 5.75 mg/g reducing sugar content respectively. In conclusion, acid hydrolysis of Gracilaria sp. can produce higher reducing sugar yield and thus it can further enhance the bioalcohol production yield. Hence, acid hydrolysis of Gracilaria sp. should be studied more as it is an important step in the bioalcohol production and upscaling process.

  16. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  17. Dilute acid hydrolysis of paper birch : kinetics studies of xylan and acetyl-group hydrolysis

    Treesearch

    Mark T. Maloney; Thomas W. Chapman; Andrew J. Baker

    1985-03-01

    Batch hydrolysis kinetics of paper birch (Betula papyrifera) xylan and its associated acetyl groups in dilute sulfuric acid have been measured for acid concentrations of between 0.04 and 0.18 M and temperatures of between 100 and 170°C. Only 5% of the cellulose was hydrolyzed for up to 85% xylan removal. Rate data were correlated well by a parallel reaction model based...

  18. Chemical evolution. XXIX - Pyrimidines from hydrogen cyanide

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Joshi, P. C.; Lawless, J. G.

    1978-01-01

    Compounds obtained by hydrolysis of HCN oligomers formed by allowing pH 9.2, 0.1 M cyanide to stand at room temperature for 4 to 12 months were analyzed. Hydrolysis of HCN oligomers yielded 4,5-dihydroxypyrimidine and 5-hydroxyuracil; orotic acid was detected after hydrolysis at pH 8.5. A unified pathway from diaminofumaronitrile to the pyrimidines observed is suggested. As purines, pyrimidines and amino acids are released by hydrolysis of HCN oligomers in either acidic or mildly basic aqueous solutions, they could have been formed on the primitive earth in spite of fluctuations in pH. 4,5-dihydroxypyrimidines appear to be likely candidates for incorporation into primitive nucleic acids, as they should undergo Watson-Crick hydrogen bonding with adenine.

  19. Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals

    Treesearch

    John F. Harris; Andrew J. Baker; Anthony H. Conner; Thomas W. Jeffries; James L. Minor; Roger C. Pettersen; Ralph W. Scott; Edward L Springer; Theodore H. Wegner; John I. Zerbe

    1985-01-01

    This paper presents a fundamental analysis of the processing steps in the production of methanol from southern red oak (Quercus falcata Michx.) by two-stage dilute sulfuric acid hydrolysis. Data for hemicellulose and cellulose hydrolysis are correlated using models. This information is used to develop and evaluate a process design.

  20. Comparison of cell wall polysaccharide hydrolysis by a dilute acid/enzymatic saccharification process and rumen microorganisms

    USDA-ARS?s Scientific Manuscript database

    Evaluation of biomass crops for breeding or pricing purposes requires an assay that predicts performance of biomass in the bioenergy conversion process. Cell wall polysaccharide hydrolysis by dilute sulfuric acid pretreatment at 121 degrees C followed by cellulase hydrolysis for 72 h (CONV) and in v...

  1. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    PubMed

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Tetraethylene glycol promoted two-step, one-pot rapid synthesis of indole-3-[1- 11C]acetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sojeong; Qu, Wenchao; Alexoff, David L.

    2014-12-12

    An operationally friendly, two-step, one-pot process has been developed for the rapid synthesis of carbon-11 labeled indole-3-acetic acid ([ 11]IAA or [ 11]auxin). By replacing an aprotic polar solvent with tetraethylene glycol, nucleophilic [ 11]cyanation and alkaline hydrolysis reactions were performed consecutively in a single pot without a time-consuming intermediate purification step. The entire production time for this updated procedure is 55 min, which dramatically simplifies the entire synthesis and reduces the starting radioactivity required for a whole plant imaging study.

  3. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition.

    PubMed

    Jeong, Tae Su; Kim, Young Soo; Oh, Kyeong Keun

    2011-11-01

    Two-stage acid hydrolysis was conducted on easy reacting cellulose and resistant reacting cellulose of fractionated Gelidium amansii (f-GA). Acid hydrolysis of f-GA was performed at between 170 and 200 °C for a period of 0-5 min, and an acid concentration of 2-5% (w/v, H2SO4) to determine the optimal conditions for acid hydrolysis. In the first stage of the acid hydrolysis, an optimum glucose yield of 33.7% was obtained at a reaction temperature of 190 °C, an acid concentration of 3.0%, and a reaction time of 3 min. In the second stage, a glucose yield of 34.2%, on the basis the amount of residual cellulose from the f-GA, was obtained at a temperature of 190 °C, a sulfuric acid concentration of 4.0%, and a reaction time 3.7 min. Finally, 68.58% of the cellulose derived from f-GA was converted into glucose through two-stage acid saccharification under aforementioned conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  5. In vitro enzymic hydrolysis of chlorogenic acids in coffee.

    PubMed

    da Encarnação, Joana Amarante; Farrell, Tracy L; Ryder, Alexandra; Kraut, Nicolai U; Williamson, Gary

    2015-02-01

    Coffee is rich in quinic acid esters of phenolic acids (chlorogenic acids) but also contains some free phenolic acids. A proportion of phenolic acids appear in the blood rapidly after coffee consumption due to absorption in the small intestine. We investigated in vitro whether this appearance could potentially be derived from free phenolic acids in instant coffee or from hydrolysis of chlorogenic acids by pancreatic or brush border enzymes. We quantified six free phenolic acids in instant coffees using HPLC-DAD-mass spectrometry. The highest was caffeic acid, but all were present at low levels compared to the chlorogenic acids. Roasting and decaffeination significantly reduced free phenolic acid content. We estimated, using pharmacokinetic modelling with previously published data, that the contribution of these compounds to small intestinal absorption is minimal. Hydrolysis of certain chlorogenic acids was observed with human-differentiated Caco-2 cell monolayers and with porcine pancreatin, which showed maximal rates on 3- and 5-O-caffeoylquinic acids, respectively. The amounts of certain free phenolic acids in coffee could only minimally account for small intestinal absorption based on modelling. The hydrolysis of caffeoylquinic, but not feruloylquinic acids, by enterocyte and pancreatic esterases is potentially a contributing mechanism to small intestinal absorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. On the Brønsted acid-catalyzed homogeneous hydrolysis of furans.

    PubMed

    Nikbin, Nima; Caratzoulas, Stavros; Vlachos, Dionisios G

    2013-11-01

    Furan affairs: Electronic structure calculations of the homogeneous Brønsted acid-catalyzed hydrolysis of 2,5-dimethylfuran show that proton transfer to the β-position is rate-limiting and provides support that the hydrolysis follows general acid catalysis. By means of projected Fukui indices, we show this to be the case for unsubstituted, 2-, and 2,5-substituted furans with electron-donating groups. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production.

    PubMed

    El-Tayeb, T S; Abdelhafez, A A; Ali, S H; Ramadan, E M

    2012-10-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained.

  8. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production

    PubMed Central

    El-Tayeb, T.S.; Abdelhafez, A.A.; Ali, S.H.; Ramadan, E.M.

    2012-01-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker’s yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker’s yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984

  9. Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis.

    PubMed

    Horikawa, Yoshiki; Shimizu, Michiko; Saito, Tsuguyuki; Isogai, Akira; Imai, Tomoya; Sugiyama, Junji

    2018-04-01

    Chara is a genus of freshwater alga that is evolutionarily observed at the aquatic-terrestrial boundary, whose cellulose microfibrils are similar to those of terrestrial plants regarding the crystallinity and biosynthesis of cellulose. Oven-dried and never-dried celluloses samples were prepared from chara. Terrestrial plant cellulose samples were used as references. The lengths and length distributions of oven-dried and never-dried chara cellulose microfibrils after acid hydrolysis with or without pretreatment by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, which was used for efficient fibrillation of acid-hydrolyzed products, were observed by transmission electron microscopy. All terrestrial plant celluloses and oven-dried chara cellulose had short nanocrystal-like morphologies of 100-300 nm in length after acid hydrolysis. In contrast, the never-dried chara cellulose had much longer microfibrils of ∼970 nm in length after acid hydrolysis. These results indicated that disordered regions present periodically along the cellulose microfibrils, which cause the formation of cellulose nanocrystals after acid hydrolysis, are not present in inherent chara cellulose microfibrils in water, but are formed artificially under drying or dehydration conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Behavior of ellagitannins, gallic acid, and ellagic acid under alkaline conditions

    Treesearch

    Richard W. Hemingway; W.E. Hillis

    1971-01-01

    Examination of the rates of hydrolysis of different ellagitannins under conditions comparable with cold soda and alkaline-groundwood pulping processes showed that some ellagitannins are notably resistant to hydrolysis. The rate of hydrolysis was dependent upon the pH and tempemture of the solution and particularly upon the structure of the compound. Decarboxylation of...

  11. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.

    PubMed

    Sun, Yonghui; Liu, Pengtao; Liu, Zhong

    2016-05-20

    The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars.

    PubMed

    Jiang, Liqun; Wu, Nannan; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin

    2016-01-01

    Fermentable sugars are important intermediates in the biological conversion of biomass. Hemicellulose and amorphous cellulose are easily hydrolyzed to fermentable sugars in dilute acid, whereas crystalline cellulose is more difficult to be hydrolyzed. Cellulose fast pyrolysis is an alternative method to liberate valuable fermentable sugars from biomass. The amount of levoglucosan generated from lignocellulose by fast pyrolysis is usually lower than the theoretical yield based on the cellulose fraction. Pretreatment is a promising route to improve the yield of levoglucosan from lignocellulose. The integration of dilute sulfuric acid hydrolysis and fast pyrolysis to obtain fermentable sugars was evaluated in this study. Dilute sulfuric acid hydrolysis could remove more than 95.1 and 93.4 % of xylan (the main component of hemicellulose) from sugarcane bagasse and corncob with high yield of xylose. On the other hand, dilute sulfuric acid hydrolysis was also an effective pretreatment to enhance levoglucosan yield from lignocellulose. Dilute acid hydrolysis could accumulate glucan (the component of cellulose) and remove most of the alkali and alkaline earth metals which were powerful catalysts during fast pyrolysis. Further increase in dilute acid concentration (from 0 to 2 %) in pretreatment could promote the yield of levoglucosan in fast pyrolysis. The acid pretreated sugarcane bagasse and corncob gave levoglucosan yields of 43.8 and 35.2 % which were obvious higher than those of raw sugarcane bagasse (12.0 %) and corncob (7.0 %). Obtaining fermentable sugars by combination dilute acid hydrolysis of xylan and fast pyrolysis of glucan could make full utilization of biomass, and get fermentable sugars economically from biomass for bio-refinery.

  13. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    PubMed

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.

  14. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    PubMed

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.

  15. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    PubMed

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF)

    Treesearch

    W. Zhu; Carl J. Houtman; J.Y. Zhu; Roland Gleisner; K.F. Chen

    2012-01-01

    A combined hydrolysis factor (CHF) was developed to predict xylan hydrolysis during pretreatments of native aspen (Populus tremuloides) wood chips. A natural extension of previously developed kinetic models allowed us to account for the effect of catalysts by dilute acid and two sulfite pretreatments at different pH values....

  17. Hydrolysis of virgin coconut oil using immobilized lipase in a batch reactor.

    PubMed

    Chua, Lee Suan; Alitabarimansor, Meisam; Lee, Chew Tin; Mat, Ramli

    2012-01-01

    Hydrolysis of virgin coconut oil (VCO) had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme) in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v). Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v) of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v). A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C.

  18. Hydrolysis of Virgin Coconut Oil Using Immobilized Lipase in a Batch Reactor

    PubMed Central

    Chua, Lee Suan; Alitabarimansor, Meisam; Lee, Chew Tin; Mat, Ramli

    2012-01-01

    Hydrolysis of virgin coconut oil (VCO) had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme) in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v). Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v) of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v). A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C. PMID:22953055

  19. Formic acid catalyzed hydrolysis of SO3 in the gas phase: a barrierless mechanism for sulfuric acid production of potential atmospheric importance.

    PubMed

    Hazra, Montu K; Sinha, Amitabha

    2011-11-02

    Computational studies at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels are performed to explore the changes in reaction barrier height for the gas phase hydrolysis of SO(3) to form H(2)SO(4) in the presence of a single formic acid (FA) molecule. For comparison, we have also performed calculations for the reference reaction involving water assisted hydrolysis of SO(3) at the same level. Our results show that the FA assisted hydrolysis of SO(3) to form H(2)SO(4) is effectively a barrierless process. The barrier heights for the isomerization of the SO(3)···H(2)O···FA prereactive collision complex, which is the rate limiting step in the FA assisted hydrolysis, are found to be respectively 0.59 and 0.08 kcal/mol at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels. This is substantially lower than the ~7 kcal/mol barrier for the corresponding step in the hydrolysis of SO(3) by two water molecules--which is currently the accepted mechanism for atmospheric sulfuric acid production. Simple kinetic analysis of the relative rates suggests that the reduction in barrier height facilitated by FA, combined with the greater stability of the prereactive SO(3)···H(2)O···FA collision complex compared to SO(3)···H(2)O···H(2)O and the rather plentiful atmospheric abundance of FA, makes the formic acid mediated hydrolysis reaction a potentially important pathway for atmospheric sulfuric acid production.

  20. A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate.

    PubMed

    Chen, Hanchi; Liu, Shijie

    2015-09-01

    Liquid hot water (LHW) extraction was used as a pretreatment method to separate the hemicellulose fraction from dried distiller's grain with solubles (DDGS) into liquid phase. Acid hydrolysis using 3.264 % w/w sulfuric acid at 130 °C was performed to convert polysaccharides in LHW extract to monosaccharides. The structure characterization of DDGS in anomeric carbon region based on proton NMR and heteronuclear single quantum coherence (HSQC) during acid hydrolysis was studied in this work. It reveals that the sugar units in DDGS hemicelluloses are constructed with (1-4)-β-D-xylopyranose and α-L-arabinofuranosyl residues. A kinetic model is included to explain the changing concentration of monomer, oligomer, and sugar units. The model was further tested based on the changing concentration of five carbon sugar units during hydrolysis.

  1. Acid hydrolysis of Jerusalem artichoke for ethanol fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Hamdy, M.K.

    1986-01-01

    An excellent substrate for ethanol production is the Jerusalem artichoke (JA) tuber (Helianthus tuberosus). This crop contains a high level of inulin that can be hydrolyzed mainly to D-fructose and has several distinct advantages as an energy source compared to others. The potential ethanol yield of ca. 4678 L/ha on good agricultural land is equivalent to that obtained from sugar beets and twice that of corn. When JA is to be used for ethanol fermentation by conventional yeast, it is first converted to fermentable sugars by enzymes or acids although various strains of yeast were used for the direct fermentationmore » of JA extracts. Fleming and GrootWassink compared various acids (hydrochloric, sulfuric, citric, and phosphoric) and strong cation exchange resin for their effectiveness on inulin hydrolysis and reported that no differences were noted among the acids or resin in their influence on inulin hydrolysis. Undesirable side reactions were noted during acid hydrolysis leading to the formation of HMF and 2-(2-hydroxy acetyl) furan. The HMF at a level of 0.1% is known to inhibit growth and ethanol fermentation by yeast. In this study the authors established optimal conditions for complete acid-hydrolysis of JA with minimum side reactions and maximum sugar-ethanol production. A material balance for the ethanol production was also determined.« less

  2. Hydrolysis of glyoxal in water-restricted environments: formation of organic aerosol precursors through formic acid catalysis.

    PubMed

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2014-06-12

    The hydrolysis of glyoxal involving one to three water molecules and also in the presence of a water molecule and formic acid has been investigated. Our results show that glyoxal-diol is the major product of the hydrolysis and that formic acid, through its ability to facilitate intermolecular hydrogen atom transfer, is considerably more efficient than water as a catalyst in the hydrolysis process. Additionally, once the glyoxal-diol is formed, the barrier for further hydrolysis to form the glyoxal-tetrol is effectively reduced to zero in the presence of a single water and formic acid molecule. There are two important implications arising from these findings. First, the results suggest that under the catalytic influence of formic acid, glyoxal hydrolysis can impact the growth of atmospheric aerosols. As a result of enhanced hydrogen bonding, mediated through their polar OH functional groups, the diol and tetrol products are expected to have significantly lower vapor pressure than the parent glyoxal molecule; hence they can more readily partition into the particle phase and contribute to the growth of secondary organic aerosols. In addition, our findings provide insight into how glyoxal-diol and glyoxal-tetrol might be formed under atmospheric conditions associated with water-restricted environments and strongly suggest that the formation of these precursors for secondary organic aerosol growth is not likely restricted solely to the bulk aqueous phase as is currently assumed.

  3. Growth condition and bacterial community for maximum hydrolysis of suspended organic materials in anaerobic digestion of food waste-recycling wastewater.

    PubMed

    Kim, Man Deok; Song, Minkyung; Jo, Minho; Shin, Seung Gu; Khim, Jee Hyeong; Hwang, Seokhwan

    2010-02-01

    This paper reports the effects of changing pH (5-7) and temperature (T, 40-60 degrees C) on the efficiencies of bacterial hydrolysis of suspended organic matter (SOM) in wastewater from food waste recycling (FWR) and the changes in the bacterial community responsible for this hydrolysis. Maximum hydrolysis efficiency (i.e., 50.5% reduction of volatile suspended solids) was predicted to occur at pH 5.7 and T = 44.5 degrees C. Changes in short-chain volatile organic acid profiles and in acidogenic bacterial communities were investigated under these conditions. Propionic and butyric acids concentrations increased rapidly during the first 2 days of incubation. Several band sequences consistent with Clostridium spp. were detected using denaturing gel gradient electrophoresis. Clostridium thermopalmarium and Clostridium novyi seemed to contribute to butyric acid production during the first 1.5 days of acidification of FWR wastewater, and C. thermopalmarium was a major butyric acid producer afterward. C. novyi was an important propionic acid producer. These two species appear to be important contributors to hydrolysis of SOM in the wastewater. Other acidogenic anaerobes, Aeromonas sharmana, Bacillus coagulans, and Pseudomonas plecoglossicida, were also indentified.

  4. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG.

  5. Fuel alcohol production from agricultural lignocellulosic feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L.

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa,more » kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.« less

  6. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effects of Limited Hydrolysis and High-Pressure Homogenization on Functional Properties of Oyster Protein Isolates.

    PubMed

    Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Du, Ming

    2018-03-22

    In this study, the effects of limited hydrolysis and/or high-pressure homogenization (HPH) treatment in acid conditions on the functional properties of oyster protein isolates (OPI) were studied. Protein solubility, surface hydrophobicity, particle size distribution, zeta potential, foaming, and emulsifying properties were evaluated. The results showed that acid treatment led to the dissociation and unfolding of OPI. Subsequent treatment such as limited proteolysis, HPH, and their combination remarkably improved the functional properties of OPI. Acid treatment produced flexible aggregates, as well as reduced particle size and solubility. On the contrary, limited hydrolysis increased the solubility of OPI. Furthermore, HPH enhanced the effectiveness of the above treatments. The emulsifying and foaming properties of acid- or hydrolysis-treated OPI significantly improved. In conclusion, a combination of acid treatment, limited proteolysis, and HPH improved the functional properties of OPI. The improvements in the functional properties of OPI could potentiate the use of oyster protein and its hydrolysates in the food industry.

  8. Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast

    NASA Astrophysics Data System (ADS)

    Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.

    2018-03-01

    The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.

  9. An asymmetric approach to the radiosynthesis of both enantiomers of α-[11C]methyldopa and α-[11C]methyltyrosine for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Popkov, A.; Nádvorník, M.; Jirman, J.; Kružberská, P.; Lyčka, A.; Weidlich, T.; Kožíšek, J.; Breza, M.; Lehel, S.; Gillings, N. M.

    2006-01-01

    In PET, α-methyl amino acids can play a dual role: a) precursors of neurotransmitters analogues for the study of neurodegenerative diseases; b) non-metabolised analogues of proteinogenic amino acids for the study of amino acids uptake into normal and cancer cells. The difference in the uptake rates during a PET scan could visualise cancer cells in a human body. Clinical applications of such amino acids are strongly limited due to their poor availability. For the synthesis of α-[11C]methyl-tryptohan, an industrial procedure was adopted. All attempts to prepare enantiomerically pure α-[11C]methylated tyrosine failed. We carried out [11C]methylation of metalocomplex synthons derived from protected DOPA or tyrosine. Individual diastereomers were successfully separated by preparative HPLC, diluted with excess of water and extracted on C18 cartridges. Optimisation of the procedure followed by hydrolysis of the complexes and purification of the enantiomers of α-[11C]methylDOPA and α-[11C]methyltyrosine is underway.

  10. Preparation of micro-fibrillated cellulose based on sugar palm ijuk (Arenga pinnata) fibres through partial acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Saputro, A.; Verawati, I.; Ramahdita, G.; Chalid, M.

    2017-07-01

    The aim of this study was to isolate and characterized micro-fibrillated cellulose (MFC) from sugar palm/ijuk fibre (Arenga pinnata) by partial sulfuric acid hydrolysis. Cellulose fibre was prepared by repeated treatments with 5 wt% sodium hydroxide 2 h at 80°C, followed by bleaching with 1.7 wt% sodium chlorite for 2 h at 80°C in acidic environment under stirring. MFC was prepared by partial hydrolysis with sulfuric acid in various concentrations (30, 40, 50, and 60 % for 45 min at 45 °C) under stirring. Fourier Transform Infrared, Field Emission Scanning Electron Microscope, Thermo Gravimetric Analyzer and X-ray Diffraction characterized cellulose fibre and MFC. FTIR measurements showed that alkaline and bleaching treatments were effective to remove non-cellulosic constituents such as wax, lignin and hemicellulose. FESEM observation revealed conversion into more clear surface and defibrillation of cellulosic fibre after pre-treatments. XRD measurement revealed increase in crystallinity after pre-treatments and acid hydrolysis from 54.4 to 87.8%. Thermal analysis showed that increasing acid concentration reduced thermal stability.

  11. Hydrolysis of proteins with methanesulfonic acid for improved HPLC-ICP-MS determination of seleno-methionine in yeast and nuts.

    PubMed

    Wrobel, Katarzyna; Kannamkumarath, Sasi S; Wrobel, Kazimierz; Caruso, Joseph A

    2003-01-01

    In this work, the use of methanesulfonic acid for protein hydrolysis is proposed for evaluation of Se-methionine in yeast, Brazil nuts, and possibly other selenium-rich biological samples. The hydrolysis was carried out by heating the sample with 4 mol L(-1) acid at reflux for 8 h. Two chromatographic techniques (size-exclusion and ion-pairing) coupled with ICP-MS detection were used to compare the release of Se-methionine from proteins by enzymatic (proteinase K, protease XIV) and acid hydrolyses. A more efficient liberation of Se-methionine was observed by acid hydrolysis. For quantification, the sample extracts were introduced onto a C8 Alltima column, and the separation was achieved with a mobile phase containing 5 mmol L(-1) hexanesulfonic acid in citrate buffer (pH 4.5)/methanol (95:5). The results obtained by standard addition showed 816+/-17 micro g g(-1) and 36.2+/-1.5 micro g g(-1) of selenium in the form of Se-methionine in yeast and nuts, respectively (65% and 75% of total selenium).

  12. Isolation, Solubility, and Characterization of D-Mannitol Esters of 4-Methoxybenzeneboronic Acid.

    PubMed

    Lopalco, Antonio; Marinaro, William A; Day, Victor W; Stella, Valentino J

    2017-02-01

    The purpose of this study was to determine the aqueous solubility of a model phenyl boronic acid, 4-methoxybenzeneboronic acid, as a function of pH both in the absence and in the presence of varying D-mannitol concentration. Solid isolated D-mannitol esters were characterized by differential scanning calorimetry, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray studies, and the boronic acid-to-D-mannitol ratio was quantified by HPLC. Hydrolysis of the monoester was studied using UV spectral differences between the monoester and the parent boronic acid. Two D-mannitol esters of 4-methoxybenzeneboronic acid were isolated. The triboronate ester was very insoluble whereas a symmetrical monoboronate monohydrate was also less soluble than the parent. Both esters were crystalline. The monoboronate monohydrate was, however, more soluble than the parent at alkaline pH values due to its lower pKa value (6.53) compared to the parent acid (9.41). Hydrolysis of the monoboronate was extremely fast when even small amount of water was added to dry acetonitrile solutions of the ester. The hydrolysis was buffer concentration dependent and apparent pH sensitive with hydrolysis accelerated by acid. Implications affecting the formulation of future boronic acid drugs are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Treesearch

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  14. Stability studies on diloxanide furoate: effect of pH, temperature, gastric and intestinal fluids.

    PubMed

    Gadkariem, E A; Belal, F; Abounassif, M A; El-Obeid, H A; E E Ibrahim, K

    2004-04-01

    The degradation of the amoebicide diloxanide furoate in alkaline medium at different temperatures was investigated using both a spectrophotometric and a developed HPLC method. In solutions, the drug was found to undergo decomposition, i.e., temperature and pH dependent. The pH-rate profile at pH between 7.6 and 9.6 indicated a first-order dependence of Kobs on [-OH]. Arrhenius plot obtained at pH 8 was linear between 40 and 63 degrees C. The estimated activation energy of hydrolysis was found to be 18.25 kcal degree.mol(-1). The effect of simulated gastric and intestinal fluids on the drug was also investigated. A new thin-layer chromatographic (TLC) procedure for the fractionation of the drug and its alkaline hydrolysis products has been developed and was found to compare favorably with that of the British Pharmacopoeia. Three hydrolysis products of a basic methanolic solution of the drug, namely furoic acid, diloxanide and methylfuroate could be identified by the use of TLC, HPLC, infrared and mass spectrometry.

  15. Impact of recycled effluent on the hydrolysis during anaerobic digestion of vegetable and flower waste.

    PubMed

    Lü, F; He, P J; Hao, L P; Shao, L M

    2008-01-01

    Two trials were established to investigate the effect of recycled effluent on hydrolysis during anaerobic co-digestion of vegetable and flower waste. Trial I evaluated the effect by regulating the flow rate of recycled effluent, while Trial II regulated the ratio of hydrolytic effluent to methanogenic effluent, which were recycled to hydrolysis reactor. Results showed that the recirculation of methanogenic effluent could enhance the buffer capability and operation stability of hydrolysis reactor. Higher recycled flow rate was favourable for microbial anabolism and further promoted hydrolysis. After 9 days of hydrolysis, the cumulative SCOD in the hydrolytic effluent reached 334, 407, 413, 581 mg/g at recycled flow rates of 0.1, 0.5, 1.0, 2.0 m3/(m3 x d), respectively. It was feasible to recycling a mixture of hydrolytic and methanogenic effluent to the hydrolysis reactor. This research showed that partially introducing hydrolytic effluent into the recycled liquid could enhance hydrolysis, while excessive recirculation of hydrolytic effluent will inhibit the hydrolysis. The flow ratio 1:3 of hydrolytic to methanogenic effluent was found to provide the highest hydrolysis efficiency and degradation rate of lignocelluloses-type biomass, among four ratios of 0:1, 1:3, 1:1 and 3:1. Under this regime, after 9 days of hydrolysis, the cumulative TOC and TN in the hydrolytic effluent reached 162 mg/g and 15 mg/g, the removal efficiency of TS, VS, C and cellulose in the solid phase were 60.66%, 62.88%, 58.35% and 49.12%, respectively. The flow ratio affected fermentation pathways, i.e. lower ratio favoured propionic acid fermentation and the generation of lactic acid while higher ratio promoted butyric acid fermentation. IWA Publishing 2008.

  16. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    PubMed

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  17. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control.

    PubMed

    Ra, Chae Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    Optimal hyper-thermal (HT) acid hydrolysis conditions for Gelidium amansii were determined to be 12% (w/v) seaweed slurry content and 144 mM H 2 SO 4 at 150 °C for 10 min. HT acid hydrolysis-treated G. amansii hydrolysates produced low concentrations of inhibitory compounds and adsorption treatment using 3% activated carbon. An adsorption time of 5 min was subsequently used to remove the inhibitory 5-hydroxymethylfurfural from the medium. A final maximum monosaccharide concentration of 44.6 g/L and 79.1% conversion from 56.4 g/L total fermentable monosaccharides with 120 g dw/L G. amansii slurry was obtained from HT acid hydrolysis, enzymatic saccharification, and adsorption treatment. This study demonstrates the potential for butyric acid production from G. amansii hydrolysates under non-pH-controlled as well as pH-controlled fermentation using Clostridium acetobutylicum KCTC 1790. The activated carbon treatment and pH-controlled fermentation showed synergistic effects and produced butyric acid at a concentration of 11.2 g/L after 9 days of fermentation.

  18. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    PubMed

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  19. Switching catalysis from hydrolysis to perhydrolysis in P. fluorescens esterase

    PubMed Central

    Yin, De Lu (Tyler); Bernhardt, Peter; Morley, Krista L.; Jiang, Yun; Cheeseman, Jeremy D.; Purpero, Vincent; Schrag, Joseph D.; Kazlauskas, Romas J.

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis – the reversible formation of per-acids from carboxylic acids and hydrogen peroxide. Recently we showed that a single amino acid substitution in the alcohol binding pocket - L29P - in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. Angew. Chem. Intl. Ed. 2005, 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two x-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active-site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of ε-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction – hydrolysis of peracetic acid to acetic acid and hydrogen peroxide – occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed two fold higher kcat, but Km also increased so the specificity constant, kcat/Km, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate), but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of ε-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties, but binds ε-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones. PMID:20112920

  20. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  1. Analysis of Nerve Agent Metabolites from Hair for Long-Term Verification of Nerve Agent Exposure

    DTIC Science & Technology

    2016-05-09

    Analysis of Nerve Agent Metabolites from Hair for Long-Term Verification of Nerve Agent Exposure Amanda S. Appel,† John H. McDonough,‡ Joseph D...feasible. In this study, hair was evaluated as a long-term repository of nerve agent hydrolysis products. Pinacolyl methylphosphonic acid (PMPA...hydrolysis product of soman) and isopropyl methylphosphonic acid (IMPA; hydrolysis product of sarin) were extracted from hair samples with N,N

  2. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  3. Stability of cefozopran hydrochloride in aqueous solutions.

    PubMed

    Zalewski, Przemysław; Skibiński, Robert; Paczkowska, Magdalena; Garbacki, Piotr; Talaczyńska, Alicja; Cielecka-Piontek, Judyta; Jelińska, Anna

    2016-01-01

    The influence of pH on the stability of cefozopran hydrochloride (CZH) was investigated in the pH range of 0.44-13.00. Six degradation products were identified with a hybrid ESI-Q-TOF mass spectrometer. The degradation of CZH as a result of hydrolysis was a pseudo-first-order reaction. As general acid-base hydrolysis of CZH was not occurred in the solutions of hydrochloric acid, sodium hydroxide, acetate, borate and phosphate buffers, kobs = kpH because specific acid-base catalysis was observed. Specific acid-base catalysis of CZH consisted of the following reactions: hydrolysis of CZH catalyzed by hydrogen ions (kH+), hydrolysis of dications (k1H2O), monocations (k2H2O) and zwitter ions (k3H2O) and hydrolysis of zwitter ions (k1OH-) and monoanions (k2OH-) of CZH catalyzed by hydroxide ions. The total rate of the reaction was equal to the sum of partial reactions: [Formula: see text]. CZH similarly like other fourth generation cephalosporin was most stable at slightly acidic and neutral pH and less stable in alkaline pH. The cleavage of the β-lactam ring resulting from a nucleophilic attack on the carbonyl carbon in the β-lactam moiety is the preferred degradation pathway of β-lactam antibiotics in aqueous solutions.

  4. Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources.

    PubMed

    Nguyen, T A V; Le, Truong D; Phan, Hoa N; Tran, Lam B

    2018-01-01

    Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL).

  5. Continuous enzymatic hydrolysis of lignocellulosic biomass with simultaneous detoxification and enzyme recovery.

    PubMed

    Gurram, Raghu N; Menkhaus, Todd J

    2014-07-01

    Recovering hydrolysis enzymes and/or alternative enzyme addition strategies are two potential mechanisms for reducing the cost during the biochemical conversion of lignocellulosic materials into renewable biofuels and biochemicals. Here, we show that enzymatic hydrolysis of acid-pretreated pine wood with continuous and/or fed-batch enzyme addition improved sugar conversion efficiencies by over sixfold. In addition, specific activity of the hydrolysis enzymes (cellulases, hemicellulases, etc.) increased as a result of continuously washing the residual solids with removal of glucose (avoiding the end product inhibition) and other enzymatic inhibitory compounds (e.g., furfural, hydroxymethyl furfural, organic acids, and phenolics). As part of the continuous hydrolysis, anion exchange resin was tested for its dual application of simultaneous enzyme recovery and removal of potential enzymatic and fermentation inhibitors. Amberlite IRA-96 showed favorable adsorption profiles of inhibitors, especially furfural, hydroxymethyl furfural, and acetic acid with low affinity toward sugars. Affinity of hydrolysis enzymes to adsorb onto the resin allowed for up to 92 % of the enzymatic activity to be recovered using a relatively low-molar NaCl wash solution. Integration of an ion exchange column with enzyme recovery into the proposed fed-batch hydrolysis process can improve the overall biorefinery efficiency and can greatly reduce the production costs of lignocellulosic biorenewable products.

  6. Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources

    PubMed Central

    Phan, Hoa N.; Tran, Lam B.

    2018-01-01

    Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL). PMID:29623233

  7. Scope and limitations of carbohydrate hydrolysis for de novo glycan sequencing using a hydrogen peroxide/metallopeptide-based glycosidase mimetic.

    PubMed

    Peng, Tianyuan; Wooke, Zachary; Pohl, Nicola L B

    2018-03-22

    Acidic hydrolysis is commonly used as a first step to break down oligo- and polysaccharides into monosaccharide units for structural analysis. While easy to set up and amenable to mass spectrometry detection, acid hydrolysis is not without its drawbacks. For example, ring-destruction side reactions and degradation products, along with difficulties in optimizing conditions from analyte to analyte, greatly limits its broad utility. Herein we report studies on a hydrogen peroxide/CuGGH metallopeptide-based glycosidase mimetic design for a more efficient and controllable carbohydrate hydrolysis. A library of methyl glycosides consisting of ten common monosaccharide substrates, along with oligosaccharide substrates, was screened with the artificial glycosidase for hydrolytic activity in a high-throughput format with a robotic liquid handling system. The artificial glycosidase was found to be active towards most screened linkages, including alpha- and beta-anomers, thus serving as a potential alternative method for traditional acidic hydrolysis approaches of oligosaccharides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. New method for a two-step hydrolysis and chromatographic analysis of pectin neutral sugar chains.

    PubMed

    Garna, Haikel; Mabon, Nicolas; Wathelet, Bernard; Paquot, Michel

    2004-07-28

    A new method for the determination of the main neutral sugars in pectin has been developed. The sample preparation involves a mild chemical attack followed by an enzymatic hydrolysis. The completeness and nondestructive character of the method are demonstrated by comparison of the results obtained with different acids such as H2SO4, HCl, and trifluoroacetic acid (TFA) at different concentrations (2, 1, or 0.2 M) at two temperatures (80 or 100 degrees C). The chemical hydrolysis of pectin neutral sugar chains with strong acid (1 or 2 M) and high temperature (100 degrees C) shows that the liberation of the pectin sugars is not realized at the same rate for each sugar. Different optimum conditions are thus obtained. However, the chemical pectin hydrolysis with 0.2 M TFA at 80 degrees C is characterized by the liberation of pectin neutral sugar side chains without any degradation within 72 h of hydrolysis. Under these conditions, the liberation of some pectin sugars, essentially galactose, glucose, and rhamnose, was not complete. An enzymatic hydrolysis is necessary to obtain a complete release of all the sugars. The combination of the two treatments, a chemical hydrolysis realized with diluted acid (0.2 M) for 72 h at low temperature (80 degrees C) on one hand and an enzymatic hydrolysis on the other hand, allow a total liberation of pectin sugars. The quantitative analysis of the carbohydrates is realized with accuracy, high selectivity, and sensitivity with high-performance anion-exchange chromatography with pulsed-amperometric detection. The sugars can be analyzed without any derivatization with a limit of quantification of 0.1 mM. Copyright 2004 American Chemical Society

  9. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid

    Treesearch

    Huiyang Bian; Liheng Chen; Hongqi Dai; J.Y. Zhu

    2017-01-01

    Here we demonstrate di-carboxylic acid hydrolysis for the integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using two unbleached hardwood chemical pulps of lignin contents of 3.9 and 17.2%. Acid hydrolysis experiments used maleic acid solution of 60 wt% concentration at 120°C for 120 min under ambient pressure. Yields of...

  10. Simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero by on-line postcolumn derivation fluorescence detection and ultraviolet detection coupled two-dimensional high-performance liquid chromatography.

    PubMed

    Cheng, Cheanyeh; Wu, Shing-Chen

    2011-05-20

    An innovative two-dimensional high-performance liquid chromatography system was developed for the simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero. A C8 reversed-phase chromatographic column with ultraviolet detection was used as the first dimension for the determination of aspartame, and a ligand-exchange chromatographic column with on-line postcolumn derivation fluorescence detection was employed as the second dimension for the analysis of amino acid enantiomers. The fluorimetric derivative reagent of amino acid enantiomers was o-phthaldialdehyde. The hydrolysis of aspartame in Coca-Cola Zero was induced by electric-heating or microwave heating. Aspartame was quantified by the matrix matched external standard calibration curve with a linear concentration range of 0-50 μg mL(-1) (r(2)=0.9984). The limit of detection (LOD) and the limit of quantification (LOQ) were 1.3 μg mL(-1) and 4.3 μg mL(-1), respectively. The amino acid enantiomers was analyzed by the matrix matched internal standard calibration method (D-leucine as the internal standard) with a linear concentration range of 0-10 μg mL(-1) (r(2)=0.9988-0.9997). The LODs and LOQs for L- and D-aspartic acid and L- and D-phenylalanine were 0.16-0.17 μg mL(-1) and 0.52-0.55 μg mL(-1), respectively, that was 12-13 times more sensitive than ultraviolet detection. The overall analysis accuracy for aspartame and amino acid enantiomers was 90.2-99.2% and 90.4-96.2%, respectively. The overall analysis precision for aspartame and amino acid enantiomers was 0.1-1.7% and 0.5-6.7%, respectively. Generally, the extent of aspartame hydrolysis increases with the increase of electro-thermal temperature, microwave power, and the duration of hydrolysis time. D-aspartic acid and D-phenylalanine can be observed with the electro-thermal racemization at the hydrolysis temperature 120°C for 1 day and only D-aspartic acid can be observed at the hydrolysis temperature 90°C for 2 and 3 days. For the microwave induced hydrolysis, only L-aspartic acid was detected at the power 560 W for 1 min and 320 W for 3 min. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Solvent Extraction of Furfural From Biomass

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  12. Biomass process handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  13. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor.

    PubMed

    Aziz, Marya; Husson, Florence; Kermasha, Selim

    2015-01-01

    Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  14. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo

    2014-10-10

    An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, Yessica; Ellis, Joshua T.; Miller, Charles D.

    2015-02-01

    Exploring and developing sustainable and efficient technologies for biofuel production are crucial for averting global consequences associated with fuel shortages and climate change. Optimization of sugar liberation from wastewater algae through acid hydrolysis was determined for subsequent fermentation to acetone, butanol, and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4. Acid concentration, retention time, and temperature were evaluated to determine optimal hydrolysis conditions by assessing the sugar and ABE yield as well as the associated costs. Sulfuric acid concentrations ranging from 0-1.5 M, retention times of 40-120 min, and temperatures from 23°C- 90°C were combined to form a full factorial experiment. Acidmore » hydrolysis pretreatment of 10% dried wastewater microalgae using 1.0 M sulfuric acid for 120 min at 80-90°C was found to be the optimal parameters, with a sugar yield of 166.1 g for kg of dry algae, concentrations of 5.23 g/L of total ABE, and 3.74 g/L of butanol at a rate of USD $12.83 per kg of butanol.« less

  16. Acid Hydrolysis of Wheat Gluten Induces Formation of New Epitopes but Does Not Enhance Sensitizing Capacity by the Oral Route: A Study in “Gluten Free” Brown Norway Rats

    PubMed Central

    Kroghsbo, Stine; Andersen, Nanna B.; Rasmussen, Tina F.; Madsen, Charlotte B.

    2014-01-01

    Background Acid hydrolyzed wheat proteins (HWPs) are used in the food and cosmetic industry as emulsifiers. Cases of severe food allergic reactions caused by HWPs have been reported. Recent data suggest that these reactions are caused by HWPs produced by acid hydrolysis. Objectives To examine the sensitizing capacity of gluten proteins per se when altered by acid or enzymatic hydrolysis relative to unmodified gluten in rats naïve to gluten. Methods High IgE-responder Brown Norway (BN) rats bred on a gluten-free diet were sensitized without the use of adjuvant to three different gluten products (unmodified, acid hydrolyzed and enzymatic hydrolyzed). Rats were sensitized by intraperitoneal (i.p.) immunization three times with 200 µg gluten protein/rat or by oral dosing for 35 days with 0.2, 2 or 20 mg gluten protein/rat/day. Sera were analyzed for specific IgG and IgE and IgG-binding capacity by ELISA. IgE functionality was measured by rat basophilic leukemia (RBL) assay. Results Regardless of the route of dosing, all products had sensitizing capacity. When sensitized i.p., all three gluten products induced a strong IgG1 response in all animals. Acid hydrolyzed gluten induced the highest level of specific IgE but with a low functionality. Orally all three gluten products induced specific IgG1 and IgE but with different dose-response relations. Sensitizing rats i.p. or orally with unmodified or enzymatic hydrolyzed gluten induced specific IgG1 responses with similar binding capacity which was different from that of acid hydrolyzed gluten indicating that acid hydrolysis of gluten proteins induces formation of ‘new’ epitopes. Conclusions In rats not tolerant to gluten acid hydrolysis of gluten enhances the sensitizing capacity by the i.p. but not by the oral route. In addition, acid hydrolysis induces formation of new epitopes. This is in contrast to the enzymatic hydrolyzed gluten having an epitope pattern similar to unmodified gluten. PMID:25207551

  17. Inhibition of Xenobiotic-Degrading Hydrolases by Organophosphinates

    DTIC Science & Technology

    1985-07-01

    transient increase in the salicylic acid hydrolysis product was observed. Pretreatment with 4-nitrophenyl methyl(phenyl)phosphinate had no significant...h. Hydroly- sis of aspirin was not reduced in pretreated mice, although a transient increase in the salicylic acid hydrolysis product was observed...26 Figure 1. Pathways of aspirin metabolism in mammals: CE is carboxylester hydrolase, SA is salicylic acid, SU is salicyluric

  18. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate.

    PubMed

    Yang, Chu-Fang; Huang, Ci-Ruei

    2016-08-01

    Thermal acid hydrolysis is often used to deal with lignocellulosic biomasses, but 5-hydroxy-methylfurfural (5-HMF) formed during hydrolysis deeply influences downstream fermentation. 2,5-Furan-dicarboxylic acid (FDCA), which is in the list of future important biomass platform molecules can be obtained using 5-HMF biotransformation. Based on the connection between 5-HMF removal in acid hydrolysate and FDCA production, the optimum thermal acid hydrolysis condition for macroalgae Chaetomorpha linum was established. Potential microbes capable of transforming 5-HMF into FDCA were isolated and characterized under various parameters and inoculated into algal hydrolysate to perform 5-HMF biotransformation. The optimum hydrolysis condition was to apply 0.5M HCl to treat 3% algal biomass under 121°C for 15min. Isolated Burkholderia cepacia H-2 could transform 2000mg/L 5-HMF at the initial pH of 7 at 28°C and 1276mg/L FDCA was received. Strain B. cepacia H-2 was suitable for treating the algal hydrolysate without dilution, receiving 989.5mg/L FDCA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Hydrolysis of substance P in the presence of the osteosarcoma cell line SaOS-2: release of free amino acids.

    PubMed

    Cavazza, Antonella; Marini, Mario; Roda, L Giorgio; Tarantino, Umberto; Valenti, Angela

    2011-12-01

    The possible hydrolysis of substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met) in presence of the osteoblastic cell line SaOS-2 was measured by capillary electrophoresis coupled to mass detection. The results obtained indicate that a very rapid disappearance of the intact undecapeptide was associated to a slower appearance of seven of its eight component amino acids. These results can be interpreted as indicating that an extremely fast hydrolysis of substance P by endopeptidases, which released peptidic by-products, was followed by a noticeably slower secondary degradation which released free amino acids. In decreasing quantitative importance, these phenomena appear to originate by the hydrolysis of the Pro(4)-Gln(5) bond, followed by C-terminal sequential degradation of the Arg(1)-Pro(4) tetrapeptide; by the hydrolysis of or Phe(7)-Phe(8) bond (or, possibly, of Gln(6)-Phe(7)) leading to release of free Phe and Gln; by hydrolysis of the Gly(9)-Leu(10) bond with subsequent release of Met and Leu. Results obtained appear to be compatible with the expression by SaOS-2 cells of enzymes already known to catalyze substance P hydrolysis, together with an apparent low efficiency of aminopeptidases. Because of the activity of C-terminal fragments on NK1 receptors, the delay between primary hydrolysis of substance P and secondary hydrolysis of its peptidic fragments indicated by the data shown implies a possible persistence of substance P physiological effects even after degradation of the intact peptide.

  20. Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Ribeiro, M. A.; Oikawa, H.; Mori, M. N.; Napolitano, C. M.; Galvão, C. A.

    2012-08-01

    The use of microbial cellulolytic enzymes is the most efficient process to liberate glucose from cellulose in biomass without the formation of fermentation inhibitors. A combination of pretreatment technologies is an alternative way to increase the access of enzymes to cellulose, and consequently, the conversion yield. In this way, the present study reports on the enzymatic hydrolysis of SCB submitted to three kinds of pretreatment: electron beam processing (EBP), and EBP followed by hydrothermal (TH) and diluted acid (AH) treatment. SCB samples were irradiated using a radiation dynamics electron beam accelerator, and then submitted to thermal and acid (0.1% sulfuric acid) hydrolysis for 40 and 60 min at 180 °C. These samples were submitted to enzymatic hydrolysis (EH) using commercial preparations, including Celluclast 1.5 L and beta-glycosidase. The addition of diluted acid improved TH treatment allowing for a shorter application time. EBP with 50 kGy increased the enzymatic hydrolysis yield of cellulose by 20% after TH and 30% after AH.

  1. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    NASA Astrophysics Data System (ADS)

    Dasan, Y. K.; Bhat, A. H.; Faiz, A.

    2015-07-01

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC's were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC's are strongly dependent on the hydrolysis time and acid concentration.

  2. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    PubMed

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.

  3. New method for evaluating astringency in red wine.

    PubMed

    Llaudy, María C; Canals, Roser; Canals, Joan-Miquel; Rozés, Nicolas; Arola, Lluís; Zamora, Fernando

    2004-02-25

    Astringency is an important sensory attribute of red wine. It is usually estimated by tasting and is subject to a certain subjectivity. It can also be estimated by using the gelatin index. This procedure is not very reproducible because there are many gelatins on the market with a heterogeneous composition. Furthermore, the gelatin index determines procyanidin concentration by acid hydrolysis that gives only an approximate result. This paper proposes a new and reproducible method that determines astringency by using ovalbumin as the precipitation agent and tannic acid solutions as standards. Statistical analysis of the results indicates that this method is more reproducible (RSD = 5%) than the gelatin index (RSD = 12%) and correlates better with sensorial analysis.

  4. Diazo compounds for the bioreversible esterification of proteins† †Electronic supplementary information (ESI) available: Experimental procedures, analytical data, and spectral data for novel compounds. See DOI: 10.1039/c4sc01768d Click here for additional data file.

    PubMed Central

    McGrath, Nicholas A.; Andersen, Kristen A.; Davis, Amy K. F.; Lomax, Jo E.

    2015-01-01

    A diazo compound is shown to convert carboxylic acids to esters efficiently in an aqueous environment. The basicity of the diazo compound is critical: low basicity does not lead to a reaction but high basicity leads to hydrolysis. This reactivity extends to carboxylic acid groups in a protein. The ensuing esters are hydrolyzed by human cellular esterases to regenerate protein carboxyl groups. This new mode of chemical modification could enable the key advantages of prodrugs to be translated from small-molecules to proteins. PMID:25544883

  5. Ultrasound-assisted enzymatic hydrolysis for iodinated amino acid extraction from edible seaweed before reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-09-27

    The combination of reverse phase high performance liquid chromatography (RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of monoiodotyrosine (MIT) and diiodotyrosine (DIT) in edible seaweed. A sample pre-treatment based on ultrasound assisted enzymatic hydrolysis was optimized for the extraction of these iodinated amino acids. Pancreatin was selected as the most adequate type of enzyme, and parameters affecting the extraction efficiency (pH, temperature, mass of enzyme and extraction time) were evaluated by univariate approaches. In addition, extractable inorganic iodine (iodide) was also quantified by anion exchange high performance liquid chromatography (AE-HPLC) coupled with ICP-MS. The proposed procedure offered limits of detection of 1.1 and 4.3ngg(-1) for MIT and DIT, respectively. Total iodine contents in seaweed, as well as total iodine in enzymatic digests were measured by ICP-MS after microwave assisted alkaline digestion with tetramethylamonium hydroxide (TMAH) for total iodine assessment, and also by treating the pancreatin extracts (extractable total iodine assessment). The optimized procedure was successfully applied to five different types of edible seaweed. The highest total iodine content, and also the highest iodide levels, was found in the brown seaweed Kombu (6646±45μgg(-1)). Regarding iodinated amino acids, Nori (a red seaweed) was by far the one with the highest amount of both species (42±3 and 0.41±0.024μgg(-1) for MIT and DIT, respectively). In general, MIT concentrations were much higher than the amounts of DIT, which suggests that iodine from iodinated proteins in seaweed is most likely bound in the form of MIT residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger.

    PubMed

    Hu, Wei; Li, Wenjian; Chen, Hao; Liu, Jing; Wang, Shuyang; Chen, Jihong

    2017-01-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research.

  7. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    PubMed

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.

  8. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : IX. EVIDENCE OF HYDROLYSIS OF BACTERIAL PROTEIN DURING LYSIS.

    PubMed

    Hetler, D M; Bronfenbrenner, J

    1928-07-31

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein.

  9. Effects of Chemical Structure on Hydrolysis Pathways of Small Peptides in Coastal Seawater

    NASA Astrophysics Data System (ADS)

    Liu, S.; Reyna, N. E.; Hamdan, L. J.; Liu, Z.

    2016-02-01

    Deciphering peptide hydrolysis pathways is key to understanding the mechanism of peptide hydrolysis, in particular the types of extracellular enzymes that are active in seawater. From the hydrolyzed fragments of small peptides, one can estimate the role of amino-, carboxy-, and endopeptidases in a quantitative way. In this study, we incubated several small peptides with different amino acid compositions, alanine-valine-phenylalanine-alanine (AVFA), phenylalanine-alanine-serine-tryptophan-glycine-alanine (FASWGA), VFA, SWGA, VVFA, arginine-valine-phenylalanine-alanine (RVFA), SVFA, aspartic acid-valine-phenylalanine-alanine (DVFA), trialanine (AAA), and AVF in two coastal seawaters (ship channel seawater in the western Gulf of Mexico and Sta. C6 seawater in the northern Gulf of Mexico). In both seawaters, aminopeptidases played a more dominant role (22-67%) in hydrolyzing peptides with hydrophobic amino acid at the N-terminus, such as AVFA, VVFA, VFA, and AAA, or with basic amino acid at the N-terminus (RVFA), as compared to those with N-terminal polar amino acid (SVFA, SWGA) or acidic amino acid (DVFA) (0-24%). This result indicates that amino acid composition in a peptide structure affects how the peptide is hydrolyzed. We also found that peptides in the C6 seawater were hydrolyzed dominantly by aminopeptidases (10-59%), while those in the ship channel seawater also by endo- or carboxypeptidases (9-69%). This pattern suggests that peptide hydrolysis pathways depend on specific environment conditions, such as bacterial community structure, that can lead to variations in abundances or activities among amino-, carboxy- and endopeptidases. Overall, the results provide insights into the effects of chemical structure and seawater environment on peptide hydrolysis pathways.

  10. Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing.

    PubMed

    Kadisch, Marvin; Schmid, Andreas; Bühler, Bruno

    2017-03-01

    Fatty acid methyl esters (FAMEs) originating from plant oils are most interesting renewable feedstocks for biofuels and bio-based materials. FAMEs can also be produced and/or functionalized by engineered microbes to give access to, e.g., polymer building blocks. Yet, they are often subject to hydrolysis yielding free fatty acids, which typically are degraded by microbes. We identified BioH as the key enzyme responsible for the hydrolysis of medium-chain length FAME derivatives in different E. coli K-12 strains. E. coli ΔbioH strains showed up to 22-fold reduced FAME hydrolysis rates in comparison with respective wild-type strains. Knockout strains showed, beside the expected biotin auxotrophy, unchanged growth behavior and biocatalytic activity. Thus, high specific rates (~80 U g CDW -1 ) for terminal FAME oxyfunctionalization catalyzed by a recombinant alkane monooxygenase could be combined with reduced hydrolysis. Biotransformations in process-relevant two-liquid phase systems profited from reduced fatty acid accumulation and/or reduced substrate loss via free fatty acid metabolization. The BioH knockout strategy was beneficial in all tested strains, although its effect was found to differ according to specific strain properties, such as FAME hydrolysis and FFA degradation activities. BioH or functional analogs can be found in virtually all microorganisms, making bioH deletion a broadly applicable strategy for efficient microbial bioprocessing involving FAMEs.

  11. The hydrolysis of proteins by microwave energy

    PubMed Central

    Margolis, Sam A.; Jassie, Lois; Kingston, H. M.

    1991-01-01

    Microwave energy, at manually-adjusted, partial power settings has been used to hydrolyse bovine serum albumin at 125 °C. Hydrolysis was complete within 2 h, except for valine and isoleucine which were completely liberated within 4 h. The aminoacid destruction was less than that observed at similar hydrolysis conditions with other methods and complete hydrolysis was achieved more rapidly. These results provide a basis for automating the process of amino-acid hydrolysis. PMID:18924889

  12. Research in Energetic Compounds.

    DTIC Science & Technology

    1980-03-01

    SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) ,2 ABSTRACT (cont’d.) chloroperbenzoic acid gave 3-nitrooxetane. Fluoronitromalonate esters were...tetrahydropyranyl ethers. Base hydrolysis of the ester groups followed by acid hydrolysis of the tetrahydropyranyl groups gave 2-fluo- ro-2-nitroethanol...of 3-allyloxyoxetane.3 Treatment of allyl alcohol with 0.25 equivalunt of t-butyl h-pochlorite and a catalytic amount of p-toluenesulfonic acid was

  13. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  14. Determination of polyadipates migrating from lid gaskets of glass jars. Hydrolysis to adipic acid and measurement by LC-MS/MS.

    PubMed

    Driffield, M; Bradley, E L; Harmer, N; Castle, L; Klump, S; Mottier, P

    2010-10-01

    Polyadipate plasticizers can be present in the polyvinylchloride (PVC) gaskets used to seal the lids of glass jars. As the gaskets can come into direct contact with the foodstuffs inside the jar, the potential exists for polyadipate migration into the food. The procedure and performance characteristics of a test method for the analysis of polyadipates in food simulants (3% aqueous acetic acid and 10% aqueous ethanol) and the volatile test media used in substitute fat tests (isooctane and 95% aqueous ethanol) are described. The PVC gaskets were exposed to the food simulants or their substitutes under standard test conditions. Studies were initially carried out using direct measurement of the polyadipate oligomers by liquid chromatography with time-of-flight mass spectrometric detection (LC-TOF-MS) but this was not practical due to the number of peaks detected. Instead, the migrating polyadipates were hydrolysed to adipic acid and measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). The amount of polyadipate that this measurement of adipic acid represents was then calculated. Method performance was assessed by analysis of gaskets from two types of jar lids by single-laboratory validation. Linearity, sensitivity, repeatability, intermediate reproducibility and recovery were determined to be suitable for checking compliance with the 30 mg/kg specific migration limits for polyesters of 1,2-propane diol and/or 1,3- and/or 1,4-butanediol and/or polypropylene-glycol with adipic acid, which may be end-capped with acetic acid or fatty acids C(12)-C(18) or n-octanol and/or n-decanol. The method was found to be much quicker than previous methods involving extraction, clean-up, hydrolysis, esterification, derivatisation and GC measurement, consequently saving time and money.

  15. Forced Degradation Studies of Aloe Emodin and Emodin by HPTLC.

    PubMed

    Narayanan, Sindhu; Jadhav, Aruna P; Kadam, V J

    2015-01-01

    Anthraquinones are natural phenolic compounds, which are reported to act as anti-aging, anti-inflammatory, antioxidant, anti-cancer, laxative and antitumor agents. They are abudant in plants like candle bush, aloes, cascara bark and rhubarb. The present work was to observe the effect of different forced degradation conditions by high-performance thin layer chromatography on potential markers i.e. aloe emodin and emodin. Both aloe emodin and emodin were subjected to various forced degradation studies such as oxidation, acid and alkaline hydrolysis, photolysis, hydrolytic and thermal degradation. Aloe emodin, was more susceptible to acid hydrolysis and degradation was found to a lesser extent under thermal degradation whereas significant degradation was observed under acid hydrolysis, lesser extent was observed under alkali hydrolysis for emodin. Forced degradation studies on aloe emodin and emodin gives information about its storage and intrinsic stability conditions considering the advanced pharmaceutical aspects of formulation.

  16. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alyapyshev, M.; Paulenova, A.; Tkac, P.

    2007-07-01

    Aceto-hydroxamic acid (AHA) is used as a stripping agent In the UREX process. While extraction yields of uranium remain high upon addition of AHA, hexavalent plutonium and neptunium are rapidly reduced to the pentavalent state while the tetravalent species and removed from the product stream. However, under acidic conditions, aceto-hydroxamic acid undergoes hydrolytic degradation. In this study, the kinetics of the hydrolysis of aceto-hydroxamic acid in nitric and perchloric acid media was investigated at several temperatures. The decrease of the concentration of AHA was determined via its ferric complex using UV-Vis spectroscopy. The data obtained were analyzed using the methodmore » of initial rates. The data follow the pseudo-first order reaction model. Gamma irradiation of AHA/HNO{sub 3} solutions with 33 kGy/s caused two-fold faster degradation of AHA. The rate equation and thermodynamic data will be presented for the hydrolysis reaction with respect to the concentrations of aceto-hydroxamic acid, nitrate and hydronium ions, and radiation dose. (authors)« less

  17. Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.).

    PubMed

    Laohakunjit, Natta; Selamassakul, Orrapun; Kerdchoechuen, Orapin

    2014-09-01

    An enzymatic bromelain seaweed protein hydrolysate (eb-SWPH) was characterised as the precursor for thermally processed seafood flavour. Seaweed (Gracilaria fisheri) protein after agar extraction was hydrolysed using bromelain (enzyme activity=119,325 U/g) at 0-20% (w/w) for 0.5-24 h. Optimal hydrolysis conditions were determined using response surface methodology. The proposed model took into account the interaction effect of the enzyme concentration and hydrolysis time on the physicochemical properties and volatile components of eb-SWPH. The optimal hydrolysis conditions for the production of eb-SWPH were 10% bromelain for 3h, which resulted in a 38.15% yield and a 62.91% degree of hydrolysis value. Three free amino acids, arginine, lysine, and leucine, were abundant in the best hydrolysate. Ten volatile flavours of the best eb-SWPH were identified using gas chromatography/mass spectrometry. The predominant odourants were hexanal, hexanoic acid, nonanoic acid, and dihydroactinidiolide. The thermally processed seafood flavour produced from eb-SWPH exhibited a roasted seafood-like flavouring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The computational analysis and modelling of substitution effects on hydrolysis of formanilides in acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lukeš, Vladimír; Škorňa, Peter; Michalík, Martin; Klein, Erik

    2017-11-01

    Various para, meta and ortho substituted formanilides have been theoretically studied. For trans and cis-isomers of non-substituted formanilide, the calculated B3LYP vibration normal modes were analyzed. Substituent effect on the selected normal modes was described and the comparison with the available experimental data is presented. The calculated B3LYP proton affinities were correlated with Hammett constants, Fujita-Nishioka equation and the rate constants of the hydrolysis in 1 M HCl. Found linear dependences allow predictions of dissociation constants (pKBH+) and hydrolysis rate constants. Obtained results indicate that protonation of amide group may represent the rate determining step of acid catalyzed hydrolysis.

  19. Quantitation of Indoleacetic Acid Conjugates in Bean Seeds by Direct Tissue Hydrolysis 1

    PubMed Central

    Bialek, Krystyna; Cohen, Jerry D.

    1989-01-01

    Gas chromatography-selected ion monitoring-mass spectral analysis using [13C6]indole-3-acetic acid (IAA) as an internal standard provides an effective means for quantitation of IAA liberated during direct strong basic hydrolysis of bean (Phaseolus vulgaris L.) seed powder, provided that extra precautions are undertaken to exclude oxygen from the reaction vial. Direct seed powder hydrolysis revealed that the major portion of amide IAA conjugates in bean seeds are not extractable by aqueous acetone, the solvent used commonly for IAA conjugate extraction from seeds and other plant tissues. Strong basic hydrolysis of plant tissue can be used to provide new information on IAA content. Images Figure 1 PMID:16666783

  20. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.

    PubMed

    Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan

    2016-10-01

    The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.

  1. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formationmore » and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)« less

  2. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my; Bhat, A. H., E-mail: aamir.bhat@petronas.com.my; Faiz, A., E-mail: faizahmad@petronas.com.my

    2015-07-22

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s aremore » strongly dependent on the hydrolysis time and acid concentration.« less

  3. Continuous-flow electro-assisted acid hydrolysis of granular potato starch via inductive methodology.

    PubMed

    Li, Dandan; Yang, Na; Jin, Yamei; Guo, Lunan; Zhou, Yuyi; Xie, Zhengjun; Jin, Zhengyu; Xu, Xueming

    2017-08-15

    The induced electric field assisted hydrochloric acid (IEF-HCl) hydrolysis of potato starch was investigated in a fluidic system. The impact of various reaction parameters on the hydrolysis rate, including reactor number (1-4), salt type (KCl, MgCl 2 , FeCl 3 ), salt concentration (3-12%), temperature (40-55°C), and hydrolysis time (0-60h), were comprehensively assessed. Under optimal conditions, the maximum reducing sugar content in the hydrolysates was 10.59g/L. X-ray diffraction suggested that the crystallinity of IEF-HCl-modified starches increased with the intensification of hydrolysis but was lower than that of native starch. Scanning electron microscopy indicated that the surface and interior regions of starch granules were disrupted by the hydrolysis. The solubility of IEF-HCl-modified starches increased compared to native starch while their swelling power decreased, contributing to a decline in paste viscosity. These results suggest that IEF is a notable potential electrotechnology to conventional hydrolysis under mild conditions without any electrode touching the subject. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hydrolysis of oligosaccharides over solid acid catalysts: a review.

    PubMed

    Vilcocq, Léa; Castilho, Paula C; Carvalheiro, Florbela; Duarte, Luís C

    2014-04-01

    Mild fractionation/pretreatment processes are becoming the most preferred choices for biomass processing within the biorefinery framework. To further explore their advantages, new developments are needed, especially to increase the extent of the hydrolysis of poly- and oligosaccharides. A possible way forward is the use of solid acid catalysts that may overcome many current drawbacks of other common methods. In this Review, the advantages and limitations of the use of heterogeneous catalysis for the main groups of solid acid catalysts (zeolites, resins, carbon materials, clays, silicas, and other oxides) and their relation to the hydrolysis of model soluble disaccharides and soluble poly- and oligosaccharides are presented and discussed. Special attention is given to the hydrolysis of hemicelluloses and hemicellulose-derived saccharides into monosaccharides, the impact on process performance of potential catalyst poisons originating from biomass and biomass hydrolysates (e.g., proteins, mineral ions, etc.). The data clearly point out the need for studying hemicelluloses in natura rather than in model compound solutions that do not retain the relevant factors influencing process performance. Furthermore, the desirable traits that solid acid catalysts must possess for the efficient hemicellulose hydrolysis are also presented and discussed with regard to the design of new catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Compound-Specific δ¹⁵N and δ¹³C Analyses of Amino Acids for Potential Discrimination between Organically and Conventionally Grown Wheat.

    PubMed

    Paolini, Mauro; Ziller, Luca; Laursen, Kristian Holst; Husted, Søren; Camin, Federica

    2015-07-01

    We present a study deploying compound-specific nitrogen and carbon isotope analysis of amino acids to discriminate between organically and conventionally grown plants. We focused on grain samples of common wheat and durum wheat grown using synthetic nitrogen fertilizers, animal manures, or green manures from nitrogen-fixing legumes. The measurement of amino acid δ(15)N and δ(13)C values, after protein hydrolysis and derivatization, was carried out using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our results demonstrated that δ(13)C of glutamic acid and glutamine in particular, but also the combination of δ(15)N and δ(13)C of 10 amino acids, can improve the discrimination between conventional and organic wheat compared to stable isotope bulk tissue analysis. We concluded that compound-specific stable isotope analysis of amino acids represents a novel analytical tool with the potential to support and improve the certification and control procedures in the organic sector.

  6. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  7. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release.

    PubMed

    Moran, Ernesto E; Timerghazin, Qadir K; Kwong, Elizabeth; English, Ann M

    2011-03-31

    The denitrosation of three primary S-nitrosothiols (RSNO; S-nitrosocysteine, S-nitroso-N-acetylcysteine, and S-nitrosoglutathione) and two tertiary RSNOs (S-nitrosopenicillamine and S-nitroso-N-acetylpenicillamine) was investigated in 3.75 M H(2)SO(4) to probe the mechanism of acid-catalyzed RSNO hydrolysis and its dependence on RSNO structure. This reversible reaction was forced to proceed in the denitrosation direction by trapping the nitrosating agent with HN(3). The primary RSNOs exhibited hydrolysis k(obs) values of ∼2 × 10(-4) s(-1), and the tertiary RSNO k(obs) values were an order of magnitude higher. Product analysis by HPLC revealed that the parent thiols (RSHs) were formed in 90-100% yield on 79-99% RSNO denitrosation. Possible hydrolysis mechanisms were studied computationally at the CBS-QB3 level using S-nitrosomethanethiol (MeSNO) as a model RSNO. Consideration of RSNOs as a combination of conventional R-S-N═O, zwitterionic R-S(+)═N-O(-), and RS(-)/NO(+) ion-pair resonance structures was key in understanding the mechanistic details of acid-catalyzed hydrolysis. Protonation of the S-nitroso oxygen or nitrogen activates the sulfur and nucleophilic attack by H(2)O at this atom leads to the formation of the sulfoxide-protonated N-hydroxysulfinamide, MeS(+)(OH)NHOH, with barriers of 19 and 29 kcal/mol, respectively. Proton loss and reprotonation at the nitrogen lead to secondary hydrolysis that produces the sulfinic acid MeS(═O)OH and NH(2)OH. Notably, no low-energy RSNO hydrolysis pathway for HNO release was found in the computational analysis. Protonation of the S-nitroso sulfur gives rise to NO(+) release with a low activation barrier (ΔH(double dagger)(calc) ≈ 6 kcal/mol) and the formation of MeSH in agreement with experiment. The experimental k(obs) can be expressed as K(a)k(1), where K(a) is the acid dissociation constant for protonation of the S-nitroso sulfur and k(1) the pseudo-first-order hydrolysis rate constant. Given the low ΔH(double dagger)(calc) for denitrosation of the S-protonated isomer, the observed slow rates of acid-catalyzed RSNO hydrolysis must be controlled by the magnitude of K(a). The 10-fold higher K(a) calculated for Me(3)CS(H(+))NO (∼10(-15)) compared to MeS(H(+))NO (10(-16)) is consistent with the order of magnitude larger k(obs) reported here for the tertiary vs primary RSNOs.

  8. Production and recovery of monosaccharides from lignocellulose hot water extracts in a pulp mill biorefinery.

    PubMed

    Sainio, Tuomo; Kallioinen, Mari; Nakari, Olli; Mänttäri, Mika

    2013-05-01

    Processing of hemicelluloses obtained with pressurized hot water extraction (PHWE) from Scots pine to monosaccharides and other chemicals was investigated experimentally. A process scheme consisting of ultrafiltration, acid hydrolysis, and chromatographic separation was proposed and evaluated. A two-stage ultrafiltration was found necessary for efficient fractionation of the wood extract. It was shown that the monosaccharides can be released from a concentrated hemicellulose fraction with sulfuric acid hydrolysis without a significant loss of yield due to decomposition of monosaccharides. Acid hydrolysate was successfully fractionated with ion exchange chromatography and the hydrolysis acid was recovered for reuse. The product fractions obtained include polyphenols and high molar mass hemicelluloses (from UF stage 1), arabinose (from UF stage 2), as well as acetic acid and a mixture of monosaccharides (xylose, galactose, mannose, glucose) from chromatography. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses.

    PubMed

    Monschein, Mareike; Nidetzky, Bernd

    2016-01-01

    Focusing on continuous steam explosion, the influence of pretreatment severity due to varied acid loading on hydrolysis of wheat straw by Trichoderma reesei cellulases was investigated based on kinetic evaluation of the saccharification of each pretreated substrate. Using semi-empirical descriptors of the hydrolysis time course, key characteristics of saccharification efficiency were captured in a quantifiable fashion. Not only hydrolysis rates per se, but also the transition point of their bi-phasic decline was crucial for high saccharification degree. After 48h the highest saccharification was achieved for substrate pretreated at relatively low severity (1.2% acid). Higher severity increased enzyme binding to wheat straw, but reduced the specific hydrolysis rates. Higher affinity of the lignocellulosic material for cellulases does not necessarily result in increased saccharification, probably because of lignin modifications occurring at high pretreatment severities. At comparable severity, continuous pretreatment produced a substrate more susceptible to enzymatic hydrolysis than the batch process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Improvement of Functional Properties of Wheat Gluten Using Acid Protease from Aspergillus usamii

    PubMed Central

    Deng, Lingli; Wang, Zhaoxia; Yang, Sheng; Song, Junmei; Que, Fei; Zhang, Hui; Feng, Fengqin

    2016-01-01

    Hydrolysis parameters (temperature, E/S ratio, pH, and time) for acid protease (from Aspergillus usamii) hydrolysis of wheat gluten were optimized by response surface methodology (RSM) using emulsifying activity index (EAI) as the response factor. A temperature of 48.9°C, E/S ratio of 1.60%, pH 3.0, hydrolysis time of 2.5 h was found to be the optimum condition to obtain wheat gluten hydrolysate with higher EAI. The solubility of wheat gluten was greatly improved by hydrolysis and became independent of pH over the studied range. Enzymatic hydrolysis resulted in dramatically increase in EAI, water and oil holding capacity. Molecular weight distribution results showed that most of the peptides above 10 kDa have been hydrolyzed into smaller peptides. The results of FTIR spectra and disulfide bond (SS) and sulfhydryl (SH) content suggested that a more extensional conformation was formed after hydrolysis, which could account for the improved functional properties. PMID:27467884

  11. Impact of electrical conductivity on acid hydrolysis of guar gum under induced electric field.

    PubMed

    Li, Dandan; Zhang, Yao; Yang, Na; Jin, Zhengyu; Xu, Xueming

    2018-09-01

    This study aimed to improve induced electric field (IEF)-assisted hydrolysis of polysaccharide by controlling electrical conductivity. As the conductivity of reaction medium was increased, the energy efficiency of IEF was increased because of deceased impedance, as well as enhanced output voltage and temperature, thus the hydrolysis of guar gum (GG) was accelerated under IEF. Changes in weight-average molecular weight (Mw) suggested that IEF-assisted hydrolysis of GG could be described by the first-order kinetics 1/Mw ∝ kt, with the rate constant (k), varying directly with the medium conductivity. Although IEF-assisted hydrolysis largely disrupted the morphological structure of GG, it had no impact on the chemical structure. In comparison to native GG, the steady shear viscosity of hydrolyzed GG dramatically declined while the thermal stability slightly decreased. This study extended the knowledge of electrical conductivity upon IEF-assisted acid hydrolysis of GG and might contribute to a better utilization of IEF for polysaccharide modification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Improvement of Functional Properties of Wheat Gluten Using Acid Protease from Aspergillus usamii.

    PubMed

    Deng, Lingli; Wang, Zhaoxia; Yang, Sheng; Song, Junmei; Que, Fei; Zhang, Hui; Feng, Fengqin

    2016-01-01

    Hydrolysis parameters (temperature, E/S ratio, pH, and time) for acid protease (from Aspergillus usamii) hydrolysis of wheat gluten were optimized by response surface methodology (RSM) using emulsifying activity index (EAI) as the response factor. A temperature of 48.9°C, E/S ratio of 1.60%, pH 3.0, hydrolysis time of 2.5 h was found to be the optimum condition to obtain wheat gluten hydrolysate with higher EAI. The solubility of wheat gluten was greatly improved by hydrolysis and became independent of pH over the studied range. Enzymatic hydrolysis resulted in dramatically increase in EAI, water and oil holding capacity. Molecular weight distribution results showed that most of the peptides above 10 kDa have been hydrolyzed into smaller peptides. The results of FTIR spectra and disulfide bond (SS) and sulfhydryl (SH) content suggested that a more extensional conformation was formed after hydrolysis, which could account for the improved functional properties.

  13. Sensitive high-throughput screening for the detection of reducing sugars.

    PubMed

    Mellitzer, Andrea; Glieder, Anton; Weis, Roland; Reisinger, Christoph; Flicker, Karlheinz

    2012-01-01

    The exploitation of renewable resources for the production of biofuels relies on efficient processes for the enzymatic hydrolysis of lignocellulosic materials. The development of enzymes and strains for these processes requires reliable and fast activity-based screening assays. Additionally, these assays are also required to operate on the microscale and on the high-throughput level. Herein, we report the development of a highly sensitive reducing-sugar assay in a 96-well microplate screening format. The assay is based on the formation of osazones from reducing sugars and para-hydroxybenzoic acid hydrazide. By using this sensitive assay, the enzyme loads and conversion times during lignocellulose hydrolysis can be reduced, thus allowing higher throughput. The assay is about five times more sensitive than the widely applied dinitrosalicylic acid based assay and can reliably detect reducing sugars down to 10 μM. The assay-specific variation over one microplate was determined for three different lignocellulolytic enzymes and ranges from 2 to 8%. Furthermore, the assay was combined with a microscale cultivation procedure for the activity-based screening of Pichia pastoris strains expressing functional Thermomyces lanuginosus xylanase A, Trichoderma reesei β-mannanase, or T. reesei cellobiohydrolase 2. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production.

    PubMed

    Chen, Wen-Hua; Pen, Ben-Li; Yu, Ching-Tsung; Hwang, Wen-Song

    2011-02-01

    The combined pretreatment of rice straw using dilute-acid and steam explosion followed by enzymatic hydrolysis was investigated and compared with acid-catalyzed steam explosion pretreatment. In addition to measuring the chemical composition, including glucan, xylan and lignin content, changes in rice straw features after pretreatment were investigated in terms of the straw's physical properties. These properties included crystallinity, surface area, mean particle size and scanning electron microscopy imagery. The effect of acid concentration on the acid-catalyzed steam explosion was studied in a range between 1% and 15% acid at 180°C for 2 min. We also investigated the influence of the residence time of the steam explosion in the combined pretreatment and the optimum conditions for the dilute-acid hydrolysis step in order to develop an integrated process for the dilute-acid and steam explosion. The optimum operational conditions for the first dilute-acid hydrolysis step were determined to be 165°C for 2 min with 2% H(2)SO(4) and for the second steam explosion step was to be carried out at 180°C for 20 min; this gave the most favorable combination in terms of an integrated process. We found that rice straw pretreated by the dilute-acid/steam explosions had a higher xylose yield, a lower level of inhibitor in the hydrolysate and a greater degree of enzymatic hydrolysis; this resulted in a 1.5-fold increase in the overall sugar yield when compared to the acid-catalyzed steam explosion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    PubMed Central

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649

  16. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    NASA Astrophysics Data System (ADS)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  17. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    NASA Astrophysics Data System (ADS)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  18. Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal

    USDA-ARS?s Scientific Manuscript database

    Enzymatic hydrolysis was performed for extracting protein to prepare umami taste amino acids from defatted tomato seed meal (DTSM) which is a by-product of tomato processing. Papain was used as an enzyme for the hydrolysis of DTSM. The particle size distribution of DTSM, protein concentration and fr...

  19. A Simple Procedure for Constructing 5'-Amino-Terminated Oligodeoxynucleotides in Aqueous Solution

    NASA Technical Reports Server (NTRS)

    Bruick, Richard K.; Koppitz, Marcus; Joyce, Gerald F.; Orgel, Leslie E.

    1997-01-01

    A rapid method for the synthesis of oligodeoxynucleotides (ODNs) terminated by 5'-amino-5'-deoxythymidine is described. A 3'-phosphorylated ODN (the donor) is incubated in aqueous solution with 5'-amino- 5'-deoxythymidine in the presence of N-(3-dimethylaminopropyl)-)N'-ethylcarbodiimide hydrochloride (EDC), extending the donor by one residue via a phosphoramidate bond. Template- directed ligation of the extended donor and an acceptor ODN, followed by acid hydrolysis, yields the acceptor ODN extended by a single 5'-amino-5'-deoxythymidine residue at its 5'terminus.

  20. Gas phase hydrolysis of formaldehyde to form methanediol: impact of formic acid catalysis.

    PubMed

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2013-11-21

    We find that formic acid (FA) is very effective at facilitating diol formation through its ability to reduce the barrier for the formaldehyde (HCHO) hydrolysis reaction. The rate limiting step in the mechanism involves the isomerization of a prereactive collision complex formed through either the HCHO···H2O + FA and/or HCHO + FA···H2O pathways. The present study finds that the effective barrier height, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state (TS) and the HCHO···H2O + FA and HCHO + FA···H2O starting reagents, are respectively only ∼1 and ∼4 kcal/mol. These barriers are substantially lower than the ∼17 kcal/mol barrier associated with the corresponding step in the hydrolysis of HCHO catalyzed by a single water molecule (HCHO + H2O + H2O). The significantly lower barrier heights for the formic acid catalyzed pathway reveal a new important role that organic acids play in the gas phase hydrolysis of atmospheric carbonyl compounds.

  1. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution.

    PubMed

    Zheng, Yajun; Li, Yan

    2018-08-15

    Effects of cellulase hydrolysis, acid treatment and particle size distribution on the structure, physicochemical and functional properties of coconut cake dietary fiber (DCCDF) were studied. Results showed that both the cellulase hydrolysis and acid treatment contributed to the structural modification of DCCDF as evident from XRD, FT-IR and SEM analysis. Moreover, the cellulase hydrolysis enhanced soluble carbohydrate content, water holding capacity (WHC) and swelling capacity (WSC), α-amylase inhibition activity (α-AAIR), glucose dialysis retardation index (GDRI) and cation-exchange capacity (CEC) of DCCDF; but it had undesirable effects on colour, oil holding capacity (OHC) and emulsifying capacity (EC). On other hand, acid treatment decreased the WHC, WSC and GDRI, but improved the colour, CEC, OHC and emulsion stability of DCCDF. Furthermore, the WHC, WSC and EC of DCCDF increased as the particle size reduced from 250 to 167 μm, while the GDRI, OHC, α-AAIR and emulsion stability decreased with decreasing particle size. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid.

    PubMed

    Li, Xiaoming; Zhao, Jianwei; Wang, Dongbo; Yang, Qi; Xu, Qiuxiang; Deng, Yongchao; Yang, Weiqiang; Zeng, Guangming

    2016-02-01

    Short-chain fatty acid (SCFA) production from waste activated sludge (WAS) anaerobic fermentation is often limited by the slow hydrolysis rate and poor substrate availability, thus a long fermentation time is required. This paper reports a new pretreatment approach, i.e., using free nitrous acid (FNA) to pretreat sludge, for significantly enhanced SCFA production. Experimental results showed the highest SCFA production occurred at 1.8 mg FNA/L with time of day 6, which was 3.7-fold of the blank at fermentation time of day 12. Mechanism studies revealed that FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. It was also found that FNA pretreatment benefited hydrolysis and acidification processes but inhibited the activities of methanogens, thereby promoting the yield of SCFA. In addition, the FNA pretreatment substantially stimulated the activities of key enzymes responsible for hydrolysis and acidification, which were consistent with the improvement of solubilization, hydrolysis and acidification of WAS anaerobic fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger

    PubMed Central

    Li, Wenjian; Chen, Hao; Liu, Jing; Wang, Shuyang; Chen, Jihong

    2017-01-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research. PMID:28650980

  4. Optimization of pineapple pulp residue hydrolysis for lipid production by Rhodotorula glutinis TISTR5159 using as biodiesel feedstock.

    PubMed

    Tinoi, Jidapha; Rakariyatham, Nuansri

    2016-08-01

    The higher lipid productivity of Rhodotorula glutinis TISTR5159 was achieved by optimizing the pineapple pulp hydrolysis for releasing the high sugars content. The sequential simplex method operated by varied; solid-to-liquid ratio, sulfuric acid concentration, temperature, and hydrolysis time were successfully applied and the highest sugar content (83.2 g/L) evaluated at a solid-to-liquid ratio of 1:10.8, 3.2% sulfuric acid, 105 °C for 13.9 min. Moreover, the (NH4)2SO4 supplement enhanced the lipid productivity and gave the maximum yields of biomass and lipid of 15.2 g/L and 9.15 g/L (60.2%), respectively. The C16 and C18 fatty acids were found as main components included oleic acid (55.8%), palmitic acid (16.6%), linoleic acid (11.9%), and stearic acid (7.8%). These results present the possibility to convert the sugars in pineapple pulp hydrolysate to lipids. The fatty acid profile was also similar to vegetable oils. Thus, it could be used as potential feedstock for biodiesel production.

  5. Automated production of [18 F]FTHA according to GMP.

    PubMed

    Savisto, Nina; Viljanen, Tapio; Kokkomäki, Esa; Bergman, Jörgen; Solin, Olof

    2018-02-01

    14-(R,S)-[ 18 F]fluoro-6-thia-heptadecanoic acid is a tracer for fatty acid imaging by positron emission tomography. High demand for this tracer required us to replace semiautomatic synthesis with a fully automated procedure. An automated synthesis device was constructed in-house for multistep nucleophilic 18 F-fluorination and a control system was developed. The synthesis device was combined with a sterile filtration unit and both were qualified. 14-(R,S)-[ 18 F]fluoro-6-thia-heptadecanoic acid was produced according to good manufacturing practice guidelines set by the European Union. The synthesis includes an initial nucleophilic labelling reaction, deprotection, preparative HPLC separation, purification of the final product, and formulation for injection. The duration and temperature of the reaction and hydrolysis were optimized, and the radiochemical stability of the formulated product was determined. The rotary evaporator used to evaporate the solvent after HPLC purification was replaced with solid phase extraction purification. We also replaced the human serum albumin used in the earlier procedure with a phosphate buffer-ascorbic acid mixture in the final formulation solution. From 2011 to 2016, we performed 219 synthesis procedures, 94% of which were successful. The radiochemical yield of 14-(R,S)-[ 18 F]fluoro-6-thia-heptadecanoic acid, decay-corrected to the end of bombardment, was 13% ± 6.3%. The total amount of formulated end product was 1.7 ± 0.8 GBq at end of synthesis. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Hydrolysis of Ketene Catalyzed by Formic Acid: Modification of Reaction Mechanism, Energetics, and Kinetics with Organic Acid Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, Matthew K.; Francisco, Joseph S.; Verdicchio, Marco

    2015-05-14

    The hydrolysis of ketene (H2C=C=O) to form acetic acid involving two water molecules and also separately in the presence of one to two water molecules and formic acid (FA) was investigated. Our results show that, while the currently accepted indirect mechanism, involving addition of water across the carbonyl C=O bond of ketene to form an ene-diol followed by tautomerization of the ene-diol to form acetic acid, is the preferred pathway when water alone is present, with formic acid as catalyst, addition of water across the ketene C=C double bond to directly produce acetic acid becomes the kinetically favored pathway formore » temperatures below 400 K. We find not only that the overall barrier for ketene hydrolysis involving one water molecule and formic acid (H2C2O + H2O + FA) is significantly lower than that involving two water molecules (H2C2O + 2H(2)O) but also that FA is able to reduce the barrier height for the direct path, involving addition of water across the C=C double bond, so that it is essentially identical with (6.4 kcal/mol) that for the indirect ene-diol formation path involving addition of water across the C=O bond. For the case of ketene hydrolysis involving two water molecules and formic acid (H2C2O + 2H(2)O + FA), the barrier for the direct addition of water across the C=C double bond is reduced even further and is 2.5 kcal/mol lower relative to the ene-diol path involving addition of water across the C=O bond. In fact, the hydrolysis barrier for the H2C2O + 2H(2)O + FA reaction through the direct path is sufficiently low (2.5 kcal/mol) for it to be an energetically accessible pathway for acetic acid formation under atmospheric conditions. Given the structural similarity between acetic and formic acid, our results also have potential implications for aqueous-phase chemistry. Thus, in an aqueous environment, even in the absence of formic acid, though the initial mechanism for ketene hydrolysis is expected to involve addition of water across the carbonyl bond as is currently accepted, the production and accumulation of acetic acid will likely alter the preferred pathway to one involving addition of water across the ketene C=C double bond as the reaction proceeds.« less

  7. Steric analysis of epoxyalcohol and trihydroxy derivatives of 9-hydroperoxy-linoleic acid from hematin and enzymatic synthesis

    PubMed Central

    Thomas, Christopher P.; Boeglin, William E.; Garcia-Diaz, Yoel; O’Donnell, Valerie B.; Brash, Alan R.

    2013-01-01

    We characterize the allylic epoxyalcohols and their trihydroxy hydrolysis products generated from 9R- and 9S-hydroperoxy-octadecenoic acid (HPODE) under non-enzymatic conditions, reaction with hematin and subsequent acid hydrolysis, and enzymatic conditions, incubation with Beta vulgaris containing a hydroperoxide isomerase and epoxide hydrolase. The products were resolved by HPLC and the regio and stereo-chemistry of the transformations were determined through a combination of 1H NMR and GC-MS analysis of dimethoxypropane derivatives. Four trihydroxy isomers were identified upon mild acid hydrolysis of 9S,10S-trans-epoxy-11E-13S-hydroxyoctadecenoate: 9S,10R,13S, 9S,12R,13S, 9S,10S,13S and 9S,12S,13S-trihydroxy-octadecenoic acids, in the ratio 40:26:22:12. We also identified a prominent -ketol rearrangement product from the hydrolysis as mainly the 9-hydroxy-10E-13-oxo isomer. Short incubation (5 min) of 9R- and 9S-HPODE with Beta vulgaris extract yielded the 9R- and 9S-hydroxy-10E-12R,13S-cis-epoxy products respectively. Longer incubation (60 min) gave one specific hydrolysis product via epoxide hydrolase, the 9R/S,12S,13S-trihydroxyoctadecenoate. These studies provide a practical approach for the isolation and characterization of allylic epoxy alcohol and trihydroxy products using a combination of HPLC, GC-MS and 1H NMR. PMID:23352713

  8. Role of bifidobacteria in the hydrolysis of chlorogenic acid

    PubMed Central

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-01-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  9. Role of bifidobacteria in the hydrolysis of chlorogenic acid.

    PubMed

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-02-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Acid hydrolysis of crude tannins from infructescence of Platycarya strobilacea Sieb. et Zucc to produce ellagic acid.

    PubMed

    Zhang, Liangliang; Wang, Yongmei; Xu, Man

    2014-01-01

    The infructescence of Platycarya strobilacea Sieb. et Zucc is a well-known traditional medicine in China, Japan and Korea. The infructescence of P. strobilacea Sieb. et Zucc is a rich source of ellagitannins that are composed of ellagic acid (EA) and gallic acid, linked to a sugar moiety. The aim of this study was to prepare EA by acid hydrolysis of crude tannins from the infructescence of P. strobilacea Sieb. et Zucc, and establish a new technological processing method for EA. The natural antioxidant EA was prepared by using the water extraction of infructescence of P. strobilacea Sieb. et Zucc, evaporation, condensation, acid hydrolysis and prepared by the process of crystallisation. The yield percentage of EA from crude EA was more than 20% and the purity of the product was more than 98%, as identified by using HPLC. The structure was identified on the basis of spectroscopic analysis and comparison with authentic compound.

  11. Nutritional composition of different grades of edible bird's nest and its enzymatic hydrolysis

    NASA Astrophysics Data System (ADS)

    Noor, Hidayati Syamimi Mohd; Babji, Abdul Salam; Lim, Seng Joe

    2018-04-01

    Edible bird nest (EBN) is a powerful and nutritious food usually consumed by the Chinese Community and it is considered among the most expensive animal products which are made up by salivation of swiftlets (Aerodramus fuciphagus). The other 5% to 10% are made up of foreign matters such as feathers, faecal matter and dirt. The EBN is graded based on its aesthetics as well as its cleaning processes. The aim of this study were to determine and compare EBN of different grades (A, B, C, D) in terms of proximate composition and amino acid profile, and next to enzymatically hydrolyse and determine the degree of hydrolysis (DH) and the recovery percentage of EBN hydrolysates. The enzymatic hydrolysis were performed as an alternative cleaning process of the various grades of EBN, where the glycoproteins were hydrolysed to glycopeptides, making them soluble and leaving behind other insoluble impurities. The results in this study showed that EBN contained high crude protein content: 60.59% (EBNA), 59.50% (EBNB), 54.29% (EBNC) and 56.57% (EBND). Lower grade EBNs (EBNC and EBND) has much higher ash content, i.e. impurities, compared to higher grade EBNs (EBNA and EBNB). In terms of amino acid profile, EBND showed the highest total amino acids compared to EBNA, EBNB and EBNC, with serine and aspartic acid being the main amino acids. Treating the EBN with alcalase for 1.0 - 4.0 hours produced hydrolysates with different degree of hydrolysis (DH), ranging from 10.83 %DH (EBNA) to 13.79 %DH (EBNC). The recovery of EBN after enzymatic hydrolysis range from 89 % (EBNB) to 99% (EBNA). Overall, results showed nutritional composition and amino acid profile of EBN of various grades were significantly different in its nutritional quality, while the enzymatic hydrolysis has successfully separated the impurities from the lower grades EBN.

  12. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis.

    PubMed

    Xin, Donglin; Yang, Zhong; Liu, Feng; Xu, Xueru; Zhang, Junhua

    2015-01-01

    The effect of two pretreatments methods, aqueous ammonia (SAA) and dilute acid (DA), on the chemical compositions, cellulose crystallinity, morphologic change, and enzymatic hydrolysis of bamboo fractions (bamboo yellow, timber, green, and knot) was compared. Bamboo fractions with SAA pretreatment had better hydrolysability than those with DA pretreatment. High crystallinity index resulted in low hydrolysis yield in the conversion of SAA pretreated bamboo fractions, not DA pretreated fractions. The increase of cellulase loading had modestly positive effect in the hydrolysis of both SAA and DA pretreated bamboo fractions, while supplement of xylanase significantly increased the hydrolysis of the pretreated bamboo fractions, especially after SAA pretreatment. The results indicated that SAA pretreatment was more effective than DA pretreatment in conversion of bamboo fractions, and supplementation of xylanase was necessary in effective conversion of the SAA pretreated fractions into fermentable sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Efficiency of pretreatment of aqueous samples using a macroporous strong anion-exchange resin on the determination of nerve gas hydrolysis products by gas chromatography-mass spectrometry after tert.-butyldimethylsilylation.

    PubMed

    Kataoka, M; Tsuge, K; Seto, Y

    2000-09-08

    A pretreatment procedure, using a macroporous strong anion-exchange resin (MSA) has been established for the determination of nerve gas hydrolysis products by gas chromatography-mass spectrometry (GC-MS) after tert.-butyldimethylsilyl (TBDMS) derivatization. Aqueous solutions of methylphosphonic acid (MPA) and three alkyl methylphosphonic acids (AMPAs) (ethyl, isopropyl and pinacolyl methylphosphonic acid), were retained on the MSA column, and then quantitatively eluted with 0.1 M hydrochloric acid. The neutralized column eluate was dried, and MPA and AMPAs were derivatized with N-methyl-N-(tert.-butyldimethylsilyl)-trifluoroacetamide and analyzed by GC-MS. The column eluate was also analyzed in order to determine the exact hydrolysis product levels by capillary electrophoresis using borate and benzoate buffer (pH 6). The MSA pretreatment was examined for the clean-up of aqueous extracts of three types of soils and an aqueous solution containing 10% sucrose, which is regarded as model for a typical soft drink, after spiking with MPA and AMPAs. MPA and AMPAs were quantitatively recovered in the MSA eluate fraction from those samples, except for MPA from volcanic acid and alluvial soils. The yields of TBDMS derivatives were remarkably improved, compared with for which no pretreatment was used and also for those in which a strong cation-exchange resin was used. The achieved detection limits of MPA and AMPAs ranged from 0.12 to 0.18 microg/g of soil (S/N=3). The established MSA method was applied to the pretreatment of spiked sea water, two types of beverages, Pepsi Cola and canned coffee. Although the yields of TBDMS derivatives of MPA and AMPAs in sea water (in a range between 44 and 96%) and AMPAs in Pepsi Cola (in a range between 58 and 92%) were rather high, those for MPA in the Pepsi Cola (27%) and those for MPA and AMPAs in the canned coffee (in a range between 5 and 17%) were low.

  14. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    PubMed

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Quantitating Organoleptic Volatile Phenols in Smoke-Exposed Vitis vinifera Berries.

    PubMed

    Noestheden, Matthew; Thiessen, Katelyn; Dennis, Eric G; Tiet, Ben; Zandberg, Wesley F

    2017-09-27

    Accurate methods for quantitating volatile phenols (i.e., guaiacol, syringol, 4-ethylphenol, etc.) in smoke-exposed Vitis vinifera berries prior to fermentation are needed to predict the likelihood of perceptible smoke taint following vinification. Reported here is a complete, cross-validated analytical workflow to accurately quantitate free and glycosidically bound volatile phenols in smoke-exposed berries using liquid-liquid extraction, acid-mediated hydrolysis, and gas chromatography-tandem mass spectrometry. The reported workflow addresses critical gaps in existing methods for volatile phenols that impact quantitative accuracy, most notably the effect of injection port temperature and the variability in acid-mediated hydrolytic procedures currently used. Addressing these deficiencies will help the wine industry make accurate, informed decisions when producing wines from smoke-exposed berries.

  16. Solubility of structurally complicated materials: 3. Hair.

    PubMed

    Horvath, Ari L

    2009-04-27

    Hair is composed of proteins, lipids, water, and small amounts of trace elements. All proteins in animal and human bodies are built from permutations of amino acid molecules in a polypeptide string. The polypeptide chains of protein keratin are organized into filaments in hair cells. Hair is one of the most difficult proteins to digest or solubilize. Among the most common dissolving procedures for hair are acidic, alkaline, and enzymatic hydrolysis. For the analysis of hair, the solid samples are transferred by solubilization via digestion into a liquid phase. Small molecular solvents and molecules with hydrophobic groups appear to have higher affinity for hair. A good solvent attacks the disulfide bonds between cystine molecules and hydrates the hair shaft. Consequently, the hair becomes a jelly-like mass.

  17. Evaluation of Bacto TB hydrolysis reagent (Tween 80) for the identification of Branhamella catarrhalis.

    PubMed Central

    Weiner, M; Penha, P D

    1990-01-01

    An investigation of the hydrolysis of Tween 80 reagent by Branhamella catarrhalis and related organisms (Neisseria and Moraxella species) revealed that only B. catarrhalis gave a positive result. A total of 226 strains, including reference organisms and clinical isolates, were studied. B. catarrhalis changed the color of the reagent from amber to pink-red after overnight incubation. We recommend this simple and cost-effective test as an alternative procedure to DNase testing or tributyrin hydrolysis or as a supplemental procedure for the identification of B. catarrhalis in clinical specimens. PMID:2105335

  18. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  19. Hydrolysis of chicoric and caftaric acids with esterases and Lactobacillus johnsonii in Vitro and in a gastrointestinal model.

    PubMed

    Bel-Rhlid, Rachid; Pagé-Zoerkler, Nicole; Fumeaux, René; Ho-Dac, Thang; Chuat, Jean-Yves; Sauvageat, Jean Luc; Raab, Thomas

    2012-09-12

    Chicoric acid (ChA) and caftaric acid (CafA) were identified as bioactive components of chicory and have been ascribed a number of health benefits. This study investigated the hydrolysis of ChA and CafA with enzymes and a probiotic bacterium Lactobacillus johnsonii (La1). Esterase from Aspergillus japonicus (24 U/mg) hydrolyzed 100% of ChA (5 mM) and CafA (5 mM) after 3 h, at pH 7.0 and 37 °C. Under the same reaction conditions, 100% hydrolysis of ChA and CafA was achieved with a spray-dried preparation of La1. The addition of La1 (100 mg/mL, 3.3 E9 cfu/g) to CafA solution in a gastrointestinal model (GI model) resulted in 65% hydrolysis of CafA. This model simulates the physicochemical conditions of the human gastrointestinal tract. No hydrolysis of CafA was observed after passage through the GI model in the absence of La1. The results of this study support the hypothesis that ChA and CafA are degraded by gut microflora before absorption and metabolization.

  20. HCN - A plausible source of purines, pyrimidines and amino acids on the primitive earth

    NASA Technical Reports Server (NTRS)

    Ferris, J.-P.; Joshi, P. C.; Edelson, E. H.; Lawless, J. G.

    1978-01-01

    Dilute (0.1 M) solutions of HCN condense to oligomers at pH 9.2, and hydrolysis of these oligomers yields 4,5-dihydroxypyrimidine, orotic acid, 5-hydroxyuracil, adenine, 4-aminoimidazole-5-carboxamide, and amino acids. It is suggested that the three main classes of nitrogen-containing biomolecules - purines, pyrimidines, and amino acids may have originated from HCN on the primitive earth. It is also suggested that the presence of orotic acid and 4-aminoimidazole-5-carboxamide might indicate that contemporary biosynthetic pathways for nucleotides evolved from the compounds released on hydrolysis of HCN oligomers.

  1. Phospholipase a properties of several snake venom preparations.

    PubMed

    Nutter, L J; Privett, O S

    1966-07-01

    The hydrolytic properties of the venoms of seven species of snakes,Crotalus adamanteus, Ancistrodon contortrix, Naja naja, Bothrops atrox, Ophiophagus hannah, Crotalus atrox andVipera russeli, were studied with purified lecithins and mixtures of lecithins of known fatty acid and class composition as substrates.The relative rates of hydrolysis of the fatty acids by the above venoms were studied by analysis of the products of the reaction at intervals during the course of the reaction. Of the seven venoms studied, that ofOphiophagus hannah was the only one which did not give some degree of preferential rate of hydrolysis of individual fatty acids.In general, saturated fatty acids were liberated faster than unsaturated fatty acids; differences in the rates of the hydrolysis of individual saturate and unsaturated fatty acids were also observed. Individual classes of lecithin were also hydrolyzed at different rates. For the determination of the distribution of the fatty acids between the alpha- and beta-position of lecithin, the reaction should be carried to completion. If the reaction requires a prolonged time to go to completion, it should be carried out under nitrogen to prevent autoxidation.

  2. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.

    PubMed

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D; Williams, Daniel L; Magee, Timothy D; Kaeppler, Shawn M; de Leon, Natalia; Hodge, David B

    2015-07-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  4. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE PAGES

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; ...

    2015-02-20

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  5. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylanmore » that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.« less

  6. Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system.

    PubMed

    Malihan, Lenny B; Nisola, Grace M; Chung, Wook-Jin

    2012-08-01

    The amenability of three brown algal species, Sargassum fulvellum, Laminaria japonica and Undaria pinnatifida, to hydrolysis were investigated using the ionic liquid (IL), 1-n-butyl-3-methylimidazolium chloride ([BMIM]Cl). Compositional analyses of the brown algae reveal that sufficient amounts of sugars (15.5-29.4 wt.%) can be recovered. Results from hydrolysis experiments show that careful selection of the type of mineral acid as catalyst and control of acid loading could maximize the recovery of sugars. Optimal reaction time and temperature were determined from the kinetic studies on the sequential reducing sugar (TRS) formation and degradation. Optimal reaction times were determined based on the extent of furfurals formation as TRS degradation products. X-ray diffraction and environmental scanning electron microscopy confirmed the suitability of [BMIM]Cl as solvent for the hydrolysis of the three brown algae. Overall results show the potential of brown algae as renewable energy resources for the production of valuable chemicals and biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Regiospecific Ester Hydrolysis by Orange Peel Esterase - An Undergraduate Experiment.

    NASA Astrophysics Data System (ADS)

    Bugg, Timothy D. H.; Lewin, Andrew M.; Catlin, Eric R.

    1997-01-01

    A simple but effective experiment has been developed to demonstrate the regiospecificity of enzyme catalysis using an esterase activity easily isolated from orange peel. The experiment involves the preparation of diester derivatives of para-, meta- and ortho-hydroxybenzoic acid (e.g. methyl 4-acetoxy-benzoic acid). The derivatives are incubated with orange peel esterase, as a crude extract, and with commercially available pig liver esterase and porcine pancreatic lipase. The enzymatic hydrolysis reactions are monitored by thin layer chromatography, revealing which of the two ester groups is hydrolysed, and the rate of the enzyme-catalysed reaction. The results of a group experiment revealed that in all cases hydrolysis was observed with at least one enzyme, and in most cases the enzymatic hydrolysis was specific for production of either the hydroxy-ester or acyl-acid product. Specificity towards the ortho-substituted series was markedly different to that of the para-substituted series, which could be rationalised in the case of pig liver esterase by a published active site model.

  8. Comparative studies of cutins from lime (Citrus aurantifolia) and grapefruit (Citrus paradisi) after TFA hydrolysis.

    PubMed

    Hernández Velasco, Brenda Liliana; Arrieta-Baez, Daniel; Cortez Sotelo, Pedro Iván; Méndez-Méndez, Juan Vicente; Berdeja Martínez, Blanca Margarita; Gómez-Patiño, Mayra Beatriz

    2017-12-01

    Grapefruit and lime cutins were analyzed and compared in order to obtain information about their cutin architecture. This was performed using a sequential hydrolysis, first with trifluoroacetic acid to remove most of the polysaccharides present in the cutins, followed by an alkaline hydrolysis in order to obtain the main aliphatic compounds. Analysis by CPMAS 13 C NMR and ATR FT-IR of the cutins after 2.0 M TFA revealed that grapefruit cutin has independent aliphatic and polysaccharide domains while in the lime cutin these components could be homogeneously distributed. These observations were in agreement with an AFM analysis of the cutins obtained in the hydrolysis reactions. The main aliphatic compounds were detected and characterized as 16-hydroxy-10-oxo-hexadecanoic acid and 10,16-dihydroxyhexadecanoic acid. These were present in grapefruit cutin at 35.80% and 21.86% and in lime cutin at 20.44% and 40.36% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of substrate fatty acids on products of lecithin hydrolysis and acyl-CoA-independent transacylation with cholesterol by aortic enzyme preparations.

    PubMed

    Patelski, J; Pioruńska-Stolzmann, M

    1985-01-01

    The acyl composition of substrates and products of enzymatic hydrolysis and transacylation of lecithin with cholesterol in the arterial wall was investigated. Saturated acyl residues predominated in lysolecithin and unsaturated ones in acids released by hydrolysis of egg lecithin. In the reaction system with cholesterol, saturated acyls predominated in both lysolecithin and acids released whereas unsaturated ones were more abundant in newly formed acylcholesterols. Mainly unsaturated acyls were present in the hydrolysis products from soybean lecithin in the reaction systems with and without cholesterol. For acylcholesterols formed in the presence of either lecithin, the percent values are in the numerical order of C18:2 greater than C18:1 greater than C16:0 greater than or equal to C18:0. It It is concluded that acyl preferences and interactions in the enzyme-catalyzed reactions studied may contribute to the different accumulation and removal of the compounds involved from the artery.

  10. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.

    PubMed

    Jeong, Tae Su; Choi, Chang Ho; Lee, Ji Ye; Oh, Kyeong Keun

    2012-07-01

    Acid-catalyzed hydrothermal hydrolysis is one path to cellulosic glucose and subsequently to its dehydration end products such as hydroxymethyl furfural (HMF), formic acid and levulinic acid. The effect of sugar decomposition not only lowers the yield of fermentable sugars but also forms decomposition products that inhibit subsequent fermentation. The present experiments were conducted with four different acid catalysts (H(2)SO(4), HNO(3), HCl, and H(3)PO(4)) at various acid normalities (0.5-2.1N) in batch reactors at 180-210 °C. From the results, H(2)SO(4) was the most suitable catalyst for glucose production, but glucose decomposition occurred during the hydrolysis. The glucose production was maximized at 160.7 °C, 2.0% (w/v) H(2)SO(4), and 40 min, but resulted in a low glucan yield of 33.05% due to the decomposition reactions, which generated formic acid and levulinic acid. The highest concentration of levulinic acid, 7.82 g/L, was obtained at 181.2 °C, 2.0% (w/v) H(2)SO(4), and 40 min. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.

    PubMed

    Zhang, Bo; Cai, Wei-min; He, Pin-jing

    2007-01-01

    To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.

  12. Exploitation of the Sol-Gel Route in Processing of Ceramics and Composites.

    DTIC Science & Technology

    1987-07-10

    titanium isoproporude which is first reacted with ethylene glycol and citnc acid at 120*C. This stabilizes the titanium isopropoxide against hydrolysis...the acid-catalyzed hy’drolysis of titanium isopropoxide . The sols gelled in * 2-4 da%s, and then w ere dried for 6-8 days. The drv gels were sintered...hydrolysis and peptization of titanium isopropoxide in a variety of simple acids (namely, nitric, hydrochloric, and acetic) was evaluated for the preparation

  13. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Sun, Han; Shen, Qiuting; Li, Xiang; Chen, Hong

    2015-04-15

    Adding alkyl polyglucose (APG) into an anaerobic treatment system of waste activated sludge (WAS) was reported to remarkably improve the production of short-chain fatty acids (SCFAs), especially propionic acid via simultaneously accelerating solubilization and hydrolysis, enhancing acidification, inhibiting methanogenesis and balancing carbon to nitrogen (C/N) ratio of substrate. Not only the production of SCFAs, especially propionic acid, was significantly improved by APG, but also the feasible operation time was shortened. The SCFAs yield at 0.3 g APG per gram of total suspended solids (TSS) within 4 d was 2988 ± 60 mg chemical oxygen demand (COD) per liter, much higher than that those from sole WAS or sole WAS plus sole APG. The corresponding yield of propionic acid was 1312 ± 25 mg COD/L, 7.9-fold of sole WAS. Mechanism investigation showed that during anaerobic treatment of WAS in the presence of APG both the solubilization and hydrolysis were accelerated and the acidification was enhanced, while the methanogenesis was inhibited. Moreover, the activities of key enzymes involved in WAS hydrolysis and acidification were improved through the adjustment of C/N ratio of substrates with APG. The abundance of microorganisms responsible for organic compounds hydrolysis and SCFAs production was also observed to be greatly enhanced with APG via 454 high-throughput pyrosequencing analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of an acid filler on hydrolysis and biodegradation of poly-lactic acid (PLA)

    NASA Astrophysics Data System (ADS)

    Iozzino, Valentina; Speranza, Vito; Pantani, Roberto

    2015-12-01

    The use of biodegradable polymers is certainly an excellent strategy to solve many of the problems related to the disposal of the traditional polymers, whose accumulation in the environment is harmful and damaging. In order to optimize the use of biodegradable polymers, it is very important to understand and control the transformation processes, the structures and the morphologies resulting from the process conditions used to produce the articles and, not least, the biodegradation. The latter is strictly dependent on the just mentioned variables. The poly-lactic acid, PLA, is a biodegradable polymer. Many studies have been carried out on the degradation process of this polymer. In the course of this work we performed degradation tests on the PLA, with a specific D-isomer content, having amorphous structure, and in particular of biodegradation and hydrolysis. An acid chemical, fumaric acid, was added to PLA with the objective of controlling the rate of hydrolysis and of biodegradation. The hydrolysis process was followed, as function of time, by means of different techniques: pH variation, variation of weight of samples and variation of crystallinity degree and glass transition temperature using DSC analysis. The samples were also analyzed in terms of biodegradability by means of a homemade respirometer apparatus, in controlled composting conditions.

  15. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    PubMed

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH(pH = 11) + catalase group, the dominant VFAs were acetic, iso-valeric and n-butyric acids. For MW-H2O2-OH (pH = 11) group, the dominant VFAs were acetic, propionic and iso-valeric acids. In the optimized hydrolysis acidification time for each group, percentages of the three main acids accounted for more than 75% of total VFAs, and percentages of acetic acid accounted for more than 41% of total VFAs.

  16. The enzymic hydrolysis of amygdalin

    PubMed Central

    Haisman, D. R.; Knight, D. J.

    1967-01-01

    Chromatographic examination has shown that the enzymic hydrolysis of amygdalin by an almond β-glucosidase preparation proceeds consecutively: amygdalin was hydrolysed to prunasin and glucose; prunasin to mandelonitrile and glucose; mandelonitrile to benzaldehyde and hydrocyanic acid. Gentiobiose was not formed during the enzymic hydrolysis. The kinetics of the production of mandelonitrile and hydrocyanic acid from amygdalin by the action of the β-glucosidase preparation favour the probability that three different enzymes are involved, each specific for one hydrolytic stage, namely, amygdalin lyase, prunasin lyase and hydroxynitrile lyase. Cellulose acetate electrophoresis of the enzyme preparation showed that it contained a number of enzymically active components. PMID:4291788

  17. Aquivion Perfluorosulfonic Superacid as an Efficient Pickering Interfacial Catalyst for the Hydrolysis of Triglycerides.

    PubMed

    Shi, Hui; Fan, Zhaoyu; Hong, Bing; Pera-Titus, Marc

    2017-09-11

    Rational design of the surface properties of heterogeneous catalysts can boost the interfacial activity in biphasic reactions through the generation of Pickering emulsions. This concept, termed Pickering interfacial catalysis (PIC), has shown promising credentials in acid-catalyzed transesterification, ester hydrolysis, acetalization, etherification, and alkylation reactions. PIC has now been applied to the efficient, solvent-free hydrolysis of the triglyceride glyceryl trilaurate to lauric acid, catalyzed by Aquivion perfluorosulfonic superacid at mild conditions (100 °C and ambient pressure). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enzymatic hydrolysis and fermentation of dilute acid pretreated cornstalk to biohydrogen

    NASA Astrophysics Data System (ADS)

    Pan, C. M.; Fan, Y. T.; Hou, H. W.

    2010-03-01

    The coupling method of acid pretreatment and enzymatic hydrolysis of cornstalk for hydrogen production was investigated in this study. Experimental results showed that temperature, pH and enzyme loading all had an individual significant influence on soluble sugar yield and Ps. The optimum condition for soluble sugar was close to that for Ps. The maximum hydrogen yield from cornstalk by anaerobic mixed microflora was 209.8 ml/g-TVS on the optimum enzymatic hydrolysis condition which was 52 °C of temperature, pH4.8 and 9.4 IU/g of enzyme loading.

  19. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    PubMed

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria.

    PubMed

    Guo, Liang; Lu, Mingmin; Li, Qianqian; Zhang, Jiawen; Zong, Yan; She, Zonglian

    2014-11-01

    The hydrolysis effect of waste sludge after multi-enzyme and thermophilic bacteria pretreatments is investigated using excitation-emission matrix (EEM) with fluorescence regional integration (FRI) in this study. The compositional characteristics of extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed to evaluate the sludge disintegration. The EPS and cell wall in sludge were disrupted after hydrolysis which led to carbohydrate, protein and soluble chemical oxygen demand (SCOD) of DOM increasing in sludge supernatant. The bio-degradability level in the extracted fractions of EPS and DOM depending on the fluorescence zones was found after hydrolysis. The highest proportion of percent fluorescence response (Pi,n) in EPS and DOM was soluble microbial by-product and humic acid-like organics. A significant increase of humic acid-like organics in DOM after thermophilic bacteria hydrolysis was obtained. The assessment of hydrolysis using EEM coupled with FRI provided a new insight toward the bio-utilization process of waste sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Characterization of ellagitannins, gallotannins, and bound proanthocyanidins from California almond (Prunus dulcis) varieties.

    PubMed

    Xie, Liyang; Roto, Anna V; Bolling, Bradley W

    2012-12-12

    Extractable and bound proanthocyanidins and hydrolyzable tannins were characterized in Nonpareil, Carmel, and Butte almond varieties from California, with n = 3 samples/variety. Bound proanthocyanidins were recovered from extracted defatted almond residue by hydrolysis with 4 N sodium hydroxide and represented 3-21% of the total proanthocyanidin content among varieties. The bound proanthocyanidins were recovered primarily as monomers and dimers. In contrast, acid hydrolysis of extracted almond residue did not yield bound proanthocyanidins. Hydrolyzable tannins were characterized in aqueous acetone extracts of defatted almond using two-dimensional TLC and further quantitated by HPLC following acid hydrolysis. Almond hydrolyzable tannin content was 54.7 ± 2.3 mg ellagic acid and 27.4 ± 7.3 mg gallic acid per 100 g almond among varieties. The tannin contents of Nonpareil, Carmel, and Butte almond varieties were not significantly different. Thus, bound proanthocyanidins and hydrolyzable tannins significantly contribute to almond polyphenol content.

  2. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis.

    PubMed

    Redding, Arthur P; Wang, Ziyu; Keshwani, Deepak R; Cheng, Jay J

    2011-01-01

    Dilute sulfuric acid was used to pretreat coastal Bermuda grass at high temperature prior to enzymatic hydrolysis. After both pretreatment and enzymatic hydrolysis processes, the highest yield of total sugars (combined xylose and glucose) was 97% of the theoretical value. The prehydrolyzate liquor was analyzed for inhibitory compounds (furfural, hydroxymethylfurfural (HMF)) in order to assess potential risk for inhibition during the following fermentation. Accounting for the formation of the inhibitory compounds, a pretreatment with 1.2% acid at 140 °C for 30 min with a total sugar yield of 94% of the theoretical value may be more favorable for fermentation. From this study, it can be concluded that dilute sulfuric acid pretreatment can be successfully applied to coastal Bermuda grass to achieve high yields of monomeric glucose and xylose with acceptable levels of inhibitory compound formation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation.

    PubMed

    Park, Jeong-Hoon; Hong, Ji-Yeon; Jang, Hyun Chul; Oh, Seung Geun; Kim, Sang-Hyoun; Yoon, Jeong-Jun; Kim, Yong Jin

    2012-03-01

    A facile continuous method for dilute-acid hydrolysis of the representative red seaweed species, Gelidium amansii was developed and its hydrolysate was subsequently evaluated for fermentability. In the hydrolysis step, the hydrolysates obtained from a batch reactor and a continuous reactor were systematically compared based on fermentable sugar yield and inhibitor formation. There are many advantages to the continuous hydrolysis process. For example, the low melting point of the agar component in G. amansii facilitates improved raw material fluidity in the continuous reactor. In addition, the hydrolysate obtained from the continuous process delivered a high sugar and low inhibitor concentration, thereby leading to both high yield and high final ethanol titer in the fermentation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Metal-Catalyzed Oxidation of Protein Methionine Residues in Human Parathyroid Hormone (1-34): Formation of Homocysteine and a Novel Methionine-Dependent Hydrolysis Reaction

    PubMed Central

    Mozziconacci, Olivier; Ji, Junyan A.; Wang, Y. John; Schöneich, Christian

    2013-01-01

    The oxidation of PTH(1-34) catalyzed by ferrous ethylenediaminetetraacetic acid (EDTA) is site-specific. The oxidation of PTH(1-34) is localized primarily to the residues Met[8] and His[9]. Beyond the transformation of Met[8] and His[9] into methionine sulfoxide and 2-oxo-histidine, respectively, we observed a hydrolytic cleavage between Met[8] and His[9]. This hydrolysis requires the presence of FeII and oxygen and can be prevented by diethylenetriaminepentaacetic acid (DTPA) and phosphate buffer. Conditions leading to this site-specific hydrolysis also promote the transformation of Met[8] into homocysteine, indicating that the hydrolysis and transformation of homocysteine may proceed through a common intermediate. PMID:23289936

  6. Bioactive characteristics and optimization of tamarind seed protein hydrolysate for antioxidant-rich food formulations.

    PubMed

    Bagul, Mayuri B; Sonawane, Sachin K; Arya, Shalini S

    2018-04-01

    Tamarind seed has been a source of valuable nutrients such as protein (contains high amount of many essential amino acids), essential fatty acids, and minerals which are recognized as additive to develop perfect balanced functional foods. The objective of present work was to optimize the process parameters for extraction and hydrolysis of protein from tamarind seeds. Papain-derived hydrolysates showed a maximum degree of hydrolysis (39.49%) and radical scavenging activity (42.92 ± 2.83%) at optimized conditions such as enzyme-to-substrate ratio (1:5), hydrolysis time (3 h), hydrolysis temperature (65 °C), and pH 6. From this study, papain hydrolysate can be considered as good source of natural antioxidants in developing food formulations.

  7. Determination of effect factor for effective parameter on saccharification of lignocellulosic material by concentrated acid

    NASA Astrophysics Data System (ADS)

    Aghili, Sina; Nodeh, Ali Arasteh

    2015-12-01

    Tamarisk usage as a new group of lignocelluloses material to produce fermentable sugars in bio ethanol process was studied. The overall aim of this work was to establish the optimum condition for acid hydrolysis of this new material and a mathematical model predicting glucose release as a function of operation variable. Sulfuric acid concentration in the range of 20 to 60%(w/w), process temperature between 60 to 95oC, hydrolysis time from 120 to 240 min and solid content 5,10,15%(w/w) were used as hydrolysis conditions. HPLC was used to analysis of the product. This analysis indicated that glucose was the main fermentable sugar and was increase with time, temperature and solid content and acid concentration was a parabola influence in glucose production. The process was modeled by a quadratic equation. Curve study and model were found that 42% acid concentration, 15 % solid content and 90oC were optimum condition.

  8. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Treesearch

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  9. High-Molecular Compounds (Selected Articles).

    DTIC Science & Technology

    1987-09-03

    Polyphenylmethacrylate (PFMA) is very convenient object for studying effect of adjacent links in reaction of hydrolysis of ethers/esters of polymethacrylic acid ...centrifuged and they dried by lyophili: £ drying. The obtained polymethacrylic acid they converted into the polymethyl methacrylate (PMMA) by...Since reactivity of polymethacrylates depends on their micro-tact (f], during the kinetic 4. investigations of hydrolysis it is desirable to study

  10. Surface-enhanced Raman spectroscopic monitor of triglyceride hydrolysis in a skin pore phantom

    NASA Astrophysics Data System (ADS)

    Weldon, Millicent K.; Morris, Michael D.

    1999-04-01

    Bacterial hydrolysis of triglycerides is followed in a sebum probe phantom by microprobe surface-enhanced Raman scattering (SERS) spectroscopy. The phantom consists of a purpose-built syringe pump operating at physiological flow rates connected to a 300 micron i.d. capillary. We employ silicon substrate SERS microprobes to monitor the hydrolysis products. The silicon support allows some tip flexibility that makes these probes ideal for insertion into small structures. Propionibacterium acnes are immobilized on the inner surface of the capillary. These bacteria hydrolyze the triglycerides in a model sebum emulsion flowing through the capillary. The transformation is followed in vitro as changes in the SERS caused by hydrolysis of triglyceride to fatty acid. The breakdown products consists of a mixture of mono- and diglycerides and their parent long chain fatty acids. The fatty acids adsorb as their carboxylates and can be readily identified by their characteristic spectra. The technique can also confirm the presence of bacteria by detection of short chain carboxylic acids released as products of glucose fermentation during the growth cycle of these cells. Co-adsorption of propionate is observed. Spatial localization of the bacteria is obtained by ex-situ line imaging of the probe.

  11. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Chundawat, Shishir P S; Balan, Venkatesh; Dale, Bruce E

    2008-04-15

    Several factors will influence the viability of a biochemical platform for manufacturing lignocellulosic based fuels and chemicals, for example, genetically engineering energy crops, reducing pre-treatment severity, and minimizing enzyme loading. Past research on biomass conversion has focused largely on acid based pre-treatment technologies that fractionate lignin and hemicellulose from cellulose. However, for alkaline based (e.g., AFEX) and other lower severity pre-treatments it becomes critical to co-hydrolyze cellulose and hemicellulose using an optimized enzyme cocktail. Lignocellulosics are appropriate substrates to assess hydrolytic activity of enzyme mixtures compared to conventional unrealistic substrates (e.g., filter paper, chromogenic, and fluorigenic compounds) for studying synergistic hydrolysis. However, there are few, if any, high-throughput lignocellulosic digestibility analytical platforms for optimizing biomass conversion. The 96-well Biomass Conversion Research Lab (BCRL) microplate method is a high-throughput assay to study digestibility of lignocellulosic biomass as a function of biomass composition, pre-treatment severity, and enzyme composition. The most suitable method for delivering milled biomass to the microplate was through multi-pipetting slurry suspensions. A rapid bio-enzymatic, spectrophotometric assay was used to determine fermentable sugars. The entire procedure was automated using a robotic pipetting workstation. Several parameters that affect hydrolysis in the microplate were studied and optimized (i.e., particle size reduction, slurry solids concentration, glucan loading, mass transfer issues, and time period for hydrolysis). The microplate method was optimized for crystalline cellulose (Avicel) and ammonia fiber expansion (AFEX) pre-treated corn stover. Copyright 2008 Wiley Periodicals, Inc.

  12. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.

    PubMed

    Stloukal, Petr; Pekařová, Silvie; Kalendova, Alena; Mattausch, Hannelore; Laske, Stephan; Holzer, Clemens; Chitu, Livia; Bodner, Sabine; Maier, Guenther; Slouf, Miroslav; Koutny, Marek

    2015-08-01

    The degradation mechanism and kinetics of polylactic acid (PLA) nanocomposite films, containing various commercially available native or organo-modified montmorillonites (MMT) prepared by melt blending, were studied under composting conditions in thermophilic phase of process and during abiotic hydrolysis and compared to the pure polymer. Described first order kinetic models were applied on the data from individual experiments by using non-linear regression procedures to calculate parameters characterizing aerobic composting and abiotic hydrolysis, such as carbon mineralization, hydrolysis rate constants and the length of lag phase. The study showed that the addition of nanoclay enhanced the biodegradation of PLA nanocomposites under composting conditions, when compared with pure PLA, particularly by shortening the lag phase at the beginning of the process. Whereas the lag phase of pure PLA was observed within 27days, the onset of CO2 evolution for PLA with native MMT was detected after just 20days, and from 13 to 16days for PLA with organo-modified MMT. Similarly, the hydrolysis rate constants determined tended to be higher for PLA with organo-modified MMT, particularly for the sample PLA-10A with fastest degradation, in comparison with pure PLA. The acceleration of chain scission in PLA with nanoclays was confirmed by determining the resultant rate constants for the hydrolytical chain scission. The critical molecular weight for the hydrolysis of PLA was observed to be higher than the critical molecular weight for onset of PLA mineralization, suggesting that PLA chains must be further shortened so as to be assimilated by microorganisms. In conclusion, MMT fillers do not represent an obstacle to acceptance of the investigated materials in composting facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ruminal bacteria and protozoa composition, digestibility, and amino acid profile determined by multiple hydrolysis times.

    PubMed

    Fessenden, S W; Hackmann, T J; Ross, D A; Foskolos, A; Van Amburgh, M E

    2017-09-01

    Microbial samples from 4 independent experiments in lactating dairy cattle were obtained and analyzed for nutrient composition, AA digestibility, and AA profile after multiple hydrolysis times ranging from 2 to 168 h. Similar bacterial and protozoal isolation techniques were used for all isolations. Omasal bacteria and protozoa samples were analyzed for AA digestibility using a new in vitro technique. Multiple time point hydrolysis and least squares nonlinear regression were used to determine the AA content of omasal bacteria and protozoa, and equivalency comparisons were made against single time point hydrolysis. Formalin was used in 1 experiment, which negatively affected AA digestibility and likely limited the complete release of AA during acid hydrolysis. The mean AA digestibility was 87.8 and 81.6% for non-formalin-treated bacteria and protozoa, respectively. Preservation of microbe samples in formalin likely decreased recovery of several individual AA. Results from the multiple time point hydrolysis indicated that Ile, Val, and Met hydrolyzed at a slower rate compared with other essential AA. Singe time point hydrolysis was found to be nonequivalent to multiple time point hydrolysis when considering biologically important changes in estimated microbial AA profiles. Several AA, including Met, Ile, and Val, were underpredicted using AA determination after a single 24-h hydrolysis. Models for predicting postruminal supply of AA might need to consider potential bias present in postruminal AA flow literature when AA determinations are performed after single time point hydrolysis and when using formalin as a preservative for microbial samples. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Mechanism of 1,4,5,8-naphthalene tetracarboxylic acid dianhydride hydrolysis and formation in aqueous solution.

    PubMed

    Barros, T C; Cuccovia, I M; Farah, J P S; Masini, J C; Chaimovich, H; Politi, M J

    2006-01-07

    The study of highly conjugated, carbonyl-containing molecules such as 1,4,5,8-naphthalene tetracarboxylic dianhydride, III, is of interest since reactivity differences and transmission of electronic effects through the conjugated framework can be evidenced. The kinetics of hydrolysis of III in aqueous solution were determined from 5 M acid to pH 10. In basic solution hydrolysis of III yields, sequentially, 1,4,5,8-naphthalene diacid monoanhydride, II, and 1,4,5,8-naphthalene tetracarboxylic acid, I. The second order rate constant for alkaline hydrolysis is 200 fold higher for the first ring opening. The water-catalyzed hydrolysis of III yields a pH-dependent mixture of ionic forms of I and II. The rate constant for water-catalyzed hydrolysis of III is 25 fold higher than that for II. In concentrated acid the rates for reaching equilibrium (I, II and III) increase and III is the major product. The pK(a)s of I (3.24, 5.13 and 6.25) and II (3.05, 5.90) were determined by potentiometric, fluorescence and UV spectroscopy titrations and by quantitative fit of the kinetic and equilibrium data. The apparent, pH-dependent, equilibrium constants, K(EqII), for anhydride formation between I and II were obtained from the UV spectra. The quantitative fit of kinetic and equilibrium data are consistent with the assumption that anhydride formation only proceeds with the fully protonated species for both I and II and permitted the estimation of the equilibrium constants for anhydride formation, K(EqII). The value of K(EqII) (I <==> II) between pH 1 and 6 was ca. 5. Geometry optimization calculations in the gas phase of the reactions of III in alkaline, neutral and acid conditions, at the DFT level of theory, gave electronic distributions that were qualitatively consistent with the experimental results.

  15. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water.

    PubMed

    Daorattanachai, Pornlada; Viriya-empikul, Nawin; Laosiripojana, Navadol; Faungnawakij, Kajornsak

    2013-09-01

    The effect of Kraft lignin presenting on the hydrolysis and dehydration of C5 and C6 sugars, cellulose, hemicelluloses and biomass under hot compressed water (HCW) in the presence of H3PO4 catalyst was intensively studied. The lignin strongly inhibited the acid hydrolysis of cellulose and hemicellulose to glucose and xylose, respectively. Interestingly, the admixed lignin markedly promoted the isomerization of glucose to fructose, and dehydration of fructose (except at the low catalyst loading), resulting in high 5-hydroxymethylfurfural yields. Nonetheless, lignin inhibited the hydrolysis of xylan to xylose and dehydration of xylose to furfural. Moreover, the acidity of the system significantly affects the hydrolysis/dehydration of biomass. It was revealed that the presence of lignin strongly interfered the yields of sugars and furans produced from raw corncob, while the delignified corncob provided significant improvement of product yields, confirming the observed role of lignin in the biomass conversion system via sugar platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Use of the SPARC software program to calculate hydrolysis rate constants for the polymeric brominated flame retardants BC-58 and FR-1025.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program was used to estimate the acid-catalyzed, neutral, and base-catalyzed hydrolysis rate constants for the polymeric brominated flame retardants BC-58 and FR-1025. Relatively rapid hydrolysis of BC-58, producing 2,4,6-tribromophenol-and ultimately tetrabromobisphenol A-as the hydrolytically stable end products from all potential hydrolysis reactions, is expected in both environmental and biological systems with starting material hydrolytic half-lives (t(1/2,hydr)) ranging from less than 1 h in marine systems, several hours in cellular environments, and up to several weeks in slightly acid fresh waters. Hydrolysis of FR-1025 to give 2,3,4,5,6-pentabromobenzyl alcohol is expected to be slower (t(1/2,hydr) less than 0.5 years in marine systems up to several years in fresh waters) than BC-58, but is also expected to occur at rates that will contribute significantly to environmental and in vivo loadings of this compound.

  17. Kinetics of moisture-induced hydrolysis in powder blends stored at and below the deliquescence relative humidity: investigation of sucrose-citric acid mixtures.

    PubMed

    Kwok, Kaho; Mauer, Lisa J; Taylor, Lynne S

    2010-11-24

    Previous studies have shown that deliquescent organic compounds frequently exhibit chemical instability when stored in environmental conditions above their deliquescence relative humidity (RH). The goal of the current study was to investigate the effect of atmospheric moisture on the long-term chemical stability of crystalline sucrose-citric acid mixtures following storage at RHs at and below the mutual deliquescence relative humidity (MDRH). Interestingly, it was found that sucrose hydrolysis can occur below the MDRH of 64% and was observed for samples stored at 54% RH. However, hydrolysis was not seen for samples stored at 33 or 43% RH. The rate of sucrose hydrolysis could be modeled by taking into account the rate and extent of moisture uptake, which in turn was dependent on the composition of the powder and the storage RH. A reaction mechanism initiated by capillary condensation and involving additional deliquescence lowering by the degradation products formed as a result of sucrose hydrolysis (glucose and fructose) was proposed.

  18. Gas chromatographic-mass spectrometric characterisation of plant gums in samples from painted works of art.

    PubMed

    Bonaduce, Ilaria; Brecoulaki, Hariclia; Colombini, Maria Perla; Lluveras, Anna; Restivo, Vincenzo; Ribechini, Erika

    2007-12-21

    This paper presents an analytical GC-MS procedure to study the chemical composition of plant gums, determining aldoses and uronic acids in one step. The procedure is based on the silylation of aldoses and uronic acids, released from plant gums by microwave assisted hydrolysis, and previously converted into the corresponding diethyl-dithioacetals and diethyl-dithioacetal lactones. Using this method only one peak for each compound is obtained, thus providing simple and highly reproducible chromatograms. The analytical procedure was optimised using reference samples of raw plant gums (arabic, karaya, ghatti, guar, locust bean and tragacanth, cherry, plum and peach gums), commercial watercolours and paint layers prepared according to ancient recipes at the Opificio delle Pietre Dure of Florence (Italy). To identify gum media in samples of unknown composition, a decisional schema for the gum identification and the principal component analysis of the relative sugar percentage contents were employed. The procedure was used to study samples collected from wall paintings from Macedonian tombs (4th-3rd centuries bc) and from the Mycenaean "Palace of Nestor" (13th century bc) in Pylos, Greece. The presence of carbohydrates was ascertained and plant gum binders (fruit and a mixture of tragacanth and fruit tree gums) were identified in some of the samples.

  19. Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.

    PubMed

    Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan

    2017-02-10

    This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.

  20. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    PubMed

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Structure of aureobasidin A.

    PubMed

    Ikai, K; Takesako, K; Shiomi, K; Moriguchi, M; Umeda, Y; Yamamoto, J; Kato, I; Naganawa, H

    1991-09-01

    Aureobasidin A, a new antifungal antibiotic, was isolated from the culture medium of Aureobasidium pullulans R106. Aureobasidin A was a cyclic depsipeptide consisting of eight alpha-amino acid units and one hydroxy acid unit. The structures of the units were found by acid hydrolysis of the antibiotic to be 2(R)-hydroxy-3(R)-methylpentanoic acid, beta-hydroxy-N-methyl-L-valine, N-methyl-L-valine, L-proline, allo-L-isoleucine, N-methyl-L-phenylalanine, L-leucine, and L-phenyl-alanine. The sequence of the units was identified by NMR and FAB-MS of the products from the alkaline hydrolysis of aureobasidin A.

  2. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis

    Treesearch

    Jijiao Zeng; Zhaohui Tong; Letian Wang; J.Y. Zhu; Lonnie Ingram

    2014-01-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation...

  3. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine

    Treesearch

    Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke

    2012-01-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...

  4. Enhanced enzymatic hydrolysis of kenaf core using irradiation and dilute acid

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Min; Jeun, Joon-Pyo; Kang, Phil-Hyun

    2017-01-01

    This study was performed to determine the effect of electron beam dose and enzymatic hydrolysis time for production of sugar such as glucose and xylose. After kenaf core was exposed to an irradiation dose that ranged from 0 to 500 kGy, the irradiated kenaf core was treated with a 3% (v/v) sulfuric acid solution using an autoclave for 5 h at 120 °C. The pretreated kenaf core was subsequently subjected to enzymatic hydrolysis at 50 °C in a shaking water bath at 150 rpm for 12, 24, 48, and 72 h. The determined enzyme activity rates were 70 FPU (Celluclast 1.5 L) and 40 CBU (Novozyme-188). The crystallinity index decreased from 50.6% in a non-pretreated kenaf core to 27.7% in kenaf core that was subjected to the two-stage pretreatment at dose of 500 kGy. The sugar yield of the two-stage pretreated kenaf core increased with an increase in irradiation dose. The sugar yield after 72 h of enzymatic hydrolysis was 73.6% at its highest with an irradiation dose of 500 kGy. The enhancement of enzymatic hydrolysis by two-stage pretreatment was more effective than non- and single pretreatment (36.9%, 40.6% and 44.0% in non-pretreatment, electron beam and dilute acid, respectively).

  5. Kinetics and mechanism of imazosulfuron hydrolysis.

    PubMed

    Morrica, P; Barbato, F; Della Iacovo, R; Seccia, S; Ungaro, F

    2001-08-01

    Knowledge of the kinetics and pathways of hydrolytic degradation is crucial to the prediction of the fate and transport mechanism of chemicals. This work first describes the kinetics of the chemical hydrolysis of imazosulfuron, a new sulfonylurea herbicide, and evaluates the results to propose a degradation pathway. The hydrolysis of imazosulfuron has been studied in aqueous buffers both within the pH range 1.9-12.3 at ambient temperature (thermostated at 25 +/- 2 degrees C) and at pH 3.6 within the temperature range of 15-55 degrees C. The hydrolysis rate of imazosulfuron was characterized by a first-order kinetics, pH- and temperature-dependent, and accelerated by acidic conditions and higher temperatures. The calculated half-lives at pH 4.5 and 5.9 were 36.5 and 578 days, respectively. At pH 6.6, 7.4, 9.2, and 12.3 no significant change in imazosulfuron concentration was observed after 150 days. Half-lives were much lower at pH <4 (= imazosulfuron pK(a)), at which they ranged from 3.3 to 6.3 days. Moreover, a change in temperature from 15 to 25 degrees C in acidic conditions (pH 3.6) decreased the half-life of imazosulfuron by a factor of approximately 4.0; in any case, a 3-5-fold increase in the rate of hydrolysis was found for each 10 degrees C increase in temperature. In acidic conditions the only hydrolysis products were the two molecules resulting from the cleavage of the sulfonylurea bridge.

  6. Synthesis and photocatalytic activity of boron-doped TiO(2) in aqueous suspensions under UV-A irradiation.

    PubMed

    Xekoukoulotakis, N P; Mantzavinos, D; Dillert, R; Bahnemann, D

    2010-01-01

    Boron-doped TiO(2) photocatalysts were synthesized employing a sol-gel method. Boric acid was used as the boron source and titanium tetra-isopropoxide as the TiO(2) precursor, both dissolved in isopropanol. Nominal boron to titanium atomic ratios were in the range 0 to 4%. After the hydrolysis step, two different procedures for the recovery of TiO(2) were followed, based on either centrifugation of the resulting reaction mixture or evaporation of the solvent under reduced pressure, both followed by a subsequent calcination step performed at 400 or 500 degrees C. The photocatalytic efficiency of the synthesized photocatalysts was assessed by measuring the photocatalytic mineralization of dichloroacetic acid in aqueous suspensions under UV-A irradiation and it was compared to the corresponding efficiency of the commercial Degussa P 25 TiO(2). Photocatalytic efficiency of the synthesized catalysts was higher for the boron-doped TiO(2) synthesized at 2% boron to titanium nominal atomic ratio, centrifuged after the hydrolysis step followed by calcinations at 400 degrees C. However, all photocatalysts synthesized in this work showed lower photocatalytic activity than Degussa P 25 TiO(2), thus highlighting the need of further improvements of the proposed method.

  7. Further kinetic and molecular characterization of an extremely heat-stable carboxylesterase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius.

    PubMed Central

    Sobek, H; Görisch, H

    1989-01-01

    The carboxylesterase (serine esterase, EC 3.1.1.1) from Sulfolobus acidocaldarius was purified 940-fold to homogeneity by an improved purification procedure with a yield of 57%. In the presence of alcohols the enzyme catalyses the transfer of the substrate acyl group to alcohols in parallel to hydrolysis. The results show the existence of an alcohol-binding site and a competitive partitioning of the acyl-enzyme intermediate between water and alcohols. Aniline acts also as a nucleophilic acceptor for the acyl group. On the basis of titration with diethyl p-nitrophenyl phosphate, a number of four active centres is determined for the tetrameric carboxylesterase. The sequence of 20 amino acid residues at the esterase N-terminus and the amino acid composition are reported. PMID:2508625

  8. Solubility of Structurally Complicated Materials: 3. Hair

    PubMed Central

    Horvath, Ari L.

    2009-01-01

    Hair is composed of proteins, lipids, water, and small amounts of trace elements. All proteins in animal and human bodies are built from permutations of amino acid molecules in a polypeptide string. The polypeptide chains of protein keratin are organized into filaments in hair cells. Hair is one of the most difficult proteins to digest or solubilize. Among the most common dissolving procedures for hair are acidic, alkaline, and enzymatic hydrolysis. For the analysis of hair, the solid samples are transferred by solubilization via digestion into a liquid phase. Small molecular solvents and molecules with hydrophobic groups appear to have higher affinity for hair. A good solvent attacks the disulfide bonds between cystine molecules and hydrates the hair shaft. Consequently, the hair becomes a jelly-like mass. PMID:19412554

  9. The hydrolysis of polyimides

    NASA Technical Reports Server (NTRS)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  10. Studies on the mucin derived from human colloid breast carcinoma

    PubMed Central

    Adams, J. B.

    1965-01-01

    1. A non-diffusible mucoid, showing a single peak in the ultracentrifuge, was isolated from human colloid breast carcinoma by treatment with trypsin and pepsin. The material contained threonine, leucine (isoleucine), valine, proline, glycine and glutamic acid in the approximate molar proportions 5:1:1:2:1:1. Smaller amounts of aspartic acid and serine were also found. For each 5 threonine residues, 6 N-acetylgalactosamine and 3–4 galactose residues were present. 2. The mucoid possessed reducing properties by the Park & Johnson (1949) procedure; these were attributable to the action of mild alkali, as employed in this procedure. Mild alkaline treatment by the Aminoff, Morgan & Watkins (1952) procedure gave rise to a diffusible N-acetylgalactosamine chromophore that gave an enhanced colour with Ehrlich's reagent. That galactosyl-(1→3)-N-acetylgalactosamine residues were liberated was supported by periodate studies. 3. Alkaline liberation of hexosamine residues was accompanied by a specific destruction of threonine. After 40 min. at 100° in 0·18 n-lithium hydroxide, both moieties had almost completely disappeared from the ninhydrin-positive components formed on subsequent acid hydrolysis. Glycine and α-oxobutyric acid were present in the acid hydrolysate, showing that both possible pathways of a β-elimination reaction were involved. Formation of diffusible peptide on very mild alkaline treatment was attributable to the rupture of the original peptide core, necessitated by the second of these two pathways. 4. Hydroxamate formation on treatment with hydroxylamine showed the presence of carbohydrate linkage to glutamic acid or aspartic acid residues or both. This could account for the single N-acetylgalactosamine residue not linked to threonine. 5. The native mucin contained sialic acid, which was cleaved by the acid environment used in the treatment with pepsin. A statistical model of the mucin would require each prosthetic group to be linked, via N-acetylgalactosamine, to threonine, which would occupy every alternate position among the amino acids in the peptide core. ImagesFig. 1.Fig. 4. PMID:14348196

  11. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    PubMed

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  12. Modification of cassava starch using combination process lactic acid hydrolysis and micro wave heating to increase coated peanut expansion quality

    NASA Astrophysics Data System (ADS)

    Sumardiono, Siswo; Pudjihastuti, Isti; Jos, Bakti; Taufani, Muhammad; Yahya, Faad

    2017-05-01

    Modified cassava starch is very prospective products in the food industry. The main consideration of this study is the increasing volume of imported wheat and the demand for modified cassava starch industry. The purpose of this study is the assessing of lactic acid hydrolysis and microwave heating impact to the physicochemical and rheological properties of modified cassava starch, and test applications of modified cassava starch to coated peanut expansion quality. Experimental variables include the concentration of lactic acid (0.5% w/w, 1% w/w; 2% w/w), a time of hydrolysis (15, 30, 45 minutes), a time of microwave heating (1, 2, 3 hours). The research step is by dissolving lactic acid using aquadest in the stirred tank reactor, then added cassava starch. Hydrolysed cassava starch was then heated by microwave. Physicochemical properties and rheology of the modified cassava starch is determined by the solubility, swelling power, and test congestion. The optimum obtained results indicate that solubility, swelling power, congestion test, respectively for 19.75%; 24.25% and 826.10% in the hydrolysis treatment for 15 minutes, 1% w lactic acid and microwave heating 3 hours. The physicochemical and rheological properties of modified cassava starch have changed significantly when compared to the native cassava starch. Furthermore, these modified cassava starch are expected to be used for the substitution of food products.

  13. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Preparation of hydrolytic liquid from dried distiller's grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7-13.

    PubMed

    Liu, Huan; Yue, Xuemin; Jin, Yuhan; Wang, Meng; Deng, Li; Wang, Fang; Tan, Tianwei

    2017-10-01

    Fumaric acid production from lignocellulosic materials is an alternative chemicals production system. This work investigated the suitable conditions for hydrolysis of dried distiller's grains with solubles (DDGS). The hydrolytic liquid was subsequently used for the production of fumaric acid. After optimizing the hydrolysis conditions, the most suitable concentration of H 2 SO 4 (2%), hydrolysis temperature (120 °C), hydrolysis time (100min) and solid/liquid ratio (1:10) were obtained. The yield of monosaccharides reached 258 mg/g DDGS and 15.88 g/L glucose, 7.53 g/L xylose and 2.35 g/L arabinose were obtained in unprocessed hydrolytic liquid. The furfural inhibitor in the hydrolytic liquid was also detected and the yield of it was reducing progressively in the pretreatment process. The ferment ability of the hydrolytic liquid from DDGS was tested through the process of fumaric acid production by Rhizopus arrhizus RH 7-13. The unprocessed hydrolytic liquid was not appropriate for the fermentation process. The yield of fumaric acid from the concentrated processed hydrolytic liquid reached 18.93 g/L, which was close to the yield of fermenting 80 g/L glucose. This result indicated that the commonly used carbon resource glucose could to some extent be replaced by processed hydrolytic liquid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    PubMed

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  16. THE CHEMISTRY OF TRIBUTYL PHOSPHATE: A REVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, L.L.

    1955-10-27

    The preparation, purification, and chemical properties of THP have been reviewed with emphasis on the hydrolytic reactions. TBP is chemically a very stable compound as evidenced by its thermal stability and resistance to oxidation. The most important reactions are hydrolytic which cleave the butyl or butoxy group and normally produce butyl alcohol together with dibutyl and monobutyl phosphate (DBP and MBP, respectively), and eventually H/sub 3/PO/sub 4/. Hydrolysis occurs in either the organic phase or the aqueous phase and is first order with respect to the ester. Although the rate in the aqueous phase is much faster than in themore » organic phase, the solubility is so low in aqueous solutions that the organic phase reactions become more important. Acid hydrolysis depends on both the nature of the acid and the concentration. The order with respect to acid concentration is close to one but often less than one. Hydrolysis is catalyzed by both acids and bases. In the latter case, the reaction occurs only in the aqueous phase and normally stops with the formation of dibutyl phosphate. The hydrolysis rate increases greatly as the temperature is raised and an activation energy of the order of 20 kcal is often found. The rates observed in the presence of 5 M acid at 60 and 70 deg C may be high enough to cause some concern in solvent extraction technology, since the product, dibutyl phosphate, has undesirable properties. Impurities produced during manufacture or by thermal degradation during purification such as the pyrophosphates, if present, would yield the same objectionable products as TBP hydrolysis, but at a faster rate. Included in the survey is a selected tabulation of physical properties of TBP. (auth)« less

  17. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0.

    PubMed

    Yan, Yuanyuan; Feng, Leiyu; Zhang, Chaojie; Wisniewski, Christelle; Zhou, Qi

    2010-06-01

    Volatile fatty acids (VFA), the preferred carbon source for biological nutrients removal, can be produced by waste activated sludge (WAS) anaerobic fermentation. However, because the rate of VFA accumulation is limited by that of WAS hydrolysis and VFA is always consumed by methanogens at acidic or neutral pHs, the ultrasonic pretreatment which can accelerate the rate of WAS hydrolysis, and alkaline adjustment which can inhibit the activities of methanogens, were, therefore, used to improve WAS hydrolysis and VFA accumulation in this study. Experiment results showed that the combination of ultrasonic pretreatment and alkaline adjustment caused significant enhancements of WAS hydrolysis and VFA accumulation. The study of ultrasonic energy density effect revealed that energy density influenced not only the total VFA accumulation but also the percentage of individual VFA. The maximal VFA accumulation (3109.8mg COD/L) occurred at ultrasonic energy density of 1.0kW/L and fermentation time of 72h, which was more than two times that without ultrasonic treatment (1275.0mg COD/L). The analysis of VFA composition showed that the percentage of acetic acid ranked the first (more than 40%) and those of iso-valeric and propionic acids located at the second and third places, respectively. Thus, the suitable ultrasonic conditions combined with alkaline adjustment for VFA accumulation from WAS were ultrasonic energy density of 1.0kW/L and fermentation time of 72h. Also, the key enzymes related to VFA formation exhibited the highest activities at ultrasonic energy density of 1.0kW/L, which resulted in the greatest VFA production during WAS fermentation at pH 10.0. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: eucalyptus residues, wheat straw and olive tree pruning.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Marques, Susana; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isothermal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosaccharides was studied by optimizing sulfuric acid concentration (1-4%w/w) and reaction time (10-60 min), employing a factorial (2(2)) experimental design. The solids resulting from pretreatment were submitted to enzymatic hydrolysis by applying commercial cellulolytic enzymes Celluclast® 1.5L and Novozyme® 188 (0.225 and 0.025 g/g solid, respectively). This strategy provides high total monosaccharide recovery or high glucose recovery from lignocellulosic materials, depending on the autohydrolysis conditions applied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.

    PubMed

    Mhlongo, Sizwe I; den Haan, Riaan; Viljoen-Bloom, Marinda; van Zyl, Willem H

    2015-12-01

    In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes. However, coniferyl aldehyde and syringaldehyde substantially decreased the activity of CBH1 and deactivated BGL1. Acetic and formic acids also showed strong inhibition of BGL1 but not CBH1 and EG2, whereas tannic, acetic and formic acid strongly inhibited a combination of CBH1 and EG2 during Avicel hydrolysis. Diminishing enzymatic hydrolysis is largely a function of inhibitor concentration and the enzyme-inhibitor relationship, rather than contact time during the hydrolysis process (i.e. deactivation). This suggests that decreased rates of hydrolysis during the enzymatic depolymerisation of lignocellulosic hydrolysates may be imparted by other factors related to substrate crystallinity and accessibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. An endo-acting proline-specific oligopeptidase from Treponema denticola ATCC 35405: evidence of hydrolysis of human bioactive peptides.

    PubMed Central

    Mäkinen, P L; Mäkinen, K K; Syed, S A

    1994-01-01

    An endo-acting proline-specific oligopeptidase (prolyl oligopeptidase [POPase], EC 3.4.21.26) was purified to homogeneity from the Triton X-100 extracts of cells of Treponema denticola ATCC 35405 (a human oral spirochete) by a procedure that comprised five successive fast protein liquid chromatography steps. The POPase is a cell-associated 75- to 77-kDa protein with an isoelectric point of ca. 6.5. The enzyme hydrolyzed (optimum pH 6.5) the Pro-pNA bond in carbobenzoxy-Gly-Pro-p-nitroanilide (Z-Gly-Pro-pNA) and bonds at the carboxyl side of proline in several human bioactive peptides, such as bradykinin, substance P, neurotensin, angiotensins, oxytocin, vasopressin, and human endothelin fragment 22-38. The minimum hydrolyzable peptide size was tetrapeptide P3P2P1P'1, while the maximum substrate size was ca. 3 kDa. An imino acid residue in position P1 was absolutely necessary. The hydrolysis of Z-Gly-Pro-pNA was potently inhibited by the following, with the Ki(app) (in micromolar) in parentheses: insulin B-chain (0.7), human endothelin-1 (0.5), neuropeptide Y (1.7), substance P (32.0), T-kinin (4.0), neurotensin (5.0), and bradykinin (16.0). Chemical modification and inhibition studies suggest that the POPase is a serine endopeptidase whose activity depends on the catalytic triad of COOH ... Ser ... His but not on a metal. The amino acid sequence around the putative active-site serine is Gly-Gly-Ser-Asn-Pro-Gly. The enzyme is suggested to contain a reactive cysteinyl residue near the active site. Amino acid residues 4 to 24 of the first 24 N-terminal residues showed a homology of 71% with the POPase precursor from Flavobacterium meningosepticum and considerable homology with the Aeromonas hydrophila POPase. The ready hydrolysis of human bioactive peptides at bonds involving an imino acid residue suggests that enzymes like POPase may contribute to the chronicity of periodontal infections by participating in the peptidolytic processing of those peptides. Images PMID:7523301

  1. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    PubMed

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Determination of the main impurities formed after acid hydrolysis of soybean extracts and the in vitro mutagenicity and genotoxicity studies of 5-ethoxymethyl-2-furfural.

    PubMed

    Nemitz, Marina C; Picada, Jaqueline N; da Silva, Juliana; Garcia, Ana Letícia H; Papke, Débora K M; Grivicich, Ivana; Steppe, Martin; von Poser, Gilsane L; Teixeira, Helder F

    2016-09-10

    Soybean acid hydrolyzed extracts are raw-materials widely used for manufacturing of pharmaceuticals and cosmetics products due to their high content of isoflavone aglycones. In the present study, the main sugar degradation products 5-hydroxymethyl-2-furfural (HMF) and 5-ethoxymethyl-2-furfural (EMF) were quantitatively determined after acid hydrolysis of extracts from different soybean cultivars by a validated liquid chromatography method. The furanic compounds determined in samples cover the range of 0.16-0.21mg/mL and 0.22-0.33mg/mL for HMF and EMF, respectively. Complementarily, due to the scarce literature regarding the EMF toxicology, this study also assessed the EMF mutagenicity by the Salmonella/microsome test and genotoxicity by the comet assay. The results revealed that EMF did not show mutagenicity at the range of 50-5000μg/plate in S. typhimurium strains TA98, TA97a, TA100, TA102 and TA1535, but induced DNA damage in HepG2 cells at non-cytotoxic doses of 0.1-1.3mg/mL, mainly by oxidative stress mechanisms. Based on literature of HMF genotoxicity, and considering the EMF genotoxicity results herein shown, purification procedures to remove these impurities from extracts are recommended during healthcare products development to ensure the security of the products. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Purification and biochemical characterization of insoluble acid invertase (INAC-INV) from pea seedlings.

    PubMed

    Kim, Donggiun; Lee, Gunsup; Chang, Man; Park, Jongbum; Chung, Youngjae; Lee, Sukchan; Lee, Taek-Kyun

    2011-10-26

    Invertase (EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Insoluble acid invertase (INAC-INV) was purified from pea (Pisum sativum L.) by sequential procedures entailing ammonium sulfate precipitation, ion exchange chromatography, absorption chromatography, reactive green-19 affinity chromatography, and gel filtration. The purified INAC-INV had a pH optimum of 4.0 and a temperature optimum of 45 °C. The effects of various concentrations of Tris-HCl, HgCl(2), and CuSO(4) on the activities of the purified invertase were examined. INAC-INV was not affected by Tris-HCl and HgCl(2). INAC-INV activity was inhibited by 6.2 mM CuSO(4) up to 50%. The enzymes display typical hyperbolic saturation kinetics for sucrose hydrolysis. The K(m) and V(max) values of INAC-INV were determined to be 4.41 mM and 8.41 U (mg protein)(-1) min(-1), respectively. INAC-INV is a true member of the β-fructofuranosidases, which can react with sucrose and raffinose as substrates. SDS-PAGE and immunoblotting were used to determine the molecular mass of INAC-INV to be 69 kDa. The isoelectric point of INAC-INV was estimated to be about pH 8.0. Taken together, INAC-INV is a pea seedling invertase with a stable and optimum activity at lower acid pH and at higher temperature than other invertases.

  4. Preparation and characterization of silica xerogels as carriers for drugs.

    PubMed

    Czarnobaj, K

    2008-11-01

    The aim of the present study was to utilize the sol-gel method to synthesize different forms of xerogel matrices for drugs and to investigate how the synthesis conditions and solubility of drugs influence the change of the profile of drug release and the structure of the matrices. Silica xerogels doped with drugs were prepared by the sol-gel method from a hydrolyzed tetraethoxysilane (TEOS) solution containing two model compounds: diclofenac diethylamine, (DD)--a water-soluble drug or ibuprofen, (IB)--a water insoluble drug. Two procedures were used for the synthesis of sol-gel derived materials: one-step procedure (the sol-gel reaction was carried out under acidic or basic conditions) and the two-step procedure (first, hydrolysis of TEOS was carried out under acidic conditions, and then condensation of silanol groups was carried out under basic conditions) in order to obtain samples with altered microstructures. In vitro release studies of drugs revealed a similar release profile in two steps: an initial diffusion-controlled release followed by a slower release rate. In all the cases studied, the released amount of DD was higher and the released time was shorter compared with IB for the same type of matrices. The released amount of drugs from two-step prepared xerogels was always lower than that from one-step base-catalyzed xerogels. One-step acid-catalyzed xerogels proved unsuitable as the carriers for the examined drugs.

  5. Potential of tara (Caesalpinia spinosa) gallotannins and hydrolysates as natural antibacterial compounds.

    PubMed

    Aguilar-Galvez, Ana; Noratto, Giuliana; Chambi, Flor; Debaste, Frédéric; Campos, David

    2014-08-01

    Gallotannins obtained from tara pod extracts (EE) and from the products of acid hydrolysis for 4 and 9h (HE-4 and HE-9) were characterised for their composition, antioxidant activity, antimicrobial activity (AA) and minimum inhibitory concentration (MIC). Results of AA and MIC showed that EE exerted the highest inhibitory activity against Staphylococcus aureus, followed by Pseudomonas fluorescens; and among these bacteria, the antibacterial potency was enhanced after EE hydrolysis only against S. aureus. The lowest minimum inhibitory concentration (MIC) value (0.13mg gallic acid equivalent (GAE)/ml) was exerted by HE-4 against S. aureus. These results indicate that tara gallotannins have the potential to inhibit pathogenic bacteria with potential application in foods as antimicrobials and their AA can be enhanced by acid hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches.

    PubMed

    Sporck, Daniele; Reinoso, Felipe A M; Rencoret, Jorge; Gutiérrez, Ana; Del Rio, José C; Ferraz, André; Milagres, Adriane M F

    2017-01-01

    New biorefinery concepts are necessary to drive industrial use of lignocellulose biomass components. Xylan recovery before enzymatic hydrolysis of the glucan component is a way to add value to the hemicellulose fraction, which can be used in papermaking, pharmaceutical, and food industries. Hemicellulose removal can also facilitate subsequent cellulolytic glucan hydrolysis. Sugarcane bagasse was pretreated with an alkaline-sulfite chemithermomechanical process to facilitate subsequent extraction of xylan by enzymatic or alkaline procedures. Alkaline extraction methods yielded 53% (w/w) xylan recovery. The enzymatic approach provided a limited yield of 22% (w/w) but produced the xylan with the lowest contamination with lignin and glucan components. All extracted xylans presented arabinosyl side groups and absence of acetylation. 2D-NMR data suggested the presence of O -methyl-glucuronic acid and p -coumarates only in enzymatically extracted xylan. Xylans isolated using the enzymatic approach resulted in products with molecular weights (Mw) lower than 6 kDa. Higher Mw values were detected in the alkali-isolated xylans. Alkaline extraction of xylan provided a glucan-enriched solid readily hydrolysable with low cellulase loads, generating hydrolysates with a high glucose/xylose ratio. Hemicellulose removal before enzymatic hydrolysis of the cellulosic fraction proved to be an efficient manner to add value to sugarcane bagasse biorefining. Xylans with varied yield, purity, and structure can be obtained according to the extraction method. Enzymatic extraction procedures produce high-purity xylans at low yield, whereas alkaline extraction methods provided higher xylan yields with more lignin and glucan contamination. When xylan extraction is performed with alkaline methods, the residual glucan-enriched solid seems suitable for glucose production employing low cellulase loadings.

  7. The influence of cosolvent and heat on the solubility and reactivity of organophosphorous pesticide DNAPL alkaline hydrolysis.

    PubMed

    Muff, Jens; MacKinnon, Leah; Durant, Neal D; Bennedsen, Lars Frausing; Rügge, Kirsten; Bondgaard, Morten; Pennell, Kurt

    2016-11-01

    The presented research concerned the compatibility of cosolvents with in situ alkaline hydrolysis (ISAH) for treatment of organophosphorous (OPP) pesticide contaminated sites. In addition, the influence of moderate temperature heat increments was studied as a possible enhancement method. A complex dense non-aqueous phase liquid (DNAPL) of primarily parathion (~50 %) and methyl parathion (~15 %) obtained from the Danish Groyne 42 site was used as a contaminant source, and ethanol and propan-2-ol (0, 25, and 50 v/v%) was used as cosolvents in tap water and 0.34 M NaOH. Both cosolvents showed OPP solubility enhancement at 50 v/v% cosolvent content, with slightly higher OPP concentrations reached with propan-2-ol. Data on hydrolysis products did not show a clear trend with respect to alkaline hydrolysis reactivity in the presence of cosolvents. Results indicated that the hydrolysis rate of methyl-parathion (MP3) decreased with addition of cosolvent, whereas the hydrolysis rate of ethyl-parathion (EP3) remained constant, and overall indications were that the hydrolysis reactions were limited by the rate of hydrolysis rather than NAPL dissolution. In addition to cosolvents, the influence of low-temperature heating on ISAH was studied. Increasing reaction temperature from 10 to 30 °C provided an average rate of hydrolysis enhancement by a factor of 1.4-4.8 dependent on the base of calculation. When combining 50 v/v% cosolvent addition and heating to 30 °C, EP3 solubility was significantly enhanced and results for O,O-diethyl-thiophosphoric acid (EP2 acid) showed a significant enhancement of hydrolysis as well. However, this could not be supported by para-nitrophenol (PNP) data indicating the instability of this product in the presence of cosolvent.

  8. Deproteinated palm kernel cake-derived oligosaccharides: A preliminary study

    NASA Astrophysics Data System (ADS)

    Fan, Suet Pin; Chia, Chin Hua; Fang, Zhen; Zakaria, Sarani; Chee, Kah Leong

    2014-09-01

    Preliminary study on microwave-assisted hydrolysis of deproteinated palm kernel cake (DPKC) to produce oligosaccharides using succinic acid was performed. Three important factors, i.e., temperature, acid concentration and reaction time, were selected to carry out the hydrolysis processes. Results showed that the highest yield of DPKC-derived oligosaccharides can be obtained at a parameter 170 °C, 0.2 N SA and 20 min of reaction time.

  9. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC

    Treesearch

    Q.Q. Wang; J.Y. Zhu; R.S. Reiner; S.P. Verrill; U. Baxa; S.E. McNeil

    2012-01-01

    This study demonstrated the potential of simultaneously recovering cellulosic solid residues (CSR) and producing cellulose nanocrystals (CNCs) by strong sulfuric acid hydrolysis to minimize cellulose loss to near zero. A set of slightly milder acid hydrolysis conditions than that considered as “optimal” were used to significantly minimize the degradation of cellulose...

  10. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels.

    PubMed

    Pacheco-Ordaz, Ramón; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; González-Aguilar, Gustavo A

    2018-02-08

    Mango ( Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10 -6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10 -6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  11. Microwave-assisted extraction and quantitative LC/ID-MS measurement of total choline and free carnitine in food standard reference materials.

    PubMed

    Phillips, Melissa M; Sander, Lane C

    2012-01-01

    The Stakeholder Panel on Infant Formula and Adult Nutritionals of AOAC INTERNATIONAL has declared both choline and carnitine to be priority nutrients in infant formulas, and ongoing efforts exist to develop or improve Official Methods of Analysis for these nutrients. As a result, matrix-based certified reference materials are needed with assigned values for these compounds. In this work, traditional acid and enzymatic hydrolysis procedures were compared to microwave-assisted acid hydrolysis, and conditions optimized to provide complete sample hydrolysis and recovery of total choline from four food standard reference materials (SRMs): whole milk powder, whole egg powder, infant formula, and soy flour. The extracts were analyzed using LC on a mixed-mode column (simultaneous RP and ion exchange) with isotope dilution-MS detection to achieve simultaneous quantification of total choline and free carnitine. Total choline has been determined in these four food matrixes with excellent precision (0.65 to 2.60%) and accuracy, as confirmed by use of SRM 1849 Infant/Adult Nutritional Formula as a control material. Free carnitine has been determined in two of these food matrixes with excellent precision (0.69 to 2.19%) and accuracy, as confirmed by use of SRM 1849 Infant/Adult Nutritional Formula as a control material. Limitations in simultaneous determination of total choline and free carnitine resulted from extreme differences in concentration of the two components in egg powder and soy flour (at least three orders of magnitude). Samples required dilution to prevent poor LC peak shape, which caused decreased precision in the determination of low concentrations of free carnitine. Despite this limitation, the described method yields results comparable to current AOAC Official Method 999.14 Choline in Infant Formula, with a decrease of more than 2 h in sample preparation time.

  12. Production of furfural from palm oil empty fruit bunches: kinetic model comparation

    NASA Astrophysics Data System (ADS)

    Panjaitan, J. R. H.; Monica, S.; Gozan, M.

    2017-05-01

    Furfural is a chemical compound that can be applied to pharmaceuticals, cosmetics, resins and cleaning compound which can be produced by acid hydrolysis of biomass. Indonesia’s demand for furfural in 2010 reached 790 tons that still imported mostly 72% from China. In this study, reaction kinetic models of furfural production from oil palm empty fruit bunches with submitting acid catalyst at the beginning of the experiment will be determine. Kinetic data will be obtained from hydrolysis of empty oil palm bunches using sulfuric acid catalyst 3% at temperature 170°C, 180°C and 190°C for 20 minutes. From this study, the kinetic model to describe the production of furfural is the kinetic model where generally hydrolysis reaction with an acid catalyst in hemicellulose and furfural will produce the same decomposition product which is formic acid with different reaction pathways. The activation energy obtained for the formation of furfural, the formation of decomposition products from furfural and the formation of decomposition products from hemicellulose is 8.240 kJ/mol, 19.912 kJ/mol and -39.267 kJ / mol.

  13. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors.

    PubMed

    Feng, Leiyu; Wang, Hua; Chen, Yinguang; Wang, Qin

    2009-01-01

    The effects of solids retention time (SRT) and temperature on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation were investigated in a series of continuous-flow reactors at pH 10. The experimental results showed that the increase of either SRT or temperature benefited the hydrolysis of WAS and the production of SCFAs. The changes in SRT gave also impact on the percentage of acetic and propionic acids in the fermentative SCFAs, but little influence on that of the slightly long-chain SCFAs, such as n-butyric, iso-butyric, n-valeric and iso-valeric acids. Compared with the control (pH unadjusted) experiment, at SRT of 12d and temperature of 20 degrees C the concentration of SCFAs produced at pH 10 increased from 261.2 to 933.5mg COD/L, and the propionic acid percentage improved from 11.7 to 16.0%. It can be concluded from this investigation that the efficient continuous production of SCFAs at pH 10 is feasible.

  14. Optimization of High Solids Dilute Acid Hydrolysis of Spent Coffee Ground at Mild Temperature for Enzymatic Saccharification and Microbial Oil Fermentation.

    PubMed

    Wang, Hui-Min David; Cheng, Yu-Shen; Huang, Chi-Hao; Huang, Chia-Wei

    2016-10-01

    Soluble coffee, being one of the world's most popular consuming drinks, produces a considerable amount of spent coffee ground (SCG) along with its production. The SCG could function as a potential lignocellulosic feedstock for production of bioproducts. The objective of this study is to investigate the possible optimal condition of dilute acid hydrolysis (DAH) at high solids and mild temperature condition to release the reducing sugars from SCG. The optimal condition was found to be 5.3 % (w/w) sulfuric acid concentration and 118 min reaction time. Under the optimal condition, the mean yield of reducing sugars from enzymatic saccharification of defatted SCG acid hydrolysate was 563 mg/g. The SCG hydrolysate was then successfully applied to culture Lipomyces starkeyi for microbial oil fermentation without showing any inhibition. The results suggested that dilute acid hydrolysis followed by enzymatic saccharification has the great potential to convert SCG carbohydrates to reducing sugars. This study is useful for the further developing of biorefinery using SCG as feedstock at a large scale.

  15. Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes.

    PubMed

    Wokadala, Obiro Cuthbert; Ray, Suprakas Sinha; Emmambux, Mohammad Naushad

    2012-09-01

    The occurrence of amylose-lipid complexes was determined in maize and teff starch biphasic pastes i.e. peak viscosity pastes at short and prolonged pasting times. Maize and teff starches were pasted for 11.5 and 130 min with or without added stearic acid followed by thermo-stable alpha-amylase hydrolysis in a rapid visco-analyzer. X-ray diffraction analysis of pastes before and residues after hydrolysis showed crystalline V-amylose diffraction patterns for the starches pasted for a prolonged time with added stearic acid while less distinct V-amylose patterns with non-complexed stearic acid peaks were observed with a short pasting time. Differential scanning calorimetry of pastes before and residues after paste hydrolysis showed that Type I amylose-lipid complexes were formed after pasting for the short duration with added stearic acid, while Type II complexes are formed after pasting for the prolonged time. The present research provides evidence that amylose-lipid complexes play an important role in starch biphasic pasting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Understanding Longitudinal Wood Fiber Ultra-structure for Producing Cellulose Nanofibrils Using Disk Milling with Diluted Acid Prehydrolysis

    NASA Astrophysics Data System (ADS)

    Qin, Yanlin; Qiu, Xueqing; Zhu, J. Y.

    2016-10-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFX) as a severity factor to quantitatively control xylan dissolution and BEP fibril deploymerization. More importantly, we were able to accurately predict the degree of polymerization (DP) of disk-milled fibrils using CHFX and milling time or milling energy consumption. Experimentally determined ratio of fibril DP and number mean fibril height (diameter d), DP/d, an aspect ratio measurer, were independent of the processing conditions. Therefore, we hypothesize that cellulose have a longitudinal hierarchical structure as in the lateral direction. Acid hydrolysis and milling did not substantially cut the “natural” chain length of cellulose fibrils. This cellulose longitudinal hierarchical model provides support for using weak acid hydrolysis in the production of cellulose nanofibrils with substantially reduced energy input without negatively affecting fibril mechanical strength.

  17. High yield hydrolysis of seaweed-waste biomass using peracetic acid and ionic liquid treatments

    NASA Astrophysics Data System (ADS)

    Uju, Wijayanta, Agung Tri; Goto, Masahiro; Kamiya, Noriho

    2018-02-01

    Seaweed is one of the most promising bioethanol feedstocks. This water plant has high carbohydrate content but low lignin content, as a result it will be easier to be hydrolysed. This paper described hydrolysis of seaweed-waste biomass from the carrageenan (SWBC) industry using enzymatic saccharification or ionic liquids-HCl hydrolysis. In the first work, SWBC pretreated by peracetic acid (PAA) followed by ionic liquid (IL) caused enhance the cellulose conversion of enzymatic saccharification. At 48h saccharification, the value conversion almost reached 100%. In addition, the untreated SWBC also produced the cellulose conversion 77%. In the second work, SWBC or Bagasse with or without pretreated by PAA was hydrolyzed using ILs-HCl hydrolysis. The ILs used were 1-buthyl-3-methylpyridium chloride, [Bmpy][Cl] and 1-butyl-3-metyl imidazolium chloride ([Bmim][Cl]). [Bmpy][Cl]-HCl hydrolysis produced higher cellulose conversion than [Bmim][Cl]-HCl hydrolysis. The phenomenon was clearly observed on the Bagasse, which without pretreated by PAA. Furthermore, SWBC hydrolyzed by both ILs in the presence low concentration of HCl produced cellulose conversion 70-98% at 60-90 min of hydrolysis time. High cellulose conversion of SWBC on the both hydrolysis was caused by SWBC had the low lignin (4%). Moreover, IL treatments caused lowering of cellulose hydrogen bonds or even changed the cellulose characteristics from cellulose I to cellulose II which easily to be hydrolyzed. In the case of [Bmpy][Cl], this IL may reduce the degree polymerization of celluloses.

  18. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.

  19. Water-soluble cavitands promote hydrolyses of long-chain diesters

    PubMed Central

    Shi, Qixun; Mower, Matthew P.; Blackmond, Donna G.; Rebek, Julius

    2016-01-01

    Water-soluble, deep cavitands serve as chaperones of long-chain diesters for their selective hydrolysis in aqueous solution. The cavitands bind the diesters in rapidly exchanging, folded J-shape conformations that bury the hydrocarbon chain and expose each ester group in turn to the aqueous medium. The acid hydrolyses in the presence of the cavitand result in enhanced yields of monoacid monoester products. Product distributions indicate a two- to fourfold relative decrease in the hydrolysis rate constant of the second ester caused by the confined space in the cavitand. The rate constant for the first acid hydrolysis step is enhanced approximately 10-fold in the presence of the cavitand, compared with control reactions of the molecules in bulk solution. Hydrolysis under basic conditions (saponification) with the cavitand gave >90% yields of the corresponding monoesters. Under basic conditions the cavitand complex of the monoanion precipitates from solution and prevents further reaction. PMID:27482089

  20. Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T.

    PubMed

    Salgado, José Manuel; Rodríguez-Solana, Raquel; Curiel, José Antonio; de las Rivas, Blanca; Muñoz, Rosario; Domínguez, José Manuel

    2012-08-01

    The enzyme PAD from Lactobacillus plantarum CECT 748T decarboxylates some cinnamic acids namely p-coumaric acid (p-CA), caffeic acid (CA), and ferulic acid (FA) into their corresponding 4-vinyl derivatives (4-VD): 4-vinyl phenol (4-VP), 4-vinyl catechol (4-VC), and 4-vinyl guaiacol (4-VG), respectively, which are valuable food additives mainly employed as flavouring agents. The gene encoding this enzyme was cloned and overexpressed in Escherichia coli. Recombinant E. coli cells overproducing L. plantarum PAD showed a preference to degrade mainly p-CA and CA. Sterilized liquors obtained after alkaline hydrolysis of corn cob or alkaline hydrolysis of the solid residue coming from acid hydrolysis of corn cob were employed as growth media in fermentations performed in shaker or bioreactor. The fermentative process allowed converting 2222.8 mg/L p-CA into 993.9 mg/L 4-VP. The process described here allowed the production with a high-yield of a valuable food additive from a by-product of the food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  2. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater.

    PubMed

    Masse, L; Massé, D I; Kennedy, K J; Chou, S P

    2002-07-05

    Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.

  3. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil.

    PubMed

    Johansen, Henrik; Rasmussen, Lars Holm; Olsen, Carl Erik; Bruun Hansen, Hans Christian

    2007-02-01

    Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-beta-d-glucoside) produced by sorghum has been studied in order to assess its fate in soil. The log K(ow) of dhurrin was -1.18+/-0.08 (22 degrees C). Hydrolysis was a first-order reaction with respect to dhurrin and hydroxyl ion concentrations. Half lives ranged from 1.2h (pH 8.6; 25 degrees C) to 530d (pH 4; 25 degrees C). The activation energy of hydrolysis was 112+9kJ. At pH 5.8 and room temperature, addition of humic acids (50gl(-1)) increased the rate of hydrolysis tenfold, while addition of kaolinite or goethite (100-250gl(-1)) both decreased the rate considerably. No significant sorption to soil components could be observed. The degradation rates of dhurrin in top and subsoils of Oxisols, Ultisols, Alfisols and Mollisols were studied at 22 degrees C (25mgl(-1), soil:liquid 1:1 (w:V), pH 3.8-8.1). Half-lives were 0.25-2h for topsoils, and 5-288h in subsoils. Hydrolysis in solution explained up to 45% of the degradation in subsoils whereas the contribution in topsoils was less than 14%, indicating the importance of enzymatic degradation processes. The highest risk of dhurrin leaching will take place when the soil is a low activity acid shallow soil with low content of clay minerals, iron oxides and humic acids.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To testmore » this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.« less

  5. The Effect of Sugarcane Bagassès Size on the Properties of Pretreatment and Enzymatic Hydrolysis

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhou, Guoqiang; Li, Jun

    2017-06-01

    The influence of milled bagasse particle size on their reducing sugar and lignin content during dilute acid hydrolysis followed by enzymolysis was investigated. The biomass crystal structures of hydrolyzed residues and enzymolyzed substrates were studied with X-ray diffractometry (XRD). The results showed that the conversion ratio of reducing sugar declined with decreasing milled bagasse particle size. The conversion ratio of reducing sugar after acid hydrolysis decreased from 31.3% to 28.9%. The smaller of the milled bagasse particle size was, the higher of the klason lignin content of hydrolyzed residuals was, which resulted in a decline in conversion ratio of reducing sugar during enzymolysis. In this study, the optimal size of milled bagasse particles was 10 to 20 meshes. The total reducing sugar conversion ratio was 61.5%, consisting of 31.3% in hydrolysis and 30.2% in enzymolysis. After hydrolysis, the specific surface area and pore size increased, and the fiber length was shortened. The inner microfiber bundles were exposed, which improved the accessibility of cellulase and the efficiency of enzymolysis.

  6. Hydrolysis of Indole-3-Acetic Acid Esters Exposed to Mild Alkaline Conditions 1

    PubMed Central

    Baldi, Bruce G.; Maher, Barbara R.; Cohen, Jerry D.

    1989-01-01

    Ester conjugates of indole-3-acetic acid are hydrolyzed easily in basic solutions; however, quantitative data have not been available on the relationship between pH and rate of hydrolysis of the known ester conjugates. The use of basic conditions during extraction or purification of IAA by several laboratories suggested that a more systematic analysis of this process was needed. In this report we present data indicating: (a) that measurable hydrolysis of IAA-glucose (from standard solutions) and IAA-esters (from maize kernel extracts) occurs with only a few hours of treatment at pH 9 or above; (b) that the lability of some ester conjugates is even greater than that of IAA-glucose; and (c) that ester hydrolysis of standard compounds, IAA-glucose and IAA-p-nitrophenol, occurs in the `three phase extraction system' proposed by Liu and Tillberg ([1983] Physiol Plant 57: 441-447). These data indicate that the potential for problems with inadvertent hydrolysis of ester conjugates of IAA exists even at moderate pH values and in the multiphase system where exposure to basic conditions was thought to be limited. PMID:16667049

  7. Determination of total antioxidant capacity by a new spectrophotometric method based on Ce(IV) reducing capacity measurement.

    PubMed

    Ozyurt, Dilek; Demirata, Birsen; Apak, Resat

    2007-02-28

    Dietary antioxidants widely found in fruits and vegetables may serve the task of reducing oxidative damage in humans induced by free radicals and reactive oxygen species under 'oxidative stress' conditions. The aim of this work is to develop a simple, low-cost, sensitive, and diversely applicable indirect spectrophotometric method for the determination of total antioxidant capacity of several plants. The method is based on the oxidation of antioxidants with cerium(IV) sulfate in dilute sulfuric acid at room temperature. The Ce(IV) reducing capacity of the sample is measured under carefully adjusted conditions of oxidant concentration and pH such that only antioxidants and not other organic compounds would be oxidized. The spectrophotometric determination of the remaining Ce(IV) was performed after completion of reaction with antioxidants. Quercetin and gallic acid were used as standards for flavonoids and phenolic acids, respectively, and results of antioxidant measurements were reported as trolox equivalents. The developed procedure was successfully applied to the assay of total antioxidant capacity due to simple compounds such as trolox, quercetin, gallic acid, ascorbic acid, catechin, naringin, naringenin, caffeic acid, chlorogenic acid, ferulic acid, and p-coumaric acid, and due to phenolic acids and flavonoids in the arieal parts of nettle (Urtica Dioica L.). Blank correction of significantly absorbing plant extracts at 320nm could be made with the aid of spectrophotometric titration. Plant selection was made in respect to high antioxidant content, and extraction was made with water. The proposed method was reproducible, and the trolox equivalent antioxidant capacities (TEAC coefficients) of the tested antioxidant compounds were correlated to those found by reference methods such as ABTS and CUPRAC. Since the TEAC coefficients found with the proposed method of naringin-naringenin and rutin-catechin pairs were close to each other, this Ce(IV)-based assay probably caused the simultaneous hydrolysis of flavonoid glycosides to the corresponding aglycones and their subsequent oxidation such that the hydrolysis products exhibed antioxidant capacities roughly proportional the number of -OH groups contained in a molecule.

  8. Hydrolysis and acidification of agricultural waste in a non-airtight system: Effect of solid content, temperature, and mixing mode.

    PubMed

    Yu, Jiadong; Zhao, Yubin; Zhang, Huan; Hua, Binbin; Yuan, Xufeng; Zhu, Wanbin; Wang, Xiaofen; Cui, Zongjun

    2017-01-01

    A two-phase digestion system for treating agricultural waste is beneficial for methane production. This study explored the effect of solid content, temperature, and mixing mode on the process of hydrolysis and acidification using rice straw and cow dung launched in non-airtight acidogenic system. The results showed that the substrate could be hydrolyzed efficiently in the initial stage, the hydrolysis coefficient (k) of maximum cellulose and hemicellulose can be increased by 217.9% and 290.5%, respectively, compared with those of middle and last stages. High solid content played a leading role in promoting hydrolysis, resulted in hydrolysate content (sCOD) that was significantly higher than in treatments with low solid content (P<0.01), and led to organic acids accumulation up to 5.8 and 6.7g/L at mesophilic and thermophilic temperatures. Thermophilic temperature stimulated the hydrolysis and acidification of low solid content (P<0.05), and improved organic acid accumulation of high solid content only during the middle stage (P<0.01). Mixing mode was not a major factor, but increasing the mixing time was necessary for organic acid accumulation during the last stage (P<0.05). In addition, the study comprehensively analyzed a series of corresponding relationships among each operating parameter during the whole treatment process using canonical correspondence analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jewell, Christopher; Prusakiewicz, Jeffery J.; Ackermann, Chrisita

    2007-12-01

    Parabens are esters of 4-hydroxybenzoic acid and used as anti-microbial agents in a wide variety of toiletries, cosmetics and pharmaceuticals. It is of interest to understand the dermal absorption and hydrolysis of parabens, and to evaluate their disposition after dermal exposure and their potential to illicit localised toxicity. The use of minipig as a surrogate model for human dermal metabolism and toxicity studies, justifies the comparison of paraben metabolism in human and minipig skin. Parabens are hydrolysed by carboxylesterases to 4-hydroxybenzoic acid. The effects of the carboxylesterase inhibitors paraoxon and bis-nitrophenylphosphate provided evidence of the involvement of dermal carboxylesterases inmore » paraben hydrolysis. Loperamide, a specific inhibitor of human carboxylesterase-2 inhibited butyl- and benzylparaben hydrolysis in human skin but not methylparaben or ethylparaben. These results show that butyl- and benzylparaben are more selective substrates for human carboxylesterase-2 in skin than the other parabens examined. Parabens applied to the surface of human or minipig skin were absorbed to a similar amount and metabolised to 4-hydroxybenzoic acid during dermal absorption. These results demonstrate that the minipig is a suitable model for man for assessing dermal absorption and hydrolysis of parabens, although the carboxylesterase profile in skin differs between human and minipig.« less

  10. Hydrolysis of rosmarinic acid from rosemary extract with esterases and Lactobacillus johnsonii in vitro and in a gastrointestinal model.

    PubMed

    Bel-Rhlid, Rachid; Crespy, Vanessa; Pagé-Zoerkler, Nicole; Nagy, Kornél; Raab, Thomas; Hansen, Carl-Erik

    2009-09-09

    Rosmarinic acid (RA) was identified as one of the main components of rosemary extracts and has been ascribed to a number of health benefits. Several studies suggested that after ingestion, RA is metabolized by gut microflora into caffeic acid and derivatives. However, only limited information on the microorganisms and enzymes involved in this biotransformation is available. In this study, we investigated the hydrolysis of RA from rosemary extract with enzymes and a probiotic bacterium Lactobacillus johnsonii NCC 533. Chlorogenate esterase from Aspergillus japonicus (0.02 U/mg) hydrolyzed 90% of RA (5 mg/mL) after 2 h at pH 7.0 and 40 degrees C. Complete hydrolysis of RA (5 mg/mL) was achieved with a preparation of L. johnsonii (25 mg/mL, 3.3 E9 cfu/g) after 2 h of incubation at pH 7.0 and 37 degrees C. No hydrolysis of RA was observed after the passage of rosemary extract through the gastrointestinal tract model (GI model). Thus, RA is hydrolyzed neither chemically under the conditions of the GI model (temperature, pH, and bile salts) nor by secreted enzymatic activity (lipase and pancreatic enzymes). The addition of L. johnsonii cells to rosemary extract in the GI model resulted in substantial hydrolysis of RA (up to 99%).

  11. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during the catalytic reactions. PS nanoparticles were further evaluated for the pretreatment of corn stover in order to increase digestibility of the biomass. The pretreatment was carried out at three different catalyst load and temperature levels. At 180°C, the total glucose yield was linearly correlated to the catalyst load. A maximum glucose yield of 90% and 58% of the hemicellulose sugars were obtained at this temperature.

  12. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, Frances H.; Moore, Jeffrey C.

    1998-01-01

    A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.

  13. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, Frances H.; Moore, Jeffrey C.

    1999-01-01

    A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.

  14. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents

    PubMed Central

    2014-01-01

    Background The phenolic contents and antioxidant activities of fruits could be underestimated if the bound phenolic compounds are not considered. In the present study, the extraction efficiencies of various solvents were investigated in terms of the total content of the free and bound phenolic compounds, as well as the phenolic profiles and antioxidant activities of the extracts. Methods Five different solvent mixtures were used to extract the free phenolic compounds from litchi pulp. Alkaline and acidic hydrolysis methods were compared for the hydrolysis of bound phenolic compounds from litchi pulp residue. The phenolic compositions of the free and bound fractions from the litchi pulp were identified using HPLC-DAD. The antioxidant activities of the litchi pulp extracts were determined by oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Results Of the solvents tested, aqueous acetone extracted the largest amount of total free phenolic compounds (210.7 mg GAE/100 g FW) from litchi pulp, followed sequentially by aqueous mixtures of methanol, ethanol and ethyl acetate, and water itself. The acid hydrolysis method released twice as many bound phenolic compounds as the alkaline hydrolysis method. Nine phenolic compounds were detected in the aqueous acetone extract. In contrast, not all of these compounds were found in the other four extracts. The classification and content of the bound phenolic compounds released by the acid hydrolysis method were higher than those achieved by the alkaline hydrolysis. The aqueous acetone extract showing the highest ORAC value (3406.9 μmol TE/100 g FW) for the free phenolic extracts. For the CAA method, however, the aqueous acetone and methanol extracts (56.7 and 55.1 μmol QE/100 g FW) showed the highest levels of activity of the five extracts tested. The ORAC and CAA values of the bound phenolic compounds obtained by acid hydrolysis were 2.6- and 1.9-fold higher than those obtained using the alkaline hydrolysis method. Conclusions The free and bound phenolic contents and profiles and antioxidant activities of the extracts were found to be dependent on the extraction solvent used. Litchi exhibited good cellular antioxidant activity and could be a potentially useful natural source of antioxidants. PMID:24405977

  15. A process for producing lignin and volatile compounds from hydrolysis liquor.

    PubMed

    Khazraie, Tooran; Zhang, Yiqian; Tarasov, Dmitry; Gao, Weijue; Price, Jacquelyn; DeMartini, Nikolai; Hupa, Leena; Fatehi, Pedram

    2017-01-01

    Hot water hydrolysis process is commercially applied for treating wood chips prior to pulping or wood pellet production, while it produces hydrolysis liquor as a by-product. Since the hydrolysis liquor is dilute, the production of value-added materials from it would be challenging. In this study, acidification was proposed as a viable method to extract (1) furfural and acetic acid from hot water hydrolysis liquor and (2) lignin compounds from the liquor. The thermal properties of the precipitates made from the acidification of hydrolysis liquor confirmed the volatile characteristics of precipitates. Membrane dialysis was effective in removing inorganic salts associated with lignin compounds. The purified lignin compounds had a glass transition temperature (Tg) of 180-190 °C, and were thermally stable. The results confirmed that lignin compounds present in hot water hydrolysis liquor had different characteristics. The acidification of hydrolysis liquor primarily removed the volatile compounds from hydrolysis liquor. Based on these results, a process for producing purified lignin and precipitates of volatile compounds was proposed.

  16. Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides

    PubMed Central

    2015-01-01

    Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis. PMID:24617596

  17. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2[S

    PubMed Central

    Oninla, Vincent O.; Breiden, Bernadette; Babalola, Jonathan O.; Sandhoff, Konrad

    2014-01-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747–1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. PMID:25339683

  18. Spectroscopic observations of nanosized TiO2 by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zikriya, Mohamed; Nadaf, Y. F.; Bharathy, P. Vijai; Renuka, C. G.

    2018-05-01

    Metal oxides are useful materials that have various applications in advanced field such as, in view of their different properties, hardness, thermal dependability and compound resistance. Novel utilizations of the nanostructures of these oxides are drawing in critical enthusiasm as new preparation process are created and new structures are described. Hydrothermal synthesis is a fruitful procedure to prepare different sensitive structures of metal oxides on the scales from a couple to several nanometres, particularly, the hugely scattered middle structures which are hardly through pyro-preparation. Titanium dioxide nanocrystals are synthesis by a hydrolysis procedure of metatitanic acid. Nano precious crystal of different sizes is procure in the after calcinations from 150 to 225°C. Raman scattering was utilized to examine the advancement of the anatase stage in the nano crystal during calcinations.

  19. Stability study of the anticonvulsant enaminone (E118) using HPLC and LC-MS.

    PubMed

    Abdel-Hamid, Mohammed E; Edafiogho, Ivan O; Hamza, Huda M

    2002-01-01

    The stability of the new chemical synthetic enaminone derivative (E118) was investigated using a stability-indicating high-performance liquid chromatography (HPLC) procedure. The examined samples were analyzed using a chiral HSA column and a mobile phase (pH 7.5) containing n-octanoic acid (5 mM), isopropyl alcohol and 100 mM disodium hydrogen phosphate solution (1:9 v/v) at a flow rate of 1 ml min(-1). The developed method was specific, accurate and reproducible. The HPLC chromatograms exhibited well-resolved peaks of E118 and the degradation products at retention times <5 min. The stability of E118 was performed in 0.1 M hydrochloric acid, 0.1 M sodium hydroxide, water/ethanol (1:1) and phosphate buffer (pH approximately 7.5) solutions. E118 was found to undergo fast hydrolysis in 0.1 M hydrochloric acid solution. The decomposition of E118 followed first order kinetics under the experimental conditions. The results confirmed that protonation of the enaminone system in the molecule enhanced the hydrolysis of E118 at degradation rate constant of 0.049 min(-1) and degradation half-life of 14.1 min at 25 degrees C. However, E118 was significantly stable in 0.1 M sodium hydroxide, physiological phosphate buffer (pH 7.5) and ethanol/water (1:1) solutions. The degradation rate constants and degradation half-lives were in the ranges 0.0023-0.0086 h(-1) and 80.6-150.6 h, respectively. Analysis of the acid-induced degraded solution of E118 by liquid chromatography-mass spectrometry (LC-MS) revealed at least two degradation products of E118 at m/z 213.1 and 113.1, respectively.

  20. Recovery and reuse of cellulase catalyst in an exzymatic cellulose hydrolysis process

    DOEpatents

    Woodward, Jonathan

    1989-01-01

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation.

  1. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    NASA Astrophysics Data System (ADS)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking substrate dependency of the isotopic fractionation could be attributed to a difference in the δ18O values of the C-O-P bridging and non-bridging oxygen atoms in organic phosphate compounds.

  2. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    NASA Astrophysics Data System (ADS)

    Sperber, C. v.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-03-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields plant available inorganic phosphate (Pi) and less phosphorylated inositol derivates as products. The hydrolysis of organic P-compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as substrate were prepared. During the hydrolysis of IP6 by phytase, four Pi are released, and one oxygen atom from water is incorporated into each Pi. This incorporation of oxygen from water into Pi is subject to an apparent inverse isotopic fractionation (ϵ ∼ 6 to 10‰), which is similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ∼ 7‰) where less than three Pi are released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ∼ -12‰), again similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ɛ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking substrate-dependency of the isotopic fractionation could be attributed to a difference in the δ18O-values of the C-O-P bridging and non-bridging oxygen atoms in organic phosphate compounds.

  3. Variation in gastric pH may determine kiwifruit's effect on functional GI disorder: an in vitro study.

    PubMed

    Donaldson, Bruce; Rush, Elaine; Young, Owen; Winger, Ray

    2014-04-11

    Consumption of kiwifruit is reported to relieve symptoms of functional gastrointestinal (GI) disorder. The effect may be related to the proteases in kiwifruit. This in vitro study aimed to measure protein hydrolysis due to kiwifruit protease under gastric and duodenal conditions. A sequence of experiments incubated meat protein, with and without kiwifruit, with varying concentrations of pepsin and hydrochloric acid, at 37 °C for 60 min over the pH range 1.3-6.2 to simulate gastric digestion. Duodenal digestion was simulated by a further 120 min incubation at pH 6.4. Protein digestion efficiency was determined by comparing Kjeldahl nitrogen in pre- and post-digests. Where acid and pepsin concentrations were optimal for peptic digestion, hydrolysis was 80% effective and addition of kiwifruit made little difference. When pH was increased to 3.1 and pepsin activity reduced, hydrolysis decreased by 75%; addition of kiwifruit to this milieu more than doubled protein hydrolysis. This in vitro study has shown, when gastric pH is elevated, the addition of kiwifruit can double the rate of hydrolysis of meat protein. This novel finding supports the hypothesis that consumption of kiwifruit with a meal can increase the rate of protein hydrolysis, which may explain how kiwifruit relieves functional GI disorder.

  4. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    PubMed

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Rapid Quantitative Analysis of Naringenin in the Fruit Bodies of Inonotus vaninii by Two-phase Acid Hydrolysis Followed by Reversed Phase-high Performance Liquid Chromatography-ultra Violet.

    PubMed

    Guohua, Xia; Pan, Ruirong; Bao, Rui; Ge, Yanru; Zhou, Cunshan; Shen, Yuping

    2017-01-01

    Sanghuang is one of mystical traditional Chinese medicines recorded earliest 2000 years ago, that included various fungi of Inonotus genus and was well-known for antitumor effect in modern medicine. Inonotus vaninii is grown in natural forest of Northeastern China merely and used as Sanghuang commercially, but it has no quality control specification until now. This study was to establish a rapid method of two-phase acid hydrolysis followed by reversed phase-high performance liquid chromatography-ultra violet (RP-HPLC-UV) to quantify naringenin in the fruit body of I. vaninii . Sample solution was prepared by pretreatment of raw material in two-phase acid hydrolysis and the hydrolysis technology was optimized. After reconstitution, analysis was performed using RP-HPLC-UV. The method validation was investigated and the naringenin content of sample and comparison were determined. The naringenin was obtained by two-phase acid hydrolysis method, namely, 10.0 g of raw material was hydrolyzed in 200 mL of 1% sulfuric acid aqueous solution (v/v) and 400 mL of chloroform in oil bath at 110°C for 2 h. Good linearity ( r = 0.9992) was achieved between concentration of analyte and peak area. The relative standard deviation (RSD) of precision was 2.47% and the RSD of naringenin contents for repeatability was 3.13%. The accuracy was supported with recoveries at 96.37%, 97.30%, and 99.31%. The sample solution prepared using the proposed method contained higher content of naringenin than conventional method and was stable for 8 h. Due to the high efficiency of sample preparation and high reliability of the HPLC method, it is feasible to use this method for routine analysis of naringenin in the fungus. A convenient two-phase acid hydrolysis was employed to produce naringenin from raw material, and then an efficient and reliable reversed phase-high performance liquid chromatography-ultra violet method was established to monitor naringenin in the fruit bodies of Inonotus vaninii . The newly established method could be used to control the quality of the herb. Abbreviations used: RP-HPLC-UV: Reversed Phase-High Performance Liquid Chromatography-Ultra Violet, RSD: Relative Standard Deviation, EtOAc: Ethyl acetate, ACN: Acetonitrile, MeOH: Methanol, RH: Relative Humility.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David Neal; Fox, Sandra Lynn; Bala, Greg Alan

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  7. Simultaneous determination of natural-abundance δ15N values and quantities of individual amino acids in proteins from milk of lactating women and from infant hair using gas chromatography/isotope ratio mass spectrometry.

    PubMed

    Tea, Illa; Le Guennec, Adrien; Frasquet-Darrieux, Marine; Julien, Maxime; Romek, Katarzyna; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-06-30

    In isotope tracer experiments used in nutritional studies, it is frequently desirable both to determine the (15)N/(14)N ratios of target compounds and to quantify these compounds. This report shows how this can be achieved in a single chromatographic run for protein amino acids using an isotope ratio mass spectrometer. Protein hydrolysis by acidic digestion was used to release amino acids, which were then derivatized as their N-pivaloyl-O-isopropyl esters. Suitable conditions for sample preparation were established for both hair and milk proteins. The N-pivaloyl-O-isopropyl esters of amino acids were separated by gas chromatography (GC) on a 60 m ZB-WAX column linked via a combustion interface to an isotope ratio mass spectrometer. The (15)N/(14)N ratios were obtained from the m/z 28, 29 and 30 peak intensities and the quantities from the Area All (Vs) integrated peak areas. It is shown from a five-point calibration curve that both parameters can be measured reliably within the range of 1.0 to 2.0 mg/mL for the major amino acids derived from the hydrolysis of human maternal milk or hair samples. The method was validated in terms of inter-day and inter-user repeatability for both parameters for 14 amino acids. The amino acid percentage composition showed a good correlation with literature values. The method was applied to determine the variability in a population of lactating mothers and their infants. It has been established that δ(15)N values can be simultaneously determined for a complex mixture of amino acids at variable concentrations. It is shown that the percentage composition obtained correlates well with that obtained by calculation from the protein composition or from literature values. This procedure should provide a significant saving in analysis time, especially in those cases where the GC run-time is necessarily long. It allows the satisfactory determination of the variation within a sample population. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels

    PubMed Central

    Pacheco-Ordaz, Ramón; González-Aguilar, Gustavo A.

    2018-01-01

    Mango (Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry. PMID:29419800

  9. Effect of Chelating Agents on the Stability of Nano-TiO2 Sol Particles for Sol-Gel Coating.

    PubMed

    Maeng, Wan Young; Yoo, Mi

    2015-11-01

    Agglomeration of sol particles in a titanium alkoxide (tetrabutyl orthotitanate (TBOT), > 97%) solution during the hydrolysis and condensation steps makes the sol solution difficult to use for synthesizing homogeneous sol-gel coating. Here, we have investigated the effect of stabilizing agents (acetic acid and ethyl acetoacetate (EAcAc)) on the agglomeration of Ti alkoxide particles during hydrolysis and condensation in order to determine the optimized conditions for controlling the precipitation of TiO2 particles. The study was conducted at R(AC) ([acetic acid]/[TBOT]) = 0.1-5 and R(EAcAc)([EAcAc]/[TBOT]) = 0.05-0.65. We also studied the effects of a basic catalyst ethanolamine (ETA), water, and HCl on sol stability. The chelating ligands in the precursor sol were analyzed with FT-IR. The coating properties were examined by focused ion beam. The stabilizing agents (acetic acid and EAcAc) significantly influenced the agglomeration and precipitation of TBOT precursor particles during hydrolysis. As R(AC) and R(EAcAc) increased, the agglomeration remarkably decreased. The stability of the sol with acetic acid and EAcAc arises from the coordination of the chelating ligand to TBOT that hinders hydrolysis and condensation. A uniform fine coating (thickness: 30 nm) on stainless steel was obtained by using an optimized sol with R(AC) = 0.5 and R(EAcAc) = 0.65.

  10. Modeling and simulation of an enzymatic reactor for hydrolysis of palm oil.

    PubMed

    Bhatia, S; Naidu, A D; Kamaruddin, A H

    1999-01-01

    Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.

  11. The Formation of Racemic Amino Acids by UV Photolysis of Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Dworkin, Jason P.; Sandford, Scott A.; Cooper, George; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Small biologically relevant organic molecules including the amino acids glycine, alanine, and marine were formed in the laboratory by the UV (Ultraviolet) photolysis of realistic interstellar ice analogs, composed primarily of H2O, and including CH3OH, NH3, and HCN, under interstellar conditions. N-formyl glycine, cycloserine (4-amino-3-isoxazolidinone), and glycerol were detected before hydrolysis, and glycine, racemic alanine, racemic marine, glycerol, ethanolamine, and glyceric acid were found after hydrolysis. This suggests that some meteoritic amino acids (and other molecules) may be the direct result of interstellar ice photochemistry, expanding the current paradigm that they formed by reactions in liquid water on meteorite parent bodies.

  12. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  13. Quantitative characterization of nonstructural carbohydrates of mezcal Agave (Agave salmiana Otto ex Salm-Dick).

    PubMed

    Michel-Cuello, Christian; Juárez-Flores, Bertha Irene; Aguirre-Rivera, Juan Rogelio; Pinos-Rodríguez, Juan Manuel

    2008-07-23

    Fructans are the reserve carbohydrates in Agave spp. plants. In mezcal factories, fructans undergoes thermal hydrolysis to release fructose and glucose, which are the basis to produce this spirit. Carbohydrate content determines the yield of the final product, which depends on plant organ, ripeness stage, and thermal hydrolysis. Thus, a qualitative and quantitative characterization of nonstructural carbohydrates was conducted in raw and hydrolyzed juices extracted from Agave salmiana stems and leaves under three ripeness stages. By high-performance liquid chromatography (HPLC), fructose, glucose, sucrose, xylose, and maltose were identified in agave juice. Only the plant fraction with hydrolysis interaction was found to be significant in the glucose concentration plant. Interactions of the fraction with hydrolysis and ripeness with hydrolysis were statistically significant in fructose concentration. Fructose concentration rose considerably with hydrolysis, but only in juice extracted from ripe agave stems (early mature and castrated). This increase was statistically significant only with acid hydrolysis.

  14. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther

    2015-07-01

    Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Deficiency of cellulase activity measurements for enzyme evaluation.

    PubMed

    Pryor, Scott W; Nahar, Nurun

    2010-11-01

    Switchgrass was used as a model feedstock to determine the influence of pretreatment conditions and biomass quality on enzymatic hydrolysis using different enzyme products. Dilute sulfuric acid and soaking in aqueous ammonia pretreatments were used to produce biomass with varied levels of hemicellulose and lignin sheathing. Pretreated switchgrass solids were tested with simple enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) with three commercial enzyme products: Accellerase 1000 (Genencor), Spezyme CP (Genencor)/Novozyme 188 (Novozymes), and Celluclast/Novozyme 188 (Novozymes). Enzymes were loaded on a common activity basis (FPU/g cellulose and CBU/g cellulose). Despite identical enzyme loadings, glucose yields were significantly different for both acid and alkaline pretreatments but differences diminished as hydrolysis progressed for acid-pretreated biomass. Cellobiose concentrations in Accellerase treatments indicated an initial beta-glucosidase limitation that became less significant over time. SSF experiments showed that differences in glucose and ethanol yields could not be attributed to enzyme product inhibition. Yield discrepancies of glucose or ethanol in acid pretreatment, alkaline pretreatment, and acid pretreatment/SSF were as much as 15%, 19%, and 5%. These results indicate that standardized protocols for measuring enzyme activity may not be adequate for assessing activity using pretreated biomass substrates.

  16. Acidogenic digestion of food waste in a thermophilic leach bed reactor: Effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production.

    PubMed

    Hussain, Abid; Filiatrault, Mélissa; Guiot, Serge R

    2017-12-01

    The effect of pH control (4, 5, 6, 7) on volatile fatty acids (VFA) production from food waste was investigated in a leach bed reactor (LBR) operated at 50°C. Stabilisation of pH at 7 resulted in hydrolysis yield of 530g soluble chemical oxygen demand (sCOD)/kg total volatile solids (TVS) added and VFA yield of 247gCOD/kg TVS added, which were highest among all pH tested. Butyric acid dominated the VFA mix (49-54%) at pH of 7 and 6, while acetate composed the primary VFA (41-56%) at pH of 4 and 5. A metabolic shift towards lactic acid production was observed at pH of 5. Improving leachate recirculation rate further improved the hydrolysis and degradation efficiency by 10-16% and the acidification yield to 340gCOD/kgTVS added. The butyric acid concentration of 16.8g/L obtained at neutral pH conditions is among the highest reported in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Simultaneous accelerated solvent extraction and hydrolysis of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid glucuronide in meconium samples for gas chromatography-mass spectrometry analysis.

    PubMed

    Mantovani, Cinthia de Carvalho; Silva, Jefferson Pereira E; Forster, Guilherme; Almeida, Rafael Menck de; Diniz, Edna Maria de Albuquerque; Yonamine, Mauricio

    2018-02-01

    Cannabis misuse during pregnancy is associated with severe impacts on the mother and baby health, such as newborn low birth weight, growth restriction, pre-term birth, neurobehavioral and developmental deficits. In most of the cases, drug abuse is omitted or denied by the mothers. Thus, toxicological analyzes using maternal-fetal matrices takes place as a suitable tool to assess drug use. Herein, meconium was the chosen matrix to evaluate cannabis exposure through identification and quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic (THCCOOH). Accelerated solvent extraction (ASE) was applied for sample preparation technique to simultaneously extract and hydrolyze conjugated THCCOOH from meconium, followed by a solid-phase extraction (SPE) procedure. The method was developed and validated for gas chromatography-mass spectrometry (GC-MS), reaching hydrolysis efficiency of 98%. Limits of detection (LOD) and quantification (LOQ) were, respectively, 5 and 10 ng/g. The range of linearity was LOQ to 500 ng/g. Inter and intra-batch coefficients of variation were <8.4% for all concentration levels. Accuracy was in 101.7-108.9% range. Recovery was on average 60.3%. Carryover effect was not observed. The procedure was applied in six meconium samples from babies whose mothers were drug users and showed satisfactory performance to confirm fetal cannabis exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Adenosine receptor activation potentiates phosphoinositide hydrolysis and arachidonic acid release in DDT1-MF2 cells: putative interrelations.

    PubMed

    Schachter, J B; Yasuda, R P; Wolfe, B B

    1995-09-01

    Studies were undertaken in an effort to discern possible mechanisms by which the A1 adenosine receptor agonist cyclopentyladenosine (CPA) enhances the norepinephrine-stimulated (NE-stimulated) hydrolysis of phosphoinositides in DDT1-MF2 cells. Measurements of arachidonic acid release revealed similar behaviours to those observed in measurements of phosphoinositide hydrolysis. In the presence of NE, both second messenger responses were potentiated by the addition of CPA, whereas in the absence of NE, CPA had little or no effect on either second messenger. The stimulation and potentiation of both second messenger responses were enhanced in the presence of extracellular calcium, and in each case these effects were persistent over time. For either second messenger system the stimulation by NE and the potentiation by CPA appeared to utilize separate mechanisms as evidenced by the fact that the potentiations by CPA were selectively antagonized by a cAMP analogue or by pertussis toxin, whereas the stimulations by NE were essentially unaffected by these agents. Inhibition of phospholipase A2 (PLA2) also blocked the potentiation of PLC by CPA, without affecting NE-stimulated phosphoinositide hydrolysis. Furthermore, in the presence of CPA, the exogenous administration of PLA2 was found to stimulate phosphoinositide hydrolysis in these cells. These data are consistent with a hypothesis whereby the apparent potentiation of NE-stimulated phosphoinositide hydrolysis by CPA is actually due to the stimulation by CPA of a second pathway of phospholipase C activity which is additive to that of NE. The activation of PLC and PLA2 by NE produces phospholipid products which may play a permissive role in the pathway coupling adenosine A1 receptors to these phospholipases. The formation of lysophosphatidic acid is suggested as one possible mediator of this permissive effect.

  19. Synthesis, characterization and in vitro hydrolysis of a gemfibrozil-nicotinic acid codrug for improvement of lipid profile.

    PubMed

    Qandil, Amjad M; Rezigue, Meriem M; Tashtoush, Bassam M

    2011-06-14

    Combination therapy of fibrates and nicotinic acid has been reported to be synergistic. Herein, we describe a covalent codrug of gemfibrozil (GEM) and nicotinic acid (NA) that was synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, MS analysis and elemental analysis. A validated HPLC method was developed that allows for the accurate quantitative determination of the codrug and its hydrolytic products that are formed during the in vitro chemical and enzymatic hydrolysis. The physico-chemical properties of codrug were improved compared to its parent drugs in term of water solubility and partition coefficient. The kinetics of hydrolysis of the codrug was studied using accelerated hydrolysis experiments at high temperatures in aqueous phosphate buffer solution in pH 1.2, 6.8 and 7.4. Using the Arrhenius equation, the extrapolated half-life at 37°C were 289 days at pH 1.2 for the codrug and 130 and 20,315 days at pH 6.8 for the codrug and gemfibrozil 2-hydroxyethyl ester (GHEE), respectively. The shortest half-lives were at pH 7.4; 42 days for the codrug and 5837 days for GHEE, respectively. The hydrolysis of the latter was studied, alone, at 80°C and pH 1.2 and compared to its hydrolysis when it is produced from the codrug using similar conditions. The k(obs) was found in both cases to be 1.60×10(-3)h(-1). The half-lives in plasma were 35.24 min and 26.75 h for the codrug and GHEE, respectively. With regard to liver homogenate, the hydrolysis half-lives were 1.96 min and 48.13 min for the codrug and GHEE, respectively. It can be expected that in vivo, the codrug will liberate NA immediately in plasma then GEM will be liberated from its 2-hydroxyethyl ester in the liver. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Dilute phosphoric acid-catalysed hydrolysis of municipal bio-waste wood shavings using autoclave parr reactor system.

    PubMed

    Orozco, Angela M; Al-Muhtaseb, Ala'a H; Albadarin, Ahmad B; Rooney, David; Walker, Gavin M; Ahmad, Mohammad N M

    2011-10-01

    The visibility of using municipal bio-waste, wood shavings, as a potential feedstock for ethanol production was investigated. Dilute acid hydrolysis of wood shavings with H₃PO₄ was undertaken in autoclave parr reactor. A combined severity factor (CSF) was used to integrate the effects of hydrolysis times, temperature and acid concentration into a single variable. Xylose concentration reached a maximum value of 17 g/100 g dry mass corresponding to a yield of 100% at the best identified conditions of 2.5 wt.% H₃PO₄, 175 °C and 10 min reaction time corresponding to a CSF of 1.9. However, for glucose, an average yield of 30% was obtained at 5 wt.% H₃PO₄, 200 °C and 10 min. Xylose production increased with increasing temperature and acid concentration, but its transformation to the degradation product furfural was also catalysed by those factors. The maximum furfural formed was 3 g/100 g dry mass, corresponding to the 24% yield. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps.

    PubMed

    Yu, Iris K M; Tsang, Daniel C W; Yip, Alex C K; Chen, Season S; Ok, Yong Sik; Poon, Chi Sun

    2016-11-01

    This study aimed to transform food waste into a value-added chemical, hydroxymethylfurfural (HMF), and unravel the tangled effects induced by the metal catalysts on each single step of the successive conversion pathway. The results showed that using cooked rice and bread crust as surrogates of starch-rich food waste, yields of 8.1-9.5% HMF and 44.2-64.8% glucose were achieved over SnCl4 catalyst. Protons released from metal hydrolysis and acidic by-products rendered Brønsted acidity to catalyze fructose dehydration and hydrolysis of glycosidic bond. Lewis acid site of metals could facilitate both fructose dehydration and glucose isomerization via promoting the rate-limiting internal hydride shift, with the catalytic activity determined by its electronegativity, electron configuration, and charge density. Lewis acid site of a higher valence also enhanced hydrolysis of polysaccharide. However, the metals also catalyzed undesirable polymerization possibly by polarizing the carbonyl groups of sugars and derivatives, which should be minimized by process optimization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Pilot scale dilute acid pretreatment of rice straw and fermentable sugar recovery at high solid loadings.

    PubMed

    Kapoor, Manali; Soam, Shveta; Agrawal, Ruchi; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2017-01-01

    The aim of this work was to study the dilute acid pretreatment of rice straw (RS) and fermentable sugar recovery at high solid loadings at pilot scale. A series of pretreatment experiments were performed on RS resulting in >25wt% solids followed by enzymatic hydrolysis without solid-liquid separation at 20 and 25wt% using 10FPU/g of the pretreated residue. The overall sugar recovery including the sugars released in pretreatment and enzymatic hydrolysis was calculated along with a mass balance. Accordingly, the optimized conditions, i.e. 0.35wt% acid, 162°C and 10min were identified. The final glucose and xylose concentrations obtained were 83.3 and 31.9g/L respectively resulting in total concentration of 115.2g/L, with a potential to produce >50g/L of ethanol. This is the first report on pilot scale study on acid pretreatment of RS in a screw feeder horizontal reactor followed by enzymatic hydrolysis at high solid loadings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Purification and characterization of two isoenzymes of lipoxygenase from soybeans.

    PubMed

    Diel, E; Stan, H J

    1978-01-01

    A chromatographic procedure for the purification of two lipoxygenase isoenzymes (linoleate: O2 oxidoreductase, EC 1.13.11.12.) from soybean is described. The procedure for the purification of isoenzyme L-1 includes optimalized extraction, ammonium sulfate fractionation, heat treatment and gradient elution from a CM-Sephadex C-50 column. The purification of L-2 includes ammonium sulfate fractionation, gelfiltration on Sephadex G-150 and gradient elution from a DEAE-cellulose column. Both isoenzymes L-1 and L-2 appear homogeneous after Disc-PAGE. The isoelectric points are 5.6 for L-1 and 5.8 for L-2. Molecular weights are estimated as 100,000 for L-1 as well as L-2 applying three different methods. Both isoenzymes contain 0.9 mol iron per mol protien. The estimated turn over numbers are 8,200 mol linoleate per mol enzyme and min for L-1 and 3,100 for L-2. Amino acid compositions determined after acid hydrolysis show marked differences between L-1 and L-2, particularly with respect to the amino acids Lys, Phe, Ser, Gly and Leu. L-1 posesses a total of 9 cysteine molecules, 6 of which are present as disulfide bonds. L-2 posesses a total of 8 cysteine molecules with only one disulfide bond.

  4. Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process

    NASA Astrophysics Data System (ADS)

    Wu, Jeffrey C. S.; Tseng, I.-Hsiang; Chang, Wan-Chen

    2001-06-01

    Nanoparticles of titania and copper-loaded titania were synthesized by a refined sol-gel method using titanium butoxide. Unlike the conventional sol-gel procedure of adding water directly, the esterification of anhydrous butanol and glacial acetic acid provided the hydrolyzing water. In addition, acetic acid also served as a chelating ligand to stabilize the hydrolysis-condensation process and minimize the agglomeration of titania. Following the hydrolysis, Cu/TiO2 was prepared by adding copper chloride to titania sol. The sol was dried, then calcined at 500°C to remove organics and transformed to anatase titania which was verified by XRD. Cu/TiO2 was further hydrogen-reduced at 300°C. The recovery of Ti was exceeded by an average of 95% from titanium butoxide. TEM micrographs show that the Cu/TiO2 particles are near uniform. The average crystallite sizes are 17-20 nm estimated from the peak broadening of XRD spectra. The bandgaps of TiO2 and reduced Cu/TiO2 range from 2.70 to 3.15 eV estimated from the diffusive reflective UV-Vis spectra. XPS analysis shows that Cu 2p3/2 is 933.4 eV indicating primary Cu2O form on the TiO2 supports. The binding energy of Ti does not exhibit chemical shift suggesting negligible interaction of Cu cluster and TiO2 support.

  5. Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce D(-)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus coryniformis subsp. torquens.

    PubMed

    de Oliveira Moraes, Anelize; Ramirez, Ninoska Isabel Bojorge; Pereira, Nei

    2016-12-01

    Lactic acid is widely used in chemical, pharmaceutical, cosmetic, and food industries, besides it is the building block to produce polylactic acid, which is a sustainable alternative biopolymer to synthetic plastic due to its biodegradability. Aiming at producing an optically pure isomer, the present work evaluated the potential of pulp mill residue as feedstock to produce D(-)-lactic acid by a strain of the bacterium Lactobacillus coryniformis subsp. torquens using separate hydrolysis and fermentation process. Enzymatic hydrolysis, optimized through response surface methodology for 1 g:4 mL solid/liquid ratio and 24.8 FPU/g cellulose enzyme loading, resulted in 140 g L -1 total reducing sugar and 110 g L -1 glucose after 48 h, leading to 61 % of efficiency. In instrumented bioreactor, 57 g L -1 of D(-)-lactic acid was achieved in 20 h of fermentation, while only 0.5 g L -1 of L(+)-lactic acid was generated. Furthermore, product yield of 0.97 g/g and volumetric productivity of 2.8 g L -1  h -1 were obtained.

  6. The Effects of Alkali and Temperature on the Hydrolysis Rate of N-methylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Ou, Yu Jing; Wang, Xiao Mei; Lei Li, Chun; Zhu, Ya Long; Li, Xiao Long

    2017-12-01

    By studying the hydrolysis of N-methylpyrrolidone, it was found that the effects of NaOH concentration and temperature on N-methylpyrrolidone's hydrolysis were remarkable. Fourier transform infrared (FTIR) and Gel Permeation Chromatography (GPC) detected that the mainly hydrolyzate was 4-(methylamino)butyric acid, and the hydrolyzate can generate polymers, which of molecular weight increases with temperature rising. The results of Gas Chromatography (GC) and moisture meter test showed that adding alkaline and raising temperature can aggravate hydrolysis of NMP. This study provide theoretical basis for recycling solvent (NMP) in the production of polyphenylene sulfide (PPS).

  7. Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process

    DOEpatents

    Woodward, J.

    1987-09-18

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.

  8. Thermal hydrolysis (TDH) as a pretreatment method for the digestion of organic waste.

    PubMed

    Schieder, D; Schneider, R; Bischof, F

    2000-01-01

    The recycling concept under consideration is based on the process of Thermal Hydrolysis (TDH) followed by an anaerobic digestion. By increasing pressure and temperature the organic part of the waste is split up in a first step into short-chain fragments that are biologically well suited for microorganisms. The following fermentation runs much faster and more complete than in conventional digestion processes and the biogas yield is increased. Left is just a small amount of a solid residue that can be easily dewatered and utilized as surrogate fuel for incineration or as compost additive. The thermal hydrolysis process allows a complete energy recovery from organic waste. During the total procedure more energy sources are produced than are needed for running the plant. The procedure is especially suited for wet organic waste and biosolids that are difficult to compost, such as food scraps, biological waste from compact residential areas and sewage sludge. As a complete disinfection is granted due to the process temperatures the procedure is also suited for carcasses.

  9. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    NASA Astrophysics Data System (ADS)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  10. Microorganisms hydrolyse amide bonds; knowledge enabling read-across of biodegradability of fatty acid amides.

    PubMed

    Geerts, Roy; Kuijer, Patrick; van Ginkel, Cornelis G; Plugge, Caroline M

    2014-07-01

    To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.

  11. Validated Method for the Characterization and Quantification of Extractable and Nonextractable Ellagitannins after Acid Hydrolysis in Pomegranate Fruits, Juices, and Extracts.

    PubMed

    García-Villalba, Rocío; Espín, Juan Carlos; Aaby, Kjersti; Alasalvar, Cesarettin; Heinonen, Marina; Jacobs, Griet; Voorspoels, Stefan; Koivumäki, Tuuli; Kroon, Paul A; Pelvan, Ebru; Saha, Shikha; Tomás-Barberán, Francisco A

    2015-07-29

    Pomegranates are one of the main highly valuable sources of ellagitannins. Despite the potential health benefits of these compounds, reliable data on their content in pomegranates and derived extracts and food products is lacking, as it is usually underestimated due to their complexity, diversity, and lack of commercially available standards. This study describes a new method for the analysis of the extractable and nonextractable ellagitannins based on the quantification of the acid hydrolysis products that include ellagic acid, gallic acid, sanguisorbic acid dilactone, valoneic acid dilactone, and gallagic acid dilactone in pomegranate samples. The study also shows the occurrence of ellagitannin C-glycosides in pomegranates. The method was optimized using a pomegranate peel extract. To quantify nonextractable ellagitannins, freeze-dried pomegranate fruit samples were directly hydrolyzed with 4 M HCl in water at 90 °C for 24 h followed by extraction of the pellet with dimethyl sulfoxide/methanol (50:50, v/v). The method was validated and reproducibility was assessed by means of an interlaboratory trial, showing high reproducibility across six laboratories with relative standard deviations below 15%. Their applicability was demonstrated in several pomegranate extracts, different parts of pomegranate fruit (husk, peels, and mesocarp), and commercial juices. A large variability has been found in the ellagitannin content (150-750 mg of hydrolysis products/g) and type (gallagic acid/ellagic acid ratios between 4 and 0.15) of the 11 pomegranate extracts studied.

  12. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases.

    PubMed

    Eichmann, Thomas O; Kumari, Manju; Haas, Joel T; Farese, Robert V; Zimmermann, Robert; Lass, Achim; Zechner, Rudolf

    2012-11-30

    Adipose triglyceride lipase (ATGL) is rate-limiting for the initial step of triacylglycerol (TAG) hydrolysis, generating diacylglycerol (DAG) and fatty acids. DAG exists in three stereochemical isoforms. Here we show that ATGL exhibits a strong preference for the hydrolysis of long-chain fatty acid esters at the sn-2 position of the glycerol backbone. The selectivity of ATGL broadens to the sn-1 position upon stimulation of the enzyme by its co-activator CGI-58. sn-1,3 DAG is the preferred substrate for the consecutive hydrolysis by hormone-sensitive lipase. Interestingly, diacylglycerol-O-acyltransferase 2, present at the endoplasmic reticulum and on lipid droplets, preferentially esterifies sn-1,3 DAG. This suggests that ATGL and diacylglycerol-O-acyltransferase 2 act coordinately in the hydrolysis/re-esterification cycle of TAGs on lipid droplets. Because ATGL preferentially generates sn-1,3 and sn-2,3, it suggests that TAG-derived DAG cannot directly enter phospholipid synthesis or activate protein kinase C without prior isomerization.

  13. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.

    PubMed

    Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei

    2017-01-01

    In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Analysis of cocaine and three of its metabolites in hair by gas chromatography-mass spectrometry using ion-trap detection for CI/MS/MS.

    PubMed

    Cognard, Emmanuelle; Rudaz, Serge; Bouchonnet, Stéphane; Staub, Christian

    2005-11-05

    A sensitive GC/CI/MS/MS method was developed for the simultaneous determination of cocaine (COC), anhydroecgonine methylester (cocaine pyrolysis product, AEME), ecgonine methylester (cocaine enzymatic hydrolysis product, EME) and cocaethylene (cocaine with ethanol trans-esterification product, COET) in human hair samples. After acid hydrolysis, hair samples were extracted with an automated solid phase extraction (SPE). The analysis of cocaine and its three metabolites was performed using an ion-trap spectrometer in positive chemical ionization with isobutane as gas reagent. The procedure was validated. Weighted linear regression was found appropriate in a concentration range of 0.10-5.00 ng/mg for AEME, 0.05-5.00 ng/mg for COC, EME and COET. The limit of detection was estimated at 0.005 ng/mg for COC and COET, at 0.025 ng/mg for EME, and at 0.050 ng/mg for AEME. Method performance was evaluated in terms of trueness and precision using quality control (QC) samples over the investigated ranges. Method selectivity and robustness were also demonstrated.

  15. The Effect of Acid Neutralization on Analytical Results Produced from SW846 Method 8330 after the Alkaline Hydrolysis of Explosives in Soil

    DTIC Science & Technology

    2012-09-01

    basic form of phosphoric acid or sodium phosphate NO2- Nitrite OH- Hydroxide ion ERDC/EL TR-12-14 1 1 Introduction Alkaline hydrolysis has...into amber sample vials and refrigerated until analyzed. TNT analyses were conducted by high performance liquid chromatography (HPLC) with a C-18...The explosives concentrations of the different soils were quantified using a DIONEX HPLC system equipped with a C-18 reverse phase column and a

  16. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

    PubMed

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2015-03-01

    The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  18. Pretreatment and hydrolysis methods for recovery of fermentable sugars from de-oiled Jatropha waste.

    PubMed

    Kumar, Gopalakrishnan; Sen, Biswarup; Lin, Chiu-Yue

    2013-10-01

    The release of reducing sugars (RS) upon various pretreatments and hydrolysis methods from de-oiled Jatropha waste (DJW) was studied. The highest RS concentration of 12.9 g/L was observed at 10% enzyme hydrolysis. The next highest RS of 8.0 g/L and 7.8 g/L were obtained with 10% HCl and 2.5% H2SO4, respectively. The NaOH (2.5%), ultrasonication and heat (90°C for 60 min) treatments showed the RS concentration of 2.5 g/L, 1.1 g/L and 2.0 g/L, respectively. Autoclave treatment slightly enhanced the sugar release (0.9 g/L) compared to no treatment (0.7 g/L). Glucose release (11.4 g/L) peaked in enzyme hydrolysis. Enzyme treated acid unhydrolysed biomass showed 11.1 g/L RS. HCl and H2SO4 pretreatment gave maximal xylose (6.89 g/L and 6.16 g/L, respectively). Combined (acid and enzyme) hydrolysis employed was efficient and its subsequent batch hydrogen fermentation showed a production 3.1 L H2/L reactor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

    PubMed

    Oninla, Vincent O; Breiden, Bernadette; Babalola, Jonathan O; Sandhoff, Konrad

    2014-12-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Detection of Agar, by Analysis of Sugar Markers, Associated with Bacillus Anthracis Spores, After Culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunschel, David S.; Colburn, Heather A.; Fox, Alvin

    2008-08-01

    Detection of small quantities of agar associated with spores of Bacillus anthracis could provide key information regarding its source or growth characteristics. Agar, widely used in growth of bacteria on solid surfaces, consists primarily of repeating polysaccharide units of 3,6-anhydro-L-galactose (AGal) and galactose (Gal) with sulfated and O-methylated galactoses present as minor constituents. Two variants of the alditol acetate procedure were evaluated for detection of potential agar markers associated with spores. The first method employed a reductive hydrolysis step, to stabilize labile anhydrogalactose, by converting to anhydrogalactitol. The second eliminated the reductive hydrolysis step simplifying the procedure. Anhydrogalactitol, derived frommore » agar, was detected using both derivatization methods followed by gas chromatography-mass spectrometry (GC-MS) analysis. However, challenges with artefactual background (reductive hydrolysis) or marker destruction (hydrolysis) lead to the search for alternative sugar markers. A minor agar component, 6-O-methyl galactose (6-O-M gal), was readily detected in agar-grown but not broth-grown bacteria. Detection was optimized by the use of gas chromatography-tandem mass spectrometry (GC-MS-MS). With appropriate choice of sugar marker and analytical procedure, detection of sugar markers for agar has considerable potential in microbial forensics.« less

  1. Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates.

    PubMed

    Venuste, Muhamyankaka; Zhang, Xiaoming; Shoemaker, Charles F; Karangwa, Eric; Abbas, Shabbar; Kamdem, Patrick Eugene

    2013-04-30

    Nutritional and antioxidant properties of pumpkin meal and their hydrolysates prepared by hydrolysis with alcalase, flavourzyme, protamex or neutrase were evaluated. The hydrolysis process significantly increased protein content from 67.07% to 92.22%. All the essential amino acids met the Food and Agriculture Organization of United Nations/World Health Organization (WHO/FAO) suggested requirements for children and adults. The amino acid score (AAS) of meal was increased from 65.59 to 73.00 except for flavourzyme (62.97) and protamex (62.50). The Biological Value (BV) was increased from 53.18 to 83.44 except for protamex (40.97). However hydrolysis decreased the Essential Amino Acid/Total Amino Acid ratio (EAA/TAA) from 32.98% to 29.43%. Protein Efficiency Ratio (PER) was comparable to that of good quality protein (1.5) except for flavourzyme hydrolysate which had PER1 = 0.92, PER2 = 1.03, PER3 = 0.38. The in vitro protein digestibility (IVPD) increased from 71.32% to 77.96%. Antioxidant activity increased in a dose-dependent manner. At 10 mg mL(-1), the hydrolysates had increased 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activities from 21.89% to 85.27%, the reducing power increased from Abs(700nm) 0.21 to 0.48. Metal (Iron) chelating ability was improved from 30.50% to 80.03% at 1 mg mL(-1). Hydrolysates also showed better capabilities to suppress or delay lipid peroxidation in a linoleic acid model system. Different proteases lead to different Degrees of Hydrolysis (DH), molecular weight (MW) distribution, amino acid composition and sequence, which influenced the nutritional properties and antioxidant activities of the hydrolysates. Alcalase was the most promising protease in production of pumpkin protein hydrolysates with improved nutritional quality, while flavourzyme was best in production of hydrolysates with improved antioxidative activity among various assays. These results showed that hydrolysates from by-products of pumpkin oil-processing might serve as alternative sources of dietary proteins with good nutritional quality, and protection against oxidative damage.

  2. Matrix solid phase dispersion assisted enzymatic hydrolysis as a novel approach for cocaine and opiates isolation from human hair.

    PubMed

    Míguez-Framil, Martha; Cabarcos, Pamela; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-11-05

    The possibility of assisting enzymatic hydrolysis (EH) procedures by sample disruption mechanisms inherent to matrix solid phase dispersion (MSPD) has been explored in the current study. EH of hair specimens from poly-drug abusers was assisted by dispersing/blending the sample (0.05 g) with alumina (2.25 g) before loading the dissolved enzyme (6 mL of 1 mg mL(-1) Pronase E in 1.4 M/1.4 M Tris/HCl, pH 7.3) through the hair-alumina solid phase packaged inside a disposable MSPD syringe. The MSPD-EH method was developed, and it proved to offer quantitative results when isolating cocaine, benzoylecgonine (BZE), codeine, morphine and 6-monoacethylmorphine (6-MAM) from human hair samples. The procedure allows an on column clean-up/pre-concentration procedure of the isolated targets by attaching a previously conditioned Oasis HLB cartridge to the end of the MSPD syringe. The EH procedure of human hair with Pronase E can therefore be shortened to approximately 30 min. Within this time, sample blending/dispersion, MSPD syringe package, elution (EH when dissolved Pronase E is passing through the sample-dispersant bed), and extract clean-up and target pre-concentration stages are achieved. Gas chromatography-mass spectrometry (GC-MS) was used for determining each target after elution from the Oasis HLB cartridges with 2 mL of 2% (v/v) acetic acid in methanol, concentration by N2 stream evaporation, and dried extract derivatization with N-methyl-tert-butylsilyltrifluoroacetamide (BSTFA) and chlorotrimethylsilane (TMCS). The method was validated according to the guidance for bioanalytical method validation of the US Department of Health and Human Services, Food and Drug Administration. The simplicity of the proposed approach makes it a useful procedure for screening/quantifying drugs of abuse in hair specimens from poly-drug abusers. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. DDT-related compounds as non-extractable residues in submarine sediments of the Palos Verdes Shelf, California, USA.

    PubMed

    Kucher, S; Schwarzbauer, J

    2017-10-01

    The Palos Verdes Shelf (PVS) and the continental slope off the Palos Verdes Peninsula are highly contaminated by degradation products of the pesticide DDT (1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene). Sediment samples from two box cores were analyzed to obtain further information about the fate of DDT and its degradation products within the environment. After solvent extraction, an alkaline hydrolysis procedure was applied. A comprehensive screening for 26 DDT compounds revealed that DDT and its degradates contaminate not only the extractable fraction but also the fraction released by alkaline hydrolysis. A comparison of the quantitative distribution of DDT degradation products in the extractable fraction and released by alkaline hydrolysis showed a distinct difference. DDE (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene), DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene), DDMS (1-chloro-4-[2-chloro-1-(4-chlorophenyl)ethyl]benzene), and DDMU (1-chloro-4-[2-chloro-1-(4-chlorophenyl)ethenyl]benzene) were predominant in the sediment extracts but minor components of the hydrolyzable fraction. The most abundant compounds released by the alkaline hydrolysis were DBP (bis(4-chlorophenyl)methanone), DDNU (1-chloro-4-[1-(4-chlorophenyl)ethenyl]benzene), DDM (1-chloro-4-[(4-chlorophenyl)methyl]benzene) and the water-soluble DDA (2,2-bis(4-chlorophenyl)acetic acid). The release of DDA may point to the presence of an important degradation pathway in marine environments. Concentration levels of DDT-related compounds showed corresponding vertical profiles in both fractions, but were significantly lower in the fraction released by alkaline hydrolysis. In contrast to fluvial sediments contaminated by DDT and its degradates the alkaline hydrolysis products represented a minor portion of the total sedimentary burden in the analyzed marine sediments. These findings show the necessity of a comprehensive screening for all DDT isomers and breakdown products in the extractable and non-extractable fraction to assess the total contamination abundance and potential environmental risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hydrolysis reactor for hydrogen production

    DOEpatents

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  5. Amino acid precursors in lunar fines - Limits to the contribution of jet exhaust

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Harada, K.; Hare, P. E.

    1976-01-01

    A sample of lunar fines collected at a maximum distance, 6.5 km, from the descent engine on Apollo 17 has been analyzed for total amino acids obtainable by hydrolysis of aqueous extracts. The minimum amounts of amino acids, calculated for a disk of 6 km radius are 10,000 to 100,000 times those which could be contributed by the lunar module jet exhaust, on the basis of conservatively limiting assumptions. The amino acids thus obtained are not explainable as due to chemical or biological contamination; their source is accordingly inferred as lunar. Under the conditions of hydrolysis of lunar extracts, cyanide is found to be converted, almost exclusively to glycine, to an extent of 0.0001.

  6. Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin.

    PubMed

    Matsushita, Yasuyuki; Yasuda, Seiichi

    2005-03-01

    In order to effectively utilize a by-product of the acid saccharification process of woody materials, the chemical conversion of guaiacyl sulfuric acid lignin (SAL), one of the acid hydrolysis lignins, into water-soluble sulfonated products with high dispersibitity was investigated. At first, SAL was phenolated (P-SAL) to enhance the solubility and reactivity. Lignosulfonates were prepared from P-SAL by three methods of hydroxymethylation followed by neutral sulfonation (two-step method), sulfomethylation (one-step method) and arylsulfonation. Surprisingly, all prepared lignosulfonates possessed 30 to 70% higher dispersibility for gypsum paste than the commercial lignosulfonate. Evaluation of the preparations for gypsum paste suggested that the higher molecular weights and sulfur contents of the preparations increased their dispersibility.

  7. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil.

    PubMed

    Salimon, Jumat; Abdullah, Bashar Mudhaffar; Salih, Nadia

    2011-11-01

    Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil. The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time. This study showed that ethanolic KOH concentration was significant variable for J. curcas seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed J. curcas seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC.

  8. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, F.H.; Moore, J.C.

    1999-05-25

    A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.

  9. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis.

    PubMed

    Kapoor, Manali; Raj, Tirath; Vijayaraj, M; Chopra, Anju; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2015-06-25

    To overcome the recalcitrant nature of biomass several pretreatment methodologies have been explored to make it amenable to enzymatic hydrolysis. These methodologies alter cell wall structure primarily by removing/altering hemicelluloses and lignin. In this work, alkali, dilute acid, steam explosion pretreatment are systematically studied for mustard stalk. To assess the structural variability after pretreatment, chemical analysis, surface area, crystallinity index, accessibility of cellulose, FT-IR and thermal analysis are conducted. Although the extent of enzymatic hydrolysis varies upon the methodologies used, nevertheless, cellulose conversion increases from <10% to 81% after pretreatment. Glucose yield at 2 and 72h are well correlated with surface area and maximum adsorption capacity. However, no such relationship is observed for xylose yield. Mass balance of the process is also studied. Dilute acid pretreatment is the best methodology in terms of maximum sugar yield at lower enzyme loading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, F.H.; Moore, J.C.

    1998-04-21

    A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases. These enzymes exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.

  11. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.

    PubMed

    Parmar, Indu; Rupasinghe, H P Vasantha

    2013-02-01

    Enzymatic hydrolysis of cellulose present in apple pomace was investigated using process variables such as enzyme activity of commercial cellulase, pectinase and β-glucosidase, temperature, pH, time, pre-treatments and end product separation. The interaction of enzyme activity, temperature, pH and time had a significant effect (P<0.05) on release of glucose. Optimal conditions of enzymatic saccharification were: enzyme activity of cellulase, 43units; pectinase, 183units; β-glucosidase, 41units/g dry matter (DM); temperature, 40°C; pH 4.0 and time, 24h. The sugars were fermented using Saccharomyces cerevisae yielding 19.0g ethanol/100g DM. Further bio-conversion using Acetobacter aceti resulted in the production of acetic acid at a concentration of 61.4g/100g DM. The present study demonstrates an improved process of enzymatic hydrolysis of apple pomace to yield sugars and concomitant bioconversion to produce ethanol and acetic acid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Assessment on proximate composition, dietary fiber, phytic acid and protein hydrolysis of germinated Ecuatorian brown rice.

    PubMed

    Cáceres, Patricio J; Martínez-Villaluenga, Cristina; Amigo, Lourdes; Frias, Juana

    2014-09-01

    Germinated brown rice (GBR) is considered healthier than brown rice (BR) but its nutritive value has been hardly studied. Since nutritive quality of GBR depends on genetic diversity and germination conditions, six Ecuadorian BR varieties were germinated at 28 and 34 ºC for 48 and 96 h in darkness and proximate composition, dietary fiber fractions, phytic acid content as well as degree of protein hydrolysis and peptide content were studied. Protein, lipids, ash and available carbohydrate ranged 7.3-10.4%, 2.0-4.0%, 0.8-1.5% and 71.6 to 84.0%, respectively, in GBR seedlings. Total dietary fiber increased during germination (6.1-13.6%), with a large proportion of insoluble fraction, while phytic acid was reduced noticeably. In general, protein hydrolysis occurred during germination was more accused at 28 ºC for 48 h. These results suggest that GBR can be consumed directly as nutritive staple food for a large population worldwide contributing to their nutritional requirements.

  13. Enzymatic and acid conversion of new starches from improved orphan crops: prospects for renewable materials uses in food and non-food industries.

    PubMed

    Doué, Ginette; Bédikou, Micaël; Koua, Gisèle; Mégnanou, Rose-Monde; Niamké, Sébastien

    2014-01-01

    The enzymatic and acid hydrolysis have converted eight new starches into a range of chain lengths mainly including glucose, maltose, and maltodextrins as observed on TLC plates, irrespective to the starch variety and treatment. Results of the enzymatic hydrolysis have highlighted the possibility of the use of V4 and V64, which can be labelled as "dietary fibres", to enhance the organoleptic qualities of foods and for fibre fortification of low-calorie products. Concerning V66 and V69, they have much relevant in food, textile and pharmaceutical applications. The acid hydrolysis showed that V73 is the best starch in the chemical industry for making environment-friendly products such as plastics. Because starch is a natural component that degrade quickly in normal composting condition, the whole studied starches could be advised for various utilizations in the food, textile, paper, biofuel, pharmaceutical and plastic industries for sustainable development.

  14. Immobilization of Paecilomyces variotii tannase and properties of the immobilized enzyme.

    PubMed

    Schons, Patrícia Fernanda; Lopes, Fernanda Cristina Rezende; Battestin, Vania; Macedo, Gabriela Alves

    2011-01-01

    Tannase produced by Paecilomyces variotii was encapsulated in sodium alginate beads and used for the effective hydrolysis of tannic acid; the efficiency of hydrolysis was comparable to that of the free enzyme. The alginate beads retained 100% of their efficiency in the first three rounds of successive use and 60% in rounds 4 and 5. The response surface methodology showed that the best conditions to hydrolysis of tannic acid by immobilized tannase were: sodium alginate 5.2%, CaCl₂ 0.55 M and 9 h to curing time. The optimized process resulted in 2.4 times more hydrolysed tannic acid than that obtained before optimization. The optimum pH for the actions of both the encapsulated and the free enzymes was 5.5. The optimum temperature of the reaction was determined to be 40 °C for the free enzyme and 60 °C for the immobilized form. The immobilization process improved the stability at low pH.

  15. Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis.

    PubMed

    Zianor Azrina, Z A; Beg, M Dalour H; Rosli, M Y; Ramli, Ridzuan; Junadi, Norhafzan; Alam, A K M Moshiul

    2017-04-15

    Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Thermoplastic microchannel fabrication using carbon dioxide laser ablation.

    PubMed

    Wang, Shau-Chun; Lee, Chia-Yu; Chen, Hsiao-Ping

    2006-04-14

    We report the procedures of machining microchannels on Vivak co-polyester thermoplastic substrates using a simple industrial CO(2) laser marker. To avoid overheating the substrates, we develop low-power marking techniques in nearly anaerobic environment. These procedures are able to machine microchannels at various aspect ratios. Either straight or serpent channel can be easily marked. Like the wire-embossed channel walls, the ablated channel surfaces become charged after alkaline hydrolysis treatment. Stable electroosmotic flow in the charged conduit is observed to be of the same order of magnitude as that in fused silica capillary. Typical dynamic coating protocols to alter the conduit surface properties are transferable to the ablated channels. The effects of buffer acidity on electroosmotic mobility in both bare and coated channels are similar to those in fused silica capillaries. Using video microscopy we also demonstrate that this device is useful in distinguishing the electrophoretic mobility of bare and latex particles from that of functionalized ones.

  17. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by isocratic high-pressure liquid chromatography with post-column hydrolysis and fluorescence detection.

    PubMed

    Hobl, Eva-Luise; Jilma, Bernd; Ebner, Josef; Schmid, Rainer W

    2013-06-01

    A selective, sensitive and rapid high-performance liquid chromatography method with post-column hydrolysis and fluorescence detection was developed for the simultaneous quantification of acetylsalicylic acid and its metabolite salicylic acid in human plasma. Following the addition of 2-hydroxy-3-methoxybenzoic acid as internal standard and simple protein precipitation with acetonitrile, the analytes were separated on a ProntoSIL 120 C18 ace-EPS column (150 × 2 mm, 3 µm) protected by a C8 guard column (5 µm). The mobile phase, 10 mm formic acid in water (pH 2.9) and acetonitrile (70:30, v/v), was used at a flow rate of 0.35 mL/min. After on-line post-column hydrolysis of acetylsalicylic acid (ASA) to salicylic acid (SA) by addition of alkaline solution, the analytes were measured at 290 nm (λex ) and 400 nm (λem ). The method was linear in the concentration ranges between 0.05 and 20 ng/μL for both ASA and SA with a lower limit of quantification of 25 pg/μL for SA and 50 pg/μL for ASA. The limit of detection was 15 pg/μL for SA and 32.5 pg/μL for ASA. The analysis of ASA and SA can be carried out within 8 min; therefore this method is suitable for measuring plasma concentrations of salicylates in clinical routine. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose.

    PubMed

    Sukwong, Pailin; Ra, Chae Hun; Sunwoo, In Yung; Tantratian, Sumate; Jeong, Gwi-Taek; Kim, Sung-Koo

    2018-03-23

    This study employed a statistical method to obtain optimal hyper thermal acid hydrolysis conditions using Gelidium amansii (red seaweed) as a source of biomass. The optimal hyper thermal acid hydrolysis using G. amansii as biomass was determined as 12% (w/v) slurry content, 358.3 mM H 2 SO 4 , and temperature of 142.6 °C for 11 min. After hyper thermal acid hydrolysis, enzymatic saccharification was carried out. The total monosaccharide concentration was 45.1 g/L, 72.2% of the theoretical value of the total fermentable monosaccharides of 62.4 g/L based on 120 g dry weight/L in the G. amansii slurry. To increase ethanol production, 3.8 g/L 5-hydroxymethylfurfural (HMF) in the hydrolysate was removed by treatment with 3.5% (w/v) activated carbon for 2 min and fermented with Pichia stipitis adapted to high galactose concentrations via separate hydrolysis and fermentation. With complete HMF removal and the use of P. stipitis adapted to high galactose concentrations, 22 g/L ethanol was produced (yield 0.50). Fermentation with total HMF removal and yeast adapted to high galactose concentrations increased the fermentation performance and decreased the fermentation time from 96 to 36 h compared to traditional fermentation.

  19. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    PubMed Central

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-01-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134–57.500 gr ethanol kg−1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis. PMID:27291594

  20. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    NASA Astrophysics Data System (ADS)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg-1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  1. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography.

    PubMed

    Crompton, Marcus J; Dunstan, R Hugh

    2018-05-01

    The composition and integrity of the bacterial cytoplasmic membrane is critical to the survival of staphylococci in dynamic environments and it is important to investigate how the cell membrane responds to changes in the environmental conditions. The staphylococcal membrane differs from eukaryotic and many other bacterial cell membranes by having a high abundance of branch fatty acids and relatively few unsaturated fatty acids. The range of available methods for extraction and efficient analyses of staphylococcal fatty acids was initially appraised to identify the best potential procedures for appraisal. Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213) was grown under optimal conditions to generate a cell biomass to compare the efficiencies of three approaches to extract and prepare methyl esters of the membrane fatty acids: (1) acidic direct transesterification of lipids, (2) modified basic direct transesterification of membrane lipids with adjusted reaction times and temperatures, and (3) base catalysed hydrolysis followed by acid catalysed esterification in two separate chemical reactions (MIDI process). All methods were able to extract fatty acids from the cell mass effectively where these lipids represented approximately 5% of the cellular dry mass. The acidic transesterification method had the least number of steps, the lowest coefficient of variation at 6.7% and good resistance to tolerating water. Basic transesterification was the least accurate method showing the highest coefficient of variation (26%). The MIDI method showed good recoveries, but had twice the number of steps and a coefficient of variation of 16%. It was also found that there was no need to use an anti-oxidant such as BHT for the protection of polyunsaturated fatty acids when the GC-MS injection liner was clean. It was concluded that the acidic transesterification procedures formed the most efficient and reproducible method for the analyses of staphylococcal membrane fatty acids. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  2. Enzymatic saccharification and lactic acid production from banana pseudo-stem through optimized pretreatment at lowest catalyst concentration

    PubMed Central

    Idrees, Muhammad; Adnan, Ahmad; Malik, Farnaz; Qureshi, Fahim Ashraf

    2013-01-01

    This work estimates the potential of banana pseudo-stem with high cellulosic content 42.2-63 %, for the production of fermentable sugars for lactic acid production through statistically optimized pretreatment method. To evaluate the catalyzed pretreatment efficiency of banana pseudo stem based on the enzymatic digestibility, Response Surface Methodology (RSM) was employed for the optimization of pretreatment temperature and time using lowest concentrations of H2SO4, NaOH, NaOH catalyzed Na2S and Na2SO3 that seemed to be significant variables with P<0.05. High F and R2 values and low p-value for hydrolysis yield indicated the model predictability. The optimized condition for NaOH was determined to be conc. 1 %, temperature 130 oC for 2.6 hr; Na2S; conc. 1 %, temperature 130 oC for 2.29 hr; Na2SO3; conc. 1 %, temperature 130 oC for 2.41 hr and H2SO4; conc. 1 %, temperature 129.45 oC for 2.18 hr, produced 84.91 %, 85.23 %, 81.2 % and 76.02 % hydrolysis yield, respectively. Sulphuric acid provided 33+1 gL-1 reducing sugars in pretreatment step along with 38+0.5 gL-1 during enzymatic hydrolysis. Separate hydrolysis and fermentation of resulting sugars showed that the conversion of glucans into lactic acid reached 92 % of the theoretical yield of glucose. PMID:26966423

  3. Linear, Single-Stranded Deoxyribonucleic Acid Isolated from Kilham Rat Virus

    PubMed Central

    Salzman, Lois Ann; White, Wesley L.; Kakefuda, Tsuyoshi

    1971-01-01

    Kilham rat virus (KRV) was grown in a rat nephroma cell line and was purified by two isopycnic centrifugations in cesium chloride. The virus contains single-stranded deoxyribonucleic acid (DNA) with a molecular weight of approximately 1.6 × 106. The DNA was extracted from the virion by both phenol extraction and by 2% sodium dodecyl sulfate at 50 C. KRV DNA, extracted by both procedures, was observed in an electron microscope by using a cytochrome c or diethylaminoethyldextran monolayer. The DNA was also exposed to exonuclease I, an enzyme which hydrolyzes specifically linear, single-stranded DNA. Hydrolysis of 70 to 80% of the DNA was observed. Both the enzymatic and the electron microscope studies support the conclusion that extracted KRV DNA is a single-stranded, linear molecule. The length of the DNA was measured in the electron microscope and determined to be 1.505 ± 0.206 μm. Images PMID:4327590

  4. Laser-Based Measurement of Refractive Index Changes: Kinetics of 2,3-Epoxy-1-propanol Hydrolysis.

    ERIC Educational Resources Information Center

    Spencer, Bert; Zare, Richard N.

    1988-01-01

    Describes an experiment in which a simple laser-based apparatus is used for measuring the change in refractive index during the acid-catalyzed hydrolysis of glycidol into glycerine. Gives a schematic of the experimental setup and discusses the kinetic analysis. (MVL)

  5. Sugar loss and enzyme inhibition due to oligosaccharides accumulation during high solids-loading enzymatic hydrolysis

    USDA-ARS?s Scientific Manuscript database

    Oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, ammonia fiber expansion: AFEX and extractive ammonia: EA). The methodology for large-scale separation of ...

  6. Efficient free fatty acid production in engineered Escherichia coli strains using soybean oligosaccharides as feedstock.

    PubMed

    Wang, Dan; Wu, Hui; Thakker, Chandresh; Beyersdorf, Jared; Bennett, George N; San, Ka-Yiu

    2015-01-01

    To be competitive with current petrochemicals, microbial synthesis of free fatty acids can be made to rely on a variety of renewable resources rather than on food carbon sources, which increase its attraction for governments and companies. Industrial waste soybean meal is an inexpensive feedstock, which contains soluble sugars such as stachyose, raffinose, sucrose, glucose, galactose, and fructose. Free fatty acids were produced in this report by introducing an acyl-ACP carrier protein thioesterase and (3R)-hydroxyacyl-ACP dehydratase into E. coli. Plasmid pRU600 bearing genes involved in raffinose and sucrose metabolism was also transformed into engineered E. coli strains, which allowed more efficient utilization of these two kinds of specific oligosaccharide present in the soybean meal extract. Strain ML103 (pRU600, pXZ18Z) produced ~1.60 and 2.66 g/L of free fatty acids on sucrose and raffinose, respectively. A higher level of 2.92 g/L fatty acids was obtained on sugar mixture. The fatty acid production using hydrolysate obtained from acid or enzyme based hydrolysis was evaluated. Engineered strains just produced ~0.21 g/L of free fatty acids with soybean meal acid hydrolysate. However, a fatty acid production of 2.61 g/L with a high yield of 0.19 g/g total sugar was observed on an enzymatic hydrolysate. The results suggest that complex mixtures of oligosaccharides derived from soybean meal can serve as viable feedstock to produce free fatty acids. Enzymatic hydrolysis acts as a much more efficient treatment than acid hydrolysis to facilitate the transformation of industrial waste from soybean processing to high value added chemicals. © 2015 American Institute of Chemical Engineers.

  7. Rapid spot test for the determination of esculin hydrolysis.

    PubMed

    Edberg, S C; Gam, K; Bottenbley, C J; Singer, J M

    1976-08-01

    Esculin hydrolysis is a useful test in the differentiation of both gram-positive and gram-negative bacteria covering a wide spectrum of aerobes, facultative anaerobes, and anaerobes. Commonly utilized methods require a minimum of 18 h of incubation in broth or agar medium and utilize the production of a brown-black compound, due to the combination of ferric ions with the hydrolysis product esculetin, as indicator. A procedure is presented that requires 15 to 30 min for completion and utilizes fluorescence loss as the indicator of hydrolysis. Esculin fluoresces at 366 nm, whereas the hydrolysis product esculetin does not. Over 1,400 strains of gram-positive and gram-negative bacteria were tested. There was 98.4% of correlation between the spot test and esculin broth and 97% correlation with the bile-esculin agar.

  8. Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading.

    PubMed

    Li, Xin; Zhou, Jin; Ouyang, Shuiping; Ouyang, Jia; Yong, Qiang

    2017-02-01

    Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.

  9. Site- and species-specific hydrolysis rates of heroin.

    PubMed

    Szöcs, Levente; Orgován, Gábor; Tóth, Gergő; Kraszni, Márta; Gergó, Lajos; Hosztafi, Sándor; Noszál, Béla

    2016-06-30

    The hydroxide-catalyzed non-enzymatic, simultaneous and consecutive hydrolyses of diacetylmorphine (DAM, heroin) are quantified in terms of 10 site- and species-specific rate constants in connection with also 10 site- and species-specific acid-base equilibrium constants, comprising all the 12 coexisting species in solution. This characterization involves the major and minor decomposition pathways via 6-acetylmorphine and 3-acetylmorphine, respectively, and morphine, the final product. Hydrolysis has been found to be 18-120 times faster at site 3 than at site 6, depending on the status of the amino group and the rest of the molecule. Nitrogen protonation accelerates the hydrolysis 5-6 times at site 3 and slightly less at site 6. Hydrolysis rate constants are interpreted in terms of intramolecular inductive effects and the concomitant local electron densities. Hydrolysis fraction, a new physico-chemical parameter is introduced and determined to quantify the contribution of the individual microspecies to the overall hydrolysis. Hydrolysis fractions are depicted as a function of pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. 1994 Toxic Hazards Research Unit (THRU) Annual Report.

    DTIC Science & Technology

    1995-04-01

    hydrolysis . TCOH was analyzed by GC/ECD after solvent extraction. Two important artifacts that can occur in analyzing the carboxylic acid metabolites of...Column Supelco Wax 10, 25m x 0.53mm Make Up Gas 5% Methane in Argon Carrier Flow rate 6 mL/min To establish conditions for enzymatic hydrolysis 24-h...incubation mixture. A sample of urine was analyzed without enzymatic hydrolysis for free TCOH. This was determined to be 30 ng/mL which indicates that 99

  11. Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose.

    PubMed

    Um, Byung-Hwan; van Walsum, G Peter

    2012-09-01

    The concept of reaction severity, which combines residence time and temperature, is often used in the pulp and paper and biorefining industries. The influence of corn stover pretreatment severity on yield of sugar and major degradation products and subsequent effects on enzymatic cellulose hydrolysis was investigated. The pretreatment residence time and temperature, combined into the severity factor (Log R(o)), were varied with constant acid concentration. With increasing severity, increasing concentrations of furfural and 5-hydroxymethylfurfural (5-HMF) coincided with decreasing yields of oligosaccharides. With further increase in severity factor, the concentrations of furans decreased, while the formation of formic acid and lactic acid increased. For example, from severity 3.87 to 4.32, xylose decreased from 6.39 to 5.26 mg/mL, while furfural increased from 1.04 to 1.33 mg/mL; as the severity was further increased to 4.42, furfural diminished to 1.23 mg/mL as formate rose from 0.62 to 1.83 mg/mL. The effects of dilute acid hydrolyzate, acetic acid, and lignin, in particular, on enzymatic hydrolysis were investigated with a rapid microassay method. The microplate method gave considerable time and cost savings compared to the traditional assay protocol, and it is applicable to a broad range of lignocellulosic substrates.

  12. Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.

    PubMed

    Michielssens, Servaas; Tien Trung, Nguyen; Froeyen, Matheus; Herdewijn, Piet; Tho Nguyen, Minh; Ceulemans, Arnout

    2009-09-07

    L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.

  13. Forms of acid hydrolysis and gley formation and their role in the development of light-colored acid eluvial (Podzolic) horizons

    NASA Astrophysics Data System (ADS)

    Zaidel'Man, F. R.

    2010-04-01

    Nowadays, three processes, namely lessivage, acid hydrolysis, and gleying, are considered as responsible for the development of loamy and clayey podzolic soils. However, as was shown earlier, lessivage is not obligatory for their origin. In view of assessing the reasons for the formation of light-colored acid eluvial horizons, this article deals with the role of acid hydrolysis under aerobic conditions against the background of a percolative water regime and of two forms of gleying in the development of the horizons mentioned above. One form of gleying occurs under permanent anaerobic conditions against the background of a stagnant water regime; the other one is formed under pulsating anaerobic-aerobic conditions against the background of a stagnant-percolative water regime. As a result, three large genetically individual groups of soils are formed: nondifferentiated brown and gley, and differentiated podzolic soils on different parent rocks. The two latter forms of gleying are identical in their effects on the mineral substrates. They cause the iron removal from the soils. Among the three processes considered, the last one (gleying under a stagnant-percolative water regime) is the single reason for the leaching of most of the metals, the formation of light-colored acid eluvial horizons and their clay depletion, and for the differentiation of the soil profile.

  14. An improved purification method for the lysosomal storage disease protein β-glucuronidase produced in CHO cells.

    PubMed

    Fratz-Berilla, Erica J; Ketcham, Stephanie A; Parhiz, Hamideh; Ashraf, Muhammad; Madhavarao, Chikkathur N

    2017-12-01

    Human β-glucuronidase (GUS; EC 3.2.1.31) is a lysosomal enzyme that catalyzes the hydrolysis of β-d-glucuronic acid residues from the non-reducing termini of glycosaminoglycans. Impairment in GUS function leads to the metabolic disorder mucopolysaccharidosis type VII, also known as Sly syndrome. We produced GUS from a CHO cell line grown in suspension in a 15 L perfused bioreactor and developed a three step purification procedure that yields ∼99% pure enzyme with a recovery of more than 40%. The method can be completed in two days and has the potential to be integrated into a continuous manufacturing scheme. Published by Elsevier Inc.

  15. Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis.

    PubMed

    Santos, Daniel; Silva, Ubiratan F; Duarte, Fabio A; Bizzi, Cezar A; Flores, Erico M M; Mello, Paola A

    2018-01-01

    In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO 3 , H 2 SO 4 , HCl and H 2 C 2 O 4 . The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70°C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8molL -1 HNO 3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance ( 1 H and 13 C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4molL -1 HNO 3 solution, sonicated for 60min at 30°C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme.

    PubMed

    Pellegrini, Vanessa O A; Serpa, Viviane Isabel; Godoy, Andre S; Camilo, Cesar M; Bernardes, Amanda; Rezende, Camila A; Junior, Nei Pereira; Franco Cairo, João Paulo L; Squina, Fabio M; Polikarpov, Igor

    2015-11-01

    Trichoderma filamentous fungi have been investigated due to their ability to secrete cellulases which find various biotechnological applications such as biomass hydrolysis and cellulosic ethanol production. Previous studies demonstrated that Trichoderma harzianum IOC-3844 has a high degree of cellulolytic activity and potential for biomass hydrolysis. However, enzymatic, biochemical, and structural studies of cellulases from T. harzianum are scarce. This work reports biochemical characterization of the recombinant endoglucanase I from T. harzianum, ThCel7B, and its catalytic core domain. The constructs display optimum activity at 55 °C and a surprisingly acidic pH optimum of 3.0. The full-length enzyme is able to hydrolyze a variety of substrates, with high specific activity: 75 U/mg for β-glucan, 46 U/mg toward xyloglucan, 39 U/mg for lichenan, 26 U/mg for carboxymethyl cellulose, 18 U/mg for 4-nitrophenyl β-D-cellobioside, 16 U/mg for rye arabinoxylan, and 12 U/mg toward xylan. The enzyme also hydrolyzed filter paper, phosphoric acid swollen cellulose, Sigmacell 20, Avicel PH-101, and cellulose, albeit with lower efficiency. The ThCel7B catalytic domain displays similar substrate diversity. Fluorescence-based thermal shift assays showed that thermal stability is highest at pH 5.0. We determined kinetic parameters and analyzed a pattern of oligosaccharide substrates hydrolysis, revealing cellobiose as a final product of C6 degradation. Finally, we visualized effects of ThCel7B on oat spelt using scanning electron microscopy, demonstrating the morphological changes of the substrate during the hydrolysis. The acidic behavior of ThCel7B and its considerable thermostability hold a promise of its industrial applications and other biotechnological uses under extremely acidic conditions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com; Irawan, Chairul; Mardina, Primata

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRSmore » concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.« less

  18. Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: proteolytic activity.

    PubMed

    Dallagnol, Andrea Micaela; Pescuma, Micaela; De Valdez, Graciela Font; Rollán, Graciela

    2013-04-01

    Quinoa fermentation by lactic acid bacteria (LAB) is an interesting alternative to produce new bakery products with high nutritional value; furthermore, they are suitable for celiac patients because this pseudo-cereal contains no gluten. Growth and lactic acid production during slurry fermentations by Lactobacillus plantarum CRL 778 were greater in quinoa (9.8 log cfu/mL, 23.1 g/L) than in wheat (8.9 log cfu/mL, 13.9 g/L). Lactic fermentation indirectly stimulated flour protein hydrolysis by endogenous proteases of both slurries. However, quinoa protein hydrolysis was faster, reaching 40-100% at 8 h of incubation, while wheat protein hydrolysis was only 0-20%. In addition, higher amounts of peptides (24) and free amino acids (5 g/L) were determined in quinoa compared to wheat. Consequently, greater concentrations (approx. 2.6-fold) of the antifungal compounds (phenyllactic and hydroxyphenyllactic acids) were synthesized from Phe and Tyr in quinoa by L. plantarum CRL 778, an antifungal strain. These promising results suggest that this LAB strain could be used in the formulation of quinoa sourdough to obtain baked goods with improved nutritional quality and shelf life, suitable for celiac patients.

  19. Phospholipids and products of their hydrolysis as dietary preventive factors for civilization diseases.

    PubMed

    Parchem, Karol; Bartoszek, Agnieszka

    2016-12-31

    The results of numerous epidemiological studies indicate that phospholipids play an important role in the prevention of chronic diseases faced by contemporary society. Firstly, these compounds are responsible for the proper functioning of cell membranes, by ensuring liquidity and permeability, which is pivotal for normal activity of membrane proteins, including receptors. These mechanisms are at the core of prevention of cancer, autoimmune or neurological disorders. Secondly, structure and properties of phospholipids cause that they are highly available source of biologically active fatty acids. Thirdly, also products of endogenous hydrolysis of phospholipids exhibit biological activity. These include lysophospholipids formed as a result of disconnecting free fatty acid from glycerophospholipids in the reaction catalyzed by phospholipase A, phosphatidic acid and hydrophilic subunits released by the activity of phospholipase D. The bioactive products of hydrolysis also include ceramides liberated from phosphosphingolipids after removal of a hydrophilic unit catalyzed by sphingomyelinase. Phospholipids are supplied to the human body with food. A high content of phospholipids is characteristic for egg yolk, liver, pork and poultry, as well as some soy products. Particularly beneficial are phospholipids derived from seafood because they are a rich source of essential fatty acids of the n-3 family.

  20. The effect of pH control and 'hydraulic flush' on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate.

    PubMed

    Cysneiros, Denise; Banks, Charles J; Heaven, Sonia; Karatzas, Kimon-Andreas G

    2012-11-01

    The effect of hydraulic flush and pH control on hydrolysis, Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors was investigated for the first time. Six reactors were operated under different regimes for two consecutive batches of 28days each. Buffering at pH ∼6.5 improved hydrolysis (Volatile Solid (VS) degradation) and VFA production by ∼50%. Butyric and acetic acid were dominant when reactors were buffered, while only butyric acid was produced at low pH. Hydraulic flush enhanced VS degradation and VFA production by ∼15% and ∼32%, respectively. Most Probable Number (MPN) of cellulolytic microorganisms indicated a wash out when hydraulic flush was applied, but pH control helped to counteract this. The highest VS degradation (∼89%), VFA yield (0.84kgCODkg(-1)VS(added)) and theoretical methane potential (0.37m(3)CH(4)kg(-1)VS(added)) were obtained when pH control and hydraulic flush were applied, and therefore, these conditions are recommended. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Rapid radiosynthesis of [11C] and [14C]azelaic, suberic, and sebacic acids for in vivo mechanistic studies of systemic acquired resistance in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best M.; Fowler J.; Best, M.

    2011-11-25

    A recent report that the aliphatic dicarboxylic acid, azelaic acid (1,9-nonanedioic acid) but not related acids, suberic acid (1,8-octanedioic acid) or sebacic (1,10-decanedioic acid) acid induces systemic acquired resistance to invading pathogens in plants stimulated the development of a rapid method for labeling these dicarboxylic acids with {sup 11}C and {sup 14}C for in vivo mechanistic studies in whole plants. {sup 11}C-labeling was performed by reaction of ammonium [{sup 11}C]cyanide with the corresponding bromonitrile precursor followed by hydrolysis with aqueous sodium hydroxide solution. Total synthesis time was 60 min. Median decay-corrected radiochemical yield for [{sup 11}C]azelaic acid was 40% relativemore » to trapped [{sup 11}C]cyanide, and specific activity was 15 GBq/{micro}mol. Yields for [{sup 11}C]suberic and sebacic acids were similar. The {sup 14}C-labeled version of azelaic acid was prepared from potassium [{sup 14}C]cyanide in 45% overall radiochemical yield. Radiolabeling procedures were verified using {sup 13}C-labeling coupled with {sup 13}C-NMR and liquid chromatography-mass spectrometry analysis. The {sup 11}C and {sup 14}C-labeled azelaic acid and related dicarboxylic acids are expected to be of value in understanding the mode-of-action, transport, and fate of this putative signaling molecule in plants.« less

  2. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes.

    PubMed

    Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria

    2010-08-01

    The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA.

  3. Stability of the insecticide cypermethrin during tomato processing and implications for endocrine activity.

    PubMed

    Lin, H M; Gerrard, J A; Shaw, I C

    2005-01-01

    The thermal and pH stabilities of cypermethrin during food processing were investigated using tomato as a model food system and high-performance liquid chromatography as the analytical method. Cypermethrin was thermally unstable in aqueous conditions, where the hydrolysis of the pesticide was accelerated by heat. The mean proportion remaining after heating cypermethrin in water for 10 min was 66%, falling to 27% after 1 h. Similarly, thermal processing of canned tomatoes caused cypermethrin to degrade, with remaining levels in the final product ranging from 30 to 60% of the original. Cypermethrin was unstable at extreme pHs, with acid hydrolysis occurring faster than alkaline hydrolysis in phosphate buffers. The acidity of tomato paste (pH 4.3) caused cypermethrin levels to decrease by 30% within 12 days at 5 degrees C. The studies indicate that cypermethrin residues are likely to degrade by hydrolysis during food processing, thus reducing the exposure of consumers to cypermethrin. 3-Phenoxybenzaldehyde, a hydrolysis breakdown product of cypermethrin, was detected in the tomato paste and from the heating of cypermethrin in water at 100 degrees C. There is concern that the risk of breakdown products in terms of endocrine activity is unknown since in vitro studies reported that cypermethrin breakdown products display endocrine activity.

  4. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  5. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  6. Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20% for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.

  7. Theoretical study of the alkaline hydrolysis of an aza-β-lactam derivative of clavulanic acid

    NASA Astrophysics Data System (ADS)

    Garcías, Rafael C.; Coll, Miguel; Donoso, Josefa; Muñoz, Francisco

    2003-04-01

    DFT calculations based on the hybrid functional B3LYP/6-31+G * were used to study the alkaline hydrolysis of an aza-clavulanic acid, which results from the substitution of the carbon atom at position 6 in clavulanic acid by a nitrogen atom. The presence of the nitrogen atom endows the compound with special properties; in fact, once formed, the tetrahedral intermediate can evolve with cleavage of the N 4-C 7 or N 6-C 7 bond, which obviously leads to different reaction products. These differential bond cleavages may play a central role in the inactivation of β-lactamases, so the compound may be a powerful inactivator of these enzymes.

  8. The effect of pretreatments on surfactin production from potato process effluent by Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. N. Thompson; S. L. Fox; G. A. Bala

    2000-05-07

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  9. Triazine-Substituted and Acyl Hydrazones: Experiment and Computation Reveal a Stability Inversion at Low pH.

    PubMed

    Ji, Kun; Lee, Changsuk; Janesko, Benjamin G; Simanek, Eric E

    2015-08-03

    Condensation of a hydrazine-substituted s-triazine with an aldehyde or ketone yields an equivalent to the widely used, acid-labile acyl hydrazone. Hydrolysis of these hydrazones using a formaldehyde trap as monitored using HPLC reveals that triazine-substituted hydrazones are more labile than acetyl hydrazones at pH>5. The reactivity trends mirror that of the corresponding acetyl hydrazones, with hydrolysis rates increasing along the series (aromatic aldehyde

  10. Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds.

    PubMed

    Xu, Changmou; Yagiz, Yavuz; Borejsza-Wysocki, Wlodzimierz; Lu, Jiang; Gu, Liwei; Ramírez-Rodrigues, Milena M; Marshall, Maurice R

    2014-08-15

    Enzyme degradation of plant cell wall polysaccharides can potentially enhance the release of bioactive phenolics. The aim of this study was to evaluate various combinations of solvent and enzyme, enzyme type (cellulase, pectinase, ß-glucosidase), and hydrolysis time (1, 4, 8, 24 h) on the release of muscadine grape skin and seed phenolics, and their antioxidant activities. Results showed that pre-treated muscadine skins and seeds with enzymes decreased total phenolic yield compared with solvent (50% ethanol) alone. Enzyme release of phenolics from skins of different muscadine varieties was significantly different while release from seeds was similar. Enzyme hydrolysis was found to shorten extraction time. Most importantly, enzyme hydrolysis modified the galloylated form of polyphenols to low molecular weight phenolics, releasing phenolic acids (especially gallic acid), and enhancing antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. DFT STUDY OF THE HYDROLYSIS OF SOME S-TRIAZINES

    EPA Science Inventory

    The acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines was investigated using the B3LYP hybrid density functional theory method. Gas-phase calculations were performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of ...

  12. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    ERIC Educational Resources Information Center

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  13. Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline-urea systems.

    PubMed

    Padzil, Farah Nadia Mohammad; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Kaco, Hatika; Gan, Sinyee; Ng, Peivun

    2015-06-25

    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. MALDI-TOF MS analysis of cellodextrins and xylo-oligosaccharides produced by hindgut homogenates of Reticulitermes santonensis.

    PubMed

    Brasseur, Catherine; Bauwens, Julien; Tarayre, Cédric; Mattéotti, Christel; Thonart, Philippe; Destain, Jacqueline; Francis, Frédéric; Haubruge, Eric; Portetelle, Daniel; Vandenbol, Micheline; Focant, Jean-François; De Pauw, Edwin

    2014-04-11

    Hindgut homogenates of the termite Reticulitermes santonensis were incubated with carboxymethyl cellulose (CMC), crystalline celluloses or xylan substrates. Hydrolysates were analyzed with matrix-assisted laser desorption/ionization coupled to time-of-flight mass spectrometry (MALDI-TOF MS). The method was first set up using acid hydrolysis analysis to characterize non-enzymatic profiles. Commercial enzymes of Trichoderma reesei or T. longibrachiatum were also tested to validate the enzymatic hydrolysis analysis. For CMC hydrolysis, data processing and visual display were optimized to obtain comprehensive profiles and allow rapid comparison and evaluation of enzymatic selectivity, according to the number of substituents of each hydrolysis product. Oligosaccharides with degrees of polymerization (DPs) ranging from three to 12 were measured from CMC and the enzymatic selectivity was demonstrated. Neutral and acidic xylo-oligosaccharides with DPs ranging from three to 11 were measured from xylan substrate. These results are of interest for lignocellulose biomass valorization and demonstrated the potential of termites and their symbiotic microbiota as a source of interesting enzymes for oligosaccharides production.

  15. Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid.

    PubMed

    Li, Kai; Song, Xin; Zhu, Tingting; Wang, Chi; Sun, Xin; Ning, Ping; Tang, Lihong

    2018-01-01

    The catalytic hydrolysis of carbonyl sulfide (COS) and the effect of small clusters of H 2 O and H 2 SO 4 have been studied by theoretical calculations. The addition of H 2 SO 4 could increase the enthalpy change (ΔH<0) and decrease relative energy of products (relative energy<0), resulting in hydrolysis reaction changed from an endothermic reaction to an exothermic reaction. Further, H 2 SO 4 decreases the energy barrier by 5.25 kcal/mol, and it enhances the catalytic hydrolysis through the hydrogen transfer effect. The (COS + H 2 SO 4 -H 2 O) reaction has the lowest energy barrier of 29.97 kcal/mol. Although an excess addition of H 2 O and H 2 SO 4 increases the energy barrier, decreases the catalytic hydrolysis, which is consistent with experimental observations. The order of the energy barriers for the three reactions from low to high are as follows: COS + H 2 SO 4 -H 2 O < COS + H 2 O + H 2 SO 4 -H 2 O < COS + H 2 O+(H 2 SO 4 ) 2 . Kinetic simulations show that the addition of H 2 SO 4 can increase the reaction rate constants. Consequently, adding an appropriate amount of sulfuric acid promotes the catalytic hydrolysis of COS both kinetically and thermodynamically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Synthesis and biological activity of amino acid conjugates of abscisic acid.

    PubMed

    Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro

    2011-03-01

    We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Study of an Acid-Free Technique for the Preparation of Glycyrrhetinic Acid from Ammonium Glycyrrhizinate in Subcritical Water.

    PubMed

    Lekar, Anna V; Borisenko, Sergey N; Vetrova, Elena V; Filonova, Olga V; Maksimenko, Elena V; Borisenko, Nikolai I; Minkin, Vladimir I

    2015-11-01

    The aim of this work was to study an application of a previously developed expedient acid-free technique for the preparation of glycyrrhetinic acid from ammonium glycyrrhizinate that requires no use of acids and toxic organic solvents. Subcritical water that serves as a reactant and a solvent was used in order to obtain glycyrrhetinic acid in good yields starting from ammonium glycyrrhizinate. It has been shown that variation of only one parameter of the process (temperature) allows alteration to thecomposition of the hydrolysis products. A new method was used for the synthesis of glycyrrhetinic acid (glycyrrhizic acid aglycone) and its monoglycoside. HPLC combined with mass spectrometry and NMR spectroscopy were used to determine the quantitative and qualitative compositions of the obtained products. The method developed for the production of glycyrrhetinic acid in subcritical water is environmentally friendly and faster than conventional hydrolysis methods that use acids and-expensive and toxic organic solvents. The proposed technique has a potential for the future development of inexpensive and environmentally friendly technologies for production of new pharmaceutical plant-based substances.

  18. Rapid spot test for the determination of esculin hydrolysis.

    PubMed Central

    Edberg, S C; Gam, K; Bottenbley, C J; Singer, J M

    1976-01-01

    Esculin hydrolysis is a useful test in the differentiation of both gram-positive and gram-negative bacteria covering a wide spectrum of aerobes, facultative anaerobes, and anaerobes. Commonly utilized methods require a minimum of 18 h of incubation in broth or agar medium and utilize the production of a brown-black compound, due to the combination of ferric ions with the hydrolysis product esculetin, as indicator. A procedure is presented that requires 15 to 30 min for completion and utilizes fluorescence loss as the indicator of hydrolysis. Esculin fluoresces at 366 nm, whereas the hydrolysis product esculetin does not. Over 1,400 strains of gram-positive and gram-negative bacteria were tested. There was 98.4% of correlation between the spot test and esculin broth and 97% correlation with the bile-esculin agar. Images PMID:787006

  19. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH.

    PubMed

    Wang, Kun; Yin, Jun; Shen, Dongsheng; Li, Na

    2014-06-01

    Food waste anaerobic fermentation was carried out under acidic conditions using inocula based on aerobic activated sludge (Inoculum AE) or anaerobic activated sludge (Inoculum AN) for volatile fatty acids (VFAs) production. The results showed that food waste hydrolysis increased obviously when Inoculum AN was used relative to Inoculum AE at any pH investigated. Hydrolysis at pH 4.0 and uncontrolled pH was higher than that at other pHs when either inoculum was used. Additionally, VFAs production at pH 6.0 was the highest, regardless of the inoculum used. The optimum VFA yields were 0.482g/gVSSremoval with Inoculum AE and 0.918g/gVSSremoval with Inoculum AN, which were observed after 4d and 20d of fermentation, respectively. VFAs composition analysis showed that butyrate acid was the prevalent acid at pH 6.0, followed by acetate acid and propionic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Interaction of the acid soap of triethanolamine stearate and stearic acid with water.

    PubMed

    Zhu, S; Pudney, P D A; Heppenstall-Butler, M; Butler, M F; Ferdinando, D; Kirkland, M

    2007-02-08

    Stearic acid and triethanolamine (TEA) in a molar ratio of 2:1 were mixed in aqueous solution at 80 degrees C and subsequently cooled to ambient temperature. The structural evolution of the resultant sample during storage was characterized by using light microscopy, Cryo-SEM, differential scanning calorimetery, pH, infrared spectroscopy, elemental analysis, and simultaneous small and wide-angle X-ray diffraction. It was found that a lamellar liquid crystalline phase was formed when stearic acid and TEA solution were mixed at 80 degrees C and multilamellar spheres of a few microns diameter were formed initially after cooling. A hydrolysis reaction (i.e., the reverse reaction of neutralization between stearic acid and TEA) occurred thereafter that caused the breakdown of the lamellar gel phase and the formation of platelet stearic acid crystals. Three polymorphs of stearic acid (defined following previous work as the A, C, and E forms) were formed as the result of hydrolysis reaction, which gave rise to a strong optically pearlescent appearance.

  1. Influence of smoking and packaging methods on lipid stability and microbial quality of Capelin (Mallotus villosus) and Sardine (Sardinella gibossa)

    PubMed Central

    Cyprian, Odoli O; Van Nguyen, Minh; Sveinsdottir, Kolbrun; Jonsson, Asbjorn; Tomasson, Tumi; Thorkelsson, Gudjon; Arason, Sigurjon

    2015-01-01

    Lipid and microbial quality of smoked capelin (two groups differing in lipid content) and sardine was studied, with the aim of introducing capelin in the smoked sardine markets. Lipid hydrolysis (phospholipid and free fatty acids) and oxidation index (hydroperoxides and thiobarbituric acid-reactive substances), fatty acid composition, and total viable count were measured in raw and packaged smoked fish during chilled storage (day 2, 10, 16, 22, 28). Lipid hydrolysis was more pronounced in low lipid capelin, whereas accelerated lipid oxidation occurred in high lipid capelin. Muscle lipid was less stable in sardine than capelin. Essential polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) constituted 12% of fatty acids in capelin and 19% in sardine. Vacuum packaging as well as hot smoking retarded bacterial growth, recording counts of ≤log 5 CFU/g compared to ≥log 7CFU/g in cold smoked air packaged. Smoked low lipid capelin was considered an alternative for introduction in smoked sardine markets. PMID:26405526

  2. Chromophoric spin-labeled β-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C β-lactamases

    NASA Astrophysics Data System (ADS)

    Mustafi, Devkumar; Hofer, Jennifer E.; Huang, Wanzhi; Palzkill, Timothy; Makinen, Marvin W.

    2004-05-01

    The chromophoric spin-label substrate 6- N-[3-(2,2,5,5-tetramethyl-1-oxypyrrolin-3-yl)-propen-2-oyl]penicillanic acid (SLPPEN) was synthesized by acylation of 6-aminopenicillanic acid with the acid chloride of 3-(2,2,5,5-tetramethyl-1-oxypyrrolinyl)-2-propenoic acid and characterized by physical methods. By application of angle-selected electron nuclear double resonance (ENDOR), we have determined the molecular structure of SLPPEN in solution. SLPPEN exhibited UV absorption properties that allowed accurate monitoring of the kinetics of its enzyme-catalyzed hydrolysis. The maximum value of the (substrate-product) difference extinction coefficient was 2824 M -1 cm -1 at 275 nm compared to 670 M -1 cm -1 at 232 nm for SLPEN [J. Am. Chem. Soc. 117 (1995) 6739]. For SLPPEN, the steady-state kinetic parameters kcat and kcat/ KM, determined under initial velocity conditions, were 637±36 s -1 and 13.8±1.4×10 6 M -1 s -1, respectively, for hydrolysis catalyzed by TEM-1 β-lactamase of E. coli, and 0.5±0.04 s -1 and 3.9±0.4×10 4 M -1 s -1 for hydrolysis catalyzed by the β-lactamase of Enterobacter cloacae P99. We have also observed "burst kinetics" for the hydrolysis of SLPPEN with P99 β-lactamase, indicative of formation of an acylenzyme reaction intermediate. In DMSO:H 2O (30:70, v:v) cryosolvent mixtures buffered to pH ∗ 7.0, the half-life of the acylenzyme intermediate formed with the P99 enzyme at -5 °C was ≥3 min, suitable for optical characterization. The observation of burst kinetics in the hydrolysis of SLPPEN catalyzed by P99 β-lactamase suggests that this chromophoric spin-labeled substrate is differentially sensitive to active site interactions underlying the cephalosporinase and penicillinase reactivity of this class C enzyme.

  3. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops

    PubMed Central

    2011-01-01

    Background The use of energy crops and agricultural residues is expected to increase to fulfil the legislative demands of bio-based components in transport fuels. Ensiling methods, adapted from the feed sector, are suitable storage methods to preserve fresh crops throughout the year for, for example, biogas production. Various preservation methods, namely ensiling with and without acid addition for whole crop maize, fibre hemp and faba bean were investigated. For the drier fibre hemp, alkaline urea treatment was studied as well. These treatments were also explored as mild pretreatment methods to improve the disassembly and hydrolysis of these lignocellulosic substrates. Results The investigated storage treatments increased the availability of the substrates for biogas production from hemp and in most cases from whole maize but not from faba bean. Ensiling of hemp, without or with addition of formic acid, increased methane production by more than 50% compared to fresh hemp. Ensiling resulted in substantially increased methane yields also from maize, and the use of formic acid in ensiling of maize further enhanced methane yields by 16%, as compared with fresh maize. Ensiled faba bean, in contrast, yielded somewhat less methane than the fresh material. Acidic additives preserved and even increased the amount of the valuable water-soluble carbohydrates during storage, which affected most significantly the enzymatic hydrolysis yield of maize. However, preservation without additives decreased the enzymatic hydrolysis yield especially in maize, due to its high content of soluble sugars that were already converted to acids during storage. Urea-based preservation significantly increased the enzymatic hydrolysability of hemp. Hemp, preserved with urea, produced the highest carbohydrate increase of 46% in enzymatic hydrolysis as compared to the fresh material. Alkaline pretreatment conditions of hemp improved also the methane yields. Conclusions The results of the present work show that ensiling and alkaline preservation of fresh crop materials are useful pretreatment methods for methane production. Improvements in enzymatic hydrolysis were also promising. While all three crops still require a more powerful pretreatment to release the maximum amount of carbohydrates, anaerobic preservation is clearly a suitable storage and pretreatment method prior to production of platform sugars from fresh crops. PMID:21771298

  4. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis process. Up to 72% of hexose yield and 94% of pentose yield were obtained using "modified" steam explosion with 2% sulfuric acid at 140°C for 30 min and enzymatic hydrolysis with cellulase (15 FPU/g cellulose) and beta-glucosidase (50 CBU/g cellulose).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struck, W.A.; Elving, P.J.

    Alloxan is the dominant product of the chemical oxidation of uric acid under strongly acid conditions; allantoin is the corresponding product for less acidic to alkaline conditions; separate reaction paths have generally been postulated to account for this difference. A study of the electrolytic oxidation of uric acid indicates the presence of a common path which eventually diverges to produce both alloxan and allantoin in comparable amounts, Uric acid gives a well- defined anodic voltammetric wave at a graphite electrode. When uric acid is electrolytically oxidized in diIute acetic acid at large graphite electrodes, 2.2 Faradays are passed, and 0,25more » mole CO/sub 2/, 0.25 mole of a precursor of allantoin, 0.75 mole urea, 0,3 mole parabanic acid and 0.3 mole alloxan simultaneously appear per mole of uric acid oxidized. At any stage during electrolysis, the sum of the moles of allantoin precursor and urea equals the moles of uric acid oxidized. This material balance and the stability of the allantoin precursor indicate that the production of urea is associated with the pathway(s) that produce alloxan and parabanic acid. These and other facts indicate a mechanism whereby uric acid is oxidized in a 2e process to a primary short-lived intermediate, which undergoes three simultaneous transformations: (1) hydrolysis to the allantoin precursor, (2) hydrolysis to alloxan and urea, and (3) further oxidation and hydrolysis leading to parabanic acid and urea. The non- stoichiometric amount of CO/sub 2/ produced and the non-integral number of electrons involved are accounted for by the formation of parabanic acid. The primary oxidation intermediate ultimately produces both allantoin and alloxan, suggesting that this intermediate may be common to all uric acid oxidations and that the ultimate product heretofore considered to be typified by either allantoin or alloxan (but not both) is most likely controlled by experimental conditions. (auth)« less

  6. Development of reproducible assays for polygalacturonase and pectinase.

    PubMed

    Li, Qian; Coffman, Anthony M; Ju, Lu-Kwang

    2015-05-01

    Polygalacturonase and pectinase activities reported in the literature were measured by several different procedures. These procedures do not give comparable results, partly owing to the complexity of the substrates involved. This work was aimed at developing consistent and efficient assays for polygalacturonase and pectinase activities, using polygalacturonic acid and citrus pectin, respectively, as the substrate. Different enzyme mixtures produced by Aspergillus niger and Trichoderma reesei with different inducing carbon sources were used for the method development. A series of experiments were conducted to evaluate the incubation time, substrate concentration, and enzyme dilution. Accordingly, for both assays the recommended (optimal) hydrolysis time is 30min and substrate concentration is 5g/L. For polygalacturonase, the sample should be adjusted to have 0.3-0.8U/mL polygalacturonase activity, because in this range the assay outcomes were consistent (independent of dilution factors). Such a range did not exist for the pectinase assay. The recommended procedure is to assay the sample at multiple (at least 2) dilution factors and determine, by linear interpolation, the dilution factor that would release reducing sugar equivalent to 0.4g/L d-galacturonic acid, and then calculate the activity of the sample accordingly (dilution factor×0.687U/mL). Validation experiments showed consistent results using these assays. Effects of substrate preparation methods were also examined. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Impact of Zeolite Aging in Hot Liquid Water on Activity for Acid-Catalyzed Dehydration of Alcohols.

    PubMed

    Vjunov, Aleksei; Derewinski, Miroslaw A; Fulton, John L; Camaioni, Donald M; Lercher, Johannes A

    2015-08-19

    The location and stability of Brønsted acid sites catalytically active in zeolites during aqueous phase dehydration of alcohols were studied on the example of cyclohexanol. The catalytically active hydronium ions originate from Brønsted acid sites (BAS) of the zeolite that are formed by framework tetrahedral Si atom substitution by Al. Al K-edge extended X-ray absorption fine structure (EXAFS) and (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopies in combination with density functional theory (DFT) calculations are used to determine the distribution of tetrahedral Al sites (Al T-sites) both qualitatively and quantitatively for both parent and HBEA catalysts aged in water prior to catalytic testing. The aging procedure leads to partial degradation of the zeolite framework evidenced from the decrease of material crystallinity (XRD) as well as sorption capacity (BET). With the exception of one commercial zeolite sample, which had the highest concentration of framework silanol-defects, there is no evidence of Al coordination modification after aging in water. The catalyst weight-normalized dehydration rate correlated best with the sum of strong and weak Brønsted acidic protons both able to generate the hydrated hydronium ions. All hydronium ions were equally active for the acid-catalyzed reactions in water. Zeolite aging in hot water prior to catalysis decreased the weight normalized dehydration reaction rate compared to that of the parent HBEA, which is attributed to the reduced concentration of accessible Brønsted acid sites. Sites are hypothesized to be blocked due to reprecipitation of silica dissolved during framework hydrolysis in the aging procedure.

  8. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    PubMed

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  9. Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin.

    PubMed

    Akimkulova, Ardak; Zhou, Yan; Zhao, Xuebing; Liu, Dehua

    2016-05-01

    Eleven salts were selected to screen the possible metal ions for blocking the non-productive adsorption of cellulase onto the lignin of dilute acid pretreated wheat straw. Mg(2+) was screened finally as the promising candidate. The optimal concentration of MgCl2 was 1 mM, but the beneficial action was also dependent on pH, hydrolysis time and cellulase loading. Significant improvement of glucan conversion (19.3%) was observed at low cellulase loading (5 FPU/g solid). Addition of isolated lignins, tannic acid and lignin model compounds to pure cellulose hydrolysis demonstrated that phenolic hydroxyl group (Ph-OH) was the main active site blocked by Mg(2+). The interaction between Mg(2+) and Ph-OH of lignin monomeric moieties followed an order of p-hydroxyphenyl (H)>guaiacyl (G)>syringyl (S). Mg(2+) blocking made the lignin surface less negatively charged, which might weaken the hydrogen bonding and electrostatically attractive interaction between lignin and cellulase enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Direct Biotransformation of Dioscin into Diosgenin in Rhizome of Dioscorea zingiberensis by Penicillium dioscin.

    PubMed

    Dong, Jingzhou; Lei, Can; Lu, Dayan; Wang, Ying

    2015-06-01

    Diosgenin is an important precursor for synthesis of more than 200 steroidal hormone medicines. Rhizome of Dioscorea zingiberensis C. H. Wright (RDZ) contained the highest content of diosgenin in Dioscorea plant species. Diosgenin is traditionally extracted by acid hydrolysis from RDZ. However, the acid hydrolysis process produces massive wastewater which caused serious environment pollution. In this study, diosgenin extraction by direct biotransformation with Penicillium dioscin was investigated. The spawn cultivation conditions were optimized as: Czapeks liquid culture medium without sugar and agar (1,000 ml) + 6.0 g dioscin/6.0 g DL, 30 °C, 36 h; solid fermentation of RDZ: mycelia/RDZ of 0.05 g/kg, 30 °C, 50 h; the yield of diosgenin was over 90 %. Spawn cultivation was crucial for the direct biotransformation. In the spawn cultivation, amount and ratio of dioscin/DL were the key factors to promote biotransformation activity of P. dioscin. This biotransformation method was environment-friendly, simple and energy saving, and might be a potential substitute for acid hydrolysis in diosgenin extraction industry.

  11. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase.

    PubMed

    Liu, Lei; Zhang, Ruifen; Deng, Yuanyuan; Zhang, Yan; Xiao, Juan; Huang, Fei; Wen, Wei; Zhang, Mingwei

    2017-04-15

    In this study, rice bran was successively steamed with α-amylase, fermented with lactic acid bacteria, and hydrolyzed with complex enzymes. The changes in phenolic profiles and antioxidant activities of the corresponding aqueous solutions from three stages were investigated. Compared to the first stage, fermentation and complex enzyme hydrolysis significantly increased the total phenolics, total flavonoids, total FRAP and ORAC values by 59.2%, 56.6%, 73.6% and 45.4%, respectively. Twelve individual phenolics present in free or soluble conjugate forms were also analyzed during the processing. Ferulic acid was released in the highest amount among different phenolics followed by protocatechuic acid. Moreover, a major proportion of phenolics existed as soluble conjugates. The results showed that fermentation and complex enzyme hydrolysis enhanced total phenolics and antioxidant activities of aqueous solution from rice bran pretreated by steaming with α-amylase. This research could provide basis for the processing of rice bran beverage rich in phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies.

    PubMed

    Lee, Charles C; Kibblewhite, Rena E; Paavola, Chad D; Orts, William J; Wagschal, Kurt

    2016-07-01

    Hemicellulose biomass is a complex polymer with many different chemical constituents that can be utilized as industrial feedstocks. These molecules can be released from the polymer and transformed into value-added chemicals through multistep enzymatic pathways. Some bacteria produce cellulosomes which are assemblies composed of lignocellulolytic enzymes tethered to a large protein scaffold. Rosettasomes are artificial engineered ring scaffolds designed to mimic the bacterial cellulosome. Both cellulosomes and rosettasomes have been shown to facilitate much higher rates of biomass hydrolysis compared to the same enzymes free in solution. We investigated whether tethering enzymes involved in both biomass hydrolysis and oxidative transformation to glucaric acid onto a rosettasome scaffold would result in an analogous production enhancement in a combined hydrolysis and bioconversion metabolic pathway. Three different enzymes were used to hydrolyze birchwood hemicellulose and convert the substituents to glucaric acid, a top-12 DOE value added chemical feedstock derived from biomass. It was demonstrated that colocalizing the three different enzymes to the synthetic scaffold resulted in up to 40 % higher levels of product compared to uncomplexed enzymes.

  13. Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy.

    PubMed

    Iqbal, Samina; Marchetti, Roberta; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio

    2017-10-01

    Low molecular weight fractions were derived from native high molecular weight dextran produced by Leuconostoc mesenteroides KIBGE-IB26. Structural characterization of native and low molecular weight fractions obtained after acidic and enzymatic hydrolysis was done using FTIR and NMR spectroscopy. The molecular weight was estimated using Diffusion Ordered NMR spectroscopy. Native dextran (892kDa) is composed of α-(1→6) glycosidic linkage along with α-(1→3) branching. Major proportion of 528kDa dextran was obtained after prolong enzymatic hydrolysis however, an effective acidic treatment at pH-1.4 up to 02 and 04h of exposure resulted in the formation of 77kDa and 57kDa, respectively. The increment in pH from 1.4 to 1.8 lowered the hydrolysis efficiency and resulted in the formation of 270kDa dextran fraction. The results suggest that derived low molecular weight water soluble fractions can be utilized as a drug delivery carrier along with multiple application relating pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A sensitive and efficient method for determination of N-acetylhexosamines and N-acetylneuraminic acid in breast milk and milk-based products by high-performance liquid chromatography via UV detection and mass spectrometry identification.

    PubMed

    Chuanxiang, Wu; Lian, Xia; Lijie, Liu; Fengli, Qu; Zhiwei, Sun; Xianen, Zhao; Jinmao, You

    2016-02-01

    A sensitive and efficient method of high performance liquid chromatography using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatization reagent coupled with UV detection (HPLC-UV) and online mass spectrometry identification was established for determination of the most common N-Acetylhexosamines (N-acetyl-d-glucosamine (GlcNAc) and N-acetyl-d-galactosamine (GalNAc)) and N-acetylneuraminic acid (Neu5Ac). In order to obtain the highest liberation level of the three monosaccharides without destruction of Neu5Ac or conversion of GlcNAc/GalNAc to GlcN/GalN in the hydrolysis procedure, the pivotal parameters affecting the liberation of N-acetylhexosamines/Neu5Ac from sample were investigated with response surface methodology (RSM). Under the optimized condition, maximum yield was obtained. The effects of key parameters on derivatization, separation and detection were also investigated. At optimized conditions, three monosaccharides were labeled fast and entirely, and all derivatives exhibited a good baseline resolution and high detection sensitivity. The developed method was linear over the calibration range 0.25-12μM, with R(2)>0.9991. The detection limits of the method were between 0.48 and 2.01pmol. Intra- and inter-day precisions for the three monosaccharides (GlcNAc, GalNAc and Neu5Ac) were found to be in the range of 3.07-4.02% and 3.69-4.67%, respectively. Individual monosaccharide recovery from spiked milk was in the range of 81%-97%. The sensitivity of the method, the facility of the derivatization procedure and the reliability of the hydrolysis conditions suggest the proposed method has a high potential for utilization in routine trace N-acetylhexosamines and Neu5Ac analysis in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Site-directed mutagenesis of α-L-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design.

    PubMed

    Xu, Li; Liu, Xiaohong; Yin, Zhenhao; Liu, Qian; Lu, Lili; Xiao, Min

    2016-12-01

    The α-L-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-L-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp 252 , Asp 257 , Asp 264 , Glu 530 , Arg 548 , His 553 , and Trp 555 ) and may form the hydrophobic pocket in stabilizing donor (Trp 261 , Tyr 302 , Tyr 316 , and Trp 369 ) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp 257 . Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.

  16. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  17. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.

    PubMed

    Jeong, Gwi-Taek; Kim, Sung-Koo; Park, Don-Hee

    2015-04-01

    In this study, the hydrolysis of marine macro-algae Gracilaria verrucosa with a solid-acid catalyst was investigated. To optimize the hydrolysis, four reaction factors, including liquid-to-solid ratio, catalyst loading, reaction temperature, and reaction time, were investigated. In the results, the highest total reducing sugar (TRS) yield, 61 g/L (51.9%), was obtained under the following conditions: 1:7.5 solid-to-liquid ratio, 15% (w/v) catalyst loading, 140 °C reaction temperature, and 150 min reaction time. Under these conditions, 10.7 g/L of 5-HMF and 2.5 g/L of levulinic acid (LA) were generated. The application of solid-acid catalyst and marine macro-algae resources shows a very high potential for production of fermentable sugars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira

    2016-08-10

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH{sub 2}DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warmingmore » up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.« less

  19. Stability of Medium-Bridged Twisted Amides in Aqueous Solutions

    PubMed Central

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2012-01-01

    “Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141

  20. Two-stage dilute-acid and organic-solvent lignocellulosic pretreatment for enhanced bioprocessing.

    PubMed

    Brodeur, G; Telotte, J; Stickel, J J; Ramakrishnan, S

    2016-11-01

    A two stage pretreatment approach for biomass is developed in the current work in which dilute acid (DA) pretreatment is followed by a solvent based pretreatment (N-methyl morpholine N oxide - NMMO). When the combined pretreatment (DAWNT) is applied to sugarcane bagasse and corn stover, the rates of hydrolysis and overall yields (>90%) are seen to dramatically improve and under certain conditions 48h can be taken off the time of hydrolysis with the additional NMMO step to reach similar conversions. DAWNT shows a 2-fold increase in characteristic rates and also fractionates different components of biomass - DA treatment removes the hemicellulose while the remaining cellulose is broken down by enzymatic hydrolysis after NMMO treatment to simple sugars. The remaining residual solid is high purity lignin. Future work will focus on developing a full scale economic analysis of DAWNT for use in biomass fractionation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    PubMed

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Simultaneous pretreatment and enzymatic hydrolysis of forage biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henk, L.; Linden, J.C.

    1993-12-31

    Sweet sorghum is an attractive fermentation feedstock because as much as 40% of the dry weight consists of readily femented sugars such as sucrose, glucose and frutose. Cellulose and hemicellulose comprise another 50%. However, if this material is to be used a year-round feedstock for ethanol production, a stable method of storage must be developed to maintain the sugar content. A modified version of the traditional ensiling process is made effective by the addition of cellulolytic/hemicellulolytic enzymes and lactic acid bacteria to freshly chopped sweet sorghum prior to the production of silage. In situ hydrolysis of cellulose and hemicellulose occursmore » concurrently with the acidic ensiling fementation. By hydolyzing the acetyl groups using acetyl xylan esterase and 3-0-methyl glucuronyl side chains using pectinase from hemicellulose, cellulose becomes accessible to hydrolysis by cellulase, both during in situ ensiling with enzymes and in the simultaneous saccharification and fermentation (SSF) to ethanol.« less

  3. Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions.

    PubMed

    Chadha, Geetika; Zhao, Yan

    2013-10-21

    Cross-linking the micelles of 4-dodecyloxybenzyltripropargylammonium bromide by 1,4-diazidobutane-2,3-diol in the presence of azide-functionalized imidazole derivatives yielded surface-cross-linked micelles (SCMs) with imidazole groups on the surface. The resulting water-soluble nanoparticles were found, by fluorescence spectroscopy, to contain hydrophobic binding sites. The imidazole groups promoted the photo-deprotonation of 2-naphthol at pH 6 and catalyzed the hydrolysis of p-nitrophenylacetate (PNPA) in aqueous solution at pH ≥ 4. Although the overall hydrolysis rate slowed down with decreasing solution pH, the catalytic effect of the imidazole became stronger because the reactions catalyzed by unfunctionalized SCMs slowed down much more. The unusual ability of the imidazole–SCMs to catalyze the hydrolysis of PNPA under acidic conditions was attributed to the local hydrophobicity and the positive nature of the SCMs.

  4. Two-stage dilute-acid and organic-solvent lignocellulosic pretreatment for enhanced bioprocessing

    DOE PAGES

    Brodeur, G.; Telotte, J.; Stickel, J. J.; ...

    2016-08-26

    A two stage pretreatment approach for biomass is developed in the current work in which dilute acid (DA) pretreatment is followed by a solvent based pretreatment (N-methyl morpholine N oxide -- NMMO). When the combined pretreatment (DAWNT) is applied to sugarcane bagasse and corn stover, the rates of hydrolysis and overall yields (>90%) are seen to dramatically improve and under certain conditions 48 h can be taken off the time of hydrolysis with the additional NMMO step to reach similar conversions. DAWNT shows a 2-fold increase in characteristic rates and also fractionates different components of biomass -- DA treatment removesmore » the hemicellulose while the remaining cellulose is broken down by enzymatic hydrolysis after NMMO treatment to simple sugars. The remaining residual solid is high purity lignin. Lastly, future work will focus on developing a full scale economic analysis of DAWNT for use in biomass fractionation.« less

  5. Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars.

    PubMed

    Kapu, N U S; Manning, M; Hurley, T B; Voigt, J; Cosgrove, D J; Romaine, C P

    2012-06-01

    Spent mushroom compost (SMC), a byproduct of commercial mushroom cultivation, poses serious environmental problems that have hampered the growth of this important agro-industry. In an effort to develop new applications for SMC, we explored its use as a feedstock for bioethanol production. SMC constitutes approximately 30%w/w polysaccharides, 66% of which is glucan. Following dilute-acid pretreatment and enzymatic hydrolysis, both in the presence of PEG 6000, 97% of glucan and 44% of xylan in SMC were converted into the corresponding monosaccharides. Incorporation of PEG 6000 reduced the cellulase requirement by 77%. Zwittergent 3-12 and 3-14 also significantly increased the efficacy of acid pretreatment and enzymatic hydrolysis. The use of SMC in bioethanol production represents a potential mitigation solution for the critical environmental issues associated with the stockpiling of the major byproduct of the mushroom industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Study of a specific lignin model: γ-oxidation and how it influences the hydrolysis efficiency of alcohol-aldehyde dehydrogenation copolymers.

    PubMed

    Bouxin, Florent; Baumberger, Stéphanie; Renault, Jean-Hugues; Dole, Patrice

    2011-05-01

    Six coniferyl alcohol-coniferaldehyde dehydrogenation copolymers (DHcoPs) were synthesized in order to determine the influence of an increased number of aldehyde functions on hydrolysis. After heterogeneous hydrolysis using acidic Montmorillonite K10 clay, the DHcoPs were thioacidolyzed and analyzed by gel permeation chromatography (GPC). Comparison of the thioacidolyzed products, with and without the hydrolysis step, showed that there was a greater proportion of condensation reaction in the absence of aldehyde. When the coniferaldehyde content in the initial synthetic mixture was more than 30% (w/w), only a low fraction of condensed products was generated during the K10 clay hydrolysis step. This suggests that condensation pathways are mainly due to the alcohol present in the γ-position in the DHcoPs. Investigation of the reactivity and the potential condensation of aldehyde and alcohol monomers under hydrolysis conditions showed the important conversion of coniferyl alcohol and conversely the stability of coniferaldehyde. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium.

    PubMed

    Carrillo-Reyes, Julian; Buitrón, Germán

    2016-12-01

    A native microalgae consortium treated under thermal-acidic hydrolysis was used to produce hydrogen and methane in a two-step sequential process. Different acid concentrations were tested, generating hydrogen and methane yields of up to 45mLH 2 gVS -1 and 432mLCH 4 gVS -1 , respectively. The hydrogen production step solubilized the particulate COD (chemical oxygen demand) up to 30%, creating considerable amounts of volatile fatty acids (up to 10gCODL -1 ). It was observed that lower acid concentration presented higher hydrogen and methane production potential. The results revealed that thermal acid hydrolysis of a native microalgae consortium is a simple but effective strategy for producing hydrogen and methane in the sequential process. In addition to COD removal (50-70%), this method resulted in an energy recovery of up to 15.9kJ per g of volatile solids of microalgae biomass, one of the highest reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Impact of inhibitors on commercial cellulases in lignocellulosic ethanol production.

    PubMed

    Li, Kai; Zhang, Jia-Wei; Liu, Chen-Guang; Bai, Feng-Wu

    2018-01-21

    The present study investigated the effects of formic acid, acetic acid, furfural, 5-HMF, and ethanol on activity of two commercial cellulases from Novozyme and Youtell. The carboxylic acid (formic acid and acetic acid) showed little impact on cellulose hydrolysis, but furan derivate (furfural, 5-HMF) performed higher inhibitory effects. The significant decrease of enzyme activity (Novozyme 84%, Youtell 75.8%) happened as addition of 6 g/L furfural. The synthetic solution containing four inhibitors with similar concentration as the acid-pretreated corn stover hydrolysate decreased enzyme activity by ~10%. But the real pretreatment liquid significantly decreased the enzyme activity by ~50% (Novozyme) and ~53% (Youtell). Ethanol (12%) also cut the enzyme activity down by 45%. These results suggested that the cellulase activity may be hindered by many potential inhibitors, which would determine the proper fermentation types between simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover.

    PubMed

    Chen, Longjian; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Zhang, Haiyan; Han, Lujia

    2016-05-05

    Corn stover was pretreated with acid under moderate conditions (1.5%, w/w, 121°C, 60min), and kinetic enzymolysis experiments were performed on the pretreated substrate using a mixture of Celluclast 1.5L (20FPU/g dry substrate) and Novozyme 188 (40CBU/g dry substrate). Integrated chemical and multi-scale structural methods were then used to characterize both processes. Chemical analysis showed that acid pretreatment removed considerable hemicellulose (from 19.7% in native substrate to 9.28% in acid-pretreated substrate) and achieved a reasonably high conversion efficiency (58.63% of glucose yield) in the subsequent enzymatic hydrolysis. Multi-scale structural analysis indicated that acid pretreatment caused structural changes via cleaving acetyl linkages, solubilizing hemicellulose, relocating cell wall surfaces and enlarging substrate porosity (pore volume increased from 0.0067cm(3)/g in native substrate to 0.019cm(3)/g in acid-pretreated substrate), thereby improving the polysaccharide digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development and validation of an HPLC method for the rapid and simultaneous determination of 6-mercaptopurine and four of its metabolites in plasma and red blood cells.

    PubMed

    Hawwa, Ahmed F; Millership, Jeff S; Collier, Paul S; McElnay, James C

    2009-02-20

    An HPLC method has been developed and validated for the rapid determination of mercaptopurine and four of its metabolites; thioguanine, thiouric acid, thioxanthine and methylmercaptopurine in plasma and red blood cells. The method involves a simple treatment procedure based on deproteinisation by perchloric acid followed by acid hydrolysis and heating for 45min at 100 degrees C. The developed method was linear over the concentration range studied with a correlation coefficient >0.994 for all compounds in both plasma and erythrocytes. The lower limits of quantification were 13, 14, 3, 2, 95pmol/8 x 10(8) RBCs and 2, 5, 2, 3, 20ng/ml plasma for thioguanine, thiouric acid, mercaptopurine, thioxanthine and methylmercaptopurine, respectively. The method described is selective and sensitive enough to analyse the different metabolites in a single run under isocratic conditions. Furthermore, it has been shown to be applicable for monitoring these metabolites in paediatric patients due to the low volume requirement (200microl of plasma or erythrocytes) and has been successfully applied for investigating population pharmacokinetics, pharmacogenetics and non-adherence to therapy in these patients.

  12. 40 CFR 417.20 - Applicability; description of the fatty acid manufacturing by fat splitting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.20 Applicability; description of the fatty acid manufacturing by fat splitting subcategory. The provisions of this subpart are applicable to discharges resulting from the splitting of fats to fatty acids by hydrolysis and the subsequent...

  13. 40 CFR 417.20 - Applicability; description of the fatty acid manufacturing by fat splitting subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.20 Applicability; description of the fatty acid manufacturing by fat splitting subcategory. The provisions of this subpart are applicable to discharges resulting from the splitting of fats to fatty acids by hydrolysis and the subsequent...

  14. Transport of beta-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis.

    PubMed

    Kunji, E R; Hagting, A; De Vries, C J; Juillard, V; Haandrikman, A J; Poolman, B; Konings, W N

    1995-01-27

    In the proteolytic pathway of Lactococcus lactis, milk proteins (caseins) are hydrolyzed extracellularly to oligopeptides by the proteinase (PrtP). The fate of these peptides, i.e. extracellular hydrolysis followed by amino acid uptake or transport followed by intracellular hydrolysis, has been addressed. Mutants have been constructed that lack a functional di-tripeptide transport system (DtpT) and/or oligopeptide transport system (Opp) but do express the P1-type proteinase (specific for hydrolysis of beta- and to a lesser extent kappa-casein). The wild type strain and the DtpT- mutant accumulate all beta-casein-derived amino acids in the presence of beta-casein as protein substrate and glucose as a source of metabolic energy. The amino acids are not accumulated significantly inside the cells by the Opp- and DtpT- Opp- mutants. When cells are incubated with a mixture of amino acids mimicking the composition of beta-casein, the amino acids are taken up to the same extent in all four strains. Analysis of the extracellular peptide fraction, formed by the action of PrtP on beta-casein, indicates that distinct peptides disappear only when the cells express an active Opp system. These and other experiments indicate that (i) oligopeptide transport is essential for the accumulation of all beta-casein-derived amino acids, (ii) the activity of the Opp system is sufficiently high to support high growth rates on beta-casein provided leucine and histidine are present as free amino acids, and (iii) extracellular peptidase activity is not present in L. lactis.

  15. Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water.

    PubMed

    Zhang, Taiying; Kumar, Rajeev; Wyman, Charles E

    2013-01-30

    Dilute oxalic acid pretreatment was applied to maple wood to improve compatibility with downstream operations, and its performance in pretreatment and subsequent enzymatic hydrolysis was compared to results for hydrothermal and dilute hydrochloric and sulfuric acid pretreatments. The highest total xylose yield of ∼84% of the theoretical maximum was for both 0.5% oxalic and sulfuric acid pretreatment at 160 °C, compared to ∼81% yield for hydrothermal pretreatment at 200 °C and for 0.5% hydrochloric acid pretreatment at 140 °C. The xylooligomer fraction from dilute oxalic acid pretreatment was only 6.3% of the total xylose in solution, similar to results with dilute hydrochloric and sulfuric acids but much lower than the ∼70% value for hydrothermal pretreatment. Combining any of the four pretreatments with enzymatic hydrolysis with 60 FPU cellulase/g of glucan plus xylan in the pretreated maple wood resulted in virtually the same total glucose plus xylose yields of ∼85% of the maximum possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A sustainable woody biomass biorefinery.

    PubMed

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars. At higher acid concentration and higher temperature the hydrolysis produced more xylose monomers in a comparatively shorter period of reaction time. Xylose is the most abundant monomeric sugar in the hydrolysate. The other comparatively small amounts of monomeric sugars include arabinose, glucose, rhamnose, mannose and galactose. Acetic acid, formic acid, furfural, HMF and other byproducts are inevitably generated during the acid hydrolysis process. Short reaction time is preferred for the hydrolysis of hot-water wood extracts. Acid hydrolysis presents a perfect opportunity for the removal or separation of aromatic materials from the wood extract/hydrolysate. The hot-water wood extract hydrolysate, after solid-removal, can be purified by Nano-membrane filtration to yield a fermentable sugar stream. Fermentation products such as ethanol can be produced from the sugar stream without a detoxification step. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Determination of the gram-positive bacterial content of soils and sediments by analysis of teichoic acid components

    NASA Technical Reports Server (NTRS)

    Gehron, M. J.; Davis, J. D.; Smith, G. A.; White, D. C.

    1984-01-01

    Many gram-positive bacteria form substituted polymers of glycerol and ribitol phosphate esters known as teichoic acids. Utilizing the relative specificity of cold concentrated hydrofluoric acid in the hydrolysis of polyphosphate esters it proved possible to quantitatively assay the teichoic acid-derived glycerol and ribitol from gram-positive bacteria added to various soils and sediments. The lipids are first removed from the soils or sediments with a one phase chloroform-methanol extraction and the lipid extracted residue is hydrolyzed with cold concentrated hydrofluoric acid. To achieve maximum recovery of the teichoic acid ribitol, a second acid hydrolysis of the aqueous extract is required. The glycerol and ribitol are then acetylated after neutralization and analyzed by capillary gas-liquid chromatography. This technique together with measures of the total phospholipid, the phospholipid fatty acid, the muramic acid and the hydroxy fatty acids of the lipopolysaccharide lipid A of the gram-negative bacteria makes it possible to describe the community structure environmental samples. The proportion of gram-positive bacteria measured as the teichoic acid glycerol and ribitol is higher in soils than in sediments and increases with depth in both.

  18. Aqueous fractionation of biomass based on novel carbohydrate hydrolysis kinetics

    DOEpatents

    Torget, Robert W.

    2001-01-01

    A multi-function process for hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components comprising extractives and proteins; a portion of a solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising: a) introducing either solid fresh biomass or partially fractioned lignocellulosic biomass material with entrained acid or water into a reactor and heating to a temperature of up to about 185.degree. C.-205.degree. C. b) allowing the reaction to proceed to a point where about 60% of the hemicellulose has been hydrolyzed in the case of water or complete dissolution in case of acid; c) adding a dilute acid liquid at a pH below about 5 at a temperature of up to about 205.degree. C. for a period ranging from about 5 to about 10 minutes; to hydrolyze the remaining 40% of hemicellulose if water is used. d) quenching the reaction at a temperature of up to about 140.degree. C. to quench all degradation and hydrolysis reactions; and e) introducing into said reaction chamber and simultaneously removing from said reaction chamber, a volumetric flow rate of dilute acid at a temperature of up to about 140.degree. C. to wash out the majority of the solubilized biomass components, to obtain improved hemicellosic sugar yields.

  19. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea

    PubMed Central

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-01-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested. PMID:22592820

  20. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea.

    PubMed

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-10-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, (15)N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested.

  1. Hemoglobin Cleavage Site-Specificity of the Plasmodium falciparum Cysteine Proteases Falcipain-2 and Falcipain-3

    PubMed Central

    Subramanian, Shoba; Hardt, Markus; Choe, Youngchool; Niles, Richard K.; Johansen, Eric B.; Legac, Jennifer; Gut, Jiri; Kerr, Iain D.; Craik, Charles S.; Rosenthal, Philip J.

    2009-01-01

    The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 degrade host hemoglobin to provide free amino acids for parasite protein synthesis. Hemoglobin hydrolysis has been described as an ordered process initiated by aspartic proteases, but cysteine protease inhibitors completely block the process, suggesting that cysteine proteases can also initiate hemoglobin hydrolysis. To characterize the specific roles of falcipains, we used three approaches. First, using random P1 – P4 amino acid substrate libraries, falcipain-2 and falcipain-3 demonstrated strong preference for cleavage sites with Leu at the P2 position. Second, with overlapping peptides spanning α and β globin and proteolysis-dependent 18O labeling, hydrolysis was seen at many cleavage sites. Third, with intact hemoglobin, numerous cleavage products were identified. Our results suggest that hemoglobin hydrolysis by malaria parasites is not a highly ordered process, but rather proceeds with rapid cleavage by falcipains at multiple sites. However, falcipain-2 and falcipain-3 show strong specificity for P2 Leu in small peptide substrates, in agreement with the specificity in optimized small molecule inhibitors that was identified previously. These results are consistent with a principal role of falcipain-2 and falcipain-3 in the hydrolysis of hemoglobin by P. falciparum and with the possibility of developing small molecule inhibitors with optimized specificity as antimalarial agents. PMID:19357776

  2. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities.

    PubMed

    Corrêa, Ana Paula Folmer; Daroit, Daniel Joner; Fontoura, Roberta; Meira, Stela Maris Meister; Segalin, Jeferson; Brandelli, Adriano

    2014-11-01

    Enzymatic proteolysis may be employed to release bioactive peptides, which have been investigated for potential benefits from both technological and human health perspectives. In this study, sheep cheese whey (SCW) was hydrolyzed with a protease preparation from Bacillus sp. P7, and the hydrolysates were evaluated for antioxidant and angiotensin I-converting enzyme (ACE)-inhibitory activities. Soluble protein and free amino acids increased during hydrolysis of SCW for up to 4h. Antioxidant activity of hydrolysates, evaluated by the 2,2'azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid radical scavenging method, increased 3.2-fold from 0 h (15.9%) to 6h of hydrolysis (51.3%). Maximum Fe(2+) chelation was reached in 3h hydrolysates, and the reducing power peaked at 1h of hydrolysis, representing 6.2 and 2.1-fold increase, respectively, when compared to that of non-hydrolyzed SCW. ACE inhibition by SCW (12%) was improved through hydrolysis, reaching maximal values (55% inhibition) in 4h, although 42% inhibition was already observed after 1h hydrolysis. The peptide LAFNPTQLEGQCHV, derived from β-lactoglobulin, was identified from 4-h hydrolysates. Such a biotechnological approach might be an interesting strategy for SCW processing, potentially contributing to the management and valorization of this abundant dairy byproduct. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose

    PubMed Central

    2013-01-01

    Background Plant expansins and fungal swollenin that can disrupt crystalline cellulose have great potential for applications in conversion of biomass. Recent studies have been mainly focused on Trichoderma reesei swollenin that show relatively low activity in the promotion of cellulosic hydrolysis. Our aim was to isolate a novel swollenin with greater disruptive activity, to establish an efficient way of producing recombinant swollenin, and to optimize the procedure using swollenin in facilitation of cellulosic hydrolysis. Results A novel gene encoding a swollenin-like protein, POSWOI, was isolated from the filamentous fungus Penicillium oxalicum by Thermal Asymmetric Interlaced PCR (TAIL-PCR). It consisted of a family 1 carbohydrate-binding module (CBM1) followed by a linker connected to a family 45 endoglucanase-like domain. Using the cellobiohydrolase I promoter, recombinant POSWOI was efficiently produced in T. reesei with a yield of 105 mg/L, and showed significant disruptive activity on crystalline cellulose. Simultaneous reaction with both POSWOI and cellulases enhanced the hydrolysis of crystalline cellulose Avicel by approximately 50%. Using a POSWOI-pretreatment procedure, cellulases can produce nearly twice as many reducing sugars as without pretreatment. The mechanism by which POSWOI facilitates the saccharification of cellulose was also studied using a cellulase binding assay. Conclusion We present a novel fungal swollenin with considerable disruptive activity on crystalline cellulose, and develop a better procedure for using swollenin in facilitating cellulosic hydrolysis. We thus provide a new approach for the effective bioconversion of cellulosic biomass. PMID:23688024

  4. Non-catalytic steam hydrolysis of fats. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steammore » mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.« less

  5. Non-catalytic steam hydrolysis of fats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steammore » mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.« less

  6. Reactivity of Dimeric Tetrazirconium(IV) Wells-Dawson Polyoxometalate toward Dipeptide Hydrolysis Studied by a Combined Experimental and Density Functional Theory Approach.

    PubMed

    Ly, Hong Giang T; Mihaylov, Tzvetan; Absillis, Gregory; Pierloot, Kristine; Parac-Vogt, Tatjana N

    2015-12-07

    Detailed kinetic studies on the hydrolysis of glycylglycine (Gly-Gly) in the presence of the dimeric tetrazirconium(IV)-substituted Wells-Dawson-type polyoxometalate Na14[Zr4(P2W16O59)2(μ3-O)2(OH)2(H2O)4] · 57H2O (1) were performed by a combination of (1)H, (13)C, and (31)P NMR spectroscopies. The catalyst was shown to be stable under a broad range of reaction conditions. The effect of pD on the hydrolysis of Gly-Gly showed a bell-shaped profile with the fastest hydrolysis observed at pD 7.4. The observed rate constant for the hydrolysis of Gly-Gly at pD 7.4 and 60 °C was 4.67 × 10(-7) s(-1), representing a significant acceleration as compared to the uncatalyzed reaction. (13)C NMR data were indicative for coordination of Gly-Gly to 1 via its amide oxygen and amine nitrogen atoms, resulting in a hydrolytically active complex. Importantly, the effective hydrolysis of a series of Gly-X dipeptides with different X side chain amino acids in the presence of 1 was achieved, and the observed rate constant was shown to be dependent on the volume, chemical nature, and charge of the X amino acid side chain. To give a mechanistic explanation of the observed catalytic hydrolysis of Gly-Gly, a detailed quantum-chemical study was performed. The theoretical results confirmed the nature of the experimentally suggested binding mode in the hydrolytically active complex formed between Gly-Gly and 1. To elucidate the role of 1 in the hydrolytic process, both the uncatalyzed and the polyoxometalate-catalyzed reactions were examined. In the rate-determining step of the uncatalyzed Gly-Gly hydrolysis, a carboxylic oxygen atom abstracts a proton from a solvent water molecule and the nascent OH nucleophile attacks the peptide carbon atom. Analogous general-base activity of the free carboxylic group was found to take place also in the case of polyoxometalate-catalyzed hydrolysis as the main catalytic effect originates from the -C═O···Zr(IV) binding.

  7. Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production

    PubMed Central

    2014-01-01

    Background Carbon sources for biofuel production are wide-ranging and their availability depends on the climate and soil conditions of the land where the production chain is located. Henequen (Agave fourcroydes Lem.) is cultivated in Yucatán, Mexico to produce natural fibers from the leaves, and a juice containing fructans is produced during this process. Fructans can be hydrolyzed to fructose and glucose and metabolized into ethanol by appropriate yeasts. In Mexico, different Agave species provide the carbon source for (distilled and non-distilled) alcoholic beverage production using the stem of the plant, whilst the leaves are discarded. In this work, we investigated the effect of thermal acid and enzymatic hydrolysis of the juice on the amount of reducing sugars released. Growth curves were generated with the yeasts Saccharomyces cerevisiae and Kluyveromyces marxianus and fermentations were then carried out with Kluyveromyces marxianus to determine alcohol yields. Results With thermal acid hydrolysis, the greatest increase in reducing sugars (82.6%) was obtained using 5% H2SO4 at 100°C with a 30 min reaction time. Statistically similar results can be obtained using the same acid concentration at a lower temperature and with a shorter reaction time (60°C, 15 min), or by using 1% H2SO4 at 100°C with a 30 min reaction time. In the case of enzymatic hydrolysis, the use of 5.75, 11.47 and 22.82 U of enzyme did not produce significant differences in the increase in reducing sugars. Although both hydrolysis processes obtained similar results, the difference was observed after fermentation. Ethanol yields were 50.3 ± 4 and 80.04 ± 5.29% of the theoretical yield respectively. Conclusions Final reducing sugars concentrations obtained with both thermal acid and enzymatic hydrolysis were similar. Saccharomyces cerevisiae, a good ethanol producer, did not grow in the hydrolysates. Only Kluyveromyces marxianus was able to grow in them, giving a higher ethanol yield with the enzymatic hydrolysate. The leaves account for a non-negligible weight of the total agave plant biomass, so this work complements the knowledge already developed on agave fermentations by making it possible to produce ethanol from almost the entire plant (stem and leaves). PMID:24529165

  8. Hydrolysis of alkaline pretreated banana peel

    NASA Astrophysics Data System (ADS)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  9. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    PubMed

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments.

  10. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures.

    PubMed

    Huijghebaert, S M; Hofmann, A F

    1986-07-01

    The influence of the chemical structure of the amino acid (or amino acid analogue) moiety of a number of synthetic cholyl amidates on deconjugation by cholylglycine hydrolase from Clostridium perfringens was studied in vitro at pH 5.4. Conjugates with alkyl homologues of glycine were hydrolyzed more slowly as the number of methylene units increased (cholylglycine greater than cholyl-beta-alanine greater than cholyl-gamma-aminobutyrate). In contrast, for conjugates with the alkyl homologues of taurine, cholylaminopropane sulfonate was hydrolyzed slightly faster than cholyltaurine, whereas cholylaminomethane sulfonate was hydrolyzed much more slowly. When glycine was replaced by other neutral alpha-amino acids, rates of hydrolysis decreased with increasing steric hindrance near the amide bond (cholyl-L-alpha-alanine much much greater than cholyl-L-leucine much greater than cholyl-L-valine greater than cholyl-L-tyrosine much greater than cholyl-D-valine). Conjugation with acidic or basic amino acids also greatly reduced the rates of hydrolysis, as cholyl-L-aspartate, cholyl-L-cysteate, cholyl-L-lysine, and cholyl-L-histidine were all hydrolyzed at a rate less than one-tenth that of cholylglycine. Methyl esterification of the carboxylic group of the amino acid moiety reduced the hydrolysis, but such substrates (cholylglycine methyl ester and cholyl-beta-alanine methyl ester) were completely hydrolyzed after overnight incubation with excess of enzyme. In contrast, cholyl-cholamine was not hydrolyzed at all, suggesting that a negative charge at the end of the side chain is required for optimal hydrolysis. Despite the lack of specificity for the amino acid moiety, a bile salt moiety was required, as the cholylglycine hydrolase did not display general carboxypeptidase activity for other non-bile acid substrates containing a terminal amide bond: hippuryl-L-phenylalanine and hippuryl-L-arginine, as well as oleyltaurine and oleylglycine, were not hydrolyzed. Fecal bacterial cultures from healthy volunteers also hydrolyzed cholyl-L-valine and cholyl-D-valine more slowly than cholylglycine, suggesting that cholylglycine hydrolase from Clostridium perfringens has a substrate specificity similar to that of the deconjugating enzymes of the fecal flora. The results indicate that modification of the position of the amide bond, introduction of steric hindrance near the amide bond, or loss of a negative charge on the terminal group of the amino acid moiety of the bile acid conjugate greatly reduces the rate of bacterial deconjugation in vitro when compared to that of the naturally occurring glycine and taurine conjugates.

  11. Fatty Acids Present in the Lipopolysaccharide of Rhizobium trifolii

    PubMed Central

    Russa, R.; Lorkiewicz, Z.

    1974-01-01

    Approximately 70% of the fatty acids recovered after acid or alkaline hydrolysis of the lipopolysaccharide of Rhizobium trifolii were hydroxy fatty acids identified as hydroxymyristic and hydroxypalmitic acids. Palmitic acid was the only saturated fatty acid found in the lipopolysaccharide of R. trifolii. Octadecenoic and a small amount of hexadecenoic acids were also identified. The results of BF3 methanolysis and hydroxylaminolysis suggest that hydroxypalmitic acid is N-acyl bound. PMID:4852028

  12. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1061 Lactic acid. (a) Lactic acid (C3H6O3, CAS Reg. Nos.: dl mixture, 598-82-3; l-isomer, 79-33-4; d... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lactic acid. 184.1061 Section 184.1061 Food and... hydrolysis to lactic acid. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed...

  13. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  14. A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge.

    PubMed

    Dong, Bin; Gao, Peng; Zhang, Dong; Chen, Yinguang; Dai, Lingling; Dai, Xiaohu

    2016-05-01

    As an important intermediate product, short-chain fatty acids (SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion process. In order to obtain more SCFA and methane, most studies in literatures were centered on enhancing the hydrolysis of sludge anaerobic digestion which was proved as un-efficient. Though the alkaline pretreatment in our previous study increased both the hydrolysis and acidification processes, it had a vast chemical cost which was considered uneconomical. In this paper, a low energy consumption pretreatment method, i.e. enhanced the whole three stages of the anaerobic fermentation processes at the same time, was reported, by which hydrolysis and acidification were both enhanced, and the SCFA and methane generation can be significantly improved with a small quantity of chemical input. Firstly, the effect of different pretreated temperatures and pretreatment time on sludge hydrolyzation was compared. It was found that sludge pretreated at 100°C for 60min can achieve the maximal hydrolyzation. Further, effects of different initial pHs on acidification of the thermal pretreated sludge were investigated and the highest SCFA was observed at initial pH9.0 with fermentation time of 6d, the production of which was 348.63mg COD/gVSS (6.8 times higher than the blank test) and the acetic acid was dominant acid. Then, the mechanisms for this new pretreatment significantly improving SCFA production were discussed. Finally, the effect of this low energy consumption pretreatment on methane generation was investigated. Copyright © 2015. Published by Elsevier B.V.

  15. A kinetic study of Trichoderma reesei Cel7B catalyzed cellulose hydrolysis.

    PubMed

    Song, Xiangfei; Zhang, Shujun; Wang, Yefei; Li, Jingwen; He, Chunyan; Yao, Lishan

    2016-06-01

    One prominent feature of Trichoderma reesei (Tr) endoglucanases catalyzed cellulose hydrolysis is that the reaction slows down quickly after it starts (within minutes). But the mechanism of the slowdown is not well understood. A structural model of Tr- Cel7B catalytic domain bound to cellulose was built computationally and the potentially important binding residues were identified and tested experimentally. The 13 tested mutants show different binding properties in the adsorption to phosphoric acid swollen cellulose and filter paper. Though the partitioning parameter to filter paper is about 10 times smaller than that to phosphoric acid swollen cellulose, a positive correlation is shown for two substrates. The kinetic studies show that the reactions slow down quickly for both substrates. This slowdown is not correlated to the binding constant but anticorrelated to the enzyme initial activity. The amount of reducing sugars released after 24h by Cel7B in phosphoric acid swollen cellulose, Avicel and filter paper cellulose hydrolysis is correlated with the enzyme activity against a soluble substrate p-nitrophenyl lactoside. Six of the 13 tested mutants, including N47A, N52D, S99A, N323D, S324A, and S346A, yield ∼15-35% more reducing sugars than the wild type (WT) Cel7B in phosphoric acid swollen cellulose and filter paper hydrolysis. This study reveals that the slowdown of the reaction is not due to the binding of the enzyme to cellulose. The activity of Tr- Cel7B against the insoluble substrate cellulose is determined by the enzyme's capability in hydrolyzing the soluble substrate. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Papain hydrolysis of X-phenyl-N-methanesulfonyl glycinates: a quantitative structure-activity relationship and molecular graphics analysis.

    PubMed

    Carotti, A; Smith, R N; Wong, S; Hansch, C; Blaney, J M; Langridge, R

    1984-02-15

    The hydrolysis of 32 X-phenyl-N-methanesulfonyl glycinates by papain was investigated. It was found that the variation in the Michaelis constants could be rationalized by the following correlation equation: log 1/Km = 0.61 pi '3 + 0.46 MR4 + 0.55 sigma + 2.00 with a correlation coefficient of 0.945. In this expression, pi '3 is the hydrophobic constant for the more lipophilic of the two possible meta substituents, MR4 is the molar refractivity of 4-substituents, and sigma is the Hammett constant summed for all substituents. Using this equation, we designed, synthesized, and successfully predicted Km for a new congener intended to maximize binding (1/Km). The interactions involved in enzyme-substrate binding, as characterized by the correlation equation, are interpreted using a computer-constructed color three-dimensional-graphics molecular model of the enzyme active site. The nonenzymatic hydrolysis (both acid and basic) of phenyl hippurates yield rate constants which are well correlated by Hammett equations; however, log k for both acid and alkaline hydrolysis are not linearly related to log 1/Km or log kcat/Km.

  17. High-performance functional ecopolymers based on flora and fauna.

    PubMed

    Kaneko, Tatsuo

    2007-01-01

    Liquid crystalline (LC) polymers of rigid monomers based on flora and fauna were prepared by in-bulk polymerization. Para-coumaric (p-coumaric) acid [4-hydroxycinnamic acid (4HCA)] and its derivatives were selected as phytomonomers and bile acids were selected as biomonomers. The 4HCA homopolymer showed a thermotropic LC phase only in a state of low molecular weight. The copolymers of 4HCA with bile acids such as lithocholic acid (LCA) and cholic acid (CA) showed excellent cell compatibilities but low molecular weights. However, P(4HCA-co-CA)s allowed LC spinning to create molecularly oriented biofibers, presumably due to the chain entanglement that occurs during in-bulk chain propagation into hyperbranching architecture. P[4HCA-co-3,4-dihydroxycinnamic acid (DHCA)]s showed high molecular weight, high mechanical strength, high Young's modulus, and high softening temperature, which may be achieved through the entanglement by in-bulk formation of hyperbranching, rigid structures. P(4HCA-co-DHCA)s showed a smooth hydrolysis, in-soil degradation, and photo-tunable hydrolysis. Thus, P(4HCA-co-DHCA)s might be applied as an environmentally degradable plastic with extremely high performance.

  18. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    PubMed

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter. Copyright © 2013. Published by Elsevier Ltd.

  20. Brazilian artisanal ripened cheeses as sources of proteolytic lactic acid bacteria capable of reducing cow milk allergy.

    PubMed

    Biscola, V; Choiset, Y; Rabesona, H; Chobert, J-M; Haertlé, T; Franco, B D G M

    2018-04-13

    The objective was to obtain lactic acid bacteria (LAB) capable of hydrolysing immunoreactive proteins in milk, to optimize the hydrolysis, to determine the proteolysis kinetics and to test the safety of the best hydrolytic strain. Brazilian cheese was used as source of LAB capable of hydrolysing main milk allergens. Proteolytic isolates were submitted to RAPD-PCR for the characterization of clonal diversity. Optimized hydrolysis was strain and protein fraction dependent. 16S rDNA sequencing identified three proteolytic strains: Enterococcus faecalis VB43, that hydrolysed α S1 -, α S2 - and β-caseins, α-lactalbumin and β-lactoglobulin (partial hydrolysis), and Pediococcus acidilactici VB90 and Weissella viridescens VB111, that caused partial hydrolysis of α S1 - and α S2 -caseins. Enterococcus faecalis VB43 tested negative for virulence genes asa1, agg, efaA, hyl, esp, cylL L and cylL S but positive for genes ace and gelE. Ethylenediamine tetra-acetic acid inhibited the proteolysis, indicating that the main proteases of E. faecalis VB43 are metalloproteases. Brazilian artisanal cheese is a good source of LAB capable of hydrolysing allergenic proteins in milk. One isolate (E. faecalis VB43) presented outstanding activity against these proteins and lacked most of the tested virulence genes. Enterococcus faecalis VB43 presents good potential for the manufacture of hypoallergenic dairy products. © 2018 The Society for Applied Microbiology.

  1. Fungal Pretreatment of Sweet Sorghum Bagasse with Combined CuSO4-Gallic Acid Supplement for Improvement in Lignin Degradation, Selectivity, and Enzymatic Saccharification.

    PubMed

    Mishra, Vartika; Jana, Asim K

    2017-09-01

    Sweet sorghum (Sorghum sp.) has high biomass yield. Hydrolysis of lignocellulosic sweet sorghum bagasse (SSB) to fermentable sugar could be useful for manufacture of biofuel or other fermentation products. Pretreatment of lignocellulosic biomass to degrade lignin before enzymatic hydrolysis is a key step. Fungal pretreatment of SSB with combined CuSO 4 -gallic acid supplements in solid-state fermentation (SSF) to achieve higher lignin degradation, selectivity value (SV), and enzymatic hydrolysis to sugar was studied. Coriolus versicolor was selected due to high activities of ligninolytic enzymes laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), polyphenol oxidase (PPO), and arylalcohol oxidase (AAO) and low activities of cellulolytic enzymes CMCase, FPase, and β-glucosidase with high lignin degradation and SV in 20 days. CuSO 4 /gallic acid increased the activities of ligninolytic enzymes resulting in enhanced lignin degradations and SVs. Cumulative/synergistic effect of combined supplements further increased the activities of laccase, LiP, MnP, PPO, and AAO by 7.6, 14.6, 2.67, 2.06, and 2.15-folds, respectively (than control), resulting in highest lignin degradation 31.1 ± 1.4% w/w (1.56-fold) and SV 2.33 (3.58-fold). Enzymatic hydrolysis of pretreated SSB yielded higher (~2.2 times) fermentable sugar. The study showed combined supplements can improve fungal pretreatment of lignocellulosic biomass. XRD, SEM, FTIR, and TGA/DTG of SSB confirmed the results.

  2. From water-in-oil to oil-in-water emulsions to optimize the production of fatty acids using ionic liquids in micellar systems.

    PubMed

    Santos, Luísa D F; Coutinho, João A P; Ventura, Sónia P M

    2015-01-01

    Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water-in-oil or oil-in-water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil-in-water emulsions), the imidazolium-based IL acts as an enhancer of the lipase catalytic capacity, super-activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)]. © 2015 American Institute of Chemical Engineers.

  3. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency.

    PubMed

    Carter, Brian; Squillace, Phillip; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    This study investigated the detoxification of a dilute acid pretreated Ponderosa pine slurry using the polyelectrolyte polyethyleneimine (PEI). The addition of polyelectrolyte to remove enzymatic and/or fermentation inhibitory compounds, that is, acetic acid, furfural, and 5-hydroxymethylfurfural (HMF), was performed either before or after enzymatic hydrolysis to determine the optimal process sequence. Negligible acetic acid, glucose, and xylose were removed regardless of where in the process the polymer addition was made. Maximum furfural and HMF separation was achieved with the addition of PEI to a clarified pre-enzymatic hydrolysis liquor, which showed that 88.3% of furfural and 66.4% of HMF could be removed. On the other hand, only 23.1% and 13.4% of furfural and HMF, respectively, were removed from a post-enzymatic hydrolysis sample; thus, the effects of enzymes, glucose, and wood solids on inhibitor removal were also investigated. The presence of solid particles >0.2 µm and unknown soluble components <10 kDa reduced inhibitory compound removal, but the presence of elevated glucose levels and enzymes (cellulases) did not affect the separation. The fermentability of detoxified versus undetoxified hydrolysate was also investigated. An ethanol yield of 92.6% of theoretical was achieved with Saccharomyces cerevisiae fermenting the detoxified hydrolyzate, while no significant ethanol was produced in the undetoxified hydrolyzate. These results indicate that PEI may provide a practical alternative for furan removal and detoxification of lignocellolosic hydrolysates, and that application before enzymatic hydrolysis minimizes separation interferences. Copyright © 2011 Wiley Periodicals, Inc.

  4. Mechanism of Orlistat Hydrolysis by the Thioesterase of Human Fatty Acid Synthase

    PubMed Central

    2015-01-01

    Fatty acid synthase (FASN), the sole protein capable of de novo synthesis of free fatty acids, is overexpressed in a wide variety of human cancers and is associated with poor prognosis and aggressiveness of these cancers. Orlistat, an FDA-approved drug for obesity treatment that inhibits pancreatic lipases in the GI tract, also inhibits the thioesterase (TE) of human FASN. The cocrystal structure of TE with orlistat shows a pseudo TE dimer containing two different forms of orlistat in the active site, an intermediate that is covalently bound to a serine residue (Ser2308) and a hydrolyzed and inactivated product. In this study, we attempted to understand the mechanism of TE-catalyzed orlistat hydrolysis by examining the role of the hexyl tail of the covalently bound orlistat in water activation for hydrolysis using molecular dynamics simulations. We found that the hexyl tail of the covalently bound orlistat undergoes a conformational transition, which is accompanied by destabilization of a hydrogen bond between a hydroxyl moiety of orlistat and the catalytic His2481 of TE that in turn leads to an increased hydrogen bonding between water molecules and His2481 and increased chance for water activation to hydrolyze the covalent bond between orlistat and Ser2308. Thus, the conformation of the hexyl tail of orlistat plays an important role in orlistat hydrolysis. Strategies that stabilize the hexyl tail may lead to the design of more potent irreversible inhibitors that target FASN and block TE activity with greater endurance. PMID:25309810

  5. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.

    PubMed

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R

    2011-04-07

    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Lipoprotein lipase variants interact with polyunsaturated fatty acids to modulate obesity traits in Puerto Ricans

    USDA-ARS?s Scientific Manuscript database

    Lipoprotein lipase (LPL) is a candidate gene for obesity based on its role in triglyceride hydrolysis and the partitioning of fatty acids towards storage or oxidation. Whether dietary fatty acids modify LPL associated obesity risk is unknown. We examined five single nucleotide polymorphisms (SNPs) (...

  7. Continuous hydrolysis of Cuphea seed oil in subcritical water

    USDA-ARS?s Scientific Manuscript database

    Cuphea seed oil (CSO) is a source of medium chain fatty acids for use in chemical manufacturing, including detergents, shampoos and lubricants. Cuphea seed oil is high in decanoic acid and this fatty acid is especially useful in the preparation of estolide biobased lubricants, which have excellent ...

  8. Relieving Mipafox Inhibition in Organophosphorus Acid Anhydrolase by Rational Design

    DTIC Science & Technology

    2013-03-01

    acid anhydrolase (OPAA, EC 3.1.8.2) was purified from halophilic Alteromonas sp. bacteria. OPPA displayed hydrolysis activity against several highly...2010, 49, 547–559. 3. DeFrank, J.J.; Cheng, T.-C. Purification and Properties of Organophosphorus Acid Anhydrolase from a Halophilic Bacterial

  9. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water.

    PubMed

    Ding, Shunke; Chu, Wenhai; Krasner, Stuart W; Yu, Yun; Fang, Chao; Xu, Bin; Gao, Naiyun

    2018-06-13

    Haloacetamides (HAMs), a group of nitrogenous disinfection byproducts (N-DBPs), can decompose to form corresponding intermediate products and other DBPs. The stability of ten different HAMs, including two chlorinated, five brominated, and three iodinated species was investigated with and without the presence of chlorine, chloramines, and reactive solutes such as quenching agents. The HAM basic hydrolysis and chlorination kinetics were well described by a second-order kinetics model, including first-order in HAM and hydroxide and first-order in HAM and hypochlorite, respectively, whereas the HAM neutral hydrolysis kinetic was first-order in HAM. Furthermore, HAMs decompose instantaneously when exposed to hypochlorite, which was almost two and nine orders of magnitude faster than HAM basic and neutral hydrolysis, respectively. In general, HAM hydrolysis and chlorination rates both increased with increasing pH and the number of halogens substituted on the methyl group. Moreover, chlorinated HAMs are more unstable than their brominated analogs, followed by the iodinated ones, due to the decrease in the electron-withdrawing inductive effect from chlorine to iodine atom. During hydrolysis, HAMs mainly directly decompose into the corresponding haloacetic acids (HAAs) via a nucleophilic reaction between the carbonyl carbon and hydroxide. For HAM chlorination reactions, hypochlorite reacts with HAMs to form the N-chloro-HAMs (N-Cl-HAMs) via Cl + transfer from chlorine to the amide nitrogen. N-Cl-HAMs can further degrade to form HAAs via hypochlorous acid addition. In contrast, the reactions between chloramines and HAMs were found to be insignificant. Additionally, four common quenching agents, including sodium sulfite, sodium thiosulfate, ascorbic acid, and ammonium chloride, were demonstrated to expedite HAM degradation, whereas ammonium chloride was the least influential among the four. Taft linear free energy relationships were established for both HAM hydrolysis and chlorination reactions, based on which the hydrolysis and chlorination rate constants for three monohaloacetamides were estimated. The hydrolysis and chlorination rates of 13 HAMs decreased in the following order: TCAM > BDCAM > DBCAM > TBAM > DCAM > BCAM > DBAM > CIAM > BIAM > DIAM > MCAM > MBAM > MIAM (where C = chloro, B = bromo, I = iodo, T = tri, D = di, M = mono). Lastly, using the HAM kinetic model established in this study, HAM half-lifes in drinking water distribution systems can be predicted on the basis of pH and residual chlorine concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Quantification of quercetin glycosides in 6 onion cultivars and comparisons of hydrolysis-HPLC and spectrophotometric methods in measuring total quercetin concentrations.

    PubMed

    Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S

    2010-03-01

    This study was performed to purify and quantify quercetin glycosides (QG) and aglycone (free) quercetin (Q) in 6 selected onion cultivars and to compare analytical approaches based on high-performance liquid chromatography (HPLC) and spectrophotometry for the quantification of total quercetin (TQ) concentrations. Individual mono- and di-glycoside Q compounds were purified using a semipreparative HPLC and identified by comparing spectral data and by confirming corresponding peaks of QG and Q after incomplete enzyme-hydrolysis. Purified QG were quantified as Q by enzyme-hydrolysis/HPLC. TQ concentrations obtained from 20 onion bulbs with enzyme-hydrolysis/HPLC, no-hydrolysis/HPLC, and a spectrophotometric method without prior hydrolysis were significantly correlated (r(2)= 0.99) and were about 15% higher, identical, or 10% less than those concentrations by a standard acid-hydrolysis/HPLC method, respectively. During enzyme-hydrolysis of onion extracts, progressive reduction of the QG and formation of the corresponding mono-glycosides and Q were monitored using an analytical HPLC. TQ ranged from 83 to 330 microg/g F.W. in 6 selected cultivars of long-day or short-day onions. Q3,4'G and Q4'G were the 2 major compounds and comprised approximately between 94% and 97% of TQ in onions.

  11. New designer drug p-methoxymethamphetamine: studies on its metabolism and toxicological detection in urine using gas chromatography-mass spectrometry.

    PubMed

    Staack, Roland F; Fehn, Josef; Maurer, Hans H

    2003-06-05

    Studies are described on the metabolism and the toxicological analysis of the new designer drug rac-p-methoxymethamphetamine (PMMA) in rat urine using gas chromatography-mass spectrometry (GC-MS). The identified metabolites indicated that PMMA was extensively metabolized mainly by O-demethylation to pholedrine and to a minor extent to p-methoxyamphetamine (PMA), 1-hydroxypholedrine diastereomers (one being oxilofrine), 4'-hydroxy-3'-methoxymethamphetamine and 4'-hydroxy-3'-methoxyamphetamine. The authors' systematic toxicological analysis (STA) procedure using full-scan GC-MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of the main metabolites of PMMA in rat urine after a dose corresponding to that of drug users. Therefore, this procedure should be suitable for detection of PMMA intake in human urine via its metabolites. However, it must be considered that pholedrine and oxilofrine are also in therapeutic use. Differentiation of PMMA, PMA and/or pholedrine intake is discussed.

  12. Metabolomic Approaches to Explore Chemical Diversity of Human Breast-Milk, Formula Milk and Bovine Milk

    PubMed Central

    Qian, Linxi; Zhao, Aihua; Zhang, Yinan; Chen, Tianlu; Zeisel, Steven H.; Jia, Wei; Cai, Wei

    2016-01-01

    Although many studies have been conducted on the components present in human breast milk (HM), research on the differences of chemical metabolites between HM, bovine milk (BM) and formula milk (FM) is limited. This study was to explore the chemical diversity of HM, BM and FM by metabolomic approaches. GC-TOFMS and UPLC-QTOFMS were applied to investigate the metabolic compositions in 30 HM samples, 20 FM samples and 20 BM samples. Metabolite profiling identified that most of the non-esterified fatty acids, which reflected the hydrolysis of triglycerides, were much more abundant in HM than those in FM and BM, except for palmitic acid and stearic acid. The levels of tricarboxylic acid (TCA) intermediates were much higher in FM and BM than those in HM. Each type of milk also showed its unique composition of free amino acids and free carbohydrates. In conclusion, higher levels of non-esterified saturated fatty acids with aliphatic tails <16 carbons, monounsaturated fatty acids and polyunsaturated fatty acids and lower levels of TCA intermediates are characteristic of HM, as compared with FM and BM. The content of non-esterified fatty acids may reflect the hydrolysis of triglycerides in different milk types. PMID:27999311

  13. Structural studies on HCN oligomers. [catalysts for prebiotic processes

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Edelson, E. H.; Auyeung, J. M.; Joshi, P. C.

    1981-01-01

    NMR spectral studies on the HCN oligomers suggest the presence of carboxamide and urea groupings. The release of CO2, H2O, HCN, CH3CN, HCONH2 and pyridine on pyrolysis is consistent with the presence of these groupings as well as carboxylic acid groups. No basic primary amine groupings could be detected with fluorescamine. Hydrazinolysis of the HCN oligomers releases 10% of the amino acids normally released by acid hydrolysis. The oligomers give a positive biuret test but this is not due to the presence of peptide bonds. There is no conclusive evidence for the presence of peptide bonds in the HCN oligomers. No diglycine was detected on partial hydrolysis of the HCN oligomers at pH 8.5 suggesting that HCN oligomers were not a source of prebiotic peptides.

  14. Photometric and fluorometric continuous kinetic assay of acid phosphatases with new substrates possessing longwave absorption and emission maxima.

    PubMed

    Koller, E; Wolfbeis, O S

    1984-11-15

    A direct and continuous kinetic method for the photometric and fluorometric determination of various acid phosphatases is described. It is based on new coumarin-derived phosphates, which after enzymatic hydrolysis undergo dissociation to form intensely colored and strongly fluorescent phenolate anions. The latter have absorption maxima ranging from 385 to 505 nm, and fluorescence maxima between 470 and 595 nm. The new substrates were compared with respect to their rate of enzymatic hydrolysis, optimum pH, and detection limits of acid phosphatase from potato and wheat germ. Detection limits of 0.001 unit/ml were found by photometry, and as low as 0.00006 unit/ml by fluorometry. The principal advantages of the new substrates over existing ones are longwave absorptions and emissions, large Stokes shifts, and the low pKa values of the corresponding phenols, thus allowing a direct and continuous assay of acid phosphatase even in weakly acidic solutions.

  15. Synthesis of nonionic-anionic colloidal systems based on alkaline and ammonium β-nonylphenol polyethyleneoxy (n = 3-20) propionates/dodecylbenzenesulfonates with prospects for food hygiene

    PubMed Central

    2012-01-01

    Background The main objective of this work was to obtain a binary system of surface-active components (nonionic soap – alkaline and/or ammonium dodecylbenzenesulfonate) with potential competences in food hygiene, by accessing a scheme of classical reactions (cyanoethylation, total acid hydrolysis and stoichiometric neutralization with inorganic alkaline and/or organic ammonium bases) adapted to heterogeneously polyethoxylated nonylphenols (n = 3-20). In the processing system mentioned, dodecylbenzenesulfonic acid, initially the acid catalyst for the exhaustive hydrolysis of β-nonylphenolpolyethyleneoxy (n = 3-20) propionitriles, becomes together with the nonionic soap formed the second surface-active component of the binary system. Results In the reaction scheme adopted the influence of the main operating (duration, temperature, molar ratio of reagents) and structural parameters (degree of oligomerization of the polyoxyethylene chain) on the processing yields for the synthetic steps was followed. The favorable role of the polyoxyethylene chain size is remarked, through its specific conformation and its alkaline cations sequestration competences on the yields of cyanoethylation, but also the beneficial influence of phase-transfer catalysts in the total acid hydrolysis step. The chemical stability of dodecylbenzenesulfonic acid (DBSH) at the temperature and strongly acidic pH of the reaction environment is confirmed. The controlled change of the amount of DBSH in the final binary system will later confer it potential colloidal competences in food hygiene receipts. Conclusions The preliminary synthetic tests performed confirmed the prospect of obtaining a broad range of useful colloidal competences in various food hygiene scenarios. PMID:22958389

  16. Lactobacillus reuteri 100-23 modulates urea hydrolysis in the murine stomach.

    PubMed

    Wilson, Charlotte M; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M; O'Toole, Paul W; Zomer, Aldert; Tannock, Gerald W

    2014-10-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Effect of phosphoric acid pretreatment of corncobs on the fermentability of Clostridium beijerinckii TISTR 1461 for biobutanol production.

    PubMed

    Boonsombuti, Akarin; Luengnaruemitchai, Apanee; Wongkasemjit, Sujitra

    2015-01-01

    Corncobs pretreated with H2SO4, HNO3, and H3PO4 were compared to evaluate the fermentation ability of Clostridium beijerinckii TISTR 1461 to produce biobutanol via acetone-butanol-ethanol (ABE) fermentation. It was found that the hydrolysate from H3PO4 pretreatment could be used as a substrate without any inhibitor removal methods. However, in terms of sugar yield, it gave the lowest total sugars in both pretreatment and enzymatic hydrolysis. Response surface methodology was applied to optimize enzymatic hydrolysis of the pretreated corncobs. The optimized conditions reduced the consumption of enzymes and hydrolysis time to 7.68 FPU/g biomass and 63.88 hr, respectively, and yielded 51.82 g/L reducing sugars. The Celluclast 1.5 L and Novozyme 188 enzyme ratio were varied to maximize the hydrolyzed sugars. The ABE fermentation, using substrate from phosphoric acid pretreatment of corncobs, with 10 g/L glucose supplementation produced 11.64 g/L of total ABE, which was close to the control experiment using synthetic medium. This study showed that corncobs pretreated with phosphoric acid could potentially be used as a substrate without using a detoxification process.

  18. Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach

    PubMed Central

    Wilson, Charlotte M.; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M.; O'Toole, Paul W.; Zomer, Aldert

    2014-01-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. PMID:25063664

  19. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation.

    PubMed

    Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B

    2016-08-08

    The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the protective capabilities of the prodrugs against H2O2-induced cell death. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Thermokinetic profile of NDM-1 and its inhibition by small carboxylic acids

    PubMed Central

    Wang, Qian; He, Yuan; Lu, Rui; Wang, Wen-Ming; Yang, Ke-Wu; Fan, Hai Ming; Jin, Yi; Blackburn, G. Michael

    2018-01-01

    The New Delhi metallo-β-lactamase (NDM-1) is an important clinical target for antimicrobial research, but there are insufficient clinically useful inhibitors and the details of NDM-1 enzyme catalysis remain unclear. The aim of this work is to provide a thermodynamic profile of NDM-1 catalysed hydrolysis of β-lactams using an isothermal titration calorimetry (ITC) approach and to apply this new method to the identification of new low-molecular-weight dicarboxylic acid inhibitors. The results reveal that hydrolysis of penicillin G and imipenem by NDM-1 share the same thermodynamic features with a significant intrinsic enthalpy change and the release of one proton into solution, while NDM-1 hydrolysis of cefazolin exhibits a different mechanism with a smaller enthalpy change and the release of two protons. The inhibitory constants of four carboxylic acids are found to be in the micromolar range. The compounds pyridine-2,6-dicarboxylic acid and thiazolidine-2,4-dicarboxylic acid show the best inhibitory potency and are confirmed to inhibit NDM-1 using a clinical strain of Escherichia coli. The pyridine compound is further shown to restore the susceptibility of this E. coli strain to imipenem, at an inhibitor concentration of 400 μM, while the thiazoline compound also shows a synergistic effect with imipenem. These results provide valuable information to enrich current understanding on the catalytic mechanism of NDM-1 and to aid the future optimisation of β-lactamase inhibitors based on these scaffolds to tackle the problem of antibiotic resistance. PMID:29507059

Top