Science.gov

Sample records for acid hydrolysis results

  1. Acid hydrolysis of cellulose

    SciTech Connect

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  2. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  3. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  4. Optimization of dilute acid hydrolysis of Enteromorpha

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  5. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  6. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  7. Acid hydrolysis of sweet potato for ethanol production

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1985-01-01

    Studies were conducted to establish optimal conditions for the acid hydrolysis of sweet potato for maximal ethanol yield. The starch contents of two sweet potato cultivars (Georgia Red and TG-4), based on fresh weight, were 21.1 +/- 0.6% and 27.5 +/- 1.6%, respectively. The results of acid hydrolysis experiments showed the following: (1) both hydrolysis rate and hydroxymethylfurfural (HMF) concentration were a function of HCL concentration, temperature, and time; (2) the reducing sugars were rapidly formed with elevated concentrations of HCl and temperature, but also destroyed quickly; and (3) HMF concentration increased significantly with the concentration of HCl, temperature, and hydrolysis time. Maximum reducing sugar value of 84.2 DE and 0.056% HMF (based on wet weight) was achieved after heating 8% SPS for 15 min in 1N HCl at 110/sup 0/C. Degraded 8% SPS (1N HCl, 97/sup 0/C for 20 min or 110/sup 0/C for 10 min) was utilized as substrate for ethanol fermentation and 3.8% ethanol (v/v) was produced from 1400 mL fermented wort. This is equal to 41.6 g ethanol (200 proof) from 400 g of fresh sweet potato tuber (Georgia Red) or an ethanol yield potential of 431 gal of 200-proof ethanol/acre (from 500 bushel tubers/acre).

  8. Hydrolysis of organosolv wheat pulp in formic acid at high temperature for glucose production.

    PubMed

    Kupiainen, Laura; Ahola, Juha; Tanskanen, Juha

    2012-07-01

    Organosolv methods can be used to delignify lignocellulosic crop residues for pulp production or to pretreat them prior to enzymatic hydrolysis for bioethanol production. In this study, organic solvent was used as an acidic hydrolysis catalyst to produce glucose. Hydrolysis experiments were carried out in 5-20% formic acid at 180-220 °C. Wheat straw pulp delignified with a formicodeli™ method was used as a raw material. It was found that glucose yields from pulp are significantly higher than yields from microcrystalline cellulose, a model component for cellulose hydrolysis. The results indicate that cellulose hydrolysis of real fibers takes place more selectively to glucose than hydrolysis of microcrystalline cellulose particles does. The effect of the particle size on pulp hydrolysis was investigated, the crystallinity of hydrolyzed pulp was measured by XRD analysis, and the product distribution and its influence on the process was discussed. PMID:22609651

  9. Enhanced functional properties of tannic acid after thermal hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  10. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch.

    PubMed

    Li, Hongyan; Zhu, Yanqiao; Jiao, Aiquan; Zhao, Jianwei; Chen, Xiaoming; Wei, Benxi; Hu, Xiuting; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-04-01

    The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of α-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that α-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (ΔH) were observed during the combined hydrolysis. These results suggest that α-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch.

  11. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  12. Comparison of enzymatic and acid hydrolysis of bound flavor compounds in model system and grapes.

    PubMed

    Dziadas, Mariusz; Jeleń, Henryk H

    2016-01-01

    Four synthesized terpenyl-ß-D-glycopyranosides (geranyl, neryl, citronellyl, myrtenyl) were subjected to enzymatic (AR 2000, pH 5.5) and acid (citric buffer, pH 2.5) hydrolysis. Decrease of glycosides was measured by HPLC and the volatiles released--by comprehensive gas chromatography-mass spectrometry (GC × GC-ToF-MS). Enzymatic hydrolysis performed for 21 h yielded 100% degree of hydrolysis for all glycosides but citronellyl (97%). Degree of acid hydrolysis was highly dependent on type of aglycone and the conditions. The highest degree was achieved for geraniol, followed by citronellol and nerol. Myrtenylo-ß-D-glycopyranoside was the most resistant glycoside to hydrolysis. Acid hydrolysis degree was also related to temperature/time combination, the highest being for 100 °C and 2 h. In a result of enzymatic hydrolysis 85-91% of total peak areas was terpene aglycone, whereas for acid hydrolysis the area of released terpene aglycone did not exceed 1.3% of total peak area indicating almost complete decomposition/transformation of terpenyl aglycone.

  13. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected.

  14. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    SciTech Connect

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves; Chatterjee, Siddharth G.; Donohoe, Bryon S.; Yarbrough, John M.; Himmel, Michael E.; Nimlos, Mark R.; Johnson, David K.

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylan that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.

  15. Partial acid hydrolysis of poplar wood as a pretreatment for enzymatic hydrolysis

    SciTech Connect

    Knappert, D.; Grethlein, H.; Converse, A.

    1981-01-01

    Partial acid hydrolysis was studied as a pretreatment to enhance glucose yields from enzymatic hydrolysis of poplar. The pretreatments were carried out in a continuous flow reactor at temperatures ranging from 162 to 222/sup 0/C, acid concentrations ranging from 0 to 1.5%, and treatment times from 3.6 to 12.7 s. The pretreated slurries were hydrolyzed with Trichoderma reesei C30 cellulase at 50/sup 0/C and a pH of 4.8 for 48 h. Increased yields of glucose were achieved when poplar was pretreated at temperatures higher than 180/sup 0/C. By increasing the cellobiase activity of the cellulase with the addition of NOVO cellobiase, in some cases 100% of the potential glucose content of the substrate was converted to glucose after only 24 h of enzymatic hydrolysis.

  16. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  17. Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis.

    PubMed

    Zhou, Shengfei; Runge, Troy M

    2014-11-01

    This work studied the two-step acid hydrolysis for determining carbohydrates in lignocellulosic biomass. Estimation of sugar loss based on acid hydrolyzed sugar standards or analysis of sugar derivatives was investigated. Four model substrates (starch, holocellulose, filter paper and cotton) and three levels of acid/material ratios (7.8, 10.3 and 15.4, v/w) were studied to demonstrate the range of test artifacts. The method for carbohydrates estimation based on acid hydrolyzed sugar standards having the most satisfactory carbohydrate recovery and relative standard deviation. Raw material and the acid/material ratio both had significant effect on carbohydrate hydrolysis, suggesting the acid to have impacts beyond a catalyst in the hydrolysis. Following optimal procedures, we were able to reach a carbohydrate recovery of 96% with a relative standard deviation less than 3%. The carbohydrates recovery lower than 100% was likely due to the incomplete hydrolysis of substrates, which was supported by scanning electron microscope (SEM) images.

  18. Acid hydrolysis of Jerusalem artichoke for ethanol fermentation

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1986-01-01

    An excellent substrate for ethanol production is the Jerusalem artichoke (JA) tuber (Helianthus tuberosus). This crop contains a high level of inulin that can be hydrolyzed mainly to D-fructose and has several distinct advantages as an energy source compared to others. The potential ethanol yield of ca. 4678 L/ha on good agricultural land is equivalent to that obtained from sugar beets and twice that of corn. When JA is to be used for ethanol fermentation by conventional yeast, it is first converted to fermentable sugars by enzymes or acids although various strains of yeast were used for the direct fermentation of JA extracts. Fleming and GrootWassink compared various acids (hydrochloric, sulfuric, citric, and phosphoric) and strong cation exchange resin for their effectiveness on inulin hydrolysis and reported that no differences were noted among the acids or resin in their influence on inulin hydrolysis. Undesirable side reactions were noted during acid hydrolysis leading to the formation of HMF and 2-(2-hydroxy acetyl) furan. The HMF at a level of 0.1% is known to inhibit growth and ethanol fermentation by yeast. In this study the authors established optimal conditions for complete acid-hydrolysis of JA with minimum side reactions and maximum sugar-ethanol production. A material balance for the ethanol production was also determined.

  19. Role of bifidobacteria in the hydrolysis of chlorogenic acid

    PubMed Central

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-01-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  20. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery. PMID:25690683

  1. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery.

  2. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  3. Acid and enzymatic hydrolysis of pretreated cellulosic materials as an analytical tool

    SciTech Connect

    Ladisch, C.M.; Chiasson, C.M.; Tsao, G.T.

    1982-07-01

    A rapid and accurate procedure for the quantitative analysis of cellulose in textiles based on acid and enzymatic hydrolysis was investigated. Total hydrolysis was achieved by a two-step procedure: the cellulose in the sample was first dissolved in cadoxen and then reprecipitated. The material, thus pretreated, was then hydrolyzed with acid or enzyme catalytic agents. Hydrolysis products were detected and quantified by colorimetric, enzymic, and liquid chromatographic methods of analysis. Samples examined included cotton, rayon, Avicel, CF-11, and cotton/polyester blends. The specificity of the enzyme hydrolysis method allowed analysis of raw cotton without prior purification. Results of the analyses were compared to those obtained by existing methods of analysis.

  4. Carbon-based strong solid acid for cornstarch hydrolysis

    SciTech Connect

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  5. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    PubMed

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars. PMID:26899601

  6. Hydrolysis of Sulfur Dioxide in Small Clusters of Sulfuric Acid: Mechanistic and Kinetic Study.

    PubMed

    Liu, Jingjing; Fang, Sheng; Wang, Zhixiu; Yi, Wencai; Tao, Fu-Ming; Liu, Jing-Yao

    2015-11-17

    The deposition and hydrolysis reaction of SO2 + H2O in small clusters of sulfuric acid and water are studied by theoretical calculations of the molecular clusters SO2-(H2SO4)n-(H2O)m (m = 1,2; n = 1,2). Sulfuric acid exhibits a dramatic catalytic effect on the hydrolysis reaction of SO2 as it lowers the energy barrier by over 20 kcal/mol. The reaction with monohydrated sulfuric acid (SO2 + H2O + H2SO4 - H2O) has the lowest energy barrier of 3.83 kcal/mol, in which the cluster H2SO4-(H2O)2 forms initially at the entrance channel. The energy barriers for the three hydrolysis reactions are in the order SO2 + (H2SO4)-H2O > SO2 + (H2SO4)2-H2O > SO2 + H2SO4-H2O. Furthermore, sulfurous acid is more strongly bonded to the hydrated sulfuric acid (or dimer) clusters than the corresponding reactant (monohydrated SO2). Consequently, sulfuric acid promotes the hydrolysis of SO2 both kinetically and thermodynamically. Kinetics simulations have been performed to study the importance of these reactions in the reduction of atmospheric SO2. The results will give a new insight on how the pre-existing aerosols catalyze the hydrolysis of SO2, leading to the formation and growth of new particles.

  7. Preparation of κ-carra-oligosaccharides with microwave assisted acid hydrolysis method

    NASA Astrophysics Data System (ADS)

    Li, Guangsheng; Zhao, Xia; Lv, Youjing; Li, Miaomiao; Yu, Guangli

    2015-04-01

    A rapid method of microwave assisted acid hydrolysis was established to prepare κ-carra-oligosaccharides. The optimal hydrolysis condition was determined by an orthogonal test. The degree of polymerization (DP) of oligosaccharides was detected by high performance thin layer chromatography (HPTLC) and polyacrylamide gel electrophoresis (PAGE). Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis was determined. The concentration of κ-carrageenan was 5 mg mL-1; the reaction solution was adjusted to pH 3 with diluted hydrochloric acid; the solution was hydrolyzed under microwave irradiation at 100 for 15 °C min. Oligosaccharides were separated by a Superdex 30 column (2.6 cm × 90 cm) using AKTA Purifier UPC100 and detected with an online refractive index detector. Each fraction was characterized by electrospray ionization mass spectrometry (ESI-MS). The data showed that odd-numbered κ-carra-oligosaccharides with DP ranging from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained by traditional mild acid hydrolysis. The new method was more convenient, efficient and environment-friendly than traditional mild acid hydrolysis. Our results provided a useful reference for the preparation of oligosaccharides from other polysaccharides.

  8. Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses.

    PubMed

    Bian, Jing; Peng, Pai; Peng, Feng; Xiao, Xiao; Xu, Feng; Sun, Run-Cang

    2014-08-01

    Hemicelluloses from sugarcane bagasse were subjected to microwave-assisted acid hydrolysis at mild temperature to produce xylooligosaccharides (XOS). The hydrolysis was performed with dilute H2SO4 at 90°C and the influence of acid concentration (0.1-0.3M) and reaction time (20-40min) on the XOS production was ascertained with response surface methodology based on central composite design. The fitted models of XOS and xylose yields were in good agreement with the experimental results. Compared to hydrolysis time, acid concentration was a more significant coefficient in the production of XOS. A well-defined degree of polymerisation of XOS and the monomer in the hydrolysates were quantified. No sugar-degraded byproduct was detected. The maximum XOS yield of 290.2mgg(-1) was achieved by hydrolysis with 0.24M H2SO4 for 31min. The results indicated that the yields of xylose and the byproducts can be controlled by the acid concentration and reaction time in microwave-assisted acid hydrolysis.

  9. Effect of an acid filler on hydrolysis and biodegradation of poly-lactic acid (PLA)

    NASA Astrophysics Data System (ADS)

    Iozzino, Valentina; Speranza, Vito; Pantani, Roberto

    2015-12-01

    The use of biodegradable polymers is certainly an excellent strategy to solve many of the problems related to the disposal of the traditional polymers, whose accumulation in the environment is harmful and damaging. In order to optimize the use of biodegradable polymers, it is very important to understand and control the transformation processes, the structures and the morphologies resulting from the process conditions used to produce the articles and, not least, the biodegradation. The latter is strictly dependent on the just mentioned variables. The poly-lactic acid, PLA, is a biodegradable polymer. Many studies have been carried out on the degradation process of this polymer. In the course of this work we performed degradation tests on the PLA, with a specific D-isomer content, having amorphous structure, and in particular of biodegradation and hydrolysis. An acid chemical, fumaric acid, was added to PLA with the objective of controlling the rate of hydrolysis and of biodegradation. The hydrolysis process was followed, as function of time, by means of different techniques: pH variation, variation of weight of samples and variation of crystallinity degree and glass transition temperature using DSC analysis. The samples were also analyzed in terms of biodegradability by means of a homemade respirometer apparatus, in controlled composting conditions.

  10. Hydrolysis of cellulose catalyzed by novel acidic ionic liquids.

    PubMed

    Zhuo, Kelei; Du, Quanzhou; Bai, Guangyue; Wang, Congyue; Chen, Yujuan; Wang, Jianji

    2015-01-22

    The conversion of cellulosic biomass directly into valuable chemicals becomes a hot subject. Six novel acidic ionic liquids (ILs) based on 2-phenyl-2-imidazoline were synthesized and characterized by UV-VIS, TGA, and NMR. The novel acidic ionic liquids were investigated as catalysts for the hydrolysis of cellulose in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The acidic ionic liquids with anions HSO4(-) and Cl(-) showed better catalytic performance for the hydrolysis of cellulose than those with H2PO4(-). The temperature and dosage of water affect significantly the yield of total reducing sugar (TRS). When the hydrolysis of cellulose was catalyzed by 1-propyl sulfonic acid-2-phenyl imidazoline hydrogensulfate (IL-1) and the dosage of water was 0.2g, the TRS yield was up to 85.1% within 60 min at 100°C. These new acidic ionic liquids catalysts are expected to have a wide application in the conversion of cellulose into valuable chemicals. PMID:25439867

  11. Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents.

    PubMed

    Wei, Benxi; Hu, Xiuting; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-11-01

    The effect of defatting on the physiochemical properties and the acid hydrolysis rate of maize starch with different amylose contents was evaluated in this study. The increase in the number of pores and the stripping of starch surface layers were observed after defatting by scanning electron microscopy. X-ray diffraction spectrum showed that the peaks attributing to the amylose-lipid complex disappeared. The relative crystallinity increased by 19% for high-amylose maize starch (HMS) on defatting, while the other tested starches virtually unchanged. Differential scanning calorimetry study indicated an increase in the thermal stability for the defatted starches. Compared with native waxy maize starch, the acid hydrolysis rate of the defatted one increased by 6% after 10 days. For normal maize starch (NMS) and HMS, the higher rate of hydrolysis was observed during the first 5 days. Thereafter, the hydrolysis rate was lower than that of their native counterpart. The increase in susceptibility to acid hydrolysis (in the first 5 days) was mainly attributed to the defective and porous structures formed during defatting process, while the decrease of hydrolysis rate for NMS and HMS samples (after the first 5 days) probably resulted from the increase in the relative crystallinity.

  12. Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions.

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2015-06-01

    Acetic acid was used in abiotic experiments to adjust the solution pH and investigate its influence on the chemical hydrolysis of the Organic Fraction of Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) was used to measure the hydrolysis under oxidative conditions (positive oxidation-reduction potential values), and pH 4 allowed for 20% (±2%) of the COD added to be solubilized, whereas only 12% (±1%) was solubilized at pH7. Under reducing conditions (negative oxidation-reduction potential values) and pH 4, 32.3% (±3%) of the OFMSW was solubilized which shows that acidogenesis at pH 4 during the anaerobic digestion of solid waste can result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 54% (±6%) solubilization.

  13. Carbon-based strong solid acid for cornstarch hydrolysis

    NASA Astrophysics Data System (ADS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  14. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    SciTech Connect

    Agu, R.C.; Amadife, A.E.; Ude, C.M.; Onyia, A.; Ogu, E.O.; Okafor, M.; Ezejiofor, E.

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 M H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.

  15. Acid hydrolysis of native corn starch: morphology, crystallinity, rheological and thermal properties.

    PubMed

    Utrilla-Coello, R G; Hernández-Jaimes, C; Carrillo-Navas, H; González, F; Rodríguez, E; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2014-03-15

    The acid hydrolysis of native corn starch at 35 °C was monitored during 15 days. After this time, the residual solids were about 37.0 ± 3.0%. First-order kinetics described the hydrolysis data, giving a constant rate of kH = 0.18 ± 0.012 days(-1). Amylose content presented a sharp decrement of about 85% and X-ray diffraction results indicated a gradual increase in crystallinity during the first 3 days. SEM micrographs showed that hydrolysis disrupted granule morphology from an initial regular shape to increasingly irregular shapes. Fractal analysis of SEM images revealed an increase in surface roughness. Fast changes in the thermal effects were caused by molecular rearrangements after fast hydrolysis of amylose in the amorphous regions in the first day. Steady shear rate and oscillatory tests showed a sharp decrease of the apparent viscosity and an increase of the damping factor (tan(δ)) caused by amylose degradation.

  16. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  17. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    PubMed

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  18. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions

    SciTech Connect

    Alyapyshev, M.; Paulenova, A.; Tkac, P.; Cleveland, M.A.; Bruso, J.E.

    2007-07-01

    Aceto-hydroxamic acid (AHA) is used as a stripping agent In the UREX process. While extraction yields of uranium remain high upon addition of AHA, hexavalent plutonium and neptunium are rapidly reduced to the pentavalent state while the tetravalent species and removed from the product stream. However, under acidic conditions, aceto-hydroxamic acid undergoes hydrolytic degradation. In this study, the kinetics of the hydrolysis of aceto-hydroxamic acid in nitric and perchloric acid media was investigated at several temperatures. The decrease of the concentration of AHA was determined via its ferric complex using UV-Vis spectroscopy. The data obtained were analyzed using the method of initial rates. The data follow the pseudo-first order reaction model. Gamma irradiation of AHA/HNO{sub 3} solutions with 33 kGy/s caused two-fold faster degradation of AHA. The rate equation and thermodynamic data will be presented for the hydrolysis reaction with respect to the concentrations of aceto-hydroxamic acid, nitrate and hydronium ions, and radiation dose. (authors)

  19. Influence of acid precursors on physicochemical properties of nanosized titania synthesized by thermal-hydrolysis method

    SciTech Connect

    Rajesh, B.; Sasirekha, N.R.; Chen, Y.-W.

    2008-03-04

    The influence of nature and concentration of acid species on surface morphology and physicochemical properties of titania particles synthesized by direct thermal hydrolysis of titanium tetrachloride was investigated. The acids used were hydrochloric acid, nitric acid, sulfuric acid, and perchloric acid with a concentration of 3 M. Thermal hydrolysis of titanium tetrachloride in hydrochloric acid and perchloric acid with molar ratios of [H{sup +}]/[Ti{sup 4+}] = 0.5, 1.0, 1.5, and 2.0, respectively, was used to study the effect of acid concentration. The synthesized materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and thermogravimetric analysis. Characterization of the samples by X-ray diffraction studies revealed the influence of acid species on the phase transformation of titania. Samples prepared by hydrochloric acid, nitric acid, and perchloric acid formed rutile phase with rhombus primary particles, while sulfuric acid resulted in anatase phase with flake-shaped primary particles. Transmission electron microscopy and dynamic light scattering results confirmed the nanosized titania particles and the agglomeration of primary particles to form secondary particles in spherical shape. The particle size of titania prepared using perchloric acid was smaller than those prepared with other acid sources. A direct correlation between [H{sup +}]/[Ti{sup 4+}] ratio and particle size of titania was observed.

  20. Acid-catalyzed hydrolysis of BMS-582664: degradation product identification and mechanism elucidation.

    PubMed

    Zhao, Fang; Derbin, George; Miller, Scott; Badawy, Sherif; Hussain, Munir

    2012-09-01

    BMS-582664 is an investigational drug intended for cancer treatment through oral administration. The preformulation studies revealed two unexpected degradation products under acidic conditions by reversed-phase high-performance liquid chromatography with ultraviolet detection. Additional liquid chromatography-mass spectrometry results suggested that these were cleavage (hydrolysis) products of a diaryl ether. To further understand the degradation mechanism, the reaction was carried out in (18) O-labeled water. The (18) O was found to be incorporated in only one of the two hydrolysis products. The results suggest that the corresponding α carbon in the heterocycle was unusually eletrophilic in acidic conditions probably because of the protonation of the neighboring nitrogen. This led to the selective attack by water and the consequent hydrolysis products. The study provides a new example of hydrolytic degradation of pharmaceutical compounds, and the reaction center is an aromatic heterocyclic carbon with an aryloxy substitution. PMID:22189636

  1. Fatty acid hydrolysis of acyl marinobactin siderophores by Marinobacter acylases.

    PubMed

    Kem, Michelle P; Naka, Hiroaki; Iinishi, Akira; Haygood, Margo G; Butler, Alison

    2015-01-27

    The marine bacteria Marinobacter sp. DS40M6 and Marinobacter nanhaiticus D15-8W produce a suite of acyl peptidic marinobactin siderophores to acquire iron under iron-limiting conditions. During late-log phase growth, the marinobactins are hydrolyzed to form the marinobactin headgroup with release of the corresponding fatty acid tail. The bntA gene, a homologue of the Pseudomonas aeruginosa pyoverdine acylase gene, pvdQ, was identified from Marinobacter sp. DS40M6. A bntA knockout mutant of Marinobacter sp. DS40M6 produced the suite of acyl marinobactins A-E, without the usual formation of the marinobactin headgroup. Another marinobactin-producing species, M. nanhaiticus D15-8W, is predicted to have two pvdQ homologues, mhtA and mhtB. MhtA and MhtB have 67% identical amino acid sequences. MhtA catalyzes hydrolysis of the apo-marinobactin siderophores as well as the quorum sensing signaling molecule, dodecanoyl-homoserine lactone. In contrast to hydrolysis of the suite of apo-marinobactins by MhtA, hydrolysis of the iron(III)-bound marinobactins was not observed. PMID:25588131

  2. Dilute-acid hydrolysis of sugarcane bagasse at varying conditions.

    PubMed

    Neureiter, Markus; Danner, Herbert; Thomasser, Christiane; Saidi, Bamusi; Braun, Rudolf

    2002-01-01

    Sugarcane bagasse, a byproduct of the cane sugar industry, is an abundant source of hemicellulose that could be hydrolyzed to yield a fermentation feedstock for the production of fuel ethanol and chemicals. The effects of sulfuric acid concentration, temperature, time, and dry matter concentration on hemicellulose hydrolysis were studied with a 20-L batch hydrolysis reactor using a statistical experimental design. Even at less severe conditions considerable amounts (>29%) of the hemicellulose fraction could be extracted. The percentage of soluble oligosaccharides becomes very low in experiments with high yields in monosaccharides, which indicates that the cellulose fraction is only slightly affected. For the sugar yields, acid concentration appears to be the most important parameter, while for the formation of sugar degradation products, temperature shows the highest impact. It could be demonstrated that the dry matter concentration in the reaction slurry has a negative effect on the xylose yield that can be compensated by higher concentrations of sulfuric acid owing to a positive interaction between acid concentration and dry matter contents.

  3. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo.

  4. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled.

  5. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  6. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.

    PubMed

    Sun, Yonghui; Liu, Pengtao; Liu, Zhong

    2016-05-20

    The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively.

  7. Enzymatic hydrolysis and fermentation of dilute acid pretreated cornstalk to biohydrogen

    NASA Astrophysics Data System (ADS)

    Pan, C. M.; Fan, Y. T.; Hou, H. W.

    2010-03-01

    The coupling method of acid pretreatment and enzymatic hydrolysis of cornstalk for hydrogen production was investigated in this study. Experimental results showed that temperature, pH and enzyme loading all had an individual significant influence on soluble sugar yield and Ps. The optimum condition for soluble sugar was close to that for Ps. The maximum hydrogen yield from cornstalk by anaerobic mixed microflora was 209.8 ml/g-TVS on the optimum enzymatic hydrolysis condition which was 52 °C of temperature, pH4.8 and 9.4 IU/g of enzyme loading.

  8. Oxidation and hydrolysis of lactic acid in near-critical water

    SciTech Connect

    Li, L.; Vallejo, D.; Gloyna, E.F.; Portela, J.R.

    1999-07-01

    Hydrothermal reactions (oxidation and hydrolysis) involving lactic acid (LA) were studied at temperatures ranging from 300 to 400 C and a nominal pressure of 27.6 MPa. Kinetic models were developed with respect to concentrations of LA and total organic carbon (TOC), respectively. On the basis of identified liquid and gaseous products, pathways for hydrothermal reactions involving lactic acid were proposed. Acetic acid and acetaldehyde were confirmed as the major liquid intermediates for oxidation and hydrolysis reactions, respectively. Carbon monoxide and methane were identified as the major gaseous byproducts from these reactions. These results demonstrate the potential of completely oxidizing, as well as converting, lactic acid into other organic products, in high-temperature water.

  9. Improved enzymatic hydrolysis of wheat straw by combined use of gamma ray and dilute acid for bioethanol production

    NASA Astrophysics Data System (ADS)

    Hyun Hong, Sung; Taek Lee, Jae; Lee, Sungbeom; Gon Wi, Seung; Ju Cho, Eun; Singh, Sudhir; Sik Lee, Seung; Yeoup Chung, Byung

    2014-01-01

    Pretreating wheat straw with a combination of dilute acid and gamma irradiation was performed in an attempt to enhance the enzymatic hydrolysis for bioethanol production. The glucose yield was significantly affected by combined pretreatment (3% sulfuric acid-gamma irradiation), compared with untreated wheat straw and individual pretreatment. The increasing enzymatic hydrolysis after combined pretreatment is resulting from decrease in crystallinity of cellulose, loss of hemicelluloses, and removal or modification of lignin. Therefore, combined pretreatment is one of the most effective methods for enhancing the enzymatic hydrolysis of wheat straw biomass.

  10. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins.

    PubMed

    Nakazawa, Yuta; Wang, Ya-Jane

    2003-11-21

    Eight commercial starches, including common corn, waxy corn, wheat, tapioca, potato, Hylon V, Hylon VII, and mung bean starch, were annealed by a multiple-step process, and their gelatinization characteristics were determined. Annealed starches had higher gelatinization temperatures, reduced gelatinization ranges, and increased gelatinization enthalpies than their native starches. The annealed starches with the highest gelatinization enthalpies were subjected to acid hydrolysis with 15.3% H2SO4, and Naegeli dextrins were prepared after 10 days' hydrolysis. Annealing increased the acid susceptibility of native starches in the first (rapid) and the second (slow) phases with potato starch showing the greatest and high amylose starches showing the least changes. Starches with a larger shift in onset gelatinization temperature also displayed a greater percent hydrolysis. The increase in susceptibility to acid hydrolysis was proposed to result from defective and porous structures that resulted after annealing. Although annealing perfected the crystalline structure, it also produced void space, which led to porous structures and possible starch granule defects. The molecular size distribution and chain length distribution of Naegeli dextrins of annealed and native starches were analyzed. The reorganization of the starch molecule during annealing occurred mainly within the crystalline lamellae. Imperfect double helices in the crystalline lamellae improved after annealing, and the branch linkages at the imperfect double helices became protected by the improved crystalline structure. Therefore, more long chains were observed in the Naegeli dextrins of annealed starches than in native starches.

  11. Zip nucleic acids are potent hydrolysis probes for quantitative PCR

    PubMed Central

    Paris, Clément; Moreau, Valérie; Deglane, Gaëlle; Voirin, Emilie; Erbacher, Patrick; Lenne-Samuel, Nathalie

    2010-01-01

    Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3′ end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes. PMID:20071749

  12. Kinetic and process studies on free and solid acid catalyzed hydrolysis of biomass substrates

    SciTech Connect

    Abasaeed, A.E.

    1987-01-01

    Trifluoroacetic acid (TFA) was tested as a catalyst for cellulose hydrolysis. Eighty percent conversion of cellulose into glucose was obtained with concentrated TFA. The kinetics of TFA catalyzed cellulose hydrolysis was investigated. The reaction was found to follow first order kinetics for both hydrolysis and decomposition. The kinetic parameters were determined from experimental data covering conditions of 160-180 C, 10-30% acid, and 1:2 solid to liquid ratio. The hydrolysis reaction was found to be more sensitive to temperature than the decomposition reaction. Use of TFA was further investigated as a pretreatment for enzymatic hydrolysis of cellulose. A two-fold increase in sugar yields was obtained for TFA pretreated samples in comparison to untreated ones. The kinetics of hydrolysis of prehydrolyzed wood by sulfuric acid was investigated. The substrate was first treated with 0.75% acid at 184 C for 4 minutes to remove hemicellulose. The kinetic parameters were determined in the range of 198-215 C and 1-3% acid. A heterogeneous kinetic model was developed to study the effect of particle size on acid hydrolysis of cellulose. It was found that as the chip size increases, maximum glucose yield decreases and reaction time at which maximum yield occurs increases. Acidic zeolites (LZ-M-8) were investigated as catalysts for hydrolysis reaction of inulin into fructose. The hydrolysis reaction was found to follow first order kinetics. Products containing 96 and 75% fructose were obtained upon hydrolysis respectively from inulin and extract.

  13. Robustness of two-step acid hydrolysis procedure for composition analysis of poplar.

    PubMed

    Bhagia, Samarthya; Nunez, Angelica; Wyman, Charles E; Kumar, Rajeev

    2016-09-01

    The NREL standard procedure for lignocellulosic biomass composition has two steps: primary hydrolysis in 72% wt sulfuric acid at 30°C for 1h followed by secondary hydrolysis of the slurry in 4wt% acid at 121°C for 1h. Although pointed out in the NREL procedure, the impact of particle size on composition has never been shown. In addition, the effects of primary hydrolysis time and separation of solids prior to secondary hydrolysis on composition have never been shown. Using poplar, it was found that particle sizes less than 0.250mm significantly lowered the glucan content and increased the Klason lignin but did not affect xylan, acetate, or acid soluble lignin contents. Composition was unaffected for primary hydrolysis time between 30 and 90min. Moreover, separating solids prior to secondary hydrolysis had negligible effect on composition suggesting that lignin and polysaccharides are completely separated in the primary hydrolysis stage. PMID:27282557

  14. Simulation of acid hydrolysis of lignocellulosic residues to fermentable sugars for bioethanol production

    NASA Astrophysics Data System (ADS)

    Sidiras, Dimitris

    2012-12-01

    The dilute acid hydrolysis of fir sawdust with sulfuric acid was undertaken in a batch reactor system (autoclave). The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemicelluloses hydrolysis, due to a rapid hydrolysis reaction for acid concentration 0.045 N at 160-180°C. It was found that significant sugar degradation occurred at these conditions. The optimum conditions gave a yield of 38% total fermentable sugars. The kinetics of dilute acid hydrolysis of cellulose and hemicelluloses (polysaccharides) were simulated using four pseudo-kinetic models. The reaction rate constants were calculated in each case.

  15. Effect of acid hydrolysis on starch structure and functionality: a review.

    PubMed

    Wang, Shujun; Copeland, Les

    2015-01-01

    Acid hydrolysis is an important chemical modification that can significantly change the structural and functional properties of starch without disrupting its granular morphology. A deep understanding of the effect of acid hydrolysis on starch structure and functionality is of great importance for starch scientific research and its industrial applications. During acid hydrolysis, amorphous regions are hydrolyzed preferentially, which enhances the crystallinity and double helical content of acid hydrolyzed starch. This review discusses current understanding of the effect of acid hydrolysis on starch structure and functionality. The effects of acid hydrolysis on amylose content, chain length distribution of amylopectin molecules, molecular and crystalline organization (including lamellar structure) and granular morphology are considered. Functional properties discussed include swelling power, gelatinization, retrogradation, pasting, gel texture, and in vitro enzyme digestibility. The paper also highlights some promising applications of acid hydrolyzed starch (starch nanocrystals) in the preparation of biodegradable nanocomposites, bio-hydrogen, and slowly digestible starch-based healthy foods.

  16. Surface Chemical Compositions and Dispersity of Starch Nanocrystals Formed by Sulfuric and Hydrochloric Acid Hydrolysis

    PubMed Central

    Wei, Benxi; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2014-01-01

    Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were −23.1 and −5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to −32.3 and −10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to −24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample. PMID:24586246

  17. Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis.

    PubMed

    Wei, Benxi; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2014-01-01

    Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were -23.1 and -5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to -32.3 and -10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to -24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample.

  18. Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass.

    PubMed

    Jensen, Jill R; Morinelly, Juan E; Gossen, Kelsey R; Brodeur-Campbell, Michael J; Shonnard, David R

    2010-04-01

    The effects of dilute acid hydrolysis conditions were investigated on total sugar (glucose and xylose) yields after enzymatic hydrolysis with additional analyses on glucose and xylose monomer and oligomer yields from the individual hydrolysis steps for aspen (a hardwood), balsam (a softwood), and switchgrass (a herbaceous energy crop). The results of this study, in the form of measured versus theoretical yields and a severity analysis, show that for aspen and balsam, high dilute acid hydrolysis xylose yields were obtainable at all acid concentrations (0.25-0.75 wt.%) and temperatures (150-175 degrees C) studied as long as reaction time was optimized. Switchgrass shows a relatively stronger dependence on dilute acid hydrolysis acid concentration due to its higher neutralizing mineral content. Maximum total sugar (xylose and glucose; monomer plus oligomer) yields post-enzymatic hydrolysis for aspen, balsam, and switchgrass, were 88.3%, 21.2%, and 97.6%, respectively. In general, highest yields of total sugars (xylose and glucose; monomer plus oligomer) were achieved at combined severity parameter values (log CS) between 2.20 and 2.40 for the biomass species studied.

  19. The mechanism of hydrothermal hydrolysis for glycyrrhizic acid into glycyrrhetinic acid and glycyrrhetinic acid 3-O-mono-β-D-glucuronide in subcritical water.

    PubMed

    Fan, Rui; Li, Nan; Xu, Honggao; Xiang, Jun; Wang, Lei; Gao, Yanxiang

    2016-01-01

    To improve the bioactivity and sweetness properties of glycyrrhizic acid (GL), the hydrothermal hydrolysis of GL into glycyrrhetinic acid (GA) and glycyrrhetinic acid 3-O-mono-β-D-glucuronide (GAMG) in subcritical water was investigated. The effects of temperature, time and their interaction on the conversion ratios were analyzed and the reactions were elaborated with kinetics and thermodynamics. The results showed that GL hydrothermal hydrolysis was significantly (P < 0.05) affected by reaction time and temperature, as well as their interaction, and could be fitted into first-order kinetics. The thermodynamic analysis indicated that the hydrolysis of GL was endergonic and non-spontaneous. The hydrolytic pathways were composed of complex consecutive and parallel reactions. It was concluded that subcritical water may be a potential medium for producing GAMG and GA.

  20. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  1. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG.

  2. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability.

  3. Comparison of microwave oven and convection oven for acid hydrolysis of dietary fiber polysaccharides.

    PubMed

    Li, B W

    1998-01-01

    Hydrolysis of dietary fiber polysaccharides (DFP) is an integral part of any enzymatic-chemical method for dietary fiber analysis. Residues obtained after enzyme treatments of fiber-containing foods are usually suspended in 12 M sulfuric acid and kept at or slightly above ambient temperature for at least 1 h, and then the mixtures are diluted with deionized water to a final concentration of 1 M or 2 M acid, followed by heating at 100 degrees C in a water bath or convection oven for 1 or 2 h. Under these hydrolytic conditions, some degradation of the released monosaccharides generally takes place over the duration of hydrolysis. We investigated the feasibility of using microwave energy as a heat source to reduce time and minimize degradation. Preliminary tests were done on the well-characterized soy polysaccharide Fibrim. With a microwave digestion system equipped with temperature and pressure monitors and control lines, optimum settings of power (5%, 75%), time (up to 3 min and 30 s), temperature (35 degrees-55 degrees C), and pressure (45-65 psi) were determined for different foods depending on the residue weight and volume of acid. Results were comparable for microwave oven and convection oven hydrolysis of DFP from 5 foods with good correlations for neutral sugar values; r2 = 0.997 for arabinose, 0.925 for galactose, 0.981 for glucose, 0.969 for mannose, and 0.990 for xylose.

  4. Acid hydrolysis of native corn starch: morphology, crystallinity, rheological and thermal properties.

    PubMed

    Utrilla-Coello, R G; Hernández-Jaimes, C; Carrillo-Navas, H; González, F; Rodríguez, E; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2014-03-15

    The acid hydrolysis of native corn starch at 35 °C was monitored during 15 days. After this time, the residual solids were about 37.0 ± 3.0%. First-order kinetics described the hydrolysis data, giving a constant rate of kH = 0.18 ± 0.012 days(-1). Amylose content presented a sharp decrement of about 85% and X-ray diffraction results indicated a gradual increase in crystallinity during the first 3 days. SEM micrographs showed that hydrolysis disrupted granule morphology from an initial regular shape to increasingly irregular shapes. Fractal analysis of SEM images revealed an increase in surface roughness. Fast changes in the thermal effects were caused by molecular rearrangements after fast hydrolysis of amylose in the amorphous regions in the first day. Steady shear rate and oscillatory tests showed a sharp decrease of the apparent viscosity and an increase of the damping factor (tan(δ)) caused by amylose degradation. PMID:24528771

  5. Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern.

    PubMed

    Andersson, Sofia Regnell; Hakkarainen, Minna; Inkinen, Saara; Södergård, Anders; Albertsson, Ann-Christine

    2010-04-12

    Poly-l-lactide/poly-d-lactide (PLLA/PDLA) stereocomplex had much higher hydrolytic stability compared to plain PLLA, but at the same time shorter and more acidic degradation products were formed. Both materials were subjected to hydrolytic degradation in water and in phosphate buffer at 37 and 60 degrees C, and the degradation processes were monitored by following mass loss, water uptake, thermal properties, surface changes, and pH of the aging medium. The degradation product patterns were determined by electrospray ionization-mass spectrometry (ESI-MS). The high crystallinity and strong secondary interactions in the stereocomplex prevented water uptake and resulted in lower mass loss and degradation rate. However, somewhat surprisingly, the pH of the aging medium decreased much faster in the case of PLLA/PDLA stereocomplex. In accordance, the ESI-MS results showed that hydrolysis of PLLA/PDLA resulted in shorter and more acidic degradation products. This could be explained by the increased intermolecular crystallization due to stereocomplexation, which results in an increased number of tie chains. Because mainly these short tie chains are susceptible to hydrolysis this leads to formation of shorter oligomers compared to hydrolysis of regular PLLA.

  6. Results of the hydrolysis of fusinitic brown coals

    SciTech Connect

    Perednikova, Z.M.; Garstman, B.B.; Rakitina, E.V.; Rumyantseva, Z.A.

    1984-01-01

    The products of the alkaline hydrolysis of debituminized fusinitic brown coals have been separated into relatively homogeneous groups of substances with the aid of extraction, chromatography, and alkaline saponification. The group compositions of the substances isolated have been studied by IR spectroscopy.

  7. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production

    PubMed Central

    El-Tayeb, T.S.; Abdelhafez, A.A.; Ali, S.H.; Ramadan, E.M.

    2012-01-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker’s yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker’s yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984

  8. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production.

    PubMed

    El-Tayeb, T S; Abdelhafez, A A; Ali, S H; Ramadan, E M

    2012-10-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984

  9. Plantain starch granules morphology, crystallinity, structure transition, and size evolution upon acid hydrolysis.

    PubMed

    Hernández-Jaimes, C; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2013-06-01

    Plantain native starch was hydrolysed with sulphuric acid for twenty days. Hydrolysis kinetics was described by a logistic function, with a zero-order rate during the first seven days, followed by a slower kinetics dynamics at longer times. X-ray diffraction results revealed a that gradual increase in crystallinity occurred during the first seven days, followed by a decrease to values similar to those found in the native starch. Differential scanning calorimetry analysis suggested a sharp structure transition by the seventh day probably due to a molecular rearrangement of the starch blocklets and inhomogeneous erosion of the amorphous regions and semi crystalline lamellae. Scanning electron micrographs showed that starch granules morphology was continually degraded from an initial oval-like shape to irregular shapes due to aggregation effects. Granule size distribution broadened as hydrolysis time proceeded probably due to fragmentation and agglomeration phenomena of the hydrolysed starch granules.

  10. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.

    PubMed

    Tian, Cuihua; Yi, Jianan; Wu, Yiqiang; Wu, Qinglin; Qing, Yan; Wang, Lijun

    2016-01-20

    Cellulose nanofibrils (CNFs) are attracting much attention for the advantages of excellent mechanical strength, good optical transparency, and high surface area. An eco-friendly and energy-saving method was created in this work to produce highly negative charged CNFs using high-pressure mechanical defibrillation coupled with strong acid hydrolysis pretreatments. The morphological development, zeta potential, crystal structure, chemical composition and thermal degradation behavior of the resultant materials were evaluated by transmission electron microscopy (TEM), zeta potential analysis, X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and thermogravimetric analysis (TGA). These CNFs were fully separated, surface-charged, and highly entangled. They showed a large fiber aspect ratio compared to traditional cellulose nanocrystrals that are produced by strong acid hydrolysis. Compared to hydrochloric acid hydrolysis, the CNFs produced by sulfuric acid pretreatments were completely defibrillated and presented stable suspensions (or gels) even at low fiber content. On the other hand, CNFs pretreated by hydrochloric acid hydrolysis trended to aggregate because of the absence of surface charge. The crystallinity index (CI) of CNFs decreased because of mechanical defibrillation, and then increased dramatically with increased sulfuric acid concentration and reaction time. FTIR analysis showed that the C-O-SO3 group was introduced on the surfaces of CNFs during sulfuric acid hydrolysis. These sulfate groups accelerated the thermal degradation of CNFs, which occurred at lower temperature than wood pulp, indicating that the thermal stability of sulfuric acid hydrolyzed CNFs was decreased. The temperature of the maximum decomposition rate (Tmax) and the maximum weight-loss rates (MWLRmax) were much lower than for wood pulp because of the retardant effect of sulfuric acid during the combustion of CNFs. By contrast, the CNFs treated with hydrochloric acid

  11. Hydrolysis of tRNA(sup Phe) on Suspensions of Amino Acids

    NASA Technical Reports Server (NTRS)

    Gao, Kui; Orgel, Leslie E.

    2001-01-01

    RNA is adsorbed strongly on suspensions of many moderately soluble organic solids. In some cases, the hydrolysis of tRNA(sup Phe) is greatly accelerated by adsorption, and the major sites of hydrolysis are changed from those that are important in homogeneous solution. Here we show that the hydrolysis is greatly accelerated by suspensions of aspartic acid and beta-glutamic acid but not by suspensions of alpha-glutamic acid, asparagine, or glutamine. The non-enzymatic hydrolysis of RNA has been studied extensively, especially because of its relevance to the mechanisms of action of ribozymes and to biotechnology and therapy. Many ribonucleases, ribozymes, and non-biological catalysts function via acid-base catalysis of an intramolecular transesterification mechanism in which the 2'-OH group attacks the adjacent phosphate group. The pentacoordinated phosphorane intermediate may collapse back to starting material, or yield isomerized or cleaved products.

  12. On the Brønsted acid-catalyzed homogeneous hydrolysis of furans.

    PubMed

    Nikbin, Nima; Caratzoulas, Stavros; Vlachos, Dionisios G

    2013-11-01

    Furan affairs: Electronic structure calculations of the homogeneous Brønsted acid-catalyzed hydrolysis of 2,5-dimethylfuran show that proton transfer to the β-position is rate-limiting and provides support that the hydrolysis follows general acid catalysis. By means of projected Fukui indices, we show this to be the case for unsubstituted, 2-, and 2,5-substituted furans with electron-donating groups.

  13. Effect of citric acid concentration and hydrolysis time on physicochemical properties of sweet potato starches.

    PubMed

    Surendra Babu, Ayenampudi; Parimalavalli, Ramanathan; Rudra, Shalini Gaur

    2015-09-01

    Physicochemical properties of citric acid treated sweet potato starches were investigated in the present study. Sweet potato starch was hydrolyzed using citric acid with different concentrations (1 and 5%) and time periods (1 and 11 h) at 45 °C and was denoted as citric acid treated starch (CTS1 to CTS4) based on their experimental conditions. The recovery yield of acid treated starches was above 85%. The CTS4 sample displayed the highest amylose (around 31%) and water holding capacity its melting temperature was 47.66 °C. The digestibility rate was slightly increased for 78.58% for the CTS3 and CTS4. The gel strength of acid modified starches ranged from 0.27 kg to 1.11 kg. RVA results of acid thinned starches confirmed a low viscosity profile. CTS3 starch illustrated lower enthalpy compared to all other modified starches. All starch samples exhibited a shear-thinning behavior. SEM analysis revealed that the extent of visible degradation was increased at higher hydrolysis time and acid concentration. The CTS3 satisfied the criteria required for starch to act as a fat mimetic. Overall results conveyed that the citric acid treatment of sweet potato starch with 5% acid concentration and 11h period was an ideal condition for the preparation of a fat replacer.

  14. Activation Energies for an Enzyme-Catalyzed and Acid-Catalyzed Hydrolysis: An Introductory Interdisciplinary Experiment for Chemists and Biochemists.

    ERIC Educational Resources Information Center

    Adams, K. R.; Meyers, M. B.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students determine and compare the Arrhenius activation energies (Ea) for the hydrolysis of salicin. This reaction is subject to catalysis both by acid and by the enzyme emulsin (beta-d-glucoside glycohydrolase). (JN)

  15. Modeling the hydrolysis of perfluorinated compounds containing carboxylic and phosphoric acid ester functions and sulfonamide groups.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2010-01-01

    Temperature-dependent rate constants were estimated for the acid- and base-catalyzed and neutral hydrolysis reactions of perfluorinated telomer acrylates (FTAcrs) and phosphate esters (FTPEs), and the S(N)1 and S(N)2 hydrolysis reactions of fluorotelomer iodides (FTIs). Under some environmental conditions, hydrolysis of monomeric FTAcrs could be rapid (half-lives of several years in marine systems and as low as several days in some landfills) and represent a dominant portion of their overall degradation. Abiotic hydrolysis of monomeric FTAcrs may be a significant contributor to current environmental loadings of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Polymeric FTAcrs are expected to be hydrolyzed more slowly, with estimated half-lives in soil and natural waters ranging between several centuries to several millenia absent additional surface area limitations on reactivity. Poor agreement was found between the limited experimental data on FTPE hydrolysis and computational estimates, requiring more detailed experimental data before any further modeling can occur on these compounds or their perfluoroalkyl sulfonamidoethanol phosphate ester (PFSamPE) analogs. FTIs are expected to have hydrolytic half-lives of about 130 days in most natural waters, suggesting they may be contributing to substantial FTOH and PFCA inputs in aquatic systems. Perfluoroalkyl sulfonamides (PFSams) appear unlikely to undergo abiotic hydrolysis at the S-N, C-S, or N-C linkages under environmentally relevant conditions, although potentially facile S-N hydrolysis via intramolecular catalysis by ethanol and acetic acid amide substituents warrants further investigation. PMID:20390888

  16. Housefly larvae hydrolysate: orthogonal optimization of hydrolysis, antioxidant activity, amino acid composition and functional properties

    PubMed Central

    2013-01-01

    Background Antioxidant, one of the most important food additives, is widely used in food industry. At present, antioxidant is mostly produced by chemical synthesis, which would accumulate to be pathogenic. Therefore, a great interest has been developed to identify and use natural antioxidants. It was showed that there are a lot of antioxidative peptides in protein hydrolysates, possessing strong capacity of inhibiting peroxidation of macro-biomolecular and scavenging free redicals in vivo. Enzymatic hydrolysis used for preparation of antioxidative peptides is a new hot-spot in the field of natural antioxidants. It reacts under mild conditions, with accurate site-specific degradation, good repeatability and few damages to biological activity of protein. Substrates for enzymatic hydrolysis are usually plants and aqua-animals. Insects are also gaining attention because of their rich protein and resource. Antioxidative peptides are potential to be exploited as new natural antioxidant and functional food. There is a huge potential market in medical and cosmetic field as well. Result Protein hydrolysate with antioxidant activity was prepared from housefly larvae, by a two-step hydrolysis. Through orthogonal optimization of the hydrolysis conditions, the degree of hydrolysis was determined to be approximately 60%. Fractionated hydrolysate at 25 mg/mL, 2.5 mg/mL and 1 mg/mL exhibited approximately 50%, 60% and 50% of scavenging capacity on superoxide radicals, 1, 1-Diphenyl-2-picrylhydrazyl radicals and hydroxyl radicals, respectively. Hydrolysate did not exhibit substantial ion chelation. Using a linoneic peroxidation system, the inhibition activity of hydrolysate at 20 mg/mL was close to that of 20 μg/mL tertiary butylhydroquinone, suggesting a potential application of hydrolysate in the oil industry as an efficient antioxidant. The lyophilized hydrolysate presented almost 100% solubility at pH 3-pH 9, and maintained nearly 100% activity at pH 5-pH 8 at 0

  17. Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid Hydrolysis

    SciTech Connect

    Zhao, Haibo; Kwak, Ja Hun; Zhang, Z. Conrad; Brown, Heather M.; Arey, Bruce W.; Holladay, John E.

    2007-03-21

    Cotton linters were partially hydrolyzed in dilute acid and the morphology of remaining macrofibrils studied with Scanning Electron Microscopy (SEM) under various magnifications. The crystal region (microfibril bundles) in the macrofibrils was not altered by hydrolysis, and only amorphous cellulose was hydrolyzed and leached out from the macrofibrils. The diameter of microfibril bundles was 20-30 nm after the amorphous cellulose was removed by hydrolysis. XRD experiments confirm the unaltered diameter of the microfibrils after hydrolysis. The strong stability of these microfibril bundles in hydrolysis limits both the total sugar monomer yield and the size of nano particles or rods produced in hydrolysis. The large surface potential on the remaining microfibril bundles drives the agglomeration of macrofibrils.

  18. Effect of acid concentration and pulp properties on hydrolysis reactions of mercerized sisal.

    PubMed

    Lacerda, Talita M; Zambon, Márcia D; Frollini, Elisabete

    2013-03-01

    The influence of sulfuric acid concentration (H2SO4 5-25%, 100°C), crystallinity and fibers size on the hydrolysis reaction of sisal pulps were investigated, with the goal of evaluating both the liquor composition, as an important step in the production of bioethanol, and the residual non-hydrolyzed pulp, to determine its potential application as materials. Aliquots were withdrawn from the reaction media, and the liquor composition was analyzed by HPLC. The residual non-hydrolyzed pulps were characterized by SEM, their average molar mass and crystallinity index, and their size distribution was determined using a fiber analyzer. Sulfuric acid 25% led to the highest glucose content (approximately 10gL(-1)), and this acid concentration was chosen to evaluate the influence of both the fiber size and crystallinity of the starting pulp on hydrolysis. The results showed that fibers with higher length and lower crystallinity favored glucose production in approximately 12%, with respect to the highly crystalline shorter fibers. PMID:23465940

  19. Acid-catalyzed hydrolysis of lignin β-O-4 linkages in ionic liquid solvents: a computational mechanistic study.

    PubMed

    Janesko, Benjamin G

    2014-03-21

    This work presents a computational mechanistic study of the acid-catalyzed hydrolysis of lignin β-O-4 linkages in ionic liquid solvents. Model compound 2-hydroyxyethyl phenyl ether undergoes dehydration to vinyl phenyl ether followed by hydrolysis to phenol and "Hibbert's ketones". Larger model compound α-hydroxy-phenethyl phenyl ether illustrates an E1 dehydration mechanism involving resonance-stabilized carbocations. Continuum models for ionic liquid solvents indicate that solvation can significantly affect the reaction rates. The tested continuum ionic liquid solvents give similar results, and differ significantly from continuum organic solvents with comparable dielectric constants. The acidic ionic liquid cation 1-H-3-methylimidazolium has lower predicted catalytic activity than hydronium or HCl, consistent with the former's relatively small acid dissociation constant. Calculations with dispersion-corrected density functionals give similar behavior. Calculations on Lewis acidic metal chlorides used experimentally for lignin hydrolysis suggest that the metal chloride may participate in the initial dehydration. These results provide a baseline for future studies of improved hydrolysis catalysts. PMID:24509442

  20. Highly acidic mesostructured aluminosilicates assembled from surfactant-mediated zeolite hydrolysis products.

    PubMed

    Wang, Hui; Liu, Yu; Pinnavaia, Thomas J

    2006-03-16

    The surfactant-mediated hydrolysis of ZSM-5 zeolite affords five-membered ring subunits that can be readily incorporated into the framework walls of a hexagonal mesostructured aluminosilicate, denoted MSU-Z. The five-membered ring subunits, which are identifiable by infrared spectroscopy, impart unprecedented acidity to the mesostructure, as judged by cumene cracking activity at 300 degrees C. Most notably, MSU-Z aluminosilicate made through the base hydrolysis of ZSM-5 in the presence of cetyltrimethylammonium ions exhibits a cumene conversion of 73%, which is 6.7-fold higher than the conversion provided by a conventional MCM-41. This approach to stabilizing zeolitic subunits through surfactant-mediated hydrolysis of zeolites appears to be general. The hydrolysis of USY zeolite under analogous hydrolytic conditions also affords zeolitic fragments that boost the acidity of the mesostructure in comparison to equivalent compositions prepared from conventional aluminosilicate precursors.

  1. Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol.

    PubMed

    Goswami, Mandavi; Meena, S; Navatha, S; Prasanna Rani, K N; Pandey, Ashok; Sukumaran, Rajeev Kumar; Prasad, R B N; Prabhavathi Devi, B L A

    2015-01-01

    Solid acid catalysts can hydrolyze cellulose with lower reaction times and are easy to recover and reuse. A glycerol based carbon acid catalyst developed at CSIR-IICT performed well in acid catalysis reactions and hence this study was undertaken to evaluate the catalyst for hydrolysis of biomass (alkali pretreated or native rice straw). The catalyst could release 262 mg/g total reducing sugars (TRS) in 4h at 140 °C from alkali pretreated rice straw, and more importantly it released 147 mg/g TRS from native biomass. Reusability of the catalyst was also demonstrated. Catalytic hydrolysate was used as sugar source for fermentation to produce ethanol. Results indicate the solid acid catalyst as an interesting option for biomass hydrolysis.

  2. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications. PMID:27003825

  3. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications.

  4. High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes.

    PubMed

    Kim, Se Won; Hong, Chae-Hwan; Jeon, Sung-Wan; Shin, Hyun-Jae

    2015-11-01

    Gracilaria verrucosa, the red alga, is a suitable feedstock for biosugar production. This study analyzes biosugar production by the hydrolysis of G. verrucosa conducted under various conditions (i.e., various acid concentrations, substrate concentrations, reaction times, and enzyme dosages). The acid hydrolysates of G. verrucosa yielded a total of 7.47g/L (37.4%) and 10.63g/L (21.26%) of reducing sugars under optimal small (30mL) and large laboratory-scale (1L) hydrolysis processes, respectively. Reducing sugar obtained from acid and enzymatic hydrolysates were 10% higher, with minimum by-products, than those reported in other studies. The mass balance for the small laboratory-scale process showed that the acid and enzymatic hydrolysates had a carbohydrate conversion of 57.2%. The mass balance approach to the entire hydrolysis process of red seaweed for biosugar production can be applied to other saccharification processes.

  5. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass.

    PubMed

    Yat, Shu Chiang; Berger, Alan; Shonnard, David R

    2008-06-01

    Hydrolysis of four timber species (aspen, balsam fir, basswood, and red maple) and switchgrass was studied using dilute sulfuric acid at 50 g dry biomass/L under similar conditions previously described as acid pretreatment. The primary goal was to obtain detailed kinetic data of xylose formation and degradation from a match between a first order reaction model and the experimental data at various final reactor temperatures (160-190 degrees C), sulfuric acid concentrations (0.25-1.0% w/v), and particle sizes (28-10/20 mesh) in a glass-lined 1L well-mixed batch reactor. Reaction rates for the generation of xylose from hemicellulose and the generation of furfural from xylose were strongly dependent on both temperature and acid concentration. However, no effect was observed for the particle sizes studied. Oligomer sugars, representing incomplete products of hydrolysis, were observed early in the reaction period for all sugars (xylose, glucose, arabinose, mannose, and galactose), but were reduced to low concentrations at later times (higher hemicellulose conversions). Maximum yields for xylose ranged from 70% (balsam) to 94% (switchgrass), for glucose from 10.6% to 13.6%, and for other minor sugars from 8.6% to 58.9%. Xylose formation activation energies and the pre-exponential factors for the timber species and switchgrass were in a range of 49-180 kJ/mol and from 7.5 x 10(4) to 2.6 x 10(20)min(-1), respectively. In addition, for xylose degradation, the activation energies and the pre-exponential factors ranged from 130 to 170 kJ/mol and from 6.8 x 10(13) to 3.7 x 10(17)min(-1), respectively. There was a near linear dependence on acid concentration observed for xylose degradation. Our results suggest that mixtures of biomass species may be processed together and still achieve high yields for all species. PMID:17904838

  6. Hydrolysis of microcrystalline cellulose using functionalized Bronsted acidic ionic liquids - A comparative study.

    PubMed

    Parveen, Firdaus; Patra, Tanmoy; Upadhyayula, Sreedevi

    2016-01-01

    Cellulose conversion to platform chemicals is required to meet the demands of increasing population and modernization of the world. Hydrolysis of microcrystalline cellulose was studied with SO3H, COOH and OH functionalized imidazole based ionic liquid using 1-butyl-3-methylimidazolium chloride [BMIM]Cl as a solvent. The influence of temperature, time, acidity of ionic liquids and catalyst loading was studied on hydrolysis reaction. The maximum %TRS yield 85%, was obtained at 100°C and 90min with 0.2g of SO3H functionalized ionic liquid. UV-vis spectroscopy using 4-nitro aniline as an indicator was performed to find out the Hammett function of ionic liquid and acidity trends are as follows: SO3H>COOH>OH. Density functional theory (DFT) calculations were performed to optimize the ionic liquid and their conjugate bases at B3LYP 6-311G++ (d, p) level using Gaussian 09 program. Theoretical findings are in agreement with the experimental results.

  7. Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl-FeCl3 as catalyst.

    PubMed

    Li, Jinbao; Zhang, Xiangrong; Zhang, Meiyun; Xiu, Huijuan; He, Hang

    2015-03-01

    The effect of ultrasonic pretreatment coupled with HCl-FeCl3 catalyst was evaluated to hydrolyze cellulose amorphous regions. The ultrasonic pretreatment leads to cavitation that affects the morphology and microstructure of fibers, enhancing the accessibility of chemical reagent to the loosened amorphous regions of cellulose. In this work, Fourier transform infrared spectroscopy (FTIR) was used to identify characteristic absorption bands of the constituents and the crystallinity was evaluated by the X-ray diffraction (XRD) technique. The results indicated that appropriate ultrasonic pretreatment assisted with FeCl3 can enhance the acid hydrolysis of amorphous regions of cellulose, thus improving the crystallinity of the remaining hydrocellulose. It was observed that sonication samples that were pretreated for 300 W and 20 min followed by acid hydrolysis had maximum of 78.9% crystallinity. The crystallinity was 9.2% higher than samples that were not subjected to ultrasound. In addition, the average fines length decreased from 49 μm to 37 μm. PMID:25498717

  8. Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production.

    PubMed

    Chaudhary, Gaurav; Singh, Lalit Kumar; Ghosh, Sanjoy

    2012-11-01

    Different alkaline pretreatment methods (NaOH, NaOH+10% urea and aqueous ammonia) were optimized for maximum delignification of Saccharum spontaneum at 30°C. Maximum delignification were obtained as 47.8%, 51% and 48% from NaOH (7% NaOH, 48h, and 10% biomass loading), NaOH+urea (7% NaOH+10% urea, 48 h and 10% biomass loading) and 30% ammonia (40 days and 10% biomass loading) respectively. H(2)SO(4) 60% (v/v), 10% biomass loading at 30°C for 4h, were optimized conditions to solubilize the cellulose and hemicellulose from solid residue obtained after different optimized alkaline pretreatments. Slurry thus obtained was diluted to obtain final acid concentration of 10% (v/v) for real hydrolysis of cellulose and hemicellulose at 100°C for 1h. Among all pretreatment methods applied, the best result 0.58 g (85%) reducing sugars/g of initial biomass after acid hydrolysis was obtained from aqueous ammonia pretreated biomass. Scheffersomyces stipitis CBS6054 was used to ferment the hydrolysate; ethanol yield (Y(p/s)) and productivity (r(p)) were found to be 0.35 g/g and 0.22 g/L/h respectively.

  9. Assessment on proximate composition, dietary fiber, phytic acid and protein hydrolysis of germinated Ecuatorian brown rice.

    PubMed

    Cáceres, Patricio J; Martínez-Villaluenga, Cristina; Amigo, Lourdes; Frias, Juana

    2014-09-01

    Germinated brown rice (GBR) is considered healthier than brown rice (BR) but its nutritive value has been hardly studied. Since nutritive quality of GBR depends on genetic diversity and germination conditions, six Ecuadorian BR varieties were germinated at 28 and 34 ºC for 48 and 96 h in darkness and proximate composition, dietary fiber fractions, phytic acid content as well as degree of protein hydrolysis and peptide content were studied. Protein, lipids, ash and available carbohydrate ranged 7.3-10.4%, 2.0-4.0%, 0.8-1.5% and 71.6 to 84.0%, respectively, in GBR seedlings. Total dietary fiber increased during germination (6.1-13.6%), with a large proportion of insoluble fraction, while phytic acid was reduced noticeably. In general, protein hydrolysis occurred during germination was more accused at 28 ºC for 48 h. These results suggest that GBR can be consumed directly as nutritive staple food for a large population worldwide contributing to their nutritional requirements.

  10. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil

    PubMed Central

    2011-01-01

    Background Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil. Results The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time. Conclusions This study showed that ethanolic KOH concentration was significant variable for J. curcas seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed J. curcas seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC. PMID:22044685

  11. Theoretical study of the alkaline hydrolysis of an aza-β-lactam derivative of clavulanic acid

    NASA Astrophysics Data System (ADS)

    Garcías, Rafael C.; Coll, Miguel; Donoso, Josefa; Muñoz, Francisco

    2003-04-01

    DFT calculations based on the hybrid functional B3LYP/6-31+G * were used to study the alkaline hydrolysis of an aza-clavulanic acid, which results from the substitution of the carbon atom at position 6 in clavulanic acid by a nitrogen atom. The presence of the nitrogen atom endows the compound with special properties; in fact, once formed, the tetrahedral intermediate can evolve with cleavage of the N 4-C 7 or N 6-C 7 bond, which obviously leads to different reaction products. These differential bond cleavages may play a central role in the inactivation of β-lactamases, so the compound may be a powerful inactivator of these enzymes.

  12. Effect of Varying Acid Hydrolysis Condition in Gracilaria Sp. Fermentation Using Sasad

    NASA Astrophysics Data System (ADS)

    Mansuit, H.; Samsuri, M. D. C.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.; Mansa, R.

    2015-04-01

    Macroalgae or seaweed is being considered as promising feedstock for bioalcohol production due to high polysaccharides content. Polysaccharides can be converted into fermentable sugar through acid hydrolysis pre-treatment. In this study, the potential of using carbohydrate-rich macroalgae, Gracilaria sp. as feedstock for bioalcohol production via various acid hydrolysis conditions prior to the fermentation process was investigated and evaluated. The seaweed used in this research was from the red algae group, using species of Gracilaria sp. which was collected from Sg. Petani Kedah, Malaysia. Pre-treatment of substrate was done using H2SO4 and HCl with molarity ranging from 0.2M to 0.8M. The pretreatment time were varied in the range of 15 to 30 minutes. Fermentation was conducted using Sasad, a local Sabahan fermentation agent as a starter culture. Alcohol extraction was done using a distillation unit. Reducing sugar analysis was done by Benedict test method. Alcohol content analysis was done using specific gravity test. After hydrolysis, it was found out that acid hydrolysis at 0.2M H2SO4 and pre-treated for 20 minutes at 121°C has shown the highest reducing sugar content which has yield (10.06 mg/g) of reducing sugar. It was followed by other samples hydrolysis using 0.4M HCl with 30 minutes pre-treatment and 0.2M H2SO4, 15 minutes pre-treatment with yield of 8.06 mg/g and 5.75 mg/g reducing sugar content respectively. In conclusion, acid hydrolysis of Gracilaria sp. can produce higher reducing sugar yield and thus it can further enhance the bioalcohol production yield. Hence, acid hydrolysis of Gracilaria sp. should be studied more as it is an important step in the bioalcohol production and upscaling process.

  13. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes.

    PubMed

    Xi, Yong-lan; Dai, Wen-yu; Xu, Rong; Zhang, Jiu-hua; Chen, Ke-quan; Jiang, Min; Wei, Ping; Ouyang, Ping-kai

    2013-11-01

    Immense interest has been devoted to the production of bulk chemicals from lignocellulose biomass. Diluted sulfuric acid treatment is currently one of the main pretreatment methods. However, the low total sugar concentration obtained via such pretreatment limits industrial fermentation systems that use lignocellulosic hydrolysate. Sugarcane bagasse hemicellulose hydrolysate is used as the carbon and nitrogen sources to achieve a green and economical production of succinic acid in this study. Sugarcane bagasse was ultrasonically pretreated for 40 min, with 43.9 g/L total sugar obtained after dilute acid hydrolysis. The total sugar concentration increased by 29.5 %. In a 3-L fermentor, using 30 g/L non-detoxified total sugar as the carbon source, succinic acid production increased to 23.7 g/L with a succinic acid yield of 79.0 % and a productivity of 0.99 g/L/h, and 60 % yeast extract in the medium could be reduced. Compared with the detoxified sugar preparation method, succinic acid production and yield were improved by 20.9 and 20.2 %, respectively. PMID:23649828

  14. Amino acid composition determined using multiple hydrolysis times for three goat milk formulations.

    PubMed

    Rutherfurd, Shane M; Moughan, Paul J; Lowry, Dianne; Prosser, Colin G

    2008-01-01

    The amino acid composition of goat milk formulations with varying protein and carbohydrate concentrations were determined. Proteins in goat milk infant formula, goat milk growing-up formula and goat whole milk powder were hydrolysed using multiple hydrolysis time intervals. A least-squares non-linear regression model was used to predict the free and protein bound amino acid concentrations. The amino acid composition of goat infant formula was compared with human milk reference values. There was good agreement between the multiple hydrolysis and single 24-h hydrolysis methods for approximately one-half of the amino acids. Tryptophan, aspartic acid, threonine, tyrosine, isoleucine, valine, serine and alanine contents were underestimated by 10.6, 5.6, 5.6, 4.7, 4.4, 3.7, 3.7 and 3.6%, respectively, by the single 24-h hydrolysis. The study provides accurate reference data on the amino acid composition of goat milk powders. Goat milk infant formula has amino acids in amounts similar to human milk reference values, when expressed on a per-energy basis.

  15. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.

    PubMed

    Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-06-01

    Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. PMID:26950757

  16. Efficient production of glucose by microwave-assisted acid hydrolysis of cellulose hydrogel.

    PubMed

    Sun, Binzhe; Duan, Lian; Peng, Gege; Li, Xiaoxia; Xu, Aihua

    2015-09-01

    To improve the production of glucose from cellulose, a simple and effective route was developed. This process uses a combination of a step of cellulose dissolution in aqueous NaOH/urea solution and then regeneration with water, followed by an acid hydrolysis step under microwave irradiation. The method is effective to obtain glucose from α-cellulose, microcrystalline cellulose, filter paper, ramie fiber and absorbent cotton. Increased with the acid concentration the glucose yield from hydrogel hydrolysis increased from 0.42% to 44.6% at 160 °C for 10 min. Moreover, the ozone treatment of cellulose in NaOH/urea solution before regeneration significantly enhanced the hydrolysis efficiency with a glucose yield of 59.1%. It is believed that the chains in cellulose hydrogel are relatively free approached, making that the acids easily access the β-glycosidic bonds.

  17. A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate.

    PubMed

    Chen, Hanchi; Liu, Shijie

    2015-09-01

    Liquid hot water (LHW) extraction was used as a pretreatment method to separate the hemicellulose fraction from dried distiller's grain with solubles (DDGS) into liquid phase. Acid hydrolysis using 3.264 % w/w sulfuric acid at 130 °C was performed to convert polysaccharides in LHW extract to monosaccharides. The structure characterization of DDGS in anomeric carbon region based on proton NMR and heteronuclear single quantum coherence (HSQC) during acid hydrolysis was studied in this work. It reveals that the sugar units in DDGS hemicelluloses are constructed with (1-4)-β-D-xylopyranose and α-L-arabinofuranosyl residues. A kinetic model is included to explain the changing concentration of monomer, oligomer, and sugar units. The model was further tested based on the changing concentration of five carbon sugar units during hydrolysis. PMID:26198022

  18. Assessment of the hydrolysis process for the determination of okadaic acid-group toxin ester: presence of okadaic acid 7-O-acyl-ester derivates in Spanish shellfish.

    PubMed

    Villar-González, A; Rodríguez-Velasco, M L; Ben-Gigirey, B; Yasumoto, T; Botana, L M

    2008-04-01

    The contamination of different types of shellfish by okadaic acid (OA)-group toxin esters is an important problem that presents serious risk for human health. During previous investigations carried out in our laboratory by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS), the occurrence of a high percentage of esters in relation to the total OA equivalents has been observed in several shellfish species. The determination of these kinds of toxins using LC/MS or other chemical methods requires a hydrolysis step in order to convert the sterified compounds into the parent toxins, OA, dinophysistoxins-1 (DTX-1) and dinophysistoxins-2 (DTX-2). Most of the hydrolysis procedures are based on an alkaline hydrolysis reaction. However, despite hydrolysis being a critical step within the analysis, it has not been studied in depth up to now. The present paper reports the results obtained after evaluating the hydrolysis process of an esterified form of OA by using a standard of 7-O-acyl ester with palmitoyl as the fatty acid (palOA). Investigations were focused on checking the effectiveness of the hydrolysis for palOA using methanol as solvent standard and matrices matched standards. From the results obtained, no matrix influence on the hydrolysis process was observed and the quantity of palOA converted into OA was always above 80%. The analyses of different Spanish shellfish samples showed percentages of palOA in relation to the total OA esters ranging from 27% to 90%, depending on the shellfish specie. PMID:18243269

  19. Assessment of the hydrolysis process for the determination of okadaic acid-group toxin ester: presence of okadaic acid 7-O-acyl-ester derivates in Spanish shellfish.

    PubMed

    Villar-González, A; Rodríguez-Velasco, M L; Ben-Gigirey, B; Yasumoto, T; Botana, L M

    2008-04-01

    The contamination of different types of shellfish by okadaic acid (OA)-group toxin esters is an important problem that presents serious risk for human health. During previous investigations carried out in our laboratory by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS), the occurrence of a high percentage of esters in relation to the total OA equivalents has been observed in several shellfish species. The determination of these kinds of toxins using LC/MS or other chemical methods requires a hydrolysis step in order to convert the sterified compounds into the parent toxins, OA, dinophysistoxins-1 (DTX-1) and dinophysistoxins-2 (DTX-2). Most of the hydrolysis procedures are based on an alkaline hydrolysis reaction. However, despite hydrolysis being a critical step within the analysis, it has not been studied in depth up to now. The present paper reports the results obtained after evaluating the hydrolysis process of an esterified form of OA by using a standard of 7-O-acyl ester with palmitoyl as the fatty acid (palOA). Investigations were focused on checking the effectiveness of the hydrolysis for palOA using methanol as solvent standard and matrices matched standards. From the results obtained, no matrix influence on the hydrolysis process was observed and the quantity of palOA converted into OA was always above 80%. The analyses of different Spanish shellfish samples showed percentages of palOA in relation to the total OA esters ranging from 27% to 90%, depending on the shellfish specie.

  20. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter.

  1. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter. PMID:24240182

  2. Fatty acid specificity of hormone-sensitive lipase. Implication in the selective hydrolysis of triacylglycerols.

    PubMed

    Raclot, T; Holm, C; Langin, D

    2001-12-01

    The selective mobilization of fatty acids from white fat cells depends on their molecular structure, in particular the degree of unsaturation. The present study was designed to examine if the release of fatty acids by hormone-sensitive lipase (HSL) in vitro i) is influenced by the amount of unsaturation, ii) depends on the temperature, and iii) could explain the selective pattern of fatty acid mobilization and notably the preferential mobilization of certain highly unsaturated fatty acids. Recombinant rat and human HSL were incubated with a lipid emulsion. The hydrolysis of 35 individual fatty acids, ranging in chain length from 12 to 24 carbon atoms and in unsaturation from 0 to 6 double bonds was measured. Fatty acid composition of in vitro released NEFA was compared with that of fat cell triacylglycerols (TAG), the ratio % NEFA/% TAG being defined as the relative hydrolysis. The relative hydrolysis of individual fatty acids differed widely, ranging from 0.44 (24:1n-9) to 1.49 (18:1n-7) with rat HSL, and from 0.38 (24:1n-9) to 1.67 (18:1n-7) with human HSL. No major difference was observed between rat and human HSL. The relative release was dependent on the number of double bonds according to chain length. The amount of fatty acid released by recombinant rat HSL was decreased but remained robust at 4 degrees C compared with 37 degrees C, and the relative hydrolysis of some individual fatty acids was affected. The relative hydrolysis of fatty acids moderately, weakly, and highly mobilized by adipose tissue in vivo was similar and close to unity in vitro. We conclude that i) the release of fatty acids by HSL is only slightly affected by their degree of unsaturation, ii) the ability of HSL to efficiently and selectively release fatty acids at low temperature could reflect a cold adaptability for poikilotherms or hibernators when endogenous lipids are needed, and iii) the selectivity of fatty acid hydrolysis by HSL does not fully account for the selective pattern of

  3. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. PMID:25647030

  4. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio.

  5. Hydrolysis of chicoric and caftaric acids with esterases and Lactobacillus johnsonii in Vitro and in a gastrointestinal model.

    PubMed

    Bel-Rhlid, Rachid; Pagé-Zoerkler, Nicole; Fumeaux, René; Ho-Dac, Thang; Chuat, Jean-Yves; Sauvageat, Jean Luc; Raab, Thomas

    2012-09-12

    Chicoric acid (ChA) and caftaric acid (CafA) were identified as bioactive components of chicory and have been ascribed a number of health benefits. This study investigated the hydrolysis of ChA and CafA with enzymes and a probiotic bacterium Lactobacillus johnsonii (La1). Esterase from Aspergillus japonicus (24 U/mg) hydrolyzed 100% of ChA (5 mM) and CafA (5 mM) after 3 h, at pH 7.0 and 37 °C. Under the same reaction conditions, 100% hydrolysis of ChA and CafA was achieved with a spray-dried preparation of La1. The addition of La1 (100 mg/mL, 3.3 E9 cfu/g) to CafA solution in a gastrointestinal model (GI model) resulted in 65% hydrolysis of CafA. This model simulates the physicochemical conditions of the human gastrointestinal tract. No hydrolysis of CafA was observed after passage through the GI model in the absence of La1. The results of this study support the hypothesis that ChA and CafA are degraded by gut microflora before absorption and metabolization. PMID:22920606

  6. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.

    PubMed

    Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu

    2015-01-01

    Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive.

  7. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes.

    PubMed

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-26

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the "back-to-back" bisCD complex CuL(1) favoured higher catalytic efficiency and more pronounced enantioselectivity than the "face-to-face" complex CuL(2). The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL(1), which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL(1), even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  8. Effect of D-amino acid substitutions on Ni(II)-assisted peptide bond hydrolysis.

    PubMed

    Ariani, Hanieh H; Polkowska-Nowakowska, Agnieszka; Bal, Wojciech

    2013-03-01

    Previously we demonstrated the sequence-specific hydrolysis of the R1-(Ser/Thr)-peptide bond in Ni(II) complexes of peptides with a general R1-(Ser/Thr)-Xaa-His-Zaa-R2 sequence (R1 and R2 being any sequences) (Kopera, E.; Krezel, A.; Protas, A. M.; Belczyk, A.; Bonna, A.; Wyslouch-Cieszynska, A.; Poznanski, J.; Bal, W. Inorg. Chem. 2010, 49, 6636). In order to refine our understanding of the mechanism of this reaction and to find ways to accelerate it, we undertook a systematic study of effects of d-amino acid substitutions in the template Ac-Gly-Ala-Ser-Arg-His-Trp-Lys-Phe-Leu-NH2 peptide on the hydrolysis rate constants. We found that all stereochemical alterations made around the Ni(II) chelate plane resulted in the decrease of the reaction rate. However, the Ni(II) coordination, a prerequisite to the reaction, was not compromised by these substitutions. We demonstrated that the reaction is only possible when either the side chain of the crucial Ser (or Thr) residue is on the same part of the chelate plane as the next residue in the sequence (Arg), or the side chain of the residue following His (Trp) resides on the opposite side of the plane. The rate of reaction is the fastest when both these conditions are fulfilled. Another novel effect is the strong dependence of the rate of the acyl shift step on the character of the leaving group. PMID:23427909

  9. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    NASA Astrophysics Data System (ADS)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1–S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  10. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    NASA Astrophysics Data System (ADS)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  11. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes.

    PubMed

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-01-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the "back-to-back" bisCD complex CuL(1) favoured higher catalytic efficiency and more pronounced enantioselectivity than the "face-to-face" complex CuL(2). The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL(1), which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL(1), even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics. PMID:26916830

  12. Lignin hydrolysis and phosphorylation mechanism during phosphoric acid-acetone pretreatment: a DFT study.

    PubMed

    Qin, Wu; Wu, Lingnan; Zheng, Zongming; Dong, Changqing; Yang, Yongping

    2014-12-18

    The study focused on the structural sensitivity of lignin during the phosphoric acid-acetone pretreatment process and the resulting hydrolysis and phosphorylation reaction mechanisms using density functional theory calculations. The chemical stabilities of the seven most common linkages (β-O-4, β-β, 4-O-5, β-1, 5-5, α-O-4, and β-5) of lignin in H3PO4, CH3COCH3, and H2O solutions were detected, which shows that α-O-4 linkage and β-O-4 linkage tend to break during the phosphoric acid-acetone pretreatment process. Then α-O-4 phosphorylation and β-O-4 phosphorylation follow a two-step reaction mechanism in the acid treatment step, respectively. However, since phosphorylation of α-O-4 is more energetically accessible than phosphorylation of β-O-4 in phosphoric acid, the phosphorylation of α-O-4 could be controllably realized under certain operational conditions, which could tune the electron and hole transfer on the right side of β-O-4 in the H2PO4- functionalized lignin. The results provide a fundamental understanding for process-controlled modification of lignin and the potential novel applications in lignin-based imprinted polymers, sensors, and molecular devices.

  13. Selective hydrolysis of hemicellulose from wheat straw by a nanoscale solid acid catalyst.

    PubMed

    Zhong, Chao; Wang, Chunming; Huang, Fan; Wang, Fengxue; Jia, Honghua; Zhou, Hua; Wei, Ping

    2015-10-20

    A nanoscale catalyst, solid acid SO4(2-)/Fe2O3 with both Lewis and Brønsted acidity was found to effectively hydrolyze hemicellulose while keeping cellulose and lignin inactive, and selective hydrolysis of hemicellulose from wheat straw by this catalyst was also confirmed. The factors that significantly affected hydrolysis process were investigated with response surface methodology, and the optimum conditions for time, temperature, and ratio of wheat straw to catalyst (w/w) were calculated to be 4.10h, 141.97°C, and 1.95:1, respectively. A maximum hemicellulose hydrolysis yield of 63.5% from wheat straw could be obtained under these conditions. In addition, the catalyst could be recycled six times with high activity remaining.

  14. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  15. Kinetic and Modeling Investigation to Provide Design Guidelines for the NREL Dilute-Acid Process Aimed at Total Hydrolysis/Fractionation of Lignocellulosic Biomass: July 1998

    SciTech Connect

    Lee, Y. Y.; Iyer, P.; Xiang, Q.; Hayes, J.

    2004-08-01

    Following up on previous work, subcontractor investigated three aspects of using NREL ''pretreatment'' technology for total hydrolysis (cellulose as well as hemicellulose) of biomass. Whereas historic hydrolysis of biomass used either dilute acid or concentrated acid technology for hydrolysis of both hemicellulose and cellulose, NREL has been pursuing very dilute acid hydrolysis of hemicellulose followed by enzymatic hydrolysis of cellulose. NREL's countercurrent shrinking-bed reactor design for hemicellulose hydrolysis (pretreatment) has, however, shown promise for total hydrolysis. For the first task, subcontractor developed a mathematical model of the countercurrent shrinking bed reactor operation and, using yellow poplar sawdust as a feedstock, analyzed the effect of: initial solid feeding rate, temperature, acid concentration, acid flow rate, Peclet number (a measure of backmixing in liquid flow), and bed shrinking. For the second task, subcontractor used laboratory trials, with yellow poplar sawdust and 0.07 wt% sulfuric acid at various temperatures, to verify the hydrolysis of cellulose to glucose (desired) and decomposition of glucose (undesired) and determine appropriate parameters for use in kinetic models. Unlike cellulose and hemicellulose, lignins, the third major component of biomass, are not carbohydrates that can be broken down into component sugars. They are, however, aromatic complex amorphous phenolic polymers that can likely be converted into low-molecular weight compounds suitable for production of fuels and chemicals. Oxidative degradation is one pathway for such conversion and hydrogen peroxide would be an attractive reagent for this, as it would leave no residuals. For the third task, subcontractor reacted lignin with hydrogen peroxide under various conditions and analyzed the resulting product mix.

  16. Thermal synthesis and hydrolysis of polyglyceric acid. [in orgin of life studying

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Polyglyceric acid was synthesized by thermal condensation of glyceric acid at 80 C in the presence and absence of two mole percent of sulfuric acid catalyst. The acid catalyst accelerated the polymerization over 100-fold and made possible the synthesis of insoluble polymers of both L- and DL-glyceric acid by heating for less than 1 day. Racemization of L-glyceric acid yielded less than 1 percent D-glyceric acid in condensations carried out at 80 C with catalyst for 1 day and without catalyst for 12 days. The condensation of L-glyceric acid yielded an insoluble polymer much more readily than condensation of DL-glyceric acid. Studies of the hydrolysis of poly-DL-glyceric acid revealed that it was considerably more stable under mild acidic conditions compared to neutral pH. The relationship of this study to the origin of life is discussed.

  17. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value.

  18. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. PMID:25553562

  19. Determination of amino acids in two Polysiphonia species and study of enzymatic hydrolysis method

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Xin; Fan, Xiao; Wei, Yu-Xi

    2002-09-01

    The total content of the rich amino acids in two common red algae, Polysiphonia urceolata and Polysiphonia japonica growing in the Qingdao seashore were determined. The algae powder was hydrolyzed by 6 mol/L HCl at 110°C for 48 h and determined by amino acid analyzer. The content was 25.35% and 24.16%, respectively, much higher than that of some other species. In addition, a nutritive liquid with abundant amino acids was prepared (by the enzymatic hydrolysis method using Polysiphonia urceolata) as raw material for a kind of health beverage. The dried seaweed was decolored by 0.25% KMnO4 and 0.5% active carbon, then enzymalized. In the selection of enzymalizing condition, the orthogonal experimental design was used. Four factors including kinds of enzyme, quantity of enzyme, temperature and time were studied at 3 levels. According to the orthogonal design results, we can choose an optimal condition: hydrolyzing at 45°C by neutral proteinase (0.25%, w/w) for 2h, adjusting pH to 8.5, then adding trypsin (0.25%, w/w) and hydrolyzing for 2 h. Finally the above solution was alkalized by NaOH and neutralized by casein. After the hydrolyzed liquid was filtered and concentrated, suitable additives were added. The final products contain rich amino acids.

  20. RAPESEED PHOSPHATIDYLCHOLINE HYDROLYSIS TO PHOSPHATIDIC ACID USING PLANT EXTRACTS WITH PHOPSPHOLIPASE D.

    PubMed

    Pasker, Beata; Sosada, Marian; Fraś, Paweł; Boryczka, Monika; Górecki, Michał; Zych, Maria

    2015-01-01

    Phosphatidic acid (PA) has a crucial role in cell membrane structure and function. For that reason it has a possible application in the treatment of some health disorders in humans, can be used as a natural and non toxic emulsifier and the component of drug carriers in pharmaceuticals and cosmetics as well as a component for synthesis of some new phospholipids. PA is short-lived in the cell and is difficult to extract directly from the biological material. PA may be easily prepared by hydrolysis of phospholipids, especially phosphatidylcholine (PC), using cabbage phospholipase D (PLD). Hydrolytic activity of purified by us PLD extracts from cabbage towards rapeseed phosphatidylcholine (RPC) was investigated. Hydrolysis was carried out in the biphasic system (water/diethyl ether) at pH 6,5 and temp 30°C. Influence of enzymatic extracts from three cabbage varieties, reaction time, Ca2+ concentration and enzyme extracts/PC ratio, on activity towards RPC resulting in rapeseed phosphatidic acid (RPA) formation were examined. Our study shows that the PLD extracts from savoy cabbage (PLDsc), white cabbage (PLDwc) and brussels sprouts (PLDbs) used in experiments exhibit hydrolytic activity towards RPC resulting in rapeseed RPA with different yield. The highest activity towards RPC shows PLD extract from PLDsc with the RPC conversion degree to RPA (90%) was observed at 120 mM Ca2+ concentration, reaction time 60 min and ratio of PLD extract to RPC 6 : 1 (w/w). Our study shows that purified by us PLDsc extracts exhibit hydrolytic activity towards RPC giving new RPA with satisfying conversion degree for use in pharmacy, cosmetics and as a standard in analytical chemistry.

  1. RAPESEED PHOSPHATIDYLCHOLINE HYDROLYSIS TO PHOSPHATIDIC ACID USING PLANT EXTRACTS WITH PHOPSPHOLIPASE D.

    PubMed

    Pasker, Beata; Sosada, Marian; Fraś, Paweł; Boryczka, Monika; Górecki, Michał; Zych, Maria

    2015-01-01

    Phosphatidic acid (PA) has a crucial role in cell membrane structure and function. For that reason it has a possible application in the treatment of some health disorders in humans, can be used as a natural and non toxic emulsifier and the component of drug carriers in pharmaceuticals and cosmetics as well as a component for synthesis of some new phospholipids. PA is short-lived in the cell and is difficult to extract directly from the biological material. PA may be easily prepared by hydrolysis of phospholipids, especially phosphatidylcholine (PC), using cabbage phospholipase D (PLD). Hydrolytic activity of purified by us PLD extracts from cabbage towards rapeseed phosphatidylcholine (RPC) was investigated. Hydrolysis was carried out in the biphasic system (water/diethyl ether) at pH 6,5 and temp 30°C. Influence of enzymatic extracts from three cabbage varieties, reaction time, Ca2+ concentration and enzyme extracts/PC ratio, on activity towards RPC resulting in rapeseed phosphatidic acid (RPA) formation were examined. Our study shows that the PLD extracts from savoy cabbage (PLDsc), white cabbage (PLDwc) and brussels sprouts (PLDbs) used in experiments exhibit hydrolytic activity towards RPC resulting in rapeseed RPA with different yield. The highest activity towards RPC shows PLD extract from PLDsc with the RPC conversion degree to RPA (90%) was observed at 120 mM Ca2+ concentration, reaction time 60 min and ratio of PLD extract to RPC 6 : 1 (w/w). Our study shows that purified by us PLDsc extracts exhibit hydrolytic activity towards RPC giving new RPA with satisfying conversion degree for use in pharmacy, cosmetics and as a standard in analytical chemistry. PMID:26642684

  2. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results.

  3. Structure and hydrolysis of p-(2-oxo-1-pyrrolidinyl)- benzenesulfonic acid

    SciTech Connect

    Kukalenko, S.S.; Frolov, S.I.; Lim, I.K.; Putsykina, E.B.; Vasil'ev, A.F.

    1987-11-20

    With the aid of vibrational and PMR spectra of p-(2-oso-1-pyrrolidinyl)benzenesulfonic acid it was shown that in the solid state it exists as an O-protonated dipolar ion in which the protonated amide cation and sulfonate ion are intermolecularly linked by a very strong hydrogen bond. In concentrated hydrochloric acid the dipolar ion is an intermediate link in the chain of processes in the hydrolysis of the amide bond of the lactam ring.

  4. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    PubMed

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. PMID:27174616

  5. Fundamental study on kinetics and transport phenomena in low water dilute acid total hydrolysis of cellulosic biomass

    SciTech Connect

    Auburn University

    2004-04-07

    The overall objective of this research is to delineate the process of the dilute-acid hydrolysis of biomass and seek better understanding of the reactions involving dilute-acid treatment of lignocellulosic biomass. Specifically the scope of the work entails the following two primary technical elements: Verification of the heterogeneous nature of the reaction mechanism in dilute-acid hydrolysis of cellulosic component of the biomass. Experimental investigation to identify the overall reaction pattern and the kinetic constants associated with dilute-acid hydrolysis of the cellulosic component of the agricultural residues.

  6. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    PubMed

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system.

  7. Hormone-sensitive lipase activity and triacylglycerol hydrolysis are decreased in rat soleus muscle by cyclopiazonic acid.

    PubMed

    Watt, Matthew J; Steinberg, Gregory R; Heigenhauser, G J F; Spriet, Lawrence L; Dyck, David J

    2003-08-01

    Cyclopiazonic acid (CPA) is a sarcoplasmic reticulum Ca2+-ATPase inhibitor that increases intracellular calcium. The role of CPA in regulating the oxidation and esterification of palmitate, the hydrolysis of intramuscular lipids, and the activation of hormone-sensitive lipase (HSL) was examined in isolated rat soleus muscles at rest. CPA (40 micro M) was added to the incubation medium to levels that resulted in subcontraction increases in muscle tension, and lipid metabolism was monitored using the previously described pulse-chase procedure. CPA did not alter the cellular energy state, as reflected by similar muscle contents of ATP, phosphocreatine, free AMP, and free ADP. CPA increased total palmitate uptake into soleus muscle (11%, P < 0.05) and was without effect on palmitate oxidation. This resulted in greater esterification of exogenous palmitate into the triacylglycerol (18%, P < 0.05) and phospholipid (89%, P < 0.05) pools. CPA decreased (P < 0.05) intramuscular lipid hydrolysis, and this occurred as a result of reduced HSL activity (20%, P < 0.05). Incubation of muscles with 3 mM caffeine, which is also known to increase Ca2+ without affecting the cellular energy state, reduced HSL activity (24%, P < 0.05). KN-93, a calcium/calmodulin-dependent kinase inhibitor (CaMKII), blocked the effects of CPA and caffeine, and HSL activity returned to preincubation values. The results of the present study demonstrate that CPA simultaneously decreases intramuscular triacylglycerol (IMTG) hydrolysis and promotes lipid storage in isolated, intact soleus muscle. The decreased IMTG hydrolysis is likely mediated by reduced HSL activity, possibly via the CaMKII pathway. These responses are not consistent with the increased hydrolysis and decreased esterification observed in contracting muscle when substrate availability and the hormonal milieu are tightly controlled. It is possible that more powerful signals or a higher [Ca2+] may override the lipid-storage effect of the CPA

  8. Monomeric carbohydrates production from olive tree pruning biomass: modeling of dilute acid hydrolysis.

    PubMed

    Puentes, Juan G; Mateo, Soledad; Fonseca, Bruno G; Roberto, Inês C; Sánchez, Sebastián; Moya, Alberto J

    2013-12-01

    Statistical modeling and optimization of dilute sulfuric acid hydrolysis of olive tree pruning biomass has been performed using response surface methodology. Central composite rotatable design was applied to assess the effect of acid concentration, reaction time and temperature on efficiency and selectivity of hemicellulosic monomeric carbohydrates to d-xylose. Second-order polynomial model was fitted to experimental data to find the optimum reaction conditions by multiple regression analysis. The monomeric d-xylose recovery 85% (as predicted by the model) was achieved under optimized hydrolysis conditions (1.27% acid concentration, 96.5°C and 138 min), confirming the high validity of the developed model. The content of d-glucose (8.3%) and monosaccharide degradation products (0.1% furfural and 0.04% 5-hydroxymethylfurfural) provided a high quality subtract, ready for subsequent biochemical conversion to value-added products.

  9. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield.

  10. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    NASA Astrophysics Data System (ADS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD).

  11. Monomeric carbohydrates production from olive tree pruning biomass: modeling of dilute acid hydrolysis.

    PubMed

    Puentes, Juan G; Mateo, Soledad; Fonseca, Bruno G; Roberto, Inês C; Sánchez, Sebastián; Moya, Alberto J

    2013-12-01

    Statistical modeling and optimization of dilute sulfuric acid hydrolysis of olive tree pruning biomass has been performed using response surface methodology. Central composite rotatable design was applied to assess the effect of acid concentration, reaction time and temperature on efficiency and selectivity of hemicellulosic monomeric carbohydrates to d-xylose. Second-order polynomial model was fitted to experimental data to find the optimum reaction conditions by multiple regression analysis. The monomeric d-xylose recovery 85% (as predicted by the model) was achieved under optimized hydrolysis conditions (1.27% acid concentration, 96.5°C and 138 min), confirming the high validity of the developed model. The content of d-glucose (8.3%) and monosaccharide degradation products (0.1% furfural and 0.04% 5-hydroxymethylfurfural) provided a high quality subtract, ready for subsequent biochemical conversion to value-added products. PMID:24096282

  12. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    SciTech Connect

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  13. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. PMID:23770535

  14. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  15. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation

    SciTech Connect

    Castro, Yessica; Ellis, Joshua T.; Miller, Charles D.; Sims, Ronald C.

    2015-02-01

    Exploring and developing sustainable and efficient technologies for biofuel production are crucial for averting global consequences associated with fuel shortages and climate change. Optimization of sugar liberation from wastewater algae through acid hydrolysis was determined for subsequent fermentation to acetone, butanol, and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4. Acid concentration, retention time, and temperature were evaluated to determine optimal hydrolysis conditions by assessing the sugar and ABE yield as well as the associated costs. Sulfuric acid concentrations ranging from 0-1.5 M, retention times of 40-120 min, and temperatures from 23°C- 90°C were combined to form a full factorial experiment. Acid hydrolysis pretreatment of 10% dried wastewater microalgae using 1.0 M sulfuric acid for 120 min at 80-90°C was found to be the optimal parameters, with a sugar yield of 166.1 g for kg of dry algae, concentrations of 5.23 g/L of total ABE, and 3.74 g/L of butanol at a rate of USD $12.83 per kg of butanol.

  16. Acid hydrolysis of crude tannins from infructescence of Platycarya strobilacea Sieb. et Zucc to produce ellagic acid.

    PubMed

    Zhang, Liangliang; Wang, Yongmei; Xu, Man

    2014-01-01

    The infructescence of Platycarya strobilacea Sieb. et Zucc is a well-known traditional medicine in China, Japan and Korea. The infructescence of P. strobilacea Sieb. et Zucc is a rich source of ellagitannins that are composed of ellagic acid (EA) and gallic acid, linked to a sugar moiety. The aim of this study was to prepare EA by acid hydrolysis of crude tannins from the infructescence of P. strobilacea Sieb. et Zucc, and establish a new technological processing method for EA. The natural antioxidant EA was prepared by using the water extraction of infructescence of P. strobilacea Sieb. et Zucc, evaporation, condensation, acid hydrolysis and prepared by the process of crystallisation. The yield percentage of EA from crude EA was more than 20% and the purity of the product was more than 98%, as identified by using HPLC. The structure was identified on the basis of spectroscopic analysis and comparison with authentic compound.

  17. Effects of acid-hydrolysis and hydroxypropylation on functional properties of sago starch.

    PubMed

    Fouladi, Elham; Mohammadi Nafchi, Abdorreza

    2014-07-01

    In this study, sago starch was hydrolyzed by 0.14M HCl for 6, 12, 18, and 24h, and then modified by propylene oxide at a concentration of 0-30% (v/w). The effects of hydrolysis and etherification on molecular weight distribution, physicochemical, rheological, and thermal properties of dually modified starch were estimated. Acid hydrolysis of starch decreased the molecular weight of starch especially amylopectin, but hydroxypropylation had no effect on the molecular weight distribution. The degree of Molar substitution (DS) of hydroxypropylated starch after acid hydrolysis ranged from 0.007 to 0.15. Dually modified starch with a DS higher than 0.1 was completely soluble in cold water at up to 25% concentration of the starch. This study shows that hydroxypropylation and hydrolysis have synergistic effects unlike individual modifications. Dually modified sago starch can be applied to dip-molding for food and pharmaceutical processing because of its high solubility and low tendency for retrogradation.

  18. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    PubMed Central

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-01-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1–S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics. PMID:26916830

  19. Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: a simplified kinetic model

    SciTech Connect

    Gonzalez, G.; Lopez-Santin, J.; Caminal, G.; Sola, C.

    1986-02-01

    Wheat straw has been hydrolized with sulfuric acid at 34 and 90 degrees C. The treatment at 90 degrees C yields complete solubilization of hemicellulose to xylose and arabinose without significant amounts of furfural. The influence of acid concentration was studied and the kinetics of the acid-catalyzed hydrolysis has been modeled suggesting a two-consecutive reactions mechanism. This model is useful to explain the different behavior of the concentration of the two main sugars produced. The enhanced cellulose accessibility to enzymatic attack is also reported. 26 references.

  20. Comparison of cell wall polysaccharide hydrolysis by a dilute acid/enzymatic saccharification process and rumen microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of biomass crops for breeding or pricing purposes requires an assay that predicts performance of biomass in the bioenergy conversion process. Cell wall polysaccharide hydrolysis by dilute sulfuric acid pretreatment at 121 degrees C followed by cellulase hydrolysis for 72 h (CONV) and in v...

  1. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Wulandari, W. T.; Rochliadi, A.; Arcana, I. M.

    2016-02-01

    Cellulose in nanometer range or called by nano-cellulose has attracted much attention from researchers because of its unique properties. Nanocellulose can be obtained by acid hydrolysis of cellulose. The cellulose used in this study was isolated from sugarcane bagasse, and then it was hydrolyzed by 50% sulfuric acid at 40 °C for 10 minutes. Nanocellulose has been characterized by Transmission Electron Microscope (TEM), Particle Size Analyzer (PSA), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Analysis of FTIR showed that there were not a new bond which formed during the hydrolysis process. Based on the TEM analysis, nano-cellulose has a spherical morphology with an average diameter of 111 nm and a maximum distribution of 95.9 nm determined by PSA. The XRD analysis showed that the crystallinity degree of nano-cellulose was higher than cellulose in the amount of 76.01%.

  2. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.

    PubMed

    Kim, Hee-Young; Park, Dong June; Kim, Jong-Yea; Lim, Seung-Taik

    2013-10-15

    Waxy maize starch in an aqueous sulfuric acid solution (3.16 M, 14.7% solids) was hydrolyzed for 2-6 days, either isothermally at 40 °C or 4 °C, or at cycled temperatures of 4 and 40 °C (1 day each). The starch hydrolyzates were recovered as precipitates after centrifuging the dispersion (10,000 rpm, 10 min). The yield of starch hydrolyzates depended on the hydrolysis temperature and time, which varied from 6.8% to 78%. The starch hydrolyzed at 40 °C or 4/40 °C exhibited increased crystallinity determined by X-ray diffraction analysis, but melted in broader temperature range (from 60 °C to 110 °C). However, the starch hydrolyzed at 4 °C displayed the crystallinity and melting endotherm similar to those of native starch. The starch hydrolyzates recovered by centrifugation were re-dispersed in water (15% solids), and the dispersion was treated by an ultrasonic treatment (60% amplitude, 3min). The ultrasonication effectively fragmented the starch hydrolyzates to nanoparticles. The hydrolyzates obtained after 6 days of hydrolysis were more resistant to the ultrasonication than those after 2 or 4 days, regardless of hydrolysis temperatures. The starch nanoparticles could be prepared with high yield (78%) and crystallinity by 4 °C hydrolysis for 6 days followed by ultrasonication. Scanning electron microscopy revealed that the starch nanoparticles had globular shapes with diameters ranging from 50 to 90 nm.

  3. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota.

    PubMed

    Kwan, Tsz Him; Hu, Yunzi; Lin, Carol Sze Ki

    2016-10-01

    Food waste recycling via fungal hydrolysis and lactic acid (LA) fermentation has been investigated. Hydrolysates derived from mixed food waste and bakery waste were rich in glucose (80.0-100.2gL(-1)), fructose (7.6gL(-1)) and free amino nitrogen (947-1081mgL(-1)). In the fermentation with Lactobacillus casei Shirota, 94.0gL(-1) and 82.6gL(-1) of LA were produced with productivity of 2.61gL(-1)h(-1) and 2.50gL(-1)h(-1) for mixed food waste and bakery waste hydrolysate, respectively. The yield was 0.94gg(-1) for both hydrolysates. Similar results were obtained using food waste powder hydrolysate, in which 90.1gL(-1) of LA was produced with a yield and productivity of 0.92gg(-1) and 2.50gL(-1)h(-1). The results demonstrate the feasibility of an efficient bioconversion of food waste to LA and a decentralized approach of food waste recycling in urban area.

  4. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes.

    PubMed

    Marinopoulou, Anna; Papastergiadis, Efthimios; Raphaelides, Stylianos N; Kontominas, Michael G

    2016-05-01

    Complexes of amylose with fatty acids varying in carbon chain length and degree of unsaturation were prepared at 30, 50 or 70°C by dissolving amylose in 0.1N KOH and mixing with fatty acid potassium soap solution. The complexes were obtained in solid form as precipitates after neutralization. SEM microscopy revealed that the morphology of the complexes was that of ordered lamellae separated from amorphous regions whereas confocal laser scanning microscopy showed images of the topography of the guest molecules in the complex matrix. FTIR spectroscopy revealed that the absorption peak attributed to carbonyl group of free fatty acid was shifted when the fatty acid was in the form of amylose complex. Thermo-gravimetry showed that the unsaturated fatty acids were effectively protected from oxidation when they were complexed with amylose whereas enzymic hydrolysis experiments showed that the guest molecules were quantitatively released from the amylose complexes. PMID:26877002

  5. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes.

    PubMed

    Marinopoulou, Anna; Papastergiadis, Efthimios; Raphaelides, Stylianos N; Kontominas, Michael G

    2016-05-01

    Complexes of amylose with fatty acids varying in carbon chain length and degree of unsaturation were prepared at 30, 50 or 70°C by dissolving amylose in 0.1N KOH and mixing with fatty acid potassium soap solution. The complexes were obtained in solid form as precipitates after neutralization. SEM microscopy revealed that the morphology of the complexes was that of ordered lamellae separated from amorphous regions whereas confocal laser scanning microscopy showed images of the topography of the guest molecules in the complex matrix. FTIR spectroscopy revealed that the absorption peak attributed to carbonyl group of free fatty acid was shifted when the fatty acid was in the form of amylose complex. Thermo-gravimetry showed that the unsaturated fatty acids were effectively protected from oxidation when they were complexed with amylose whereas enzymic hydrolysis experiments showed that the guest molecules were quantitatively released from the amylose complexes.

  6. Process for enzymatic hydrolysis of fatty acid triglycerides with oat caryopses

    SciTech Connect

    Hammond, E.G.; Lee, I.

    1992-02-18

    This patent describes the process for enzymatic hydrolysis of fatty acid triglycerides to obtain free fatty acids and glycerol. It comprises: increasing the water content of dehulled whole oat caryopses to a total water content of 17 to 44% the thus moistened caryopses having active oat lipase associated with the outer surfaces thereof; contacting the moistened whole caryopses with a liquid medium, continuing the contacting until at least 20% by volume of the triglyceride reactant has been hydrolyzed to free fatty acids and glycerol, most of the free fatty acids dissolving in the oil phase external to the caryopses and most of the glycerol being absorbed into the water within the caryopses; and separating the glycerol-containing caryopses from the fatty acid-containing oil phase.

  7. Sulfuric Acid Pretreatment and Enzymatic Hydrolysis of Photoperiod Sensitvie Sorghum for Ethanol Production

    SciTech Connect

    F Xu; Y Shi; X Wu

    2011-12-31

    Photoperiod sensitive (PS) sorghum, with high soluble sugar content, high mass yield and high drought tolerance in dryland environments, has great potential for bioethanol production. The effect of diluted sulfuric acid pretreatment on enzymatic hydrolysis was investigated. Hydrolysis efficiency increased from 78.9 to 94.4% as the acid concentration increased from 0.5 to 1.5%. However, the highest total glucose yield (80.3%) occurred at the 1.0% acid condition because of the significant cellulose degradation at the 1.5% concentration. Synchrotron wide-angle X-ray diffraction was used to study changes of the degree of crystallinity. With comparison of cellulosic crystallinity and adjusted cellulosic crystallinity, the crystalline cellulose decreased after low acidic concentration (0.5%) applied, but did not change significantly, as the acid concentration increased. Scanning electron microscopy was also employed to understand how the morphological structure of PS sorghum changed after pretreatment. Under current processing conditions, the total ethanol yield is 74.5% (about 0.2 g ethanol from 1 g PS sorghum). A detail mass balance was also provided.

  8. Value of Coproduction of Ethanol and Furfural from Acid Hydrolysis Processes

    SciTech Connect

    Parker, S.; Calnon, M.; Feinberg, D.; Power, A.; Weiss, L.

    1984-05-01

    In the acid hydrolysis of a cellulosic feedstock (wood, wood wastes, or crop residues), up to 3.65 lb of furfural may be coproduced with each gallon of ethanol for only the cost of recovering and purifying it. Each plant producing 50 x 106 gal/yr of ethanol would produce an amount of by-product furfural equal to the total current domestic production. Thus, the need arises for investigation into potentially suitable processes for deriving profitable end products from furfural and thus expanding the market. The objectives of this study were to determine the economic potential of five selected, large volume derivatives of furfural that could displace hydrocarbon-based chemicals, and the consequent value of furfural as a by-product to the cellulose hydrolysis process of ethanol production.

  9. Alcohol fermentation of sweet potato. 1. Acid hydrolysis and factors involved

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-04-01

    Factors affecting acid hydrolysis of sweet potato powder (SPP) to fermentable sugars were examined. These include HCl concentration, temperature, time, and levels of SPP. Maximum reducing sugar, reported as dextrose equivalent (DE), was detected after 24 min hydrolysis (1% SPP) in 0.034N HCl heated at 154 degrees celcius. These samples also had 3.43% hydroxymethylfurfural (HMF) based on dry weight. A high level of HMF (9.2%) was detected in 1% SPP heated at 154 degrees C in 0.10N HCl for 18 min. The lowest concentration of HMF formed (1.8%), at maximal DE of 61%, was established in samples containing 5% SPP and heated at 154 degrees C in 0.034N HCl for 48 min. Aqueous extracts of uncured SPP, examined by HPLC, contained glucose, fructose and sucrose, butdegreaded SPP had only glucose and fructose. Products of degraded SPP, under appropriate conditions, could be used for alcohol fermentation. (Refs. 18).

  10. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus.

    PubMed

    Melligan, F; Dussan, K; Auccaise, R; Novotny, E H; Leahy, J J; Hayes, M H B; Kwapinski, W

    2012-03-01

    Platform chemicals such as furfural and hydroxymethylfurfural are major products formed during the acid hydrolysis of lignocellulosic biomass in second generation biorefining processes. Solid hydrolysis residues (HR) can amount to 50 wt.% of the starting biomass materials. Pyrolysis of the HRs gives rise to biochar, bio-liquids, and gases. Time and temperature were variables during the pyrolysis of HRs in a fixed bed tubular reactor, and both parameters have major influences on the amounts and properties of the products. Biochar, with potential for carbon sequestration and soil conditioning, composed about half of the HR pyrolysis product. The amounts (11-20 wt.%) and compositions (up to 77% of phenols in organic fraction) of the bio-liquids formed suggest that these have little value as fuels, but could be sources of phenols, and the gas can have application as a fuel. PMID:22281143

  11. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.

    PubMed

    Siripong, Premjet; Duangporn, Premjet; Takata, Eri; Tsutsumi, Yuji

    2016-03-01

    Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility.

  12. A novel prodrug of salicylic acid, salicylic acid-glycylglycine conjugate, utilizing the hydrolysis in rabbit intestinal microorganisms.

    PubMed

    Nakamura, J; Asai, K; Nishida, K; Sasaki, H

    1992-09-01

    The hydrolysis of salicylic acid-glycylglycine conjugate (salicyl-glycylglycine) following oral, intravenous, intracaecal and rectal administration (434, 72, 36 and 36 mumol kg-1, respectively: equivalent to salicylic acid) was examined in rabbits to develop a novel prodrug of salicylic acid. Salicylic acid was detected in the blood 2 h after oral administration of salicyl-glycylglycine and it reached a maximum level (55.6 micrograms mL-1) at 15 h, whereas a small amount of salicyl-glycylglycine was found in the blood. In contrast, unchanged salicyl-glycylglycine was found mainly in the blood following its intravenous administration, suggesting the involvement of presystemic deconjugation in the hydrolysis of salicyl-glycylglycine. Immediate and very extensive salicyclic acid formation in the caecum was observed following intracaecal administration of salicyl-glycylglycine, suggesting that the intestinal microorganisms were responsible for the biotransformation of this compound. In-vitro incubation of salicyl-glycylglycine with caecal content showed that salicyl-glycylglycine was hydrolysed efficiently in the caecum. Consequently, the blood concentration of salicylic acid was prolonged extensively following rectal administration of salicyl-glycylglycine, indicating the usefulness of salicyl-glycylglycine as a prodrug of salicylic acid.

  13. A potentiometric study of the hydrolysis of ethylenediaminetetraacetic acid to 150{degrees}C

    SciTech Connect

    Palmer, D.A.; Nguyen-Trung, Chinh

    1995-02-01

    Ethylenediaminetetraacetate anions, EDTA{sup 4-}, were titrated in a hydrogen-electrode concentration cell with an acidic titrant from 0 to 150{degrees}C at 25{degrees}C intervals. These titrations were carried out in the presence of 0. 1, 0.2, and 1.0 mol{center_dot}kg{sup -1} with the supporting electrolytes, sodium chloride, NaCl, and 1.0 mol{center_dot}kg{sup -1} tetramethylammonium trifluoromethylsulfonate, (CH{sub 3}){sub 4}N(F{sub 3}CSO{sub 3}) {l_brace}TMATFMS{r_brace} in order to assess the effect of both cation complexation by EDTA{sup 4-} and anion activity coefficient variations. The resulting hydrolysis quotients are discussed with reference to applications in boiler and heat exchanger chemical cleaning, as well as chemical and nuclear waste containment. Some recent diverse uses of this emf technique that also pertain to these applications will be mentioned briefly, e.g., surface absorption - zero-point-of-charge - measurements to high temperatures and in situ pH measurements in solubility and kinetic experiments.

  14. Biopolymer from microbial assisted in situ hydrolysis of triglycerides and dimerization of fatty acids.

    PubMed

    Kavitha, V; Radhakrishnan, N; Madhavacharyulu, E; Sailakshmi, G; Sekaran, G; Reddy, B S R; Rajkumar, G Suseela; Gnanamani, Arumugam

    2010-01-01

    The present study demonstrates biopolymer production by in situ bio-based dimerization of fatty acids by microorganism isolated from marine sediments. Microbial isolate grown in Zobell medium in the presence of triglycerides for the period of 24-240 h at 37 degrees C, hydrolyze the applied triglycerides and sequentially dimerized the hydrolyzed products and subsequently polymerized and transformed to a biopolymer having appreciable adhesive properties. Physical (nature, odour, stickyness and tensile strength), chemical (instrumentation) and biochemical (cell free broth) methods of analyses carried out provided the hypotheses involved in the formation of the product as well as the nature of the product formed. Results revealed, lipolytic enzymes released during initial period of growth and the biosurfactant production during later period, respectively, hydrolyze the applied triglycerides and initiate the dimerization and further accelerated when the incubation period extended. The existence and the non-existence of in situ hydrolysis of various triglycerides followed by dimerization and polymerization and the mechanism of transformation of triglycerides to biopolymer are discussed in detail.

  15. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass.

    PubMed

    Wu, Fang-Chen; Wu, Jane-Yii; Liao, Yi-Jyun; Wang, Man-Ying; Shih, Ing-Lung

    2014-03-01

    Gracilaria sp., a red alga, was used as a feedstock for the production of bioethanol. Saccharification of Gracilaria sp. by sequential acid and enzyme hydrolysis in situ produced a high quality hydrolysate that ensured its fermentability to produce ethanol. The optimal saccharification process resulted in total 11.85g/L (59.26%) of glucose and galactose, Saccharomyces cerevisiae Wu-Y2 showed a good performance on co-fermentability of glucose and galactose released in the hydrolysate from Gracilaria sp. The final ethanol concentrations of 4.72g/L (0.48g/g sugar consumed; 94% conversion efficiency) and the ethanol productivity 4.93g/L/d were achieved. 1g of dry Gracilaria can be converted to 0.236g (23.6%) of bioethanol via the processes developed. Efficient alcohol production by immobilized S. cerevisiae Wu-Y2 in batch and repeated batch fermentation was also demonstrated. The findings of this study revealed that Gracilaria sp. can be a potential feedstock in biorefinery for ethanol production.

  16. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    NASA Astrophysics Data System (ADS)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  17. A new sunscreen of the cinnamate class: synthesis and enzymatic hydrolysis evaluation of glyceryl esters of p-methoxycinnamic acid.

    PubMed

    de Freitas, Zaida Maria Faria; dos Santos, Elisabete Pereira; da Rocha, João Ferreira; Dellamora-Ortiz, Gisela Maria; Gonçalves, José Carlos Saraiva

    2005-05-01

    Glyceryl esters of p-methoxycinnamic acid, 1,3-dipalmitoyl-2-p-methoxycinnamoyl-1,2,3-propanetriol and 1,3-dioctanoyl-2-p-methoxycinnamoyl-1,2,3-propanetriol were synthesised in an attempt to increase substantivity and decrease eventual undesirable effects of sunscreens of this class. To assess if the glyceryl esters could present a higher stability towards hydrolysis by lipases in the stratum corneum, hydrolysis rates were determined in vitro using a commercial fungal lipase from Rhizomucor miehei. Results presented herein show that the glyceryl esters have similar lambda(max) and epsilon values to sunscreens of the cinnamate class. The ester 1,3-dipalmitoyl-2-p-methoxycinnamoyl-1,2,3-propanetriol presented a 2.8 times lower hydrolysis rate by lipase, in vitro, than the commercial sunscreen 2-ethylhexyl-p-methoxycinnamate (alkyl ester). This finding suggests that this triacylglycerol can possibly have a longer retention time in the skin and consequently promote a more intense and effective antisolar action than the commercial sunscreen.

  18. Improving bioethanol production from olive pruning biomass by deacetylation step prior acid hydrolysis and fermentation processes.

    PubMed

    Moya, Alberto J; Peinado, Silvia; Mateo, Soledad; Fonseca, Bruno G; Sánchez, Sebastián

    2016-11-01

    In order to produce bioethanol from olive tree pruning biomass, deacetylation was performed employing sodium hydroxide. Optimal conditions were determined using experimental design techniques. The highest acetic acid removal (3.8g/dm(3)), obtained by response surface methodology, was at optimum pretreatment conditions of temperature 60°C, 0.8% NaOH and residence time 60min. After oxalic acid hydrolysis of pretreated biomass, the hydrolysates were directly used for ethanol production without further detoxification process. Ethanol yields ranged from 0.19 to 0.45g/g, reaching the maximum yield value when pretreatment was carried out at 130°C with 100mM oxalic acid, involving a combined severity factor (CSF) of 1.05. The highest ethanol concentration obtained from pretreated biomass was 6.2g/dm(3) at 150°C, using 75mM of oxalic acid (CSF=1.53). PMID:27579798

  19. Improving bioethanol production from olive pruning biomass by deacetylation step prior acid hydrolysis and fermentation processes.

    PubMed

    Moya, Alberto J; Peinado, Silvia; Mateo, Soledad; Fonseca, Bruno G; Sánchez, Sebastián

    2016-11-01

    In order to produce bioethanol from olive tree pruning biomass, deacetylation was performed employing sodium hydroxide. Optimal conditions were determined using experimental design techniques. The highest acetic acid removal (3.8g/dm(3)), obtained by response surface methodology, was at optimum pretreatment conditions of temperature 60°C, 0.8% NaOH and residence time 60min. After oxalic acid hydrolysis of pretreated biomass, the hydrolysates were directly used for ethanol production without further detoxification process. Ethanol yields ranged from 0.19 to 0.45g/g, reaching the maximum yield value when pretreatment was carried out at 130°C with 100mM oxalic acid, involving a combined severity factor (CSF) of 1.05. The highest ethanol concentration obtained from pretreated biomass was 6.2g/dm(3) at 150°C, using 75mM of oxalic acid (CSF=1.53).

  20. Modeling Sucrose Hydrolysis in Dilute Sulfuric Acid Solutions at Pretreatment Conditions for Lignocellulosic Biomass

    SciTech Connect

    Bower, S.; Wickramasinghe, R.; Nagle, N. J.; Schell, D. J.

    2008-01-01

    Agricultural and herbaceous feedstocks may contain appreciable levels of sucrose. The goal of this study was to evaluate the survivability of sucrose and its hydrolysis products, fructose and glucose, during dilute sulfuric acid processing at conditions typically used to pretreat lignocellulose biomass. Solutions containing 25 g/l sucrose with 0.1-2.0% (w/w) sulfuric acid concentrations were treated at temperatures of 160-200 C for 3-12 min. Sucrose was observed to completely hydrolyze at all treatment conditions. However, appreciable concentrations of fructose and glucose were detected and glucose was found to be significantly more stable than fructose. Different mathematical approaches were used to fit the kinetic parameters for acid-catalyzed thermal degradation of these sugars. Since both sugars may survive dilute acid pretreatment, they could provide an additional carbon source for production of ethanol and other bio-based products.

  1. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.

    PubMed

    Chen, Longjian; Zhang, Haiyan; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Han, Lujia

    2015-02-01

    Kinetic experiments on the dilute sulfuric acid pretreatment of corn stover were performed. A high xylan removal and a low inhibitor concentration were achieved by acid pretreatment. A novel diffusion-hydrolysis coupled kinetic model was proposed. The contribution to the xylose yield was analyzed by the kinetic model. Compared with the inhibitor furfural negatively affecting xylose yield, the fast and slow-hydrolyzing xylan significantly contributed to the xylose yield, however, their dominant roles were dependent on reaction temperature and time. The impact of particle size and acid concentration on the xylose yield were also investigated. The diffusion process may significantly influence the hydrolysis of large particles. Increasing the acid concentration from 0.15 M to 0.30 M significantly improved the xylose yield, whereas the extent of improvement decreased to near-quantitative when further increasing acid loading. These findings shed some light on the mechanism for dilute sulfuric acid hydrolysis of corn stover.

  2. Elucidating the structure of cyclotides by partial acid hydrolysis and LC-MS/MS analysis.

    PubMed

    Sze, Siu Kwan; Wang, Wei; Meng, Wei; Yuan, Randong; Guo, Tiannan; Zhu, Yi; Tam, James P

    2009-02-01

    We describe here a rapid method to determine the cyclic structure and disulfide linkages of highly stable cyclotides via a combination of flash partial acid hydrolysis, LC-MS/MS, and computational tools. Briefly, a mixture of closely related cyclotides, kalata B1 and varv A purified from Viola yedoensis was partially hydrolyzed in 2 M HCl for 5 min by microwave-assisted hydrolysis or for 30 min in an autoclave oven (121 degrees C and 15 psi). The partially hydrolyzed peptide mixture was then subjected to LC-MS/MS analysis, with the disulfide linked-peptides fragmented by collision activated dissociation (CAD). A computer program written in-house (available for download at http://proteomics.sbs.ntu.edu.sg/cyclotide_SS ) was used for interpreting LC-MS/MS spectra and assigning the disulfide bonds. Time-point analysis of single-disulfide fragments revealed that nonrandom acid catalyzed fragmentation mostly occurred at the turns which are solvent-exposed and often contain side chain functionalized amino acids such as Asx/Glx and Ser/Thr. In particular, the most susceptible bond for acid hydrolysis in kalata B1 and varv A was found to be the highly conserved N25-G26 which is also the head-to-tail ligation site of the linear precursor proteins, indicating that formation of the three disulfide bonds might precede cyclic structure closure by N25-G26 ligation. This observation is consistent with the recent report that the N25-G26 bond formation is the last step in the cyclotide biosynthetic pathway. The process demonstrated here can potentially be a high throughput method that is generally applicable to determine disulfide bonds of other relatively low-abundance cyclotides.

  3. Heteropoly Acid/Nitrogen Functionalized Onion-like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions.

    PubMed

    Liu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng

    2016-02-18

    A novel heteropoly acid (HPA)/nitrogen functionalized onion-like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and acid-base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity. PMID:26606266

  4. Heteropoly Acid/Nitrogen Functionalized Onion-like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions.

    PubMed

    Liu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng

    2016-02-18

    A novel heteropoly acid (HPA)/nitrogen functionalized onion-like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and acid-base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity.

  5. Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch.

    PubMed

    Yunus, Robiah; Salleh, Shanti Faridah; Abdullah, Nurhafizah; Biak, Dyg Radiah Awg

    2010-12-01

    Various pre-treatment techniques change the physical and chemical structure of the lignocellulosic biomass and improve hydrolysis rates. The effect of ultrasonic pre-treatment on oil palm empty fruit bunch (OPEFB) fibre prior to acid hydrolysis has been evaluated. The main objective of this study was to determine if ultrasonic pre-treatment could function as a pre-treatment method for the acid hydrolysis of OPEFB fibre at a low temperature and pressure. Hydrolysis at a low temperature was studied using 2% sulphuric acid; 1:25 solid liquid ratio and 100 degrees C operating temperature. A maximum xylose yield of 58% was achieved when the OPEFB fibre was ultrasonicated at 90% amplitude for 45min. In the absence of ultrasonic pre-treatment only 22% of xylose was obtained. However, no substantial increase of xylose formation was observed for acid hydrolysis at higher temperatures of 120 and 140 degrees C on ultrasonicated OPEFB fibre. The samples were then analysed using a scanning electron microscope (SEM) to describe the morphological changes of the OPEFB fibre. The SEM observations show interesting morphological changes within the OPEFB fibre for different acid hydrolysis conditions. PMID:20719502

  6. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production

    NASA Astrophysics Data System (ADS)

    Chung, Byung Yeoup; Lee, Jae Taek; Bai, Hyoung-Woo; Kim, Ung-Jin; Bae, Hyeun-Jong; Gon Wi, Seung; Cho, Jae-Young

    2012-08-01

    Pretreatment of poplar bark with a combination of sulfuric acid (3%, w/w, H2SO4) and gamma irradiation (0-1000 kGy) was performed in an attempt to enhance enzymatic hydrolysis for bioethanol production. The yields of reducing sugar were slightly increased with an increasing irradiation dose, ranging from 35.4% to 51.5%, with a 56.1% reducing sugar yield observed after dilute acid pretreatment. These results clearly showed that soluble sugars were released faster and to a greater extent in dilute acid-pretreated poplar bark than in gamma irradiation-pretreated bark. When combined pretreatment was carried out, a drastic increase in reducing sugar yield (83.1%) was found compared with individual pretreatment, indicating the possibility of increasing the convertibility of poplar bark following combined pretreatment. These findings are likely associated with cellulose crystallinity, lignin modification, and removal of hemicelluloses.

  7. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation.

    PubMed

    Gullón, Beatriz; Yáñez, Remedios; Alonso, José Luis; Parajó, J C

    2008-01-01

    The potential of apple pomace (a solid waste from cider and apple juice making factories) as a source of sugars and other compounds for fermentation was evaluated. The effect of the cellulase-to-solid ratio (CSR) and the liquor-to-solid ratio (LSR) on the kinetics of glucose and total monosaccharide generation was studied. Mathematical models suitable for reproducing and predicting the hydrolyzate composition were developed. When samples of apple pomace were subjected to enzymatic hydrolysis, the glucose and fructose present in the raw material as free monosaccharides were extracted at the beginning of the process. Using low cellulase and cellobiase charges (8.5 FPU/g-solid and 8.5 IU/g-solid, respectively), 79% of total glucan was saccharified after 12 h, leading to solutions containing up to 43.8 g monosaccharides/L (glucose, 22.8 g/L; fructose, 14.8 g/L; xylose+mannose+galactose, 2.5 g/L; arabinose+rhamnose, 2.8g/L). These results correspond to a monosaccharide/cellulase ratio of 0.06 g/FPU and to a volumetric productivity of 3.65 g of monosaccharides/L h. Liquors obtained under these conditions were used for fermentative lactic acid production with Lactobacillus rhamnosus CECT-288, leading to media containing up to 32.5 g/L of L-lactic acid after 6 h (volumetric productivity=5.41 g/L h, product yield=0.88 g/g).

  8. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor

    PubMed Central

    Aziz, Marya; Husson, Florence; Kermasha, Selim

    2015-01-01

    Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA. PMID:26904663

  9. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor.

    PubMed

    Aziz, Marya; Husson, Florence; Kermasha, Selim

    2015-01-01

    Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA. PMID:26904663

  10. Cooperative effect of water molecules in the self-catalyzed neutral hydrolysis of isocyanic acid: a comprehensive theoretical study.

    PubMed

    Wei, Xi-Guang; Sun, Xiao-Ming; Wu, Xiao-Peng; Geng, Song; Ren, Yi; Wong, Ning-Bew; Li, Wai-Kee

    2011-08-01

    The detailed reaction mechanism for the water-assisted hydrolysis of isocyanic acid, HNCO + (n + 1) H(2)O → CO(2) + NH(3) + nH(2)O (n = 0-6), taking place in the gas phase, has been investigated. All structures were optimized and characterized at the MP2/6-31 + G level of theory, and then re-optimized at MP2/6-311++G. The seven explicit water molecules participating in the hydrolysis can be divided into two groups, one directly involved in the proton relay, and the other located in the vicinity of the substrate playing the cooperative role by engaging in hydrogen-bonding to HN = C = O. Two possible reaction pathways, the addition of water molecule across the C = N bond or across the C = O bond, are discussed, and the former is proved to be more favorable energetically. Our calculations suggest that, in the most kinetically favorable pathway for the titled hydrolysis, three water molecules are directly participating in the hydrogen transfer via an eight-membered cyclic transition state, while the other four water molecules catalyze the hydrolysis of HN = C = O by forming three eight-membered cooperative loops near the substrate. This strain-free hydrogen-bond network leads to the best estimated rate-determining activation energy of 24.9 kJ mol(-1) at 600 K, in excellent agreement with the gas-phase kinetic experimental result, 25.8 kJ mol(-1). PMID:21161555

  11. Glycosyl conformational and inductive effects on the acid catalysed hydrolysis of purine nucleosides.

    PubMed Central

    Jordan, F; Niv, H

    1977-01-01

    The log kobs vs. pH profiles were determined in the intermediate acidity region for the glycosyl hydrolysis of guanosine and its 8-amino, 8-monomethylamino, 8-dimethylamino and 8-bromo derivatives. The decreased rate of the 8-amino and enhanced rate of the 8-bromo compound compared to guanosine support an A type mechanism: base protonation followed by glycosyl bond cleavage. All three 8-amino guanosines exhibited log kobs - pH profiles clearly showing that both mono and di-base protonated nucleosides undergo hydrolysis. The 700 fold rate acceleration of 8-N(CH3)-guanosine compared to 8-NHCH3-guanosine and the 110 fold rate acceleration of 8-N(CH3)2-adenosine compared to 8-NHCH3-adenosine could be unequivocally attributed to the fixed syn glycosyl conformation of both 8-dimethylamino compounds and relief of steric compression upon hydrolysis in these molecules. The lack of anomerization of all substrates during the course of the reaction supports an A rather than a Schiff-base mechanism. PMID:17100

  12. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave.

    PubMed

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-01-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g(-1)) and strong magnetism [magnetic saturation, Ms = 19.5 Am(2) kg(-1)]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g(-1)) and magnetism (Ms = 12.9 Am(2) kg(-1)), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls. PMID:26648414

  13. Production of xylose from Meranti wood sawdust by dilute acid hydrolysis.

    PubMed

    Rafiqul, I S M; Sakinah, A M M; Karim, M R

    2014-09-01

    Xylitol production by bioconversion of xylose can be economically interesting if the raw material can be recovered from a cheap lignocellulosic biomass (LCB). Meranti wood sawdust (MWS) is a renewable and low-cost LCB that can be used as a promising and economic source of xylose, a starting raw material for the manufacture of several specialty chemicals, especially xylitol. This study aimed to optimize the hydrolysis process of MWS and to determine the influence of temperature, H2SO4 concentration, and residence time on xylose release and on by-product formation (glucose, arabinose, acetic acid, furfural, hydroxymethylfurfural (HMF), and lignin degradation products (LDPs)). Batch hydrolysis was conducted under various operating conditions, and response surface methodology was adopted to achieve the highest xylose yield. Xylose production was highly affected by temperature, acid concentration, and residence time. The optimum temperature, acid concentration, and time were determined to be 124 °C, 3.26 %, and 80 min, respectively. Under these optimum conditions, xylose yield and selectivity were attained at 90.6 % and 4.05 g/g, respectively.

  14. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    NASA Astrophysics Data System (ADS)

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-12-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g-1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg-1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g-1) and magnetism (Ms = 12.9 Am2 kg-1), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls.

  15. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    PubMed Central

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-01-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g−1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg−1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g−1) and magnetism (Ms = 12.9 Am2 kg−1), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls. PMID:26648414

  16. Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin.

    PubMed

    Matsushita, Yasuyuki; Yasuda, Seiichi

    2005-03-01

    In order to effectively utilize a by-product of the acid saccharification process of woody materials, the chemical conversion of guaiacyl sulfuric acid lignin (SAL), one of the acid hydrolysis lignins, into water-soluble sulfonated products with high dispersibitity was investigated. At first, SAL was phenolated (P-SAL) to enhance the solubility and reactivity. Lignosulfonates were prepared from P-SAL by three methods of hydroxymethylation followed by neutral sulfonation (two-step method), sulfomethylation (one-step method) and arylsulfonation. Surprisingly, all prepared lignosulfonates possessed 30 to 70% higher dispersibility for gypsum paste than the commercial lignosulfonate. Evaluation of the preparations for gypsum paste suggested that the higher molecular weights and sulfur contents of the preparations increased their dispersibility. PMID:15491828

  17. Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin.

    PubMed

    Matsushita, Yasuyuki; Yasuda, Seiichi

    2005-03-01

    In order to effectively utilize a by-product of the acid saccharification process of woody materials, the chemical conversion of guaiacyl sulfuric acid lignin (SAL), one of the acid hydrolysis lignins, into water-soluble sulfonated products with high dispersibitity was investigated. At first, SAL was phenolated (P-SAL) to enhance the solubility and reactivity. Lignosulfonates were prepared from P-SAL by three methods of hydroxymethylation followed by neutral sulfonation (two-step method), sulfomethylation (one-step method) and arylsulfonation. Surprisingly, all prepared lignosulfonates possessed 30 to 70% higher dispersibility for gypsum paste than the commercial lignosulfonate. Evaluation of the preparations for gypsum paste suggested that the higher molecular weights and sulfur contents of the preparations increased their dispersibility.

  18. The fatty-acid amide hydrolase inhibitor URB597 does not affect triacylglycerol hydrolysis in rat tissues.

    PubMed

    Clapper, Jason R; Duranti, Andrea; Tontini, Andrea; Mor, Marco; Tarzia, Giorgio; Piomelli, Daniele

    2006-11-01

    The O-arylcarbamate URB597 (cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester; also referred to as KDS-4103) is a potent inhibitor of fatty-acid amide hydrolase (FAAH), an intracellular serine hydrolase responsible for the inactivation of the endogenous cannabinoid anandamide. URB597 demonstrates a remarkable degree of selectivity for FAAH over other serine hydrolases (e.g. cholinesterases) or other components of the endocannabinoid system (e.g. cannabinoid receptors). However, in a proteomic-based selectivity screen based on the displacement of fluorophosphonate-rhodamine (FPR) from mouse brain proteins, it was recently shown that URB597 prevents FPR binding to triacylglycerol hydrolase (TGH) with a median inhibitory concentration of 192nM. To determine whether this effect correlates with inhibition of TGH activity, we investigated the ability of URB597 to inhibit triolein hydrolysis in rat liver and heart tissues, which are rich in TGH, as well as white adipose tissue (WAT), which is rich in adipose triacylglycerol lipase (TGL) and hormone-sensitive lipase. The results show that URB597 does not affect triolein hydrolysis in any of these tissues at concentrations as high as 10microM, whereas it inhibits FAAH activity at low nanomolar concentrations. Moreover, intraperitoneal (i.p.) administration of URB597 at doses that maximally inhibit FAAH in vivo (0.3-3mgkg(-1)) exerts no effect on triolein hydrolysis and tissue triacylglycerol (TAG) levels in rat liver, heart or WAT. The results indicate that URB597, while potent at inhibiting FAAH, does not affect TGH and TGL activities in rat tissues.

  19. Release and degradation of anthocyanins and phenolics from blueberry pomace during thermal acid hydrolysis and dry heating.

    PubMed

    Bener, Mustafa; Shen, Yixiao; Apak, Reşat; Finley, John W; Xu, Zhimin

    2013-07-10

    In this study, blueberry pomace was soaked in pH 1, 4, or 7 solution for 10 min followed by boiling hydrolysis. Nine anthocyanins and 11 other phenolic compounds were released after acid hydrolysis. The highest anthocyanin release (4.70 mg/g) was achieved by boiling at pH 1 for 15 min followed by 3.94 mg/g at pH 4 and 3.46 mg/g at pH 7. Phenolics were released more quickly than anthocyanins during boiling. The change of antioxidant activity of the pomace during boiling was correlated with the total phenolic content but not anthocyanin content. The degradation rate of anthocyanins during boiling eventually surpassed the release rate from the pomace. Protocatechuic acid and catechin continuously increased during heating. Dry heat resulted in continuous degradation of anthocyanins and other phenolics in the pomace. The reduction in antioxidant activity of the pomace during dry heating was correlated with both the phenolic and anthocyanin contents.

  20. Synthesis, hydrolysis, and skin retention of amino acid esters of alpha-tocopherol.

    PubMed

    Marra, Fabio; Ostacolo, Carmine; Laneri, Sonia; Bernardi, Antonietta; Sacchi, Antonia; Padula, Cristina; Nicoli, Sara; Santi, Patrizia

    2009-07-01

    The aim of this work was to synthesize new pro-vitamins of alpha-tocopherol (VE) able to release another moiety such as an amino acid, in order to obtain a combined antioxidant and moisturizing effect upon topical application. The new derivatives were characterized and tested for sensitivity to chemical and enzymatic hydrolysis. Lipophilicity was estimated using Log capacity factor and skin retention was determined in vitro, using rabbit ear skin as barrier. Five molecules were synthesized using L-proline, L-serine, L-tyrosine, L-asparagine, and L-citrulline as amino acidic moiety. All pro-vitamins showed similar or lower lipophilicity than alpha-tocopheryl acetate (VEAc), taken as reference, and similar stability in aqueous solutions. All pro-vitamins showed to be sensitive to enzymatic hydrolysis. None of the pro-vitamins crossed the skin in significant amounts, whereas they accumulated into the skin, in both the dermis and the epidermis. They are more hydrophilic and more water-soluble than the currently used acetate.

  1. Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products

    NASA Astrophysics Data System (ADS)

    Dhungana, Suraj; Anthony, Charles R.; Hersman, Larry E.

    2007-12-01

    Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10 -6 mol m -2 h -1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H 2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.

  2. Development of C-reactive protein certified reference material NMIJ CRM 6201-b: optimization of a hydrolysis process to improve the accuracy of amino acid analysis.

    PubMed

    Kato, Megumi; Kinumi, Tomoya; Yoshioka, Mariko; Goto, Mari; Fujii, Shin-Ichiro; Takatsu, Akiko

    2015-04-01

    To standardize C-reactive protein (CRP) assays, the National Metrology Institute of Japan (NMIJ) has developed a C-reactive protein solution certified reference material, CRM 6201-b, which is intended for use as a primary reference material to enable the SI-traceable measurement of CRP. This study describes the development process of CRM 6201-b. As a candidate material of the CRM, recombinant human CRP solution was selected because of its higher purity and homogeneity than the purified material from human serum. Gel filtration chromatography was used to examine the homogeneity and stability of the present CRM. The total protein concentration of CRP in the present CRM was determined by amino acid analysis coupled to isotope-dilution mass spectrometry (IDMS-AAA). To improve the accuracy of IDMS-AAA, we optimized the hydrolysis process by examining the effect of parameters such as the volume of protein samples taken for hydrolysis, the procedure of sample preparation prior to the hydrolysis, hydrolysis temperature, and hydrolysis time. Under optimized conditions, we conducted two independent approaches in which the following independent hydrolysis and liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) were combined: one was vapor-phase acid hydrolysis (130 °C, 24 h) and hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) method, and the other was microwave-assisted liquid-phase acid hydrolysis (150 °C, 3 h) and pre-column derivatization liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The quantitative values of the two different amino acid analyses were in agreement within their uncertainties. The certified value was the weighted mean of the results of the two methods. Uncertainties from the value-assignment method, between-method variance, homogeneity, long-term stability, and short-term stability were taken into account in evaluating the uncertainty for a certified value. The certified value and the

  3. [Determination of docosahexaenoic acid in milk powder by gas chromatography using acid hydrolysis].

    PubMed

    Shao, Shiping; Xiang, Dapeng; Li, Shuang; Xi, Xinglin; Chen, Wenrui

    2015-11-01

    A method to determine docosahexenoic acid (DHA) in milk powder by gas chromatography was established. The milk powder samples were hydrolyzed with hydrochloric acid, extracted to get total fatty acids by Soxhlet extractor, then esterified with potassium hydroxide methanol solution to form methyl esters, and treated with sodium hydrogen sulfate. The optimal experiment conditions were obtained from orthogonal experiment L9(3(3)) which performed with three factors and three levels, and it requires the reaction performed with 1 mol/L potassium hydroxide solution at 25 degrees C for 5 min. The derivative treated with sodium hydrogen sulfate was separated on a column of SP-2560 (100 m x 0.25 mm x 0.20 μm), and determined in 55 min by temperature programming-gas chromatography. Good linearity was obtained in the range 5.0-300 mg/L with the correlation coefficient of 0.999 9. The relative standard deviations (RSDs) were 3.4%, 1.2% and 1.1% for the seven repeated experiments of 10, 50 and 100 mg/L of DHA, respectively. The limit of detection was 2 mg/kg, and the recoveries of DHA were in the range of 90.4%-93.5%. The results are satisfactory through the tests of practical samples. PMID:26939370

  4. Redox cycles of vitamin E: Hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxy)tocopherones

    SciTech Connect

    Liebler, D.C.; Kaysen, K.L.; Kennedy, T.A. )

    1989-12-12

    Oxidation of the biological antioxidant {alpha}-tocopherol (vitamin E; TH) by peroxyl radicals yields 8a-(alkyldioxy)tocopherones, which either may hydrolyze to {alpha}-tocopheryl quinone (TQ) or may be reduced by ascorbic acid to regenerate TH. To define the chemistry of this putative two-electron TH redox cycle, we studied the hydrolysis and reduction of 8a-((2,4-dimethyl-1-nitrilopent-2-yl)dioxyl)tocopherone (1) in acetonitrile/buffer mixtures and in phospholipid liposomes. TQ formation in acetonitrile/buffer mixtures, which was monitored spectrophotometrically, declined with increasing pH and could not be detected above pH 4. The rate of TQ formation from 1 first increased with time and then decreased in a first-order terminal phase. Rearrangement of 8a-hydroxy-{alpha}-tocopherone (2) to TQ displayed first-order kinetics identical with the terminal phase for TQ formation from 1. Both rate constants increased with decreasing pH. Hydrolysis of 1 in acetonitrile/H{sub 2}{sup 18}O yielded ({sup 18}O)TQ. These observations suggest that 1 loses the 8a-(alkyldioxy) moiety to produce the tocopherone cation (T{sup +}), which hydrolyzes to 2, the TQ-forming intermediate. Incubation of either 1 or 2 with ascorbic acid in acetonitrile/buffer yielded TH. Reduction of both 1 and 2 decreased with increasing pH. In phosphatidylcholine liposomes at pH 7, approximately 10% of the T{sup +} generated from 1 was reduced to TH by 5 mM ascorbic acid. The results collectively demonstrate that T{sup +} is the ascorbic acid reducible intermediate in a two-electron TH redox cycle, a process that probably would require biocatalysis to proceed in biological membranes.

  5. Acid Catalysis in Basic Solution: A Supramolecular Host PromotesOrthoformate Hydrolysis

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-12-12

    Though many enzymes can promote chemical reactions by tuning substrate properties purely through the electrostatic environment of a docking cavity, this strategy has proven challenging to mimic in synthetic host-guest systems. Here we report a highly-charged, water soluble, metal-ligand assembly with a hydrophobic interior cavity that thermodynamically stabilizes protonated substrates and consequently catalyzes the normally acidic hydrolysis of orthoformates in basic solution, with rate accelerations of up to 890-fold. The catalysis reaction obeys Michaelis-Menten kinetics, exhibits competitive inhibition, and the substrate scope displays size selectivity consistent with the constrained binding environment of the molecular host. Synthetic chemists have long endeavored to design host molecules capable of selectively binding slow-reacting substrates and catalyzing their chemical reactions. While synthetic catalysts are often site-specific and require certain properties of the substrate to insure catalysis, enzymes are often able to modify basic properties of the bound substrate such as pK{sub a} in order to enhance reactivity. Two common motifs used by nature to activate otherwise unreactive compounds are the precise arrangement of hydrogen-bonding networks and electrostatic interactions between the substrate and adjacent residues of the protein. Precise arrangement of hydrogen bonding networks near the active sites of proteins can lead to well-tuned pK{sub a}-matching, and can result in pK{sub a} shifts of up to eight units, as shown in bacteriorhodopsin. Similarly, purely electrostatic interactions can greatly favor charged states and have been responsible for pK{sub a} shifts of up to five units for acetoacetate decarboxylase. Attempts have been made to isolate the contributions of electrostatic versus covalent interactions to such pK{sub a} shifts; however this remains a difficult challenge experimentally. This challenge emphasizes the importance of synthesizing

  6. Clay ingestion enhances intestinal triacylglycerol hydrolysis and non-esterified fatty acid absorption.

    PubMed

    Habold, Caroline; Reichardt, François; Le Maho, Yvon; Angel, Fabielle; Liewig, Nicole; Lignot, Jean-Hervé; Oudart, Hugues

    2009-07-01

    Consumption by animals and humans of earthy materials such as clay is often related to gut pathologies. Our aim was to determine the impact of kaolinite ingestion on glucose and NEFA transport through the intestinal mucosa. The expression of hexose transporters (Na/glucose co-transporter 1 (SGLT1), GLUT2, GLUT5) and of proteins involved in NEFA absorption (fatty acid transporter/cluster of differentiation 36 (FAT/CD36), fatty acid transport protein 4 (FATP4) and liver fatty acid binding protein (L-FABP)) was measured (1) in rats whose jejunum was perfused with a solution of kaolinite, and (2) in rats who ate spontaneously kaolinite pellets during 7 and 28 d. Also, we determined TAG and glucose absorption in the kaolinite-perfused group, and pancreatic lipase activity, gastric emptying and intestinal transit in rats orally administered with kaolinite. Glucose absorption was not affected by kaolinite perfusion or ingestion. However, kaolinite induced a significant increase in intestinal TAG hydrolysis and NEFA absorption. The cytoplasmic expression of L-FABP and FATP4 also increased due to kaolinite ingestion. NEFA may enter the enterocytes via endocytosis mainly since expression of NEFA transporters in the brush-border membrane was not affected by kaolinite. After uptake, rapid binding of NEFA by L-FABP and FATP4 could act as an intracellular NEFA buffer to prevent NEFA efflux. Increased TAG hydrolysis and NEFA absorption may be due to the adsorption properties of clay and also because kaolinite ingestion caused a slowing down of gastric emptying and intestinal transit.

  7. Alcohol fermentation of sweet potato - 1. Acid hydrolysis and factors involved

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-04-01

    Factors affecting acid hydrolysis of sweet potato powder (SPP) to fermentable sugars were examined. These include HCl concentration, temperature, time, and levels of SPP. Maximum reducing sugar, reported as dextrose equivalent (DE), was detected after 24 min hydrolysis (1% SPP) in 0.034N HCl heated at 154/degree/C. These samples also had 3.43% hydroxymethylfurfural (HMF) based on dry weight. A high level of HMF (9.2%) was detected in 1% SPP heated at 154/degree/C in 0.10N HCl for 18 min. The lowest concentration of HMF formed (1.8%), at maximal DE of 61%, was established in samples containing 5% SPP and heated at 154/degree/C in 0.034N HCl for 48 min. Aqueous extracts of uncured SPP, examined by High Performance Liquid Chromatography, contained glucose, fructose and sucrose, but degraded SPP had only glucose and fructose. Products of degraded SPP, Under appropriate conditions, could be used for alcohol fermentation. 18 refs.

  8. Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover.

    PubMed

    Humbird, David; Mohagheghi, Ali; Dowe, Nancy; Schell, Daniel J

    2010-01-01

    In process integration studies of the biomass-to-ethanol conversion process, it is necessary to understand how cellulose conversion yields vary as a function of solids and enzyme loading and other key operating variables. The impact of solids loading on enzymatic cellulose hydrolysis of dilute acid pretreated corn stover slurry was determined using an experimental response surface design methodology. From the experimental work, an empirical correlation was obtained that expresses monomeric glucose yield from enzymatic cellulose hydrolysis as a function of solids loading, enzyme loading, and temperature. This correlation was used in a technoeconomic model to study the impact of solids loading on ethanol production economics. The empirical correlation was used to provide a more realistic assessment of process cost by accounting for changes in cellulose conversion yields at different solids and enzyme loadings as well as enzyme cost. As long as enzymatic cellulose conversion drops off at higher total solids loading (due to end-product inhibition or other factors), there is an optimum value for the total solids loading that minimizes the ethanol production cost. The optimum total solids loading shifts to higher values as enzyme cost decreases.

  9. Imidase catalyzing desymmetric imide hydrolysis forming optically active 3-substituted glutaric acid monoamides for the synthesis of gamma-aminobutyric acid (GABA) analogs.

    PubMed

    Nojiri, Masutoshi; Hibi, Makoto; Shizawa, Hiroaki; Horinouchi, Nobuyuki; Yasohara, Yoshihiko; Takahashi, Satomi; Ogawa, Jun

    2015-12-01

    The recent use of optically active 3-substituted gamma-aminobutyric acid (GABA) analogs in human therapeutics has identified a need for an efficient, stereoselective method of their synthesis. Here, bacterial strains were screened for enzymes capable of stereospecific hydrolysis of 3-substituted glutarimides to generate (R)-3-substituted glutaric acid monoamides. The bacteria Alcaligenes faecalis NBRC13111 and Burkholderia phytofirmans DSM17436 were discovered to hydrolyze 3-(4-chlorophenyl) glutarimide (CGI) to (R)-3-(4-chlorophenyl) glutaric acid monoamide (CGM) with 98.1% enantiomeric excess (e.e.) and 97.5% e.e., respectively. B. phytofirmans DSM17436 could also hydrolyze 3-isobutyl glutarimide (IBI) to produce (R)-3-isobutyl glutaric acid monoamide (IBM) with 94.9% e.e. BpIH, an imidase, was purified from B. phytofirmans DSM17436 and found to generate (R)-CGM from CGI with specific activity of 0.95 U/mg. The amino acid sequence of BpIH had a 75% sequence identity to that of allantoinase from A. faecalis NBRC13111 (AfIH). The purified recombinant BpIH and AfIH catalyzed (R)-selective hydrolysis of CGI and IBI. In addition, a preliminary investigation of the enzymatic properties of BpIH and AfIH revealed that both enzymes were stable in the range of pH 6-10, with an optimal pH of 9.0, stable at temperatures below 40 °C, and were not metalloproteins. These results indicate that the use of this class of hydrolase to generate optically active 3-substituted glutaric acid monoamide could simplify the production of specific chiral GABA analogs for drug therapeutics.

  10. EFFECT OF ANATOMICAL FRACTIONATION ON THE ENZYMATIC HYDROLYSIS OF ACID AND ALKALINE PRETREATED CORN STOVER

    SciTech Connect

    K. B. Duguid; M. D. Montross; C. W. Radtke; C. L. Crofcheck; L. M. Wendt; S. A. Shearer

    2009-11-01

    Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated by hand and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0, 0.4, or 0.8% NaOH for 2 hours at room temperature, washed, autoclaved and saccharified. In addition, acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.

  11. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation.

    PubMed

    Li, Bin; Xu, Wenyang; Kronlund, Dennis; Määttänen, Anni; Liu, Jun; Smått, Jan-Henrik; Peltonen, Jouko; Willför, Stefan; Mu, Xindong; Xu, Chunlin

    2015-11-20

    Cellulose nanocrystals (CNCs) as a renewable and biodegradable nanomaterial have wide application value. In this work, CNCs were extracted from bleached chemical pulp using two stages of isolation (i.e. formic acid (FA) hydrolysis and 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) mediated oxidation) under mild conditions. In the first stage, FA was used to remove hemicellulose, swell cellulose fibers, and release CNCs. The FA could be readily recovered and reused. In the second stage, the CNCs isolated by FA were further modified by TEMPO-mediated oxidation to increase the surface charge of CNCs. It was found that the modified CNCs with more ordered crystal structure and higher surface charge had better redispersibility and higher viscosity in aqueous phase. Therefore, the modified CNCs could be more effective when used as rheology modifier in the fields of water based coating, paint, food etc.

  12. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    PubMed Central

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  13. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite) particles.

    PubMed

    Powell, Prudence O; Sullivan, Mitchell A; Sheehy, Joshua J; Schulz, Benjamin L; Warren, Frederick J; Gilbert, Robert G

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  14. In situ pressurized biphase acid hydrolysis, a promising approach to produce bioactive diosgenin from the tubers of Dioscorea Zingiberensis

    PubMed Central

    Yang, Huan; Yin, Hua-wu; Wang, Xue-wei; Li, Zi-hao; Shen, Yu-ping; Jia, Xiao-bin

    2015-01-01

    Background: The tubers of Dioscorea zingiberensis, is the most favorable plant material for the production of diosgenin, an important bioactive steroidal sapogenin and requisite precursor of cortin, contraceptive and sex hormone, which is the only desired product after steroidal saponins from the tubers are hydrolyzed. Objective: A novel technology, in situ pressurized biphase acid hydrolysis was constructed for the first time to simplify extraction process, increase extraction yield and decrease the consumption of mineral acids. Materials and Methods: The method developed in this study has been optimized and verified through orthogonal design for experiments, in which the effect and their significance of four factors including molarity of acid, temperature, extraction duration and sample quantity have been investigated. Then, the comparison was conducted among the newly developed method and other reported methods. The diosgenin was also isolated by column chromatography, followed by mass spectrometry and nuclear magnetic resonance analysis for structural confirmation. Results: It was found that temperature is the factor of the most influence and the highest extraction yield at 2.21% has been achieved while the hydrolysis was performed at 140°C for 1.5 h in 0.20M H2SO4 solution with petroleum ether under an uncontrolled pressurized condition. And, compared to the others, the increment in the extraction yield of new method was 20.8 ~ 74.0%, and the consumption of H2SO4 was reduced by 17 times at most. Conclusion: This method is a much cleaner and more efficient approach for extraction of diosgenin from the tubers, and is promising to be applied in pharmaceutical industry. PMID:26246743

  15. AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycerol hydrolysis in contracting rat soleus muscle.

    PubMed

    Smith, Angela C; Bruce, Clinton R; Dyck, David J

    2005-06-01

    Muscle contraction increases glucose uptake and fatty acid (FA) metabolism in isolated rat skeletal muscle, due at least in part to an increase in AMP-activated kinase activity (AMPK). However, the extent to which AMPK plays a role in the regulation of substrate utilization during contraction is not fully understood. We examined the acute effects of 5-aminoimidazole-4-carboxamide riboside (AICAR; 2 mm), a pharmacological activator of AMPK, on FA metabolism and glucose oxidation during high intensity tetanic contraction in isolated rat soleus muscle strips. Muscle strips were exposed to two different FA concentrations (low fatty acid, LFA, 0.2 mm; high fatty acid, HFA, 1 mm) to examine the role that FA availability may play in both exogenous and endogenous FA metabolism with contraction and AICAR. Synergistic increases in AMPK alpha2 activity (+45%; P<0.05) were observed after 30 min of contraction with AICAR, which further increased exogenous FA oxidation (LFA: +71%, P<0.05; HFA: +46%, P<0.05) regardless of FA availability. While there were no changes in triacylglycerol (TAG) esterification, AICAR did increase the ratio of FA partitioned to oxidation relative to TAG esterification (LFA: +65%, P<0.05). AICAR significantly blunted endogenous TAG hydrolysis (LFA: -294%, P<0.001; HFA: -117%, P<0.05), but had no effect on endogenous oxidation rates, suggesting a better matching between TAG hydrolysis and subsequent oxidative needs of the muscle. There was no effect of AICAR on the already elevated rates of glucose oxidation during contraction. These results suggest that FA metabolism is very sensitive to AMPK alpha2 stimulation during contraction.

  16. Acidic 1,3-propanediaminetetraacetato lanthanides with luminescent and catalytic ester hydrolysis properties

    SciTech Connect

    Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen; Zhou, Zhao-Hui

    2014-11-15

    In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]{sub n}·2Cl{sub n}·3nH{sub 2}O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H{sub 4}pdta=1,3-propanediaminetetraacetic acid, C{sub 11}H{sub 18}N{sub 2}O{sub 8}) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 3}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 2}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd, 14] were isolated at 70 °C. When the crystals of 1–4 were hydrothermally heated at 180 °C with 1–2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]{sub n}·nH{sub 2}O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H{sub 2}O)]{sub n}·4nH{sub 2}O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1–5 are soluble in water and 1 was traced by solution {sup 13}C({sup 1}H) NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature. - Graphical abstract: A series

  17. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.

    PubMed

    Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan

    2016-10-01

    The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance. PMID:27277746

  18. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.

    PubMed

    Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan

    2016-10-01

    The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.

  19. Experimental study of the tritium distribution in the effluents resulting from the sodium hydrolysis

    SciTech Connect

    Chassery, A.; Lorcet, H.; Godlewski, J; Liger, K.; Latge, C.; Joulia, X.

    2015-03-15

    Within the framework of the dismantling of fast breeder reactors in France several processes are under investigation regarding sodium disposal. One of them, called ELA (radioactive sodium waste treatment process), is based on the implementation of the sodium-water reaction, in a controlled and progressive way, to remove residual sodium. This sodium contains impurities such as sodium hydride, sodium oxide and tritiated sodium hydride. The hydrolysis of these various chemical species leads to the production of a liquid effluent, mainly composed of an aqueous solution of sodium hydroxide, and a gaseous effluent, mainly composed of nitrogen (inert gas), hydrogen and steam. The tritium is distributed between these effluents, and, within the gaseous effluent, according to its forms HT and HTO (tritiated water). HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the phase distribution of tritium is necessary. This paper presents the first experimental results from a parametric study on the tritium distribution between the various effluents generated during hydrolysis operations. A series of experiments have been performed in order to study the influence of water flow rate, argon flow rate, initial mass and specific activity of the hydrolyzed sodium sample. An important influence of the total tritium concentration in the hydrolyzed sample has been highlighted. As for the phenomena suspected to be responsible for the phase change of tritiated water, in the studied range of parameters, vaporization induced by the heat of reactions seems to be dominant over the evaporation induced by the inert gas flow rate.

  20. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    PubMed

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield.

  1. Effect of degree of hydrolysis of whey protein on in vivo plasma amino acid appearance in humans.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Storm, Adam C; Klitgaard, Søren; Jørgensen, Henry; Bibby, Bo M; Serena, Anja; Vissing, Kristian

    2016-01-01

    Whey protein is generally found to be faster digested and to promote faster and higher increases in plasma amino acid concentrations during the immediate ~60 min following protein ingestion compared to casein. The aim of the present study was to compare three different whey protein hydrolysates with varying degrees of hydrolysis (DH, % cleaved peptide bonds) to evaluate if the degree of whey protein hydrolysis influences the rate of amino acid plasma appearance in humans. A casein protein was included as reference. The three differentially hydrolysed whey proteins investigated were: High degree of hydrolysis (DH, DH = 48 %), Medium DH (DH = 27 %), and Low DH (DH = 23 %). The casein protein was intact. Additionally, since manufacturing of protein products may render some amino acids unavailable for utilisation in the body the digestibility and the biological value of all four protein fractions were evaluated in a rat study. A two-compartment model for the description of the postprandial plasma amino acid kinetics was applied to investigate the rate of postprandial total amino acid plasma appearance of the four protein products. The plasma amino acid appearance rates of the three whey protein hydrolysates (WPH) were all significantly higher than for the casein protein, however, the degree of hydrolysis of the WPH products did not influence plasma total amino acid appearance rate (estimates of DH and 95 % confidence intervals [CI] (mol L(-1) min(-1)): High DH 0.0585 [0.0454, 0.0754], Medium DH 0.0594 [0.0495, 0.0768], Low DH 0.0560 [0.0429, 0.0732], Casein 0.0194 [0.0129, 0.0291]). The four protein products were all highly digestible, while the biological value decreased with increasing degree of hydrolysis. In conclusion, the current study does not provide evidence that the degree of whey protein hydrolysis is a strong determinant for plasma amino acid appearance rate within the studied range of hydrolysis and protein dose. PMID:27065230

  2. Structure of Human Acid Sphingomyelinase Reveals the Role of the Saposin Domain in Activating Substrate Hydrolysis.

    PubMed

    Xiong, Zi-Jian; Huang, Jingjing; Poda, Gennady; Pomès, Régis; Privé, Gilbert G

    2016-07-31

    Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction. PMID:27349982

  3. Structure of Human Acid Sphingomyelinase Reveals the Role of the Saposin Domain in Activating Substrate Hydrolysis.

    PubMed

    Xiong, Zi-Jian; Huang, Jingjing; Poda, Gennady; Pomès, Régis; Privé, Gilbert G

    2016-07-31

    Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction.

  4. Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of Tannase from Lactobacillus plantarum.

    PubMed

    Curiel, Jose Antonio; Betancor, Lorena; de las Rivas, Blanca; Muñoz, Rosario; Guisan, Jose M; Fernández-Lorente, Gloria

    2010-05-26

    A recombinant tannase from Lactobacillus plantarum , overexpressed in Escherichia coli , was purified in a single step by metal chelate affinity chromatography on poorly activated nickel supports. It was possible to obtain 0.9 g of a pure enzyme by using only 20 mL of chromatographic support. The pure enzyme was immobilized and stabilized by multipoint covalent immobilization on highly activated glyoxyl agarose. Derivatives obtained by multipoint and multisubunit immobilization were 500- and 1000-fold more stable than both the soluble enzyme and the one-point-immobilized enzyme in experiments of thermal and cosolvent inactivation, respectively. In addition, up to 70 mg of pure enzyme was immobilized on 1 g of wet support. The hydrolysis of tannic acid was optimized by using the new immobilized tannase derivative. The optimal reaction conditions were 30% diglyme at pH 5.0 and 4 degrees C. Under these conditions, it was possible to obtain 47.5 mM gallic acid from 5 mM tannic acid as substrate. The product was pure as proved by HPLC. On the other hand, the immobilized biocatalyst preserved >95% of its initial activity after 1 month of incubation under the optimal reaction conditions.

  5. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    SciTech Connect

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J.

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  6. Fundamental study of the mechanism and kinetics of cellulose hydrolysis by acids and enzymes

    NASA Astrophysics Data System (ADS)

    Gong, C. S.; Chang, M.

    1981-02-01

    There are three basic enzymes e.g., endoglucanase (C/sub x/), exoglucanase (C1) and cellobiase comprising the majority of extracellular cellulase enzymes produced by the cellulolytic mycelial fungi, Trichoderma reesei, and other cellulolytic microorganisms. The kinetics of cellobiase were developed on the basis of applying the pseudo-steady state assumption to hydrolyze cellobiose to glucose. The results indicated that cellobiase was bjected to end-product inhibition by glucose. The kinetic modeling of exoglucanase (C1) with respect to cellodextrins was studied. Both glucose and cellobiose were found to be inhibitors of this enzyme with cellobiose being a stronger inhibitor than glucose. Similarly, endoglucanase (C/sub x) is subject to end-product inhibition by glucose. Crystallinity of the cellulose affects the rate of hydrolysis by cellulases. Hence, the changes in crystallinity of cellulose in relation to chemical pretreatment and enzyme hydrolysis was compared. The study of cellulase biosynthesis resulted in the conclusion that exo-and endo-glucanases are coinduced while cellobiase is synthesized independent of the other two enzymes.

  7. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-01

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed.

  8. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  9. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.

    PubMed

    Metzker, Gustavo; Burtoloso, Antonio C B

    2015-09-28

    The conversion of biomass-derived levulinic acid (LA) into gamma-valerolactone (GVL) using formic acid (FA) and Fe3(CO)12 as the catalyst precursor was achieved in 92% yield. To mimic a biorefinery setting, crude liquor (containing 20% LA) from the acid hydrolysis of sugarcane biomass in a pilot plant facility was directly converted into GVL in good yield (50%), without the need for isolating LA.

  10. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.

    PubMed

    Metzker, Gustavo; Burtoloso, Antonio C B

    2015-09-28

    The conversion of biomass-derived levulinic acid (LA) into gamma-valerolactone (GVL) using formic acid (FA) and Fe3(CO)12 as the catalyst precursor was achieved in 92% yield. To mimic a biorefinery setting, crude liquor (containing 20% LA) from the acid hydrolysis of sugarcane biomass in a pilot plant facility was directly converted into GVL in good yield (50%), without the need for isolating LA. PMID:26258183

  11. Summary Report on Gamma Radiolysis of TBP/n-dodecane in the Presence of Nitric Acid Using the Radiolysis/Hydrolysis Test Loop

    SciTech Connect

    Dean R. Peterman; Bruce J. Mincher; Catherine L. Riddle; Richard D. Tillotson

    2010-08-01

    Design and installation has been completed for a state-of-the-art radiolysis/hydrolysis test loop system. The system is used to evaluate the effects of gamma radiolysis and acid hydrolysis on the stability and performance of solvent extraction process solvents. The test loop is comprised of two main sections; the solvent irradiation and hydrolysis loop and the solvent reconditioning loop. In the solvent irradiation and hydrolysis loop, aqueous and organic phases are mixed and circulated through a gamma irradiator until the desired absorbed dose is achieved. Irradiation of the mixed phases is more representative of actual conditions in a solvent extraction process. Additionally, the contact of the organic phase with the aqueous phase will subject the solvent components to hydrolysis. This hydrolysis can be accelerated by controlling the system at an elevated temperature. At defined intervals, the organic from the irradiation/hydrolysis loop will be transferred to the solvent reconditioning loop where the solvent is contacted with scrub, strip, and solvent wash solutions which simulate process flowsheet conditions. These two processes are repeated until the total desired dose is achieved. Since all viable solvent extraction components in an advanced fuel cycle must exhibit high radiolytic and hydrolytic stability, this test loop is not limited to any one solvent system but is applicable to all systems of interest. Also, the test loop is not limited to testing of process flowsheets. It is also a valuable tool in support of fundamental research on newly identified extractants/modifiers and the impact of gamma radiation on their stability in a dynamic environment. The investigation of the radiolysis of a TBP/n-dodecane process solvent in contact with aqueous nitric acid has been performed. These studies were intended to confirm/optimize the operability of the test loop system. Additionally, these data are directly applicable to numerous other solvent extraction

  12. Cassava starch maltodextrinization/monomerization through thermopressurized aqueous phosphoric acid hydrolysis.

    PubMed

    Fontana, J D; Passos, M; Baron, M; Mendes, S V; Ramos, L P

    2001-01-01

    Kinetic conditions were established for the depolymerization of cassava starch for the production of maltodextrins and glucose syrups. Thin-layer chromatography and high-performance liquid chromatography analyses corroborated that the proper H3PO4 strength and thermopressurization range (e.g., 142-170 degrees C; 2.8-6.8 atm) can be successfully explored for such hydrolytic purposes of native starch granules. Because phosphoric acid can be advantageously maintained in the hydrolysate and generates, after controlled neutralization with ammonia, the strategic nutrient triplet for industrial fermentations (C, P, N), this pretreatment strategy can be easily recognized as a recommended technology for hydrolysis and upgrading of starch and other plant polysaccharides. Compared to the classic catalysts, the mandatory desalting step (chloride removal by expensive anion-exchange resin or sulfate precipitation as the calcium-insoluble salt) can be avoided. Furthermore, properly diluted phosphoric acid is well known as an allowable additive in several popular soft drinks such as colas since its acidic feeling in the mouth is compatible and synergistic with both natural and artificial sweeteners. Glycosyrups from phosphorolyzed cassava starch have also been upgraded to high-value single-cell protein such as the pigmented yeast biomass of Xanthophyllomyces dendrorhous (Phaffia rhodozyma), whose astaxanthin (diketo-dihydroxy-beta-carotene) content may reach 0.5-1.0 mg/g of dry yeast cell. This can be used as an ideal complement for animal feeding as well as a natural staining for both fish farming (meat) and poultry (eggs). PMID:11963875

  13. Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose.

    PubMed

    Naseeruddin, Shaik; Desai, Suseelendra; Venkateswar Rao, L

    2016-02-01

    Two grams of delignified substrate at 10% (w/v) level was subjected to biphasic dilute acid hydrolysis using phosphoric acid, hydrochloric acid and sulfuric acid separately at 110 °C for 10 min in phase-I and 121 °C for 15 min in phase-II. Combinations of acid concentrations in two phases were varied for maximum holocellulose hydrolysis with release of fewer inhibitors, to select the suitable acid and its concentration. Among three acids, sulfuric acid in combination of 1 & 2% (v/v) hydrolyzed maximum holocellulose of 25.44±0.44% releasing 0.51±0.02 g/L of phenolics and 0.12±0.002 g/L of furans, respectively. Further, hydrolysis of delignified substrate using selected acid by varying reaction time and temperature hydrolyzed 55.58±1.78% of holocellulose releasing 2.11±0.07 g/L and 1.37±0.03 g/L of phenolics and furans, respectively at conditions of 110 °C for 45 min in phase-I & 121 °C for 60 min in phase-II. PMID:26716889

  14. Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose.

    PubMed

    Naseeruddin, Shaik; Desai, Suseelendra; Venkateswar Rao, L

    2016-02-01

    Two grams of delignified substrate at 10% (w/v) level was subjected to biphasic dilute acid hydrolysis using phosphoric acid, hydrochloric acid and sulfuric acid separately at 110 °C for 10 min in phase-I and 121 °C for 15 min in phase-II. Combinations of acid concentrations in two phases were varied for maximum holocellulose hydrolysis with release of fewer inhibitors, to select the suitable acid and its concentration. Among three acids, sulfuric acid in combination of 1 & 2% (v/v) hydrolyzed maximum holocellulose of 25.44±0.44% releasing 0.51±0.02 g/L of phenolics and 0.12±0.002 g/L of furans, respectively. Further, hydrolysis of delignified substrate using selected acid by varying reaction time and temperature hydrolyzed 55.58±1.78% of holocellulose releasing 2.11±0.07 g/L and 1.37±0.03 g/L of phenolics and furans, respectively at conditions of 110 °C for 45 min in phase-I & 121 °C for 60 min in phase-II.

  15. Pulp properties resulting from different pretreatments of wheat straw and their influence on enzymatic hydrolysis rate.

    PubMed

    Rossberg, Christine; Steffien, Doreen; Bremer, Martina; Koenig, Swetlana; Carvalheiro, Florbela; Duarte, Luís C; Moniz, Patrícia; Hoernicke, Max; Bertau, Martin; Fischer, Steffen

    2014-10-01

    Wheat straw was subjected to three different processes prior to saccharification, namely alkaline pulping, natural pulping and autohydrolysis, in order to study their effect on the rate of enzymatic hydrolysis. Parameters like medium concentration, temperature and time have been varied in order to optimize each method. Milling the raw material to a length of 4mm beforehand showed the best cost-value-ratio compared to other grinding methods studied. Before saccharification the pulp can be stored in dried form, leading to a high yield of glucose. Furthermore the relation of pulp properties (i.e. intrinsic viscosity, Klason-lignin and hemicelluloses content, crystallinity, morphology) to cellulose hydrolysis is discussed.

  16. Three competitive transition states at the glycosidic bond of sucrose in its acid-catalyzed hydrolysis.

    PubMed

    Yamabe, Shinichi; Guan, Wei; Sakaki, Shigeyoshi

    2013-03-15

    The acid-catalyzed hydrolysis of sucrose to glucose and fructose was investigated by DFT calculations. Protonations to three ether oxygen atoms of the sucrose molecule, A, B, and (C, D), were compared. Three (B, the fructosyl-ring oxygen protonation; C, protonation to the bridge oxygen of the glycosidic bond for the glucosyl-oxygen cleavage; and D, protonation to that for the fructosyl-oxygen cleavage) gave the fragmentation. Paths B, C, and D were examined by the use of the sucrose molecule and H3O(+)(H2O)13. The path B needs a large activation energy, indicating that it is unlikely. The fragmentation transition state (TS1) of path C needs almost the same activation energy as that of path D. The isomerization TS of Int(C) → Int(D), TS(C → D), was also obtained as a bypass route. The present calculations showed that the path via the fructosyl-oxygen cleavage (D) is slightly (not absolutely) more favorable than that via the glucosyl-oxygen cleavage (C). PMID:23373870

  17. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-05-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C⋯O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate.

  18. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol.

    PubMed

    Tan, Inn Shi; Lee, Keat Teong

    2015-06-25

    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield.

  19. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol.

    PubMed

    Tan, Inn Shi; Lee, Keat Teong

    2015-06-25

    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield. PMID:25839825

  20. Optimization of Serratia marcescens lipase production for enantioselective hydrolysis of 3-phenylglycidic acid ester.

    PubMed

    Gao, Li; Xu, Jian-He; Li, Xin-Jun; Liu, Zuo-Zhen

    2004-12-01

    Lipase production and cell growth of Serratia marcescens ECU1010 were optimized in shake flasks, with lipase production being enhanced 9.5-fold (4,780 U/l) compared with the initial activity (500 U/l). Optimal carbon and nitrogen sources were Tween-80 and peptone, and the optimal ratio of Tween-80 to peptone was 1:3. The optimized cultivation conditions were 25 degrees C and pH 6.5. Lipase activity, particularly specific activity, could be improved by decreasing the cultivation temperature from 35 to 25 degrees C. Enzyme stability was significantly improved by simple immobilization with synthetic adsorption resin no. 8244. After five reaction cycles, enzyme activity decreased only very slightly, while enantioselectivity of the preparation remained constant, and the ees (enantiomeric excess of the remaining substrate) achieved in all cases was higher than 97%. The resin-8244-lipase preparation can be used for efficient enantioselective hydrolysis of trans-3-(4'-methoxyphenyl)glycidic acid methyl ester [(+/-)-MPGM], a key intermediate in the synthesis of Diltiazem.

  1. Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric Acid for bioethanol production.

    PubMed

    Rocha, Maria Valderez Ponte; Rodrigues, Tigressa Helena Soares; de Macedo, Gorete Ribeiro; Gonçalves, Luciana R B

    2009-05-01

    The aim of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cashew apple bagasse (CAB) after diluted acid (CAB-H) and alkali pretreatment (CAB-OH), and to evaluate its fermentation to ethanol using Saccharomyces cerevisiae. Glucose conversion of 82 +/- 2 mg/g CAB-H and 730 +/- 20 mg/g CAB-OH was obtained when 2% (w/v) of solid and 30 FPU/g bagasse was used during hydrolysis at 45 degrees C, 2-fold higher than when using 15 FPU/g bagasse, 44 +/- 2 mg/g CAB-H, and 450 +/- 50 mg/g CAB-OH, respectively. Ethanol concentration and productivity, achieved after 6 h of fermentation, were 20.0 +/- 0.2 g L(-1) and 3.33 g L(-1) h(-1), respectively, when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g L(-1)). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g L(-1)), ethanol concentration and productivity were 8.2 +/- 0.1 g L(-1) and 2.7 g L(-1) h(-1) in 3 h, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 and 0.47 g/g glucose with pretreated CAB-OH and CAB-H, respectively. Ethanol concentration and productivity, obtained using CAB-OH hydrolyzate, were close to the values obtained in the conventional ethanol fermentation of cashew apple juice or sugar cane juice.

  2. Design of experiments, a powerful tool for method development in forensic toxicology: application to the optimization of urinary morphine 3-glucuronide acid hydrolysis.

    PubMed

    Costa, S; Barroso, M; Castañera, A; Dias, M

    2010-04-01

    The application of the design of experiments to optimize method development in the field of forensic toxicology using the urinary morphine 3-glucuronide acid hydrolysis as an example is described. Morphine and its trideuterated analogue (used as an internal standard) were extracted from urine samples by liquid-liquid extraction (ToxiTubes A) and derivatized by silylation. Chromatographic analysis was done by gas chromatography-mass spectrometry in the selected ion monitoring mode. Using the peak area ratio (morphine-to-internal standard) as the response, we investigated the independent variables that could influence the acid hydrolysis, including temperature (range 70-130 degrees C), acid volume (range 500-1,000 microL) and time (range 15-90 min). A 2(3) full factorial design for the screening and a response surface methodology, including a central composite design for optimization, were applied. The factors which influenced the response to a greater extent were temperature and its interaction both with time and acid volume. By application of a multiple regression analysis to the experimental data, a second-order polynomial equation was obtained. The optimal predicted conditions for morphine 3-glucuronide acid hydrolysis were 115 degrees C, 38 min and 500 microL for temperature, time and acid volume, respectively. Using design of experiments, instead of the one factor at a time approach, we achieved the optimum combination of all factor values, and this allowed the best results to be obtained, simultaneously optimizing resources. In addition, time and money can be saved, since other approaches are in general more time-consuming and laborious, and do not take into account the interactions between factors.

  3. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-01

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred.

  4. Volatile organic acid adsorption and cation dissociation by porphyritic andesite for enhancing hydrolysis and acidogenesis of solid food wastes.

    PubMed

    Cheng, Fan; Li, Ming; Li, Dawei; Chen, Ling; Jiang, Weizhong; Kitamura, Yutaka; Li, Baoming

    2010-07-01

    Volatile organic acid adsorption, cation dissociation by porphyritic andesite, and their effects on the hydrolysis and acidogenesis of solid food wastes were evaluated through batch experiments. The acetic acid adsorption experiments show that pH was mainly regulated by H(+) adsorption. The mono-layer and multi-layer adsorption were found under the low (8.3-83.2 mmol/L) and high (133.22-532.89 mmol/L) initial acetic acid concentration, respectively. The dissociated cations concentration in acidic solution showed the predominance of Ca(2+). Porphyritic andesite addition elevated the pH levels and accelerated hydrolysis and acidogenesis in the batch fermentation experiment. Leachate of porphyritic andesite addition achieved the highest hydrolysis constant of 22.1 x 10(-3)kgm(-2)d(-1) and VS degradation rates of 3.9 g L(-1)d(-1). The highest activity of microorganisms represented by specific growth rate of ATP, 0.16d(-1), and specific consumption rate of Ca(2+), 0.18d(-1), was obtained by adding leachate of porphyritic andesite.

  5. Volatile organic acid adsorption and cation dissociation by porphyritic andesite for enhancing hydrolysis and acidogenesis of solid food wastes.

    PubMed

    Cheng, Fan; Li, Ming; Li, Dawei; Chen, Ling; Jiang, Weizhong; Kitamura, Yutaka; Li, Baoming

    2010-07-01

    Volatile organic acid adsorption, cation dissociation by porphyritic andesite, and their effects on the hydrolysis and acidogenesis of solid food wastes were evaluated through batch experiments. The acetic acid adsorption experiments show that pH was mainly regulated by H(+) adsorption. The mono-layer and multi-layer adsorption were found under the low (8.3-83.2 mmol/L) and high (133.22-532.89 mmol/L) initial acetic acid concentration, respectively. The dissociated cations concentration in acidic solution showed the predominance of Ca(2+). Porphyritic andesite addition elevated the pH levels and accelerated hydrolysis and acidogenesis in the batch fermentation experiment. Leachate of porphyritic andesite addition achieved the highest hydrolysis constant of 22.1 x 10(-3)kgm(-2)d(-1) and VS degradation rates of 3.9 g L(-1)d(-1). The highest activity of microorganisms represented by specific growth rate of ATP, 0.16d(-1), and specific consumption rate of Ca(2+), 0.18d(-1), was obtained by adding leachate of porphyritic andesite. PMID:20156676

  6. Microbiological titration of proteins and of single amino acid content in biological materials without purification and hydrolysis.

    PubMed

    Puppo, S; Morpurgo, G; Nardi, S; Conti, G

    1978-04-01

    A method is described for the microbiological determination of the protein content of biological materials. This method can also be adopted to titrate the concentration of a single amino acid in the protein and has the following advantages: (1) titration can be done without purification and hydrolysis of proteins; (2) the titration graph is a straight line between 25 and 800 microgram/ml; (3) protein values agree with those obtained using the Kjeldhal method; and (4) each mutant requiring one amino acid may be used to titrate the concentration of a single amino acid of the protein. The leucine content of various kinds of flour was measured with this system.

  7. Structural Basis for Nucleotide Hydrolysis by the Acid Sphingomyelinase-like Phosphodiesterase SMPDL3A.

    PubMed

    Gorelik, Alexei; Illes, Katalin; Superti-Furga, Giulio; Nagar, Bhushan

    2016-03-18

    Sphingomyelin phosphodiesterase, acid-like 3A (SMPDL3A) is a member of a small family of proteins founded by the well characterized lysosomal enzyme, acid sphingomyelinase (ASMase). ASMase converts sphingomyelin into the signaling lipid, ceramide. It was recently discovered that, in contrast to ASMase, SMPDL3A is inactive against sphingomyelin and, surprisingly, can instead hydrolyze nucleoside diphosphates and triphosphates, which may play a role in purinergic signaling. As none of the ASMase-like proteins has been structurally characterized to date, the molecular basis for their substrate preferences is unknown. Here we report crystal structures of murine SMPDL3A, which represent the first structures of an ASMase-like protein. The catalytic domain consists of a central mixed β-sandwich surrounded by α-helices. Additionally, SMPDL3A possesses a unique C-terminal domain formed from a cluster of four α-helices that appears to distinguish this protein family from other phosphoesterases. We show that SMDPL3A is a di-zinc-dependent enzyme with an active site configuration that suggests a mechanism of phosphodiester hydrolysis by a metal-activated water molecule and protonation of the leaving group by a histidine residue. Co-crystal structures of SMPDL3A with AMP and α,β-methylene ADP (AMPCP) reveal that the substrate binding site accommodates nucleotides by establishing interactions with their base, sugar, and phosphate moieties, with the latter the major contributor to binding affinity. Our study provides the structural basis for SMPDL3A substrate specificity and sheds new light on the function of ASMase-like proteins. PMID:26792860

  8. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  9. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis.

    PubMed

    Kapoor, Manali; Raj, Tirath; Vijayaraj, M; Chopra, Anju; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2015-06-25

    To overcome the recalcitrant nature of biomass several pretreatment methodologies have been explored to make it amenable to enzymatic hydrolysis. These methodologies alter cell wall structure primarily by removing/altering hemicelluloses and lignin. In this work, alkali, dilute acid, steam explosion pretreatment are systematically studied for mustard stalk. To assess the structural variability after pretreatment, chemical analysis, surface area, crystallinity index, accessibility of cellulose, FT-IR and thermal analysis are conducted. Although the extent of enzymatic hydrolysis varies upon the methodologies used, nevertheless, cellulose conversion increases from <10% to 81% after pretreatment. Glucose yield at 2 and 72h are well correlated with surface area and maximum adsorption capacity. However, no such relationship is observed for xylose yield. Mass balance of the process is also studied. Dilute acid pretreatment is the best methodology in terms of maximum sugar yield at lower enzyme loading. PMID:25839820

  10. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis.

    PubMed

    Kapoor, Manali; Raj, Tirath; Vijayaraj, M; Chopra, Anju; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2015-06-25

    To overcome the recalcitrant nature of biomass several pretreatment methodologies have been explored to make it amenable to enzymatic hydrolysis. These methodologies alter cell wall structure primarily by removing/altering hemicelluloses and lignin. In this work, alkali, dilute acid, steam explosion pretreatment are systematically studied for mustard stalk. To assess the structural variability after pretreatment, chemical analysis, surface area, crystallinity index, accessibility of cellulose, FT-IR and thermal analysis are conducted. Although the extent of enzymatic hydrolysis varies upon the methodologies used, nevertheless, cellulose conversion increases from <10% to 81% after pretreatment. Glucose yield at 2 and 72h are well correlated with surface area and maximum adsorption capacity. However, no such relationship is observed for xylose yield. Mass balance of the process is also studied. Dilute acid pretreatment is the best methodology in terms of maximum sugar yield at lower enzyme loading.

  11. Catalysis of the hydrolysis of ethyl mandelate and esterification of alpha-bromopropionic acid by lipase in microemulsions.

    PubMed

    Xiao, H; Liu, J; Li, Z

    1993-01-01

    Candida cyclindracea lipase (CCL) was added to "sodium dodecyl sulfonate (AS)/n-butanol/n-octane/n-octane" water-in-oil microemulsion to catalyze the hydrolysis of ethyl mandelate and the esterification of alpha-bromopropionic acid with n-butanol, respectively. The catalytic activity of CCL in the above microemulsions was higher than that in the traditional oil/water biphasic systems. After hydrolysis for 48 h, the conversion rate of the reaction reached 90% and S-mandelic acid, [alpha]D20-149.8 (C10; H2O), optical purity ca. 97%, was isolated. While after esterification for 6 h, the conversion rate of the reaction reached 45%, and butyl-(R)-alpha-bromopropionate, [alpha]D20 18.2 (Cl; CHCl3), optical purity ca. 99%, was obtained.

  12. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    PubMed

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction.

  13. The Acid Hydrolysis Mechanism of Acetals Catalyzed by a Supramolecular Assembly in Basic Solution

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-09-24

    A self-assembled supramolecular host catalyzes the hydrolysis of acetals in basic aqueous solution. The mechanism of hydrolysis is consistent with the Michaelis-Menten kinetic model. Further investigation of the rate limiting step of the reaction revealed a negative entropy of activation ({Delta}S{double_dagger} = -9 cal mol{sup -1}K{sup -1}) and an inverse solvent isotope effect (k(H{sub 2}O)/k(D{sub 2}O) = 0.62). These data suggest that the mechanism of hydrolysis that takes place inside the assembly proceeds through an A-2 mechanism, in contrast to the A-1 mechanism operating in the uncatalyzed reaction. Comparison of the rates of acetal hydrolysis in the assembly with the rate of the reaction of unencapsulated substrates reveals rate accelerations of up to 980 over the background reaction for the substrate diethoxymethane.

  14. Structures of polynuclear complexes of palladium(II) and platinum(II) formed by slow hydrolysis in acidic aqueous solution.

    PubMed

    Torapava, Natallia; Elding, Lars I; Mändar, Hugo; Roosalu, Kaspar; Persson, Ingmar

    2013-06-01

    The aqua ions of palladium(II) and platinum(II) undergo extremely slow hydrolysis in strongly acidic aqueous solution, resulting in polynuclear complexes. The size and structures of these species have been determined by EXAFS and small angle X-ray scattering, SAXS. For palladium(II), the EXAFS data show that the Pd-O and Pd···Pd distances are identical to those of crystalline palladium(II) oxide, but the intensities of the Pd···Pd distances in the Fourier transform at 3.04 and 3.42 Å are significantly lower compared to those of crystalline PdO. Furthermore, no Pd···Pd distances beyond 4 Å are observed. These observations strongly indicate that the polynuclear palladium(II) complexes are oxido- and hydroxido-bridged species with the same core structure as solid palladium(II) oxide. Based on the number of Pd···Pd distances, as derived from the EXAFS data, their size can be estimated to be approximately two unit cells, or ca. 1.0 nm(3). For platinum(II), EXAFS data of the polynuclear species formed in the slow hydrolysis process show Pt-O and Pt···Pt distances identical to those of amorphous platinum(II) oxide, precipitating from the solution studied. The Pt···Pt distances are somewhat different from those reported for crystalline platinum(II) oxide. The polynuclear platinum(II) complexes have a similar structure to the palladium ones, but they are somewhat larger, with an estimated diameter of 1.5-3.0 nm. It has not been possible to precipitate any of these species by ultracentrifugation. They are detectable by SAXS, indicating diameters between 0.7 and 2 nm, in excellent agreement with the EXAFS observations. The number of oxido- relative to hydroxido bridges will increase with increasing size of the complex. The charge of the complexes will remain about the same, +4, at growth, with approximate formulas [Pd10O4(OH)8(H2O)12](4+) and [Pt14O8(OH)8(H2O)12](4+) for complexes with a size of 2 and 3 unit cells of the corresponding solid metal oxide

  15. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis.

    PubMed

    Jia, Honghua; Shao, Tingting; Zhong, Chao; Li, Hengxiang; Jiang, Min; Zhou, Hua; Wei, Ping

    2016-10-20

    In this paper, we produced hemicellulosic hydrolysate from corncob by tetrabutylammonium hydroxide (TBAH) extraction and dilute acid hydrolysis combined, further evaluating the feasibility of the resultant corncob hemicellulosic hydrolysate used in xylitol production by Candida tropicalis. Optimized conditions for corncob hemicellulose extraction by TBAH was obtained via response surface methodology: time of 90min, temperature of 60°C, liquid/solid ratio of 12 (v/w), and TBAH concentration of 55%, resulting in a hemicellulose extraction of 80.07% under these conditions. The FT-IR spectrum of the extracted corncob hemicellulose is consistent with that of birchwood hemicellulose and exhibits specific absorbance of hemicelluloses at 1380, 1168, 1050, and 900cm(-1). In addition, we found that C. tropicalis can ferment the resulting corncob hemicellulosic hydrolysate with pH adjustment and activated charcoal treatment leading to a high xylitol yield and productivity of 0.77g/g and 2.45g/(Lh), respectively. PMID:27474613

  16. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  17. A study of concentrated acid hydrolysis conversion of lignocellulosic materials to sugars using a co-rotating twin-screw reactor extruder and plug flow reactor

    NASA Astrophysics Data System (ADS)

    Miller, William Scott

    Concerns about the ability of petroleum to continue supplying ever increasing global energy demands, at a price capable of generating continued economic growth, have spurred innovative research in the field of alternative energy. One alternative energy option that has the ability to provide long-term sustainable energy supplies for the global energy market is the conversion of lignocellulosic materials, via acid hydrolysis, to fermentable sugars for the production of fuel grade ethanol. This research demonstrates the ability of a co-rotating twin-screw reactor extruder and plug flow reactor to continuously convert lignocellulosic materials to fermentable sugars using high temperature concentrated acid hydrolysis. In addition to demonstrating continuous operation of the two-stage concentrated acid hydrolysis system, a number of design of experiments were conducted to model the twin-screw performance and maximize its ability to effectively solubilize lignocellulosic feedstocks in the high shear, elevated temperature, concentrated acid environment. These studies produced a base case twin-screw operating condition used to generate a standard extrudate composition for an extensive high temperature acid hydrolysis batch reactor kinetic modeling study. In this study a number of nonlinear and linear regression analyses were undertaken so that the concentration of less resistant cellulose, or the amount of solublilized extrudate cellulose, resistant cellulose, or non-solubilized extrudate cellulose, glucose, and decomposition products could be obtained as a function of time, temperature, and acid concentration. This study demonstrated that the theoretical cellulose conversion of 51% was limited by the amount of solubilized polysaccharides that could be produced in the twin-screw pretreatment. Further experimentation, showing twin-screw pretreatment lignocellulosic versatility, produced nearly identical results as the southern yellow pine sawdust experiments that were

  18. Production of nanocrystalline cellulose from an empty fruit bunches using sulfuric acid hydrolysis: Effect of reaction time on the molecular characteristics

    NASA Astrophysics Data System (ADS)

    Al-Dulaimi, Ahmed A.; R, Rohaizu; D, Wanrosli W.

    2015-06-01

    Nanocrystalline cellulose (NCC) was isolated from OPEFB pulp via sulfuric acid hydrolysis. The influence of reaction time to the molecular weight and surface charge of the NCC was investigated. Characterization of the product was carried out using zeta potential measurement and gel permeation chromatography test. Zeta potential measurement showed that the surface negative charge significantly increases with increasing reaction time. Gel permeation chromatography test indicates that molecular weight of NCC change variably with increasing of hydrolysis time. (Keywords: Nanocrystalline cellulose; acid hydrolysis; sulfate content; molecular weight)

  19. The rapid hydrolysis and efficient absorption of triglycerides with octanoic acid in the 1 and 3 positions and long-chain fatty acid in the 2 position.

    PubMed

    Jandacek, R J; Whiteside, J A; Holcombe, B N; Volpenhein, R A; Taulbee, J D

    1987-05-01

    We describe rapid hydrolysis of triglycerides with medium-chain fatty acids in the 1 and 3 positions and a long-chain fatty acid in the 2 position. The triglycerides, 2-linoleoyl-1,3-dioctanoyl glycerol (8L8) and 2-oleoyl-1,3-dioctanoyl glycerol, hydrolyzed more rapidly than triglycerides comprising all long-chain fatty acids. The in vitro hydrolysis rate of 8L8 was similar to that of a medium-chain triglyceride of octanoic and decanoic acids in random positions. From intestinal recovery of 14C 45 min after injection into the isolated, irrigated loop of the small intestine of an anesthetized rat, the amount of 2-[1-14C]linoleoyl-1,3-dioctanoyl glycerol absorbed was greater than 2 1/2 times that of its long-chain analog, 2-[1-14C]linoleoyl-1,3-dioleoyl glycerol. These data support the ease of hydrolysis and absorption of 1,3-dioctanoyl triglycerides with long-chain fatty acids in the 2 position.

  20. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  1. Positional specificity of gastric hydrolysis of long-chain n-3 polyunsaturated fatty acids of seal milk triglycerides.

    PubMed

    Iverson, S J; Sampugna, J; Oftedal, O T

    1992-11-01

    Long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) of marine oils are important dietary components for both infants and adults, and are incorporated into milks following maternal dietary intake. However, little is known about the hydrolysis of these PUFA from milk triglycerides (TG) by lipases in suckling young. Seals, like humans, possess gastric lipase; however, the milk lipids of seals and sea lions are almost devoid of the readily hydrolyzable medium-chain fatty acids, and are characterized by a large percentage (10-30%) of n-3 PUFA. Gastric hydrolysis of milk lipids was studied in vivo in suckling pups of three species (the California sea lion, the harp seal and the hooded seal) in order to elucidate the actions and specificity of gastric lipases on milk TG in relation to fatty acid composition and TG structure. Regardless of milk fat content (31-61% fat) or extent of gastric hydrolysis (10-56%), the same fatty acids were preferentially released in all three species, as determined by their relative enrichment in the free fatty acid (FFA) fraction. In addition to 16:1 and 18:0, these were the PUFA of 18 carbons and longer, except for 22:6n-3. Levels of 20:5n-3 were most notably enriched in FFA, at up to five times that found in the TG. Although 22:6n-3 was apparently also released from the TG (reduced in the diglyceride), it was also notably reduced in FFA.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture.

    PubMed

    He, Yu-Cai; Liu, Feng; Gong, Lei; Lu, Ting; Ding, Yun; Zhang, Dan-Ping; Qing, Qing; Zhang, Yue

    2015-02-01

    To improve the enzymatic saccharification of lignocellulosic biomass, a mixture of ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) was used for pretreating corn stover in this study. After the optimization in oil-bath system, the optimum pretreatment temperature and time were 130 °C and 30 min, respectively. After the saccharification of 10 g/L pretreated corn stover for 48 h, the saccharification rate was obtained in the yield of 77.4 %. To decrease pretreatment temperature and shorten pretreatment time, ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) media under microwave irradiation was employed to pretreat corn stover effectively at 100 °C and 200 W for 5 min. Finally, the recovered hydrolyzates containing glucose obtained from the enzymatic hydrolysis of pretreated corn stovers could be fermented into ethanol efficiently. These results would be helpful for developing a cost-effective pretreatment combined with enzymatic saccharification of cellulosic materials for the production of lignocellulosic ethanol.

  3. Relationship between stimulated phosphatidic acid production and inositol lipid hydrolysis in intestinal longitudinal smooth muscle from guinea pig.

    PubMed

    Mallows, R S; Bolton, T B

    1987-06-15

    Accumulation of [32P]phosphatidic acid (PA) and total [3H]inositol phosphates (IPs) was measured in the longitudinal smooth-muscle layer from guinea-pig small intestine. Stimulation with carbachol, histamine and substance P produced increases in accumulation of both [3H]IPs and [32P]PA over the same concentration range. The increase in [32P]PA accumulation in response to carbachol (1 microM-0.1 mM) was inhibited in the presence of atropine (0.5 microM). Buffering the external free [Ca2+] to 10 nM did not prevent the carbachol-stimulated increase in [32P]PA accumulation. Carbachol and Ca2+ appear to act synergistically to increase accumulation of [32P]PA. In contrast, although incubation with noradrenaline also increased accumulation of [3H]IPs, no increase in accumulation of [32P]PA could be detected. These results suggest that an increase in formation of IPs is not necessarily accompanied by an increase in PA formation, and imply the existence of receptor-modulated pathways regulating PA concentrations other than by phospholipase-C-catalysed inositol phospholipid hydrolysis.

  4. Novel diketopiperazine metabolism in a microorganism: two-step hydrolysis of cyclo(Gly-Leu) to amino acids and preliminary characterization of cyclo(Gly-Leu) hydrolase and dipeptidase.

    PubMed

    Kanzaki, H; Mizuta, N; Nitoda, T; Kawazu, K

    2000-01-01

    A bacterium, strain NM 5-3, isolated from soil exhibited the highest cyclo(Gly-Leu) (CGL)-hydrolyzing activity and was identified as Agrobacterium radiobacter. The reaction products from CGL were dipeptides (Leu-Gly and Gly-Leu) and amino acids (Leu and Gly). Inhibitors for the dipeptidase of this strain did not inhibit the hydrolysis of CGL to dipeptides, indicating that two distinct enzymes, CGLase and a dipeptidase, were involved in its hydrolysis. The activities of these two enzymes were separated by anion-exchange column chromatography. The results indicated that strain NM5-3 hydrolyzed CGL via the dipeptides to the corresponding amino acids. The CGLase fraction was found to catalyze the hydrolysis of cyclo(Gly-D-Leu), cyclo(Gly-Gly), cyclo(L-Ala-Gly), and cyclo(D-Ala-Gly). On the other hand, the dipeptidase fraction exhibited L-specific substrate specificity.

  5. Dilute oxalic acid pretreatment for high total sugar recovery in pretreatment and subsequent enzymatic hydrolysis.

    PubMed

    Qing, Qing; Huang, Meizi; He, Yucai; Wang, Liqun; Zhang, Yue

    2015-12-01

    Oxalic acid was evaluated as an alternative reagent to mineral inorganic acid in pretreatment of corncob to achieve high xylose yield in addition to highly digestible solid residue. A quadratic polynomial model of xylose formation was developed for optimization of pretreatment process by the response surface methodology based on the impact factors of pretreatment temperature, reaction time, acid concentration, and solid-to-liquid ratio. The highest xylose yield was 94.3 % that was obtained under the pretreatment condition of 140 °C for 40 min with 0.5 wt% oxalic acid at a solid loading of 7.5 %. Under these conditions, the xylose yield results of verification experiments were very close to the model prediction, which indicated that the model was applicable. The solid residue generated under this condition also demonstrated a satisfactory enzymatic digestibility and fermentability. PMID:26494137

  6. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe₂(SO₄)₃/γ-Fe₂O₃ Nanoparticle-Based Solid Acid Catalyst.

    PubMed

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-01-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied. PMID:26856604

  7. Influence of the nature of titanium alkoxide and of the acid of hydrolysis in the preparation of titanium-pillared montmorillonites

    NASA Astrophysics Data System (ADS)

    Del Castillo, H. L.; Gil, A.; Grange, P.

    1997-07-01

    Titanium-pillared montmorillonites using Ti(OC2H5)4, Ti(O-nC3H7)4, Ti(O-iC3H7)4 and Ti(O-nC4H,)4 as sources of titanium, and HCl, HClO4, HNO3, H2SO4, CH3CO2H and H3PO4 as acids for hydrolysis, have been prepared. The preparation of titanium-pillared clays (Ti-PILCS) is mainly affected by the acid/alkoxide mole ratio. The nature of the alkoxide influences both the basal spacing and the specific surface area. The use of Ti(OC2H5)4 as a source of titanium yielded the best textural and thermal stability results. The differences observed in the titanium-pillared clays as a function of the acid used for the hydrolysis seem to be mainly related to the pH of the solution of intercalation.

  8. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-01

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  9. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-01

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. PMID:25130461

  10. Highly Amino Acid Selective Hydrolysis of Myoglobin at Aspartate Residues as Promoted by Zirconium(IV)-Substituted Polyoxometalates.

    PubMed

    Ly, Hong Giang T; Absillis, Gregory; Janssens, Rik; Proost, Paul; Parac-Vogt, Tatjana N

    2015-06-15

    SDS-PAGE/Edman degradation and HPLC MS/MS showed that zirconium(IV)-substituted Lindqvist-, Keggin-, and Wells-Dawson-type polyoxometalates (POMs) selectively hydrolyze the protein myoglobin at Asp-X peptide bonds under mildly acidic and neutral conditions. This transformation is the first example of highly sequence selective protein hydrolysis by POMs, a novel class of protein-hydrolyzing agents. The selectivity is directed by Asp residues located on the surface of the protein and is further assisted by electrostatic interactions between the negatively charged POMs and positively charged surface patches in the vicinity of the cleavage site.

  11. The hydrolysis of polyimides

    NASA Technical Reports Server (NTRS)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  12. NAPAP (National Acid Precipitation Assessment Program) results on acid rain

    SciTech Connect

    Not Available

    1990-06-01

    The National Acid Precipitation Assessment Program (NAPAP) was mandated by Congress in 1980 to study the effects of acid rain. The results of 10 years of research on the effect of acid deposition and ozone on forests, particularly high elevation spruce and fir, southern pines, eastern hardwoods and western conifers, will be published this year.

  13. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by isocratic high-pressure liquid chromatography with post-column hydrolysis and fluorescence detection.

    PubMed

    Hobl, Eva-Luise; Jilma, Bernd; Ebner, Josef; Schmid, Rainer W

    2013-06-01

    A selective, sensitive and rapid high-performance liquid chromatography method with post-column hydrolysis and fluorescence detection was developed for the simultaneous quantification of acetylsalicylic acid and its metabolite salicylic acid in human plasma. Following the addition of 2-hydroxy-3-methoxybenzoic acid as internal standard and simple protein precipitation with acetonitrile, the analytes were separated on a ProntoSIL 120 C18 ace-EPS column (150 × 2 mm, 3 µm) protected by a C8 guard column (5 µm). The mobile phase, 10 mm formic acid in water (pH 2.9) and acetonitrile (70:30, v/v), was used at a flow rate of 0.35 mL/min. After on-line post-column hydrolysis of acetylsalicylic acid (ASA) to salicylic acid (SA) by addition of alkaline solution, the analytes were measured at 290 nm (λex ) and 400 nm (λem ). The method was linear in the concentration ranges between 0.05 and 20 ng/μL for both ASA and SA with a lower limit of quantification of 25 pg/μL for SA and 50 pg/μL for ASA. The limit of detection was 15 pg/μL for SA and 32.5 pg/μL for ASA. The analysis of ASA and SA can be carried out within 8 min; therefore this method is suitable for measuring plasma concentrations of salicylates in clinical routine.

  14. Enteric-coated capsule containing β-galactosidase-loaded polylactic acid nanocapsules: enzyme stability and milk lactose hydrolysis under simulated gastrointestinal conditions.

    PubMed

    He, Hongjun; Zhang, Xueting; Sheng, Yan

    2014-11-01

    In order to protect peroral β-galactosidase from being degraded and hydrolyse milk lactose efficiently in the environments of gastrointestinal tract, a double-capsule delivery system composed of enteric-coated capsule and polylactic acid (PLA) nanocapsules (NCs) was developed for encapsulation of β-galactosidase. β-galactosidase-loaded PLA NCs in the size range of 100-200 nm were prepared by a modified w1/o/w2 technique. During the encapsulation process, dichloromethane/ethyl acetate (1 : 1, v/v) as the solvent composition, high-pressure homogenisation (150 bar, 3 min) as the second emulsification method and polyvinyl alcohol or Poloxamer 188 as a stabiliser in the inner phase could efficiently improve the activity retention of β-galactosidase (>90%). Subsequently, the prepared NCs were freeze-dried and filled in a hydroxypropyl methylcellulose phthalate (HP55)-coated capsule. In vitro results revealed that the HP55-coated capsule remained intact in the simulated gastric fluid and efficiently protected the nested β-galactosidase from acidic denaturation. Under the simulated intestinal condition, the enteric coating dissolved rapidly and released the β-galactosidase-loaded PLA NCs, which exhibited greater stability against enzymatic degradation and higher hydrolysis ratio (∼100%) towards milk lactose than the free β-galactosidase. These results suggest that this double-capsule delivery system represents promising candidate for efficient lactose hydrolysis in the gastrointestinal tract.

  15. A process economic approach to develop a dilute-acid cellulose hydrolysis process to produce ethanol from biomass.

    PubMed

    Nagle, N; Ibsen, K; Jennings, E

    1999-01-01

    Successful deployment of a bioethanol process depends on the integration of technologies that can be economically commercialized. Pretreatment and fermentation operations of the traditional enzymatic bioethanol-production process constitute the largest portion of the capital and operating costs. Cost reduction in these areas, through improved reactions and reduced capital, will improve the economic feasibility of a large-scale plant. A technoeconomic model was developed using the ASPEN Plus modeling software package. This model included a two-stage pretreatment operation with a co-current first stage and countercurrent second stage, a lignin adsorption unit, and a cofermentation unit. Data from kinetic modeling of the pretreatment reactions, verified by bench-scale experiments, were used to create the ASPEN Plus base model. Results from the initial pretreatment and fermentation yields of the two-stage system correlated well to the performance targets established by the model. The ASPEN Plus model determined mass and energy-balance information, which was supplied to an economic module to determine the required selling price of the ethanol. Several pretreatment process variables such as glucose yield, liquid: solid ratio, additional pretreatment stages, and lignin adsorption were varied to determine which parameters had the greatest effect on the process economics. Optimized values for these key variables became target values for the bench-scale research, either to achieve or identify as potential obstacles in the future commercialization process. Results from this modeling and experimentation sequence have led to the design of an advanced two-stage engineering- scale reactor for a dilute-acid hydrolysis process.

  16. Chemometrics-assisted Spectrofluorimetric Determination of Two Co-administered Drugs of Major Interaction, Methotrexate and Aspirin, in Human Urine Following Acid-induced Hydrolysis.

    PubMed

    Maher, Hadir M; Ragab, Marwa A A; El-Kimary, Eman I

    2015-01-01

    Methotrexate (MTX) is widely used to treat rheumatoid arthritis (RA), mostly along with non-steroidal anti-inflammatory drugs (NSAIDs), the most common of which is aspirin or acetyl salicylic acid (ASA). Since NSAIDs impair MTX clearance and increase its toxicity, it was necessary to develop a simple and reliable method for the monitoring of MTX levels in urine samples, when coadministered with ASA. The method was based on the spectrofluorimetric measurement of the acid-induced hydrolysis product of MTX, 4-amino-4-deoxy-10-methylpteroic acid (AMP), along with the strongly fluorescent salicylic acid (SA), a product of acid-induced hydrolysis of aspirin and its metabolites in urine. The overlapping emission spectra were resolved using the derivative method (D method). In addition, the corresponding derivative emission spectra were convoluted using discrete Fourier functions, 8-points sin xi polynomials, (D/FF method) for better elimination of interferences. Validation of the developed methods was carried out according to the ICH guidelines. Moreover, the data obtained using derivative and convoluted derivative spectra were treated using the non-parametric Theil's method (NP), compared with the least-squares parametric regression method (LSP). The results treated with Theil's method were more accurate and precise compared with LSP since the former is less affected by the outliers. This work offers the potential of both derivative and convolution using discrete Fourier functions in addition to the effectiveness of using the NP regression analysis of data. The high sensitivity obtained by the proposed methods was promising for measuring low concentration levels of the two drugs in urine samples. These methods were efficiently used to measure the drugs in human urine samples following their co-administration. PMID:26234512

  17. Effect of acid hydrolysis combined with heat moisture treatment on structure and physicochemical properties of corn starch.

    PubMed

    Sun, Qingjie; Zhu, Xiaolei; Si, Fumei; Xiong, Liu

    2015-01-01

    Modification of starch led to new products with new desirable properties. Corn starch samples modified by acid hydrolysis combined with heat moisture treatment (AH-HMT) were made by changing pH, moisture content and treated temperature. After modification, swelling power at temperature higher than 75 °C of corn starches decreased while solubility of the starches increased. After AH-HMT, pasting temperature (PT) of all treated starch samples increased. But lower peak viscosity (PKV), trough viscosity (TV) and break down (BD) of most treated starch samples were observed. AH-HMT increased the gel hardness of all treated starches. And the biggest hardness of modified starch gel was 148.419 g, improving 93.471 g compared with native starch gel. The melting temperatures (To, Tp, Tc) of modified starch increased, but the melting range and △H decreased. The X-ray pattern remained practically unchanged with or without AH-HMT. Acid hydrolysis combined with heat moisture treatment (AH-HMT) improved the functional properties of corn starch. PMID:25593372

  18. Interaction between amylose and 1-butanol during 1-butanol-hydrochloric acid hydrolysis of normal rice starch.

    PubMed

    Hu, Xiuting; Wei, Benxi; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-10-01

    The aim of this study was to examine the interaction between amylose and 1-butanol during the 1-butanol-hydrochloric acid (1-butanol-HCl) hydrolysis of normal rice starch. The interaction model between amylose and 1-butanol was proposed using gas chromatography-mass spectrometry (GC-MS), (13)C cross polarization and magic angle spinning NMR analysis ((13)C CP/MAS NMR), differential scanning calorimetry (DSC), and thermalgravimetric analysis (TGA). GC-MS data showed that another form of 1-butanol existed in 1-butanol-HCl-hydrolyzed normal rice starch, except in the form of free molecules absorbed on the starch granules. The signal of 1-butanol-HCl-hydrolyzed starch at 100.1 ppm appeared in the (13)C CP/MAS NMR spectrum, indicating that the amylose-1-butanol complex was formed. DSC and TGA data also demonstrated the formation of the complex, which significantly affected the thermal properties of normal rice starch. These findings revealed that less dextrin with low molecular weight formed might be attributed to resistance of this complex to acid during 1-butanol-HCl hydrolysis.

  19. One-pot enzymatic synthesis of docosahexaenoic acid-rich triacylglycerols at the sn-1(3) position using by-product from selective hydrolysis of tuna oil.

    PubMed

    Nagao, Toshihiro; Watanabe, Yomi; Maruyama, Kazuaki; Momokawa, Yuusuke; Kishimoto, Noriaki; Shimada, Yuji

    2011-01-31

    Docosahexaenoic acid (DHA)-rich oil has been industrially produced by selective hydrolysis of tuna oil with a lipase that acts weakly on DHA. The free fatty acids (FFAs) generated in this process as by-products contain a high DHA concentration (46wt%) but are treated as industrial waste. This study attempted to reuse these by-product FFAs using a one-pot process, and succeeded in producing triacylglycerols (TAGs) through the esterification of the by-product FFAs with glycerol using immobilized Rhizomucor miehei lipase. Regiospecific analysis of the resulting TAGs showed that the content of DHA at the sn-1(3) position (51.7mol%) was higher than the content of DHA at the sn-2 position (17.3mol%). The DHA distribution in TAGs synthesized in this study was similar to the DHA distribution in TAGs from seal oil.

  20. Computational chemistry study of the environmentally important acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines.

    PubMed

    Sawunyama, Phillip; Bailey, George W

    2002-08-01

    Many chlorine-containing pesticides, for example 2-chloro-s-triazines, are of great concern both environmentally and toxicologically. As a result, ascertaining or predicting the fate and transport of these compounds in soils and water is of current interest. Transformation pathways for 2-chloro-s-triazines in the environment include dealkylation, dechlorination (hydrolysis), and ring cleavage. This study explored the feasibility of using computational chemistry, specifically the hybrid density functional theory method, B3LYP, to predict hydrolysis trends of atrazine (2-chloro-N4-ethyl-N6-isopropyl-1,3,5-triazine-2,4-diamine) and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines. Gas-phase energetics are described on the basis of calculations performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of theory. Calculated free energies of hydrolysis (delta h G298) are nearly the same for simazine (2-chloro-N4,N6-diethyl-1,3,5-triazine-2,4-diamine), atrazine, and propazine (2-chloro-N4,N6-di-isopropyl-1,3,5-triazine-2,4-diamine), suggesting that hydrolysis is not significantly affected by the side-chain amine-nitrogen alkyl substituents. High-energy barriers also suggest that the reactions are not likely to be observed in the gas phase. Aqueous solvation effects were examined by means of self-consistent reaction field methods (SCRF). Molecular structures were optimized at the B3LYP/6-31G* level using the Onsager model, and solvation energies were calculated at the B3LYP/6-311++G(d,p) level using the isodensity surface polarizable continuum model (IPCM). Although the extent of solvent stabilization was greater for cationic species than neutral ones, the full extent of solvation is underestimated, especially for the transition state structures. As a consequence, the calculated hydrolysis barrier for protonated atrazine is exaggerated compared with the experimentally determined one. Overall, the hydrolysis reactions follow a concerted nucleophilic

  1. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Choi, Jong-il; Park, Hyun

    2015-04-01

    Low molecular weight fucoidan, prepared by radical degradation using gamma ray was investigated for its antioxidant activities with different assay methods. As the molecular weight of fucoidan decreased with a higher absorbed dose, ferric-reducing antioxidant power values increased, but β-carotene bleaching inhibition did not change significantly. The antioxidant activity of acid-degraded fucoidan was also examined to investigate the effect of different degradation methods. At the same molecular weight, fucoidan degraded by gamma irradiation showed higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity than that observed with the acidic method. This result reveals that in addition to molecular weight, the degradation method affects the antioxidant activity of fucoidan.

  2. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    PubMed

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion.

  3. A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC.

    PubMed

    Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir

    2015-11-01

    Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines.

  4. A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC.

    PubMed

    Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir

    2015-11-01

    Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines. PMID:26002809

  5. Enzymatic hydrolysis of cellulose pretreated with zinc chloride and hydrochloric acid

    SciTech Connect

    Chen, L.F.; Gong, C.S.

    1982-01-01

    Microcrystalline cellulose, Avicel, was dissolved in a concentrated solution of ZnCl/sub 2/ and 0.5% hydrochloric acid followed by heating at 145/sup 0/C for 6 min. after cooling, cellulose in its amorphous form was precipitated by the addition of acetone. The resulting cellulose was hydrolyzed by cellulase derived from Trichoderma viride. At concentrations of 20% cellulose and 1% cellulase, cellulose was hydrolyzed completely for form a solution of 19% glucose and 1% cellobiose within 72 h of incubation. 1 figure, 5 tables.

  6. Effect of high dry solids loading on enzymatic hydrolysis of acid bisulfite pretreated Eastern redcedar.

    PubMed

    Ramachandriya, Karthikeyan D; Wilkins, Mark; Atiyeh, Hasan K; Dunford, Nurhan T; Hiziroglu, Salim

    2013-11-01

    This study investigates hydrolysis of cellulose from Eastern redcedar to glucose at high solids loading. Enzymatic hydrolysis of pretreated redcedar was performed with 0.5 ml Accelerase® 1500/g glucan (46 FPU/g glucan) using dry solids loading from 2% to 20% (w/w). Rheological challenges observed at high solids loading were overcome by adding stainless steel balls to shake flask reactors. The highest glucose concentration, 126 g/L (84% glucan-to-glucose yield), was obtained using 20% solids loading with stainless steel balls as a mixing aid. This enzymatic hydrolyzate was fermented into ethanol using Saccharomyces cerevisiae D5A to produce 52 g/L of ethanol (corresponding to 166 L/dry Mg of redcedar). Reducing enzyme dosage at 16% solids loading from 46 to 11.5 FPU/g glucan reduced glucan-to-glucose yields. This study has demonstrated the possibility of extracting sugars from the invasive species of Eastern redcedar with high solid loadings and their conversion into ethanol.

  7. An integrated process for the production of platform chemicals and diesel miscible fuels by acid-catalyzed hydrolysis and downstream upgrading of the acid hydrolysis residues with thermal and catalytic pyrolysis.

    PubMed

    Girisuta, Buana; Kalogiannis, Konstantinos G; Dussan, Karla; Leahy, James J; Hayes, Michael H B; Stefanidis, Stylianos D; Michailof, Chrysa M; Lappas, Angelos A

    2012-12-01

    This study evaluates an integrated process for the production of platform chemicals and diesel miscible biofuels. An energy crop (Miscanthus) was treated hydrothermally to produce levulinic acid (LA). Temperatures ranging between 150 and 200 °C, sulfuric acid concentrations 1-5 wt.% and treatment times 1-12 h were applied to give different combined severity factors. Temperatures of 175 and 200 °C and acid concentration of 5 wt.% were found to be necessary to achieve good yield (17 wt.%) and selectivities of LA while treatment time did not have an effect. The acid hydrolysis residues were characterized for their elemental, cellulose, hemicellulose and lignin contents, and then tested in a small-scale pyrolyzer using silica sand and a commercial ZSM-5 catalyst. Milder pretreatment yielded more oil (43 wt.%) and oil O(2) (37%) while harsher pretreatment and catalysis led to more coke production (up to 58 wt.%), less oil (12 wt.%) and less oil O(2) (18 wt.%).

  8. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  9. The salt stress-induced LPA response in Chlamydomonas is produced via PLA₂ hydrolysis of DGK-generated phosphatidic acid.

    PubMed

    Arisz, Steven A; Munnik, Teun

    2011-11-01

    The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A₂ (PLA₂) activity based on pharmacological evidence. The question of PA's and LPA's origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo ³²P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential ³²P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA₂-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA₂-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor.

  10. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production.

    PubMed

    Avci, Ayse; Saha, Badal C; Dien, Bruce S; Kennedy, Gregory J; Cotta, Michael A

    2013-02-01

    Dilute H(3)PO(4) (0.0-2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzymatic digestion while minimizing formation of furans, which are potent inhibitors of fermentation. The maximum glucose yield (85%) was obtained after enzymatic hydrolysis of corn stover pretreated with 0.5% (v/v) acid at 180°C for 15min while highest yield for xylose (91.4%) was observed from corn stover pretreated with 1% (v/v) acid at 160°C for 10min. About 26.4±0.1g ethanol was produced per L by recombinant Escherichia coli strain FBR5 from 55.1±1.0g sugars generated from enzymatically hydrolyzed corn stover (10%, w/w) pretreated under a balanced optimized condition (161.81°C, 0.78% acid, 9.78min) where only 0.4±0.0g furfural and 0.1±0.0 hydroxylmethyl furfural were produced.

  11. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    PubMed

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. PMID:27599625

  12. High-performance liquid chromatographic determination of quercetin and isorhamnetin in rat tissues using beta-glucuronidase and acid hydrolysis.

    PubMed

    Morrice, P C; Wood, S G; Duthie, G G

    2000-02-11

    Quercetin is a plant polyphenol which is present in the diet as an aglycone and as sugar conjugates. Despite potent vasodilatory and antioxidant effects in vitro, destruction by intestinal organisms has been assumed to limit its nutritional relevance in the rat. However, we have refined extraction techniques using beta-glucuronidase followed by acid hydrolysis. Following this with HPLC methodology with post-column derivatisation, we have detected significant concentrations of quercetin and its metabolite, isorhamnetin, in tissues of rats maintained on quercetin-rich diets. Percentage recoveries are greater than 95% and intra-batch variation does not exceed 7% suggesting that the method may be useful in further studies of the biological role of this flavonoid. PMID:10718659

  13. Efficient hydrolysis of corncob residue through cellulolytic enzymes from Trichoderma strain G26 and L-lactic acid preparation with the hydrolysate.

    PubMed

    Xie, Lulu; Zhao, Jin; Wu, Jian; Gao, Mingfu; Zhao, Zhewei; Lei, Xiangyun; Zhao, Yi; Yang, Wei; Gao, Xiaoxue; Ma, Cuiyun; Liu, Huanfei; Wu, Fengjuan; Wang, Xingxing; Zhang, Fengwei; Guo, Pengyuan; Dai, Guifu

    2015-10-01

    To prepare fermentable hydrolysate from corncob residue (CCR), Trichoderma strain G26 was cultured on medium containing CCR for production of cellulolytic enzymes through solid-state fermentation (SSF), resulting in 71.3 IU/g (FPA), 136.2 IU/g (CMCase), 85.1 IU/g (β-glucosidase) and 11,344 IU/g (xylanase), respectively. Through a three-stage saccharification strategy, CCR was hydrolyzed by the enzymatic solution (6.5 FPU/ml) into fermentable hydrolysate containing 60.1g/l glucose (81.2% cellulose was converted at solid loading of 12.5%), 21.4% higher than that by the one-stage method. And then the hydrolysate was used to produce L-lactic acid by a previous screened strain Bacillus coagulans ZX25 in the submerged fermentation. 52.0 g/l L-lactic acid was obtained after fermentation for 44 h, with 86.5% glucose being converted to L-lactic acid. The results indicate that the strains and the hydrolysis strategy are promising for commercial production of L-lactic acid from CCR and other biomass. PMID:26143000

  14. Effect of carboxylic acid adsorption on the hydrolysis and sintered properties of aluminum nitride powder

    SciTech Connect

    Egashira, Makoto; Shimizu, Yasuhiro; Takao, Yuji; Yamaguchi, Ryoji; Ishikawa, Yasuhiro . Dept. of Materials Science and Engineering)

    1994-07-01

    To suppress the reactivity of AlN powder with water, chemical surface modification with carboxylic acids has been investigated. It was found that the chemical stability of AlN powder increased as the number of carbon atoms in carboxylic acids used for the surface treatment increased. Among the carboxylic acids tested, stearic acid was the most promising from the viewpoint of the chemical stability of the treated powder and the thermal conductivity of the sintered ceramics prepared by cold isostatic pressing and pressureless sintering.

  15. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions.

    PubMed

    Wang, Yehong; Wang, Feng; Song, Qi; Xin, Qin; Xu, Shutao; Xu, Jie

    2013-01-30

    The use of a heterogeneous Lewis acid catalyst, which is insoluble and easily separable during the reaction, is a promising option for hydrolysis reactions from both environmental and practical viewpoints. In this study, ceria showed excellent catalytic activity in the hydrolysis of 4-methyl-1,3-dioxane to 1,3-butanediol in 95% yield and in the one-pot synthesis of 1,3-butanediol from propylene and formaldehyde via Prins condensation and hydrolysis reactions in an overall yield of 60%. In-depth investigations revealed that ceria is a water-tolerant Lewis acid catalyst, which has seldom been reported previously. The ceria catalysts showed rather unusual high activity in hydrolysis, with a turnover number (TON) of 260, which is rather high for bulk oxide catalysts, whose TONs are usually less than 100. Our conclusion that ceria functions as a Lewis acid catalyst in hydrolysis reactions is firmly supported by thorough characterizations with IR and Raman spectroscopy, acidity measurements with IR and (31)P magic-angle-spinning NMR spectroscopy, Na(+)/H(+) exchange tests, analyses using the in situ active-site capping method, and isotope-labeling studies. A relationship between surface vacancy sites and catalytic activity has been established. CeO(2)(111) has been confirmed to be the catalytically active crystalline facet for hydrolysis. Water has been found to be associatively adsorbed on oxygen vacancy sites with medium strength, which does not lead to water dissociation to form stable hydroxides. This explains why the ceria catalyst is water-tolerant. PMID:23228093

  16. Characterization of degradation products of ivabradine by LC-HR-MS/MS: a typical case of exhibition of different degradation behaviour in HCl and H2SO4 acid hydrolysis.

    PubMed

    Patel, Prinesh N; Borkar, Roshan M; Kalariya, Pradipbhai D; Gangwal, Rahul P; Sangamwar, Abhay T; Samanthula, Gananadhamu; Ragampeta, Srinivas

    2015-02-01

    A validated stability-indicating HPLC method was established, and comprehensive stress testing of ivabradine, a cardiotonic drug, was carried out as per ICH guidelines. Ivabradine was subjected to acidic, basic and neutral hydrolysis, oxidation, photolysis and thermal stress conditions, and the resulting degradation products were investigated by LC-PDA and LC-HR-MS/MS. The drug was found to degrade in acid and base hydrolysis. An efficient and selective stability assay method was developed on Phenomenex Luna C18 (250 × 4.6 mm, 5.0 µm) column using ammonium formate (10 mM, pH 3.0) and acetonitrile as mobile phase at 30 °C in gradient elution mode. The flow rate was 0.7 ml/min and detection wavelength was 286 nm. A total of five degradation products (I-1 to I-5) were identified and characterized by LC-HR-MS/MS in combination with accurate mass measurements. The drug exhibited different degradation behaviour in HCl and H2SO4 hydrolysis conditions. It is a unique example where two of the five degradation products in HCl hydrolysis were absent in H2SO4 acid hydrolysis. The present study provides guidance to revise the stress test for the determination of inherent stability of drugs containing lactam moiety under hydrolytic conditions. Most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation pattern of the drug and its degradation products. In silico toxicity revealed that the degradation products (I-2 to I-5) were found to be severe irritants in case of ocular irritancy. The analytical assay method was validated with respect to specificity, linearity, range, precision, accuracy and robustness.

  17. VLDL hydrolysis by LPL activates PPAR-alpha through generation of unbound fatty acids.

    PubMed

    Ruby, Maxwell A; Goldenson, Benjamin; Orasanu, Gabriela; Johnston, Thomas P; Plutzky, Jorge; Krauss, Ronald M

    2010-08-01

    Recent evidence suggests that lipoproteins serve as circulating reservoirs of peroxisomal proliferator activated receptor (PPAR) ligands that are accessible through lipolysis. The present study was conducted to determine the biochemical basis of PPAR-alpha activation by lipolysis products and their contribution to PPAR-alpha function in vivo. PPAR-alpha activation was measured in bovine aortic endothelial cells following treatment with human plasma, VLDL lipolysis products, or oleic acid. While plasma failed to activate PPAR-alpha, oleic acid performed similarly to VLDL lipolysis products. Therefore, fatty acids are likely to be the PPAR-alpha ligands generated by VLDL lipolysis. Indeed, unbound fatty acid concentration determined PPAR-alpha activation regardless of fatty acid source, with PPAR-alpha activation occurring only at unbound fatty acid concentrations that are unachievable under physiological conditions without lipase action. In mice, a synthetic lipase inhibitor (poloxamer-407) attenuated fasting-induced changes in expression of PPAR-alpha target genes. Apolipoprotein CIII (apoCIII), an endogenous inhibitor of lipoprotein and hepatic lipase, regulated access to the lipoprotein pool of PPAR-alpha ligands, because addition of exogenous apoCIII inhibited, and removal of endogenous apoCIII potentiated, lipolytic PPAR-alpha activation. These data suggest that the PPAR-alpha response is generated by unbound fatty acids released locally by lipase activity and not by circulating plasma fatty acids.

  18. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    PubMed

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW.

  19. Titan's Primordial Soup: Formation of Amino Acids via Low-Temperature Hydrolysis of Tholins

    NASA Astrophysics Data System (ADS)

    Neish, Catherine D.; Somogyi, Árpád; Smith, Mark A.

    2010-04-01

    Titan organic haze analogues, or "tholins," produce biomolecules when hydrolyzed at low temperature over long timescales. By using a combination of high-resolution mass spectroscopy and tandem mass spectrometry fragmentation techniques, four amino acids were identified in a tholin sample that had been hydrolyzed in a 13 wt % ammonia-water solution at 253 ± 1 K and 293 ± 1 K for 1 year. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions thought to be similar to those found in impact melt pools and cryolavas on Titan, which are at a stage of chemical evolution not unlike the "primordial soup" of the early Earth. Future missions to Titan should therefore carry instrumentation capable of, but certainly not limited to, detecting amino acids and other prebiotic molecules on Titan's surface.

  20. Chemical synthesis and enzymatic, stereoselective hydrolysis of a functionalized dihydropyrimidine for the synthesis of β-amino acids.

    PubMed

    Slomka, Christin; Zhong, Sabilla; Fellinger, Anna; Engel, Ulrike; Syldatk, Christoph; Bräse, Stefan; Rudat, Jens

    2015-12-01

    A novel substrate, 6-(4-nitrophenyl)dihydropyrimidine-2,4(1H,3H)-dione (pNO2PheDU), was chemically synthesized and analytically verified for the potential biocatalytic synthesis of enantiopure β-amino acids. The hydantoinase (EC 3.5.2.2) from Arthrobacter crystallopoietes DSM20117 was chosen to prove the enzymatic hydrolysis of this substrate, since previous investigations showed activities of this enzyme toward 6-monosubstituted dihydrouracils. Whole cell biotransformations with recombinant Escherichia coli expressing the hydantoinase showed degradation of pNO2PheDU. Additionally, the corresponding N-carbamoyl-β-amino acid (NCarbpNO2 βPhe) was chemically synthesized, an HPLC-method with chiral stationary phases for detection of this product was established and thus (S)-enantioselectivity toward pNO2PheDU has been shown. Consequently this novel substrate is a potential precursor for the enantiopure β-amino acid para-nitro-β-phenylalanine (pNO2 βPhe). PMID:26705241

  1. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation.

    PubMed

    Donaldson, D James; Kroll, Jay A; Vaida, Veronica

    2016-07-15

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 ((3)B1), which may be accessed by near-UV solar excitation of SO2 to its excited (1)B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  2. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    NASA Astrophysics Data System (ADS)

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-07-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  3. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    PubMed Central

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-01-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF). PMID:27417675

  4. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation.

    PubMed

    Donaldson, D James; Kroll, Jay A; Vaida, Veronica

    2016-01-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 ((3)B1), which may be accessed by near-UV solar excitation of SO2 to its excited (1)B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF). PMID:27417675

  5. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  6. Fuel ethanol production from corn stover under optimized dilute phosphoric acid pretreatment and enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol is a renewable oxygenated fuel. Dilute acid pretreatment is a promising pretreatment technology for conversion of lignocellulosic biomass to fuel ethanol. Generation of fermentable sugars from corn stover involves pretreatment and enzymatic saccharification. Pretreatment is crucial as nat...

  7. Hydrolysis of iodine: equilibria at high temperatures

    SciTech Connect

    Palmer, D.A.; Ramette, R.W.; Mesmer, R.E.

    1984-01-01

    The hydrolysis (or disproportionation) of molecular iodine to form iodate and iodide ions has been studied by emf measurements over the temperature range, 3.8/sup 0/ to 209.0/sup 0/C. The interpretation of these results required a knowledge of the formation constant for triiodide ion and the acid dissociation constant of iodic acid, both of which were measured as a function of temperature. The resulting thermodynamic data have been incorporated into a general computer model describing the hydrolysis equilibria of iodine as a function of initial concentration, pH and temperature.

  8. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  9. Hydrolysis of Np(IV) and Pu(IV) and Their Complexation by Aqueous Orthosilicic Acid Si(OH)4

    SciTech Connect

    Yusov, A B.; Fedoseev, A M.; Delegard, Calvin H.

    2004-12-10

    The hydrolysis and interaction of Np(IV) and Pu(IV) with orthosilicic acid, Si(OH)4, were studied in 0.1-1.0 M ionic strength aqueous solutions. Spectrophotometry was used to study these reactions at about 10-4 M Np(IV) and Pu(IV) concentrations. The first hydrolysis constants, Khydr, agree with the majority of earlier spectrophotometric and potentiometric data. The absorption spectra of NpOH3+ and PuOH3+ were obtained by spectral deconvolution. Reasons to explain the overestimation of Khydr obtained by other methods [by extraction of trace amounts of Np(IV) and Pu(IV) and by solubility] are discussed. Formation of the complexes NpOSi(OH)33+ and PuOSi(OH)33+ is demonstrated in the p[H+] range 1.4-2.1 and 0.7-1.4, respectively. Measured values of equilibrium constants of the reaction M4+ + Si(OH)4 ? MOSi(OH)33+ + H+ at ionic strength I=1.0 are log ?1 = 0.41?0.02 and 1.04?0.04, respectively, for Np(IV) and Pu(IV). The stability constants of the NpOSi(OH)33+ and PuOSi(OH)33+ complexes, recalculated to zero ionic strength, are log ?10 = 11.2 and 11.8, respectively. The correlation between Khydr and ?1, as observed for all earlier studied metal ions, also occurs for both Np(IV) and Pu(IV).

  10. Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response.

    PubMed

    Baek, Yu Mi; Yoon, Soojin; Hwang, Yeo Eun; Kim, Dong-Eun

    2016-08-01

    Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I. PMID:27574504

  11. Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response

    PubMed Central

    Baek, Yu Mi; Yoon, Soojin; Hwang, Yeo Eun

    2016-01-01

    Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I. PMID:27574504

  12. Titan's Primordial Soup: Formation of Amino Acids via Low Temperature Hydrolysis of Tholins

    NASA Astrophysics Data System (ADS)

    Neish, Catherine; Somogyi, Á.; Smith, M. A.

    2009-09-01

    Titan, Saturn's largest moon, is a world rich in the "stuff of life". Reactions occurring in its dense nitrogen-methane atmosphere produce a wide variety of organic molecules, which subsequently rain down onto its surface. Water - thought to be another important ingredient for life - is likewise abundant on Titan. Theoretical models of Titan's formation predict that its interior consists of an ice I layer several tens of kilometers thick overlying a liquid ammonia-rich water layer several hundred kilometers thick (Tobie et al., 2005). Though its surface temperature of 94K dictates that Titan is on average too cold for liquid water to persist at its surface, melting caused by impacts and/or cryovolcanism may lead to its episodic availability. Impact melt pools on Titan would likely remain liquid for 102 - 104 years before freezing (O'Brien et al., 2005). The combination of complex organic molecules and transient locales of liquid water make Titan an interesting natural laboratory for studying prebiotic chemistry. In this work, we sought to determine what biomolecules might be formed under conditions analogous to those found in transient liquid water environments on Titan. We hydrolyzed Titan organic haze analogues, or "tholins", in 13 wt. % ammonia-water at 253K and 293K for a year. Using a combination of high resolution mass spectroscopy and tandem mass spectroscopy fragmentation techniques, four amino acids were identified in the hydrolyzed tholin sample. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions similar to those found in impact melt pools and cryolavas on Titan. Future missions to Titan should therefore carry instrumentation capable of detecting amino acids and other prebiotically relevant molecules on its surface This work was supported by the NASA Exobiology Program.

  13. Carbachol induces a rapid and sustained hydrolysis of polyphosphoinositide in bovine tracheal smooth muscle measurements of the mass of polyphosphoinositides, 1,2-diacylglycerol, and phosphatidic acid

    SciTech Connect

    Takuwa, Y.; Takuwa, N.; Rasmussen, H.

    1986-11-05

    The effects of carbachol on polyphosphoinositides and 1,2-diacylglycerol metabolism were investigated in bovine tracheal smooth muscle by measuring both lipid mass and the turnover of (/sup 3/H)inositol-labeled phosphoinositides. Carbachol induces a rapid reduction in the mass of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate and a rapid increase in the mass of 1,2-diacylglycerol and phosphatidic acid. These changes in lipid mass are sustained for at least 60 min. The level of phosphatidylinositol shows a delayed and progressive decrease during a 60-min period of carbachol stimulation. The addition of atropine reverses these responses completely. Carbachol stimulates a rapid loss in (/sup 3/H)inositol radioactivity from phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate associated with production of (/sup 3/H)inositol trisphosphate. The carbachol-induced change in the mass of phosphoinositides and phosphatidic acid is not affected by removal of extracellular Ca/sup 2 +/ and does not appear to be secondary to an increase in intracellular Ca/sup 2 +/. These results indicate that carbachol causes phospholipase C-mediated polyphosphoinositide breakdown, resulting in the production of inositol trisphosphate and a sustained increase in the actual content of 1,2-diacylglycerol. These results strongly suggest that carbachol-induced contraction is mediated by the hydrolysis of polyphosphoinositides with the resulting generation of two messengers: inositol 1,4,5-trisphosphate and 1,2-diacylglycerol.

  14. Carbachol induces a rapid and sustained hydrolysis of polyphosphoinositide in bovine tracheal smooth muscle measurements of the mass of polyphosphoinositides, 1,2-diacylglycerol, and phosphatidic acid.

    PubMed

    Takuwa, Y; Takuwa, N; Rasmussen, H

    1986-11-01

    The effects of carbachol on polyphosphoinositides and 1,2-diacylglycerol metabolism were investigated in bovine tracheal smooth muscle by measuring both lipid mass and the turnover of [3H]inositol-labeled phosphoinositides. Carbachol induces a rapid reduction in the mass of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate and a rapid increase in the mass of 1,2-diacylglycerol and phosphatidic acid. These changes in lipid mass are sustained for at least 60 min. The level of phosphatidylinositol shows a delayed and progressive decrease during a 60-min period of carbachol stimulation. The addition of atropine reverses these responses completely. Carbachol stimulates a rapid loss in [3H]inositol radioactivity from phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate associated with production of [3H]inositol trisphosphate. The carbachol-induced change in the mass of phosphoinositides and phosphatidic acid is not affected by removal of extracellular Ca2+ and does not appear to be secondary to an increase in intracellular Ca2+. These results indicate that carbachol causes phospholipase C-mediated polyphosphoinositide breakdown, resulting in the production of inositol trisphosphate and a sustained increase in the actual content of 1,2-diacylglycerol. These results strongly suggest that carbachol-induced contraction is mediated by the hydrolysis of polyphosphoinositides with the resulting generation of two messengers: inositol 1,4,5-trisphosphate and 1,2-diacylglycerol.

  15. Comparison of microbial inhibition and enzymatic hydrolysis rates of liquid and solid fractions produced from pretreatment of biomass with carbonic acid and liquid hot water.

    PubMed

    Yourchisin, Damon M; Van Walsum, G Peter

    2004-01-01

    This research quantified the enzymatic digestibility of the solid component and the microbial inhibition of the liquid component of pretreated aspen wood and corn stover hydrolysates. Products of liquid hot water and carbonic acid pretreatment were compared. Pretreatment temperatures tested ranged from 180 to 220 degrees C, and reaction times were varied between 4 and 64 min. Both microbial inhibition rates and enzymatic hydrolysis rates showed no difference between pretreatments containing carbonic acid and those not containing no carbonic acid. Microbial inhibition increased as the reaction severity increased, but only above a midpoint severity parameter of 200 degrees C for 16 min. Both the rates and yields of enzymatic hydrolysis displayed an increase from the lowest tested reaction severity to the highest tested reaction severity.

  16. The salt stress-induced LPA response in Chlamydomonas is produced via PLA2 hydrolysis of DGK-generated phosphatidic acid[S

    PubMed Central

    Arisz, Steven A.; Munnik, Teun

    2011-01-01

    The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A2 (PLA2) activity based on pharmacological evidence. The question of PA's and LPA's origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo 32P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential 32P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA2-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA2-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor. PMID:21900174

  17. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    PubMed

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed. PMID:26797927

  18. Purification and characterization of a chlorogenic acid hydrolase from Aspergillus niger catalysing the hydrolysis of chlorogenic acid.

    PubMed

    Asther, Michèle; Estrada Alvarado, Maria Isabel; Haon, Mireille; Navarro, David; Asther, Marcel; Lesage-Meessen, Laurence; Record, Eric

    2005-01-12

    Among 15 Aspergillus strains, Aspergillus niger BRFM 131 was selected for its high chlorogenic acid hydrolase activity. The enzyme was purified and characterized with respect to its physico-chemical and kinetic properties. Four chromatographic steps were necessary to purify the protein to homogeneity with a recovery of 2%. Km of the chlorogenic acid hydrolase was estimated to be 10 microM against chlorogenic acid as substrate. Under native conditions, the protein presented a molecular mass of 170 kDa, and SDS-PAGE analysis suggested the presence of two identical 80 kDa subunits. Isoelectric point was 6.0; pH optimum for activity was determined to be 6.0 and temperature optima to be 55 degrees C. The N-terminal sequence did not present any homology with other cinnamoyl ester hydrolases previously described suggesting the purification of a new protein. The chlorogenic acid hydrolase was used successfully for the production of caffeic acid, which possesses strong antioxidant properties, from natural substrates specially rich in chlorogenic acid like apple marc and coffee pulp.

  19. Determination of the main impurities formed after acid hydrolysis of soybean extracts and the in vitro mutagenicity and genotoxicity studies of 5-ethoxymethyl-2-furfural.

    PubMed

    Nemitz, Marina C; Picada, Jaqueline N; da Silva, Juliana; Garcia, Ana Letícia H; Papke, Débora K M; Grivicich, Ivana; Steppe, Martin; von Poser, Gilsane L; Teixeira, Helder F

    2016-09-10

    Soybean acid hydrolyzed extracts are raw-materials widely used for manufacturing of pharmaceuticals and cosmetics products due to their high content of isoflavone aglycones. In the present study, the main sugar degradation products 5-hydroxymethyl-2-furfural (HMF) and 5-ethoxymethyl-2-furfural (EMF) were quantitatively determined after acid hydrolysis of extracts from different soybean cultivars by a validated liquid chromatography method. The furanic compounds determined in samples cover the range of 0.16-0.21mg/mL and 0.22-0.33mg/mL for HMF and EMF, respectively. Complementarily, due to the scarce literature regarding the EMF toxicology, this study also assessed the EMF mutagenicity by the Salmonella/microsome test and genotoxicity by the comet assay. The results revealed that EMF did not show mutagenicity at the range of 50-5000μg/plate in S. typhimurium strains TA98, TA97a, TA100, TA102 and TA1535, but induced DNA damage in HepG2 cells at non-cytotoxic doses of 0.1-1.3mg/mL, mainly by oxidative stress mechanisms. Based on literature of HMF genotoxicity, and considering the EMF genotoxicity results herein shown, purification procedures to remove these impurities from extracts are recommended during healthcare products development to ensure the security of the products. PMID:27475406

  20. Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides.

    PubMed

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-11

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  1. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    PubMed Central

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-01-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide–phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation. PMID:25501391

  2. High yield production of sugars from deproteinated palm kernel cake under microwave irradiation via dilute sulfuric acid hydrolysis.

    PubMed

    Fan, Suet-Pin; Jiang, Li-Qun; Chia, Chin-Hua; Fang, Zhen; Zakaria, Sarani; Chee, Kah-Leong

    2014-02-01

    Recent years, great interest has been devoted to the conversion of biomass-derived carbohydrate into sugars, such as glucose, mannose and fructose. These are important versatile intermediate products that are easily processed into high value-added biofuels. In this work, microwave-assisted dilute sulfuric acid hydrolysis of deproteinated palm kernel cake (DPKC) was systematically studied using Response Surface Methodology. The highest mannose yield (92.11%) was achieved at the optimized condition of 148°C, 0.75N H2SO4, 10min 31s and substrate to solvent (SS) ratio (w/v) of 1:49.69. Besides that, total fermentable sugars yield (77.11%), was obtained at 170°C, 0.181N H2SO4, 6min 6s and SS ratio (w/v) of 1:40. Ridge analysis was employed to further verify the optimum conditions. Thus, this work provides fundamental data of the practical use of DPKC as low cost, high yield and environmental-friendly material for the production of mannose and other sugars.

  3. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  4. Capillary electrophoresis analysis of hydrolysis, isomerization and enantiomerization of aspartyl model tripeptides in acidic and alkaline solution.

    PubMed

    De Boni, Silvia; Scriba, Gerhard K E

    2007-01-01

    In order to investigate the degradation of two aspartyl tripeptides, Gly-Asp-PheNH2 and Phe-Asp-GlyNH2 in solution capillary, electrophoresis methods were developed and validated. Separation of most degradation products including those arising from isomerization and enantiomerization of the Asp residues was achieved in a 50 mM sodium phosphate buffer, pH 3.0. Resolution of comigrating compounds could be achieved by addition of cyclodextrins to the background electrolyte. For tripeptide derivatives the assays were linear in the range of 0.015-3.0 mmol/l. Some dipeptides and amino acids exhibited a narrower linear range due to low UV absorbance. The limits of detection were in the range of 0.005-0.1 mmol/l. Incubation of the model peptides was carried out at pH 2 and 10. At pH 2, degradation of the peptides proceeded via C-terminal deamidation and peptide backbone hydrolysis. In contrast, isomerization and enantiomerization were observed in combination with deamidation at pH 10. Generally, degradation of Phe-Asp-GlyNH2 proceeded faster compared to Gly-Asp-PheNH2 due to steric hindrance by the phenyl side chain.

  5. Validated Method for the Characterization and Quantification of Extractable and Nonextractable Ellagitannins after Acid Hydrolysis in Pomegranate Fruits, Juices, and Extracts.

    PubMed

    García-Villalba, Rocío; Espín, Juan Carlos; Aaby, Kjersti; Alasalvar, Cesarettin; Heinonen, Marina; Jacobs, Griet; Voorspoels, Stefan; Koivumäki, Tuuli; Kroon, Paul A; Pelvan, Ebru; Saha, Shikha; Tomás-Barberán, Francisco A

    2015-07-29

    Pomegranates are one of the main highly valuable sources of ellagitannins. Despite the potential health benefits of these compounds, reliable data on their content in pomegranates and derived extracts and food products is lacking, as it is usually underestimated due to their complexity, diversity, and lack of commercially available standards. This study describes a new method for the analysis of the extractable and nonextractable ellagitannins based on the quantification of the acid hydrolysis products that include ellagic acid, gallic acid, sanguisorbic acid dilactone, valoneic acid dilactone, and gallagic acid dilactone in pomegranate samples. The study also shows the occurrence of ellagitannin C-glycosides in pomegranates. The method was optimized using a pomegranate peel extract. To quantify nonextractable ellagitannins, freeze-dried pomegranate fruit samples were directly hydrolyzed with 4 M HCl in water at 90 °C for 24 h followed by extraction of the pellet with dimethyl sulfoxide/methanol (50:50, v/v). The method was validated and reproducibility was assessed by means of an interlaboratory trial, showing high reproducibility across six laboratories with relative standard deviations below 15%. Their applicability was demonstrated in several pomegranate extracts, different parts of pomegranate fruit (husk, peels, and mesocarp), and commercial juices. A large variability has been found in the ellagitannin content (150-750 mg of hydrolysis products/g) and type (gallagic acid/ellagic acid ratios between 4 and 0.15) of the 11 pomegranate extracts studied.

  6. Validated Method for the Characterization and Quantification of Extractable and Nonextractable Ellagitannins after Acid Hydrolysis in Pomegranate Fruits, Juices, and Extracts.

    PubMed

    García-Villalba, Rocío; Espín, Juan Carlos; Aaby, Kjersti; Alasalvar, Cesarettin; Heinonen, Marina; Jacobs, Griet; Voorspoels, Stefan; Koivumäki, Tuuli; Kroon, Paul A; Pelvan, Ebru; Saha, Shikha; Tomás-Barberán, Francisco A

    2015-07-29

    Pomegranates are one of the main highly valuable sources of ellagitannins. Despite the potential health benefits of these compounds, reliable data on their content in pomegranates and derived extracts and food products is lacking, as it is usually underestimated due to their complexity, diversity, and lack of commercially available standards. This study describes a new method for the analysis of the extractable and nonextractable ellagitannins based on the quantification of the acid hydrolysis products that include ellagic acid, gallic acid, sanguisorbic acid dilactone, valoneic acid dilactone, and gallagic acid dilactone in pomegranate samples. The study also shows the occurrence of ellagitannin C-glycosides in pomegranates. The method was optimized using a pomegranate peel extract. To quantify nonextractable ellagitannins, freeze-dried pomegranate fruit samples were directly hydrolyzed with 4 M HCl in water at 90 °C for 24 h followed by extraction of the pellet with dimethyl sulfoxide/methanol (50:50, v/v). The method was validated and reproducibility was assessed by means of an interlaboratory trial, showing high reproducibility across six laboratories with relative standard deviations below 15%. Their applicability was demonstrated in several pomegranate extracts, different parts of pomegranate fruit (husk, peels, and mesocarp), and commercial juices. A large variability has been found in the ellagitannin content (150-750 mg of hydrolysis products/g) and type (gallagic acid/ellagic acid ratios between 4 and 0.15) of the 11 pomegranate extracts studied. PMID:26158321

  7. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  8. A new effective process for production of curdlan oligosaccharides based on alkali-neutralization treatment and acid hydrolysis of curdlan particles in water suspension.

    PubMed

    Li, Jing; Zhu, Li; Zheng, Zhi-Yong; Zhan, Xiao-Bei; Lin, Chi-Chung; Zong, Yu; Li, Wei-Jiang

    2013-10-01

    Biologically active β-1,3-oligosaccharides with rapidly growing biomedical applications are produced from hydrolysis of curdlan polysaccharide. The water-insoluble curdlan impedes its hydrolysis efficiency which is enhanced by our newly developed alkali-neutralization treatment process to increase the stability of curdlan suspension to more than 20 days, while the untreated control settled within 5 min. A putative double-layer structure model comprising of a compact core and a hydrated outer layer was proposed to describe the treated curdlan particles based on sedimentation and scanning electron microscopy observation. This model was verified by single- and two-step acid hydrolysis, indicative of the reduced susceptibility to hydrolysis when close to the compact core. Electrospray ionization-mass spectrometry, thin-layer chromatography analyses, and effective HPLC procedure led to the development of improved process to produce purified individual β-1,3-oligosaccharides with degrees of polymerization from 2 to 10 and potential for biomedical applications from curdlan hydrolyzate. Our new curdlan oligosaccharide production process offers an even better alternative to the previously published processes.

  9. Synthesis, chemical and enzymatic hydrolysis, and aqueous solubility of amino acid ester prodrugs of 3-carboranyl thymidine analogs for boron neutron capture therapy of brain tumors.

    PubMed

    Hasabelnaby, Sherifa; Goudah, Ayman; Agarwal, Hitesh K; abd Alla, Mosaad S M; Tjarks, Werner

    2012-09-01

    Various water-soluble L-valine-, L-glutamate-, and glycine ester prodrugs of two 3-Carboranyl Thymidine Analogs (3-CTAs), designated N5 and N5-2OH, were synthesized for Boron Neutron Capture Therapy (BNCT) of brain tumors since the water solubilities of the parental compounds proved to be insufficient in preclinical studies. The amino acid ester prodrugs were prepared and stored as hydrochloride salts. The water solubilities of these amino acid ester prodrugs, evaluated in phosphate buffered saline (PBS) at pH 5, pH 6 and pH 7.4, improved 48-6600 times compared with parental N5 and N5-2OH. The stability of the amino acid ester prodrugs was evaluated in PBS at pH 7.4, Bovine serum, and Bovine cerebrospinal fluid (CSF). The rate of the hydrolysis in all three incubation media depended primarily on the amino acid promoiety and, to a lesser extend, on the site of esterification at the deoxyribose portion of the 3-CTAs. In general, 3'-amino acid ester prodrugs were less sensitive to chemical and enzymatic hydrolysis than 5'-amino acid ester prodrugs and the stabilities of the latter decreased in the following order: 5'-valine > 5'-glutamate > 5'-glycine. The rate of the hydrolysis of the 5'-amino acid ester prodrugs in Bovine CSF was overall higher than in PBS and somewhat lower than in Bovine serum. Overall, 5'-glutamate ester prodrug of N5 and the 5'-glycine ester prodrugs of N5 and N5-2OH appeared to be the most promising candidates for preclinical BNCT studies. PMID:22889558

  10. Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol.

    PubMed

    Ewanick, Shannon M; Bura, Renata; Saddler, John N

    2007-11-01

    Utilization of ethanol produced from biomass has the potential to offset the use of gasoline and reduce CO(2) emissions. This could reduce the effects of global warming, one of which is the current outbreak of epidemic proportions of the mountain pine beetle (MPB) in British Columbia (BC), Canada. The result of this is increasing volumes of dead lodgepole pine with increasingly limited commercial uses. Bioconversion of lodgepole pine to ethanol using SO(2)-catalyzed steam explosion was investigated. The optimum pretreatment condition for this feedstock was determined to be 200 degrees C, 5 min, and 4% SO(2) (w/w). Simultaneous saccharification and fermentation (SSF) of this material provided an overall ethanol yield of 77% of the theoretical yield from raw material based on starting glucan, mannan, and galactan, which corresponds to 244 g ethanol/kg raw material within 30 h. Three conditions representing low (L), medium (M), and high (H) severity were also applied to healthy lodgepole pine. Although the M severity conditions of 200 degrees C, 5 min, and 4% SO(2) were sufficiently robust to pretreat healthy wood, the substrate produced from beetle-killed (BK) wood provided consistently higher ethanol yields after SSF than the other substrates tested. BK lodgepole pine appears to be an excellent candidate for efficient and productive bioconversion to ethanol.

  11. Effect of feeding lipids recovered from fish processing waste by lactic acid fermentation and enzymatic hydrolysis on antioxidant and membrane bound enzymes in rats.

    PubMed

    Rai, Amit Kumar; Bhaskar, N; Baskaran, V

    2015-06-01

    Fish oil recovered from fresh water fish visceral waste (FVW-FO) through lactic acid fermentation (FO-LAF) and enzymatic hydrolysis (FO-EH) were fed to rats to study their influence on lipid peroxidation and activities of antioxidant and membrane bound enzyme in liver, heart and brain. Feeding of FO-LAF and FO-EH resulted in increase (P < 0.05) in lipid peroxides level in serum, liver, brain and heart tissues compared to ground nut oil (control). Activity of catalase (40-235 %) and superoxide dismutase (17-143 %) also increased (P < 0.05) with incremental level of EPA + DHA in diet. The increase was similar to cod liver oil fed rats at same concentration of EPA + DHA. FO-LAF and FO-EH increased (P < 0.05) the Na(+)K(+) ATPase activity in liver and brain microsomes, Ca(+)Mg(+) ATPase in heart microsome and acetylcholine esterase in brain microsomes when fed with 5 % EPA + DHA. There was also significant change in fatty acid composition and cholesterol/phospholipid ratio in microsomes of rat fed with FVW-FO. Feeding FVW-FO recovered by biotechnological approaches enhanced the activity of antioxidant enzymes in tissues, modulates the activities of membrane bound enzymes and improved the fatty acid composition in microsomes of tissues similar to CLO. Utilization of these processing wastes for the production of valuable biofunctional products can reduce the mounting economic values of fish oil and minimize the environmental pollution problems.

  12. Hydrolysis and esterification in organically modified alkoxysilanes: A {sup 29}Si NMR investigation of methyltrimethoxysilane

    SciTech Connect

    Alam, T.M.; Assink, R.A.; Loy, D.A.

    1996-09-01

    High-resolution {sup 29}Si NMR was used to investigate the acid-catalyzed hydrolysis and esterification reactions of methyltrimethoxysilane (MTMS) in methanol. The INEPT experiment, adapted for spin systems with multiple heteronuclear coupling constants, was used to assign the closely spaced resonances of the MTMS hydrolysis products. Due to the rapid reaction rates, only the pseudoequilibrium concentration distributions for the resulting hydrolysis products could be determined. Models based on thermodynamically statistical distributions, irreversible hydrolysis reactions, and reversible hydrolysis reactions were nearly equally successful in accounting for the concentration distributions over a wide range of H{sub 2}O/Si ratios (R{sub w}) and temperatures. However, preparation of hydrolyzed MTMS in a nonpseudoequilibrium state unequivocally demonstrated the reversibility of hydrolysis reactions on a short time scale. By measuring the extent of reaction of MTMS systems at high water concentrations, the ratio of the hydrolysis to esterification rate constant was determined to be approximately 100. 36 refs., 7 figs.

  13. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    PubMed

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. PMID:27611029

  14. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    PubMed

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts.

  15. Nutritional value of protein hydrolysis products (oligopeptides and free amino acids) as a consequence of absorption and metabolism kinetics

    NASA Technical Reports Server (NTRS)

    Rerat, A.

    1995-01-01

    When pigs were submitted to duodenal infusion of solutions containing a large percentage of small peptides (PEP) or free amino acids with the same pattern (AAL) amino acids appear in the portal blood more rapidly and more uniformly after infusion of PEP then after infusion of AAL, with the notable exception of methionine for which the opposite was true. These differences were lowered when a carbohydrate (maltose dextrin) was present in the solution, but nevertheless remained significant for the first hour after the infusion. The long-term (8-hour) uptake of free amino acids into the liver and the peripheral tissues differed in profile according to the nature of the duodenal infusion. Peripheral uptake was appreciably less well balanced after infusion of free amino acids (deficiency of threonine and phenylalanine) than after infusion of small peptides (deficiency of methionine). Accordingly, in the rat, under conditions of discontinuous enteral nutrition the mixture of small peptides was of greater nutritive value than the mixture of free amino acids. It thus appears that the absorption kinetics which results in important variations in the temporal distribution of free amino acids in the tissues may be at the origin of transitory imbalances in tissue amino acid uptake, and as a result of a lower nutritive value.

  16. Acid and base hydrolysis of lipid A from Enterobacter agglomerans as monitored by electrospray ionization mass spectrometry: pertinence to detoxification mechanisms.

    PubMed

    Wang, Y; Cole, R B

    1996-02-01

    Lipopolysaccharides (LPS), which are endotoxins found in the cell wall of Gram-negative bacteria, are common components of organic dusts that cause or contribute to symptoms associated with organic dust diseases. The lipid A subgroup within LPS is believed to be responsible for the toxicity. Acid and base treatments, which can be effective detoxification methods, were performed on lipid A from Enterobacter agglomerans (EA), a bacterium commonly found in field cotton. Negative-ion electrospray ionization mass spectrometry was employed to characterize the post-treatment structural changes to lipid A. Acid treatment (1% acetic acid, 100 degrees C) hydrolyzed the ester side-chains of lipid A. It was found that the ester-linked palmitoyl group was the most labile to acid hydrolysis. Hydrolysis of the palmitoyl moiety conformed to pseudo-first-order chemical reaction kinetics with a rate constant for decomposition of heptacyl-lipid A from Enterobacter agglomerans of approximately 3.3 x 10(-3) min-1. An order of lability of lipid A acyl side-chains to acid hydrolysis was also deduced: R4' (palmitoyl) > R1' (myristoyl or hydroxymyristoyl) > R3 (hydroxymyristoyl at position 3) > R1 (oxymyristoyl group at position 3') > R2' (lauroyl). Base treatment (0.05 M NaOH in 95% EtOH, 65 degrees C) was shown to be more effective at cleaving ester-linked side-chains. In addition, mass spectral evidence suggests that opening of the pyranose rings of the disaccharide backbone of lipid A and/or removal of the phosphoryl groups may be occurring during base treatment. This study sheds light on mechanistic aspects of treatment procedures leading to the detoxification of endotoxins.

  17. Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides

    PubMed Central

    2011-01-01

    Background Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV) microspectrophotometry (UMSP) to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane. Internodes, presenting typical vascular bundles and sucrose-storing parenchyma cells, were divided into rind and pith fractions. Results Vascular bundles were more abundant in the rind, whereas parenchyma cells predominated in the pith region. UV measurements of untreated fiber cell walls gave absorbance spectra typical of grass lignin, with a band at 278 nm and a pronounced shoulder at 315 nm, assigned to the presence of hydroxycinnamic acids linked to lignin and/or to arabino-methylglucurono-xylans. The cell walls of vessels had the highest level of lignification, followed by those of fibers and parenchyma. Pith parenchyma cell walls were characterized by very low absorbance values at 278 nm; however, a distinct peak at 315 nm indicated that pith parenchyma cells are not extensively lignified, but contain significant amounts of hydroxycinnamic acids. Cellular UV image profiles scanned with an absorbance intensity maximum of 278 nm identified the pattern of lignin distribution in the individual cell walls, with the highest concentration occurring in the middle lamella and cell corners. Chlorite treatment caused a rapid removal of hydroxycinnamic acids from parenchyma cell walls, whereas the thicker fiber cell walls were delignified only after a long treatment duration (4 hours). Untreated pith samples were promptly hydrolyzed by cellulases, reaching 63% of cellulose conversion after 72 hours of hydrolysis, whereas untreated rind samples achieved only 20% hydrolyzation. Conclusion The low

  18. Development of a solid-phase extraction method for simultaneous extraction of adipic acid, succinic acid and 1,4-butanediol formed during hydrolysis of poly(butylene adipate) and poly(butylene succinate).

    PubMed

    Lindström, Annika; Albertsson, Ann-Christine; Hakkarainen, Minna

    2004-01-01

    A solid-phase extraction (SPE) method was developed for the simultaneous extraction of dicarboxylic acids and diols formed during hydrolysis of poly(butylene succinate), PBS, and poly(butylene adipate), PBA. Four commercial non-polar SPE columns, three silica based: C8, C18, C18 (EC), and one resin based: ENV+, were tested for the extraction of succinic acid, adipic acid and 1,4-butanediol, the expected final hydrolysis products of PBS and PBA. ENV+ resin was chosen as a solid-phase, because it displayed the best extraction efficiency for 1,4-butanediol and succinic acid. Linear range for the extracted analytes was 1-500 ng/microl for adipic acid and 2-500 ng/microl for 1,4-butanediol and succinic acid. Detection and quantification limits for the analytes were between 1-2 and 2-7 ng/microl, respectively, and relative standard deviations were between 3 and 7%. Good repeatability and low detection limits made the developed SPE method and subsequent gas chromatography-mass spectrometry (GC-MS) analysis a sensitive tool for identification and quantification of hydrolysis products at early stages of degradation.

  19. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe2(SO4)3/γ-Fe2O3 Nanoparticle-Based Solid Acid Catalyst

    PubMed Central

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-01-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied. PMID:26856604

  20. Development of complete hydrolysis of pectins from apple pomace.

    PubMed

    Wikiera, Agnieszka; Mika, Magdalena; Starzyńska-Janiszewska, Anna; Stodolak, Bożena

    2015-04-01

    Enzymatically extracted pectins have a more complex structure than those obtained by conventional methods. As a result, they are less susceptible to hydrolysis, which makes the precise determination of their composition difficult. The aim of the study was to develop a method of complete hydrolysis of enzymatically extracted apple pectins. Substrates were pectins isolated from apple pomace by the use of xylanase and multicatalytic preparation Celluclast and apple pomace. Hydrolysis was performed by a chemical method with 2M TFA at 100 °C and 120 °C and a combined acidic/enzymatic method. After hydrolysis, the contents of galacturonic acid and neutral sugars were measured by HPLC. Complete hydrolysis of polygalacturonic acid occurred after 2.5h incubation with 2M TFA at 120 °C. The efficient hydrolysis of neutral sugars in pectins was performed with 2M TFA at 100 °C for 2.5h. Monomers most susceptible to concentrated acid were rhamnose, mannose and arabinose.

  1. Development of complete hydrolysis of pectins from apple pomace.

    PubMed

    Wikiera, Agnieszka; Mika, Magdalena; Starzyńska-Janiszewska, Anna; Stodolak, Bożena

    2015-04-01

    Enzymatically extracted pectins have a more complex structure than those obtained by conventional methods. As a result, they are less susceptible to hydrolysis, which makes the precise determination of their composition difficult. The aim of the study was to develop a method of complete hydrolysis of enzymatically extracted apple pectins. Substrates were pectins isolated from apple pomace by the use of xylanase and multicatalytic preparation Celluclast and apple pomace. Hydrolysis was performed by a chemical method with 2M TFA at 100 °C and 120 °C and a combined acidic/enzymatic method. After hydrolysis, the contents of galacturonic acid and neutral sugars were measured by HPLC. Complete hydrolysis of polygalacturonic acid occurred after 2.5h incubation with 2M TFA at 120 °C. The efficient hydrolysis of neutral sugars in pectins was performed with 2M TFA at 100 °C for 2.5h. Monomers most susceptible to concentrated acid were rhamnose, mannose and arabinose. PMID:25442606

  2. Development of microwave-assisted acid hydrolysis of proteins using a commercial microwave reactor and its combination with LC-MS for protein full-sequence analysis.

    PubMed

    Chen, Lu; Wang, Nan; Li, Liang

    2014-11-01

    Microwave-assisted acid hydrolysis (MAAH) can be used to degrade a protein non-specifically into many peptides with overlapping sequences which can be identified by mass spectrometry (MS) to produce a sequence map that covers the full sequence of a protein. The success of this method for protein sequence analysis depends on the proper control of the MAAH process, which is currently done using a household microwave oven. However, to meet the regulatory or good laboratory practice (GLP) requirement in a clinical or pharmaceutical laboratory, using a commercial microwave device is often required. In this paper, we report a method of performing MAAH using a CEM Discover single-mode microwave reactor. It is shown that, using an optimized protocol for MAAH, reproducible results comparable to those obtained using a household microwave oven can be generated using the commercial reactor. To illustrate the potential applications of MAAH MS for characterizing clinically relevant proteins, this method was applied, for the first time, to map the amino acid sequences of normal and sickle-cell human hemoglobin as well as bovine hemoglobin. Full sequence coverage was readily achieved from 294 and 266 unique peptides matched to the alpha and beta subunits of normal hemoglobin, respectively, 334 and 265 unique peptides matched to the alpha and beta submit units of sickle-cell hemoglobin, and 377 and 224 unique peptides matched to the alpha and beta subunits of bovine hemoglobin. This method opens the possibility for any laboratory to use a commercial laboratory equipment to perform MAAH MS for protein full-sequence analysis. PMID:25127597

  3. Incomplete recovery of prescription opioids in urine using enzymatic hydrolysis of glucuronide metabolites.

    PubMed

    Wang, Ping; Stone, Judith A; Chen, Katherine H; Gross, Susan F; Haller, Christine A; Wu, Alan H B

    2006-10-01

    Confirmation of opioids in urine samples of clinical patients requires liberation of opioids from their glucuronide conjugates. Both acid hydrolysis and enzyme hydrolysis using beta-glucuronidase from various sources have been reported, with the latter approach prevailing in most clinical toxicology laboratories. The goal of this study was to compare the efficiency of acid versus different enzyme hydrolysis methods in recovering morphine and common semisynthetic opioids from glucuronide standards and 78 patient urine samples that were screened positive for opioids as a class. Specimens were analyzed with a validated gas chromatography-mass spectrometry (GC-MS) procedure. With the exception of oxycodone, the results indicated that the majority of opioids tested were extensively glucuronide-conjugated in urine. Significantly, acid hydrolysis liberated > 90% of morphine and hydromorphone from their glucuronide standards but enzyme hydrolysis had lower and variable efficiency, depending on the opiate type and the enzyme source. In patient specimens, much higher concentrations of free codeine, morphine, hydromorphone, and oxymorphone were obtained with acid hydrolysis than with various enzyme methods. Incomplete hydrolysis using beta-glucuronidase could lead to false-negative results for many opioids when urine is tested for drugs of abuse. We conclude that acid hydrolysis is the method of choice for GC-MS confirmation of urine opioids.

  4. The formation of isocyanic acid (HNCO) by reaction of NO, CO, and H{sub 2} over Pt/SiO{sub 2} and its hydrolysis on alumina

    SciTech Connect

    Duempelmann, R.; Cant, N.W.; Trimm, D.L.

    1996-08-01

    The reaction of mixtures of NO, CO, and H{sub 2} over Pt/SiO{sub 2} in combination with Al{sub 2}O{sub 3} has been investigated with on-line Fourier transform infrared spectroscopy as the principal analytical method. With Pt/SiO{sub 2} alone isocyanic acid (HNCO) can be observed directly as a substantial product. It comprises up to 45% of the CO converted in the temperature range from 200 to 300{degrees}C. The yield is maximized when the amounts of H{sub 2} and CO in the input stream are equal. No HNCO can be observed in experiments in which Al{sub 2}O{sub 3} is placed downstream of the Pt/SiO{sub 2} or with a Pt/Al{sub 2}O{sub 3} is placed downstream of the Pt/SiO{sub 2} or with a Pt/Al{sub 2}O{sub 3} catalyst. Hydrolysis to NH{sub 3} and CO{sub 2} is then complete. For this reason it is unlikely that HNCO will escape a catalytic converter in vehicle use but it may be a significant intermediate during the warm-up phase. The formation of HNCO can be rationalized as resulting from the hydrogenation of NCO groups present in small concentrations on the Pt surface under conditions of high CO coverage. The yield of HNCO falls steeply above 300{degrees}C when the CO coverage is falling. It is unclear if hydrolysis of HNCO occurs by direct reaction of molecular HNCO on the Al{sub 2}O{sub 3} surface or proceeds via the ubiquitious support-bound isocyanate species which have been observed in many previous studies. Previous observations of isocyanate formation in hydrogen-free systems can be rationalized as arising from HNCO formation by reverse spillover of hydrogen from OH groups on the support to generate HNCO on the platinum metal. This is then transported back to the support through the gas phase to form NCO groups. 47 refs., 7 figs.

  5. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation.

    PubMed

    Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B

    2016-08-01

    The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the

  6. RESULTS FROM THE MOUNTAIN ACID DEPOSITION PROGRAM

    EPA Science Inventory

    The Mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the. requirements of the Clean Air Act Amendments (CAAA). The main ob...

  7. Homogeneous catalysis of valeronitrile hydrolysis under supercritical conditions.

    PubMed

    Sarlea, Michael; Kohl, Sabine; Blickhan, Nina; Vogel, Herbert

    2012-01-01

    Supercritical nitrile hydrolysis can be used for both, amide and acid production as well as waste water treatment, as the hydrolysis products show good biodegradability. The conventional process at ambient conditions requires large amounts of mineral acid or base. Approaches that use supercritical water as a green solvent without a catalyst have been investigated over recent years. Findings for valeronitrile hydrolysis presented recently showed promising reaction rates and valeric acid yields. In an attempt to further maximize product yield and to better understand the impact of the pH, reactions in dilute sulfuric acid (0.01 mol L(-1)) were performed in a continuous high-pressure laboratory-scale apparatus at 400-500 °C, 30 MPa, and a maximum residence time of 100 s. Results from both reaction media were compared with regard to productivity and sustainability.

  8. PLA recycling by hydrolysis at high temperature

    NASA Astrophysics Data System (ADS)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  9. Joint action of ultrasonic and Fe³⁺ to improve selectivity of acid hydrolysis for microcrystalline cellulose.

    PubMed

    Li, Jinbao; Qiang, Dandan; Zhang, Meiyun; Xiu, Huijuan; Zhang, Xiangrong

    2015-09-20

    In this study, the combination of Fe(3+)/HCl and ultrasonic treatment was applied to selectively hydrolyze cellulose for the preparation of microcrystalline cellulose (MCC). It was found that the crystallinity and specific surface area of hydrocellulose samples were higher (78.92% and 2.23581 m(2)g(-1), respectively), compared with the method that only used Fe(3+)/HCl catalyst without ultrasonic treatment. Meanwhile, the hydrolysate can be extracted and reused for cellulose hydrolysis for three runs, which was effective in saving the dosage of chemicals and reducing the pollution of the environment without affecting the properties of hydrocellulose. Moreover, the increased concentration of total reducing sugar (TRS) after three runs may be used as a valuable source in biofuels production. The technology of cellulose hydrolysis, by retaining the crystalline region for MCC products while promoting hydrolysis of amorphous region for further utilization is of great novelty, which may prove valuable in converting biomass into chemicals and biofuels, environmentally and economically.

  10. Joint action of ultrasonic and Fe³⁺ to improve selectivity of acid hydrolysis for microcrystalline cellulose.

    PubMed

    Li, Jinbao; Qiang, Dandan; Zhang, Meiyun; Xiu, Huijuan; Zhang, Xiangrong

    2015-09-20

    In this study, the combination of Fe(3+)/HCl and ultrasonic treatment was applied to selectively hydrolyze cellulose for the preparation of microcrystalline cellulose (MCC). It was found that the crystallinity and specific surface area of hydrocellulose samples were higher (78.92% and 2.23581 m(2)g(-1), respectively), compared with the method that only used Fe(3+)/HCl catalyst without ultrasonic treatment. Meanwhile, the hydrolysate can be extracted and reused for cellulose hydrolysis for three runs, which was effective in saving the dosage of chemicals and reducing the pollution of the environment without affecting the properties of hydrocellulose. Moreover, the increased concentration of total reducing sugar (TRS) after three runs may be used as a valuable source in biofuels production. The technology of cellulose hydrolysis, by retaining the crystalline region for MCC products while promoting hydrolysis of amorphous region for further utilization is of great novelty, which may prove valuable in converting biomass into chemicals and biofuels, environmentally and economically. PMID:26050886

  11. Comparative Study of Corn Stover Pretreated by Dilute Acid and Cellulose Solvent-Based Lignocellulose Fractionation: Enzymatic Hydrolysis, Supramolecular Structure, and Substrate Accessibility

    SciTech Connect

    Zhu, Z.; Sathitsuksanoh, N.; Vinzant, T.; Schell, D. J.; McMillian, J. D.; Zhang, Y. H. P.

    2009-07-01

    Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only {approx}60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m{sup 2}/g, nearly twice that of the DA-pretreated biomass (5.89 m{sup 2}/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

  12. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility.

    PubMed

    Zhu, Zhiguang; Sathitsuksanoh, Noppadon; Vinzant, Todd; Schell, Daniel J; McMillan, James D; Zhang, Y-H Percival

    2009-07-01

    Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only approximately 60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m(2)/g, nearly twice that of the DA-pretreated biomass (5.89 m(2)/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

  13. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters.

    PubMed

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2016-03-01

    Food industry processing wastes are produced in enormous amounts every year, such wastes are usually disposed with the corresponding economical cost it implies, in the best scenario they can be used for pet food or composting. However new promising technologies and tools have been developed in the last years aimed at recovering valuable compounds from this type of materials. In particular, sub-critical water hydrolysis (SWH) has been revealed as an interesting way for recovering high added-value molecules, and its applications have been broadly referred in the bibliography. Special interest has been focused on recovering protein hydrolysates in form of peptides or amino acids, from both animal and vegetable wastes, by means of SWH. These recovered biomolecules have a capital importance in fields such as biotechnology research, nutraceuticals, and above all in food industry, where such products can be applied with very different objectives. Present work reviews the current state of art of using sub-critical water hydrolysis for protein recovering from food industry wastes. Key parameters as reaction time, temperature, amino acid degradation and kinetic constants have been discussed. Besides, the characteristics of the raw material and the type of products that can be obtained depending on the substrate have been reviewed. Finally, the application of these hydrolysates based on their functional properties and antioxidant activity is described. PMID:26831563

  14. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters.

    PubMed

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2016-03-01

    Food industry processing wastes are produced in enormous amounts every year, such wastes are usually disposed with the corresponding economical cost it implies, in the best scenario they can be used for pet food or composting. However new promising technologies and tools have been developed in the last years aimed at recovering valuable compounds from this type of materials. In particular, sub-critical water hydrolysis (SWH) has been revealed as an interesting way for recovering high added-value molecules, and its applications have been broadly referred in the bibliography. Special interest has been focused on recovering protein hydrolysates in form of peptides or amino acids, from both animal and vegetable wastes, by means of SWH. These recovered biomolecules have a capital importance in fields such as biotechnology research, nutraceuticals, and above all in food industry, where such products can be applied with very different objectives. Present work reviews the current state of art of using sub-critical water hydrolysis for protein recovering from food industry wastes. Key parameters as reaction time, temperature, amino acid degradation and kinetic constants have been discussed. Besides, the characteristics of the raw material and the type of products that can be obtained depending on the substrate have been reviewed. Finally, the application of these hydrolysates based on their functional properties and antioxidant activity is described.

  15. Hydrolysis reactor for hydrogen production

    DOEpatents

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  16. Fundamental study of the mechanism and kinetics of cellulose hydrolysis by acids and enzymes. Final report, June 1, 1978-January 31, 1981

    SciTech Connect

    Gong, C.S.; Chang, M.

    1981-02-01

    There are three basic enzymes (e.g., endoglucanase (C/sub x/), exoglucanase (C/sub 1/) and cellobiase) comprising the majority of extracellular cellulase enzymes produced by the cellulolytic mycelial fungi, Trichoderma reesei, and other cellulolytic microorganisms. The enzymes exhibited different mode of actions in respect to the hydrolysis of cellulose and cellulose derived oligosaccharides. In combination, these enzymes complimented each other to hydrolyze cellulose to its basic constituent, glucose. The kinetics of cellobiase were developed on the basis of applying the pseudo-steady state assumption to hydrolyze cellobiose to glucose. The results indicated that cellobiase was subjected to end-product inhibition by glucose. The kinetic modeling of exoglucanase (C/sub 1/) with respect to cellodextrins was studied. Both glucose and cellobiose were found to be inhibitors of this enzyme with cellobiose being a stronger inhibitor than glucose. Similarly, endoglucanase (C/sub x/) is subject to end-product inhibition by glucose. Crystallinity of the cellulose affects the rate of hydrolysis by cellulases. Hence, the changes in crystallinity of cellulose in relation to chemical pretreatment and enzyme hydrolysis was compared. The study of cellulase biosynthesis resulted in the conclusion that exo- and endo-glucanases are co-induced while cellobiase is synthesized independent of the other two enzymes. The multiplicity of cellulase enzymes are the end results of post-translational modification during and/or after the secretion of enzymes into growth environment.

  17. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.; Colcord, A.R.; Faass, S.; Muzzy, J.D.; Roberts, R.S.

    1982-08-01

    To produce ethanol from hardwood it is desirable to fractionate the hardwood in order to produce a relatively pure cellulosic pulp for dilute acid hydrolysis. An experimental investigation of continuous steam hydrolysis of tulip poplar wood chips indicates that over 90% of the lignin present can be extracted by 0.1N sodium hydroxide, resulting in a cellulose pulp containing over 90% hexosan. The study was performed using a Stake Technology, Ltd., continuous digester rated at one oven dry ton per hour of wood chips. The yields of hexosans, hexoses, xylan, xylose, lignin, furfural, acetic acid and methanol were determined as a function of residence time and steam pressure in the digester. The information provides a basis for establishing a material and energy balance for a hardwood to ethanol plant.

  18. A single amino acid residue determines the ratio of hydrolysis to transglycosylation catalyzed by β-glucosidases.

    PubMed

    Frutuoso, M A; Marana, S R

    2013-01-01

    The propensity to catalysis of transglycosylation of the β-glucosidase Tmβgly is higher than for Sfβgly. Moreover the propensity to catalysis of transglycosylation is directly proportional to the substrate concentration for Tmβgly, whereas for Sfβgly it is constant. For instance, 60% of a Tmβgly sample catalyzes transglycosylation reactions at 40 mM p-nitrophenyl β-glucoside, whereas only 40% is engaged in hydrolysis of this substrate. For Sfβgly the fraction involved in transglycosylation is only 30 %. In addition, 48 % of a Tmβgly sample catalyzes transglycosylation reactions at 8 mM methylumbelliferyl β-glucoside, whereas Sfβgly does not catalyze transglycosylation using this substrate. Interestingly, these Tmβgly properties were grafted into Sfβgly by a single replacement of a residue forming a channel involved in supplying the catalytic water molecules for attack on the covalent intermediate present in the reaction catalyzed by β-glucosidases. Hence a single residue determines the ratio of hydrolysis to transglycosylation reactions catalyzed by these β-glucosidases.

  19. Acid deposition in Maryland: Implications of the results of the National Acid Precipitation Assessment Program

    SciTech Connect

    DeMuro, J.; Bowmann, M.; Ross, J.; Blundell, C.; Price, R.

    1991-07-01

    Acid deposition, commonly referred to as 'acid rain,' is a major global environmental concern. Acid deposition has reportedly resulted in damage to aquatic, terrestrial, and physical resources and has potentially adverse effects on human health. A component of the Maryland acid deposition program is the preparation of an annual report that summarizes yearly activities and costs of ongoing acid deposition research and monitoring programs.

  20. Hepatic triacylglycerol hydrolysis regulates peroxisome proliferator-activated receptor alpha activity.

    PubMed

    Sapiro, Jessica M; Mashek, Mara T; Greenberg, Andrew S; Mashek, Douglas G

    2009-08-01

    Recent evidence suggests that fatty acids generated from intracellular triacylglycerol (TAG) hydrolysis may have important roles in intracellular signaling. This study was conducted to determine if fatty acids liberated from TAG hydrolysis regulate peroxisome proliferator-activated receptor alpha (PPARalpha). Primary rat hepatocyte cultures were treated with adenoviruses overexpressing adipose differentiation-related protein (ADRP) or adipose triacylglycerol lipase (ATGL) or treated with short interfering RNA (siRNA) targeted against ADRP. Subsequent effects on TAG metabolism and PPARalpha activity and target gene expression were determined. Overexpressing ADRP attenuated TAG hydrolysis, whereas siRNA-mediated knockdown of ADRP or ATGL overexpression resulted in enhanced TAG hydrolysis. Results from PPARalpha reporter activity assays demonstrated that decreasing TAG hydrolysis by ADRP overexpression resulted in a 35-60% reduction in reporter activity under basal conditions or in the presence of fatty acids. As expected, PPARalpha target genes were also decreased in response to ADRP overexpression. However, the PPARalpha ligand, WY-14643, was able to restore PPARalpha activity following ADRP overexpression. Despite its effects on PPARalpha, overexpressing ADRP did not affect PPARgamma activity. Enhancing TAG hydrolysis through ADRP knockdown or ATGL overexpression increased PPARalpha activity. These results indicate that TAG hydrolysis and the consequential release of fatty acids regulate PPARalpha activity.

  1. Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: Effects of urea supplementation and sodium hydroxide pretreatment.

    PubMed

    Janke, Leandro; Leite, Athaydes; Batista, Karla; Weinrich, Sören; Sträuber, Heike; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2016-01-01

    Different methods for optimization the anaerobic digestion (AD) of sugarcane filter cake (FC) with a special focus on volatile fatty acids (VFA) production were studied. Sodium hydroxide (NaOH) pretreatment at different concentrations was investigated in batch experiments and the cumulative methane yields fitted to a dual-pool two-step model to provide an initial assessment on AD. The effects of nitrogen supplementation in form of urea and NaOH pretreatment for improved VFA production were evaluated in a semi-continuously operated reactor as well. The results indicated that higher NaOH concentrations during pretreatment accelerated the AD process and increased methane production in batch experiments. Nitrogen supplementation resulted in a VFA loss due to methane formation by buffering the pH value at nearly neutral conditions (∼ 6.7). However, the alkaline pretreatment with 6g NaOH/100g FCFM improved both the COD solubilization and the VFA yield by 37%, mainly consisted by n-butyric and acetic acids.

  2. Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis.

    PubMed

    Eom, In-Yong; Oh, Young-Hoon; Park, Si Jae; Lee, Seung-Hwan; Yu, Ju-Hyun

    2015-06-01

    A simple and cost-effective biochemical conversion process consisting of hydrothermal treatment, enzymatic hydrolysis and fermentation of pretreated whole slurry (PWS) was developed for producing l-lactic acid (L-LA) from oil palm trunk (OPT). When OPT was hydrothermally treated at optimal condition capable of achieving maximum yield of hemicellulosic sugars after enzymatic hydrolysis, the enzymatic digestibility of the PWS afforded a yield of 81.4% of the theoretical glucose yield (TGY). However, glucose yield from washed pretreated solid (WPS) was only 43.5% of TGY. The use of two hydrolysates from PWS and WPS for fermentation by Lactobacillus paracasei engineered to selectively produce L-LA afforded yields of 89.5% and 45.8% of the theoretical LA yield (TLY), respectively. This study confirmed the inevitable extensive sugar loss during washing of pretreated slurry due to loss of soluble starch. Alternatively, the proposed design process is considered suitable for converting OPT to L-LA without such starch loss.

  3. Spill behaviour using REACTPOOL. Part I. Results for accidental releases of chlorosulphonic acid (HSO(3)Cl).

    PubMed

    Kapias, T; Griffiths, R F

    2001-01-29

    Chlorosulphonic acid is a toxic, highly reactive and corrosive substance that exists in its liquid form at ambient conditions. Its major hazardous potential comes from the clouds of hydrogen chloride and sulphuric acid mist produced whenever this chemical escapes from containment and is exposed to moisture. It decomposes violently and sometimes explosively in the presence of water, liberating heat. On spillage it creates liquid pools that can either boil or evaporate. There are three sources of water available for reaction: free ground water, substrate water and atmospheric moisture. Hydrogen chloride gas or aqueous solution and sulphuric acid liquid are produced by the hydrolysis reaction. This paper describes the dangers involved in cases of accidental releases of chlorosulphonic acid, referring to its properties, toxicity data and mitigation tests. It also reports results of pool behaviour using REACTPOOL [T. Kapias, R.F. Griffiths, C. Stefanidis, J. Haz. Mat., submitted for publication]. These results indicate that the pool behaviour is governed mainly by the amount of water available for reaction. Surface roughness and wind speed also have a significant effect on the results. A discussion of the results in comparison with those for other water reactive substances is presented in Part III of this series of papers [T. Kapias, R.F. Griffiths, J. Haz. Mat., submitted for publication]. The generated cloud will initially contain chlorosulphonic acid, hydrogen chloride and sulphuric acid with numerous processes taking place. Initially, it is usually denser than air. Although chlorosulphonic acid has been involved in major hazard incidents, there are no experimental data relevant to the modelling requirements. Use of REACTPOOL provides insights into the major hazard role of this substance.

  4. Fungal cellulase/xylanase production and corresponding hydrolysis using pretreated corn stover as substrates.

    PubMed

    Zhang, Liang; Wang, Xiaoqing; Ruan, Zhenhua; Liu, Ying; Niu, Xiaorui; Yue, Zhengbo; Li, Zhimin; Liao, Wei; Liu, Yan

    2014-01-01

    Three pretreated corn stover (ammonia fiber expansion, dilute acid, and dilute alkali) were used as carbon source to culture Trichoderma reesei Rut C-30 for cellulase and xylanase production. The results indicated that the cultures on ammonia fiber expansion and alkali pretreated corn stover had better enzyme production than the acid pretreated ones. The consequent enzymatic hydrolysis was performed applying fungal enzymes on pretreated corn stover samples. Tukey's statistical comparisons exhibited that there were significant differences on enzymatic hydrolysis among different combination of fungal enzymes and pretreated corn stover. The higher sugar yields were achieved by the enzymatic hydrolysis of dilute alkali pretreated corn stover.

  5. Determination of polyadipates migrating from lid gaskets of glass jars. Hydrolysis to adipic acid and measurement by LC-MS/MS.

    PubMed

    Driffield, M; Bradley, E L; Harmer, N; Castle, L; Klump, S; Mottier, P

    2010-10-01

    Polyadipate plasticizers can be present in the polyvinylchloride (PVC) gaskets used to seal the lids of glass jars. As the gaskets can come into direct contact with the foodstuffs inside the jar, the potential exists for polyadipate migration into the food. The procedure and performance characteristics of a test method for the analysis of polyadipates in food simulants (3% aqueous acetic acid and 10% aqueous ethanol) and the volatile test media used in substitute fat tests (isooctane and 95% aqueous ethanol) are described. The PVC gaskets were exposed to the food simulants or their substitutes under standard test conditions. Studies were initially carried out using direct measurement of the polyadipate oligomers by liquid chromatography with time-of-flight mass spectrometric detection (LC-TOF-MS) but this was not practical due to the number of peaks detected. Instead, the migrating polyadipates were hydrolysed to adipic acid and measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). The amount of polyadipate that this measurement of adipic acid represents was then calculated. Method performance was assessed by analysis of gaskets from two types of jar lids by single-laboratory validation. Linearity, sensitivity, repeatability, intermediate reproducibility and recovery were determined to be suitable for checking compliance with the 30 mg/kg specific migration limits for polyesters of 1,2-propane diol and/or 1,3- and/or 1,4-butanediol and/or polypropylene-glycol with adipic acid, which may be end-capped with acetic acid or fatty acids C(12)-C(18) or n-octanol and/or n-decanol. The method was found to be much quicker than previous methods involving extraction, clean-up, hydrolysis, esterification, derivatisation and GC measurement, consequently saving time and money.

  6. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    ERIC Educational Resources Information Center

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  7. Phytochemical composition and effects of commercial enzymes on the hydrolysis of gallic acid glycosides in mango (Mangifera indica L. cv. 'Keitt') pulp.

    PubMed

    Krenek, Kimberly A; Barnes, Ryan C; Talcott, Stephen T

    2014-10-01

    A detailed characterization of mango pulp polyphenols and other minor phytochemicals was accomplished for the first time in the cultivar 'Keitt' whereby the identification and semiquantification of five hydroxybenzoic acids, four cinnamic acids, two flavonoids, and six apocarotenoids was accomplished. Among the most abundant compounds were two monogalloyl glucosides (MGG) identified as having an ester- or ether-linked glucose, with the ester-linked moiety present in the highest concentration among nontannin polyphenolics. Additionally, the impact of side activities of three commercial cell-wall degrading enzymes during 'Keitt' mango pulp processing was evaluated to determine their role on the hydrolysis of ester- and ether-linked phenolic acids. The use of Crystalzyme 200XL reduced the concentration of ester-linked MGG by 66%, and the use of Rapidase AR 2000 and Validase TRL completely hydrolyzed ether-linked MGG after 4 h of treatment at 50 °C. Fruit quality, in vivo absorption rate, and bioactivity of mango phytochemicals rely on their chemical characterization, and characterizing changes in composition is critical for a complete understanding of in vivo mechanisms.

  8. Mechanism and applicability of hydrolysis of peptides and proteins utilizing Pt(II) complexes

    SciTech Connect

    Burgeson, I.E.

    1990-06-13

    The hydrolysis of amino acid esters and amides has been achieved by using organic reagents, strongly acidic and basic solutions, and transition metal complexes. However, enzymes have always been able to surpass these methods in terms of speed of the hydrolysis and the mild conditions necessary to observe hydrolysis. In order to understand how enzymes undergo their reactions with such remarkable speed and efficiency, researchers are studying and developing inorganic reagents which can facilitate the hydrolysis of peptide bonds. The treatment of the tripetide {gamma}-glutamyl-cyteinylglycine with one equivalent of PtCl{sub 4}{sup {minus}2} results in hydrolysis of the cysteinyl-glycine bond. The reaction is strongly dependent on the amount of chloride ion in solution and also shows a lesser dependence on ionic strength and pH. Hydrolysis is promoted through a chelate interaction of the platinum with the sulfur of cysteine and the carbonyl oxygen of the amide bond. The hydrolysis of proteins was then undertaken. Yeast cytochrome c and the subunits of hemoglobin were examined to determine if PtCl{sub 4}{sup {minus}2} or Pt(en)Cl{sub 2} could promote cleavage of the peptide bond next to a cysteine residue. It appears that hydrolysis of the peptide bond to the right of the cysteinly side chain has been realized. 51 refs., 12 figs., 12 tabs.

  9. Long-term ritonavir exposure increases fatty acid and glycerol recycling in 3T3-L1 adipocytes as compensatory mechanisms for increased triacylglycerol hydrolysis.

    PubMed

    Adler-Wailes, Diane C; Guiney, Evan L; Wolins, Nathan E; Yanovski, Jack A

    2010-05-01

    Lipodystrophy with high nonesterified fatty acid (FA) efflux is reported in humans receiving highly active antiretroviral therapy (HAART) to treat HIV infection. Ritonavir, a common component of HAART, alters adipocyte FA efflux, but the mechanism for this effect is not established. To investigate ritonavir-induced changes in FA flux and recycling through acylglycerols, we exposed differentiated murine 3T3-L1 adipocytes to ritonavir for 14 d. FA efflux, uptake, and incorporation into acylglycerols were measured. To identify a mediator of FA efflux, we measured adipocyte triacylglycerol lipase (ATGL) transcript and protein. To determine whether ritonavir-treated adipocytes increased glycerol backbone synthesis for FA reesterification, we measured labeled glycerol and pyruvate incorporation into triacylglycerol (TAG). Ritonavir-treated cells had increased FA efflux, uptake, and incorporation into TAG (all P < 0.01). Ritonavir increased FA efflux without consistently increasing glycerol release or changing TAG mass, suggesting increased partial TAG hydrolysis. Ritonavir-treated adipocytes expressed significantly more ATGL mRNA (P < 0.05) and protein (P < 0.05). Ritonavir increased glycerol (P < 0.01) but not pyruvate (P = 0.41), utilization for TAG backbone synthesis. Consistent with this substrate utilization, glycerol kinase transcript (required for glycerol incorporation into TAG backbone) was up-regulated (P < 0.01), whereas phosphoenolpyruvate carboxykinase transcript (required for pyruvate utilization) was down-regulated (P < 0.001). In 3T3-L1 adipocytes, long-term ritonavir exposure perturbs FA metabolism by increasing ATGL-mediated partial TAG hydrolysis, thus increasing FA efflux, and leads to compensatory increases in FA reesterification with glycerol and acylglycerols. These changes in FA metabolism may, in part, explain the increased FA efflux observed in ritonavir-associated lipodystrophy.

  10. A process to produce penicillin G acylase by surface-adhesion fermentation using Mucor griseocyanus to obtain 6-aminopenicillanic acid by penicillin G hydrolysis.

    PubMed

    Martínez-Hernández, José Luis; Mata-Gómez, Marco Arnulfo; Aguilar-González, Cristóbal Noé; Ilyina, Anna

    2010-04-01

    The production of extracellular and mycelia-associated penicillin G acylase (maPGA) with Mucor griseocyanus H/55.1.1 by surface-adhesion fermentation using Opuntia imbricata, a cactus, as a natural immobilization support was studied. Enzyme activity to form 6-aminopencillanic acid (6-APA) from penicillin G was assayed spectrophotometrically. The penicillin G hydrolysis to 6-APA was evaluated at six different times using PGA samples recovered from the skim milk medium at five different incubation times. Additionally, the effect of varying the penicillin G substrate concentration level on the PGA enzyme activity was also studied. The maximum reaction rate, V (max), and the Michaelis constant, K (M), were determined using the Michaelis-Menten model. The maximum levels for maPGA and extracellular activity were found to be 2,126.50 international unit per liter (IU/l; equal to 997.83 IU/g of support) at 48 h and 755.33 IU/l at 60 h, respectively. Kinetics of biomass production for total biomass showed a maximum growth at 60 h of 3.36 and 2.55 g/l (equal to 0.012 g of biomass per gram of support) for the immobilized M. griseocyanus biomass. The maPGA was employed for the hydrolysis of penicillin G to obtain 6-APA in a batch reactor. The highest quantity of 6-APA obtained was 226.16 mg/l after 40-min reaction. The effect of substrate concentration on maPGA activity was evaluated at different concentrations of penicillin G (0-10 mM). K(M) and V(max) were determined to be 3.0 x 10(-3) M and 4.4 x 10(-3) mM/min, respectively.

  11. Hydrolysis behavior of regenerated celluloses with different degree of polymerization under microwave radiation.

    PubMed

    Ni, Jinping; Teng, Na; Chen, Haizhen; Wang, Jinggang; Zhu, Jin; Na, Haining

    2015-09-01

    This work studied the hydrolysis behavior of regenerated celluloses (RCs) with different degree of polymerization (DP) by using the catalyst of dilute acid under microwave radiation. Results showed that the DP had a considerable influence on hydrolysis of cellulose. The reactivity of RCs was significantly improved when DP was lower than 51. The highest sugar yield of 59.2% was achieved from RC with lowest DP of 23 at 160 °C for 15 min. But the lowest yield of 32.6% was obtained when RC with highest DP of 132 was used. Recrystallization of cellulose was found to hinder the further hydrolysis particularly with the high DP. The effect of recrystallization can be reduced by the decrease of DP of RCs. This research demonstrates that the DP of RCs plays a crucial role on hydrolysis and it provides a preliminary guide based on DP to find a suitable pretreatment method for cellulose hydrolysis.

  12. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dilute H3PO4 (0.0 - 2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using a central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzym...

  13. Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin.

    PubMed

    Mitchell, Shannon M; Ullman, Jeffrey L; Teel, Amy L; Watts, Richard J

    2015-09-01

    Antibiotics that enter the environment can present human and ecological health risks. An understanding of antibiotic hydrolysis rates is important for predicting their environmental persistence as biologically active contaminants. In this study, hydrolysis rates and Arrhenius constants were determined as a function of pH and temperature for two amphenicol (chloramphenicol and florfenicol) and two macrolide (spiramycin and tylosin) antibiotics. Antibiotic hydrolysis rates in pH 4-9 buffer solutions at 25°C, 50°C, and 60°C were quantified, and degradation products were characterized. All of the antibiotics tested remained stable and exhibited no observable hydrolysis under ambient conditions typical of aquatic ecosystems. Acid- and base-catalyzed hydrolysis occurred at elevated temperatures (50-60°C), and hydrolysis rates increased considerably below pH 5 and above pH 8. Hydrolysis rates also increased approximately 1.5- to 2.9-fold for each 10°C increase in temperature. Based on the degradation product masses found, the functional groups that underwent hydrolysis were alkyl fluoride, amide, and cyclic ester (lactone) moieties; some of the resultant degradation products may remain bioactive, but to a lesser extent than the parent compounds. The results of this research demonstrate that amphenicol and macrolide antibiotics persist in aquatic systems under ambient temperature and pH conditions typical of natural waters. Thus, these antibiotics may present a risk in aquatic ecosystems depending on the concentration present.

  14. Rapid method for the simultaneous determination of flavonol aglycones in food using u-HPLC coupled with heating block acidic hydrolysis.

    PubMed

    Shim, You-Shin; Kim, Seunghee; Seo, Dongwon; Ito, Masahito; Nakagawa, Hiroaki; Park, Hyun-Jin; Ha, Jaeho

    2013-01-01

    A rapid method for the simultaneous determination of flavonol aglycones in food using ultra-high-performance LC (u-HPLC) coupled with a heating-block acidic hydrolysis method was validated in terms of precision, accuracy, and linearity. The u-HPLC separation was performed on an RP C18 column (particle size 2 micro m id, 2 mm, length 100 mm) with a photodiode array detector. The LOD and LOQ of the u-HPLC analyses were 0.15 and 0.47 mg/kg for myricetin, 0.09 and 0.28 mg/kg for quercetin, 0.16 and 0.49 mg/kg for kaempferol, and 0.08 and 0.25 mg/kg for isorhamnetin. The intraday and interday precisions of the individual flavonol aglycones were less than 9.31%. All calibration curves exhibited good linearity (r2 = 0.99) within the tested ranges. Total run time of u-HPLC was 13 min. The rapid u-HPLC method presented herein significantly improved the speed, sensitivity, and resolution of the analyses of myricetin, quercetin, kaempferol, and isorhamnetin in food.

  15. Enzymatic hydrolysis of fractionated products from oil thermally oxidated

    SciTech Connect

    Yashida, H.; Alexander, J.C.

    1983-01-01

    Enzymatic hydrolysis of the acylglycerol products obtained from thermally oxidized vegetable oils was studied. Corn, sunflower and soybean oils were heated in the laboratory at 180/sup 0/C for 50, 70 and 100 hr with aeration and directly fractionated by silicic acid column chromatography. By successive elution with 20%, then 60% isopropyl ether in n-hexane, and diethyl ether, the thermally oxidized oils were separated into three fractions: the nonpolar fraction (monomeric compounds), slightly polar fraction (dimeric compounds), and polar fraction comprising oligomeric compounds. Enzymatic hydrolysis with pancreatic lipase showed that the monomers were hydrolyzed as rapidly as the corresponding unheated oils, the dimers much more slowly, and the oligomeric compounds barely at all. Overall, the hydrolysis of the dimers was less than 23% of that for the monomers, with small differences among the oils. Longer heating periods resulted in greater reductions in hydrolysis of the dimeric compounds. These results suggest that the degree of enzymatic hydrolysis of the fractionated acylglycerol compounds is related to differences in the thermal oxidative deterioration, and amounts of polar compounds in the products. (33 Refs.)

  16. Ultrasound-assisted enzymatic hydrolysis for iodinated amino acid extraction from edible seaweed before reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-09-27

    The combination of reverse phase high performance liquid chromatography (RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of monoiodotyrosine (MIT) and diiodotyrosine (DIT) in edible seaweed. A sample pre-treatment based on ultrasound assisted enzymatic hydrolysis was optimized for the extraction of these iodinated amino acids. Pancreatin was selected as the most adequate type of enzyme, and parameters affecting the extraction efficiency (pH, temperature, mass of enzyme and extraction time) were evaluated by univariate approaches. In addition, extractable inorganic iodine (iodide) was also quantified by anion exchange high performance liquid chromatography (AE-HPLC) coupled with ICP-MS. The proposed procedure offered limits of detection of 1.1 and 4.3ngg(-1) for MIT and DIT, respectively. Total iodine contents in seaweed, as well as total iodine in enzymatic digests were measured by ICP-MS after microwave assisted alkaline digestion with tetramethylamonium hydroxide (TMAH) for total iodine assessment, and also by treating the pancreatin extracts (extractable total iodine assessment). The optimized procedure was successfully applied to five different types of edible seaweed. The highest total iodine content, and also the highest iodide levels, was found in the brown seaweed Kombu (6646±45μgg(-1)). Regarding iodinated amino acids, Nori (a red seaweed) was by far the one with the highest amount of both species (42±3 and 0.41±0.024μgg(-1) for MIT and DIT, respectively). In general, MIT concentrations were much higher than the amounts of DIT, which suggests that iodine from iodinated proteins in seaweed is most likely bound in the form of MIT residues.

  17. Structural investigation of a uronic acid-containing polysaccharide from abalone by graded acid hydrolysis followed by PMP-HPLC-MSn and NMR analysis.

    PubMed

    Wang, Hong-xu; Zhao, Jun; Li, Dong-mei; Song, Shuang; Song, Liang; Fu, Ying-huan; Zhang, Li-peng

    2015-01-30

    A new strategy was applied to elucidate the structure of a polysaccharide from abalone gonad (AGSP). It was hydrolyzed by 0.05 M, 0.2 M, 0.5 M, and 2.0 M TFA at 100 °C for 1 h, sequentially. Every hydrolysate was ultrafiltrated (3000 Da) to collect oligo- and monosaccharides, and the final retentate was further hydrolyzed with 2.0 M TFA at 110 °C and 121 °C for 2 h, respectively. 1-Phenyl-3-methyl-5-pyrazolone (PMP) derivatization followed by HPLC-MSn analysis was applied to detect the sugar residues in these hydrolysates, which allowed proposing their location in the polysaccharide structure. The retentate after 0.5 M TFA hydrolysis was confirmed as the polysaccharide backbone, and it was further analyzed by 1D and 2D NMR spectroscopy. Thus, the structural elucidation of AGSP was accomplished, and it has a backbone of →4)-β-GlcA(1→2)-α-Man(1→ repeating unit with Fuc, Xyl and Gal in the branch. The analytical strategy demonstrated was useful to characterize the structure of polysaccharides.

  18. Structural investigation of a uronic acid-containing polysaccharide from abalone by graded acid hydrolysis followed by PMP-HPLC-MSn and NMR analysis.

    PubMed

    Wang, Hong-xu; Zhao, Jun; Li, Dong-mei; Song, Shuang; Song, Liang; Fu, Ying-huan; Zhang, Li-peng

    2015-01-30

    A new strategy was applied to elucidate the structure of a polysaccharide from abalone gonad (AGSP). It was hydrolyzed by 0.05 M, 0.2 M, 0.5 M, and 2.0 M TFA at 100 °C for 1 h, sequentially. Every hydrolysate was ultrafiltrated (3000 Da) to collect oligo- and monosaccharides, and the final retentate was further hydrolyzed with 2.0 M TFA at 110 °C and 121 °C for 2 h, respectively. 1-Phenyl-3-methyl-5-pyrazolone (PMP) derivatization followed by HPLC-MSn analysis was applied to detect the sugar residues in these hydrolysates, which allowed proposing their location in the polysaccharide structure. The retentate after 0.5 M TFA hydrolysis was confirmed as the polysaccharide backbone, and it was further analyzed by 1D and 2D NMR spectroscopy. Thus, the structural elucidation of AGSP was accomplished, and it has a backbone of →4)-β-GlcA(1→2)-α-Man(1→ repeating unit with Fuc, Xyl and Gal in the branch. The analytical strategy demonstrated was useful to characterize the structure of polysaccharides. PMID:25497339

  19. Small peptides hydrolysis in dry-cured meats.

    PubMed

    Mora, Leticia; Gallego, Marta; Escudero, Elizabeth; Reig, Milagro; Aristoy, M-Concepción; Toldrá, Fidel

    2015-11-01

    Large amounts of different peptides are naturally generated in dry-cured meats as a consequence of the intense proteolysis mechanisms which take place during their processing. In fact, meat proteins are extensively hydrolysed by muscle endo-peptidases (mainly calpains and cathepsins) followed by exo-peptidases (mainly, tri- and di-peptidyl peptidases, dipeptidases, aminopeptidases and carboxypeptidases). The result is a large amount of released free amino acids and a pool of numerous peptides with different sequences and lengths, some of them with interesting sequences for bioactivity. This manuscript is presenting the proteomic identification of small peptides resulting from the hydrolysis of four target proteins (glyceraldehyde-3-phosphate dehydrogenase, beta-enolase, myozenin-1 and troponin T) and discusses the enzymatic routes for their generation during the dry-curing process. The results indicate that the hydrolysis of peptides follows similar exo-peptidase mechanisms. In the case of dry-fermented sausages, most of the observed hydrolysis is the result of the combined action of muscle and microbial exo-peptidases except for the hydrolysis of di- and tri-peptides, mostly due to microbial di- and tri-peptidases, and the release of amino acids at the C-terminal that appears to be mostly due to muscle carboxypeptidases.

  20. Synergy between cellulases and pectinases in the hydrolysis of hemp.

    PubMed

    Zhang, Junhua; Pakarinen, Annukka; Viikari, Liisa

    2013-02-01

    The impact of pectinases in the hydrolysis of fresh, steam-exploded and ensiled hemp was investigated and the synergy between cellulases, pectinases and xylanase in the hydrolysis was evaluated. About half; 59.3% and 46.1% of pectin in the steam-exploded and ensiled hemp, respectively, could be removed by a low dosage of pectinases used. Pectinases were more efficient than xylanase in the hydrolysis of fresh and ensiled hemp whereas xylanase showed higher hydrolytic efficiency than the pectinase preparation used in the hydrolysis of steam-exploded hemp. Clear synergistic action between cellulases and xylanase could be observed in the hydrolysis of steam-exploded hemp. Supplementation of pectinase resulted in clear synergism with cellulases in the hydrolysis of all hemp substrates. Highest hydrolysis yield of steam-exploded hemp was obtained in the hydrolysis with cellulases and xylanase. In the hydrolysis of ensiled hemp, the synergistic action between cellulases and pectinases was more obvious for efficient hydrolysis.

  1. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  2. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism

    SciTech Connect

    Martinson, E.A.; Goldstein, D.; Brown, J.H. )

    1989-09-05

    We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of (3H)choline and (3H)phosphorylcholine ((3H)Pchol) from cells containing (3H)choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of (3H)phosphatidic acid ((3H)PA) in cells containing (3H)myristate-labeled PC. (3H)Diacylglycerol ((3H)DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with (3H)myristate and (14C)arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol.

  3. Enzymatic hydrolysis of cellulose and various pretreated wood fractions

    SciTech Connect

    Saddler, J.N.; Brownell, H.H.; Clermont, L.P.; Levitin, N.

    1982-06-01

    Three strains of Trichoderma-Trichoderma reesei C30, Trichoderma reesei QM9414, and Trichoderma species E58-were used to study the enzymatic hydrolysis of pretreated wood substrates. Each of the culture filtrates was incubated with a variety of commercially prepared cellulose substrates and pretreated wood substrates. Solka floc was the most easily degraded commercial cellulose. The enzyme accessibility of steam-exploded samples which has been alkali extracted and then stored wet decreased with the duration of the steam treatment. Air drying reduced the extent of hydrolysis of all the samples but had a greater effect on the samples which had previously shown the greatest hydrolysis. Mild pulping using 2% chlorite increased the enzymatic hydrolysis of all the samples. Steam explosion was shown to be an excellent pretreatment method for aspen wood and was much superior to dilute nitric acid pretreatment. The results indicate that the distribution of the lignin as well as the surface area of the cellulosic substrate are important features in enzymatic hydrolysis. (Refs 17).

  4. Acid rain: Some preliminary results from global data analysis

    NASA Astrophysics Data System (ADS)

    Sequeira, R.

    1981-02-01

    Preliminary results of an analysis of global precipitation data from WMO (World Meteorological Organization) stations suggest that even remote maritime baseline stations, far removed from major continents, could become predisposed to acid rain if there is a deficiency of non-marine calcium relative to non-marine sulfate. The regional stations show greater complexity than the baseline stations in their precipitation chemistry. The overall results of this analysis suggest that not all non-marine sulfate and nitrate in precipitation could be present as acid.

  5. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase

    SciTech Connect

    Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R

    2010-01-01

    active site blocks access for larger alcohol moieties but binds {var_epsilon}-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones.

  6. Hydrolysis of milk triglycerides by human gastric lipase.

    PubMed

    Jaśkiewicz, J; Szafran, Z; Popiela, T; Szafran, H

    1980-01-01

    The concentrations of myristic, palmitic, palmitoleic, stearic and oleic acids were determined in the products of hydrolysis of lipids of cow milk incubated with human gastric juice using thin-layer chromatography for the separation of lipid fractions, and gas liquid chromatography for the determination of fatty acids. It was found that the percentage ratio of the above fatty acids in hydrolysis products was similar to that in milk triglycerides. It was concluded that triglycerides containing higher fatty acids present in milk are hydrolysed by the lipase appearing in human gastric juice, the rate of hydrolysis of the individual acids being roughly proportional to the concentration of these acids in triglyceride substrate.

  7. Lipase-catalyzed hydrolysis of TG containing acetylenic FA.

    PubMed

    Jie, Marcel S F Lie Ken; Fua, Xun; Lau, Maureen M L; Chye, M L

    2002-10-01

    Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the delta6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of delta6, delta9, and delta13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

  8. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  9. A new route to improved glucose yields in cellulose hydrolysis

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Kwak, Ja Hun; Zhang, Z. Conrad

    2007-08-01

    An unusual inverse temperature-dependent pathway was discovered for cellulose decrystallization in trifluoroacetic acid (TFA). Cellulose was completely decrystallized by TFA at 0 °C in less than 2 hours, a result not achieved in 48 hours at 25°C in the same medium. The majority of TFA used in cellulose decrystallization was recycled via a vacuum process. The small remaining amount of TFA was diluted with water to make a 0.5% TFA solution and used as a catalyst in dilute acid hydrolysis. After one minute, under batch conditions at 185 °C, the glucose yield reached 63.5% without production of levulinic acid. In comparison, only 15.0% glucose yield was achieved in the hydrolysis of untreated cellulose by 0.5% H2SO4 under the same condition. Further improvement of glucose yield is possible by optimizing reaction conditions. Alternatively, the remaining TFA can be completely removed by water while keeping the regenerated cellulose in a highly amorphous state. This regenerated cellulose is much more reactive than untreated cellulose in hydrolysis reactions, but still less reactive than corn starch. The lower temperatures and shorter reaction times with this activated cellulose makes it possible to reduce operating costs and decrease byproduct yields such as HMF and levulinic acid.

  10. Modeling and simulation of an enzymatic reactor for hydrolysis of palm oil.

    PubMed

    Bhatia, S; Naidu, A D; Kamaruddin, A H

    1999-01-01

    Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.

  11. Enzymatic hydrolysis preparation of mono-O-lauroylsucrose via a mono-O-lauroylraffinose intermediate.

    PubMed

    Lu, Yuyun; Yan, Rian; Ma, Xiang; Wang, Yong; Sun, Yuankui; Luo, Zhongming

    2013-10-01

    1'-O-Lauroylsucrose and 6'-O-lauroylsucrose were formed through hydrolysis of the C-6″ galactose group of 1'-O-lauroylraffinose and 6'-O-lauroylraffinose, respectively, in the presence of α-galactosidase. The enzymatic hydrolysis of 1'-O-lauroylraffinose and 6'-O-lauroylraffinose is discussed in detail. Acetic acid-sodium acetate was chosen as the buffer solution of the enzymatic hydrolysis reaction. The optimum conditions for the enzymatic hydrolysis reaction were as follows: buffer solution, pH 3.8; enzymatic time, 48 h; and enzymatic temperature, 37 °C. Under the optimal process conditions, the efficiency of α-galactosidase was ca. 82.6%. The isomers were fully compared in solubility, hydrophile-lipophile balance (HLB) values, critical micelle concentration (CMC), and thermal stability. The results showed that all lauroylsucrose isomers have similar solubilities in polar solvent, HLB values, CMC values, and thermal stabilities.

  12. Transitions to asexuality result in excess amino acid substitutions.

    PubMed

    Paland, Susanne; Lynch, Michael

    2006-02-17

    Theory predicts that linkage between genetic loci reduces the efficiency of purifying selection. Because of the permanent linkage of all heritable genetic material, asexual lineages may be exceptionally prone to deleterious-mutation accumulation in both nuclear and organelle genes. Here, we show that the ratio of the rate of amino acid to silent substitution (Ka/Ks) in mitochondrial protein-coding genes is higher in obligately asexual lineages than in sexual lineages of the microcrustacean Daphnia pulex. Using a phylogeny-based approach to quantify the frequency of mutational-effect classes, we estimate that mitochondrial protein-coding genes in asexual lineages accumulate deleterious amino acid substitutions at four times the rate in sexual lineages. These results support the hypothesis that sexual reproduction plays a prominent role in reducing the mutational burden in populations.

  13. Rate of Hydrolysis of Tertiary Halogeno Alkanes

    ERIC Educational Resources Information Center

    Pritchard, D. R.

    1978-01-01

    Describes an experiment to measure the relative rate of hydrolysis of the 2-x-2 methylpropanes, where x is bromo, chloro or iodo. The results are plotted on a graph from which the relative rate of hydrolysis can be deduced. (Author/GA)

  14. Enzymatic hydrolysis of corn stover process development and evaluation

    SciTech Connect

    Perez, J.; Wilke, C.R.; Blanch, H.W.

    1981-12-01

    The hydrolysis of acid treated corn stover with cellulase from T. reesei Rut-C-30 was evaluated. Experiments were conducted with substrate concentrations of 5 to 25% by weight, enzyme activities of 0.5 to 7 IU/ml and residence times of 24 to 48 hours. Maximum conversion was 55% for specific cellulase activity of 25 to 30 IU/g. Optimum cellobiase activity for minimum cellobiose production was found to be approximately 1.8 cellobiase units to 1 FPA unit. Hydrolysis experiments with steam exploded corn stover led to a maximum conversion of 80%, significantly higher than the results obtained for acid treated substrate. Steam exploded corn stover was demonstrated as a suitable carbon source for growth of T. reesei in submerged cultures.

  15. Lactic acid and thermal treatments trigger the hydrolysis of myo-inositol hexakisphosphate and modify the abundance of lower myo-inositol phosphates in barley (Hordeum vulgare L.).

    PubMed

    Metzler-Zebeli, Barbara U; Deckardt, Kathrin; Schollenberger, Margit; Rodehutscord, Markus; Zebeli, Qendrim

    2014-01-01

    Barley is an important source of dietary minerals, but it also contains myo-inositol hexakisphosphate (InsP6) that lowers their absorption. This study evaluated the effects of increasing concentrations (0.5, 1, and 5%, vol/vol) of lactic acid (LA), without or with an additional thermal treatment at 55°C (LA-H), on InsP6 hydrolysis, formation of lower phosphorylated myo-inositol phosphates, and changes in chemical composition of barley grain. Increasing LA concentrations and thermal treatment linearly reduced (P<0.001) InsP6-phosphate (InsP6-P) by 0.5 to 1 g compared to the native barley. In particular, treating barley with 5% LA-H was the most efficient treatment to reduce the concentrations of InsP6-P, and stimulate the formation of lower phosphorylated myo-inositol phosphates such as myo-inositol tetraphosphate (InsP4) and myo-inositol pentaphosphates (InsP5). Also, LA and thermal treatment changed the abundance of InsP4 and InsP5 isomers with Ins(1,2,5,6)P4 and Ins(1,2,3,4,5)P5 as the dominating isomers with 5% LA, 1% LA-H and 5% LA-H treatment of barley, resembling to profiles found when microbial 6-phytase is applied. Treating barley with LA at room temperature (22°C) increased the concentration of resistant starch and dietary fiber but lowered those of total starch and crude ash. Interestingly, total phosphorus (P) was only reduced (P<0.05) in barley treated with LA-H but not after processing of barley with LA at room temperature. In conclusion, LA and LA-H treatment may be effective processing techniques to reduce InsP6 in cereals used in animal feeding with the highest degradation of InsP6 at 5% LA-H. Further in vivo studies are warranted to determine the actual intestinal P availability and to assess the impact of changes in nutrient composition of LA treated barley on animal performance.

  16. Lactic Acid and Thermal Treatments Trigger the Hydrolysis of Myo-Inositol Hexakisphosphate and Modify the Abundance of Lower Myo-Inositol Phosphates in Barley (Hordeum vulgare L.)

    PubMed Central

    Metzler-Zebeli, Barbara U.; Deckardt, Kathrin; Schollenberger, Margit; Rodehutscord, Markus; Zebeli, Qendrim

    2014-01-01

    Barley is an important source of dietary minerals, but it also contains myo-inositol hexakisphosphate (InsP6) that lowers their absorption. This study evaluated the effects of increasing concentrations (0.5, 1, and 5%, vol/vol) of lactic acid (LA), without or with an additional thermal treatment at 55°C (LA-H), on InsP6 hydrolysis, formation of lower phosphorylated myo-inositol phosphates, and changes in chemical composition of barley grain. Increasing LA concentrations and thermal treatment linearly reduced (P<0.001) InsP6-phosphate (InsP6-P) by 0.5 to 1 g compared to the native barley. In particular, treating barley with 5% LA-H was the most efficient treatment to reduce the concentrations of InsP6-P, and stimulate the formation of lower phosphorylated myo-inositol phosphates such as myo-inositol tetraphosphate (InsP4) and myo-inositol pentaphosphates (InsP5). Also, LA and thermal treatment changed the abundance of InsP4 and InsP5 isomers with Ins(1,2,5,6)P4 and Ins(1,2,3,4,5)P5 as the dominating isomers with 5% LA, 1% LA-H and 5% LA-H treatment of barley, resembling to profiles found when microbial 6-phytase is applied. Treating barley with LA at room temperature (22°C) increased the concentration of resistant starch and dietary fiber but lowered those of total starch and crude ash. Interestingly, total phosphorus (P) was only reduced (P<0.05) in barley treated with LA-H but not after processing of barley with LA at room temperature. In conclusion, LA and LA-H treatment may be effective processing techniques to reduce InsP6 in cereals used in animal feeding with the highest degradation of InsP6 at 5% LA-H. Further in vivo studies are warranted to determine the actual intestinal P availability and to assess the impact of changes in nutrient composition of LA treated barley on animal performance. PMID:24967651

  17. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-03-04

    results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  18. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-02-04

    the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  19. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product.

    PubMed Central

    Breeuwer, P; Drocourt, J L; Bunschoten, N; Zwietering, M H; Rombouts, F M; Abee, T

    1995-01-01

    Flow cytometry is a rapid and sensitive method which may be used for the detection of microorganisms in foods and drinks. A key requirement for this method is a sufficient fluorescence staining of the target cells. The mechanism of staining of the yeast Saccharomyces cerevisiae by fluorescein diacetate (FDA) and 5- (and 6-)carboxyfluorescein diacetate (cFDA) was studied in detail. The uptake rate of the prefluorochromes increased in direct proportion to the concentration and was not saturable, which suggests that transport occurs via a passive diffusion process. The permeability coefficient for cFDA was 1.3 x 10(-8) m s-1. Once inside the cell, the esters were hydrolyzed by intracellular esterases and their fluorescent products accumulated. FDA hydrolysis (at 40 degrees C) in cell extracts could be described by first-order reaction kinetics, and a rate constant (K) of 0.33 s-1 was calculated. Hydrolysis of cFDA (at 40 degrees C) in cell extracts was described by Michaelis-Menten kinetics with an apparent Vmax and Km of 12.3 nmol.min-1.mg of protein-1 and 0.29 mM, respectively. Accumulation of fluorescein was most likely limited by the esterase activity, since transport of FDA was faster than the hydrolysis rate. In contrast, accumulation of carboxyfluorescein was limited by the much slower transport of cFDA through the cell envelope. A simple mathematical model was developed to describe the fluorescence staining. The implications for optimal staining of yeast cells with FDA and cFDA are discussed. PMID:7747975

  20. Pretreatment of dried distillers grains with solubles by soaking in aqueous ammonia and subsequent enzymatic/dilute acid hydrolysis to produce fermentable sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15% w/w NH4OH solution at a solid:liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied...

  1. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water.

    PubMed

    Daorattanachai, Pornlada; Viriya-empikul, Nawin; Laosiripojana, Navadol; Faungnawakij, Kajornsak

    2013-09-01

    The effect of Kraft lignin presenting on the hydrolysis and dehydration of C5 and C6 sugars, cellulose, hemicelluloses and biomass under hot compressed water (HCW) in the presence of H3PO4 catalyst was intensively studied. The lignin strongly inhibited the acid hydrolysis of cellulose and hemicellulose to glucose and xylose, respectively. Interestingly, the admixed lignin markedly promoted the isomerization of glucose to fructose, and dehydration of fructose (except at the low catalyst loading), resulting in high 5-hydroxymethylfurfural yields. Nonetheless, lignin inhibited the hydrolysis of xylan to xylose and dehydration of xylose to furfural. Moreover, the acidity of the system significantly affects the hydrolysis/dehydration of biomass. It was revealed that the presence of lignin strongly interfered the yields of sugars and furans produced from raw corncob, while the delignified corncob provided significant improvement of product yields, confirming the observed role of lignin in the biomass conversion system via sugar platforms. PMID:23907066

  2. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-07-03

    longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

  3. Regiospecific Ester Hydrolysis by Orange Peel Esterase - An Undergraduate Experiment.

    NASA Astrophysics Data System (ADS)

    Bugg, Timothy D. H.; Lewin, Andrew M.; Catlin, Eric R.

    1997-01-01

    A simple but effective experiment has been developed to demonstrate the regiospecificity of enzyme catalysis using an esterase activity easily isolated from orange peel. The experiment involves the preparation of diester derivatives of para-, meta- and ortho-hydroxybenzoic acid (e.g. methyl 4-acetoxy-benzoic acid). The derivatives are incubated with orange peel esterase, as a crude extract, and with commercially available pig liver esterase and porcine pancreatic lipase. The enzymatic hydrolysis reactions are monitored by thin layer chromatography, revealing which of the two ester groups is hydrolysed, and the rate of the enzyme-catalysed reaction. The results of a group experiment revealed that in all cases hydrolysis was observed with at least one enzyme, and in most cases the enzymatic hydrolysis was specific for production of either the hydroxy-ester or acyl-acid product. Specificity towards the ortho-substituted series was markedly different to that of the para-substituted series, which could be rationalised in the case of pig liver esterase by a published active site model.

  4. Enzymatic hydrolysis of defatted mackerel protein with low bitter taste

    NASA Astrophysics Data System (ADS)

    Hou, Hu; Li, Bafang; Zhao, Xue

    2011-03-01

    Ultrasound-assisted solvent extraction was confirmed as a novel, effective method for separating lipid from mackerel protein, resulting in a degreasing rate (DR) of 95% and a nitrogen recovery (NR) of 88.6%. To obtain protein hydrolysates with high nitrogen recovery and low bitter taste, enzymatic hydrolysis was performed using eight commercially available proteases. It turned out that the optimum enzyme was the `Mixed enzymes for animal proteolysis'. An enzyme dosage of 4%, a temperature of 50°, and a hydrolysis time of 300 min were found to be the optimum conditions to obtain high NR (84.28%) and degree of hydrolysis (DH, 16.18%) by orthogonal experiments. Glutamic acid was the most abundant amino acid of MDP (defatted mackerel protein) and MDPH (defatted mackerel protein hydrolysates). Compared with the FAO/WHO reference protein, the essential amino acid chemical scores (CS) were greater than 1.0 (1.0-1.7) in MDPH, which is reflective of high nutritional value. This, coupled with the light color and slight fishy odor, indicates that MDPH would potentially have a wide range of applications such as nutritional additives, functional ingredients, and so on.

  5. Early retinoic acid deprivation in developing zebrafish results in microphthalmia.

    PubMed

    Le, Hong-Gam T; Dowling, John E; Cameron, D Joshua

    2012-09-01

    Vitamin A deficiency causes impaired vision and blindness in millions of children around the world. Previous studies in zebrafish have demonstrated that retinoic acid (RA), the acid form of vitamin A, plays a vital role in early eye development. The objective of this study was to describe the effects of early RA deficiency by treating zebrafish with diethylaminobenzaldehyde (DEAB), a potent inhibitor of the enzyme retinaldehyde dehydrogenase (RALDH) that converts retinal to RA. Zebrafish embryos were treated for 2 h beginning at 9 h postfertilization. Gross morphology and retinal development were examined at regular intervals for 5 days after treatment. The optokinetic reflex (OKR) test, visual background adaptation (VBA) test, and the electroretinogram (ERG) were performed to assess visual function and behavior. Early treatment of zebrafish embryos with 100 μM DEAB (9 h) resulted in reduced eye size, and this microphthalmia persisted through larval development. Retinal histology revealed that DEAB eyes had significant developmental abnormalities but had relatively normal retinal lamination by 5.5 days postfertilization. However, the fish showed neither an OKR nor a VBA response. Further, the retina did not respond to light as measured by the ERG. We conclude that early deficiency of RA during eye development causes microphthalmia as well as other visual defects, and that timing of the RA deficiency is critical to the developmental outcome.

  6. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post-synthetic functionalization of the carbon surface.

    PubMed

    To, Anh The; Chung, Po-Wen; Katz, Alexander

    2015-09-14

    The direct hydrolysis of crystalline cellulose to glucose in water without prior pretreatment enables the transformation of biomass into fuels and chemicals. To understand which features of a solid catalyst are most important for this transformation, the nanoporous carbon material MSC-30 was post-synthetically functionalized by oxidation. The most active catalyst depolymerized crystalline cellulose without prior pretreatment in water, providing glucose in an unprecedented 70 % yield. In comparison, virtually no reaction was observed with MSC-30, even when the reaction was conducted in aqueous solution at pH 2. As no direct correlations between the activity of this solid-solid reaction and internal-site characteristics, such as the β-glu adsorption capacity and the rate of catalytic hydrolysis of adsorbed β-glu strands, were observed, contacts of the external surface with the cellulose crystal are thought to be key for the overall efficiency.

  7. Catalytic hydrolysis of urea from wastewater using different aluminas by a fixed bed reactor.

    PubMed

    Shen, Shuguang; Li, Meina; Li, Binbin; Zhao, Zhijun

    2014-11-01

    In order to find an effective method for treating urea wastewater, the experiments on the hydrolysis of urea in wastewater were conducted in a fixed bed reactor with different aluminas (α-Al2O3, γ-Al2O3, and η-Al2O3) as catalysts respectively in contrast with inert ceramic particle. The results indicate that the three alumina catalysts show obvious catalytic activity for urea hydrolysis at 125 °C. The order of activity is η-Al2O3 > γ-Al2O3 > α-Al2O3, and the activity difference increases with increasing temperature. According to the characterization results, surface acidity has little impact on the activity of catalyst. However, it was found that surface basicity of alumina catalyst plays an important role in catalytic hydrolysis of urea, and the activity of catalyst may be also influenced by the basic strength. With η-Al2O3 as catalyst, the urea concentration in wastewater is reduced to 4.96 mg/L at a temperature of 165 °C. Moreover, the η-Al2O3 shows a good stability for urea hydrolysis. The hydrolysis of urea over η-Al2O3 catalyst can evidently reduce the reaction temperature and is promising to replace industrial thermal hydrolysis process.

  8. Folic Acid Supplementation and Preterm Birth: Results from Observational Studies

    PubMed Central

    Franchi, Massimo

    2014-01-01

    Introduction. Folic acid (FA) supplementation is recommended worldwide in the periconceptional period for the prevention of neural tube defects. Due to its involvement in a number of cellular processes, its role in other pregnancy outcomes such as miscarriage, recurrent miscarriage, low birth weight, preterm birth (PTB), preeclampsia, abruptio placentae, and stillbirth has been investigated. PTB is a leading cause of perinatal mortality and morbidity; therefore its association with FA supplementation is of major interest. The analysis of a small number of randomized clinical trials (RCTs) has not found a beneficial role of FA in reducing the rate of PTBs. Aim of the Study. The aim of this review was to examine the results from recent observational studies about the effect of FA supplementation on PTB. Materials and Methods. We carried out a search on Medline and by manual search of the observational studies from 2009 onwards that analyzed the rate of PTB in patients who received supplementation with FA before and/or throughout pregnancy. Results. The results from recent observational studies suggest a slight reduction of PTBs that is not consistent with the results from RCTs. Further research is needed to better understand the role of FA supplementation before and during pregnancy in PTB. PMID:24724083

  9. Simultaneous analysis of codeine, morphine, and heroin after B-glucuronidase hydrolysis.

    PubMed

    Zezulak, M; Snyder, J J; Needleman, S B

    1993-11-01

    Analysis of the opiates, morphine and codeine, often proceeds by way of acid hydrolysis for release of the parent morphine from its glucuronide formed during metabolism. Following use, heroin is rapidly deacetylated to 6-monoacetylmorphine (6-MAM), which can be detected in the urine for a short time following injection of heroin. Only a small amount of 6-MAM may be further metabolized to morphine glucuronide. Thus, in general, the urine specimen has not been hydrolyzed prior to analysis for heroin, using a separate procedure from morphine and codeine. Simultaneous analysis of morphine, codeine, 6-MAM and heroin would be complicated by loss of identity between morphine and heroin when heroin converts to morphine following acid hydrolysis for removal of the glucuronide moiety from morphine glucuronide. Another significant problem in simultaneous analysis is the relative disparity in concentration between morphine/codeine and 6-MAM/heroin (which might be present in the urine specimen). In the proposed method of analysis, free morphine resulting from B-glucuronidase rather than acid hydrolysis of morphine glucuronide is derivatized with propionic anhydride to form dipropionylmorphine. Heroin that does not react with B-glucuronidase remains unhydrolyzed as the diacetylmorphine derivative. Some of the more exacting steps for the acid procedure are eliminated altogether making overall costs for the enzyme procedure comparable to those of the acid hydrolysis method. The enzyme reaction mixture is purified through a solid phase column system. The optimal conditions for concentration of enzyme, temperature of hydrolysis and pH are individually characterized for B-glucuronidase hydrolysis and the ions which identify the propionyl derivatives are characterized for the simultaneous analysis of morphine, codeine, 6-MAM and heroin. PMID:8263474

  10. Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE), and their hydrolysis products in indoor dust from the United States and three East Asian countries.

    PubMed

    Wang, Lei; Liao, Chunyang; Liu, Fang; Wu, Qian; Guo, Ying; Moon, Hyo-Bang; Nakata, Haruhiko; Kannan, Kurunthachalam

    2012-11-01

    p-Hydroxybenzoic acid esters (parabens) and bisphenol A diglycidyl ether (BADGE) are widely present in personal care products, food packages, and material coatings. Nevertheless, little is known about the occurrence of these compounds in indoor dust. In this study, we collected 158 indoor dust samples from the U.S., China, Korea, and Japan and determined the concentrations of 11 target chemicals, viz., six parabens and their common hydrolysis product, 4-hydroxybenzoic acid (4-HB), as well as BADGE and its three hydrolysis products (BADGE·H(2)O, BADGE·2H(2)O, and BADGE·HCl·H(2)O). All of the target compounds were found in dust samples from four countries. Concentrations of sum of six parabens in dust were on the order of several hundred to several thousands of nanogram per gram. Geometric mean concentrations of BADGEs in dust ranged from 1300 to 2890 ng/g among four countries. Methyl paraben (MeP), propyl paraben (PrP), BADGE·2H(2)O, and BADGE·HCl·H(2)O were the predominant compounds found in dust samples. This is the first report of BADGE and its hydrolysis products (BADGEs) in indoor dust samples and of parabens in indoor dust from Asian countries. On the basis of the measured concentrations of target chemicals, we estimated the daily intake (EDI) via dust ingestion. The EDIs of parabens via dust ingestion were 5-10 times higher in children than in adults. Among the four countries studied, the EDIs of parabens (5.4 ng/kg-bw/day) and BADGEs (6.5 ng/kg-bw/day) through dust ingestion were the highest for children in Korea and Japan.

  11. Generation of group B soyasaponins I and III by hydrolysis.

    PubMed

    Zhang, Wei; Teng, Su Ping; Popovich, David G

    2009-05-13

    Soyasaponins are a group of oleanane triterpenoids found in soy and other legumes that have been associated with some of the benefits achieved by consuming plant-based diets. However, these groups of compounds are diverse and structurally complicated to chemically characterize, separate from the isoflavones, and isolate in sufficient quantities for bioactive testing. Therefore, the aim of this study was to maximize the extraction of soyasaponins from soy flour, remove isoflavones, separate group B soyasaponins from group A, and produce an extract that contained a majority of non-DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one)-conjugated group B soyasaponins I and III. Room temperature extraction in methanol for 24 or 48 h resulted in the maximum recovery of soyasaponins, and Soxhlet extraction resulted in the least. A solid-phase extraction using methanol (45%) was found to virtually eliminate the interfering isoflavones as compared to butanol-water liquid-liquid extraction and ammonium sulfate precipitation, while maximizing saponin recovery. Alkaline hydrolysis in anhydrous methanol produced the maximum amount of soyasaponins I and III as compared to aqueous methanol and acid hydrolysis in both aqueous and anhydrous methanol. The soyasaponin I amount was increased by 175%, and soyasaponin III was increased by 211% after alkaline hydrolysis. Furthermore, after alkaline hydrolysis, a majority of DDMP-conjugated group B soyasaponins such as betag, betaa, gammag, and gammaa transformed into the non-DDMP-conjugated soyasaponins I and III without affecting the glycosidic bond at position C-3 of the ring structure. Therefore, we have developed a method that maximizes the recovery of DDMP-conjugated saponins and uses alkaline hydrolysis to produce an extract containing mainly soyasaponins I and III. PMID:19338335

  12. Comparison of polysaccharides of Haliotis discus hannai and Volutharpa ampullacea perryi by PMP-HPLC-MS(n) analysis upon acid hydrolysis.

    PubMed

    Wang, Hongxu; Zhao, Jun; Li, Dongmei; Wen, Chengrong; Liu, Haiman; Song, Shuang; Zhu, Beiwei

    2015-10-13

    Haliotis discus hannai Ino (Haliotis) is a highly valued marine shellfish, and it is sometimes replaced by another cheaper Gastropoda mollusk, Volutharpa ampullacea perryi (Volutharpa). Polysaccharides from pleopods, viscera and gonads of these two gastropods were compared by analyzing the mono- and di-saccharides in their acid hydrolysates using high performance liquid chromatography-mass spectrometry (HPLC-MS(n)) after 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization. Disaccharide analysis revealed the distribution of uronic acid-containing polysaccharides (UACPs) in the biological samples. GlcA-(1 → 2)-Man, GlcA-(1 → 3)-GalN, and another disaccharide consisting of a hexuronic acid linked to a hexose were found in the hydrolysates, which indicated the existence of AGSP (abalone gonad sulfated polysaccharide) with the backbone composed of → 2)-α-Man(1 → 4)-β-GlcA(1 → repeating unit, AAP (abalone glycosaminoglycan-like polysaccharide) with the backbone of → 3)-GalNAc-(1 → 2)-GlcA-(1 → 3)-GalNAc-(1 → 4)-GlcA-(1 → repeating unit, and unidentified DS1P containing a hexuronic acid linked to a hexose unit, respectively. As shown by extracted ion chromatograms (XICs), AAP was the only UACP found in pleopods of the two gastropods; gonads and viscera of Haliotis contained DS1P and AGSP, while those of Volutharpa contained DS1P, AGSP as well as AAP. Monosaccharides in the acid hydrolysates were demonstrated in XICs by extracting their corresponding PMP derivative quasi-molecular ions one by one, and the results indicated the similar conclusion to the disaccharide analysis. Therefore, it could be concluded that polysaccharides from pleopods of the two gastropods are very similar, while those from their viscera and gonads differ greatly. PMID:26279526

  13. Comparison of polysaccharides of Haliotis discus hannai and Volutharpa ampullacea perryi by PMP-HPLC-MS(n) analysis upon acid hydrolysis.

    PubMed

    Wang, Hongxu; Zhao, Jun; Li, Dongmei; Wen, Chengrong; Liu, Haiman; Song, Shuang; Zhu, Beiwei

    2015-10-13

    Haliotis discus hannai Ino (Haliotis) is a highly valued marine shellfish, and it is sometimes replaced by another cheaper Gastropoda mollusk, Volutharpa ampullacea perryi (Volutharpa). Polysaccharides from pleopods, viscera and gonads of these two gastropods were compared by analyzing the mono- and di-saccharides in their acid hydrolysates using high performance liquid chromatography-mass spectrometry (HPLC-MS(n)) after 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization. Disaccharide analysis revealed the distribution of uronic acid-containing polysaccharides (UACPs) in the biological samples. GlcA-(1 → 2)-Man, GlcA-(1 → 3)-GalN, and another disaccharide consisting of a hexuronic acid linked to a hexose were found in the hydrolysates, which indicated the existence of AGSP (abalone gonad sulfated polysaccharide) with the backbone composed of → 2)-α-Man(1 → 4)-β-GlcA(1 → repeating unit, AAP (abalone glycosaminoglycan-like polysaccharide) with the backbone of → 3)-GalNAc-(1 → 2)-GlcA-(1 → 3)-GalNAc-(1 → 4)-GlcA-(1 → repeating unit, and unidentified DS1P containing a hexuronic acid linked to a hexose unit, respectively. As shown by extracted ion chromatograms (XICs), AAP was the only UACP found in pleopods of the two gastropods; gonads and viscera of Haliotis contained DS1P and AGSP, while those of Volutharpa contained DS1P, AGSP as well as AAP. Monosaccharides in the acid hydrolysates were demonstrated in XICs by extracting their corresponding PMP derivative quasi-molecular ions one by one, and the results indicated the similar conclusion to the disaccharide analysis. Therefore, it could be concluded that polysaccharides from pleopods of the two gastropods are very similar, while those from their viscera and gonads differ greatly.

  14. Determination of 2-[N-[(S)-1-ethoxycarbonyl-3-phenylpropyl]-L-alanyl]-(1S,3S,5S)-2- azabicyclo[3.3.0]octane-3-carboxylic acid (Hoe 498) and its hydrolysis product in serum and urine.

    PubMed

    Hajdú, P; Schmidt, D; Bomm, M; Hack, L; Keller, A

    1984-01-01

    A highly sensitive and specific enzymatic assay for the quantitative determination of 2-[N-[(S)-1-ethoxycarbonyl-3-phenylpropyl]-L-alanyl]-(1S,3S, 5S)-2-azabicyclo[3.3.0]octane-3-carboxylic acid (Hoe 498) and its hydrolysis product Hoe 498-diacid in serum and a GLC method for the simultaneous determination of both compounds in urine are described. Both methods involve extraction from the respective biological fluid using disposable C 18 columns. In serum, the enzyme-inhibiting properties of Hoe 498-diacid (Hoe 498 can readily be converted to its hydrolysis product) are utilized for the determination of both compounds concurrently. The serum extract is dissolved in buffer solution and incubated with human serum as angiotensin converting enzyme (peptidyl-dipeptide-hydrolase, EC 3.4.15.1) source and hip-his-leu substrate. The hippuric acid liberated is quantitated by HPLC. The urine extract is treated with diazomethane followed by trifluoroacetic anhydride to convert Hoe 498 and Hoe 498-diacid to their methylester, trifluoroacetyl derivatives, which are then determined simultaneously by GLC using a nitrogen specific detector.

  15. Organic Acids Over Equatorial Africa: Results from DECAFE 88

    NASA Astrophysics Data System (ADS)

    Helas, Günter; Bingemer, Heinz; Andreae, Meinrat O.

    1992-04-01

    Gaseous short chain organic acids were measured during the dry season (February) in and above the rain forest of the northern Congo. Samples were taken at ground level and during several flights up to 4 km altitude. The organic acids were concentrated from the atmosphere by using "mist scrubbers," which expose a mist of deionized water to the air to be probed. The organic acids absorbed in the water were subsequently analyzed by ion chromatography. Formic, acetic, and pyruvic acids were identified in the samples. At ground level, average mixing ratios of gaseous formic and acetic acid of 0.5±0.6 and 0.6±0.7 parts per billion by volume (ppbv) (1 s), respectively, were found. Boundary layer mixing ratios, however, were significantly higher (3.7±1.0 and 2.7±0.9 ppbv). This indicates a downward net flux of these atmospheric trace components from the boundary layer to the surface. Free tropospheric samples taken above the cloud convection layer show lower mixing ratios again (0.9±0.3 and 0.7±0.1 ppbv). On the basis of this vertical distribution, direct emission by vegetation is not considered to be the dominant source. Biomass burning and photochemical oxidation of biogenic precursors are the major processes contributing to the enhancement of organic acids observed in the boundary layer. The organic acids parallel the profiles of ozone and CO, which suggests that their generation processes are closely related. Pyruvic acid is not correlated with formic acid, indicating that the oxidation of isoprene is not of major importance. In emissions from biomass fires, CO correlates well with formic and acetic acid, and thus some of the enhancement of organic acids in the boundary layer can be explained due to burning. However, an additional gas phase source for organic acids must exist to explain the observed ratio of formic to acetic acid. This is most likely the ozonolysis of olefins which were released as pyrolysis products from biomass burning.

  16. Emissions involved in acidic deposition processes: Methodology and results

    SciTech Connect

    Placet, M.

    1990-01-01

    Data on the emissions involved in atmospheric acid-base chemistry are crucial to the assessment of acidic deposition and its effects. Sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and volatile organic compounds (VOCs) are the primary chemical compounds involved in acidic deposition processes. In addition, other emission species -- e.g., ammonia, alkaline dust particles, hydrogen chloride, and hydrogen fluoride -- are involved in atmospheric acid-base chemistry, either by contributing acidic constituents or by neutralizing acidic species. Several emissions data bases have been developed under the auspices of the National Acid Precipitation Program (NAPAP). In addition to those developed by NAPAP, emissions data bases and emissions trends estimates also have been developed by organizations such as the Electric Power Research Institute (EPRI) and the U.S. Environmental Protection Agency (EPA). This paper briefly describes and compares the methods used in developing these emissions data bases and presents an overview of their emissions estimates. A more detailed discussion of these topics can be found in the State-of-Science Report on emissions recently released by NAPAP and in the references cited in that report. 14 refs., 4 figs., 1 tab.

  17. Intramolecular general acid catalysis of the hydrolysis of 2-(2'-imidazolium)phenyl phosphate, and bond length-reactivity correlations for reactions of phosphate monoester monoanions.

    PubMed

    Brandão, Tiago A S; Orth, Elisa S; Rocha, Willian R; Bortoluzzi, Adailton J; Bunton, Clifford A; Nome, Faruk

    2007-05-11

    Rate constants for the hydrolysis of 2-(2'-imidazolium)phenyl hydrogen phosphate (IMPP) in water at pH<6 indicate that activation by the imidazolium moiety disappears with the deprotonation of the phosphate group, and the reaction involves the hydrogen-bonding of the imidazolium NH with the aryl oxygen leaving group. The reaction should involve a near-planar conformation of the imidazolium and the phenyl groups in the activated complex, which favors proton-transfer. The crystal structure of IMPP was solved, and a bond length-reactivity correlation for reactions of phosphate monoester monoanions is described.

  18. Hippurate hydrolysis by Legionella pneumophila.

    PubMed Central

    Hébert, G A

    1981-01-01

    Strains of Legionella pneumophila were shown to hydrolyze sodium hippurate in an overnight test system, but strains of L. bozemanii, L. micdadei, L. dumoffii, and some other organisms similar to the legionellae did not. Although only a small number of strains of legionellae other than L. pneumophila have been classified and tested, the results indicate that the hippurate hydrolysis test may prove useful for differentiating among Legionella species. PMID:7462418

  19. Enzymatic saccharification of pretreated wheat straw: comparison of solids-recycling, sequential hydrolysis and batch hydrolysis.

    PubMed

    Pihlajaniemi, Ville; Sipponen, Satu; Sipponen, Mika H; Pastinen, Ossi; Laakso, Simo

    2014-02-01

    In the enzymatic hydrolysis of lignocellulose materials, the recycling of the solid residue has previously been considered within the context of enzyme recycling. In this study, a steady state investigation of a solids-recycling process was made with pretreated wheat straw and compared to sequential and batch hydrolysis at constant reaction times, substrate feed and liquid and enzyme consumption. Compared to batch hydrolysis, the recycling and sequential processes showed roughly equal hydrolysis yields, while the volumetric productivity was significantly increased. In the 72h process the improvement was 90% due to an increased reaction consistency, while the solids feed was 16% of the total process constituents. The improvement resulted primarily from product removal, which was equally efficient in solids-recycling and sequential hydrolysis processes. No evidence of accumulation of enzymes beyond the accumulation of the substrate was found in recycling. A mathematical model of solids-recycling was constructed, based on a geometrical series.

  20. Migration from plasticized films into foods. 6. Hydrolysis of polymeric plasticizers under simulated gastric and intestinal conditions.

    PubMed

    Castle, L; Nichol, J; Gilbert, J

    1993-01-01

    The polymeric plasticizers poly(butylene adipate) and poly(propylene adipate), and a low molecular weight oligomer fraction from each, were exposed in vitro to simulated gastric and intestinal hydrolysis in order to study their likely fate after ingestion of foods contaminated by migration from plastics packaging. Analysis for loss of the parent compounds indicated that partial hydrolysis occurred under simulated gastric conditions, with the low molecular weight oligomers being the most susceptible. Analysis for one of the starting materials, adipic acid, revealed however that the hydrolysis did not result in a significant conversion to free monomer under either simulated gastric or intestinal conditions. This is explained on the basis of partial hydrolysis of the plasticizers to smaller oligomer units but with the more resistant ester linkages resisting complete breakdown to monomer.

  1. Ultrasound-assisted hydrolysis and chemical derivatization combined to lab-on-valve solid-phase extraction for the determination of sialic acids in human biofluids by μ-liquid chromatography-laser induced fluorescence.

    PubMed

    Orozco-Solano, M I; Priego-Capote, F; Luque de Castro, M D

    2013-03-01

    The determination of sialic acids (SIAs) has recently gained interest because of their potential role as markers of inflammatory disorders or chronic diseases. Hydrolysis of conjugated derivatives, solid-phase extraction (SPE) and derivatization steps constitute sample preparation prior to insertion of the analytical sample into a μ-liquid chromatograph-laser induced fluorescence (μ-LC-LIF) detector in the present method for the determination of two representative SIAs of human metabolism. Ultrasound-accelerated hydrolysis released free SIAs, which were efficiently concentrated in a dynamic manner using a lab-on-valve (LOV) module that allows automation of SPE for preconcentration and cleanup. This step was on-line connected with DMB-labeling of SIAs (derivatization), which was shortened from 180 min required with the conventional heating method to 20min with ultrasound assistance. Individual separation of the target analytes was achieved within 20 min by μ-LC, while LIF detection endowed the overall method with high sensitivity. The LODs and LOQs provided by the method ranged 0.1-0.8 ng mL(-1) and 0.4-1.0 ng mL(-1) (between 0.1-0.8 pg and 0.4-1.0 pg expressed as on-column amount), respectively. High efficiency for interferents removal by SPE enabled the application of the method to four different biofluids-serum, urine, saliva and breast milk-for the determination of the target metabolites.

  2. Ultrasound-assisted hydrolysis and chemical derivatization combined to lab-on-valve solid-phase extraction for the determination of sialic acids in human biofluids by μ-liquid chromatography-laser induced fluorescence.

    PubMed

    Orozco-Solano, M I; Priego-Capote, F; Luque de Castro, M D

    2013-03-01

    The determination of sialic acids (SIAs) has recently gained interest because of their potential role as markers of inflammatory disorders or chronic diseases. Hydrolysis of conjugated derivatives, solid-phase extraction (SPE) and derivatization steps constitute sample preparation prior to insertion of the analytical sample into a μ-liquid chromatograph-laser induced fluorescence (μ-LC-LIF) detector in the present method for the determination of two representative SIAs of human metabolism. Ultrasound-accelerated hydrolysis released free SIAs, which were efficiently concentrated in a dynamic manner using a lab-on-valve (LOV) module that allows automation of SPE for preconcentration and cleanup. This step was on-line connected with DMB-labeling of SIAs (derivatization), which was shortened from 180 min required with the conventional heating method to 20min with ultrasound assistance. Individual separation of the target analytes was achieved within 20 min by μ-LC, while LIF detection endowed the overall method with high sensitivity. The LODs and LOQs provided by the method ranged 0.1-0.8 ng mL(-1) and 0.4-1.0 ng mL(-1) (between 0.1-0.8 pg and 0.4-1.0 pg expressed as on-column amount), respectively. High efficiency for interferents removal by SPE enabled the application of the method to four different biofluids-serum, urine, saliva and breast milk-for the determination of the target metabolites. PMID:23427802

  3. A Series of α-Amino Acid Ester Prodrugs of Camptothecin: In vitro Hydrolysis and A549 Human Lung Carcinoma Cell Cytotoxicity

    PubMed Central

    Deshmukh, Manjeet; Chao, Piyun; Kutscher, Hilliard L.; Gao, Dayuan; Sinko, Patrick J.

    2013-01-01

    The objective of the present study was to identify a camptothecin (CPT) prodrug with optimal release and cytotoxicity properties for immobilization on a passively targeted microparticle delivery system. A series of α-amino acid ester prodrugs of CPT were synthesized, characterized and evaluated. Four CPT prodrugs were synthesized with increasing aliphatic chain length (glycine (Gly) (2a), alanine (Ala) (2b), aminobutyric acid (Abu) (2c) and norvaline (Nva) (2d)). Prodrug reconversion was studied at pH 6.6, 7.0 and 7.4 corresponding to tumor, lung and extracellular/physiological pH, respectively. Cytotoxicity was evaluated in A549 human lung carcinoma cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The hydrolytic reconversion rate to parent CPT increased with decreasing side chain length as well as increasing pH. The Hill slope of 2d was significantly less than CPT and the other prodrugs tested, indicating a higher cell death rate at lower concentrations. These results suggest that 2d is the best candidate for a passively targeted sustained release lung delivery system. PMID:20063889

  4. Sonolytic hydrolysis of peptides in aqueous solution upon addition of catechol.

    PubMed

    Sakakura, M; Takayama, M

    2009-03-01

    The sonolytic hydrolysis of peptides with addition of phenolic reagents to aqueous solutions is described. Sonolysis of an aqueous solution of peptides to which catechol (o-dihydroxybenzene) had been added resulted in hydrolytic products reflecting the amino acid sequence without any side reactions, while sonolysis without any additives resulted in oxidation analytes and degradation products caused by side reactions. Although the use of additives such as resorcinol (m-dihydroxybenzene), hydroquinone (p-dihydroxybenzene) and phenol was also effective in producing sequence related products, several degradation products were produced by side reactions. A characteristic of the sonolysis of peptides is that the N-terminal side of proline, Xxx-Pro, is more susceptible than other amino acid residues to the process. This characteristic of sonolysis is superior to that of acid hydrolysis in which cleavage at the C-terminal side of proline, Pro-Xxx is difficult, and where dehydration products result due to side reactions.

  5. Gas dilution system results and application to acid rain utilities

    SciTech Connect

    Jolley-Souders, K.; Geib, R.; Dunn, C.

    1997-12-31

    In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.

  6. delta 13C analyses of vegetable oil fatty acid components, determined by gas chromatography--combustion--isotope ratio mass spectrometry, after saponification or regiospecific hydrolysis.

    PubMed

    Woodbury, S E; Evershed, R P; Rossell, J B

    1998-05-01

    The delta 13C values of the major fatty acids of several different commercially important vegetable oils were measured by gas chromatography--combustion--isotope ratio mass spectrometry. The delta 13C values obtained were found to fall into two distinct groups, representing the C3 and C4 plants classes from which the oils were derived. The delta 13C values of the oils were measured by continuous flow elemental isotope ratio mass spectrometry and were found to be similar to their fatty acids, with slight differences between individual fatty acids. Investigations were then made into the influence on the delta 13C values of fatty acids of the position occupied on the glycerol backbone. Pancreatic lipase was employed to selectively hydrolyse fatty acids from the 1- and 3-positions with the progress of the reaction being followed by high-temperature gas chromatography in order to determine the optimum incubation time. The 2-monoacylglycerols were then isolated by thin-layer chromatography and fatty acid methyl esters prepared. The delta 13C values obtained indicate that fatty acids from any position on the glycerol backbone are isotopically identical. Thus, whilst quantification of fatty acid composition at the 2-position and measurement of delta 13C values of oils and their major fatty acids are useful criteria in edible oil purity assessment, measurement of delta 13C values of fatty acids from the 2-position does not assist with oil purity assignments.

  7. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    PubMed

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run.

  8. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    PubMed

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. PMID:27233094

  9. Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose.

    PubMed

    Zhou, Lipeng; Liu, Zhen; Shi, Meiting; Du, Shanshan; Su, Yunlai; Yang, Xiaomei; Xu, Jie

    2013-10-15

    Sulfonated hierarchical H-USY zeolite was prepared and characterized by X-ray diffraction, N2 physisorption, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectroscopy, temperature-programmed desorption of ammonia, and acid-base titration. It was proved that sulfonic group was successfully anchored onto the hierarchical H-USY zeolite. The acidity of the hierarchical H-USY was remarkably improved. Sulfonated hierarchical H-USY zeolite was efficient for the hydrolysis of hemicellulose and cellulose. The yield of TRS for hydrolysis of hemicellulose reached 78.0% at 140 °C for 9h. For hydrolysis of α-cellulose, 60.8% conversion with 22.4% yield of glucose was obtained. Even for microcrystalline cellulose, 43.7% conversion with 15.1% yield of glucose can be obtained. These results are much higher than those obtained over hierarchical H-USY zeolite, indicating that both the acidity and the pore structure determine the activity of zeolite as catalyst in the hydrolysis of biomass. PMID:23987328

  10. Fatty Acids Present in the Lipopolysaccharide of Rhizobium trifolii

    PubMed Central

    Russa, R.; Lorkiewicz, Z.

    1974-01-01

    Approximately 70% of the fatty acids recovered after acid or alkaline hydrolysis of the lipopolysaccharide of Rhizobium trifolii were hydroxy fatty acids identified as hydroxymyristic and hydroxypalmitic acids. Palmitic acid was the only saturated fatty acid found in the lipopolysaccharide of R. trifolii. Octadecenoic and a small amount of hexadecenoic acids were also identified. The results of BF3 methanolysis and hydroxylaminolysis suggest that hydroxypalmitic acid is N-acyl bound. PMID:4852028

  11. Hydrolysis of lactose in whey permeate for subsequent fermentation to ethanol.

    PubMed

    Coté, A; Brown, W A; Cameron, D; van Walsum, G P

    2004-06-01

    Fermentation of lactose in whey permeate directly into ethanol has had only limited commercial success, as the yields and alcohol tolerances of the organisms capable of directly fermenting lactose are low. This study proposes an alternative strategy: treat the permeate with acid to liberate monomeric sugars that are readily fermented into ethanol. We identified optimum hydrolysis conditions that yield mostly monomeric sugars and limit formation of fermentation inhibitors such as hydroxymethyl furfural by caramelization reactions. Both lactose solutions and commercial whey permeates were hydrolyzed using inorganic acids and carbonic acid. In all cases, more glucose was consumed by secondary reactions than galactose. Galactose was recovered in approximately stoichiometric proportions. Whey permeate has substantial buffering capacity-even at high partial pressures (>5500 kPa[g]), carbon dioxide had little effect on the pH in whey permeate solutions. The elevated temperatures required for hydrolysis with CO2-generated inhibitory compounds through caramelization reactions. For these reasons, carbon dioxide was not a feasible acidulant. With mineral acids reversion reactions dominated, resulting in a stable amount of glucose released. However, the Maillard browning reactions also appeared to be involved. By applying Hammet's acidity function, kinetic data from all experiments were described by a single line. With concentrated inorganic acids, low reaction temperatures allowed lactose hydrolysis with minimal by-product formation and generated a hexose-rich solution amenable to fermentation. PMID:15453474

  12. Lysosomal Cholesterol Accumulation Inhibits Subsequent Hydrolysis Of Lipoprotein Cholesteryl Ester

    PubMed Central

    Jerome, W. Gray; Cox, Brian E.; Griffin, Evelyn E.; Ullery, Jody C.

    2010-01-01

    Human macrophages incubated for prolonged periods with mildly oxidized LDL (oxLDL) or cholesteryl ester-rich lipid dispersions (DISP) accumulate free and esterified cholesterol within large, swollen lysosomes similar to those in foam cells of atherosclerosis. The cholesteryl ester (CE) accumulation is, in part, the result of inhibition of lysosomal hydrolysis due to increased lysosomal pH mediated by excessive lysosomal free cholesterol (FC). To determine if the inhibition of hydrolysis was long lived and further define the extent of the lysosomal defect, we incubated THP-1 macrophages with oxLDL or DISP to produce lysosome sterol engorgement and then chased with acetylated LDL (acLDL). Unlike oxLDL or DISP, CE from acLDL normally is hydrolyzed rapidly. Three days of incubation with oxLDL or DISP produced an excess of CE in lipid-engorged lysosomes, indicative of inhibition. After prolonged oxLDL or DISP pretreatment, subsequent hydrolysis of acLDL CE was inhibited. Coincident with the inhibition, the lipid-engorged lysosomes failed to maintain an acidic pH during both the initial pretreatment and subsequent acLDL incubation. This indicates that the alterations in lysosomes were general, long-lived and affected subsequent lipoprotein metabolism. This same phenomenon, occurring within atherosclerotic foam cells, could significantly affect lesion progression. PMID:18312718

  13. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass

    SciTech Connect

    Inoue, Hiroyuki; Decker, Stephen R.; Taylor, Larry E.; Yano, Shinichi; Sawayama, Shigeki

    2014-10-09

    Background: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. Results: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysis of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. In Conclusion: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A and

  14. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  15. Excellent amino acid racemization results from Holocene sand dollars

    NASA Astrophysics Data System (ADS)

    Kosnik, M.; Kaufman, D. S.; Kowalewski, M.; Whitacre, K.

    2015-12-01

    Amino acid racemization (AAR) is widely used as a cost-effective method to date molluscs in time-averaging and taphonomic studies, but it has not been attempted for echinoderms despite their paleobiological importance. Here we demonstrate the feasibility of AAR geochronology in Holocene aged Peronella peronii (Echinodermata: Echinoidea) collected from Sydney Harbour (Australia). Using standard HPLC methods we determined the extent of AAR in 74 Peronella tests and performed replicate analyses on 18 tests. We sampled multiple areas of two individuals and identified the outer edge as a good sampling location. Multiple replicate analyses from the outer edge of 18 tests spanning the observed range of D/Ls yielded median coefficients of variation < 4% for Asp, Phe, Ala, and Glu D/L values, which overlaps with the analytical precision. Correlations between D/L values across 155 HPLC injections sampled from 74 individuals are also very high (pearson r2 > 0.95) for these four amino acids. The ages of 11 individuals spanning the observed range of D/L values were determined using 14C analyses, and Bayesian model averaging was used to determine the best AAR age model. The averaged age model was mainly composed of time-dependent reaction kinetics models (TDK, 71%) based on phenylalanine (Phe, 94%). Modelled ages ranged from 14 to 5539 yrs, and the median 95% confidence interval for the 74 analysed individuals is ±28% of the modelled age. In comparison, the median 95% confidence interval for the 11 calibrated 14C ages was ±9% of the median age estimate. Overall Peronella yields exceptionally high-quality AAR D/L values and appears to be an excellent substrate for AAR geochronology. This work opens the way for time-averaging and taphonomic studies of echinoderms similar to those in molluscs.

  16. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  17. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes.

    PubMed

    Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2014-08-01

    In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion.

  18. Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification.

    PubMed

    Avci, Ayse; Saha, Badal C; Kennedy, Gregory J; Cotta, Michael A

    2013-08-01

    A pretreatment strategy for dilute H2SO4 pretreatment of corn stover was developed for the purpose of reducing the generation of inhibitory substances during pretreatment so that a detoxification step is not required prior to fermentation while maximizing sugar yield. The optimal conditions for pretreatment of corn stover (10%, w/v) were: 0.75% H2SO4, 160°C, and 0-5 min holding time. The conditions were chosen based on maximum glucose release after enzymatic hydrolysis, minimum loss of pentose sugars and minimum formation of sugar degradation products such as furfural and hydroxymethyl furfural. The pretreated corn stover after enzymatic saccharification generated 63.2 ± 2.2 and 63.7 ± 2.3 g total sugars per L at 0 and 5 min holding time, respectively. Furfural production was 0.45 ± 0.1 and 0.87 ± 0.4 g/L, respectively. The recombinant Escherichia coli strain FBR5 efficiently fermented non-detoxified corn stover hydrolyzate if the furfural content is <0.5 g/L.

  19. Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols.

    PubMed

    Oliva-Taravilla, Alfredo; Tomás-Pejó, Elia; Demuez, Marie; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-01-01

    The presence of inhibitors compounds after pretreatment of lignocellulosic materials affects the saccharification and fermentation steps in bioethanol production processes. Even though, external addition of laccases selectively removes the phenolic compounds from lignocellulosic prehydrolysates, when it is coupled to saccharification step, lower hydrolysis yields are attained. Vanillin, syringaldehyde and ferulic acid are phenolic compounds commonly found in wheat-straw prehydrolysate after steam-explosion pretreatment. These three phenolic compounds were used in this study to elucidate the inhibitory mechanisms of laccase-derived compounds after laccase treatment. Reaction products derived from laccase oxidation of vanillin and syringaldehyde showed to be the strongest inhibitors. The presence of these products causes a decrement on enzymatic hydrolysis yield of a model cellulosic substrate (Sigmacell) of 46.6 and 32.6%, respectively at 24 h. Moreover, a decrease in more than 50% of cellulase and β-glucosidase activities was observed in presence of laccase and vanillin. This effect was attributed to coupling reactions between phenoxyl radicals and enzymes. On the other hand, when the hydrolysis of Sigmacell was performed in presence of prehydrolysate from steam-exploded wheat straw a significant inhibition on enzymatic hydrolysis was observed independently of laccase treatment. This result pointed out that the other components of wheat-straw prehydrolysate are affecting the enzymatic hydrolysis to a higher extent than the possible laccase-derived products.

  20. Hydrolysis of vegetable oils in sub- and supercritical water

    SciTech Connect

    Holliday, R.L.; King, J.W.; List, G.R.

    1997-03-01

    Water, in its subcritical state, can be used as both a solvent and reactant for the hydrolysis of triglycerides. In this study, soybean, linseed, and coconut oils were successfully and reproducibly hydrolyzed to free fatty acids with water at a density of 0.7 g/mL and temperatures of 260--280 C. Under these conditions the reaction proceeds quickly, with conversion of greater than 97% after 15--20 min. Some geometric isomerization of the linolenic acids was observed at reaction temperatures as low as 250 C. Reactions carried out at higher temperatures and pressures, up to the critical point of water, produced either/or degradation, pyrolysis, and polymerization, of the oils and resultant fatty acids.

  1. Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics.

    PubMed

    Shin, Junhwa; Shum, Pochi; Grey, Jessica; Fujiwara, Shin-ichi; Malhotra, Guarov S; González-Bonet, Andres; Hyun, Seok-Hee; Moase, Elaine; Allen, Theresa M; Thompson, David H

    2012-11-01

    A family of 3-methoxypoly(ethylene glycol)-vinyl ether-1,2-dioleylglycerol (mPEG-VE-DOG) lipopolymer conjugates, designed on the basis of DFT calculations to possess a wide range of proton affinities, was synthesized and tested for their hydrolysis kinetics in neutral and acidic buffers. Extruded ∼100 nm liposomes containing these constructs in ≥90 mol % 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) produced dispersions that retained their calcein cargo for more than 2 days at pH 7.5, but released the encapsulated contents over a wide range of time scales as a function of the electronic properties of the vinyl ether linkage, the solution pH, and the mPEG-VE-DOG composition in the membrane. The in vivo performance of two different 90:10 DOPE:mPEG-VE-DOG compositions was also evaluated for blood circulation time and biodistribution in mice, using (125)I-tyraminylinulin as a label. The pharmacokinetic profiles gave a t(1/2) of 7 and 3 h for 90:10 DOPE:ST302 and 90:10 DOPE:ST502, respectively, with the liposomes being cleared predominantly by liver and spleen uptake. The behavior of these DOPE:mPEG-VE-DOG formulations is consistent with their relative rates of vinyl ether hydrolysis, i.e., the more acid-sensitive mPEG-VE-DOG derivatives produced faster leakage rates from DOPE:mPEG-VE-DOG liposomes, but decreased the blood circulation times in mice. These findings suggest that the vinyl ether-based PEG-lipid derivatives are promising agents for stabilizing acid-sensitive DOPE liposomes to produce formulations with a priori control over their pH responsiveness in vitro. Our data also suggest, however, that the same factors that contribute to enhanced acid sensitivity of the DOPE:mPEG-VE-DOG dispersions are also likely responsible for their reduced pharmacokinetic profiles. PMID:23030381

  2. Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics.

    PubMed

    Shin, Junhwa; Shum, Pochi; Grey, Jessica; Fujiwara, Shin-ichi; Malhotra, Guarov S; González-Bonet, Andres; Hyun, Seok-Hee; Moase, Elaine; Allen, Theresa M; Thompson, David H

    2012-11-01

    A family of 3-methoxypoly(ethylene glycol)-vinyl ether-1,2-dioleylglycerol (mPEG-VE-DOG) lipopolymer conjugates, designed on the basis of DFT calculations to possess a wide range of proton affinities, was synthesized and tested for their hydrolysis kinetics in neutral and acidic buffers. Extruded ∼100 nm liposomes containing these constructs in ≥90 mol % 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) produced dispersions that retained their calcein cargo for more than 2 days at pH 7.5, but released the encapsulated contents over a wide range of time scales as a function of the electronic properties of the vinyl ether linkage, the solution pH, and the mPEG-VE-DOG composition in the membrane. The in vivo performance of two different 90:10 DOPE:mPEG-VE-DOG compositions was also evaluated for blood circulation time and biodistribution in mice, using (125)I-tyraminylinulin as a label. The pharmacokinetic profiles gave a t(1/2) of 7 and 3 h for 90:10 DOPE:ST302 and 90:10 DOPE:ST502, respectively, with the liposomes being cleared predominantly by liver and spleen uptake. The behavior of these DOPE:mPEG-VE-DOG formulations is consistent with their relative rates of vinyl ether hydrolysis, i.e., the more acid-sensitive mPEG-VE-DOG derivatives produced faster leakage rates from DOPE:mPEG-VE-DOG liposomes, but decreased the blood circulation times in mice. These findings suggest that the vinyl ether-based PEG-lipid derivatives are promising agents for stabilizing acid-sensitive DOPE liposomes to produce formulations with a priori control over their pH responsiveness in vitro. Our data also suggest, however, that the same factors that contribute to enhanced acid sensitivity of the DOPE:mPEG-VE-DOG dispersions are also likely responsible for their reduced pharmacokinetic profiles.

  3. Epidemic based modeling of enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Arellano, Maria G; Keshwani, Deepak R

    2014-01-01

    An epidemic based model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, dilute sulfuric acid pretreated corn stover. The process of substrate getting adsorbed and digested by enzyme was simulated as susceptibles getting infected by viruses and becoming removed and recovered. This model simplified the dynamic enzyme "infection" process and the catalysis of cellulose into a two-parameter controlled, enzyme behavior guided mechanism. Furthermore, the model incorporates the adsorption block by lignin and inhibition effects on cellulose catalysis. The model satisfactorily predicted the enzyme adsorption and hydrolysis, negative role of lignin, and inhibition effects over hydrolysis for a broad range of substrate and enzyme loadings. Sensitivity analysis was performed to evaluate the incorporation of lignin and other inhibition effects. Our model will be a useful tool for evaluating the effects of parameters during hydrolysis and guide a design strategy for continuous hydrolysis and the associated process control.

  4. Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose.

    PubMed

    Zhou, Yan; Chen, Hongmei; Qi, Feng; Zhao, Xuebing; Liu, Dehua

    2015-04-01

    Non-ionic surfactants have been frequently reported to improve the enzymatic hydrolysis of pretreated lignocellulosic biomass and pure cellulose. However, how the hydrolysis condition, substrate structure and cellulase formulation affect the beneficial action of surfactants has not been well elucidated. In this work, it was found that the enzymatic hydrolysis of pure cellulose was not consistently improved by surfactants. Contrarily, high surfactant concentration, e.g. 5 g/L, which greatly improved the hydrolysis of dilute acid pretreated substrates, actually showed notable inhibition to pure cellulose conversion in the late phase of hydrolysis. Under an optimal hydrolysis condition, the improvement by surfactant was limited, but under harsh conditions surfactant indeed could enhance cellulose conversion. It was proposed that non-ionic surfactants could interact with substrates and cellulases to impact the adsorption behaviors of cellulases. Therefore, the beneficial action of surfactants on pure cellulose hydrolysis is influenced by hydrolysis condition, cellulose structural features and cellulase formulation.

  5. A dash of protons: A theoretical study on the hydrolysis mechanism of 1-substitued silatranes and their protonated analogs

    SciTech Connect

    Sok, Sarom; Gordon, Mark

    2011-08-17

    Ab initio calculations were carried out to study the hydrolysis mechanism of 1-substituted silatranes in the presence of an acid (acid-catalyzed) and an additional water (water-assisted). Compared with the neutral hydrolysis mechanism involving one water, use of an acid catalyst reduces the barrier associated with the rate-limiting step by approximate to 14 kcal/mol. A modest decrease of approximate to 5 kcal/mol is predicted when an additional water molecule is added to the neutral hydrolysis mechanism involving one water. The combination of an acid catalyst and an additional water molecule reduces the barrier by approximate to 27 kcal/mol. Bond order analysis suggests ring cleavage involving the bond breaking of a siloxane and silanol group during the neutral and acid-catalyzed hydrolysis of 1-substituted silatranes. respectively. Solvent effects, represented by the PCM continuum model, do not qualitatively alter computational gas-phase results. (C) 2011 Elsevier B.V. All rights reserved.

  6. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China.

    PubMed

    Zhou, Yingjun; Takaoka, Masaki; Wang, Wei; Liu, Xiao; Oshita, Kazuyuki

    2013-07-01

    Co-digestion of wasted sewage sludge, restaurant kitchen waste, and fruit-vegetable waste was carried out in a pilot plant with thermal hydrolysis pre-treatment. Steam was used as heat source for thermal hydrolysis. It was found 38.3% of volatile suspended solids were dissolved after thermal hydrolysis, with digestibility increased by 115%. These results were more significant than those from lab studies using electricity as heat source due to more uniform heating. Anaerobic digesters were then operated under organic loading rates of about 1.5 and 3 kg VS/(m³ d). Little difference was found for digesters with and without thermal pre-treatment in biogas production and volatile solids removal. However, when looking into the digestion process, it was found digestion rate was almost doubled after thermal hydrolysis. Digester was also more stable with thermal hydrolysis pre-treatment. Less volatile fatty acids (VFAs) were accumulated and the VFAs/alkalinity ratio was also lower. Batch experiments showed the lag phase can be eliminated by thermal pre-treatment, implying the advantage could be more significant under a shorter hydraulic retention time. Moreover, it was estimated energy cost for thermal hydrolysis can be partly balanced by decreasing viscosity and improving dewaterability of the digestate.

  7. Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics.

    PubMed

    Zumstein, Michael Thomas; Kohler, Hans-Peter E; McNeill, Kristopher; Sander, Michael

    2016-01-01

    Cleavage of ester bonds by extracellular microbial hydrolases is considered a key step during the breakdown of biodegradable polyester materials in natural and engineered systems. Here we present a novel analytical approach for simultaneous detection of changes in the masses and rigidities of polyester thin films during enzymatic hydrolysis using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). In experiments with poly(butylene succinate) (PBS) and the lipase of Rhizopus oryzae (RoL), we detected complete hydrolysis of PBS thin films at pH 5 and 40 °C that proceeded through soft and water-rich film intermediates. Increasing the temperature from 20 to 40 °C resulted in a larger increase of the enzymatic hydrolysis rate of PBS than of nonpolymeric dibutyl adipate. This finding was ascribed to elevated accessibility of ester bonds to the catalytic site of RoL due to increasing polyester chain mobility. When the pH of the solution was changed from 5 to 7, initial hydrolysis rates were little affected, while a softer film intermediate that lead to incomplete film hydrolysis was formed. Hydrolysis dynamics of PBS, poly(butylene adipate), poly(lactic acid), and poly(ethylene terephthalate) in assays with RoL showed distinct differences that we attribute to differences in the polyester structure.

  8. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  9. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    SciTech Connect

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V. )

    1991-04-02

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in ({sup 3}H)glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 {mu}M sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.

  10. Assay of phenolic compounds from four species of Ber (Ziziphus mauritiana L.) Fruits: Comparision of three base hydrolysis procedure for quantification of total phenolic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study was undertaken to investigate the flavonoids profile in four species of ber (Ziziphus mauritiana Lamk) fruit and to compare various techniques for the analysis of total phenolic acids. The 12 flavonoids identified were quercetin 3-O-robinobioside, quercetin 3-O-rutinoside, querceti...

  11. 78 FR 34648 - Citric Acid and Certain Citrate Salts: Preliminary Results of Countervailing Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... International Trade Administration Citric Acid and Certain Citrate Salts: Preliminary Results of Countervailing... review of the countervailing duty (CVD) order on citric acid and citrate salts from the People's Republic... (202) 482-1503. Scope of the Order The merchandise subject to the order is citric acid and...

  12. Acid deposition in Maryland: Summary of results through 1989. Final report

    SciTech Connect

    DeMuro, J.; Bowman, M.; Maxwell, C.; Asante-Duah, D.; Meyers, S.

    1990-06-01

    The Chesapeake Bay Research and Monitoring Program coordinates Maryland's acid deposition research and reports research results annually. The report evaluates several major topic areas including transport and chemistry of acid deposition, its potential impacts on the State's streams and fish, possible impacts on terrestrial resources such as crops and forests and on materials, the ability of energy conservation programs to reduce emissions of acid-forming pollutants, and mitigation techniques for neutralizing acid waters.

  13. Acid deposition in Maryland: summary of results through 1988. Annual report

    SciTech Connect

    Not Available

    1989-01-01

    The Chesapeake Bay Research and Monitoring Program coordinates Maryland's acid-deposition research and reports research results annually. This report evaluates several major topic areas including transport and chemistry of acid deposition its potential impacts on the State's streams and fish, possible impacts on terrestrial resources such as crops and forests and on materials, the ability of energy conservation programs to reduce emissions of acid-forming pollutants, and mitigation techniques for neutralizing acid waters.

  14. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass

    DOE PAGES

    Inoue, Hiroyuki; Decker, Stephen R.; Taylor, Larry E.; Yano, Shinichi; Sawayama, Shigeki

    2014-10-09

    Background: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. Results: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysismore » of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. In Conclusion: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A

  15. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    NASA Technical Reports Server (NTRS)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  16. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose.

    PubMed

    Ko, Ja Kyong; Kim, Youngmi; Ximenes, Eduardo; Ladisch, Michael R

    2015-02-01

    Lignin, one of the major components of lignocellulosic biomass, plays an inhibitory role on the enzymatic hydrolysis of cellulose. This work examines the role of lignin in pretreated hardwood, where extents of cellulose hydrolysis decrease, rather than increase with increasing severity of liquid hot water pretreatment. Hardwood pretreated with liquid hot water at severities ranging from log Ro  = 8.25 to 12.51 resulted in 80-90% recovery of the initial lignin in the residual solids. The ratio of acid insoluble lignin (AIL) to acid soluble lignin (ASL) increased and the formation of spherical lignin droplets on the cell wall surface was observed as previously reported in the literature. When lignins were isolated from hardwoods pretreated at increasing severities and characterized based on glass transition temperature (Tg ), the Tg of isolated lignins was found to increase from 171 to 180°C as the severity increased from log Ro  = 10.44 to 12.51. The increase in Tg suggested that the condensation reactions of lignin molecules occurred during pretreatment and altered the lignin structure. The contribution of the changes in lignin properties to enzymatic hydrolysis were examined by carrying out Avicel hydrolysis in the presence of isolated lignins. Lignins derived from more severely pretreated hardwoods had higher Tg values and showed more pronounced inhibition of enzymatic hydrolysis.

  17. Formation of hydroxyapatite by hydrolysis of alpha-tricalcium phosphate

    NASA Astrophysics Data System (ADS)

    Durucan, Caner

    Low-temperature cement-type formation of hydroxyapatite [Ca10(PO4)6(OH)2 or HAp) has value in terms of developing synthetic compounds similar in compositions to those formed by natural mineralization of bone. Understanding the in vitro kinetics of formation of the synthetic composition could produce insights into developing hard tissue analogs. The kinetics and chemistry of cement-type formation of HAp by hydrolysis of particulate alpha-tricalcium phosphate (alpha-Ca 3(PO4)2 or alpha-TCP) were examined. In particular, the effects of reaction temperature, synthesis route, inorganic salt additives and presence of biodegradable polymers (poly(alpha-hydroxyl acids) on the hydrolysis rate and microstructural/mechanical properties of HAp were determined using the following analytical techniques: isothermal calorimetry, x-ray diffraction, scanning electron microscsopy (SEM), fourier transform infrared spectroscopy (FTIR), solution chemistry, diametrical compression and 3-point bending tests. For the phase-pure alpha-TCP/water system the complete reaction times and morphologies of the resultant HAp were found to be strongly dependent on reaction temperature over a range of 37°C to 56°C. Isothermal calorimetry analyses revealed a thermally activated hydrolysis mechanism, leading to higher reaction rates with an increase in hydrolysis temperature. The microstructure of the resultant HAp typically had entangled, flake-like morphology, with HAp formed at 37°C having a smaller crystalline size than that formed at 45°C and 56°C. The cement hardening contributed to entanglement at the microstructural level. In all cases the hydrated product was phase pure calcium-deficient hydroxyapatite [Ca10-x(HPO4) x(PO4)6-x(OH)2-x], and no other intermediates or by-products were formed through the complete transformation. According to the proposed kinetic model, a two-step mechanism was found to control the overall hydrolysis reaction and thereby HAp formation at 37°C. During the first

  18. Process Design Report for Wood Feedstock: Lignocellulosic Biomass to Ethanol Process Desing and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios

    SciTech Connect

    Wooley, Robert; Ruth, Mark; Sheehan, John; Ibsen, Kelly; Majdeski, Henry; Galves, Adrian

    1999-07-01

    The National Renewable Energy Laboratory (NREL) has undertaken a complete review and update of the process design and economic model for the biomass-to-ethanol process based on co-current dilute acid prehydrolysis, along with simultaneous saccharification (enzymatic) and co-fermentation. The process design includes the core technologies being researched by the U.S. Department of Energy (DOE): prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production.

  19. NITRO-HYDROLYSIS: AN ENERGY EFFICIENT SOURCE REDUCTION AND CHEMICAL PRODUCTION PROCESS FOR WASTEWATER TREATMENT PLANT BIOSOLIDS

    SciTech Connect

    Klasson, KT

    2003-03-10

    The nitro-hydrolysis process has been demonstrated in the laboratory in batch tests on one municipal waste stream. This project was designed to take the next step toward commercialization for both industrial and municipal wastewater treatment facility (WWTF) by demonstrating the feasibility of the process on a small scale. In addition, a 1-lb/hr continuous treatment system was constructed at University of Tennessee to treat the Kuwahee WWTF (Knoxville, TN) sludge in future work. The nitro-hydrolysis work was conducted at University of Tennessee in the Chemical Engineering Department and the gas and liquid analysis were performed at Oak Ridge National Laboratory. Nitro-hydrolysis of sludge proved a very efficient way of reducing sludge volume, producing a treated solution which contained unreacted solids (probably inorganics such as sand and silt) that settled quickly. Formic acid was one of the main organic acid products of reaction when larger quantities of nitric acid were used in the nitrolysis. When less nitric acid was used formic acid was initially produced but was later consumed in the reactions. The other major organic acid produced was acetic acid which doubled in concentration during the reaction when larger quantities of nitric acid were used. Propionic acid and butyric acid were not produced or consumed in these experiments. It is projected that the commercial use of nitro-hydrolysis at municipal wastewater treatment plants alone would result in a total estimated energy savings of greater than 20 trillion Btu/yr. A net reduction of 415,000 metric tons of biosolids per year would be realized and an estimated annual cost reduction of $122M/yr.

  20. Towards the design of organocatalysts for nerve agents remediation: The case of the active hydrolysis of DCNP (a Tabun mimic) catalyzed by simple amine-containing derivatives.

    PubMed

    Barba-Bon, Andrea; Martínez-Máñez, Ramón; Sancenón, Félix; Costero, Ana M; Gil, Salvador; Pérez-Pla, Francisco; Llopis, Elisa

    2015-11-15

    We report herein a study of the hydrolysis of Tabun mimic DCNP in the presence of different amines, aminoalcohols and glycols as potential suitable organocatalysts for DCNP degradation. Experiments were performed in CD3CN in the presence of 5% D2O, which is a suitable solvent mixture to follow the DCNP hydrolysis. These studies allowed the definition of different DCNP depletion paths, resulting in the formation of diethylphosphoric acid, tetraethylpyrophosphate and phosphoramide species as final products. Without organocatalysts, DCNP hydrolysis occurred mainly via an autocatalysis path. Addition of tertiary amines in sub-stoichiometric amounts largely enhanced DCNP depletion whereas non-tertiary polyamines reacted even faster. Glycols induced very slight increment in the DCNP hydrolysis, whereas DCNP hydrolysis increased sharply in the presence of certain aminoalcohols especially, 2-(2-aminoethylamino)ethanol. For the latter compound, DCNP depletion occurred ca. 80-fold faster than in the absence of organocatalysts. The kinetic studies revealed that DCNP hydrolysis in the presence of 2-(2-aminoethylamino)ethanol occurred via a catalytic process, in which the aminoalcohol was involved. DCNP hydrolysis generally depended strongly on the structure of the amine, and it was found that the presence of the OHCH2CH2N moiety in the organocatalyst structure seems important to induce a fast degradation of DCNP.

  1. Towards the design of organocatalysts for nerve agents remediation: The case of the active hydrolysis of DCNP (a Tabun mimic) catalyzed by simple amine-containing derivatives.

    PubMed

    Barba-Bon, Andrea; Martínez-Máñez, Ramón; Sancenón, Félix; Costero, Ana M; Gil, Salvador; Pérez-Pla, Francisco; Llopis, Elisa

    2015-11-15

    We report herein a study of the hydrolysis of Tabun mimic DCNP in the presence of different amines, aminoalcohols and glycols as potential suitable organocatalysts for DCNP degradation. Experiments were performed in CD3CN in the presence of 5% D2O, which is a suitable solvent mixture to follow the DCNP hydrolysis. These studies allowed the definition of different DCNP depletion paths, resulting in the formation of diethylphosphoric acid, tetraethylpyrophosphate and phosphoramide species as final products. Without organocatalysts, DCNP hydrolysis occurred mainly via an autocatalysis path. Addition of tertiary amines in sub-stoichiometric amounts largely enhanced DCNP depletion whereas non-tertiary polyamines reacted even faster. Glycols induced very slight increment in the DCNP hydrolysis, whereas DCNP hydrolysis increased sharply in the presence of certain aminoalcohols especially, 2-(2-aminoethylamino)ethanol. For the latter compound, DCNP depletion occurred ca. 80-fold faster than in the absence of organocatalysts. The kinetic studies revealed that DCNP hydrolysis in the presence of 2-(2-aminoethylamino)ethanol occurred via a catalytic process, in which the aminoalcohol was involved. DCNP hydrolysis generally depended strongly on the structure of the amine, and it was found that the presence of the OHCH2CH2N moiety in the organocatalyst structure seems important to induce a fast degradation of DCNP. PMID:26005922

  2. Use of an algal hydrolysate to improve enzymatic hydrolysis of anaerobically digested fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the use of acid hydrolyzed algae to enhance the enzymatic hydrolysis of cellulosic biomass. We first characterized wastewater-grown algal samples and determined the optimal conditions (acid concentration, reaction temperature, and reaction time) for algal hydrolysis using di...

  3. Enhanced Production of Phenolic Compounds from Pumpkin Leaves by Subcritical Water Hydrolysis

    PubMed Central

    Ko, Jeong-Yeon; Ko, Mi-Ok; Kim, Dong-Shin; Lim, Sang-Bin

    2016-01-01

    Enhanced production of individual phenolic compounds by subcritical water hydrolysis (SWH) of pumpkin leaves was investigated at various temperatures ranging from 100 to 220°C at 20 min and at various reaction times ranging from 10 to 50 min at 160°C. Caffeic acid, p-coumaric acid, ferulic acid, and gentisic acid were the major phenolic compounds in the hydrolysate of pumpkin leaves. All phenolic compounds except gentisic acid showed the highest yield at 160°C, but gentisic acid showed the highest yield at 180°C. The cumulative amount of individual phenolic compounds gradually increased by 48.1, 52.2, and 78.4 μg/g dry matter at 100°C, 120°C, and 140°C, respectively, and then greatly increased by 1,477.1 μg/g dry matter at 160°C. The yields of caffeic acid and ferulic acid showed peaks at 20 min, while those of cinnamic acid, p-coumaric acid, p-hydroxybenzoic acid, and procatechuic acid showed peaks at 30 min. Antioxidant activities such as 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power values gradually increased with hydrolysis temperature and ranged from 6.77 to 12.42 mg ascorbic acid equivalents/g dry matter and from 4.25 to 8.92 mmol Fe2+/100 g dry matter, respectively. Color L* and b* values gradually decreased as hydrolysis temperature increased from 100°C to 140°C. At high temperatures (160°C to 220°C), L* and b* values decreased suddenly. The a* value peaked at 160°C and then decreased as temperature increased from 160°C to 220°C. These results suggest that SWH of pumpkin leaves was strongly influenced by hydrolysis temperature and may enhanced the production of phenolic compounds and antioxidant activities. PMID:27390730

  4. Enhanced Production of Phenolic Compounds from Pumpkin Leaves by Subcritical Water Hydrolysis.

    PubMed

    Ko, Jeong-Yeon; Ko, Mi-Ok; Kim, Dong-Shin; Lim, Sang-Bin

    2016-06-01

    Enhanced production of individual phenolic compounds by subcritical water hydrolysis (SWH) of pumpkin leaves was investigated at various temperatures ranging from 100 to 220°C at 20 min and at various reaction times ranging from 10 to 50 min at 160°C. Caffeic acid, p-coumaric acid, ferulic acid, and gentisic acid were the major phenolic compounds in the hydrolysate of pumpkin leaves. All phenolic compounds except gentisic acid showed the highest yield at 160°C, but gentisic acid showed the highest yield at 180°C. The cumulative amount of individual phenolic compounds gradually increased by 48.1, 52.2, and 78.4 μg/g dry matter at 100°C, 120°C, and 140°C, respectively, and then greatly increased by 1,477.1 μg/g dry matter at 160°C. The yields of caffeic acid and ferulic acid showed peaks at 20 min, while those of cinnamic acid, p-coumaric acid, p-hydroxybenzoic acid, and procatechuic acid showed peaks at 30 min. Antioxidant activities such as 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power values gradually increased with hydrolysis temperature and ranged from 6.77 to 12.42 mg ascorbic acid equivalents/g dry matter and from 4.25 to 8.92 mmol Fe(2+)/100 g dry matter, respectively. Color L* and b* values gradually decreased as hydrolysis temperature increased from 100°C to 140°C. At high temperatures (160°C to 220°C), L* and b* values decreased suddenly. The a* value peaked at 160°C and then decreased as temperature increased from 160°C to 220°C. These results suggest that SWH of pumpkin leaves was strongly influenced by hydrolysis temperature and may enhanced the production of phenolic compounds and antioxidant activities. PMID:27390730

  5. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase.

    PubMed

    Chandak, Prakash G; Radovic, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fröhlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-06-25

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of lipid droplet-associated triacylglycerol (TG) in many tissues. Here, we demonstrate that Atgl(-/-) macrophages fail to efficiently hydrolyze cellular TG stores leading to decreased cellular FFA concentrations and concomitant accumulation of lipid droplets, even in the absence of exogenous lipid loading. The reduced availability of FFAs results in decreased cellular ATP concentrations and impaired phagocytosis suggesting that fatty acids must first go through a cycle of esterification and re-hydrolysis before they are available as energy substrate. Exogenously added glucose cannot fully compensate for the phagocytotic defect in Atgl(-/-) macrophages. Hence, phagocytosis was also decreased in vivo when Atgl(-/-) mice were challenged with bacterial particles. These findings imply that phagocytosis in macrophages depends on the availability of FFAs and that ATGL is required for their hydrolytic release from cellular TG stores. This novel mechanism links ATGL-mediated lipolysis to macrophage function in host defense and opens the way to explore possible roles of ATGL in immune response, inflammation, and atherosclerosis.

  6. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. PMID:27474618

  7. Improving the performance of enzymes in hydrolysis of high solids paper pulp derived from MSW

    PubMed Central

    2013-01-01

    Background The research aimed to improve the overall conversion efficiency of the CTec® family of enzymes by identifying factors that lead to inhibition and seeking methods to overcome these through process modification and manipulation. The starting material was pulp derived from municipal solid waste and processed in an industrial-scale washing plant. Results Analysis of the pulp by acid hydrolysis showed a ratio of 55 : 12 : 6 : 24 : 3 of glucan : xylan : araban/galactan/mannan : lignin : ash. At high total solids content (>18.5% TS) single-stage enzyme hydrolysis gave a maximum glucan conversion of 68%. It was found that two-stage hydrolysis could give higher conversion if sugar inhibition was removed by an intermediate fermentation step between hydrolysis stages. This, however, was not as effective as direct removal of the sugar products, including xylose, by washing of the residual pulp at pH 5. This improved the water availability and allowed reactivation of the pulp-bound enzymes. Inhibition of enzyme activity could further be alleviated by replenishment of β-glucosidase which was shown to be removed during the wash step. Conclusions The two-stage hydrolysis process developed could give an overall glucan conversion of 88%, with an average glucose concentration close to 8% in 4 days, thus providing an ideal starting point for ethanol fermentation with a likely yield of 4 wt%. This is a significant improvement over a single-step process. This hydrolysis configuration also provides the potential to recover the sugars associated with residual solids which are diluted when washing hydrolysed pulp. PMID:23885832

  8. Hydrolysis of phosphotriesters: a theoretical analysis of the enzymatic and solution mechanisms.

    PubMed

    López-Canut, Violeta; Ruiz-Pernía, J Javier; Castillo, Raquel; Moliner, Vicent; Tuñón, Iñaki

    2012-07-27

    A theoretical study on the alkaline hydrolysis of paraoxon, one of the most popular organophosphorus pesticides, in aqueous solution and in the active site of Pseudomonas diminuta phosphotriesterase (PTE) is presented. Simulations by means of hybrid quantum mechanics/molecular mechanics (QM/MM) potentials show that the hydrolysis of paraoxon takes place through an A(N)D(N) or associative mechanism both in solution and in the active site of PTE. The results correctly reproduce the magnitude of the activation free energies and can be used to rationalize the observed kinetic isotope effects (KIEs) for the hydrolysis of paraoxon in both media. Enzymatic hydrolysis of O,O-diethyl p-chlorophenyl phosphate, a phosphotriester having a leaving group with higher pK(a) than paraoxon, was also simulated. Hydrolysis of this phosphotriester by PTE follows a A(N)+D(N) mechanism with a pentacoordinate intermediate. Moreover, the leaving group of this new substrate coordinates to one of the zinc ions of the bimetallic active site in order to stabilize the large negative charge developed on the oxygen atom of the leaving group when the P-O bond is broken in the products state. To accommodate this new ligand in the coordination shell, carbamylated Lys169 must be displaced from one zinc ion to the other, which in turn affects the acidity of Asp301, a residue originally bound to the second zinc ion. This ability to displace some of the ligands of the coordination shell of the zinc centers would explain the promiscuity of this enzyme, which is capable of catalyzing hydrolysis of different substrate by means of different mechanisms. PMID:22745111

  9. Enzymatic hydrolysis of penicillin and in situ product separation in thermally induced reversible phase-separation of ionic liquids/water mixture.

    PubMed

    Mai, Ngoc Lan; Koo, Yoon-Mo

    2014-09-01

    Enzymatic hydrolysis of penicillin G to produce 6-aminopenicillanic acid, key intermediate for the production of semisynthetic β-lactam antibiotics, is one of the most relevant example of industrial implementation of biocatalysts. The hydrolysis reaction is traditionally carried out in aqueous buffer at pH 7.5-8. However, the aqueous rout exhibits several drawbacks in enzyme stability and product recovery. In this study, several ionic liquids (ILs) have been used as media for enzymatic hydrolysis of penicillin G. The results indicated that hydrophobic ILs/water two-phase system were good media for the reaction. In addition, a novel aqueous two-phase system based on the lower critical solution temperature type phase changes of amino acid based ILs/water mixture was developed for in situ penicillin G hydrolysis and product separation. For instance, hydrolysis yield of 87.13% was obtained in system containing 30 wt% [TBP][Tf-ILe] with pH control (pH 7.6). Since the phase-separation of this medium system can be reversible switched from single to two phases by slightly changing the solution temperature, enzymatic hydrolytic reaction and product recovery were more efficient than those of aqueous system. In addition, the ILs could be reused for at least 5 cycles without significant loss in hydrolysis efficiency. PMID:25039057

  10. Enzymatic hydrolysis of penicillin and in situ product separation in thermally induced reversible phase-separation of ionic liquids/water mixture.

    PubMed

    Mai, Ngoc Lan; Koo, Yoon-Mo

    2014-09-01

    Enzymatic hydrolysis of penicillin G to produce 6-aminopenicillanic acid, key intermediate for the production of semisynthetic β-lactam antibiotics, is one of the most relevant example of industrial implementation of biocatalysts. The hydrolysis reaction is traditionally carried out in aqueous buffer at pH 7.5-8. However, the aqueous rout exhibits several drawbacks in enzyme stability and product recovery. In this study, several ionic liquids (ILs) have been used as media for enzymatic hydrolysis of penicillin G. The results indicated that hydrophobic ILs/water two-phase system were good media for the reaction. In addition, a novel aqueous two-phase system based on the lower critical solution temperature type phase changes of amino acid based ILs/water mixture was developed for in situ penicillin G hydrolysis and product separation. For instance, hydrolysis yield of 87.13% was obtained in system containing 30 wt% [TBP][Tf-ILe] with pH control (pH 7.6). Since the phase-separation of this medium system can be reversible switched from single to two phases by slightly changing the solution temperature, enzymatic hydrolytic reaction and product recovery were more efficient than those of aqueous system. In addition, the ILs could be reused for at least 5 cycles without significant loss in hydrolysis efficiency.

  11. Enzymatic hydrolysis of poly(ethylene furanoate).

    PubMed

    Pellis, Alessandro; Haernvall, Karolina; Pichler, Christian M; Ghazaryan, Gagik; Breinbauer, Rolf; Guebitz, Georg M

    2016-10-10

    The urgency of producing new environmentally-friendly polyesters strongly enhanced the development of bio-based poly(ethylene furanoate) (PEF) as an alternative to plastics like poly(ethylene terephthalate) (PET) for applications that include food packaging, personal and home care containers and thermoforming equipment. In this study, PEF powders of various molecular weights (6, 10 and 40kDa) were synthetized and their susceptibility to enzymatic hydrolysis was investigated for the first time. According to LC/TOF-MS analysis, cutinase 1 from Thermobifida cellulosilytica liberated both 2,5-furandicarboxylic acid and oligomers of up to DP4. The enzyme preferentially hydrolyzed PEF with higher molecular weights but was active on all tested substrates. Mild enzymatic hydrolysis of PEF has a potential both for surface functionalization and monomers recycling. PMID:26854948

  12. Alkali hydrolysis of trinitrotoluene.

    PubMed

    Karasch, Christian; Popovic, Milan; Qasim, Mohamed; Bajpai, Rakesh K

    2002-01-01

    Data for alkali hydrolysis of 2,4,6-trinitrotoluene (TNT) in aqueous solution at pH 12.0 under static (pH-controlled) as well as dynamic (pH-uncontrolled) conditions are reported. The experiments were conducted at two different molar ratios of TNT to hydroxyl ions at room temperature. The TNT disappeared rapidly from the solution as a first-order reaction. The complete disappearance of aromatic structure from the aqueous solution within 24 h was confirmed by the ultraviolet-visible (UV-VIS) spectra of the samples. Cuvet experiments in a UV-VIS spectrophotometer demonstrated the formation of Meisenheimer complex, which slowly disappeared via formation of aromatic compounds with fewer nitro groups. The known metabolites of TNT were found to accumulate only in very small quantities in the liquid phase.

  13. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  14. Hydrolysis of Al3+ from constrained molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ikeda, Takashi; Hirata, Masaru; Kimura, Takaumi

    2006-02-01

    We investigated the hydrolysis reactions of Al3+ in AlCl3 aqueous solution using the constrained molecular dynamics based on the Car-Parrinello molecular-dynamics method. By employing the proton-aluminum coordination number as a reaction coordinate in the constrained molecular dynamics the deprotonation as well as dehydration processes are successfully realized. From our free-energy difference of ΔG0≃8.0kcalmol-1 the hydrolysis constant pKa1 is roughly estimated as 5.8, comparable to the literature value of 5.07. We show that the free-energy difference for the hydrolysis of Al3+ in acidic conditions is at least 4kcalmol-1 higher than that in neutral condition, indicating that the hydrolysis reaction is inhibited by the presence of excess protons located around the hydrated ion, in agreement with the change of the predominant species by pH.

  15. Utilization of waste cellulose. VI. Pretreatment of lignocellulosic materials with sodium hypochlorite and enzymatic hydrolysis by Trichoderma viride

    SciTech Connect

    David, C.; Fornasier, R.; Thiry, P.

    1985-10-01

    A pretreatment of lignocellulosic materials with sodium hypochlorite-hypochlorous acid at controlled pH (between 7 and 9) considerably increases the accessibility of the cellulosic part of the substrate to chemical and biochemical reactants. As a consequence, the yield and rate of the enzymatic hydrolysis to glucose is largely increased. Wheat straw and spruce sawdust have been investigated. The increase in accessibility is assigned to degradation and (or) detachment of the lignin network. The loss in cellulose and hemicellulose is not important, lignin being preferentially degraded under carefully controlled pH conditions. When applied to pure cellulose, the pretreatment decreases the yield of enzymatic hydrolysis; in the absence of lignin, oxidation of the anhydroglucose units is important and results in the inhibition of the enzymatic hydrolysis. 12 references.

  16. Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals.

    PubMed

    Teixeira, Ricardo Sposina Sobral; da Silva, Ayla Sant'Ana; Jang, Jae-Hyuk; Kim, Han-Woo; Ishikawa, Kazuhiko; Endo, Takashi; Lee, Seung-Hwan; Bon, Elba P S

    2015-09-01

    Cellulose nanocrystals (CNCs), a biomaterial with high added value, were obtained from pure cellulose, Eucalyptus holocellulose, unbleached Kraft pulp, and sugarcane bagasse, by fibrillating these biomass substrates using wet disk milling (WDM) followed by enzymatic hydrolysis using endoglucanase/β-glucosidase. The hydrolysis experiments were conducted using the commercial enzyme OptimashBG or a blend of Pyrococcus horikoshii endoglucanase and Pyrococcus furiosus β-glucosidase. The fibrillated materials and CNCs were analyzed by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and the specific surface area (SSA) was measured. WDM resulted in the formation of long and twisted microfibers of 1000-5000 nm in length and 4-35 nm in diameter, which were hydrolyzed into shorter and straighter CNCs of 500-1500 nm in length and 4-12 nm in diameter, with high cellulose crystallinity. Therefore, the CNC's aspect ratio was successfully adjusted by endoglucanases under mild reaction conditions, relative to the reported acidic hydrolysis method.

  17. Cellulose hydrolysis ability of a Clostridium thermocellum cellulosome containing small-size scaffolding protein CipA.

    PubMed

    Deng, Lan; Mori, Yutaka; Sermsathanaswadi, Junjarus; Apiwatanapiwat, Waraporn; Kosugi, Akihiko

    2015-10-20

    Mutant Clostridium thermocellum YM72 that produces small-size scaffolding protein CipA (ssCipA) was isolated from wild-type YM4. Sequencing of ssCipA revealed that two domains, cohesin 6 and cohesin 7, were not present. Cellulosome prepared from YM72 exhibited a significant reduction of hydrolysis ability on crystalline celluloses such as Sigmacell type-20 and cellulose from Halocynthia. To investigate this influence in vitro, artificial cellulosomes were assembled as recombinant CipA (rCipA) and ssCipA (rssCipA) using native free-cellulosomal subunits. The cellulosome assembled using rssCipA showed a 1.8-fold decrease in the hydrolysis of crystalline cellulose compared with that of rCipA. However, no significant differences in the hydrolysis of carboxymethylcellulose and acid-swollen cellulose were observed. One protein band was missing from the complex that was assembled using rssCipA (confirmed by native-PAGE). The missing protein was identified as CelJ, which is a major cellulosomal subunit. This suggests that insufficient cooperation of CelJ into the cellulosome results in the significant reduction of hydrolysis toward crystalline cellulose. These results indicate that cohesin 6 and 7 may be responsible for the cooperation of CelJ through cohesin and dockerin interactions, and adequate cooperation of CelJ into the cellulosome is important for significant hydrolysis of crystalline cellulose.

  18. Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.).

    PubMed

    Laohakunjit, Natta; Selamassakul, Orrapun; Kerdchoechuen, Orapin

    2014-09-01

    An enzymatic bromelain seaweed protein hydrolysate (eb-SWPH) was characterised as the precursor for thermally processed seafood flavour. Seaweed (Gracilaria fisheri) protein after agar extraction was hydrolysed using bromelain (enzyme activity=119,325 U/g) at 0-20% (w/w) for 0.5-24 h. Optimal hydrolysis conditions were determined using response surface methodology. The proposed model took into account the interaction effect of the enzyme concentration and hydrolysis time on the physicochemical properties and volatile components of eb-SWPH. The optimal hydrolysis conditions for the production of eb-SWPH were 10% bromelain for 3h, which resulted in a 38.15% yield and a 62.91% degree of hydrolysis value. Three free amino acids, arginine, lysine, and leucine, were abundant in the best hydrolysate. Ten volatile flavours of the best eb-SWPH were identified using gas chromatography/mass spectrometry. The predominant odourants were hexanal, hexanoic acid, nonanoic acid, and dihydroactinidiolide. The thermally processed seafood flavour produced from eb-SWPH exhibited a roasted seafood-like flavouring.

  19. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    PubMed Central

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649

  20. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.

    PubMed

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D; Williams, Daniel L; Magee, Timothy D; Kaeppler, Shawn M; de Leon, Natalia; Hodge, David B

    2015-07-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment.

  1. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method.

    PubMed

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-13

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg(-1) Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  2. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    PubMed Central

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-01-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134–57.500 gr ethanol kg−1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis. PMID:27291594

  3. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method.

    PubMed

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-01-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg(-1) Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis. PMID:27291594

  4. Enzymatic hydrolysis of starry triggerfish (Abalistes stellaris) muscle using liver proteinase from albacore tuna (Thunnus alalunga).

    PubMed

    Sripokar, P; Chaijan, M; Benjakul, S; Kishimura, H; Klomklao, S

    2016-02-01

    Proteinases from liver extract from albacore tuna (Thunnus alalunga) were used to produce protein hydrolysate from starry triggerfish (Abalistes stellaris) muscle. Hydrolysis conditions for preparing protein hydrolysate from starry triggerfish muscle were optimized. Enzyme level, reaction time and fish muscle/buffer ratio significantly affected the hydrolysis (p < 0.05). Optimum conditions for triggerfish muscle hydrolysis were 5.5 % liver extract, 40 min reaction time and fish muscle/buffer ratio of 1:3 (w/v). The freeze-dried protein hydrolysate was characterized with respect to chemical composition, amino acid composition and color. The product contained 91.73 % protein, 2.04 % lipid and 6.48 % ash. The protein hydrolysate exhibited high amount of essential amino acids (45.62 %). It was light yellow in color (L (*) = 82.94, a (*) = 0.84, b (*) = 22.83). The results indicate that the extract from liver of albacore tuna could be used to produce fish protein hydrolysate and protein hydrolysate from starry triggerfish muscle may potentially serve as a good source of desirable peptide and amino acids. PMID:27162384

  5. 78 FR 25699 - 1-Hydroxyethylidene-1, 1-Diphosphonic Acid From India: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... International Trade Administration 1-Hydroxyethylidene-1, 1-Diphosphonic Acid From India: Preliminary Results of... (the Department) is conducting an administrative review of the antidumping duty order on 1- hydroxyethylidene-1, 1-diphosphonic acid (HEDP) from India. The period of review (POR) is April 1, 2011,...

  6. 76 FR 34044 - Citric Acid and Certain Citrate Salts From Canada: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... Citrate Salts From Canada: Preliminary Results of Antidumping Duty Administrative Review, 76 FR 5782... The scope of this order includes all grades and granulation sizes of citric acid, sodium citrate, and.... The scope also includes blends of citric acid, sodium citrate, and potassium citrate; as well...

  7. 78 FR 34338 - Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ...: Antidumping Duty Orders, 74 FR 25703 (May 29, 2009) (Citric Acid Duty Orders). Methodology The Department has...: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003). Cash Deposit Requirements The following deposit... International Trade Administration Citric Acid and Certain Citrate Salts From Canada: Preliminary Results...

  8. Hydrolysis of organic esters at the mineral/water interface

    SciTech Connect

    Torrents, A.

    1992-01-01

    Organic esters are widely used as insecticides and are part of many commercial products and industrial processes. When these compounds are released into the environment, they contaminate natural resources. To assess their fate and transport it is important to explore degradation and retainment processes. Numerous previous studies have studied the role of adsorption in lowering pollutant concentration and retarding pollutant migration into soils. However, adsorption at the mineral/water interface also affects the mechanisms of degradation and reaction rates. This dissertation research focuses on the ability of metal oxides to catalyze ester hydrolysis and a reaction mechanism is proposed. Furthermore, the authors studied the role of natural occurring adsorbates on the reaction rates. The oxides used in this study are amorphous silica (SiO[sub 2]), [gamma]-aluminum oxide (Al[sub 2]O[sub 3]), anatase (TiO[sub 2]), and geothite (FeOOH). These either occur naturally, or are similar to naturally occurring surfaces. The capability of such oxides to catalyze ester hydrolysis was studied in batch reactors. The organic compounds investigated were carboxylic acid esters and organophosphate pesticides. The hydrolysis of several esters was catalyzed by the presence of oxide suspensions; the extent of catalysis was dependent on the ester structure, the metal oxide, and solution composition. Results suggest that catalysis for carboxylate esters occurs via a surface chelate formation between the carbonyl oxygen, a second donor group of the ester and the surface metal. The presence of organic co-solvents appears to diminish the catalytic effect. Inhibition of surface catalysis was also observed from specific adsorption of naturally occurring ions onto the oxide surface. Natural organic matter was also observed to influence surface catalysis. This research suggests that mineral surfaces may have a role in abiotic transformations of organic pollutants.

  9. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  10. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  11. A COMPUTATIONAL CHEMISTRY STUDY OF THE ENVIRONMENTALLY IMPORTANT ACID-CATALYZED HYDROLYSIS OF ATRAZINE AND RELATED 2-CHLORO-S-TRIAZINES

    EPA Science Inventory

    Many chlorine-containing pesticides, for example 2-chloro-s-triazines, are of great concern both environmentally and toxicologically. As a result, ascertaining or predicting the fate and transport of these compounds in soils and water is of current interest. Transformation pathwa...

  12. Synthesis of amino acids by the heating of formaldehyde and ammonia.

    PubMed

    Fox, S W; Windsor, C R

    1970-11-27

    The heating of formaldehyde and ammonia yields a product that, on hydrolysis, is converted into seven amino acids: aspartic acid, glutamic acid, serine, proline, valine, glycine, and alanine. Glycine is the predominant amino acid. Inasmuch as formaldehyde and ammonia have been identified as compounds in galactic clouds, these experimental results are interpreted in a cosmochemical and geochemical context.

  13. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers.

  14. Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine.

    PubMed

    Mukhametshina, Alsu R; Fedorenko, Svetlana V; Zueva, Irina V; Petrov, Konstantin A; Masson, Patrick; Nizameev, Irek R; Mustafina, Asiya R; Sinyashin, Oleg G

    2016-03-15

    This work highlights the H-function of Tb(III)-doped silica nanoparticles in aqueous solutions of acetic acid as a route to sense acetylcholinesterase-catalyzed hydrolysis of acetylcholine (ACh). The H-function results from H(+)-induced quenching of Tb(III)-centered luminescence due to protonation of Tb(III) complexes located close to silica/water interface. The H-function can be turned on/switched off by the concentration of complexes within core or nanoparticle shell zones, by the silica surface decoration and adsorption of both organic and inorganic cations on silica surface. Results indicate the optimal synthetic procedure for making nanoparticles capable of sensing acetic acid produced by enzymatic hydrolysis of acetylcholine. The H-function of nanoparticles was determined at various concentrations of ACh and AChE. The measurements show experimental conditions for fitting the H-function to Michaelis-Menten kinetics. Results confirm that reliable fluorescent monitoring AChE-catalyzed hydrolysis of ACh is possible through the H-function properties of Tb(III)-doped silica nanoparticles.

  15. Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine.

    PubMed

    Mukhametshina, Alsu R; Fedorenko, Svetlana V; Zueva, Irina V; Petrov, Konstantin A; Masson, Patrick; Nizameev, Irek R; Mustafina, Asiya R; Sinyashin, Oleg G

    2016-03-15

    This work highlights the H-function of Tb(III)-doped silica nanoparticles in aqueous solutions of acetic acid as a route to sense acetylcholinesterase-catalyzed hydrolysis of acetylcholine (ACh). The H-function results from H(+)-induced quenching of Tb(III)-centered luminescence due to protonation of Tb(III) complexes located close to silica/water interface. The H-function can be turned on/switched off by the concentration of complexes within core or nanoparticle shell zones, by the silica surface decoration and adsorption of both organic and inorganic cations on silica surface. Results indicate the optimal synthetic procedure for making nanoparticles capable of sensing acetic acid produced by enzymatic hydrolysis of acetylcholine. The H-function of nanoparticles was determined at various concentrations of ACh and AChE. The measurements show experimental conditions for fitting the H-function to Michaelis-Menten kinetics. Results confirm that reliable fluorescent monitoring AChE-catalyzed hydrolysis of ACh is possible through the H-function properties of Tb(III)-doped silica nanoparticles. PMID:26516688

  16. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues.

  17. Dose-limiting inhibition of acetylcholinesterase by ladostigil results from the rapid formation and fast hydrolysis of the drug-enzyme complex formed by its major metabolite, R-MCPAI.

    PubMed

    Moradov, Dorit; Finkin-Groner, Efrat; Bejar, Corina; Sunita, Priyashree; Schorer-Apelbaum, Donna; Barasch, Dinorah; Nemirovski, Alina; Cohen, Marganit; Weinstock, Marta

    2015-03-15

    Ladostigil is a pseudo reversible inhibitor of acetylcholinesterase (AChE) that differs from other carbamates in that the maximal enzyme inhibition obtainable does not exceed 50-55%. This could explain the low incidence of cholinergic adverse effects induced by ladostigil in rats and human subjects. The major metabolite, R-MCPAI is believed to be responsible for AChE inhibition by ladostigil in vivo. Therefore we determined whether the ceiling in AChE inhibition resulted from a limit in the metabolism of ladostigil to R-MCPAI by liver microsomal enzymes, or from the kinetics of enzyme inhibition by R-MCPAI. Ladostigil reduces TNF-α in lipopolysaccharide-activated microglia. In vivo, it may also reduce pro-inflammatory cytokines by inhibiting AChE and increasing the action of ACh on macrophages and splenic lymphocytes. We also assessed the contribution of AChE inhibition in the spleen of LPS-injected mice to the anti-inflammatory effect of ladostigil. As in other species, AChE inhibition by ladostigil in spleen, brain and plasma did not exceed 50-55%. Since levels of R-MCPAI increased with increasing doses of ladostigil we concluded that there was no dose or rate limitation of metabolism. The kinetics of enzyme inhibition by R-MCPAI are characterized by a rapid formation of the drug-enzyme complex and fast hydrolysis which limits the attainable degree of AChE inhibition. Ladostigil and its metabolites (1-100 nM) decreased TNF-α in lipopolysaccharide-activated macrophages. Ladostigil (5 and 10mg/kg) also reduced TNF-α in the spleen after injection of lipopolysaccharide in mice. However, AChE inhibition contributed to the anti-inflammatory effect only at a dose of 10mg/kg.

  18. Site- and species-specific hydrolysis rates of heroin.

    PubMed

    Szöcs, Levente; Orgován, Gábor; Tóth, Gergő; Kraszni, Márta; Gergó, Lajos; Hosztafi, Sándor; Noszál, Béla

    2016-06-30

    The hydroxide-catalyzed non-enzymatic, simultaneous and consecutive hydrolyses of diacetylmorphine (DAM, heroin) are quantified in terms of 10 site- and species-specific rate constants in connection with also 10 site- and species-specific acid-base equilibrium constants, comprising all the 12 coexisting species in solution. This characterization involves the major and minor decomposition pathways via 6-acetylmorphine and 3-acetylmorphine, respectively, and morphine, the final product. Hydrolysis has been found to be 18-120 times faster at site 3 than at site 6, depending on the status of the amino group and the rest of the molecule. Nitrogen protonation accelerates the hydrolysis 5-6 times at site 3 and slightly less at site 6. Hydrolysis rate constants are interpreted in terms of intramolecular inductive effects and the concomitant local electron densities. Hydrolysis fraction, a new physico-chemical parameter is introduced and determined to quantify the contribution of the individual microspecies to the overall hydrolysis. Hydrolysis fractions are depicted as a function of pH. PMID:27130543

  19. Fenofibric Acid Can Cause False-Positive Urine Methylenedioxymethamphetamine Immunoassay Results.

    PubMed

    Quesada, Loreto; Gomila, Isabel; Fe, Antonia; Servera, Miguel A; Yates, Christopher; Morell-Garcia, Daniel; Castanyer, Bartomeu; Barceló, Bernardino

    2015-01-01

    We present a false-positive result of ecstasy (3,4-methylenedioxy-NN-methylamphetamine) screening due to the therapeutic use of fenofibrate, an antihyperlipidemic drug. Our hypothesis was that the main metabolite of fenofibrate, fenofibric acid, was responsible for this cross-reactivity on a DRI(®) Ecstasy Assay, using a cut-off of 500 ng/mL. We estimated that the addition of 225 µg/mL pure fenofibric acid to blank urine would be sufficient to result in a positive DRI(®) Ecstasy Assay. The results obtained on the urine samples analyses of the patient show that the DRI(®) Ecstasy Assay resulted negative 2 days after discontinuing fenofibrate treatment, when the urine fenofibric acid concentration corrected by creatinine and determinated by gas chromatography-mass spectrometry was 20.3 µg/mg creatinine. The cross-reactivity data for fenofibric acid would seem to indicate that there was insufficient concentration of measured compound to account for the positive immunochemical results for ecstasy. This apparent discrepancy can be explained in several ways, one of them is that the β-glucuronidase-resistent fenofibric acid isomers are responsible. This process could explain the low recovery of free fenofibric acid when we use the developed method for its quantification in urine samples. Positive results on immunoassay screening must be considered presumptive until confirmation with another method based on a different principle, preferably gas chromatography-mass spectrometry or liquid chromatography-mass spectrometry.

  20. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.

    PubMed

    Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei

    2017-01-01

    In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics. PMID:27507440

  1. Comparative hydrolysis and fermentation of sugarcane and agave bagasse.

    PubMed

    Hernández-Salas, J M; Villa-Ramírez, M S; Veloz-Rendón, J S; Rivera-Hernández, K N; González-César, R A; Plascencia-Espinosa, M A; Trejo-Estrada, S R

    2009-02-01

    Sugarcane and agave bagasse samples were hydrolyzed with either mineral acids (HCl), commercial glucanases or a combined treatment consisting of alkaline delignification followed by enzymatic hydrolysis. Acid hydrolysis of sugar cane bagasse yielded a higher level of reducing sugars (37.21% for depithed bagasse and 35.37% for pith bagasse), when compared to metzal or metzontete (agave pinecone and leaves, 5.02% and 9.91%, respectively). An optimized enzyme formulation was used to process sugar cane bagasse, which contained Celluclast, Novozyme and Viscozyme L. From alkaline-enzymatic hydrolysis of sugarcane bagasse samples, a reduced level of reducing sugar yield was obtained (11-20%) compared to agave bagasse (12-58%). Selected hydrolyzates were fermented with a non-recombinant strain of Saccharomyces cerevisiae. Maximum alcohol yield by fermentation (32.6%) was obtained from the hydrolyzate of sugarcane depithed bagasse. Hydrolyzed agave waste residues provide an increased glucose decreased xylose product useful for biotechnological conversion.

  2. Comparison of four hippurate hydrolysis methods for identification of thermophilic Campylobacter spp.

    PubMed Central

    Morris, G K; el Sherbeeny, M R; Patton, C M; Kodaka, H; Lombard, G L; Edmonds, P; Hollis, D G; Brenner, D J

    1985-01-01

    The test for hippurate hydrolysis is critical for separation of Campylobacter jejuni and C. coli strains. Glycine and benzoic acid are formed when hippurate is hydrolyzed by C. jejuni. The test used in most laboratories is one of several variations of the ninhydrin tube test described by Hwang and Ederer (M. Hwang and G. M. Ederer, J. Clin. Microbiol. 1:114-115, 1975) for detection of glycine. We evaluated three modifications of the Hwang and Ederer method and the gas-liquid chromatographic (GLC) method described by Kodaka et al. (H. Kodaka, G. L. Lombard, and V. R. Dowell, Jr., J. Clin. Microbiol. 16:962-964, 1982) for detecting benzoic acid. Campylobacter strains comprised 22 C. jejuni, 11 C. coli, and 8 C. laridis strains. The species identification of each strain was confirmed by DNA relatedness. All strains of C. jejuni were positive and all strains of C. coli and C. laridis were negative by the GLC method for detecting hippurate hydrolysis, whereas three strains of C. jejuni gave negative or variable results in the tube tests. The GLC method is more sensitive than the tube methods for detecting hippurate hydrolysis and should be used on cultures yielding variable or questionable test results. PMID:3902875

  3. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco

    SciTech Connect

    Cahoon, E.B.; Shanklin, J.; Ohlrogge, J.B. )

    1992-12-01

    Little is known about the metabolic origin of petroselinic acid (18:1[Delta][sup 6cis]), the principal fatty acid of the seed oil of most Umbelliferae, Araliaceae, and Garryaceae species. To examine the possibility that petroselinic acid is the product of an acyl-acyl carrier protein (ACP) desaturase, Western blots of coriander and other Umbelliferae seed extracts were probed with antibodies against the [Delta][sup 9]-stearoyl-ACP desaturase of avocado. In these extracts, proteins of 39 and 36 kDa were detected. Of these, only the 36-kDa peptide was specific to tissues which synthesize petroselinic acid. A cDNA encoding the 36-kDa peptide was isolated from a coriander endosperm cDNA library, placed under control of the cauliflower mosaic virus 35S promoter, and introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Expression of this cDNA in transgenic tobacco callus was accompanied by the accumulation of petroselinic acid and [Delta][sup 4]-hexadecenoic acid, both of which were absent from control callus. These results demonstrate the involvement of a 36-kDa putative acyl-ACP desaturase in the biosynthetic pathway of petroselinic acid and the ability to produce fatty acids of unusual structure in transgenic plants by the expression of the gene for this desaturase. 27 refs., 5 figs.

  4. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco.

    PubMed

    Cahoon, E B; Shanklin, J; Ohlrogge, J B

    1992-12-01

    Little is known about the metabolic origin of petroselinic acid (18:1 delta 6cis), the principal fatty acid of the seed oil of most Umbelliferae, Araliaceae, and Garryaceae species. To examine the possibility that petroselinic acid is the product of an acyl-acyl carrier protein (ACP) desaturase, Western blots of coriander and other Umbelliferae seed extracts were probed with antibodies against the delta 9-stearoyl-ACP desaturase of avocado. In these extracts, proteins of 39 and 36 kDa were detected. Of these, only the 36-kDa peptide was specific to tissues which synthesize petroselinic acid. A cDNA encoding the 36-kDa peptide was isolated from a coriander endosperm cDNA library, placed under control of the cauliflower mosaic virus 35S promoter, and introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Expression of this cDNA in transgenic tobacco callus was accompanied by the accumulation of petroselinic acid and delta 4-hexadecenoic acid, both of which were absent from control callus. These results demonstrate the involvement of a 36-kDa putative acyl-ACP desaturase in the biosynthetic pathway of petroselinic acid and the ability to produce fatty acids of unusual structure in transgenic plants by the expression of the gene for this desaturase.

  5. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco.

    PubMed Central

    Cahoon, E B; Shanklin, J; Ohlrogge, J B

    1992-01-01

    Little is known about the metabolic origin of petroselinic acid (18:1 delta 6cis), the principal fatty acid of the seed oil of most Umbelliferae, Araliaceae, and Garryaceae species. To examine the possibility that petroselinic acid is the product of an acyl-acyl carrier protein (ACP) desaturase, Western blots of coriander and other Umbelliferae seed extracts were probed with antibodies against the delta 9-stearoyl-ACP desaturase of avocado. In these extracts, proteins of 39 and 36 kDa were detected. Of these, only the 36-kDa peptide was specific to tissues which synthesize petroselinic acid. A cDNA encoding the 36-kDa peptide was isolated from a coriander endosperm cDNA library, placed under control of the cauliflower mosaic virus 35S promoter, and introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Expression of this cDNA in transgenic tobacco callus was accompanied by the accumulation of petroselinic acid and delta 4-hexadecenoic acid, both of which were absent from control callus. These results demonstrate the involvement of a 36-kDa putative acyl-ACP desaturase in the biosynthetic pathway of petroselinic acid and the ability to produce fatty acids of unusual structure in transgenic plants by the expression of the gene for this desaturase. Images PMID:1454797

  6. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    PubMed

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-02-11

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  7. Modeling the continuous lactic acid production process from wheat flour.

    PubMed

    Gonzalez, Karen; Tebbani, Sihem; Lopes, Filipa; Thorigné, Aurore; Givry, Sébastien; Dumur, Didier; Pareau, Dominique

    2016-01-01

    A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity.

  8. Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production

    PubMed Central

    2014-01-01

    Background Carbon sources for biofuel production are wide-ranging and their availability depends on the climate and soil conditions of the land where the production chain is located. Henequen (Agave fourcroydes Lem.) is cultivated in Yucatán, Mexico to produce natural fibers from the leaves, and a juice containing fructans is produced during this process. Fructans can be hydrolyzed to fructose and glucose and metabolized into ethanol by appropriate yeasts. In Mexico, different Agave species provide the carbon source for (distilled and non-distilled) alcoholic beverage production using the stem of the plant, whilst the leaves are discarded. In this work, we investigated the effect of thermal acid and enzymatic hydrolysis of the juice on the amount of reducing sugars released. Growth curves were generated with the yeasts Saccharomyces cerevisiae and Kluyveromyces marxianus and fermentations were then carried out with Kluyveromyces marxianus to determine alcohol yields. Results With thermal acid hydrolysis, the greatest increase in reducing sugars (82.6%) was obtained using 5% H2SO4 at 100°C with a 30 min reaction time. Statistically similar results can be obtained using the same acid concentration at a lower temperature and with a shorter reaction time (60°C, 15 min), or by using 1% H2SO4 at 100°C with a 30 min reaction time. In the case of enzymatic hydrolysis, the use of 5.75, 11.47 and 22.82 U of enzyme did not produce significant differences in the increase in reducing sugars. Although both hydrolysis processes obtained similar results, the difference was observed after fermentation. Ethanol yields were 50.3 ± 4 and 80.04 ± 5.29% of the theoretical yield respectively. Conclusions Final reducing sugars concentrations obtained with both thermal acid and enzymatic hydrolysis were similar. Saccharomyces cerevisiae, a good ethanol producer, did not grow in the hydrolysates. Only Kluyveromyces marxianus was able to grow in them, giving a higher ethanol

  9. Sulfuric acid as autocatalyst in the formation of sulfuric acid.

    PubMed

    Torrent-Sucarrat, Miquel; Francisco, Joseph S; Anglada, Josep M

    2012-12-26

    Sulfuric acid can act as a catalyst of its own formation. We have carried out a computational investigation on the gas-phase formation of H(2)SO(4) by hydrolysis of SO(3) involving one and two water molecules, and also in the presence of sulfuric acid and its complexes with one and two water molecules. The hydrolysis of SO(3) requires the concurrence of two water molecules, one of them acting as a catalyzer, and our results predict an important catalytic effect, ranging between 3 and 11 kcal·mol(-1) when the catalytic water molecule is substituted by a sulfuric acid molecule or one of its hydrates. In these cases, the reaction products are either bare sulfuric acid dimer or sulfuric acid dimer complexed with a water molecule. There are broad implications from these new findings. The results of the present investigation show that the catalytic effect of sulfuric acid in the SO(3) hydrolysis can be important in the Earth's stratosphere, in the heterogeneous formation of sulfuric acid and in the formation of aerosols, in H(2)SO(4) formation by aircraft engines, and also in understanding the formation of sulfuric acid in the atmosphere of Venus.

  10. Metabolism of glycosylsucrose by oral microorganisms and its hydrolysis by Streptococcus salivarius fructosyltransferase.

    PubMed Central

    Hojo, S; Mitsutomi, M; Yamada, T

    1987-01-01

    Resting-cell suspensions of oral microorganisms grown in sucrose were studied for the production of acid from glucosylsucrose and maltosylsucrose. Most oral microorganisms fermented these sugars to only a limited extent. Streptococcus salivarius, however, metabolized glucosylsucrose as well as sucrose. We therefore looked for a specific enzyme in S. salivarius which was capable of hydrolyzing glucosylsucrose. Fructosyltransferase and invertase were purified from S. salivarius 13419, and the substrate specificities and hydrolytic activities of these enzymes were determined. Purified fructosyltransferase catalyzed fructan synthesis from glucosylsucrose or maltosylsucrose, whereas purified invertase barely hydrolyzed these sugars. These results suggest that the high fermentative efficiency of glycosylsucrose by S. salivarius is due to the hydrolysis of these sugars by fructosyltransferase, but not by invertase. The partially purified fructosyltransferases of Actinomyces viscosus NY1 and Streptococcus mutans NCIB 11723 catalyzed fructan synthesis from glucosylsucrose or maltosylsucrose. The fructosyltransferases of these oral microorganisms are also responsible for the hydrolysis of glycosylsucrose. Images PMID:3818092

  11. Coupling of ultrafiltration and enzymatic hydrolysis aiming at valorizing shrimp wastewater.

    PubMed

    Tonon, Renata V; dos Santos, Bianca A; Couto, Cinthia C; Mellinger-Silva, Caroline; Brígida, Ana Iraidy S; Cabral, Lourdes M C

    2016-05-01

    The objective of this work was to obtain a protein hydrolysate from the wastewater generated during shrimp cooking, by coupling ultrafiltration and enzymatic hydrolysis processes. Initially, the effluent was concentrated by ultrafiltration, reaching a protein concentration factor of 3.2. The concentrated effluent was then enzymatically hydrolyzed, aiming at obtaining peptides with antioxidant capacity. The effects of some process variables--temperature (55-75 °C), pH (7-9) and enzyme/substrate (E/S) ratio (0.1-2.5%)--on the degree of hydrolysis and the antioxidant capacity were evaluated. The increase in temperature and pH resulted in lower degree of hydrolysis and higher antioxidant capacity. The conditions selected as the most suitable were: temperature of 75 °C, pH of 9.0 and E/S ratio of 0.1%. The hydrolysates produced at these conditions were also evaluated for total amino acid content and electrophoretic profile, showing a suitable amount of essential amino acids that covers the recommended daily needs.

  12. Synthesis of oxygen-free Titan tholins: implications in organic molecules product from hydrolysis

    NASA Astrophysics Data System (ADS)

    Brassé, C.; Raulin, F.; Coll, P.; Buch, A.

    2013-09-01

    Titan, the largest moon of Saturn, is known for its dense and nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are objects of astrobiological interest. In this paper we focus on their potential chemical evolution when they reach the surface and interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Our group identified urea as the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins meaning that oxygen gets in the PLASMA reactor during the tholins synthesis [2]. So the synthesis system has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the terrestrial atmosphere. After confirming the non-presence of oxygen in tholins produced with this new experimental setup, we performed alkaline pH hydrolysis of oxygen-free tholins in order to verify that organic molecules cited above are indeed in-situ produced. Those results will be exposed on the poster.

  13. Autotrophic ammonia oxidation at low pH through urea hydrolysis.

    PubMed

    Burton, S A; Prosser, J I

    2001-07-01

    Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms.

  14. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    ERIC Educational Resources Information Center

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  15. DFT STUDY OF THE HYDROLYSIS OF SOME S-TRIAZINES

    EPA Science Inventory

    The acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines was investigated using the B3LYP hybrid density functional theory method. Gas-phase calculations were performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of ...

  16. Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process.

    PubMed

    Chow, Te-Jin; Su, Hsiang-Yen; Tsai, Tsung-Yu; Chou, Hsiang-Hui; Lee, Tse-Min; Chang, Jo-Shu

    2015-05-01

    In this work, a recombinant cyanobacterium strain with increased photosynthesis rate, cell growth and carbohydrate production efficiency was genetically engineered by co-expressing ictB, ecaA, and acsAB (encoded for bacterial cellulose) in Synechococcus elongatus PCC7942. The resulting cyanobacterial biomass could be effectively hydrolyzed with dilute acid (2% sulfuric acid), achieving a nearly 90% glucose recovery at a biomass concentration of 80 g/L. Bioethanol can be produced from fermenting the acidic hydrolysate of S. elongatus PCC7942 via separate hydrolysis and fermentation (SHF) process at a concentration of 7.2 g/L and with a 91% theoretical yield.

  17. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095

  18. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  19. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    intermediate product of the tricarboxylic acid cycle. Our results demonstrate, for the first time, that the formation of a specific clay mineral (proto-kaolinite) occurs in the presence of a specific organic compound (succinic acid). This implies that microbial species capable of excreting succinate among their EPS may promote authigenic kaolinite formation at low temperature and neutral pH. This biological degradation process might play a crucial role for the formation of authigenic kaolinite, which is a widespread clay mineral in sedimentary environments. Fiore, S., Dumontet, S., Huertas, F.J., and Pasquale, V., 2011. Bacteria-induced crystallization of kaolinite. Applied Clay Science, 53:566-571. Linares, J., and Huertas, F., 1971. Kaolinite: Synthesis at room temperature. Science 171: 896-897.

  20. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.