Sample records for acid iaa production

  1. Modulation of IAA production in cyanobacteria by tryptophan and light.

    PubMed

    Prasanna, Radha; Joshi, Monica; Rana, Anuj; Nain, Lata

    2010-01-01

    Cyanobacteria represent less a investigated group of prokaryote, in terms of their plant growth promoting potential, especially in relation to the production of phytohormones. The present investigation was aimed towards analyzing growth kinetics, indole acetic acid (IAA) production and acetylene reduction activity (ARA) as an index of nitrogen fixation in two selected cyanobacterial strains belonging to the genus Anabaena, as influenced by tryptophan supplementation and light:dark conditions. Interesting observations were recorded in terms of enhancement of IAA production accompanied by protein and chlorophyll accumulation in the two cyanobacterial strains grown in media without tryptophan and incubated under light:dark or continuous light conditions. Colorimetric and chromatographic analyses supported the observations that tryptophan is not essential as a precursor for IAA biosynthesis in these cyanobacteria. Further study is in progress to identify genes involved in the tryptophan independent pathway for IAA biosynthesis.

  2. Solanum lycopersicum IAA15 functions in the 2,4-dichlorophenoxyacetic acid herbicide mechanism of action by mediating abscisic acid signalling.

    PubMed

    Xu, Tao; Wang, Yanling; Liu, Xin; Gao, Song; Qi, Mingfang; Li, Tianlai

    2015-07-01

    2,4-Dichlorophenoxyacetic acid (2,4-D), an important plant growth regulator, is the herbicide most commonly used worldwide to control weeds. However, broad-leaf fruits and vegetables are extremely sensitive to herbicides, which can cause damage and result in lost crops when applied in a manner inconsistent with the directions. Despite detailed knowledge of the mechanism of 2,4-D, the regulation of auxin signalling is still unclear. For example, although the major mediators of auxin signalling, including auxin/indole acetic acid (AUX/IAA) proteins and auxin response factors (ARFs), are known to mediate auxinic herbicides, the underlying mechanisms are still unclear. In this study, the effects of 2,4-D on AUX/IAA gene expression in tomato were investigated, and the two most notably up-regulated genes, SlIAA15 and SlIAA29, were selected for further study. Western blotting revealed the substantial accumulation of both SlIAA15 and SlIAA29, and the expression levels of the corresponding genes were increased following abscisic acid (ABA) and ethylene treatment. Overexpressing SlIAA15, but not SlIAA29, induced a 2,4-D herbicide damage phenotype. The 35S::SlIAA15 line exhibited a strong reduction in leaf stomatal density and altered expression of some R2R3 MYB genes that are putatively involved in the regulation of stomatal differentiation. Further study revealed that root elongation in 35S::SlIAA15 was sensitive to ABA treatment, and was most probably due to the altered expression of an ABA signal transduction gene. In addition, the altered auxin sensitivities of SlIAA15 transformants were also explored. These results suggested that SlIAA15 plays an important role in determining the effects of the herbicide 2,4-D. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS).

    PubMed

    Fässler, Erika; Evangelou, Michael W; Robinson, Brett H; Schulin, Rainer

    2010-08-01

    The use of plants for phytoextraction of heavy metals from contaminated soil is limited by the ability of the plants to grow on these soils and take up the target metals, as well as by the availability of the metals for plant uptake in the soil solution. The hypotheses of this study were that the growth-promoting phytohormone auxin (indole-3-acetic acid, IAA) can alleviate toxic effects of metals on plants and increase metal phytoextraction in combination with the biodegradable chelating agent ethylene diamine disuccinic acid (EDDS). To test these hypotheses we performed two sets of experiments with sunflowers (Helianthusannuus L.) in hydroponic solution. In the first set of experiments, five IAA concentrations (0, 10(-12), 10(-11), 10(-10), 10(-9)M) were applied in combination with Pb (2.5 microM) or Zn (15 microM). In the second set of experiments we applied combinations of IAA (0 or 10(-10)M) and EDDS (0 or 500 microM) to Pb or Zn-stressed sunflowers. Root and shoot growth of metal-stressed plants were most effectively increased with 10(-10)M IAA, and also the extraction of both metals was significantly increased at this treatment level. IAA reduced the negative metal effects, such as reduced shoot and root dry weight, root length, root volume and root surface area. EDDS significantly decreased metal uptake by the plants, thus reducing metal stress and promoting plant growth. The combined application of IAA with EDDS significantly increased Zn uptake in comparison to EDDS only treated plants. The experiments indicate that IAA can alleviate toxic effects of Pb and Zn on plant root and shoot growth and can in combination with chelants such as EDDS increase the phytoextraction potential of these plants. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch)

    PubMed Central

    Tatsuki, Miho

    2013-01-01

    The fruit of melting-flesh peach (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high expression of PpACS1 (an isogene of 1-aminocyclopropane-1-carboxylic acid synthase), resulting in rapid fruit softening at the late-ripening stage. In contrast, the fruit of stony hard peach cultivars do not soften and produce little ethylene due to low expression of PpACS1. To elucidate the mechanism for suppressing PpACS1 expression in stony hard peaches, a microarray analysis was performed. Several genes that displayed similar expression patterns as PpACS1 were identified and shown to be indole-3-acetic acid (IAA)-inducible genes (Aux/IAA, SAUR). That is, expression of IAA-inducible genes increased at the late-ripening stage in melting flesh peaches; however, these transcripts were low in mature fruit of stony hard peaches. The IAA concentration increased suddenly just before harvest time in melting flesh peaches exactly coinciding with system 2 ethylene production. In contrast, the IAA concentration did not increase in stony hard peaches. Application of 1-naphthalene acetic acid, a synthetic auxin, to stony hard peaches induced a high level of PpACS1 expression, a large amount of ethylene production and softening. Application of an anti-auxin, α-(phenylethyl-2-one)-IAA, to melting flesh peaches reduced levels of PpACS1 expression and ethylene production. These observations indicate that suppression of PpACS1 expression at the late-ripening stage of stony hard peach may result from a low level of IAA and that a high concentration of IAA is required to generate a large amount of system 2 ethylene in peaches. PMID:23364941

  5. OCCURRENCE AND TOXICITY OF IODO-ACID DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo...

  6. Down-regulation of SlIAA15 in tomato altered stem xylem development and production of volatile compounds in leaf exudates.

    PubMed

    Deng, Wei; Yan, Fang; Liu, Minchun; Wang, Xinyu; Li, Zhengguo

    2012-08-01

    The Aux/IAA family genes encode short-lived nuclear proteins that function as transcriptional regulators in auxin signal transduction. Aux/IAA genes have been reported to control many processes of plant development. Our recent study showed that down-regulation of SlIAA15 in tomato reduced apical dominance, altered pattern of axillary shoot development, increased lateral root formation and leaves thickness. The SlIAA15 suppressed lines display strong reduction of trichome density, suggesting that SlIAA15 is involved in trichome formation. Here, we reported that SlIAA15-suppressed transgenic lines display increased number of xylem cells compared to wild-type plants. Moreover, the monoterpene content in trichome exudates are significantly reduced in SlIAA15 down-regulated leaves. The results provide the roles of SlIAA15 in production of volatile compounds in leaf exudates and xylem development, clearly indicating that members of the Aux/IAA gene family can play distinct and specific functions. 

  7. Participation of IAA in transduction of gravistimulus in apical cells of moss protonema

    NASA Astrophysics Data System (ADS)

    Oksyniuk, U. A.; Khorkavtsiv, O. Y.; Lesniak, Y. I.

    Growth movements of vascular plant axis organs -- photo-, gravi- and other tropisms -- are tightly connected with IAA transport (Hertel, 1983; Medvedev, 1996; Kiss, 2000). Moss protonema synthesizes IAA (indole-3-acetic acid) and transports it basipetally favouring growth and differentiation of caulonema (Bopp, 1979; Rose, Bopp, 1983; Rose et al., 1983). We aimed at studying the role of IAA in moss protonema gravitropism using exogenous IAA, 1-NAA (1-naphthaleneacetic acid), 2,4D (2,4-dichlorophenoxyacetic acid) and inhibitors of polar IAA transport -- phytotropins NPA (N-1-naphthylphthalamic acid) and TIBA (2,3,5-triiodobenzoic acid). Six-day gravitropic protonema of Ceratodon purpureus and Pohlia nutans were taken for experiments. Auxin and phytotropins solutions were laid on protonema mats the latters being kept in solutions for 30 min. Then the surplus of solutions were poured off and Petri dishes were placed vertically for 6 h. 20 μ M of IAA and of other synthetic auxins did not significantly influence the angle of protonema gravity bending, 40 μ M of the agents, howewer, reduced the per cent of apical cells bendings and their angles. The most expressed influence on the angles of bending had the inhibitors of polar IAA transport -- NPA. 0,1 -- 3,0 μ M of this phytotropin did not change the form of apical cell, did not disturb the general distribution of amyloplasts and did not significantly lower the per cent and the value of gravity bending angle, though 10 μ M of the phytotropin - inhibited gravity bending. The mixture of 1-NAA and NPA having been added into the medium the influence of NPA was lowered and gravitropic growth renewed in course of time. 10 μ M of other phytopropin TIBA also inhibited gravitropism of Ceratodon purpureus and Pohlia nutans protonema. The analysis of basipetal transport of IAA in moss rhizoids and protonema may indicate the availability of special IAA transport in these structures (Bopp, Cerier, 1988). On the basis of the

  8. IAA Correlator Center

    NASA Technical Reports Server (NTRS)

    Surkis, Igor; Ken, Voitsekh; Melnikov, Alexey; Mishin, Vladimir; Sokolova, Nadezda; Shantyr, Violet; Zimovsky, Vladimir

    2013-01-01

    The activities of the six-station IAA RAS correlator include regular processing of national geodetic VLBI programs Ru-E, Ru-U, and Ru-F. The Ru-U sessions have been transferred in e-VLBI mode and correlated in the IAA Correlator Center automatically since 2011. The DiFX software correlator is used at the IAA in some astrophysical experiments.

  9. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  10. Variation in Indole-3-Acetic Acid Production by Wild Saccharomyces cerevisiae and S. paradoxus Strains from Diverse Ecological Sources and Its Effect on Growth

    PubMed Central

    Liu, Yen-Yu; Chen, Hung-Wei; Chou, Jui-Yu

    2016-01-01

    Phytohormone indole-3-acetic acid (IAA) is the most common naturally occurring and most thoroughly studied plant growth regulator. Microbial synthesis of IAA has long been known. Microbial IAA biosynthesis has been proposed as possibly occurring through multiple pathways, as has been proven in plants. However, the biosynthetic pathways of IAA and the ecological roles of IAA in yeast have not been widely studied. In this study, we investigated the variation in IAA production and its effect on the growth of Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus yeasts from diverse ecological sources. We found that almost all Saccharomyces yeasts produced IAA when cultured in medium supplemented with the primary precursor of IAA, L-tryptophan (L-Trp). However, when cultured in medium without L-Trp, IAA production was only detected in three strains. Furthermore, exogenous added IAA exerted stimulatory and inhibitory effects on yeast growth. Interestingly, a negative correlation was observed between the amount of IAA production in the yeast cultures and the IAA inhibition ratio of their growth. PMID:27483373

  11. Variation in Indole-3-Acetic Acid Production by Wild Saccharomyces cerevisiae and S. paradoxus Strains from Diverse Ecological Sources and Its Effect on Growth.

    PubMed

    Liu, Yen-Yu; Chen, Hung-Wei; Chou, Jui-Yu

    2016-01-01

    Phytohormone indole-3-acetic acid (IAA) is the most common naturally occurring and most thoroughly studied plant growth regulator. Microbial synthesis of IAA has long been known. Microbial IAA biosynthesis has been proposed as possibly occurring through multiple pathways, as has been proven in plants. However, the biosynthetic pathways of IAA and the ecological roles of IAA in yeast have not been widely studied. In this study, we investigated the variation in IAA production and its effect on the growth of Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus yeasts from diverse ecological sources. We found that almost all Saccharomyces yeasts produced IAA when cultured in medium supplemented with the primary precursor of IAA, L-tryptophan (L-Trp). However, when cultured in medium without L-Trp, IAA production was only detected in three strains. Furthermore, exogenous added IAA exerted stimulatory and inhibitory effects on yeast growth. Interestingly, a negative correlation was observed between the amount of IAA production in the yeast cultures and the IAA inhibition ratio of their growth.

  12. Apigenin and quercetin promote. Delta. pH-dependent accumulation of IAA in membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolard, D.D.; Clark, K.A.

    1990-05-01

    Flavonoids may act as regulators of polar auxin transport. In the presence of a pH gradient (pH 8{sub in}/6{sub out}) the flavonoids quercetin and apigenin, as well as the synthetic herbicide napthylphthalamic acid (NPA), promote the accumulation of IAA in membrane vesicles from dark-grown zucchini hypocotyls. Simultaneous accumulation of {sup 3}H-IAA (10 nM) and {sup 14}C-butyric acid (5 {mu}M; included as a pH probe) was determined by a filtration assay after incubating the vesicles with 3 nM to 100 {mu}M quercetin, apigenin, NPA or unlabeled IAA. Maximal stimulation (% of Control) was observed with 3 {mu}M NPA (130%), 1 {mu}Mmore » quercetin (120%), or 3 {mu}M apigenin (115%); {Delta}pH was not affected by these concentrations. As reported by others, IAA uptake was saturable: 1 {mu}M unlabeled IAA eliminated {Delta}pH-dependent uptake of {sup 3}H-IAA without altering {Delta}pH. However, at 30 to 100 {mu}M, every compound tested collapsed the imposed pH gradient and therefore abolished specific {sup 3}H-IAA uptake.« less

  13. Recognition of the folded conformation of plant hormone (auxin, IAA) conjugates with glutamic and aspartic acids and their amides

    NASA Astrophysics Data System (ADS)

    Antolić, S.; Kveder, M.; Klaić, B.; Magnus, V.; Kojić-Prodić, B.

    2001-01-01

    The molecular structure of the endogenous plant hormone (auxin) conjugate, N-(indol-3-ylacetyl)-L-glutamic acid, is deduced by comparison with N2-(indol-3-ylacetyl)glutamine (IAA-Gln), N2-(indol-3-ylacetyl)asparagine (IAA-Asn) and N-(indol-3-ylacetyl)-L-aspartic acid using X-ray structure analysis, 1H-NMR spectroscopy (NOE measurements) and molecular modelling. The significance of the overall molecular shape, and of the resulting amphiphilic properties, of the compounds studied are discussed in terms of possible implications for trafficking between cell compartments. Both in the solid state and in solution, the molecules are in the hair-pin (folded) conformation in which the side chain is folded over the indole ring. While extended conformations can be detected by molecular dynamics simulations, they are so short-lived that any major influence on the biological properties of the compounds studied is unlikely.

  14. Implementation and use of a highly available and innovative IaaS solution: the Cloud Area Padovana

    NASA Astrophysics Data System (ADS)

    Aiftimiei, C.; Andreetto, P.; Bertocco, S.; Biasotto, M.; Dal Pra, S.; Costa, F.; Crescente, A.; Dorigo, A.; Fantinel, S.; Fanzago, F.; Frizziero, E.; Gulmini, M.; Michelotto, M.; Sgaravatto, M.; Traldi, S.; Venaruzzo, M.; Verlato, M.; Zangrando, L.

    2015-12-01

    While in the business world the cloud paradigm is typically implemented purchasing resources and services from third party providers (e.g. Amazon), in the scientific environment there's usually the need of on-premises IaaS infrastructures which allow efficient usage of the hardware distributed among (and owned by) different scientific administrative domains. In addition, the requirement of open source adoption has led to the choice of products like OpenStack by many organizations. We describe a use case of the Italian National Institute for Nuclear Physics (INFN) which resulted in the implementation of a unique cloud service, called ’Cloud Area Padovana’, which encompasses resources spread over two different sites: the INFN Legnaro National Laboratories and the INFN Padova division. We describe how this IaaS has been implemented, which technologies have been adopted and how services have been configured in high-availability (HA) mode. We also discuss how identity and authorization management were implemented, adopting a widely accepted standard architecture based on SAML2 and OpenID: by leveraging the versatility of those standards the integration with authentication federations like IDEM was implemented. We also discuss some other innovative developments, such as a pluggable scheduler, implemented as an extension of the native OpenStack scheduler, which allows the allocation of resources according to a fair-share based model and which provides a persistent queuing mechanism for handling user requests that can not be immediately served. Tools, technologies, procedures used to install, configure, monitor, operate this cloud service are also discussed. Finally we present some examples that show how this IaaS infrastructure is being used.

  15. The virtual machine (VM) scaler: an infrastructure manager supporting environmental modeling on IaaS clouds

    USDA-ARS?s Scientific Manuscript database

    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific m...

  16. VM Capacity-Aware Scheduling within Budget Constraints in IaaS Clouds

    PubMed Central

    Thanasias, Vasileios; Lee, Choonhwa; Hanif, Muhammad; Kim, Eunsam; Helal, Sumi

    2016-01-01

    Recently, cloud computing has drawn significant attention from both industry and academia, bringing unprecedented changes to computing and information technology. The infrastructure-as-a-Service (IaaS) model offers new abilities such as the elastic provisioning and relinquishing of computing resources in response to workload fluctuations. However, because the demand for resources dynamically changes over time, the provisioning of resources in a way that a given budget is efficiently utilized while maintaining a sufficing performance remains a key challenge. This paper addresses the problem of task scheduling and resource provisioning for a set of tasks running on IaaS clouds; it presents novel provisioning and scheduling algorithms capable of executing tasks within a given budget, while minimizing the slowdown due to the budget constraint. Our simulation study demonstrates a substantial reduction up to 70% in the overall task slowdown rate by the proposed algorithms. PMID:27501046

  17. VM Capacity-Aware Scheduling within Budget Constraints in IaaS Clouds.

    PubMed

    Thanasias, Vasileios; Lee, Choonhwa; Hanif, Muhammad; Kim, Eunsam; Helal, Sumi

    2016-01-01

    Recently, cloud computing has drawn significant attention from both industry and academia, bringing unprecedented changes to computing and information technology. The infrastructure-as-a-Service (IaaS) model offers new abilities such as the elastic provisioning and relinquishing of computing resources in response to workload fluctuations. However, because the demand for resources dynamically changes over time, the provisioning of resources in a way that a given budget is efficiently utilized while maintaining a sufficing performance remains a key challenge. This paper addresses the problem of task scheduling and resource provisioning for a set of tasks running on IaaS clouds; it presents novel provisioning and scheduling algorithms capable of executing tasks within a given budget, while minimizing the slowdown due to the budget constraint. Our simulation study demonstrates a substantial reduction up to 70% in the overall task slowdown rate by the proposed algorithms.

  18. Monitoring of IaaS and scientific applications on the Cloud using the Elasticsearch ecosystem

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Guarise, A.; Lusso, S.; Masera, M.; Vallero, S.

    2015-05-01

    The private Cloud at the Torino INFN computing centre offers IaaS services to different scientific computing applications. The infrastructure is managed with the OpenNebula cloud controller. The main stakeholders of the facility are a grid Tier-2 site for the ALICE collaboration at LHC, an interactive analysis facility for the same experiment and a grid Tier-2 site for the BES-III collaboration, plus an increasing number of other small tenants. Besides keeping track of the usage, the automation of dynamic allocation of resources to tenants requires detailed monitoring and accounting of the resource usage. As a first investigation towards this, we set up a monitoring system to inspect the site activities both in terms of IaaS and applications running on the hosted virtual instances. For this purpose we used the Elasticsearch, Logstash and Kibana stack. In the current implementation, the heterogeneous accounting information is fed to different MySQL databases and sent to Elasticsearch via a custom Logstash plugin. For the IaaS metering, we developed sensors for the OpenNebula API. The IaaS level information gathered through the API is sent to the MySQL database through an ad-hoc developed RESTful web service, which is also used for other accounting purposes. Concerning the application level, we used the Root plugin TProofMonSenderSQL to collect accounting data from the interactive analysis facility. The BES-III virtual instances used to be monitored with Zabbix, as a proof of concept we also retrieve the information contained in the Zabbix database. Each of these three cases is indexed separately in Elasticsearch. We are now starting to consider dismissing the intermediate level provided by the SQL database and evaluating a NoSQL option as a unique central database for all the monitoring information. We setup a set of Kibana dashboards with pre-defined queries in order to monitor the relevant information in each case. In this way we have achieved a uniform monitoring

  19. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  20. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  1. Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions.

    PubMed

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25-5 d on 1.0 × MS medium containing 0.25 mg L(-1) GA3 + 1 mg L(-1) NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L(-1) NAA + 0.25 mg L(-1) GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders.

  2. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA): Quarter 4 2013 Composite Data Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, J.; Sprik, S.

    2014-06-01

    This report includes the composite data products (CDPs) for early fuel cell market deployments in quarter 4 of 2013. Results are presented for ARRA (projects funded by the American Recovery and Reinvestment Act of 2009 [ARRA]) and Combined (projects funded by DOE Interagency Agreements [IAA], Department of Defense Defense Logistics Agency [DLA], and ARRA).

  3. Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoea dispersa strain GPK.

    PubMed

    Kulkarni, G B; Nayak, A S; Sajjan, S S; Oblesha, A; Karegoudar, T B

    2013-05-01

    This investigation deals with the production of IAA by a bacterial isolate Pantoea dispersa strain GPK (PDG) identified by 16S rRNA gene sequence analysis. HPLC and Mass spectral analysis of metabolites from bacterial spent medium revealed that, IAA production by PDG is Trp-dependent and follows indole-3-pyruvic acid (IPyA) pathway. Substrate specificity study of aromatic amino acid aminotransferase (AAT) showed high activities, only when tryptophan (Trp) and α-ketoglutarate (α-kg) were used as substrates. AAT is highly specific for Trp and α-kg as amino group donor and acceptor, respectively. The effect of exogenous IAA on bacterial growth was established. Low concentration of exogenous IAA induced the growth, whereas high concentration decreased the growth of bacterium. PDG treatment significantly increased the root length, shoot length and dry mass of the chickpea and pigeon pea plants. © 2013 The Society for Applied Microbiology.

  4. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): Identification, expression analysis, and evaluation of their roles in tuber development.

    PubMed

    Gao, Junpeng; Cao, Xiaoli; Shi, Shandang; Ma, Yuling; Wang, Kai; Liu, Shengjie; Chen, Dan; Chen, Qin; Ma, Haoli

    2016-03-04

    The Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived nuclear proteins that are known to be involved in the primary cellular responses to auxin. To date, systematic analysis of the Aux/IAA genes in potato (Solanum tuberosum) has not been conducted. In this study, a total of 26 potato Aux/IAA genes were identified (designated from StIAA1 to StIAA26), and the distribution of four conserved domains shared by the StIAAs were analyzed based on multiple sequence alignment and a motif-based sequence analysis. A phylogenetic analysis of the Aux/IAA gene families of potato and Arabidopsis was also conducted. In order to assess the roles of StIAA genes in tuber development, the results of RNA-seq studies were reformatted to analyze the expression patterns of StIAA genes, and then verified by quantitative real-time PCR. A large number of StIAA genes (12 genes) were highly expressed in stolon organs and in during the tuber initiation and expansion developmental stages, and most of these genes were responsive to indoleacetic acid treatment. Our results suggested that StIAA genes were involved in the process of tuber development and provided insights into functional roles of potato Aux/IAA genes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Improved Drought Stress Response in Alfalfa Plants Nodulated by an IAA Over-producing Rhizobium Strain

    PubMed Central

    Defez, Roberto; Andreozzi, Anna; Dickinson, Michael; Charlton, Adrian; Tadini, Luca; Pesaresi, Paolo; Bianco, Carmen

    2017-01-01

    The drought–stress response in plant involves the cross-talk between abscisic acid (ABA) and other phytohormones, such as jasmonates and ethylene. The auxin indole-3-acetic acid (IAA) plays an integral part in plant adaptation to drought stress. Investigation was made to see how the main auxin IAA interacted with other plant hormones under water stress, applied through two different growth conditions (solid and hydroponic). Medicago sativa plants nodulated by the Ensifer meliloti wild type 1021 (Ms-1021) and its IAA-overproducing RD64 derivative strains (Ms-RD64) were subjected to drought stress, comparing their response. When the expression of nifH gene and the activity of the nitrogenase enzyme were measured after stress treatments, Ms-RD64 plants recorded a significantly weaker damage. These results were correlated with a lower biomass reduction, and a higher Rubisco protein level measured for the Ms-RD64-stressed plants as compared to the Ms-1021-stressed ones. It has been verified that the stress response observed for Ms-RD64-stressed plants was related to the production of greater amount of low-molecular-weight osmolytes, such as proline and pinitol, measured in these plants. For the Ms-RD64 plants the immunoblotting analysis of thylakoid membrane proteins showed that some of the photosystem proteins increased after the stress. An increased non-photochemical quenching after the stress was also observed for these plants. The reduced wilting signs observed for these plants were also connected to the significant down-regulation of the MtAA03 gene involved in the ABA biosynthesis, and with the unchanged expression of the two genes (Mt-2g006330 and Mt-8g095330) of ABA signaling. When the expression level of the ethylene-signaling genes was evaluated by qPCR analysis no significant alteration of the key positive regulators was recorded for Ms-RD64-stressed plants. Coherently, these plants accumulated 40% less ethylene as compared to Ms-1021-stressed ones. The

  6. Combination of the Auxins NAA, IBA, and IAA with GA3 Improves the Commercial Seed-Tuber Production of Potato (Solanum tuberosum L.) under In Vitro Conditions

    PubMed Central

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25–5 d on 1.0 × MS medium containing 0.25 mg L−1  GA3 + 1 mg L−1 NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L−1  NAA + 0.25 mg L−1 GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders. PMID:25028654

  7. IAA8 expression during vascular cell differentiation

    Treesearch

    Andrew T. Groover; Amy Pattishall; Alan M. Jones

    2003-01-01

    We report the characterization of a member of the auxin-induced IAA gene family from zinnia, designated zIAA8, which is expressed by mesophyll cells differentiating as tracheary elements in vitro. Transcription of zIAA8 is upregulated within 3 h after cell isolation in inductive medium,...

  8. NGAP: A (Brief) Update PaaS, IaaS, Onbording, and the Future

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brett; Pawloski, Andrew

    2016-01-01

    NASA ESDIS has charged the EED2 program with delivering a NASA-compliant, secure, cloud-based platform for application hosting. More than just a move to the cloud, this has forced us to examine all aspects of application hosting, from resource management to system administration, patching to monitoring, deployment to multiple environments. The result of this mandate is NGAP, the NASA General Application Platform. In this presentation, we will also discuss the various applications we are supporting and targeting, and their architectures including NGAPs move to support both PaaS and IaaS architectures.

  9. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity.

    PubMed

    Goudjal, Yacine; Toumatia, Omrane; Sabaou, Nasserdine; Barakate, Mustapha; Mathieu, Florence; Zitouni, Abdelghani

    2013-10-01

    Twenty-seven endophytic actinomycete strains were isolated from five spontaneous plants well adapted to the poor sandy soil and arid climatic conditions of the Algerian Sahara. Morphological and chemotaxonomical analysis indicated that twenty-two isolates belonged to the Streptomyces genus and the remaining five were non-Streptomyces. All endophytic strains were screened for their ability to produce indole-3-acetic acid (IAA) in vitro on a chemically defined medium. Eighteen strains were able to produce IAA and the maximum production occurred with the Streptomyces sp. PT2 strain. The IAA produced was further extracted, partially purified and confirmed by thin layer chromatography (TLC) analysis. The 16S rDNA sequence analysis and phylogenetic studies indicated that strain PT2 was closely related to Streptomyces enissocaecilis NRRL B 16365(T), Streptomyces rochei NBRC 12908(T) and Streptomyces plicatus NBRC 13071(T), with 99.52 % similarity. The production of IAA was affected by cultural conditions such as temperature, pH, incubation period and L-tryptophan concentration. The highest level of IAA production (127 μg/ml) was obtained by cultivating the Streptomyces sp. PT2 strain in yeast extract-tryptone broth supplemented with 5 mg L-tryptophan/ml at pH 7 and incubated on a rotary shaker (200 rpm) at 30 °C for 5 days. Twenty-four-hour treatment of tomato cv. Marmande seeds with the supernatant culture of Streptomyces sp. PT2 that contained the crude IAA showed the maximum effect in promoting seed germination and root elongation.

  10. Metabolism of indole-3-acetic acid by orange (Citrus sinensis) flavedo tissue during fruit development.

    PubMed

    Chamarro, J; Ostin, A; Sandberg, G

    2001-05-01

    [5-3H, 1'-14C, 13C6, 12C] Indole-3-acetic acid (IAA), was applied to the flavedo (epicarp) of intact orange fruits at different stages of development. After incubation in the dark, at 25 degrees C, the tissue was extracted with MeOH and the partially purified extracts were analyzed by reversed phase HPLC-RC. Six major metabolite peaks were detected and subsequently analyzed by combined HPLC-frit-FAB MS. The metabolite peak 6 contained oxindole-3-acetic acid (OxIAA), indole-3-acetyl-N-aspartic acid (IAAsp) and also indole-3-acetyl-N-glutamic acid (IAGlu). The nature of metabolite 5 remains unknown. Metabolites 3 and 4 were diastereomers of oxindole-3-acetyl-N-aspartic acid (OxIAAsp). Metabolite 2 was identified as dioxindole-3-acetic acid and metabolite 1 as a DiOx-IAA linked in position three to a hexose, which is suggested to be 3-(-O-beta-glucosyl) dioxindole-3-acetic acid (DiOxIAGlc). Identification work as well as feeding experiments with the [5-3H]IAA labeled metabolites suggest that IAA is metabolized in flavedo tissue mainly through two pathways, namely IAA-OxIAA-DiOxIAA-DiOxIAGlc and IAA-IAAsp-OxIAAsp. The flavedo of citrus fruit has a high capacity for IAA catabolism until the beginning of fruit senescence, with the major route having DiOxIAGlc as end product. This capacity is operative even at high IAA concentrations and is accelerated by pretreatment with the synthetic auxins 2,4-D, NAA and the gibberellin GA3.

  11. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress.

    PubMed

    Li, Shi-Weng; Leng, Yan; Feng, Lin; Zeng, Xiao-Ying

    2014-01-01

    In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.

  12. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds.

    PubMed

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Al-Hosni, Khadija; Kang, Sang-Mo; Seo, Chang-Woo; Lee, In-Jung

    2017-06-01

    Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml -1 to 38.80 ± 1.35 μg ml -1 . We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.

  13. Genome-wide analysis and characterization of Aux/IAA family genes related to fruit ripening in papaya (Carica papaya L.).

    PubMed

    Liu, Kaidong; Yuan, Changchun; Feng, Shaoxian; Zhong, Shuting; Li, Haili; Zhong, Jundi; Shen, Chenjia; Liu, Jinxiang

    2017-05-05

    Auxin/indole-3-acetic acid (Aux/IAA) family genes encode short-lived nuclear proteins that mediate the responses of auxin-related genes and are involved in several plant developmental and growth processes. However, how Aux/IAA genes function in the fruit development and ripening of papaya (Carica papaya L.) is largely unknown. In this study, a comprehensive identification and a distinctive expression analysis of 18 C. papaya Aux/IAA (CpIAA) genes were performed using newly updated papaya reference genome data. The Aux/IAA gene family in papaya is slightly smaller than that in Arabidopsis, but all of the phylogenetic subfamilies are represented. Most of the CpIAA genes are responsive to various phytohormones and expressed in a tissues-specific manner. To understand the putative biological functions of the CpIAA genes involved in fruit development and ripening, quantitative real-time PCR was used to test the expression profiling of CpIAA genes at different stages. Furthermore, an IAA treatment significantly delayed the ripening process in papaya fruit at the early stages. The expression changes of CpIAA genes in ACC and 1-MCP treatments suggested a crosstalk between auxin and ethylene during the fruit ripening process of papaya. Our study provided comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles. The involvement of CpIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs.

  14. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects.

    PubMed

    Luo, Kun; Rocheleau, Hélène; Qi, Peng-Fei; Zheng, You-Liang; Zhao, Hui-Yan; Ouellet, Thérèse

    2016-09-01

    Fusarium graminearum is a devastating pathogenic fungus causing fusarium head blight (FHB) of wheat. This fungus can produce indole-3-acetic acid (IAA) and a very large amount of IAA accumulates in wheat head tissues during the first few days of infection by F. graminearum. Using liquid culture conditions, we have determined that F. graminearum can use tryptamine (TAM) and indole-3-acetonitrile (IAN) as biosynthetic intermediates to produce IAA. It is the first time that F. graminearum is shown to use the l-tryptophan-dependent TAM and IAN pathways rather than the indole-3-acetamide or indole-3-pyruvic acid pathways to produce IAA. Our experiments also showed that exogenous IAA was metabolized by F. graminearum. Exogenous IAA, TAM, and IAN inhibited mycelial growth; IAA and IAN also affected the hyphae branching pattern and delayed macroconidium germination. IAA and TAM had a small positive effect on the production of the mycotoxin 15-ADON while IAN inhibited its production. Our results showed that IAA and biosynthetic intermediates had a significant effect on F. graminearum physiology and suggested a new area of exploration for fungicidal compounds. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals.

    PubMed

    Wu, Wentao; Liu, Yaxue; Wang, Yuqian; Li, Huimin; Liu, Jiaxi; Tan, Jiaxin; He, Jiadai; Bai, Jingwen; Ma, Haoli

    2017-10-08

    The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three ( Physcomitrella patens ) to 63 ( Glycine max ). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution.

  16. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals

    PubMed Central

    Wu, Wentao; Liu, Yaxue; Wang, Yuqian; Li, Huimin; Liu, Jiaxi; Tan, Jiaxin; He, Jiadai; Bai, Jingwen

    2017-01-01

    The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three (Physcomitrella patens) to 63 (Glycine max). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution. PMID:28991190

  17. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots

    PubMed Central

    Hussain, Anwar; Shah, Syed T.; Rahman, Hazir; Irshad, Muhammad; Iqbal, Amjad

    2015-01-01

    Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg-1ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity. PMID:25699072

  18. Differential effects of NAA and 2,4-D in reducing floret abscission in cestrum (Cestrum elegans) cut flowers are associated with their differential activation of Aux/IAA homologous genes.

    PubMed

    Abebie, Bekele; Lers, Amnon; Philosoph-Hadas, Sonia; Goren, Raphael; Riov, Joseph; Meir, Shimon

    2008-01-01

    A previous study showed that the relative effectiveness of 2,4-dichlorophenoxyacetic acid (2,4-D) compared with that of 1-naphthaleneacetic acid (NAA) in reducing floret bud abscission in cestrum (Cestrum elegans) cut flowers was due to its acropetal transport. The aim of the present study was to examine if the differential effect of these auxins on floret abscission is reflected in the expression of Aux/IAA genes in the floret abscission zone (AZ). cDNAs were isolated by PCR-based cloning from the floret AZ of auxin-treated cut flowers. The expression patterns of the cDNAs in various tissues and the effect of indole-3-acetic acid (IAA), applied with or without cycloheximide, on their expression in the floret AZ were examined by northern blot analysis. The regulation of transcript accumulation in the floret AZ in response to NAA or 2,4-D was measured by real-time PCR during auxin pulsing of cut flowers and vase life, concomitantly with floret abscission. Six isolated cDNAs were identified to represent Aux/IAA homologous genes, designated as Cestrum elegans (Ce)-IAA1 to Ce-IAA6. Four Ce-IAA genes were characterized as early auxin-responsive genes (ARGs), and two (Ce-IAA1 and Ce-IAA5) as late ARGs. Only Ce-IAA5 was AZ-specific in floret buds. A temporal regulation of Ce-IAA transcript levels in the floret AZ was found, with 2,4-D inducing higher expression levels than NAA in floret buds. These Ce-IAA expression levels were negatively correlated with floret abscission. The differential transport characteristics of NAA and 2,4-D in cestrum cut flowers were reflected in differential activation of the Ce-IAA genes identified in the floret AZ. Therefore, Aux/IAA genes can be used as molecular markers to measure auxin activity, which reflects free auxin level in the AZ. Two of the identified genes, Ce-IAA1 and Ce-IAA5, may also have a regulatory role in abscission.

  19. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro.

    PubMed

    Jeong, Clara H; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D; Ricke, William A; Plewa, Michael J; Flaws, Jodi A

    2016-07-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15μM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro

    PubMed Central

    Jeong, Clara H.; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D.; Ricke, William A.; Plewa, Michael J.; Flaws, Jodi A.

    2016-01-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25–1.00 mM of CAA; 2–15 µM of BAA or IAA) for 48 and 96 h. Follicle growth was measured every 24 h and the media were analyzed for estradiol levels at 96 h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro. PMID:27151372

  1. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    Iodo-acids were recently identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo-propenoic acid, (Z)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3...

  2. Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering.

    PubMed

    De Diego, N; Rodríguez, J L; Dodd, I C; Pérez-Alfocea, F; Moncaleán, P; Lacuesta, M

    2013-05-01

    Anatomical, physiological and phytohormonal changes involved in drought tolerance were examined in different Pinus radiata D. Don breeds subjected to soil drying and rewatering. Breeds with the smallest stomatal chamber size had the lowest transpiration rate and the highest intrinsic water-use efficiency. Xylem cell size was positively correlated with leaf hydraulic conductance and needle indole-3-acetic acid (IAA) concentrations, whereas transpiration rate was negatively correlated with needle abscisic acid (ABA) levels. Since these two phytohormones seem important in regulating the P. radiata drought response, they were simultaneously immunolocalized in roots and needles of the most tolerant breed (P. radiata var. radiata × var. cedrosensis) during two sequential drought cycles and after rewatering. During drought, IAA was unequally distributed into the pointed area of the needle cross-section and mainly located in mesophyll and vascular tissue cells of needles, possibly inducing needle epinasty, whereas ABA was principally located in guard cells, presumably to elicit stomata closure. In the roots, at the end of the first drought cycle, while strong IAA accumulation was observed in the cortex, ABA levels decreased probably due to translocation to the leaves. Rewatering modified the distribution of both IAA and ABA in the needles, causing an accumulation principally in vascular tissue, with residual concentrations in mesophyll, likely favouring the acclimatization of the plants for further drought cycles. Contrarily, in the roots IAA and ABA were located in the exodermis, a natural barrier that regulates the phytohormone translocation to other plant tissues and hormone losses to the soil solution after rewatering. These results confirm that immunolocalization is an efficient tool to understand the translocation of IAA and ABA in plants subjected to different water stress situations, and clarify their role in regulating physiological responses such as stomata

  3. Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin.

    PubMed

    Dao, Guo-Hua; Wu, Guang-Xue; Wang, Xiao-Xiong; Zhuang, Lin-Lan; Zhang, Tian-Yuan; Hu, Hong-Ying

    2018-01-01

    Microalgae are potential candidates for the production of valuable products, such as renewable biodiesel, health products and pigments. However, low biomass productivity has restricted their large-scale applications. In this study, the effects of two auxins (one natural type of indole-3-acetic acid (IAA) and the other synthetic type of 2,4-dichlorophenoxyacetic acid (2,4-D)) on the growth and fatty acid methyl esters (FAMEs) production of a freshwater microalgae Scenedesmus sp. LX1 were investigated. Both auxins showed a "low dosage-promotion and high dosage-inhibition" effect on the growth and FAMEs accumulation. The optimum dosage of IAA and 2,4-D were 1mgL -1 and 0.1mgL -1 , respectively. Moreover, the IAA could increase the monounsaturated fatty acid content. The auxins may promote the growth by enhancing the photosynthetic activity through increasing chlorophyll contents. Therefore, auxin significantly enhanced microalgal growth and FAMEs accumulation, and has a potential for application in developing efficient microalgal cultivation. Copyright © 2017. Published by Elsevier Ltd.

  4. G2LC: Resources Autoscaling for Real Time Bioinformatics Applications in IaaS.

    PubMed

    Hu, Rongdong; Liu, Guangming; Jiang, Jingfei; Wang, Lixin

    2015-01-01

    Cloud computing has started to change the way how bioinformatics research is being carried out. Researchers who have taken advantage of this technology can process larger amounts of data and speed up scientific discovery. The variability in data volume results in variable computing requirements. Therefore, bioinformatics researchers are pursuing more reliable and efficient methods for conducting sequencing analyses. This paper proposes an automated resource provisioning method, G2LC, for bioinformatics applications in IaaS. It enables application to output the results in a real time manner. Its main purpose is to guarantee applications performance, while improving resource utilization. Real sequence searching data of BLAST is used to evaluate the effectiveness of G2LC. Experimental results show that G2LC guarantees the application performance, while resource is saved up to 20.14%.

  5. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    PubMed

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora

    PubMed Central

    Ayil-Gutiérrez, Benajmín; Galaz-Ávalos, Rosa María; Peña-Cabrera, Eduardo; Loyola-Vargas, Victor Manuel

    2013-01-01

    Most of the somatic embryogenesis (SE) process requires the presence, either before or during the embryogenic process, of at least one exogenous auxin. This exogenous auxin induces the presence of endogenous auxins, which appears to be essential for SE induction. We found that during the preincubation period of SE in Coffea canephora, there is an important increase in both free and conjugated indole-3-acetic acid (IAA), as well as indole-3-butyric acid. This increase is accompanied by an increase in the expression of YUCCA (CcYUC), TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (CcTAA1), and GRETCHEN HAGEN 3 (GH3) genes. On the other hand, most of the IAA compounds decreased during the induction of SE. The results presented in this research suggest that a balance between free IAA and its amide conjugates is necessary to allow the expression of SE-related genes. PMID:24299659

  7. G2LC: Resources Autoscaling for Real Time Bioinformatics Applications in IaaS

    PubMed Central

    Hu, Rongdong; Liu, Guangming; Jiang, Jingfei; Wang, Lixin

    2015-01-01

    Cloud computing has started to change the way how bioinformatics research is being carried out. Researchers who have taken advantage of this technology can process larger amounts of data and speed up scientific discovery. The variability in data volume results in variable computing requirements. Therefore, bioinformatics researchers are pursuing more reliable and efficient methods for conducting sequencing analyses. This paper proposes an automated resource provisioning method, G2LC, for bioinformatics applications in IaaS. It enables application to output the results in a real time manner. Its main purpose is to guarantee applications performance, while improving resource utilization. Real sequence searching data of BLAST is used to evaluate the effectiveness of G2LC. Experimental results show that G2LC guarantees the application performance, while resource is saved up to 20.14%. PMID:26504488

  8. Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene.

    PubMed

    Jasim, B; Jimtha John, C; Shimil, V; Jyothis, M; Radhakrishnan, E K

    2014-09-01

    The study mainly aimed quantitative analysis of IAA produced by endophytic bacteria under various conditions including the presence of extract from Piper nigrum. Analysis of genetic basis of IAA production was also conducted by studying the presence and diversity of the ipdc gene among the selected isolates. Five endophytic bacteria isolated previously from P. nigrum were used for the study. The effect of temperature, pH, agitation, tryptophan concentration and plant extract on modulating IAA production of selected isolates was analysed by colorimetric method. Comparative and quantitative analysis of IAA production by colorimetric isolates under optimal culture condition was analysed by HPTLC method. Presence of ipdc gene and thereby biosynthetic basis of IAA production among the selected isolates were studied by PCR-based amplification and subsequent insilico analysis of sequence obtained. Among the selected bacterial isolates from P. nigrum, isolate PnB 8 (Klebsiella pneumoniae) was found to have the maximum yield of IAA under various conditions optimized and was confirmed by colorimetric, HPLC and HPTLC analysis. Very interestingly, the study showed stimulating effect of phytochemicals from P. nigrum on IAA production by endophytic bacteria isolated from same plant. This study is unique because of the selection of endophytes from same source for comparative and quantitative analysis of IAA production under various conditions. Study on stimulatory effect of phytochemicals on bacterial IAA production as explained in the study is a novel approach. Studies on molecular basis of IAA production which was confirmed by sequence analysis of ipdc gene make the study scientifically attractive. Even though microbial production of IAA is well known, current report on detailed optimization, effect of plant extract and molecular confirmation of IAA biosynthesis is comparatively novel in its approach. © 2014 The Society for Applied Microbiology.

  9. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms

    PubMed Central

    Fu, Shih-Feng; Wei, Jyuan-Yu; Chen, Hung-Wei; Liu, Yen-Yu; Lu, Hsueh-Yu; Chou, Jui-Yu

    2015-01-01

    Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology. PMID:26179718

  10. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development

    PubMed Central

    Böttcher, Christine; Boss, Paul K.; Davies, Christopher

    2011-01-01

    Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes. PMID:21543520

  11. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development.

    PubMed

    Böttcher, Christine; Boss, Paul K; Davies, Christopher

    2011-08-01

    Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes.

  12. The optimal design of service level agreement in IAAS based on BDIM

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochen; Zhan, Zhiqiang

    2013-03-01

    Cloud Computing has become more and more prevalent over the past few years, and we have seen the importance of Infrastructure-as-a-service (IaaS). This kind of service enables scaling of bandwidth, memory, computing power and storage. But the SLA in IaaS also faces complexity and variety. Users also consider the business of the service. To meet the most users requirements, a methodology for designing optimal SLA in IaaS from the business perspectives is proposed. This method is different from the conventional SLA design method, It not only focuses on service provider perspective, also from the customer to carry on the design. This methodology better captures the linkage between service provider and service client by considering minimizing the business loss originated from performance degradation and IT infrastructure failures and maximizing profits for service provider and clients. An optimal design in an IaaS model is provided and an example are analyzed to show this approach obtain higher profit.

  13. Characterization of Indole-3-acetic Acid Biosynthesis and the Effects of This Phytohormone on the Proteome of the Plant-Associated Microbe Pantoea sp. YR343.

    PubMed

    Estenson, Kasey; Hurst, Gregory B; Standaert, Robert F; Bible, Amber N; Garcia, David; Chourey, Karuna; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2018-04-06

    Indole-3-acetic acid (IAA) plays a central role in plant growth and development, and many plant-associated microbes produce IAA using tryptophan as the precursor. Using genomic analyses, we predicted that Pantoea sp. YR343, a microbe isolated from Populus deltoides, synthesizes IAA using the indole-3-pyruvate (IPA) pathway. To better understand IAA biosynthesis and the effects of IAA exposure on cell physiology, we characterized proteomes of Pantoea sp. YR343 grown in the presence of tryptophan or IAA. Exposure to IAA resulted in upregulation of proteins predicted to function in carbohydrate and amino acid transport and exopolysaccharide (EPS) biosynthesis. Metabolite profiles of wild-type cells showed the production of IPA, IAA, and tryptophol, consistent with an active IPA pathway. Finally, we constructed an Δ ipdC mutant that showed the elimination of tryptophol, consistent with a loss of IpdC activity, but was still able to produce IAA (20% of wild-type levels). Although we failed to detect intermediates from other known IAA biosynthetic pathways, this result suggests the possibility of an alternate pathway or the production of IAA by a nonenzymatic route in Pantoea sp. YR343. The Δ ipdC mutant was able to efficiently colonize poplar, suggesting that an active IPA pathway is not required for plant association.

  14. Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown).

    PubMed

    Beilby, Mary J; Turi, Christina E; Baker, Teesha C; Tymm, Fiona Jm; Murch, Susan J

    2015-01-01

    Giant-celled Characeae (Chara australis Brown), grown for 4 months on 12/12 hr day/night cycle and summer/autumn temperatures, exhibited distinct concentration maxima in auxin (indole-3-acetic acid; IAA), melatonin and serotonin about 4 hr after subjective daybreak. These concentration peaks persisted after 3 day pretreatment in continuous darkness: confirming a circadian rhythm, rather than a response to "light on." The plants pretreated for 3 d in continuous light exhibited several large IAA concentration maxima throughout the 24 hr. The melatonin and serotonin concentrations decreased and were less synchronized with IAA. Chara plants grown on 9/15 hr day/night cycle for 4 months and winter/spring temperatures contained much smaller concentrations of IAA, melatonin and serotonin. The IAA concentration maxima were observed in subjective dark phase. Serotonin concentration peaks were weakly correlated with those of IAA. Melatonin concentration was low and mostly independent of circadian cycle. The "dark" IAA concentration peaks persisted in plants treated for 3 d in the dark. The plants pretreated for 3 d in the light again developed more IAA concentration peaks. In this case the concentration maxima in melatonin and serotonin became more synchronous with those in IAA. The abscisic acid (ABA) and jasmonic acid (JA) concentrations were also measured in plants on winter regime. The ABA concentration did not exhibit circadian pattern, while JA concentration peaks were out of phase with those of IAA. The data are discussed in terms of crosstalk between metabolic pathways.

  15. Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17.

    PubMed

    Han, Mookyoung; Park, Yangshin; Kim, Iktae; Kim, Eun-Hee; Yu, Tae-Kyung; Rhee, Sangkee; Suh, Jeong-Yong

    2014-12-30

    Auxin is the central hormone that regulates plant growth and organ development. Transcriptional regulation by auxin is mediated by the auxin response factor (ARF) and the repressor, AUX/IAA. Aux/IAA associates with ARF via domain III-IV for transcriptional repression that is reversed by auxin-induced Aux/IAA degradation. It has been known that Aux/IAA and ARF form homo- and hetero-oligomers for the transcriptional regulation, but what determines their association states is poorly understood. Here we report, to our knowledge, the first solution structure of domain III-IV of Aux/IAA17 (IAA17), and characterize molecular interactions underlying the homotypic and heterotypic oligomerization. The structure exhibits a compact β-grasp fold with a highly dynamic insert helix that is unique in Aux/IAA family proteins. IAA17 associates to form a heterogeneous ensemble of front-to-back oligomers in a concentration-dependent manner. IAA17 and ARF5 associate to form homo- or hetero-oligomers using a common scaffold and binding interfaces, but their affinities vary significantly. The equilibrium dissociation constants (KD) for homo-oligomerization are 6.6 μM and 0.87 μM for IAA17 and ARF5, respectively, whereas hetero-oligomerization reveals a ∼ 10- to ∼ 100-fold greater affinity (KD = 73 nM). Thus, individual homo-oligomers of IAA17 and ARF5 spontaneously exchange their subunits to form alternating hetero-oligomers for transcriptional repression. Oligomerization is mainly driven by electrostatic interactions, so that charge complementarity at the interface determines the binding affinity. Variable binding affinity by surface charge modulation may effectively regulate the complex interaction network between Aux/IAA and ARF family proteins required for the transcriptional control of auxin-response genes.

  16. Impact of endophytic colonization patterns on Zamioculcas zamiifolia stress response and in regulating ROS, tryptophan and IAA levels under airborne formaldehyde and formaldehyde-contaminated soil conditions.

    PubMed

    Khaksar, Gholamreza; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2017-05-01

    Deeper understanding of plant-endophyte interactions under abiotic stress would provide new insights into phytoprotection and phytoremediation enhancement. Many studies have investigated the positive role of plant-endophyte interactions in providing protection to the plant against pollutant stress through auxin (indole-3-acetic acid (IAA)) production. However, little is known about the impact of endophytic colonization patterns on plant stress response in relation to reactive oxygen species (ROS) and IAA levels. Moreover, the possible effect of pollutant phase on plant stress response is poorly understood. Here, we elucidated the impact of endophytic colonization patterns on plant stress response under airborne formaldehyde compared to formaldehyde-contaminated soil. ROS, tryptophan and IAA levels in the roots and shoots of endophyte-inoculated and non-inoculated plants in the presence and absence of formaldehyde were measured. Strain-specific quantitative polymerase chain reaction (qPCR) was used to investigate dynamics of endophyte colonization. Under the initial exposure to airborne formaldehyde, non-inoculated plants accumulated more tryptophan in the shoots (compared to the roots) to synthesize IAA. However, endophyte-inoculated plants behaved differently as they synthesized and accumulated more tryptophan in the roots and, hence, higher levels of IAA accumulation and exudation within roots which might act as a signaling molecule to selectively recruit B. cereus ERBP. Under continuous airborne formaldehyde stress, higher levels of ROS accumulation in the shoots pushed the plant to synthesize more tryptophan and IAA in the shoots (compared to the roots). Higher levels of IAA in the shoots might act as the potent driving force to relocalize B. cereus ERBP from roots to the shoots. In contrast, under formaldehyde-contaminated soil, B. cereus ERBP colonized root tissues without moving to the shoots since there was a sharp increase in ROS, tryptophan and IAA

  17. Characterization of Indole-3-acetic Acid Biosynthesis and the Effects of This Phytohormone on the Proteome of the Plant-Associated Microbe Pantoea sp. YR343

    DOE PAGES

    Estenson, Kasey N.; Hurst, Gregory B.; Standaert, Robert F.; ...

    2018-02-21

    Here, indole-3-acetic acid (IAA) plays a central role in plant growth and development, and many plant-associated microbes produce IAA using tryptophan as the precursor. Using genomic analyses, we predicted that Pantoea sp. YR343, a microbe isolated from Populus deltoides, synthesizes IAA using the indole-3-pyruvate (IPA) pathway. To better understand IAA biosynthesis and the effects of IAA exposure on cell physiology, we characterized proteomes of Pantoea sp. YR343 grown in the presence of tryptophan or IAA. Exposure to IAA resulted in upregulation of proteins predicted to function in carbohydrate and amino acid transport and exopolysaccharide (EPS) biosynthesis. Metabolite profiles of wild-typemore » cells showed the production of IPA, IAA, and tryptophol, consistent with an active IPA pathway. Finally, we constructed an ΔipdC mutant that showed the elimination of tryptophol, consistent with a loss of IpdC activity, but was still able to produce IAA (20% of wild-type levels). Although we failed to detect intermediates from other known IAA biosynthetic pathways, this result suggests the possibility of an alternate pathway or the production of IAA by a nonenzymatic route in Pantoea sp. YR343. The Δ ipdC mutant was able to efficiently colonize poplar, suggesting that an active IPA pathway is not required for plant association.« less

  18. Characterization of Indole-3-acetic Acid Biosynthesis and the Effects of This Phytohormone on the Proteome of the Plant-Associated Microbe Pantoea sp. YR343

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estenson, Kasey N.; Hurst, Gregory B.; Standaert, Robert F.

    Here, indole-3-acetic acid (IAA) plays a central role in plant growth and development, and many plant-associated microbes produce IAA using tryptophan as the precursor. Using genomic analyses, we predicted that Pantoea sp. YR343, a microbe isolated from Populus deltoides, synthesizes IAA using the indole-3-pyruvate (IPA) pathway. To better understand IAA biosynthesis and the effects of IAA exposure on cell physiology, we characterized proteomes of Pantoea sp. YR343 grown in the presence of tryptophan or IAA. Exposure to IAA resulted in upregulation of proteins predicted to function in carbohydrate and amino acid transport and exopolysaccharide (EPS) biosynthesis. Metabolite profiles of wild-typemore » cells showed the production of IPA, IAA, and tryptophol, consistent with an active IPA pathway. Finally, we constructed an ΔipdC mutant that showed the elimination of tryptophol, consistent with a loss of IpdC activity, but was still able to produce IAA (20% of wild-type levels). Although we failed to detect intermediates from other known IAA biosynthetic pathways, this result suggests the possibility of an alternate pathway or the production of IAA by a nonenzymatic route in Pantoea sp. YR343. The Δ ipdC mutant was able to efficiently colonize poplar, suggesting that an active IPA pathway is not required for plant association.« less

  19. Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown)

    PubMed Central

    Beilby, Mary J; Turi, Christina E; Baker, Teesha C; Tymm, Fiona JM; Murch, Susan J

    2015-01-01

    Giant-celled Characeae (Chara australis Brown), grown for 4 months on 12/12 hr day/night cycle and summer/autumn temperatures, exhibited distinct concentration maxima in auxin (indole-3-acetic acid; IAA), melatonin and serotonin about 4 hr after subjective daybreak. These concentration peaks persisted after 3 day pretreatment in continuous darkness: confirming a circadian rhythm, rather than a response to “light on.” The plants pretreated for 3 d in continuous light exhibited several large IAA concentration maxima throughout the 24 hr. The melatonin and serotonin concentrations decreased and were less synchronized with IAA. Chara plants grown on 9/15 hr day/night cycle for 4 months and winter/spring temperatures contained much smaller concentrations of IAA, melatonin and serotonin. The IAA concentration maxima were observed in subjective dark phase. Serotonin concentration peaks were weakly correlated with those of IAA. Melatonin concentration was low and mostly independent of circadian cycle. The “dark” IAA concentration peaks persisted in plants treated for 3 d in the dark. The plants pretreated for 3 d in the light again developed more IAA concentration peaks. In this case the concentration maxima in melatonin and serotonin became more synchronous with those in IAA. The abscisic acid (ABA) and jasmonic acid (JA) concentrations were also measured in plants on winter regime. The ABA concentration did not exhibit circadian pattern, while JA concentration peaks were out of phase with those of IAA. The data are discussed in terms of crosstalk between metabolic pathways. PMID:26382914

  20. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis

    PubMed Central

    Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.

    2016-01-01

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A. thaliana. This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants. PMID:27849615

  1. Fifty years of IAA History Symposia (1967-2016)

    NASA Astrophysics Data System (ADS)

    Skoog, A. Ingemar; Hall, R. Cargill

    2017-05-01

    The International Academy of Astronautics (IAA) Symposia on the History of Rocketry and Astronautics have been held annually at the International Astronautical Congresses since 1967. During these past 50 years nearly 800 papers have been presented and subsequently published in the proceedings. With a 20-year rule imposed for historical presentations, the first 10 symposia concentrated on pre-World War II and early 1950s activities. A surprisingly large number of papers on early, less well-known Soviet-Russian contributions to rocketry and astronautics were presented in the first symposia, despite the ongoing Space Race between the U.S and USSR. Another important element in these symposia involved memoir papers offered by pre- and post-war rocket and astronautics pioneers from many countries, and the participation of many of these pioneers in person. In sum, the history of national space and rocket projects from some 40 countries were presented over the years in IAA History Symposia. These 50 symposia have provided a platform for scholars and professional and non-professional historians to meet and discuss the history of rocketry and astronautics, and to personally interview many space pioneers, most of whom today are deceased. Their personal recollections have since been shared with a large audience. Over time, IAA history papers divided into recognizable periods: ancient times through the 19th century, and the 20th and 21st centuries, which separate among actions and events that took place before 1945, in 1945 to 1957, and after 1957 (which marked the beginning of the space age). Proceedings of the IAA History Symposia have been published in English, ultimately in the History Series of the American Astronautical Society (AAS) and its publishing arm, Univelt Inc., under an agreement secured with the IAA. This paper presents an overview of the IAA History Symposia. It examines the early years of the history committee and its first symposium, the evolution of

  2. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening.

    PubMed

    Böttcher, Christine; Keyzers, Robert A; Boss, Paul K; Davies, Christopher

    2010-08-01

    In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.

  3. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings

    PubMed Central

    Nordström, Ann-Caroline; Jacobs, Fernando Alvarado; Eliasson, Lennart

    1991-01-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by 1H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  4. Studies on the longitudinal and lateral transport of IAA in the shoots of etiolated corn seedlings

    NASA Technical Reports Server (NTRS)

    Epel, B. L.; Warmbrodt, R. P.; Bandurski, R. S.

    1992-01-01

    The auxin, indole-3-acetic acid, and the symplastic probe, carboxyfluorescein diacetate, were applied to the cut mesocotyl base or coleoptile apex of etiolated Zea mays seedlings and their transport measured and tissue distribution determined. The longitudinal transport of indole-3-acetate was strongly basipolar, while that of carboxyfluorescein was essentially apolar. The longitudinal transport of IAA, like carboxyfluorescein, was mainly in the stele. IAA exhibited a much higher lateral mobility from stele to cortex than did carboxyfluorescein. Based on the calculation of moles probe/kg fw, IAA is 4 times more concentrated in the stele than in the cortex while CF is 24 times higher in concentration in the stele than in the cortex. The structure of the node and the mesocotyl regions just below the node, regions of maximum growth, were examined and plasmodesmatal structure and frequency in these regions determined. The plasmodesmatal frequency, about 3 per micrometer2, between all cell types of the mesocotyl was found to be about 5-8 fold higher than that found for the root. Hypotheses of lateral auxin transport are discussed.

  5. Changes in ABA, IAA and JA levels during calyx, fruit and leaves development in cape gooseberry plants (Physalis peruviana L.).

    PubMed

    Álvarez-Flórez, F; López-Cristoffanini, C; Jáuregui, O; Melgarejo, L M; López-Carbonell, M

    2017-06-01

    Changes in abscisic acid (ABA), indole-3-acetic acid (IAA) and jasmonic acid (JA) content in developing calyx, fruits and leaves of Physalis peruviana L. plants were analysed. Plant hormones have been widely studied for their roles in the regulation of various aspects related to plant development and, in particular, into their action during development and ripening of fleshly fruits. The obtained evidences suggest that the functions of these hormones are no restricted to a particular development stage, and more than one hormone is involved in controlling various aspects of plant development. Our results will contribute to understand the role of these hormones during growth and development of calyx, fruits and leaves in cape gooseberry plants. This work offers a good, quickly and efficiently protocol to extract and quantify simultaneously ABA, IAA and JA in different tissues of cape gooseberry plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Transport of sup 14 C-IAA and sup 14 C-ACC within floral organs of Ipomoea nil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, H.G.; Maurice, H.R.; Koning, R.E.

    1989-04-01

    The transport of {sup 14}C-IAA {sup 14}C-ACC from agarose donor blocks applied to I. nil filaments their recovery as {sup 14}C-accumulation into floral organs was examined. The accumulation of the isotopes in the corolla tissue was greater when {sup 14}C-ACC was applied than {sup 14}C-IAA in intact isolated flower buds. Greater levels of the isotopes accumulated in the pistil, with minimal levels in receptacle and calyx tissues from isolated buds. With intact buds, greater levels of the isotopes were recovered in pistil, calyx receptacle tissues. This study provides further evidence for the role of the filaments as transport vectors formore » IAA ACC for the production of ethylene.« less

  7. Carbohydrates stimulate ethylene production in tobacco leaf discs : I. Interaction with auxin and the relation to auxin metabolism.

    PubMed

    Meir, S; Philosoph-Hadas, S; Epstein, E; Aharoni, N

    1985-05-01

    Various naturally occurring carbohydrates, applied at a concentration range of 1 to 100 mm, stimulated ethylene production for several days in indoleacetic acid (IAA)-treated or untreated tobacco (Nicotiana tabacum L. cv ;Xanthi') leaf discs. The lag period for this sugar-stimulated ethylene production was 8 to 12 hours after excision in the untreated leaf discs, but less than 2 hours in the IAA-treated ones. Among the tested carbohydrates, 12 were found to increase synergistically ethylene production, with d-galactose, sucrose, and lactose being the most active; mannitol and l-glucose had no effect. The extent and duration of the increased ethylene production was dependent upon the type of sugar applied, the tissue's age, and the existence of both exogenous IAA and sugar in the medium. Sucrose appeared to elicit a continuous IAA effect for 48 hours, as expressed by increased ethylene production, even when IAA was removed from the medium after a 4-hour pulse. Sucrose stimulated both the uptake and decarboxylation of [1-(14)C]IAA, as well as the hydrolysis of the esteric and amide IAA conjugates formed in the tissue after application of free IAA. This gradual hydrolysis was accompanied by a further accumulation of a third IAA metabolite. Moreover, synthetic indole-3-acetyl-l-alanine increased ethylene production mainly with sucrose, and this effect was accompanied by its increased decarboxylation and turnover pattern suggesting that release of free IAA was involved. An esteric IAA conjugate, tentatively identified by GC retention time was found to be the major component (84%) of the naturally occurring IAA conjugates in tobacco leaves. Accordingly the sucrose-stimulated ethylene production in tobacco leaves can be ascribed mainly to the sucrose-stimulated hydrolysis of the esteric IAA conjugate.

  8. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    PubMed

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  9. [Cloning and expression analysis of differentially expressed genes in Chinese fir stems treated by different concentrations of exogenous IAA].

    PubMed

    Yang, Li-Wei; Shi, Ji-Sen

    2012-04-01

    To reveal the potential genetic mechanisms of indole-3-acetic acid (IAA) that regulate Chinese fir wood formation, cloned the differentially expressed genes via suppress subtractive hybridization (SSH) using the truncated stems treated by 0 and 3 mg IAA/g lanolin as the driver and tester, respectively. A total of 332 unigenes that were involved in cell organization and biosynthesis, developmental processes control, electron transport, stress response, and signal transduction. To further test the results from SSH, we selected those unigenes, whose putative encoding proteins showed significantly homologous with HIRA, PGY1, SMP1, TCT, TRN2, and ARF4, and analyzed their expressed specificity in the wood formative tissues and their response to the secondary developmental changes of vascular cambium stimulated by 0, 1, and 3 mg.IAA/g.lanolin treatment. The results showed that ClHIRA, ClPGY1, and ClARF4, which were specifically expressed in the adaxial zone of stem, were positively response to the activities of cell division and tracheid differentiation stimulated by exogenous IAA treatment. However, ClSMP1, ClTCTP1, and ClTRN2, which were mainly expressed in the abaxial zones of stems, showed negative correlation with the treated levels of exogenous IAA and activities of vascular cambium secondary development at the transcriptional level. This result showed that the differential response of developmental regulatory genes located in different vascular tissues to the level changes of edogenous IAA in stems is likely to be an important molecular mechanism of auxin regulating wood formation.

  10. The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations.

    PubMed

    Hadi, Fazal; Bano, Asghari; Fuller, Michael P

    2010-06-01

    This investigation was made to examine the role of gibberellic acid (GA(3)), indole-3-acetic acid (IAA) and EDTA in improving phytoextraction of the Pb and plant growth on Pb added soil. GA(3), IAA and EDTA were applied separately and in combinations. GA(3) and IAA were applied as foliar spray and seed soaking. EDTA was applied in single and split doses. Analysis of the Pb in different parts of plant was carried out using atomic absorption/flame spectrophotometer. EDTA significantly reduced the plant growth and dry biomass, whereas GA(3) and IAA foliar spray increased it significantly when compared with control (only Pb added soil). In combined treatments of EDTA+GA(3) and EDTA+IAA, the growth and biomass was restored, which shows that GA(3) and IAA did compensate the negative effect of EDTA on plant growth. The separate treatments of EDTA, GA(3) and IAA increased the Pb uptake and translocation significantly moreover in combine treatments, synergistic effect was found and remarkable increase in Pb uptake and translocation into shoot was observed. EDTA increased the Pb uptake but declined the biomass; subsequently the total Pb accumulation was decreased in plant. The maximum total Pb was found in combined treatment of EDTA+GA(3). These findings suggest more investigation to find a combination of GA(3) with a very low concentration of EDTA, as in high concentration it causes soil and ground water pollution.

  11. Identification, Expression and IAA-Amide Synthetase Activity Analysis of Gretchen Hagen 3 in Papaya Fruit (Carica papaya L.) during Postharvest Process

    PubMed Central

    Liu, Kaidong; Wang, Jinxiang; Li, Haili; Zhong, Jundi; Feng, Shaoxian; Pan, Yaoliang; Yuan, Changchun

    2016-01-01

    Auxin plays essential roles in plant development. Gretchen Hagen 3 (GH3) genes belong to a major auxin response gene family and GH3 proteins conjugate a range of acylsubstrates to alter the levels of hormones. Currently, the role of GH3 genes in postharvest physiological regulation of ripening and softening processes in papaya fruit is unclear. In this study, we identified seven CpGH3 genes in a papaya genome database. The CpGH3.1a, CpGH3.1b, CpGH3.5, CpGH3.6, and CpGH3.9 proteins were identified as indole-3-acetic acid (IAA)-specific amido synthetases. We analyzed the changes in IAA-amido synthetase activity using aspartate as a substrate for conjugation and found a large increase (over 5-fold) during the postharvest stages. Ascorbic acid (AsA) application can extend the shelf life of papaya fruit. Our data showed that AsA treatment regulates postharvest fruit maturation processes by promoting endogenous IAA levels. Our findings demonstrate the important role of GH3 genes in the regulation of auxin-associated postharvest physiology in papaya. PMID:27812360

  12. Callus induction of leaf explant Piper betle L. Var Nigra with combination of plant growth regulators indole-3-acetic acid (IAA), benzyl amino purin (BAP) and kinetin

    NASA Astrophysics Data System (ADS)

    Junairiah, Zuraidassanaaz, Nabilah Istighfari; Izdihar, Fairuz Nabil; Manuhara, Yosephine Sri Wulan

    2017-09-01

    The purpose of this research was to determine the combination of plant growth regulators IAA, BAP and kinetin towards callus induction and growth of leaf explants Piper betle L. VarNigra. Explants from leaf of Piper betle L. VarNigra was cultured on MS medium with 24 treatment combinations of plant growth regulators IAA and BAP and 24 treatment combinations of plant growth regulators IAA and kinetin with 0.0;0.5;1.0;1.5;2.0 mg/L concentration respectively, the observed variable were the length of time the formation of callus, callus morphology, fresh and dry weight of callus. The results of this research showed that the combination of growth regulators IAA with BAP and kinetin had effects on leaf growth of Piper betle L. VarNigra. During 8 weeks observation, it indicated that the combination of concentration IAA 0.5 mg/L and BAP 2.0 mg/L showed fastest callus formation at 8.5 days. Combination of concentration IAA 1.0 mg/L and BAP 1.5 mg/L showed the highest of fresh weight at 0.6596 grams, and the highest dry weight was obtained from the combination of concentration IAA 0.5 mg/L and BAP 0.5 mg/L at 0.0727 grams. Combination of concentration IAA 1.0 mg/L and kinetin 1.5 mg/L had the highest of fresh weight at 0.2972 grams and the highest dry weight at 0.1660 grams. Callus of Piper betle L. VarNigra had two textures, that were compact and friable, and also showed various kind of colors, like white, greenish white, yellowish white, tanned white, brown and black. Based on this research, that concentration IAA 1.0 mg/L and 1.5 mg/L kinetin was the best combination for induction of callus from leaf of Piper betle L. Var Nigra.

  13. FTIR spectroscopic study of the phytohormone auxin (Indol-3-ylacetic Acid, IAA) and its n-alkylated and monohalogenated derivatives

    NASA Astrophysics Data System (ADS)

    Lutz, Bert T. G.; van der Windt, Erik; Kanters, Jan; Klämbt, Dieter; Kojić-Prodić, Biserka; Ramek, Michael

    1996-09-01

    In the framework of structure/activity correlation studies the plant growth hormone auxin and its natural analogue 4-Cl-IAA, as well as their synthetic congeners, were studied by FTIR spectroscopy. The analysis was focused on the NH and CO stretching vibrations which can be the most sensitive probes of intra- and intermolecular interactions, particularly to hydrogen bonds. However, it emerged that vC = O vibrations of both monomer and dimer are not affected by substitution. The aliphatic CH 2 group acts as an insulator between the conjugated π-system of indole and the carboxylic group, thus prohibiting a direct effect on the vibration CO. On the contrary, the stretching vibrations NH are influenced by halogenation and hydrogen bonding. The experimental data are in good agreement with the results of quantum chemical ab initio calculations of NH vibrations for IAA and several chlorine substituted IAAs. However, a simple correlation between substitution and spectral properties of indole NH cannot be found. The measurements were performed in the solid state (KBr pellets) and in polar (diethylether) and nonpolar (CDCI 3) solutions. From the measurements in diethylether, it follows that in dilute solution IAA and derivatives are predominantly present as monomer, whereas in CDCl 3 the equilibrium is in favour of the dimer form. In aqueous solution at the concentrations used in growth experiments solvated monomer will be the active component. Bioactivity of auxin and analogues with their NH stretching frequency shifts cannot be correlated in a simple way.

  14. IAA RAS Radio Telescope Monitoring System

    NASA Astrophysics Data System (ADS)

    Mikhailov, A.; Lavrov, A.

    2007-07-01

    Institute of Applied Astronomy of the Russian Academy of Sciences (IAA RAS) has three identical radio telescopes, the receiving complex of which consists of five two-channel receivers of different bands, six cryogen systems, and additional devices: four local oscillators, phase calibration generators and IF commutator. The design, hardware and data communication protocol are described. The most convenient way to join the devices of the receiving complex into the common monitoring system is to use the interface which allows to connect numerous devices to the data bus. For the purpose of data communication regulation and to exclude conflicts, a data communication protocol has been designed, which operates with complex formatted data sequences. Formation of such sequences requires considerable data processing capability. That is provided by a microcontroller chip in each slave device. The test version of the software for the central computer has been developed in IAA RAS. We are developing the Mark IV FS software extension modules, which will allow us to control the receiving complex of the radio telescope by special SNAP commands from both operator input and schedule files. We are also developing procedures of automatic measurements of SEFD, system noise temperature and other parameters, available both in VLBI and single-dish modes of operation. The system described has been installed on all IAA RAS radio telescopes at "Svetloe", "Zelenchukskaya" and "Badary" observatories. It has proved to be working quite reliably and to show the perfonmance expected.

  15. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity.

    PubMed

    Fattorini, L; Veloccia, A; Della Rovere, F; D'Angeli, S; Falasca, G; Altamura, M M

    2017-07-11

    Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is more AR-inductive than 10 μM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 μM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 μM) or IAA alone (10 μM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. Altogether, results showed that IBA induced

  16. GA3 and other signal regulators (MeJA and IAA) improve xanthumin biosynthesis in different manners in Xanthium strumarium L.

    PubMed

    Li, Changfu; Chen, Fangfang; Zhang, Yansheng

    2014-08-25

    Xanthanolides from Xanthium strumarium L. exhibit various pharmacological activities and these compounds are mainly produced in the glandular trichomes of aerial plant parts. The regulation of xanthanolide biosynthesis has never been reported in the literature. In this study, the effects of phytohormonal stimulation on xanthumin (a xanthanolide compound) biosynthesis, glandular trichomes and germacrene A synthase (GAS) gene expression in X. strumarium L. young leaves were investigated. The exogenous applications of methyl jasmonate (MeJA), indole-3-acetic acid (IAA), and gibberrellin A3 (GA3) at appropriate concentrations were all found to improve xanthumin biosynthesis, but in different ways. It was suggested that a higher gland density stimulated by MeJA (400 µM) or IAA (200 µM) treatment caused at least in part an improvement in xanthumin production, whereas GA3 (10 µM) led to an improvement by up-regulating xanthumin biosynthetic genes within gland cells, not by forming more glandular trichomes. Compared to the plants before the flowering stage, plants that had initiated flowering showed enhanced xanthumin biosynthesis, but no higher gland density, an effect was similar to that caused by exogenous GA3 treatment.

  17. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Rashotte, Aaron M.; Poupart, Julie; Waddell, Candace S.; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2003-01-01

    Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.

  18. The studies on the toxicity mechanism of environmentally hazardous natural (IAA) and synthetic (NAA) auxin--The experiments on model Arabidopsis thaliana and rat liver plasma membranes.

    PubMed

    Hąc-Wydro, Katarzyna; Flasiński, Michał

    2015-06-01

    This paper concerns the studies towards membrane-damage effect of two auxins: indole-3-acetic acid - IAA and 1-naphthaleneacetic acid - NAA on plant (Arabidopsis thaliana) and animal (rat liver) model membranes. The foregoing auxins are plant growth regulators widely used in agriculture to control the quality of the crop. However, their accumulation in the environment makes them hazardous for the living organisms. The aim of our investigations was to compare the effect of natural (IAA) vs. synthetic (NAA) auxin on the organization of plant and animal model membranes and find a possible correlation between membrane-disturbing effect of these compounds and their toxicity. The collected data evidenced that auxins cause destabilization of membranes, decrease their condensation and weakens interactions of molecules. The alterations in the morphology of model systems were also noticed. The foregoing effects of auxins are concentration-dependent and additionally NAA was found to act on animal vs. plant membranes more selectively than IAA. Interestingly, both IAA and NAA induce the strongest disordering in model lipid system at the concentration, which is frequently reported as toxic to animal and plants. Based on the above findings it was proposed that membrane-damage effect induced by IAA and NAA may be important from the point of view of the mechanism of toxicity of these compounds and cannot be ignored in further investigations in this area. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Rice Dwarf Virus P2 Protein Hijacks Auxin Signaling by Directly Targeting the Rice OsIAA10 Protein, Enhancing Viral Infection and Disease Development

    PubMed Central

    Jin, Lian; Qin, Qingqing; Wang, Yu; Pu, Yingying; Liu, Lifang; Wen, Xing; Ji, Shaoyi; Wu, Jianguo; Wei, Chunhong; Li, Yi

    2016-01-01

    The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB) protein and an auxin/indole-3-acetic acid (Aux/IAA) protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV), a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant) mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis. PMID:27606959

  20. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic.

    PubMed

    Ouyang, Liming; Pei, Haiyan; Xu, Zhaohui

    2017-04-01

    Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.

  1. An Engineered Device for Indoleacetic Acid Production under Quorum Sensing Signals Enables Cupriavidus pinatubonensis JMP134 To Stimulate Plant Growth.

    PubMed

    Zúñiga, Ana; Fuente, Francisco de la; Federici, Fernán; Lionne, Corinne; Bônnet, Jérome; de Lorenzo, Victor; González, Bernardo

    2018-06-15

    The environmental effects of chemical fertilizers and pesticides have encouraged the quest for new strategies to increase crop productivity with minimal impacts on the natural medium. Plant growth promoting rhizobacteria (PGPR) can contribute to this endeavor by improving fitness through better nutrition acquisition and stress tolerance. Using the neutral (non PGPR) rhizobacterium Cupriavidus pinatubonensis JMP134 as the host, we engineered a regulatory forward loop that triggered the synthesis of the phytohormone indole-3-acetic acid (IAA) in a manner dependent on quorum sensing (QS) signals. Implementation of the device in JMP134 yielded synthesis of IAA in an autoregulated manner, improving the growth of the roots of inoculated Arabidopsis thaliana. These results not only demonstrated the value of the designed genetic module, but also validated C. pinatubonensis JMP134 as a suitable vehicle for agricultural applications, as it is amenable to genetic manipulations.

  2. Towards Transparent Throughput Elasticity for IaaS Cloud Storage: Exploring the Benefits of Adaptive Block-Level Caching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolae, Bogdan; Riteau, Pierre; Keahey, Kate

    Storage elasticity on IaaS clouds is a crucial feature in the age of data-intensive computing, especially when considering fluctuations of I/O throughput. This paper provides a transparent solution that automatically boosts I/O bandwidth during peaks for underlying virtual disks, effectively avoiding over-provisioning without performance loss. The authors' proposal relies on the idea of leveraging short-lived virtual disks of better performance characteristics (and thus more expensive) to act during peaks as a caching layer for the persistent virtual disks where the application data is stored. Furthermore, they introduce a performance and cost prediction methodology that can be used both independently tomore » estimate in advance what trade-off between performance and cost is possible, as well as an optimization technique that enables better cache size selection to meet the desired performance level with minimal cost. The authors demonstrate the benefits of their proposal both for microbenchmarks and for two real-life applications using large-scale experiments.« less

  3. Auxin production by the plant trypanosomatid Phytomonas serpens and auxin homoeostasis in infected tomato fruits.

    PubMed

    Ienne, Susan; Freschi, Luciano; Vidotto, Vanessa F; De Souza, Tiago A; Purgatto, Eduardo; Zingales, Bianca

    2014-09-01

    Previously we have characterized the complete gene encoding a pyruvate decarboxylase (PDC)/indolepyruvate decarboxylase (IPDC) of Phytomonas serpens, a trypanosomatid highly abundant in tomato fruits. Phylogenetic analyses indicated that the clade that contains the trypanosomatid protein behaves as a sister group of IPDCs of γ-proteobacteria. Since IPDCs are key enzymes in the biosynthesis of the plant hormone indole-3-acetic acid (IAA), the ability for IAA production by P. serpens was investigated. Similar to many microorganisms, the production of IAA and related indolic compounds, quantified by high performance liquid chromatography, increased in P. serpens media in response to amounts of tryptophan. The auxin functionality was confirmed in the hypocotyl elongation assay. In tomato fruits inoculated with P. serpens the concentration of free IAA had no significant variation, whereas increased levels of IAA-amide and IAA-ester conjugates were observed. The data suggest that the auxin produced by the flagellate is converted to IAA conjugates, keeping unaltered the concentration of free IAA. Ethanol also accumulated in P. serpens-conditioned media, as the result of a PDC activity. In the article we discuss the hypothesis of the bifunctionality of P. serpens PDC/IPDC and provide a three-dimensional model of the enzyme.

  4. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration.

    PubMed

    Cheng, Fan; Liu, Yu-Feng; Lu, Guang-Yuan; Zhang, Xue-Kun; Xie, Ling-Li; Yuan, Cheng-Fei; Xu, Ben-Bo

    2016-04-01

    Researchers have proven that nanomaterials have a significant effect on plant growth and development. To better understand the effects of nanomaterials on plants, Zhongshuang 11 was treated with different concentrations of graphene oxide. The results indicated that 25-100mg/l graphene oxide treatment resulted in shorter seminal root length compared with the control samples. The fresh root weight decreased when treated with 50-100mg/l graphene oxide. The graphene oxide treatment had no significant effect on the Malondialdehyde (MDA) content. Treatment with 50mg/l graphene oxide increased the transcript abundance of genes involved in ABA biosynthesis (NCED, AAO, and ZEP) and some genes involved in IAA biosynthesis (ARF2, ARF8, IAA2, and IAA3), but inhibited the transcript levels of IAA4 and IAA7. The graphene oxide treatment also resulted in a higher ABA content, but a lower IAA content compared with the control samples. The results indicated that graphene oxide modulated the root growth of Brassica napus L. and affected ABA and IAA biosynthesis and concentration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Ethylene-enhanced catabolism of ( sup 14 C)indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. [Citrus sinensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagee, O.; Riov, J.; Goren, J.

    Exogenous ({sup 14}C)indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of ({sup 14}C)IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of themore » mechanisms by which ethylene endogenous IAA levels.« less

  6. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition.

    PubMed

    Hansen, H; Grossmann, K

    2000-11-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6, 6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mM IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [(3)H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA

  7. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.

    PubMed

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells.

    PubMed

    Labeeuw, Leen; Khey, Joleen; Bramucci, Anna R; Atwal, Harjot; de la Mata, A Paulina; Harynuk, James; Case, Rebecca J

    2016-01-01

    Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.

  9. Study on the extraction, purification and quantification of jasmonic acid, abscisic acid and indole-3-acetic acid in plants.

    PubMed

    Zhang, Feng Juan; Jin, You Ju; Xu, Xing You; Lu, Rong Chun; Chen, Hua Jun

    2008-01-01

    Jasmonic acid (JA), abscisic acid (ABA) and indole-3-acetic acid (IAA) are important plant hormones. Plant hormones are difficult to analyse because they occur in small concentrations and other substances in the plant interfere with their detection. To develop a new, inexpensive procedure for the rapid extraction and purification of IAA, ABA and JA from various plant species. Samples were prepared by extraction of plant tissues with methanol and ethyl acetate. Then the extracts were further purified and enriched with C(18) cartridges. The final extracts were derivatised with diazomethane and then measured by GC-MS. The results of the new methodology were compared with those of the Creelman and Mullet procedure. Sequential elution of the assimilates from the C(18 )cartridges revealed that IAA and ABA eluted in 40% methanol, while JA subsequently eluted in 60% methanol. The new plant hormone extraction and purification procedure produced results that were comparable to those obtained with the Creelman and Mullet's procedure. This new procedure requires only 0.5 g leaf samples to quantify these compounds with high reliability and can simultaneously determine the concentrations of the three plant hormones. A simple, inexpensive method was developed for determining endogenous IAA, ABA and JA concentrations in plant tissue.

  10. Identification of ARF and AUX/IAA gene families in Rafflesia cantleyi

    NASA Astrophysics Data System (ADS)

    Elias, Nur Atiqah Mohd; Goh, Hoe-Han; Isa, Nurulhikma Md; Wan, Kiew-Lian

    2016-11-01

    Rafflesia is a unique plant that produces the largest flowers in the world. It has a short blooming period of 6 to 7 days. Due to its rarity and limited accessibility, little is known about the growth and developmental process in the Rafflesia plant. In all plant species, auxin is the key hormone that is involved in growth and development. The auxin signal transduction involves members of the ARF transcription factor and AUX/IAA regulator families, which activate or inhibit the regulation of auxin response genes, thereby control the developmental process in plants. To gain a better understanding of molecular regulations in the Rafflesia plant development during flowering, members of the ARF and AUX/IAA gene families were identified from the transcriptome data of flower blooming stages in Rafflesia cantleyi. Based on Rafflesia unique transcripts (UTs) against the Arabidopsis TAIR database using BLASTX search, a total of nine UTs were identified as ARF transcription factors, while another seven UTs were identified as AUX/IAA regulators. These genes were found to be expressed in all three R. cantleyi flower stages i.e. days 1 (F1), 3 (F2), and 5 (F3). Gene expression analysis identified three genes that are differentially expressed in stage F1 vs. F2 i.e. IAA4 is upregulated while IAA8 and ARF3 are downregulated. These genes may be involved in the activation and/or inhibition of the auxin signal transduction pathway. Further analysis of these genes may unravel their function in the phenotypic development of the Rafflesia plant.

  11. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1

    PubMed Central

    Hansen, Hauke; Grossmann, Klaus

    2000-01-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [3H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA

  12. A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana

    PubMed Central

    Suzuki, Hiromi; Matano, Naoyuki; Nishimura, Takeshi; Koshiba, Tomokazu

    2014-01-01

    Studies using inhibitors of indole-3-acetic acid (IAA) transport, not only for efflux but influx carriers, provide many aspects of auxin physiology in plants. 1-Naphtoxyacetic acid (1-NOA), an analog of the synthetic auxin 1-N-naphtalene acetic acid (NAA), inhibits the IAA influx carrier AUX1. However, 1-NOA also shows auxin activity because of its structural similarity to NAA. In this study, we have identified another candidate inhibitor of the IAA influx carrier. The compound, “7-B3; ethyl 2-[(2-chloro-4-nitrophenyl)thio]acetate,” is a 2,4-dichlorophenoxyacetic acid (2,4-D) analog. At high concentrations (> 300 µM), 7-B3 slightly reduced IAA transport and tropic curvature of maize coleoptiles, whereas lower concentrations had almost no effect. We have analyzed the effects of 7-B3 on Arabidopsis thaliana seedlings. 7-B3 rescued the 2,4-D-inhibited root elongation, but not the NAA-inhibited root elongation. The effect of 7-B3 was weaker than that of 1-NOA. Both 1-NOA and 7-B3 inhibited DR5::GUS expression induced by IAA and 2,4-D, but not that induced by NAA. At high concentrations, 1-NOA exhibited auxin activity, but 7-B3 did not. Furthermore, 7-B3 inhibited apical hook formation in etiolated seedlings more effectively than 1-NOA did. These results indicate that 7-B3 is a potential inhibitor of IAA influx that has almost no effect on IAA efflux or auxin signaling. PMID:24800738

  13. Transport of Indole-3-Butyric Acid and Indole-3-Acetic Acid in Arabidopsis Hypocotyls Using Stable Isotope Labeling1[C][W][OA

    PubMed Central

    Liu, Xing; Barkawi, Lana; Gardner, Gary; Cohen, Jerry D.

    2012-01-01

    The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling. PMID:22323783

  14. Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm)

    PubMed Central

    Pieruzzi, Fernanda P.; Dias, Leonardo L. C.; Balbuena, Tiago S.; Santa-Catarina, Claudete; dos Santos, André L. W.; Floh, Eny I. S.

    2011-01-01

    Background and Aims Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination. Methods Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC. Key Results During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied. Conclusions The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators. PMID:21685432

  15. ECL-IAA and ECL-GADA Can Identify High-Risk Single Autoantibody-Positive Relatives in the TrialNet Pathway to Prevention Study.

    PubMed

    Steck, Andrea K; Fouts, Alexandra; Miao, Dongmei; Zhao, Zhiyuan; Dong, Fran; Sosenko, Jay; Gottlieb, Peter; Rewers, Marian J; Yu, Liping

    2016-07-01

    Relatives with single positive islet autoantibodies have a much lower risk of progression to diabetes than those with multiple autoantibodies. TrialNet subjects positive for single autoantibody to insulin (mIAA) (n = 50) or single autoantibody to glutamic acid decarboxylase (GADA) (n = 50) were analyzed using new electrochemiluminescence (ECL) assays (ECL-IAA and ECL-GADA, respectively) at their initial visit and longitudinally over time. Affinity assays were performed on a subset of single autoantibody-positive subjects at initial and most recent visits. After a mean follow-up of 5.3 years, 20 subjects developed type 1 diabetes. Among either single GADA or single mIAA subjects, those who were positive in the ECL assay showed higher affinity at the initial visit, and affinity results stayed consistent over time. No converting events from low to high or high to low affinity were seen over time. Confirmed positivity for ECL is associated with high affinity and can help staging of risk for type 1 diabetes in single autoantibody-positive subjects.

  16. ECL-IAA and ECL-GADA Can Identify High-Risk Single Autoantibody-Positive Relatives in the TrialNet Pathway to Prevention Study

    PubMed Central

    Fouts, Alexandra; Miao, Dongmei; Zhao, Zhiyuan; Dong, Fran; Sosenko, Jay; Gottlieb, Peter; Rewers, Marian J.

    2016-01-01

    Abstract Background: Relatives with single positive islet autoantibodies have a much lower risk of progression to diabetes than those with multiple autoantibodies. Materials and Methods: TrialNet subjects positive for single autoantibody to insulin (mIAA) (n = 50) or single autoantibody to glutamic acid decarboxylase (GADA) (n = 50) were analyzed using new electrochemiluminescence (ECL) assays (ECL-IAA and ECL-GADA, respectively) at their initial visit and longitudinally over time. Affinity assays were performed on a subset of single autoantibody-positive subjects at initial and most recent visits. Results: After a mean follow-up of 5.3 years, 20 subjects developed type 1 diabetes. Among either single GADA or single mIAA subjects, those who were positive in the ECL assay showed higher affinity at the initial visit, and affinity results stayed consistent over time. No converting events from low to high or high to low affinity were seen over time. Conclusions: Confirmed positivity for ECL is associated with high affinity and can help staging of risk for type 1 diabetes in single autoantibody-positive subjects. PMID:26991969

  17. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    PubMed

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Cloning of a promoter-like soybean DNA sequence responding to IAA induction in Escherichia coli K12.

    PubMed

    Kline, E L; Chiang, S J; Lattora, D; Chaung, W

    1992-02-01

    We have constructed a soybean genomic DNA library in Escherichia coli K12 strain KC13 using plasmid pPV33, which consists of a promoter-less tetracycline resistance (Tcr) gene. A recombinant clone, KC13(pAU-SB1)+, was obtained by selecting for resistance to tetracycline in the presence of indole-3-acetic acid (IAA). Restriction enzyme cleavage and Southern hybridization analysis revealed that the pAU-SB1 plasmid has a 250 bp soybean DNA insert fused with the Tcr gene. In the presence of a selected group of auxins, induction of the Tcr phenotype and mRNA synthesis of the Tcr gene are observed only in KC13(pAU-SB1)+ cultures. On the other hand, induction of the Tcr phenotype and mRNA synthesis of the Tcr gene are absent in cells harboring the cloning vector pPV33 or a recombinant plasmid containing the 250 bp insert in the reverse orientation, pAU-SB1ro. This demonstrated a need for the insertion of the 250 bp soybean DNA and the specificity of its orientation in response to IAA induction. The start point of mRNA transcription in response to IAA, IBA, IPA, 2,4,5-T, and a-NAP is at base pair -96 or -95 upstream of the translational start site of the Tcr gene and base pair -98 with 2,4-D.

  19. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid[C][W][OPEN

    PubMed Central

    Pěnčík, Aleš; Simonovik, Biljana; Petersson, Sara V.; Henyková, Eva; Simon, Sibu; Greenham, Kathleen; Zhang, Yi; Kowalczyk, Mariusz; Estelle, Mark; Zažímalová, Eva; Novák, Ondřej; Sandberg, Göran; Ljung, Karin

    2013-01-01

    The native auxin, indole-3-acetic acid (IAA), is a major regulator of plant growth and development. Its nonuniform distribution between cells and tissues underlies the spatiotemporal coordination of many developmental events and responses to environmental stimuli. The regulation of auxin gradients and the formation of auxin maxima/minima most likely involve the regulation of both metabolic and transport processes. In this article, we have demonstrated that 2-oxindole-3-acetic acid (oxIAA) is a major primary IAA catabolite formed in Arabidopsis thaliana root tissues. OxIAA had little biological activity and was formed rapidly and irreversibly in response to increases in auxin levels. We further showed that there is cell type–specific regulation of oxIAA levels in the Arabidopsis root apex. We propose that oxIAA is an important element in the regulation of output from auxin gradients and, therefore, in the regulation of auxin homeostasis and response mechanisms. PMID:24163311

  20. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.

    PubMed

    Schlicht, Markus; Ludwig-Müller, Jutta; Burbach, Christian; Volkmann, Dieter; Baluska, Frantisek

    2013-10-01

    Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. a New IAA Cosmic Study: Establishing a Radio Observatory on the Moon Farside

    NASA Astrophysics Data System (ADS)

    Heidmann, J.

    2002-01-01

    In 1998, the IAA decided to develop a new Cosmic Study following a suggestion by its President, M. Yarymovych, based on work I initiated in 1993. This project is jointly fully supported by G. Haerendel, Vice-President of the IAA and President of the COSPAR. After the Symposium " Protection of Part of a Celestial Body for the Scientific Benefit of Humankind: the Lunar Farside Crater SAHA Proposal", which I organized at the COSPAR 1998 Scientific Assembly, the IAA Space Science Committee endorsed also this study. I assembled a Committee including D. McNally, University of London Observatory, for Radio Protection, B. Reijnen, International Institute of Space Law, for Space Law, G. Genta, Politecnico di Torino, for Astronautics, J.-F. Lestrade, Paris-Meudon Observatory, for Radioastronomy, and C. Maccone, IAA SETI and Interstellar Space Exploration Committees, for Mission Management. We encourage contributions from workers in a wide range of interdisciplinary domains: space lawyers, space engineers, astronomers, policy-makers, economists, educationists, media analysts. I started to invite potential contributors from various sources such as programmes of recent conferences of IAF, IAA, IISL, COSPAR, IAU, NASA, ESA and other space agencies, together with news from journals such as Science, Nature, Space News. The basic philosophy is not to refrain from giving access to persons of different opinions, so that a balance can be presented, aiming at some synthetizing consensus. I shall be the Editor, submitting each paper to two referees and taking advice from the Committee in controversial cases.

  2. Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect.

    PubMed

    Passari, Ajit Kumar; Chandra, Preeti; Zothanpuia; Mishra, Vineet Kumar; Leo, Vincent Vineeth; Gupta, Vijai Kumar; Kumar, Brijesh; Singh, Bhim Pratap

    2016-10-01

    In the present study, fifteen endophytic actinobacterial isolates recovered from Solanum lycopersicum were studied for their antagonistic potential and plant-growth-promoting (PGP) traits. Among them, eight isolates showed significant antagonistic and PGP traits, identified by amplification of the 16S rRNA gene. Isolate number DBT204, identified as Streptomyces sp., showed multiple PGP traits tested in planta and improved a range of growth parameters in seedlings of chili (Capsicum annuum L.) and tomato (S. lycopersicum L.). Further, genes of indole acetic acid (iaaM) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) were successively amplified from five strains. Six antibiotics (trimethoprim, fluconazole, chloramphenicol, nalidixic acid, rifampicin and streptomycin) and two phytohormones [indole acetic acid (IAA) and kinetin (KI)] were detected and quantified in Streptomyces sp. strain DBT204 using UPLC-ESI-MS/MS. The study indicates the potential of these PGP strains for production of phytohormones and shows the presence of biosynthetic genes responsible for production of secondary metabolites. It is the first report showing production of phytohormones (IAA and KI) by endophytic actinobacteria having PGP and biosynthetic potential. We propose Streptomyces sp. strain DBT204 for inoculums production and development of biofertilizers for enhancing growth of chili and tomato seedlings. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Euphorbia milii-native bacteria interactions under airborne formaldehyde stress: Effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels.

    PubMed

    Khaksar, Gholamreza; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2017-02-01

    Better understanding of plant-bacteria interactions under stress is of the prime importance for enhancing airborne pollutant phytoremediation. No studies have investigated plant-epiphyte interactions compared to plant-endophyte interactions under airborne formaldehyde stress in terms of plant Indole-3-acetic acid (IAA), ethylene, reactive oxygen species (ROS) levels and pollutant removal efficiency. Euphorbia milii was inoculated with native plant growth-promoting (PGP) endophytic and epiphytic isolates individually to investigate plant-endophyte compared to plant-epiphyte interactions under continuous formaldehyde fumigation. Under airborne formaldehyde stress, endophyte interacts with its host plant closely and provides higher levels of IAA which protected the plant against formaldehyde phytotoxicity by lowering intracellular ROS, ethylene levels and maintaining shoot epiphytic community; hence, higher pollutant removal. However, plant-epiphyte interactions could not provide enough IAA to confer protection against formaldehyde stress; thus, increased ROS and ethylene levels, large decrease in shoot epiphytic population and lower pollutant removal although epiphyte contacts with airborne pollutant directly (has greater access to gaseous formaldehyde). Endophyte-inoculated plant synthesized more tryptophan as a signaling molecule for its associated bacteria to produce IAA compared to the epiphyte-inoculated one. Under stress, PGP endophyte interacts with its host closely; thus, better protection against stress and higher pollutant removal compared to epiphyte which has limited interactions with the host plant; hence, lower pollutant removal. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Genomic and Transcriptomic Analyses of Indole-3-Acetic Acid Biosynthesis in Diatoms

    NASA Astrophysics Data System (ADS)

    Lim, R.; Armbrust, V.

    2016-02-01

    Indole-3-acetic acid (IAA) is a major plant growth hormone and a common mediator of plant-bacterial interactions. Recently, IAA has also been found to play a role in interactions between diatoms and bacteria, with IAA production by an associated Sulfitobacter leading to increased growth rates in the marine diatom Pseudo-nitzschia multiseries. It is unclear, however, if diatoms themselves are able to synthesize IAA and whether this capability is widespread throughout Bacillariophyta. Four major tryptophan-dependent IAA biosynthesis pathways have been identified in plants and bacteria, each denoted by the first intermediate downstream of tryptophan: the indole-3-pyruvate (IPyA), tryptamine (TAM), indole-3-acetaldoxime (IAOx) and indole-3-acetamide (IAM) pathways. To investigate the possibility of IAA biosynthesis in diatoms, we first analyzed publicly available genomes of raphid pennates P. multiseries, Phaeodactylum tricornutum, Fragilariopsis cylindrus and centric Thalassiosira pseudonana for potential homologs to plant and bacterial IAA biosynthesis genes. The P. multiseries, F. cylindrus and P. tricornutum genomes encode downstream enzymes for bacterial TAM and IAM and plant IPyA pathways. The more evolutionarily ancient T. pseudonana encodes one TAM enzyme in its genome. To investigate the potential distribution of these pathways more broadly, we surveyed the transcriptomes of 11 diatom species that include representatives from all four Bacillariophyta classes. Datasets used were sequenced as part of the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) and obtained from cultures maintained axenically. Transcripts associated with the TAM pathway were most frequently detected, with potential homologs to required enzymes identified in 10 of the 11 species examined. Transcripts homologous to rate-limiting IPyA enzymes were detected in six species. Only two centric and araphid pennate species expressed transcripts associated with enzymes in the

  5. Pharmacokinetics of reduced iso-α-acids in volunteers following clear bottled beer consumption.

    PubMed

    Rodda, Luke N; Gerostamoulos, Dimitri; Drummer, Olaf H

    2015-05-01

    Reduced iso-α-acids (reduced IAA) consisting of the rho-, tetrahydro- and hexahydro-IAA groups (RIAA, TIAA and HIAA, respectively) are ingredient congeners specific to beer and generally found in clear and also occasionally green bottled beer. Concentrations of reduced IAA were determined in the blood and urine of five volunteers over 6h following the consumption of small volumes of beer containing each of the reduced IAA. The reduced IAA were absorbed and bioavailable with peak concentrations at 0.5h followed by a drop of generally fivefold by 2h. Preliminary pharmacokinetics of these compounds in humans shows relatively small inter-individual differences and an estimated short half-life varying between ∼38 and 46min for the three groups. Comparison of RIAA analyte ratios within the group indicate that some analytes eliminate relatively faster than others and the formation of metabolite products was observed. Preliminary urine analysis showed only unmodified RIAA analytes were detectable throughout 6h and suggests extensive phase I metabolism of TIAA and HIAA analytes. In authentic forensic casework where clear or green bottled beers are consumed, the identification of reduced IAA groups may provide a novel method to target ingredient congeners consistent with beer ingestion and suggest the type of beer consumed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Copper oxide nanoparticles and bulk copper oxide, combined with indole-3-acetic acid, alter aluminum, boron, and iron in Pisum sativum seeds.

    PubMed

    Ochoa, Loren; Zuverza-Mena, Nubia; Medina-Velo, Illya A; Flores-Margez, Juan Pedro; Peralta-Videa, José R; Gardea-Torresdey, Jorge L

    2018-09-01

    The interaction of CuO nanoparticles (nCuO), a potential nanopesticide, with the growth hormone indole-3-acetic acid (IAA) is not well understood. This study aimed to evaluate the nutritional components in seeds of green pea (Pisum sativum) cultivated in soil amended with nCuO at 50 or 100mgkg -1 , with/without IAA at 10 or 100μM. Similar treatments including bulk CuO (bCuO) and CuCl 2 were set as controls. Bulk CuO at 50mgkg -1 reduced seed yield (52%), compared with control. Bulk CuO at 50mgkg -1 and nCuO at 100mgkg -1 , plus IAA at 100μM, increased iron in seeds (41 and 42%, respectively), while nCuO at 50mgkg -1 , plus IAA at 100μM reduced boron (80%, respect to control and 63%, respect to IAA at 100μM). IAA, at 10μM increased seed protein (33%), compared with control (p≤0.05). At both concentrations IAA increased sugar in seeds (20%). Overall, nCuO, plus IAA at 10μM, does not affect the production or nutritional quality of green pea seeds. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L

    PubMed Central

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725

  8. IAA-Ala Resistant3, an Evolutionarily Conserved Target of miR167, Mediates Arabidopsis Root Architecture Changes during High Osmotic Stress[W

    PubMed Central

    Kinoshita, Natsuko; Wang, Huan; Kasahara, Hiroyuki; Liu, Jun; MacPherson, Cameron; Machida, Yasunori; Kamiya, Yuji; Hannah, Matthew A.; Chua, Nam-Hai

    2012-01-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress–induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. PMID:22960911

  9. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of Wilt in Chickpea.

    PubMed

    Kulkarni, Guruprasad B; Sanjeevkumar, S; Kirankumar, B; Santoshkumar, M; Karegoudar, T B

    2013-02-01

    Fusarium delphinoides (Ascomycota; Nectriaceae) is an indole-3-acetic acid (IAA) producing plant pathogen and a causal agent of wilt in chickpea. The IAA biosynthetic pathway in F. delphinoides strain GPK (FDG) was examined by analyzing metabolic intermediates and by feeding experiments. Gas chromatograph (GC) analysis of FDG culture filtrates showed the presence of metabolic intermediates of indole-3-pyruvic acid (IPyA), indole-3-acetamide (IAM), and tryptamine (TRA) pathways. The different IAA biosynthetic pathways were further confirmed by identifying the presence of different enzymes of these pathways. Substrate specificity study of aromatic amino acid aminotransferase revealed that the enzyme is highly specific for tryptophan (Trp) and α-ketoglutarate (α-kg) as amino group donor and acceptor, respectively. Furthermore, the concentration-dependent effect of exogenous IAA on fungal growth was established. Low concentration of exogenous IAA increases the fungal growth and at high concentration it decreases the growth of FDG.

  10. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    PubMed

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  11. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    PubMed Central

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  12. Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2.

    PubMed

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2014-09-01

    Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls.

  13. Indole-3-acetic acid UDP-glucosyltransferase from immature seeds of pea is involved in modification of glycoproteins.

    PubMed

    Ostrowski, Maciej; Hetmann, Anna; Jakubowska, Anna

    2015-09-01

    The glycosylation of auxin is one of mechanisms contributing to hormonal homeostasis. The enzyme UDPG: indole-3-ylacetyl-β-D-glucosyltransferase (IAA glucosyltransferase, IAGlc synthase) catalyzes the reversible reaction: IAA+UDPG↔1-O-IA-glucose+UDP, which is the first step in the biosynthesis of IAA-ester conjugates in monocotyledonous plants. In this study, we report IAA-glucosyltransferase isolated using a biochemical approach from immature seed of pea (Pisum sativum). The enzyme was purified by PEG fractionation, DEAE-Sephacel anion-exchange chromatography and preparative PAGE. LC-MS/MS analysis of tryptic peptides of the enzyme revealed the high identity with maize IAGlc synthase, but lack of homology with other IAA-glucosyltransferases from dicots. Biochemical characterization showed that of several acyl acceptors tested, the enzyme had the highest activity on IAA as the glucosyl acceptor (Km=0.52 mM, Vmax=161 nmol min(-1), kcat/Km=4.36 mM s(-1)) and lower activity on indole-3-propionic acid and 1-naphthalene acetic acid. Whereas indole-3-butyric acid and indole-3-propionic acid were competitive inhibitors of IAGlc synthase, D-gluconic acid lactone, an inhibitor of β-glucosidase activity, potentiated the enzyme activity at the optimal concentration of 0.3mM. Moreover, we demonstrated that the 1-O-IA-glucose synthesized by IAGlc synthase is the substrate for IAA labeling of glycoproteins from pea seeds indicating a possible role of this enzyme in the covalent modification of a class of proteins by a plant hormone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Demonstrations at School Level of the Effects of IAA

    ERIC Educational Resources Information Center

    Falk, Peter

    1973-01-01

    Describes demonstrations suitable for secondary school biology classes relating to the effects of the hormone IAA on plant growth. Demonstrations illustrate how hormone treatments affect stem elongation, callus formation, inhibition of axillary buds, stimulation of secondary growth and initiation of adventitious root development, root elongation,…

  15. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  16. Indole-3-acetic acid: a potential new photosensitizer for photodynamic therapy of acne vulgaris.

    PubMed

    Na, Jung-Im; Kim, So-Young; Kim, Jeong-Hye; Youn, Sang-Woong; Huh, Chang-Hun; Park, Kyoung-Chan

    2011-03-01

    ALA (5-aminolevulinic acid) photodynamic therapy (PDT) is a new treatment option for acne. However, it needs a relatively long incubation period and adverse effects are common. Indole-3-acetic acid (IAA) is not toxic by itself but produces free radicals with ultraviolet B. In this study we examined the potential of IAA as a photosensitizer for acne treatment. Free radical formation was measured after visible light irradiation of IAA. Antimicrobial effect was evaluated by assessing growth suppression of Propionibacterium acnes and Staphylococcus aureus after IAA PDT. To evaluate the histological changes, skin biopsies were performed on nude mice skin after IAA PDT. To evaluate the clinical efficacy of IAA PDT, 14 acne patients were treated with the following IAA PDT regimen: three times each with a 15 minutes incubation period and a 2-week interval. The number of inflammatory lesions and the amount of sebum secretion were then assessed. IAA produced free radicals with green light irradiation. Importantly, IAA lost its photosensitizing ability after exposure to certain amount of light. This implies IAA PDT would not require post-procedure photo-protection. The growth of P. acnes and S. aureus were significantly suppressed with IAA PDT. In addition, IAA PDT treated skin showed destruction of follicular ostia epithelium. Interestingly, there was no significant difference between a 4 hours and a 30 minutes incubation, which means that longer absorption time is not necessary for IAA PDT. In the clinical study, inflammatory lesions and sebum secretion were significantly reduced. The procedure was painless and no adverse effect was observed. Photo-protection was not performed and there were no further phototoxic responses. IAA PDT has therapeutic effects on acne via its antimicrobial activities, its sebum-reducing effect and through relieving follicular occlusion. It is a very simple and safe treatment option for acne. Copyright © 2011 Wiley-Liss, Inc.

  17. Occurrence and in Vivo Biosynthesis of Indole-3-Butyric Acid in Corn (Zea mays L.) 1

    PubMed Central

    Ludwig-Müller, Jutta; Epstein, Ephraim

    1991-01-01

    Indole-3-butyric acid (IBA) was identified as an endogenous compound in leaves and roots of maize (Zea mays L.) var Inrakorn by thin layer chromatography, high-performance liquid chromatography, and gas chromatography-mass spectrometry. Its presence was also confirmed in the variety Hazera 224. Indole-3-acetic acid (IAA) was metabolized to IBA in vivo by seedlings of the two maize varieties. The reaction product was identified by thin layer chromatography, high performance liquid chromatography, and gas chromatography-mass spectrometry after incubating the corn seedlings with [14C]IAA and [13C6]IAA. The in vivo conversion of IAA to IBA and the characteristics of IBA formation in two different maize varieties of Zea mays L. (Hazera 224 and Inrakorn) were investigated. IBA-forming activity was examined in the roots, leaves, and coleoptiles of both maize varieties. Whereas in the variety Hazera 224, IBA was formed mostly in the leaves, in the variety Inrakorn, IBA synthesis was detected in the roots as well as in the leaves. A time course study of IBA formation showed that maximum activity was reached in Inrakorn after 1 hour and in Hazera after 2 hours. The pH optimum for the uptake of IAA was 6.0, and that for IBA formation was 7.0. The Km value for IBA formation was 17 micromolar for Inrakorn and 25 micromolar for Hazera 224. The results are discussed with respect to the possible functions of IBA in the plant. ImagesFigure 5 PMID:16668464

  18. Free and Conjugated Indole-3-Acetic Acid in Developing Bean Seeds 1

    PubMed Central

    Bialek, Krystyna; Cohen, Jerry D.

    1989-01-01

    The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed. PMID:16667099

  19. Indole-3-Butyric Acid Induces Ectopic Formation of Metaxylem in the Hypocotyl of Arabidopsis thaliana without Conversion into Indole-3-Acetic Acid and with a Positive Interaction with Ethylene.

    PubMed

    Fattorini, Laura; Della Rovere, Federica; Andreini, Eleonora; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena

    2017-11-21

    The role of the auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and of the auxin-interacting phytohormone ethylene, on the ectopic formation of primary xylem (xylogenesis in planta) is still little known. In particular, auxin/ethylene-target tissue(s), modality of the xylary process (trans-differentiation vs. de novo formation), and the kind of ectopic elements formed (metaxylem vs. protoxylem) are currently unknown. It is also unclear whether IBA may act on the process independently of conversion into IAA. To investigate these topics, histological analyses were carried out in the hypocotyls of Arabidopsis wild type seedlings and ech2ibr10 and ein3eil1 mutants, which are blocked in IBA-to-IAA conversion and ethylene signalling, respectively. The seedlings were grown under darkness with either IAA or IBA, combined or not with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Adventitious root formation was also investigated because this process may compete with xylogenesis. Our results show that ectopic formation of protoxylem and metaxylem occurred as an indirect process starting from the pericycle periclinal derivatives of the hypocotyl basal part. IAA favoured protoxylem formation, whereas IBA induced ectopic metaxylem with ethylene cooperation through the EIN3EIL1 network. Ectopic metaxylem differentiation occurred independently of IBA-to-IAA conversion as mediated by ECH2 and IBR10, and in the place of IBA-induced adventitious root formation.

  20. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products.

    PubMed

    Dad, Azra; Jeong, Clara H; Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J

    2013-10-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) > chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs. Copyright © 2013 Wiley Periodicals, Inc.

  1. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions.

    PubMed

    Palacios, Oskar A; Choix, Francisco J; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    This study measured the relations between tryptophan production, the phytohormone indole-3-acetic acid (IAA) and the metabolism and accumulation of starch during synthetic mutualism between the microalgae Chlorella sorokiniana and the microalgae growth-promoting bacteria Azospirillum brasilense, created by co-immobilization in alginate beads. Experiments used two wild-type A. brasilense strains (Cd and Sp6) and an IAA-attenuated mutant (SpM7918) grown under nitrogen-replete and nitrogen-starved conditions tested under dark, heterotrophic and aerobic growth conditions. Under all incubating conditions, C. sorokiniana, but not A. brasilense, produced tryptophan. A significant correlation between IAA-production by A. brasilense and starch accumulation in C. sorokiniana was found, since the IAA-attenuated mutant was not producing increased starch levels. The highest ADP-glucose pyrophosphorylase (AGPase) activity, starch content and glucose uptake were found during the interaction of A. brasilense wild type strains with the microalgae. When the microalgae were grown alone, they produced only small amounts of starch. Supplementation with synthetic IAA to C. sorokiniana grown alone enhanced the above parameters, but only transiently. Activity of α-amylase decreased under nitrogen-replete conditions, but increased under nitrogen-starved conditions. In summary, this study demonstrated that, during synthetic mutualism, the exchange of tryptophan and IAA between the partners is a mechanism that governs several changes in starch metabolism of C. sorokiniana, yielding an increase in starch content. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Pang, Shaoping; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-12-01

    Completion of the whole genome sequencing of citrus enabled us to perform genome-wide identification and functional analysis of the gene families involved in agronomic traits and morphological diversity of citrus. In this study, 22 CitARF, 11 CitGH3 and 26 CitAUX/IAA genes were identified in citrus, respectively. Phylogenetic analysis revealed that all the genes of each gene family could be subdivided into three groups and showed strong evolutionary conservation. The GH3 and AUX/IAA gene families shrank and ARF gene family was highly conserved in the citrus genome after speciation from Arabidopsis thaliana. Tissue-specific expression profiles revealed that 54 genes were expressed in at least one tissue while just 5 genes including CitARF07, CitARF20, CitGH3.04, CitAUX/IAA25 and CitAUX/IAA26 with very low expression level in all tissues tested, suggesting that the CitARF, CitGH3 and CitAUX/IAA gene families played important roles in the development of citrus organs. In addition, our data found that the expression of 2 CitARF, 4 CitGH3 and 4 AUX/IAA genes was affected by IAA treatment, and 7 genes including, CitGH3.04, CitGH3.07, CitAUX/IAA03, CitAUX/IAA04, CitAUX/IAA18, CitAUX/IAA19 and CitAUX/IAA23 were related to fruitlet abscission. This study provides a foundation for future studies on elucidating the precise role of citrus ARF, GH3 and AUX/IAA genes in early steps of auxin signal transduction and open up a new opportunity to uncover the molecular mechanism underlying citrus fruitlet abscission.

  3. Effects of juglone and lawsone on oxidative stress in maize coleoptile cells treated with IAA.

    PubMed

    Kurtyka, Renata; Pokora, Wojciech; Tukaj, Zbigniew; Karcz, Waldemar

    2016-01-01

    Naphthoquinones are secondary metabolites widely distributed in nature and produced by bacteria, fungi and higher plants. Their biological activity may result from induction of oxidative stress, caused by redox cycling or direct interaction with cellular macromolecules, in which quinones act as electrophiles. The redox homeostasis is known as one of factors involved in auxin-mediated plant growth regulation. To date, however, little is known about the crosstalk between reactive oxygen species (ROS) produced by quinones and the plant growth hormone auxin (IAA). In this study, redox cycling properties of two naphthoquinones, juglone (5-hydroxy-1,4-naphthoquinone) and lawsone (2-hydroxy-1,4-naphthoquinone), were compared in experiments performed on maize coleoptile segments incubated with or without the addition of IAA. It was found that lawsone was much more effective than juglone in increasing both H 2 O 2 production and the activity of antioxidative enzymes (SOD, POX and CAT) in coleoptile cells, regardless of the presence of IAA. An increase in the activity of Cu/Zn-SOD isoenzymes induced by both naphthoquinones suggests that juglone- and lawsone-generated H 2 O 2 was primarily produced in the cytosolic and cell wall spaces. The cell potential to neutralize hydrogen peroxide, determined by POX and CAT activity, pointed to activity of catalase as the main enzymatic mechanism responsible for degradation of H 2 O 2 Therefore, we assumed that generation of H 2 O 2 , induced more efficiently by LW than JG, was the major factor accounting for differences in the toxicity of naphthoquinones in maize coleoptiles. The role of auxin in the process appeared negligible. Moreover, the results suggested that oxidative stress imposed by JG and LW was one of mechanisms of allelopathic action of the studied quinones in plants. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. Endogenous factors regulating poor-nutrition stress-induced flowering in pharbitis: The involvement of metabolic pathways regulated by aminooxyacetic acid.

    PubMed

    Koshio, Aya; Hasegawa, Tomomi; Okada, Rieko; Takeno, Kiyotoshi

    2015-01-15

    The short-day plant pharbitis (also called Japanese morning glory), Ipomoea nil (formerly Pharbitis nil), was induced to flower by poor-nutrition stress. This stress-induced flowering was inhibited by aminooxyacetic acid (AOA), which is a known inhibitor of phenylalanine ammonia-lyase (PAL) and the synthesis of indole-3-acetic acid (IAA) and 1-aminocycropropane-1-carboxylic acid (ACC) and thus regulates endogenous levels of salicylic acid (SA), IAA and polyamine (PA). Stress treatment increased PAL activity in cotyledons, and AOA suppressed this increase. The observed PAL activity and flowering response correlate positively, indicating that AOA functions as a PAL inhibitor. The inhibition of stress-induced flowering by AOA was also overcome by IAA. An antiauxin, 4-chlorophenoxy isobutyric acid, inhibited stress-induced flowering. Both SA and IAA promoted flowering induced by stress. PA also promoted flowering, and the effective PA was found to be putrescine (Put). These results suggest that all of the pathways leading to the synthesis of SA, IAA and Put are responsive to the flowering inhibition by AOA and that these endogenous factors may be involved in the regulation of stress-induced flowering. However, as none of them induced flowering under non-stress conditions, they may function cooperatively to promote flowering. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening

    PubMed Central

    Pan, Lei; Zeng, Wenfang; Niu, Liang; Lu, Zhenhua; Liu, Hui; Cui, Guochao; Zhu, Yunqin; Chu, Jinfang; Li, Weiping; Fang, Weichao; Cai, Zuguo; Li, Guohuai; Wang, Zhiqiang

    2015-01-01

    High concentrations of indole-3-acetic acid (IAA) are required for climacteric ethylene biosynthesis to cause fruit softening in melting flesh peaches at the late ripening stage. By contrast, the fruits of stony hard peach cultivars do not soften and produce little ethylene due to the low IAA concentrations. To investigate the regulation of IAA accumulation during peach ripening [the transition from stage S3 to stage S4 III (climacteric)], a digital gene expression (DGE) analysis was performed. The expression patterns of auxin-homeostasis-related genes were compared in fruits of the melting flesh peach ‘Goldhoney 3’ and the stony hard flesh peach ‘Yumyeong’ during the ripening stage. It is revealed here that a YUCCA flavin mono-oxygenase gene (PpYUC11, ppa008176m), a key gene in auxin biosynthesis, displayed an identical differential expression profile to the profiles of IAA accumulation and PpACS1 transcription: the mRNA transcripts increased at the late ripening stage in melting flesh peaches but were below the limit of detection in mature fruits of stony hard peaches. In addition, the strong association between intron TC microsatellite genotypes of PpYUC11 and the flesh texture (normal or stony hard) is described in 43 peach varieties, indicating that this locus may be responsible for the stony hard phenotype in peach. These findings support the hypothesis that PpYUC11 may play an essential role in auxin biosynthesis during peach fruit ripening and is a candidate gene for the control of the stony hard phenotype in peach. PMID:26307136

  6. Indole-3-acetic acid modulates phytohormones and polyamines metabolism associated with the tolerance to water stress in white clover.

    PubMed

    Li, Zhou; Li, Yaping; Zhang, Yan; Cheng, Bizhen; Peng, Yan; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2018-06-09

    Endogenous hormones and polyamines (PAs) could interact to regulate growth and tolerance to water stress in white clover. The objective of this study was to investigate whether the alteration of endogenous indole-3-acetic acid (IAA) level affected other hormones level and PAs metabolism contributing to the regulation of tolerance to water stress in white clover. Plants were pretreated with IAA or L-2-aminooxy-3-phenylpropionic acid (L-AOPP, the inhibitor of IAA biosynthesis) for 3 days and then subjected to water-sufficient condition and water stress induced by 15% polyethylene glycol 6000 for 8 days in growth chambers. Exogenous application of IAA significantly increased endogenous IAA, gibberellin (GA), abscisic acid (ABA), and polyamine (PAs) levels, but had no effect on cytokinin content under water stress. The increase in endogenous IAA level enhanced PAs anabolism via the improvement of enzyme activities and transcript level of genes including arginine decarboxylase, ornithine decarboxylase, and S-adenosylmethionine decarboxylase. Exogenous application of IAA also affected PAs catabolism, as manifested by an increase in diamine oxidase and a decrease in polyamine oxidase activities and genes expression. More importantly, the IAA deficiency in white clover decreased endogenous hormone levels (GA, ABA, and PAs) and PAs anabolism along with decline in antioxidant defense and osmotic adjustment (OA). On the contrary, exogenous IAA effectively alleviated stress-induced oxidative damage, growth inhibition, water deficit, and leaf senescence through the maintenance of higher chlorophyll content, OA, and antioxidant defense as well as lower transcript levels of senescence marker genes SAG101 and SAG102 in leaves under water stress. These results indicate that IAA-induced the crosstalk between endogenous hormones and PAs could be involved in the improvement of antioxidant defense and OA conferring tolerance to water stress in white clover. Copyright © 2018 Elsevier

  7. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  8. Quantitation of Indoleacetic Acid Conjugates in Bean Seeds by Direct Tissue Hydrolysis 1

    PubMed Central

    Bialek, Krystyna; Cohen, Jerry D.

    1989-01-01

    Gas chromatography-selected ion monitoring-mass spectral analysis using [13C6]indole-3-acetic acid (IAA) as an internal standard provides an effective means for quantitation of IAA liberated during direct strong basic hydrolysis of bean (Phaseolus vulgaris L.) seed powder, provided that extra precautions are undertaken to exclude oxygen from the reaction vial. Direct seed powder hydrolysis revealed that the major portion of amide IAA conjugates in bean seeds are not extractable by aqueous acetone, the solvent used commonly for IAA conjugate extraction from seeds and other plant tissues. Strong basic hydrolysis of plant tissue can be used to provide new information on IAA content. Images Figure 1 PMID:16666783

  9. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.

  10. Determination of indole-3-acetic acid and indole-3-butyric acid in mung bean sprouts using high performance liquid chromatography with immobilized Ru(bpy)3(2+)-KMnO4 chemiluminescence detection.

    PubMed

    Xi, Zhijun; Zhang, Zhujun; Sun, Yonghua; Shi, Zuolong; Tian, Wei

    2009-07-15

    A novel method for determination of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) in an extract from mung bean sprouts using high performance liquid chromatography (HPLC) with chemiluminescence (CL) detection is described. The method is based on the CL reaction of auxin (indole-3-acetic acid and indole-3-butyric acid) with acidic potassium permanganate (KMnO(4)) and tris(2,2'-bipyridyl)ruthenium(II), which was immobilized on the cationic ion-exchange resin. The chromatographic separation was performed on a Nucleosil RP-C18 column (i.d.: 250 mm x 4.6 mm, particle size: 5 microm, pore size: 100) with an isocratic mobile phase consisting of methanol-water-acetic acid (45:55:1, v/v/v). At a flow rate of 1.0 mL min(-1), the total run time was 20 min. Under the optimal conditions, the linear ranges were 5.0x10(-8) to 5.0x10(-6)g mL(-1) and 5.0x10(-7) to 1.0x10(-5)g mL(-1) for IAA and IBA, respectively. The detection limits were 2.0x10(-8)g mL(-1) and 2.0x10(-7)g mL(-1) for IAA and IBA, respectively. The relative standard deviation (RSD) of intra-day were 3.1% and 2.3% (n=11) for 2x10(-6)g mL(-1) IAA and 2x10(-6)g mL(-1) IBA; The relative standard deviations of inter-day precision were 6.9% and 4.9% for 2x10(-6)g mL(-1) IAA and 2x10(-6)g mL(-1) IBA. The proposed method had been successfully applied to the determination of auxin in mung bean sprouts.

  11. Uptake, Distribution, and Metabolism of 1-Naphthaleneacetic Acid and Indole-3-Acetic Acid During Callus Initiation From Actinidia deliciosa Tissues.

    PubMed

    Centeno; Fernández; Feito; Rodríguez

    1999-10-01

    1-Naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) were required for in vitro callus formation at the basal edge of kiwifruit (Actinidia deliciosa [A. Chev] Liang and Ferguson, cv. Hayward) petioles. The uptake, metabolism, and concentration of NAA and indole-3-acetic acid (IAA) content were examined in the explants during the callus initiation period. After 1, 6, 12, 24, 48, and 96 h of culture in the presence of [H(3)]NAA, petioles were divided into apical, middle, and basal portions and analyzed. Except for a high IAA level measured at 12 h, IAA content decreased in tissues during a culture period of 96 h. NAA uptake was higher in petiolar edges than in the middle portion, and NAA was rapidly conjugated with sugars and aspartic acid inside the tissues. The amide conjugation was triggered in apical and basal portions from 12 h and in the middle part from 48 h, with alpha-naphthylacetylaspartic acid being the major metabolite. Free-NAA concentration in cultured petioles achieved an equilibrium with the exogenously applied NAA (0.27 µm) from 12 h, and it remained constant thereafter. The relationships between the role attributed to NAA and BA in the initiation and the maintenance of disorganized growth of callus in kiwifruit cultures are discussed.

  12. Decreased panicle-derived indole-3-acetic acid reduces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A.

    PubMed

    Yin, Changxi; Gan, Lijun; Ng, Denny; Zhou, Xie; Xia, Kai

    2007-01-01

    Cytoplasmic male sterile (CMS) rice Zhenshan 97A (ZS97A) has been widely used in hybrid rice production in China. However, ZS97A suffers from serious panicle enclosure, which blocks normal pollination and greatly reduces seed production of hybrid rice. Little is known about the cause of panicle closure in ZS97A. In this study, it was found that the occurrence of cytoplasmic male sterility caused a deficiency of indole-3-acetic acid (IAA) in ZS97A panicles, and less IAA was provided to the uppermost internode (UI). Further, it was found that the decreased panicle-derived IAA caused a gibberellin A(1) (GA(1)) deficiency in the UI by the down-regulation of OsGA3ox2 transcript level. Reduced GA(1) level in the UI led to decreases of both cell number and cell elongation, resulting in a shortened UI. The shortened UI was unable to push the panicle out of the flag leaf sheath that remained normal, which resulted in panicle enclosure in ZS97A. These findings suggest that decreased panicle-derived IAA reduces the GA(1) level in the UI, causing panicle enclosure in CMS rice ZS97A.

  13. Arabidopsis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid.

    PubMed

    Sherp, Ashley M; Westfall, Corey S; Alvarez, Sophie; Jez, Joseph M

    2018-03-23

    Various phytohormones control plant growth and development and mediate biotic and abiotic stress responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases are plant enzymes that typically conjugate amino acids to indole-3-acetic acid (IAA) or jasmonic acid (JA) to inactivate or activate these phytohormones, respectively; however, the physiological and biological roles of many of these enzymes remain unclear. Using a biochemical approach, we found that the Arabidopsis thaliana GH3.15 (AtGH3.15) preferentially uses indole-3-butyric acid (IBA) and glutamine as substrates. The X-ray crystal structure of the AtGH3.15·AMP complex, modeling of IBA in the active site, and biochemical analysis of site-directed mutants provide insight on active site features that lead to AtGH3.15's preference for IBA. Assay-based in planta analysis of AtGH3.15-overexpressing lines indicated that their root elongation and lateral root density were resistant to IBA treatment but not to treatment with either IAA or JA. These findings suggest that AtGH3.15 may play a role in auxin homeostasis by modulating the levels of IBA for peroxisomal conversion to IAA. Analysis of AtGH3.15 promoter-driven yellow fluorescent protein reporter lines revealed that AtGH3.15 is expressed at significant levels in seedlings, roots, and parts of the siliques. We conclude that AtGH3.15 is unique in the GH3 protein family for its role in modifying IBA in auxin homeostasis and that it is the first GH3 protein shown to primarily modify a plant growth regulator other than IAA and JA. © 2018 Sherp et al.

  14. Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction.

    PubMed

    Hasan, H A H

    2002-01-01

    Rhizosphere and rhizoplane of fababean (Vicia faba), melochia (Corchorus olitorius), sesame (Sesamum indicum) and soyabean (Glycine max) plants are inhabited with fungi, mostly Aspergillus flavus, A. niger, Fusarium oxysporum, Penicillium corylophilum, P. cyclopium, P. funiculosum and Rhizopus stolonifer. All fungal species have the ability to produce gibberellin (GA) but F. oxysporum was found to produce both GA and indole-acetic acid (IAA). The optimum period for GA and IAA production by F. oxysporum was 10 days in the mycelium and 15 days in the filtrate at 28 degrees C. The contents of GA, IAA and cytochrome P-450 were increased at 0.5 and 1% NaCl after 5 days, but GA and IAA were lowered at 4% (700 mM) NaCl. Calcium decreased NaCl stress on F. oxysporum by significant elevating GA biosynthesis at 40 mM Ca2+/700 mM Na+. GA at 10 microM and Ca2+ at 10 mM enhanced the germination of seeds under 175 mM Na+.

  15. Division IAA Football Players and Risk Factors for Metabolic Syndrome

    ERIC Educational Resources Information Center

    Repovich, Wendy E. S.; Babcock, Garth J.

    2012-01-01

    The purpose of this study was to determine if body composition and blood pressure (BP), two markers for Metabolic Syndrome (MetS), were correlated in college football players. Height, weight, BMI, systolic (SBP) and Diastolic (DBP) blood pressure and body composition (three measures) were assessed in a Division IAA football team (N = 55). Data…

  16. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum).

    PubMed

    Malik, Deepak K; Sindhu, Satyavir S

    2011-03-01

    Pseudomonas isolates obtained from the rhizosphere of chickpea (Cicer arietinum L.) and green gram (Vigna radiata) were found to produce significant amount of indole acetic acid (IAA) when grown in a LB medium broth supplemented with L-tryptophan. Seed bacterization of chickpea cultivar C235 with different Pseudomonas isolates showed stunting effect on the development of root and shoot at 5 and 10 days of seedling growth except the strains MPS79 and MPS90 that showed stimulation of root growth, and strains MPS104 and MRS13 that showed shoot growth stimulation at 10 days. Exogenous treatment of seeds with IAA at 0.5 and 1.0 μM concentration caused similar stunting effects on root and shoot growth compared to untreated control both at 5 and 10 days of observation, whereas higher concentration of IAA (10.0 μM) inhibited the growth of seedlings. Coinoculation of chickpea with IAA-producing Pseudomonas strains increased nodule number and nodule biomass by Mesorhizobium sp. Cicer strain Ca181. The plant dry weights of coinoculated treatments showed 1.10 to 1.28 times increase in comparison to Mesorhizobium-inoculated plants alone and 3.62 to 4.50 times over uninoculated controls at 100 days of plant growth. The results indicated the potential usefulness of allelopathic rhizosphere bacteria and growth-mediating IAA in enhancement of nodulation and stimulation of plant growth in chickpea.

  17. Itaconic acid production in microorganisms.

    PubMed

    Zhao, Meilin; Lu, Xinyao; Zong, Hong; Li, Jinyang; Zhuge, Bin

    2018-03-01

    Itaconic acid, 2-methylidenebutanedioic acid, is a precursor of polymers, chemicals, and fuels. Many fungi can synthesize itaconic acid; Aspergillus terreus and Ustilago maydis produce up to 85 and 53 g l -1 , respectively. Other organisms, including Aspergillus niger and yeasts, have been engineered to produce itaconic acid. However, the titer of itaconic acid is low compared with the analogous major fermentation product, citric acid, for which the yield is > 200 g l -1 . Here, we review two types of pathway for itaconic acid biosynthesis as well as recent advances by metabolic engineering strategies and process optimization to enhance itaconic acid productivity in native producers and heterologous hosts. We also propose further improvements to overcome existing problems.

  18. Aberrant Synthesis of Indole-3-Acetic Acid in Saccharomyces cerevisiae Triggers Morphogenic Transition, a Virulence Trait of Pathogenic Fungi

    PubMed Central

    Rao, Reeta Prusty; Hunter, Ally; Kashpur, Olga; Normanly, Jennifer

    2010-01-01

    Many plant-associated microbes synthesize the auxin indole-3-acetic acid (IAA), and several IAA biosynthetic pathways have been identified in microbes and plants. Saccharomyces cerevisiae has previously been shown to respond to IAA by inducing pseudohyphal growth. We observed that IAA also induced hyphal growth in the human pathogen Candida albicans and thus may function as a secondary metabolite signal that regulates virulence traits such as hyphal transition in pathogenic fungi. Aldehyde dehydrogenase (Ald) is required for IAA synthesis from a tryptophan (Trp) precursor in Ustilago maydis. Mutant S. cerevisiae with deletions in two ALD genes are unable to convert radiolabeled Trp to IAA, yet produce IAA in the absence of exogenous Trp and at levels higher than wild type. These data suggest that yeast may have multiple pathways for IAA synthesis, one of which is not dependent on Trp. PMID:20233857

  19. [Fatty acids in confectionery products].

    PubMed

    Daniewski, M; Mielniczuk, E; Jacórzyński, B; Pawlicka, M; Balas, J; Filipek, A; Górnicka, M

    2000-01-01

    The content of fat and fatty acids in 144 different confectionery products purchased on the market in Warsaw region during 1997-1999 have been investigated. In examined confectionery products considerable variability of both fat and fatty acids content have been found. The content of fat varied from 6.6% (coconut cookies) up to 40% (chocolate wafers). Saturated fatty acids were present in both cis and trans form. Especially trans fatty acids reach (above 50%) were fats extracted from nut wafers, coconuts wafers.

  20. Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots.

    PubMed

    Yan, Da-Wei; Wang, Jing; Yuan, Ting-Ting; Hong, Li-Wei; Gao, Xiang; Lu, Ying-Tang

    2013-01-01

    Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.

  1. Small acidic protein 1 and SCFTIR1 ubiquitin proteasome pathway act in concert to induce 2,4-dichlorophenoxyacetic acid-mediated alteration of actin in Arabidopsis roots.

    PubMed

    Takahashi, Maho; Umetsu, Kana; Oono, Yutaka; Higaki, Takumi; Blancaflor, Elison B; Rahman, Abidur

    2017-03-01

    2,4-Dichlorophenoxyacetic acid (2,4-D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole-3-acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4-D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4-D-specific mutants suggested that 2,4-D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4-D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4-D but not IAA altered the actin structure in long-term and short-term assays. Analysis of the 2,4-D-specific mutant aar1-1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4-D-induced depolymerization of actin. The ubiquitin proteasome mutants tir1-1 and axr1-12, which show enhanced resistance to 2,4-D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4-D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4-D on the organization of actin filaments. Roots of the double mutant aar1-1 tir1-1 also showed enhanced resistance to 2,4-D-induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4-D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCF TIR 1 ubiquitin proteasome components. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. The effects of added sulphur amino acids, threonine and an ideal amino acid ratio on nitrogen metabolism in mature, overweight dogs.

    PubMed

    Bohaty, Robin E; de Godoy, Maria R C; McLeod, Kyle R; Harmon, David L

    2012-02-01

    The objectives of this study were to investigate the effects of added essential amino acids in conjunction with a dietary lysine/MJ of 0.72 on nitrogen (N) metabolism in dogs. Treatments were; a control diet, a diet that provided an ideal amino acid profile (IAA), a diet with added total sulphur amino acids (TSAA), and a diet with added TSAA and threonine (TT). Diets were fed to eight overweight, mature, female hounds using a replicated 4 x 4 Latin Square design. Food intake was similar across treatments, however, food N intake was higher (p < 0.001) for TSAA than control, IAA or TT. Nitrogen absorbed was higher (p < 0.01) for TSAA than IAA and control. Urea N excretion was greater for control than TT (p < 0.05). Urine N excretion did not differ between diets. There were no differences in digestibility or N retention of diets. There were no differences in protein turnover, synthesis, or degradation. Blood metabolites were within normal ranges and did not differ due to dietary treatment. Based on the measurements made in this study, there is no benefit for added TSAA, TT or additional EAA in diets for mature dogs formulated to provide a 0.72 g lysine/MJ ME ratio.

  3. Distribution and change patterns of free IAA, ABP 1 and PM H⁺-ATPase during ovary and ovule development of Nicotiana tabacum L.

    PubMed

    Chen, Dan; Deng, Yingtian; Zhao, Jie

    2012-01-15

    Auxin plays key roles in flower induction, embryogenesis, seed formation and seedling development, but little is known about whether auxin regulates the development of ovaries and ovules before pollination. In the present report, we measured the content of free indole-3-acetic (IAA) in ovaries of Nicotiana tabacum L., and localized free IAA, auxin binding protein 1 (ABP1) and plasma membrane (PM) H⁺-ATPase in the ovaries and ovules. The level of free IAA in the developmental ovaries increased gradually from the stages of ovular primordium to the functional megaspore, but slightly decreased when the embryo sacs formed. Immunoenzyme labeling clearly showed that both IAA and ABP1 were distributed in the ovules, the edge of the placenta, vascular tissues and the ovary wall, while PM H⁺-ATPase was mainly localized in the ovules. By using immunogold labeling, the subcellular distributions of IAA, ABP1 and PM H⁺-ATPase in the ovules were also shown. The results suggest that IAA, ABP1 and PM H⁺-ATPase may play roles in the ovary and ovule initiation, formation and differentiation. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  4. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  5. Organic Acid Production by Filamentous Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnuson, Jon K.; Lasure, Linda L.

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter.more » Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  6. The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression1[OPEN

    PubMed Central

    2016-01-01

    Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae. However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression. PMID:27378815

  7. OCCURRENCE OF IODO-ACID AND IODO-THM DBPS IN U. S. CHLORAMINATED DRINKING WATERS

    EPA Science Inventory

    Iodo-acids were recently identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo-propenoic acid, (Z)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3...

  8. Altered growth response to exogenous auxin and gibberellic acid by gravistimulation in pulvini of Avena sativa

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Kaufman, P. B.

    1988-01-01

    Pulvini of excised segments from oats (Avena sativa L. cv Victory) were treated unilaterally with indoleacetic acid (IAA) or gibberellic acid (GA3) with or without gravistimulation to assess the effect of gravistimulation on hormone action. Optimum pulvinus elongation growth (millimeters) and segment curvature (degrees) over 24 hours were produced by 100 micromolar IAA in vertical segments. The curvature response to IAA at levels greater than 100 micromolar, applied to the lower sides of gravistimulated (90 degrees) pulvini, was significantly less than the response to identical levels in vertical segments. Furthermore, the bending response of pulvini to 100 micromolar IAA did not vary significantly over a range of presentation angles between 0 and 90 degrees. In contrast, the response to IAA at levels less than 10 micromolar, with gravistimulation, was approximately the sum of the responses to gravistimulation alone and to IAA without gravistimulation. This was observed over a range of presentation angles. Also, GA3 (0.3-30 micromolar) applied to the lower sides of horizontal segments significantly enhanced pulvinus growth and segment curvature, although exogenous GA3 over a range of concentrations had no effect on pulvinus elongation growth or segment curvature in vertical segments. The response to GA3 (10 micromolar) plus IAA (1.0 or 100 micromolar) was additive for either vertical or horizontal segments. These results indicate that gravistimulation produces changes in pulvinus responsiveness to both IAA and GA3 and that the changes are unique for each growth regulator. It is suggested that the changes in responsiveness may result from processes at the cellular level other than changes in hormonal sensitivity.

  9. Hydrolysis of Indole-3-Acetic Acid Esters Exposed to Mild Alkaline Conditions 1

    PubMed Central

    Baldi, Bruce G.; Maher, Barbara R.; Cohen, Jerry D.

    1989-01-01

    Ester conjugates of indole-3-acetic acid are hydrolyzed easily in basic solutions; however, quantitative data have not been available on the relationship between pH and rate of hydrolysis of the known ester conjugates. The use of basic conditions during extraction or purification of IAA by several laboratories suggested that a more systematic analysis of this process was needed. In this report we present data indicating: (a) that measurable hydrolysis of IAA-glucose (from standard solutions) and IAA-esters (from maize kernel extracts) occurs with only a few hours of treatment at pH 9 or above; (b) that the lability of some ester conjugates is even greater than that of IAA-glucose; and (c) that ester hydrolysis of standard compounds, IAA-glucose and IAA-p-nitrophenol, occurs in the `three phase extraction system' proposed by Liu and Tillberg ([1983] Physiol Plant 57: 441-447). These data indicate that the potential for problems with inadvertent hydrolysis of ester conjugates of IAA exists even at moderate pH values and in the multiphase system where exposure to basic conditions was thought to be limited. PMID:16667049

  10. Microbial production of poly-γ-glutamic acid.

    PubMed

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  11. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid.

    PubMed

    Duca, Daiana; Rose, David R; Glick, Bernard R

    2014-08-01

    Indole-3-acetic acid (IAA) is a fundamental phytohormone with the ability to control many aspects of plant growth and development. Pseudomonas sp. strain UW4 is a rhizospheric plant growth-promoting bacterium that produces and secretes IAA. While several putative IAA biosynthetic genes have been reported in this bacterium, the pathways leading to the production of IAA in strain UW4 are unclear. Here, the presence of the indole-3-acetamide (IAM) and indole-3-acetaldoxime/indole-3-acetonitrile (IAOx/IAN) pathways of IAA biosynthesis is described, and the specific role of two of the enzymes (nitrilase and nitrile hydratase) that mediate these pathways is assessed. The genes encoding these two enzymes were expressed in Escherichia coli, and the enzymes were isolated and characterized. Substrate-feeding assays indicate that the nitrilase produces both IAM and IAA from the IAN substrate, while the nitrile hydratase only produces IAM. The two nitrile-hydrolyzing enzymes have very different temperature and pH optimums. Nitrilase prefers a temperature of 50°C and a pH of 6, while nitrile hydratase prefers 4°C and a pH of 7.5. Based on multiple sequence alignments and motif analyses, physicochemical properties and enzyme assays, it is concluded that the UW4 nitrilase has an aromatic substrate specificity. The nitrile hydratase is identified as an iron-type metalloenzyme that does not require the help of a P47K activator protein to be active. These data are interpreted in terms of a preliminary model for the biosynthesis of IAA in this bacterium.

  12. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates

    PubMed Central

    2013-01-01

    Background Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, malic acid, anthranilic acid, and glycerol. Although hydroxycinnamate conjugates can be obtained from diverse plant sources such as coffee, tomato, potato, apple, and sweet potato, some parts of the world have limited availability to these compounds. Thus, there is growing interest in producing HC conjugates as nutraceutical supplements. Results Hydroxycinnamoyl transferases (HCTs) including hydroxycinnamate-CoA shikimate transferase (HST) and hydroxycinnamate-CoA quinate transferase (HQT) were co-expressed with 4-coumarateCoA:ligase (4CL) in Escherichia coli cultured in media supplemented with HCs. Two hydroxycinnamoyl conjugates, p-coumaroyl shikimates and chlorogenic acid, were thereby synthesized. Total 29.1 mg/L of four different p-coumaroyl shikimates (3-p-coumaroyl shikimate, 4-p-coumaroyl shikimate, 3,4-di-p-coumaroyl shikimate, 3,5-di-p-coumaroyl shikimate, and 4,5-di-p-coumaroyl shikimate) was obtained and 16 mg/L of chlorogenic acid was synthesized in the wild type E. coli strain. To increase the concentration of endogenous acceptor substrates such as shikimate and quinate, the shikimate pathway in E. coli was engineered. A E. coli aroL and aroK gene were mutated and the resulting mutants were used for the production of p-coumaroyl shikimate. An E. coli aroD mutant was used for the production of chlorogenic acid. We also optimized the vector and cell concentration optimization. Conclusions To produce p-coumaroyl-shikimates and chlorogenic acid in E. coli, several E. coli mutants (an aroD mutant for chlorogenic acid production; an aroL, aroK, and aroKL mutant for p

  13. IAA Space Terminological Multilingual Data Bank Towards an On- Line Dictionary with Definitions in French and in English

    NASA Astrophysics Data System (ADS)

    Bensaid, R.

    2002-01-01

    It has been emphasized in previous papers that the bilingual "basic list" of the IAA multilingual terminological data bank (MTDB) needed improvement before beginning works on definitions. In this communication, in a first part, we report, on the works (corrections and additions) done to improve the scope of the "basic list" . These works have yet to be done by coordinators for the others twelve languages concerned by the IAA MTBD. In a second part, according to the decision of the IAA MTDB committee to complete the MTDB with definitions in French and in English, we describe the methodology adopted and the problems encountered to elaborate a mock-up of a space dictionary, including in a first step definitions in English and in French, of the English terms and expressions beginning by the letter "A" in the basic list.

  14. Detection of iso-α-acids to confirm beer consumption in postmortem specimens.

    PubMed

    Rodda, Luke N; Gerostamoulos, Dimitri; Drummer, Olaf H

    2015-01-01

    Iso-α-acids (IAAs) can be used as markers for the consumption of beer. Postmortem specimens from a range of coronial cases were analyzed for IAAs in order to determine the prevalence of beer consumption and any correlation to blood alcohol concentrations (BAC). A total of 130 cases were included in this study including those where beer was mentioned in the case circumstances, cases where beer was not mentioned specifically but alcohol was detected, and cases where neither beer was mentioned nor a positive BAC was present. Available blood, serum, vitreous humour and urine specimens were analyzed. Of the 50 cases where beer was mentioned, 86% had one or more IAAs detected. In cases that only had a positive BAC (n = 60), 57% of these cases also showed the presence of these beer markers. IAAs were detected in specimens obtained from traumatized, burnt, and decomposed cases with a mention of beer consumption or where BAC was positive in blood. No IAAs were detected in cases where BAC was negative. There was little or no correlation between blood IAA concentrations and BAC. This study demonstrates the possible detection of IAAs as a marker for beer consumption. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Partial purification and characterization of an inducible indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jyh-Ching; Cohen, J.D.; Mulbry, W.W.

    1996-11-01

    Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH{sub 4}){sub 2}SO{sub 4}, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusivelymore » high substrate specificity for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg{sup 2+} the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO{sub 4}; the activity was increased by 40% with 1mM MnSO{sub 4}. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 45 refs., 5 figs., 3 tabs.« less

  16. Immunolocalization of endogenous indole-3-acetic acid and abscisic acid in the shoot internodes of Fargesia yunnanensis bamboo during development

    Treesearch

    Shuguang Wang; Yongpeng Ma; Chengbin Wan; Chungyun Hse; Todd F. Shupe; Yujun Wang; Changming Wang

    2016-01-01

    The Bambusoideae subfamily includes the fastest-growing plants worldwide, as a consequence of fast internode elongation. However, few studies have evaluated the temporal and spatial distribution of endogenous hormones during internode elongation. In this paper, endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) were detected in different developmental...

  17. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid.

    PubMed

    Chen, Jingxin; Mao, Linchun; Lu, Wenjing; Ying, Tiejin; Luo, Zisheng

    2016-01-01

    Auxin and abscisic acid regulate strawberry fruit ripening and senescence through cross-talk of their signal transduction pathways that further modulate the structural genes related to physico-chemical properties of fruit. The physiological and transcriptomic changes in harvested strawberry fruits in responses to IAA, ABA and their combination were analyzed. Exogenous IAA delayed the ripening process of strawberries after harvest while ABA promoted the postharvest ripening. However, treatment with a combination of IAA and ABA did not slow down nor accelerate the postharvest ripening in the strawberry fruits. At the molecular level, exogenous IAA up regulated the expressions of genes related to IAA signaling, including AUX/IAA, ARF, TOPLESS and genes encoding E3 ubiquitin protein ligase and annexin, and down regulated genes related to pectin depolymerization, cell wall degradation, sucrose and anthocyanin biosyntheses. In contrast, exogenous ABA induced genes related to fruit softening, and genes involved in signaling pathways including SKP1, HSPs, CK2, and SRG1. Comparison of transcriptomes in responses to individual treatments with IAA or ABA or the combination revealed that there were cooperative and antagonistic actions between IAA and ABA in fruit. However, 17% of the differentially expressed unigenes in response to the combination of IAA and ABA were unique and were not found in those unigenes responding to either IAA or ABA alone. The analyses also found that receptor-like kinases and ubiquitin ligases responded to both IAA and ABA, which seemed to play a pivotal role in both hormones' signaling pathways and thus might be the cross-talk points of both hormones.

  18. Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development.

    PubMed

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid 'Tamnara' grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  19. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  20. Production of succinic Acid from citric Acid and related acids by lactobacillus strains.

    PubMed

    Kaneuchi, C; Seki, M; Komagata, K

    1988-12-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.

  1. Micropropagation and non-steroidal anti-inflammatory and anti-arthritic agent boswellic acid production in callus cultures of Boswellia serrata Roxb.

    PubMed

    Nikam, Tukaram D; Ghorpade, Ravi P; Nitnaware, Kirti M; Ahire, Mahendra L; Lokhande, Vinayak H; Chopra, Arvind

    2013-01-01

    Micropropagation through cotyledonary and leaf node and boswellic acid production in stem callus of a woody medicinal endangered tree species Boswellia serrata Roxb. is reported. The response for shoots, roots and callus formation were varied in cotyledonary and leafy nodal explants from in vitro germinated seeds, if inoculated on Murshige and Skoog's (MS) medium fortified with cytokinins and auxins alone or together. A maximum of 8.0 ± 0.1 shoots/cotyledonary node explant and 6.9 ± 0.1 shoots/leafy node explants were produced in 91 and 88 % cultures respectively on medium with 2.5 μM 6-benzyladenine (BA) and 200 mg l(-1) polyvinylpyrrolidone (PVP). Shoots treated with 2.5 μM IBA showed the highest average root number (4.5) and the highest percentage of rooting (89 %). Well rooted plantlets were acclimatized and 76.5 % of the plantlets showed survival upon transfer to field conditions. Randomly amplified polymorphic DNA (RAPD) analysis of the micropropagated plants compared with mother plant revealed true-to-type nature. The four major boswellic acid components in calluses raised from root, stem, cotyledon and leaf explants were analyzed using HPLC. The total content of four boswellic acid components was higher in stem callus obtained on MS with 15.0 μM IAA, 5.0 μM BA and 200 mg l(-1) PVP. The protocol reported can be used for conservation and exploitation of in vitro production of medicinally important non-steroidal anti-inflammatory metabolites of B. serrata.

  2. Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation.

    PubMed

    Du, Sheng; Sugano, Mami; Tsushima, Miho; Nakamura, Teruko; Yamamoto, Fukuju

    2004-04-01

    Eight-year-old Metasequoia glyptostroboides seedlings were tilted at a 45 degrees angle to induce compression-wood formation on the lower side of the stems. After 2 weeks of treatment, half of the seedlings were sampled and the remaining half were tilted to the opposite orientation to exchange the upper and lower sides and were kept for 2 more weeks until sampled. Cambium-emitted ethylene was analyzed by gas chromatography with flame-ionization detection. Endogenous indole-3-acetic acid (IAA) was measured by gas chromatography-mass spectrometry. Tracheid production and compression-wood formation were determined by light microscopy. Anatomical studies showed that tracheid production was promoted and compression-wood tracheids always developed on the gravitationally lower side of tilted stems in both the original tilting and the subsequent reverse-tilting periods. These were accompanied by an increase in IAA content in and an accelerated ethylene-evolution rate from the cambial region of the same side.

  3. Chrysanthemum cutting productivity and rooting ability are improved by grafting.

    PubMed

    Zhang, Jing; Chen, Sumei; Liu, Ruixia; Jiang, Jiafu; Chen, Fadi; Fang, Weimin

    2013-01-01

    Chrysanthemum has been commercially propagated by rooting of cuttings, whereas the quality will decline over multiple collections from a single plant. Therefore, we compared the vigour, rooting ability, and some physiological parameters between cuttings harvested from nongrafted "Jinba" (non-grafted cuttings) with those collected from grafted "Jinba" plants onto Artemisia scoparia as a rootstock (grafted cuttings). The yield, length, node number, stem diameter, fresh weight, and dry weight of the grafted cuttings were superior to the non-grafted cuttings. Also grafted cuttings "Jinba" rooted 1 day earlier, but showing enhanced rooting quality including number, length, diameter, and dry weight of roots, where compared to the non-grafted. The physiological parameters that indicated contents of soluble protein, peroxidase activity, soluble sugar, and starch, ratios of soluble sugar/nitrogen ratio, and carbohydrate/nitrogen (C/N), as well as contents of indole-3-acetic acid (IAA) and abscisic acid (ABA), and IAA/ABA ratio were significantly increased in the grafted cuttings. This suggested their important parts in mediating rooting ability. Results from this study showed that grafting improved productivity and rooting ability related to an altered physiology, which provide a means to meet the increasing demand.

  4. Drinking water disinfection byproduct iodoacetic acid induces tumorigenic transformation of NIH3T3 cells.

    PubMed

    Wei, Xiao; Wang, Shu; Zheng, Weiwei; Wang, Xia; Liu, Xiaolin; Jiang, Songhui; Pi, Jingbo; Zheng, Yuxin; He, Gengsheng; Qu, Weidong

    2013-06-04

    Iodoacetic acid (IAA) and iodoform (IF) are unregulated iodinated disinfection byproducts (DBPs) found in drinking water. Their presence in the drinking water of China has not been documented. Recently, the carcinogenic potential of IAA and IF has been a concern because of their mutagenicity in bacteria and genotoxicity in mammalian cells. Therefore, we measured their concentrations in Shanghai drinking water and assessed their cytotoxicity, genotoxicity, and ability to transform NIH3T3 cells to tumorigenic lines. The concentrations of IAA and IF in Shanghai drinking water varied between summer and winter with maximum winter levels of 2.18 μg/L IAA and 0.86 μg/L IF. IAA with a lethal concentration 50 (LC50) of 2.77 μM exhibited more potent cytotoxicity in NIH3T3 cells than IF (LC50 = 83.37 μM). IAA, but not IF, induced a concentration-dependent DNA damage measured by γ-H2AX staining and increased tail moment in single-cell gel electrophoresis. Neither IAA nor IF increased micronucleus frequency. Prolonged exposure of NIH3T3 cells to IAA increased the frequencies of transformed cells with anchorage-independent growth and agglutination with concanavalin A. IAA-transformed cells formed aggressive fibrosarcomas after inoculation into Balb/c nude mice. This study demonstrated that IAA has a biological activity that is consistent with a carcinogen and human exposure should be of concern.

  5. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Pediatric poisonings from household products: hydrofluoric acid and methacrylic acid.

    PubMed

    Perry, H E

    2001-04-01

    Household products continue to be a cause of poisoning morbibidity and mortality. Young children frequently are exposed to cleaning products and cosmetics in the course of exploring their environment. Most of these exposures are insignificant, but some result in death or permanent disability. This review discusses two products that have been responsible for serious injury and death in children: hydrofluoric acid and methacrylic acid. It also discusses federal initiatives designed to protect children from these and other household hazards.

  7. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    PubMed

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (<5.0), but hydrolyzed to oxaluric acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  8. Biotechnological Production of Organic Acids from Renewable Resources.

    PubMed

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  9. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid].

    PubMed

    Zhou, Jian-min; Dang, Zhi; Chen, Neng-chang; Xu, Sheng-guang; Xie, Zhi-yi

    2007-09-01

    The environmental risk of chelating agents such as EDTA application to the heavy metals polluted soils and the stress on plant roots due to the abrupt increase metals concentration limit the wide commercial use of chelate-induced phytoextraction. Chelating agent ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) and auxin indole-3-acetic acid (IAA) were used for enhancing heavy metals uptake from soils by Zea mays L. (corn) in pot experiments. The metals content in plant tissues was quantified using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the combination of IAA and EDTA increased the biomass by about 40.0% and the contents of Cu, Zn, Cd and Pb in corn shoots by 27.0%, 26.8%, 27.5% and 32.8% respectively, as compared to those in EDTA treatment. While NTA&IAA treatment increased the biomass by about 29.9% and the contents of Cu, Zn, Cd and Pb in corn shoots by 31.8%, 27.6%, 17.0% and 26.9% respectively, as compared to those in NTA treatment. These results indicated that corn growth was promoted, and the biomass and the accumulation of heavy metals in plant shoots were increased significantly with the addition of IAA, which probably helps to change the cell membrane properties and the biomass distribution, resulting in the alleviation of the phytotoxicity of metals and the chelating agents.

  10. Genotoxic and clastogenic effects of monohaloacetic acid drinking water disinfection by-products in primary human lymphocytes.

    PubMed

    Escobar-Hoyos, Luisa F; Hoyos-Giraldo, Luz Stella; Londoño-Velasco, Elizabeth; Reyes-Carvajal, Ingrid; Saavedra-Trujillo, Diana; Carvajal-Varona, Silvio; Sánchez-Gómez, Adalberto; Wagner, Elizabeth D; Plewa, Michael J

    2013-06-15

    The haloacetic acids (HAAs) are the second-most prevalent class of drinking water disinfection by-products formed by chemical disinfectants. Previous studies have determined DNA damage and repair of HAA-induced lesions in mammalian and human cell lines; however, little is known of the genomic DNA and chromosome damage induced by these compounds in primary human cells. The aim of this study was to evaluate the genotoxic and clastogenic effects of the monoHAA disinfection by-products in primary human lymphocytes. All monoHAAs were genotoxic in primary human lymphocytes, the rank order of genotoxicity and cytotoxicity was IAA > BAA > CAA. After 6 h of repair time, only 50% of the DNA damage (maximum decrease in DNA damage) was repaired compared to the control. This demonstrates that primary human lymphocytes are less efficient in repairing the induced damage by monoHAAs than previous studies with mammalian cell lines. In addition, the monoHAAs induced an increase in the chromosome aberration frequency as a measurement of the clastogenic effect of these compounds. These results coupled with genomic technologies in primary human cells and other mammalian non-cancerous cell lines may lead to the identification of biomarkers that may be employed in feedback loops to aid water chemists and engineers in the overall goal of producing safer drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Toward Sustainable Amino Acid Production.

    PubMed

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  12. Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development

    PubMed Central

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid ‘Tamnara’ grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  13. In vitro propagation and cell cultures of memory tonic herb Evolvulus alsinoides: a best source for elicited production of scopoletin.

    PubMed

    Naikawadi, Vikas Bandu; Ahire, Mahendra Laxman; Lahiri, Anindita; Nikam, Tukaram Dayaram

    2016-04-01

    Evolvulus alsinoides L. is used for preparation of 'Shankhapushpi', an important popular ayurvedic drug that contributes considerably to the improvement of memory power. The improvement is attributed to the presence of furanocoumarin scopoletin, a metabolite with a wide range of biological activities. This report describes, for the first time, an in vitro culture system for propagation and enhanced production of scopoletin. Different concentrations of auxins and cytokinins individually and in combination were used in Murashige and Skoog (MS) medium to induce shoot regeneration in cotyledonary nodal explants and callus formation in leaf explants. The best response was achieved in MS medium fortified with 5.0 μM 6-benzyladenine (BA) in which 96 % of cultures produced 7.6 ± 0.6 shoots per explant. Regenerated shoots were rooted on MS medium with 5.0 μM indole-3-acetic acid (IAA). Plantlets were successfully acclimatized and established in soil. MS medium fortified with 10 μM BA + 5.0 μM IAA showed maximum growth and accumulation of scopoletin in cell cultures. Cell cultures could be maintained over 24 months. The influences of auxins, cytokinins, organic acids, amino acids, and fungal-derived elicitors on production of scopoletin were studied. Presence of either L-arginine, sodium pyruvate, or yeast extract highly promoted scopoletin production as compared with control and achieved 75.02-, 72.13-, and 57.98-fold higher accumulation, respectively. The results presented herein have laid solid foundation for large-scale production of scopoletin and further investigation of its purification and utilization as a novel pharmaceutical drug.

  14. Oral hygiene products and acidic medicines.

    PubMed

    Hellwig, E; Lussi, A

    2006-01-01

    Acidic or EDTA-containing oral hygiene products and acidic medicines have the potential to soften dental hard tissues. The low pH of oral care products increases the chemical stability of some fluoride compounds, favors the incorporation of fluoride ions in the lattice of hydroxyapatite and the precipitation of calcium fluoride on the tooth surface. This layer has some protective effect against an erosive attack. However, when the pH is too low or when no fluoride is present these protecting effects are replaced by direct softening of the tooth surface. Xerostomia or oral dryness can occur as a consequence of medication such as tranquilizers, anti-histamines, anti-emetics and anti-parkinsonian medicaments or of salivary gland dysfunction e.g. due to radiotherapy of the oral cavity and the head and neck region. Above all, these patients should be aware of the potential demineralization effects of oral hygiene products with low pH and high titratable acids. Acetyl salicylic acid taken regularly in the form of multiple chewable tablets or in the form of headache powder as well chewing hydrochloric acids tablets for treatment of stomach disorders can cause erosion. There is most probably no direct association between asthmatic drugs and erosion on the population level. Consumers, patients and health professionals should be aware of the potential of tooth damage not only by oral hygiene products and salivary substitutes but also by chewable and effervescent tablets. Additionally, it can be assumed that patients suffering from xerostomia should be aware of the potential effects of oral hygiene products with low pH and high titratable acids.

  15. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The stability of iso-α-acids and reduced iso-α-acids in stored blood specimens.

    PubMed

    Rodda, Luke N; Gerostamoulos, Dimitri; Drummer, Olaf H

    2014-06-01

    The long-term stability of the iso-α-acids, and three structurally similar but chemically altered iso-α-acids (known as 'reduced iso-α-acids' and consisting of the rho-, tetrahydro- and hexahydro-iso-α-acid groups) were investigated in whole blood. Pools of blank blood spiked with the four beer-specific ingredient congener groups at two different concentration levels were stored at 20°C, 4°C and -20°C; and extracted in duplicate in weeks 1, 3, 5 and 8, using a previously published method. A loss of 15% of the initial concentration was considered to indicate possible instability and losses greater than 30% demonstrated significant losses. The individual analytes within the four iso-α-acid groups were also measured to determine which iso-α-acids were subject to greater degradation and were responsible for the overall group instability. All four iso-α-acid groups showed significant losses after 8 weeks of storage under room temperature conditions in particularly the natural iso-α-acid group where major losses were observed (96% and 85% losses for low and high concentrations, respectively). Some degradation in all iso-α-acid groups were seen at 4°C samples predominantly due to the 'n' analogs of the groups showing an increased instability in blood. The -20°C storage conditions resulted in minimal changes in concentrations of all analytes. Higher than frozen storage temperatures can result in substantial changes on the stability of the iso-α-acid type groups in blood. The aim of this study was to highlight the stabilities of the IAA analytes in order to assist in the interpretation of IAA in stored blood specimens. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Microbial production of lactic acid: the latest development.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2016-12-01

    Lactic acid is an important platform chemical for producing polylactic acid (PLA) and other value-added products. It is naturally produced by a wide spectrum of microbes including bacteria, yeast and filamentous fungi. In general, bacteria ferment C5 and C6 sugars to lactic acid by either homo- or hetero-fermentative mode. Xylose isomerase, phosphoketolase, transaldolase, l- and d-lactate dehydrogenases are the key enzymes that affect the ways of lactic acid production. Metabolic engineering of microbial strains are usually needed to produce lactic acid from unconventional carbon sources. Production of d-LA has attracted much attention due to the demand for producing thermostable PLA, but large scale production of d-LA has not yet been commercialized. Thermophilic Bacillus coagulans strains are able to produce l-lactic acid from lignocellulose sugars homo-fermentatively under non-sterilized conditions, but the lack of genetic tools for metabolically engineering them severely affects their development for industrial applications. Pre-treatment of agriculture biomass to obtain fermentable sugars is a pre-requisite for utilization of the huge amounts of agricultural biomass to produce lactic acid. The major challenge is to obtain quality sugars of high concentrations in a cost effective-way. To avoid or minimize the use of neutralizing agents during fermentation, genetically engineering the strains to make them resist acidic environment and produce lactic acid at low pH would be very helpful for reducing the production cost of lactic acid.

  18. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes.

    PubMed Central

    Zolman, B K; Yoder, A; Bartel, B

    2000-01-01

    Indole-3-butyric acid (IBA) is widely used in agriculture because it induces rooting. To better understand the in vivo role of this endogenous auxin, we have identified 14 Arabidopsis mutants that are resistant to the inhibitory effects of IBA on root elongation, but that remain sensitive to the more abundant auxin indole-3-acetic acid (IAA). These mutants have defects in various IBA-mediated responses, which allowed us to group them into four phenotypic classes. Developmental defects in the absence of exogenous sucrose suggest that some of these mutants are impaired in peroxisomal fatty acid chain shortening, implying that the conversion of IBA to IAA is also disrupted. Other mutants appear to have normal peroxisomal function; some of these may be defective in IBA transport, signaling, or response. Recombination mapping indicates that these mutants represent at least nine novel loci in Arabidopsis. The gene defective in one of the mutants was identified using a positional approach and encodes PEX5, which acts in the import of most peroxisomal matrix proteins. These results indicate that in Arabidopsis thaliana, IBA acts, at least in part, via its conversion to IAA. PMID:11063705

  19. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    PubMed Central

    Vuković, Rosemary; Likić, Saša; Jelaska, Sibila

    2015-01-01

    Summary Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid. PMID:27904326

  20. Electrochemiluminescence Assays for Insulin and Glutamic Acid Decarboxylase Autoantibodies Improve Prediction of Type 1 Diabetes Risk

    PubMed Central

    Miao, Dongmei; Steck, Andrea K.; Zhang, Li; Guyer, K. Michelle; Jiang, Ling; Armstrong, Taylor; Muller, Sarah M.; Krischer, Jeffrey; Rewers, Marian

    2015-01-01

    Abstract We recently developed new electrochemiluminescence (ECL) insulin autoantibody (IAA) and glutamic acid decarboxylase 65 autoantibody (GADA) assays that discriminate high-affinity, high-risk diabetes-specific autoantibodies from low-affinity, low-risk islet autoantibodies (iAbs) detected by radioassay (RAD). Here, we report a further validation of the ECL-IAA and -GADA assays in 3,484 TrialNet study participants. The ECL assay and RAD were congruent in those with prediabetes and in subjects with multiple autoantibodies, but only 24% (P<0.0001) of single RAD-IAA-positive and 46% (P<0.0001) of single RAD-GADA-positive were confirmed by the ECL-IAA and -GADA assays, respectively. During a follow-up (mean, 2.4 years), 51% of RAD-IAA-positive and 63% of RAD-GADA-positive subjects not confirmed by ECL became iAb negative, compared with only 17% of RAD-IAA-positive (P<0.0001) and 15% of RAD-GADA-positive (P<0.0001) subjects confirmed by ECL assays. Among subjects with multiple iAbs, diabetes-free survival was significantly shorter if IAA or GADA was positive by ECL and negative by RAD than if IAA or GADA was negative by ECL and positive by RAD (P<0.019 and P<0.0001, respectively). Both positive and negative predictive values in terms of progression to type 1 diabetes mellitus were superior for ECL-IAA and ECL-GADA, compared with RADs. The prevalence of the high-risk human leukocyte antigen-DR3/4, DQB1*0302 genotype was significantly higher in subjects with RAD-IAA or RAD-GADA confirmed by ECL. In conclusion, both ECL-IAA and -GADA are more disease-specific and better able to predict the risk of progression to type 1 diabetes mellitus than the current standard RADs. PMID:25562486

  1. Electrochemiluminescence assays for insulin and glutamic acid decarboxylase autoantibodies improve prediction of type 1 diabetes risk.

    PubMed

    Miao, Dongmei; Steck, Andrea K; Zhang, Li; Guyer, K Michelle; Jiang, Ling; Armstrong, Taylor; Muller, Sarah M; Krischer, Jeffrey; Rewers, Marian; Yu, Liping

    2015-02-01

    We recently developed new electrochemiluminescence (ECL) insulin autoantibody (IAA) and glutamic acid decarboxylase 65 autoantibody (GADA) assays that discriminate high-affinity, high-risk diabetes-specific autoantibodies from low-affinity, low-risk islet autoantibodies (iAbs) detected by radioassay (RAD). Here, we report a further validation of the ECL-IAA and -GADA assays in 3,484 TrialNet study participants. The ECL assay and RAD were congruent in those with prediabetes and in subjects with multiple autoantibodies, but only 24% (P<0.0001) of single RAD-IAA-positive and 46% (P<0.0001) of single RAD-GADA-positive were confirmed by the ECL-IAA and -GADA assays, respectively. During a follow-up (mean, 2.4 years), 51% of RAD-IAA-positive and 63% of RAD-GADA-positive subjects not confirmed by ECL became iAb negative, compared with only 17% of RAD-IAA-positive (P<0.0001) and 15% of RAD-GADA-positive (P<0.0001) subjects confirmed by ECL assays. Among subjects with multiple iAbs, diabetes-free survival was significantly shorter if IAA or GADA was positive by ECL and negative by RAD than if IAA or GADA was negative by ECL and positive by RAD (P<0.019 and P<0.0001, respectively). Both positive and negative predictive values in terms of progression to type 1 diabetes mellitus were superior for ECL-IAA and ECL-GADA, compared with RADs. The prevalence of the high-risk human leukocyte antigen-DR3/4, DQB1*0302 genotype was significantly higher in subjects with RAD-IAA or RAD-GADA confirmed by ECL. In conclusion, both ECL-IAA and -GADA are more disease-specific and better able to predict the risk of progression to type 1 diabetes mellitus than the current standard RADs.

  2. Patterns of auxin and abscisic acid movement in the tips of gravistimulated primary roots of maize

    NASA Technical Reports Server (NTRS)

    Young, L. M.; Evans, M. L.

    1996-01-01

    Because both abscisic acid (ABA) and auxin (IAA) have been suggested as possible chemical mediators of differential growth during root gravitropism, we compared with redistribution of label from applied 3H-IAA and 3H-ABA during maize root gravitropism and examined the relative basipetal movement of 3H-IAA and 3H-ABA applied to the caps of vertical roots. Lateral movement of 3H-ABA across the tips of vertical roots was non-polar and about 2-fold greater than lateral movement of 3H-IAA (also non-polar). The greater movement of ABA was not due to enhanced uptake since the uptake of 3H-IAA was greater than that of 3H-ABA. Basipetal movement of label from 3H-IAA or 3H-ABA applied to the root cap was determined by measuring radioactivity in successive 1 mm sections behind the tip 90 minutes after application. ABA remained largely in the first mm (point of application) whereas IAA was concentrated in the region 2-4 mm from the tip with substantial levels found 7-8 mm from the tip. Pretreatment with inhibitors of polar auxin transport decreased both gravicurvature and the basipetal movement of IAA. When roots were placed horizontally, the movement of 3H-IAA from top to bottom across the cap was enhanced relative to movement from bottom to top whereas the pattern of movement of label from 3H-ABA was unaffected. These results are consistent with the hypothesis that IAA plays a role in root gravitropism but contrary to the idea that gravi-induced asymmetric distribution of ABA contributes to the response.

  3. Guaiacol production from ferulic acid, vanillin and vanillic acid by Alicyclobacillus acidoterrestris.

    PubMed

    Witthuhn, R Corli; van der Merwe, Enette; Venter, Pierre; Cameron, Michelle

    2012-06-15

    Alicyclobacilli are thermophilic, acidophilic bacteria (TAB) that spoil fruit juice products by producing guaiacol. It is currently believed that guaiacol is formed by Alicyclobacillus in fruit juices as a product of ferulic acid metabolism. The aim of this study was to identify the precursors that can be metabolised by Alicyclobacillus acidoterrestris to produce guaiacol and to evaluate the pathway of guaiacol production. A. acidoterrestris FB2 was incubated at 45°C for 7days in Bacillus acidoterrestris (BAT) broth supplemented with ferulic acid, vanillin or vanillic acid, respectively. The samples were analysed every day to determine the cell concentration, the supplement concentration using high performance liquid chromatography with UV-diode array detection (HPLC-DAD) and the guaiacol concentration, using both the peroxidase enzyme colourimetric assay (PECA) and HPLC-DAD. The cell concentration of A. acidoterrestris FB2 during the 7days in all samples were above the critical cell concentration of 10(5)cfu/mL reportedly required for guaiacol production. The guaiacol produced by A. acidoterrestris FB2 increased with an increase in vanillin or vanillic acid concentration and a metabolic pathway of A. acidoterrestris FB2 directly from vanillin to guaiacol was established. The high concentration of vanillic acid (1000mg/L) resulted in an initial inhibitory effect on the cells, but the cell concentration increased after day 2. Guaiacol production did not occur in the absence of either a precursor or A. acidoterrestris FB2 and guaiacol was not produced by A. acidoterrestris FB2 in the samples supplemented with ferulic acid. The presence of Alicyclobacillus spp. that has the ability to produce guaiacol, as well as the substrates vanillin or vanillic acid is prerequisite for production of guaiacol. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Selective enrichment of Eicosapentaenoic acid (20:5n-3) in N. oceanica CASA CC201 by natural auxin supplementation.

    PubMed

    Udayan, Aswathy; Arumugam, Muthu

    2017-10-01

    The present study aims to evaluate the effect of different concentration of natural auxin, Indole-3 acetic acid (IAA) on growth, lipid yield, PUFA and EPA accumulation in Nannochloropsis oceanica CASA CC201. It was observed that the, treatment with 10ppm concentration of IAA resulted in high cell number 579.5×10 6 cells/ml than the control (215.5×10 6 cells/ml). Treatment with IAA at a concentration of 40ppm gives the highest cellular lipid accumulation of 60.9% DCW than the control 31.05% DCW). Lipid yield is also found to be increased by the addition of 40ppm IAA (319.5mg/L) compared with the control (121.5mg/L). EPA percentage is increased to 10.76% by the addition of 40ppm IAA compared to the control (1.87%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Effect of indolylacetic acid on formation of bacteroid forms of Rhizobium leguminosarum].

    PubMed

    Lobanok, E V; Bakanchikova, T I

    1979-01-01

    The purpose of this work was to study the effect of indolylacetic acid (IAA) on the strains of Rhizobium leguminosarum, effective and noneffective with respect to symbiotic nitrogen fixation (L4 and 245a, and 14--73, respectively). IAA at a concentration of 50 mcg/ml and higher inhibited the growth of the bacterium, temporarily delayed celular division, and induced intensive formation of elongated bacteroid-like cells, predominantly Y-shaped or having a clavate shape. Many bacteroid-like cells were capable of division after a certain delay.

  6. Biotechnological production of enantiomerically pure d-lactic acid.

    PubMed

    Klotz, Silvia; Kaufmann, Norman; Kuenz, Anja; Prüße, Ulf

    2016-11-01

    The fermentation process of l-lactic acid is well known. Little importance was attached to d-lactic acid, but in the past 10 years, d-lactic acid gained significantly in importance. d-Lactic acid is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of d-lactic acid. Additionally, the technological achievements in biotechnological d-lactic acid production including fermentation techniques like fed batch, simultaneous saccharification, and fermentation and continuous techniques are presented. Attention is also turned to suitable alternative substrates and their applicability in fermentation processes. Furthermore, advantages and disadvantages of product recovery and purification are discussed. Economic aspects of PLA are pointed out, and the present industrial producers of lactic acid are briefly introduced.

  7. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Hypothalamic signaling in anorexia induced by indispensable amino acid deficiency

    PubMed Central

    Zhu, Xinxia; Krasnow, Stephanie M.; Roth-Carter, Quinn R.; Levasseur, Peter R.; Braun, Theodore P.; Grossberg, Aaron J.

    2012-01-01

    Animals exhibit a rapid and sustained anorexia when fed a diet that is deficient in a single indispensable amino acid (IAA). The chemosensor for IAA deficiency resides within the anterior piriform cortex (APC). Although the cellular and molecular mechanisms by which the APC detects IAA deficiency are well established, the efferent neural pathways that reduce feeding in response to an IAA-deficient diet remain to be fully characterized. In the present work, we investigated whether 1) central melanocortin signaling is involved in IAA deficiency-induced anorexia (IAADA) and 2) IAADA engages other key appetite-regulating neuronal populations in the hypothalamus. Rats and mice that consumed a valine-deficient diet (VDD) for 2–3 wk exhibited marked reductions in food intake, body weight, fat and lean body mass, body temperature, and white adipose tissue leptin gene expression, as well as a paradoxical increase in brown adipose tissue uncoupling protein-1 mRNA. Animals consuming the VDD had altered hypothalamic gene expression, typical of starvation. Pharmacological and genetic blockade of central melanocortin signaling failed to increase long-term food intake in this model. Chronic IAA deficiency was associated with a marked upregulation of corticotropin-releasing hormone expression in the lateral hypothalamus, particularly in the parasubthalamic nucleus, an area heavily innervated by efferent projections from the APC. Our observations indicate that the hypothalamic melanocortin system plays a minor role in acute, but not chronic, IAADA and suggest that the restraint on feeding is analogous to that observed after chronic dehydration. PMID:23047987

  9. Tetraethylene glycol promoted two-step, one-pot rapid synthesis of indole-3-[1- 11C]acetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sojeong; Qu, Wenchao; Alexoff, David L.

    2014-12-12

    An operationally friendly, two-step, one-pot process has been developed for the rapid synthesis of carbon-11 labeled indole-3-acetic acid ([ 11]IAA or [ 11]auxin). By replacing an aprotic polar solvent with tetraethylene glycol, nucleophilic [ 11]cyanation and alkaline hydrolysis reactions were performed consecutively in a single pot without a time-consuming intermediate purification step. The entire production time for this updated procedure is 55 min, which dramatically simplifies the entire synthesis and reduces the starting radioactivity required for a whole plant imaging study.

  10. Factors Which Increase Acid Production in Milk by Lactobacilli

    PubMed Central

    Huhtanen, C. N.; Williams, W. L.

    1963-01-01

    The stimulation by yeast extract of acid production in milk by various lactobacilli was studied. It was found that supplementing milk with purine and pyrimidine bases and amino acids allowed nearly maximal acid production by Lactobacillus bulgaricus strain 7994, L. acidophilus 4796, 4356, and 4357, and L. leichmannii 326 and 327. Further supplementation with deoxyribotides allowed maximal acid production by L. acidophilus 204, but L. acidophilus 207 required adenosine or adenylic acid. L. casei strain 7469 showed no appreciable response to the amino acids or purine and pyrimidine bases, and is presumed to require an unidentified factor in corn steep liquor. PMID:13955610

  11. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat.

    PubMed

    Chen, Dandan; Richardson, Terese; Chai, Shoucheng; Lynne McIntyre, C; Rae, Anne L; Xue, Gang-Ping

    2016-10-01

    A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm.

    PubMed

    Yokoyama, Chiaki; Takei, Mami; Kouzuma, Yoshiaki; Nagata, Shinji; Suzuki, Yoshihito

    2017-08-01

    In the course of our study of the biosynthetic pathway of auxin, a class of phytohormones, in insects, we proposed the biosynthetic pathway tryptophan (Trp)→indole-3-acetaldoxime (IAOx)→indole-3-acetadehyde (IAAld)→indole-3-acetic acid (IAA). In this study, we identified two branches in the metabolic pathways in the silkworm, possibly affecting the efficiency of IAA production: Trp→indole-3-pyruvic acid→indole-3-lactic acid and IAAld→indole-3-ethanol. We also determined the apparent conversion activities (2.05×10 -7 UmL -1 for Trp→IAA, 1.30×10 -5 UmL -1 for IAOx→IAA, and 3.91×10 -1 UmL -1 for IAAld→IAA), which explain why IAOx and IAAld are barely detectable as either endogenous compounds or metabolites of their precursors. The failure to detect IAAld, even in the presence of an inhibitor of the conversion IAAld→IAA, is explained by a switch in the conversion from IAAld→IAA to IAAld→IEtOH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Amino acids production focusing on fermentation technologies - A review.

    PubMed

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction...

  15. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction...

  16. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  17. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    PubMed

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects.

    PubMed

    Singhvi, Mamata; Zendo, Takeshi; Sonomoto, Kenji

    2018-05-26

    Lactic acid (LA) is an important platform chemical due to its significant applications in various fields and its use as a monomer for the production of biodegradable poly(lactic acid) (PLA). Free LA production is required to get rid of CaSO 4 , a waste material produced during fermentation at neutral pH which will lead to easy purification of LA required for the production of biodegradable PLA. Additionally, there is no need to use corrosive acids to release free LA from the calcium lactate produced during neutral fermentation. To date, several attempts have been made to improve the acid tolerance of lactic acid bacteria (LAB) by using both genome-shuffling approaches and rational design based on known mechanisms of LA tolerance and gene deletion in yeast strains. However, the lack of knowledge and the complexity of acid-tolerance mechanisms have made it challenging to generate LA-tolerant strains by simply modifying few target genes. Currently, adaptive evolution has proven an efficient strategy to improve the LA tolerance of individual/engineered strains. The main objectives of this article are to summarize the conventional biotechnological LA fermentation processes to date, assess their overall economic and environmental cost, and to introduce modern LA fermentation strategies for free LA production. In this review, we provide a broad overview of free LA fermentation processes using robust LAB that can ferment in acidic environments, the obstacles to these processes and their possible solutions, and the impact on future development of free LA fermentation processes commercially.

  19. Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA).

    PubMed

    Brinton, Eliot A; Mason, R Preston

    2017-01-31

    The omega-3 fatty acid eicosapentaenoic acid (EPA) has multiple actions potentially conferring cardiovascular benefit, including lowering serum triglyceride (TG) and non-high-density lipoprotein cholesterol (non-HDL-C) levels and potentially reducing key steps in atherogenesis. Dietary supplements are a common source of omega-3 fatty acids in the US, but virtually all contain docosahexaenoic acid (DHA) in addition to EPA, and lipid effects differ between DHA and EPA. Contrary to popular belief, no over-the-counter omega-3 products are available in the US, only prescription products and dietary supplements. Among the US prescription omega-3 products, only one contains EPA exclusively (Vascepa); another closely related prescription omega-3 product also contains highly purified EPA, but is approved only in Japan and is provided in different capsule sizes. These high-purity EPA products do not raise low-density lipoprotein cholesterol (LDL-C) levels, even in patients with TG levels >500 mg/dL, in contrast to the increase in LDL-C levels with prescription omega-3 products that also contain DHA. The Japanese prescription EPA product was shown to significantly reduce major coronary events in hypercholesterolemic patients when added to statin therapy in the Japan EPA Lipid Intervention Study (JELIS). The effects of Vascepa on cardiovascular outcomes are being investigated in statin-treated patients with high TG levels in the Reduction of Cardiovascular Events With EPA-Intervention Trial (REDUCE-IT).

  20. An Optimized Analytical Method for the Simultaneous Detection of Iodoform, Iodoacetic Acid, and Other Trihalomethanes and Haloacetic Acids in Drinking Water

    PubMed Central

    Jiang, Songhui; Templeton, Michael R.; He, Gengsheng; Qu, Weidong

    2013-01-01

    An optimized method is presented using liquid-liquid extraction and derivatization for the extraction of iodoacetic acid (IAA) and other haloacetic acids (HAA9) and direct extraction of iodoform (IF) and other trihalomethanes (THM4) from drinking water, followed by detection by gas chromatography with electron capture detection (GC-ECD). A Doehlert experimental design was performed to determine the optimum conditions for the five most significant factors in the derivatization step: namely, the volume and concentration of acidic methanol (optimized values  = 15%, 1 mL), the volume and concentration of Na2SO4 solution (129 g/L, 8.5 mL), and the volume of saturated NaHCO3 solution (1 mL). Also, derivatization time and temperature were optimized by a two-variable Doehlert design, resulting in the following optimized parameters: an extraction time of 11 minutes for IF and THM4 and 14 minutes for IAA and HAA9; mass of anhydrous Na2SO4 of 4 g for IF and THM4 and 16 g for IAA and HAA9; derivatization time of 160 min and temperature at 40°C. Under optimal conditions, the optimized procedure achieves excellent linearity (R2 ranges 0.9990–0.9998), low detection limits (0.0008–0.2 µg/L), low quantification limits (0.008–0.4 µg/L), and good recovery (86.6%–106.3%). Intra- and inter-day precision were less than 8.9% and 8.8%, respectively. The method was validated by applying it to the analysis of raw, flocculated, settled, and finished waters collected from a water treatment plant in China. PMID:23613747

  1. Molecular dynamics simulations of the auxin-binding protein 1 in complex with indole-3-acetic acid and naphthalen-1-acetic acid.

    PubMed

    Grandits, Melanie; Oostenbrink, Chris

    2014-10-01

    Auxin-binding protein 1 (ABP1) is suggested to be an auxin receptor which plays an important role in several processes in green plants. Maize ABP1 was simulated with the natural auxin indole-3-acetic acid (IAA) and the synthetic analog naphthalen-1-acetic acid (NAA), to elucidate the role of the KDEL sequence and the helix at the C-terminus. The KDEL sequence weakens the intermolecular interactions between the monomers but stabilizes the C-terminal helix. Conformational changes at the C-terminus occur within the KDEL sequence and are influenced by the binding of the simulated ligands. This observation helps to explain experimental findings on ABP1 interactions with antibodies that are modulated by the presence of auxin, and supports the hypothesis that ABP1 acts as an auxin receptor. Stable hydrogen bonds between the monomers are formed between Glu40 and Glu62, Arg10 and Thr97, Lys39, and Glu62 in all simulations. The amino acids Ile22, Leu25, Trp44, Pro55, Ile130, and Phe149 are located in the binding pocket and are involved in hydrophobic interactions with the ring system of the ligand. Trp151 is stably involved in a face to end interaction with the ligand. The calculated free energy of binding using the linear interaction energy approach showed a higher binding affinity for NAA as compared to IAA. Our simulations confirm the asymmetric behavior of the two monomers, the stronger interaction of NAA than IAA and offers insight into the possible mechanism of ABP1 as an auxin receptor. © 2014 Wiley Periodicals, Inc.

  2. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes.

    PubMed

    Papadaki, Aikaterini; Papapostolou, Harris; Alexandri, Maria; Kopsahelis, Nikolaos; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise M G; Koutinas, Apostolis A

    2018-04-13

    The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.

  3. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    PubMed

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  6. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  7. Production and Recovery of Pyruvic Acid: Recent Advances

    NASA Astrophysics Data System (ADS)

    Pal, Dharm; Keshav, Amit; Mazumdar, Bidyut; Kumar, Awanish; Uslu, Hasan

    2017-12-01

    Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.

  8. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  9. Shikonin Production by Callus Culture of Onosma bulbotrichom as Active Pharmaceutical Ingredient

    PubMed Central

    Bagheri, Fereshteh; Tahvilian, Reza; Karimi, Naser; Chalabi, Maryam; Azami, Mahsa

    2018-01-01

    The objective of this research was in-vitro germination and callus induction of Onosma bulbotrichum (O. bulbotrichum) as a medicinal herb which belongs to Boraginaceae family. For germination, the seeds were cultured on growth regulator-free MS medium and for callus induction, seeds were sown on modified MS medium containing different concentrations of kinetin (kn)- Indole-3-acetic acid (IAA) and kn- 2,4-D (2,4-dichlorophenoxyacetic acid), respectively. The plates were maintained in the dark at growth chamber. After 7 days seed germination on hormone-free medium and after 10 days callus initiation on modified medium in the presence of hormones was occurred. The maximum pigmented callus (100%) was observed on modified MS medium with a combination of 0.2 mg.L-1 IAA + 2.10 mg.L-1 kn. Shikonin determination was performed by HPLC method. In addition, total hydroxynaphtoquinons as polyphenols in sum of callus and culture medium were measured by spectrophotometric method and revealed that total naphtoquinones content at IAA was more than 2, 4-D. PMID:29881407

  10. In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding.

    PubMed

    Patil, Jitendra Gopichand; Ahire, Mahendra Laxman; Nitnaware, Kirti Manik; Panda, Sayantan; Bhatt, Vijay P; Kishor, Polavarapu B Kavi; Nikam, Tukaram Dayaram

    2013-03-01

    Digitalis purpurea L. (Scrophulariaceae; Foxglove) is a source of cardiotonic glycosides such as digitoxin and digoxin which are commercially applied in the treatment to strengthen cardiac diffusion and to regulate heart rhythm. This investigation deals with in vitro propagation and elicited production of cardiotonic glycosides digitoxin and digoxin in shoot cultures of D. purpurea L. In vitro germinated seedlings were used as a primary source of explants. Multiple shoot formation was achieved for three explant types (nodal, internodal, and leaf) cultured on Murashige and Skoog (MS) medium with several treatments of cytokinins (6-benzyladenine-BA; kinetin-Kin; and thidiazuron-TDZ) and auxins (indole-3-acetic acid-IAA; α-naphthaleneacetic acid-NAA; and 2,4-dichlorophenoxy acetic acid-2,4-D). Maximum multiple shoots (12.7 ± 0.6) were produced from nodal explants on MS + 7.5 μM BA. Shoots were rooted in vitro on MS containing 15 μM IAA. Rooted plantlets were successfully acclimatized. To further maintain the multiple shoot induction, mother tissue was cut into four equal parts and repeatedly sub-cultured on fresh shoot induction liquid medium after each harvest. On adaptation of this strategy, an average of 18 shoots per explant could be produced. This strategy was applied for the production of biomass and glycosides digitoxin and digoxin in shoot cultures on MS medium supplemented with 7.5 μM BA and several treatments with plant growth regulators, incubation period, abiotic (salicylic acid, mannitol, sorbitol, PEG-6000, NaCl, and KCl), biotic (Aspergillus niger, Helminthosporium sp., Alternaria sp., chitin, and yeast extract) elicitors, and precursors (progesterone, cholesterol, and squalene). The treatment of KCl, mycelial mass of Helminthosporium sp., and progesterone were highly effective for the production of cardenolides. In the presence of progesterone (200 to 300 mg/l), digitoxin and digoxin accumulation was enhanced by 9.1- and 11.9-folds

  11. Genotypic characterization of Azotobacteria isolated from Argentinean soils and plant-growth-promoting traits of selected strains with prospects for biofertilizer production.

    PubMed

    Rubio, Esteban Julián; Montecchia, Marcela Susana; Tosi, Micaela; Cassán, Fabricio Darío; Perticari, Alejandro; Correa, Olga Susana

    2013-01-01

    The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA), gibberellin (GA3) and zeatin (Z) biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2-18.2 μ g IAA mL(-1), 0.3-0.7 μ g GA3 mL(-1), and 0.5-1.2 μ g Z mL(-1). Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations.

  12. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.

    PubMed

    Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao

    2018-07-01

    To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.

  13. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to reporting...

  14. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to reporting...

  15. [Hydrocyanic acid content in cerals and cereal products].

    PubMed

    Lehmann, G; Zinsmeister, H D; Erb, N; Neunhoeffer, O

    1979-03-01

    In the above paper for the first time a systematic study of the amount of hydrocyanic acid in grains and cereal products is reported. Among 24 analysed wheat, rye, maize and oats types, the presence of hydrocyanic acid could be identified in 19 cases in their Karyopses. Similar is the result with 28 among 31 analysed cereal products. The content of hydrocyanic acid lies between 0.1 and 45 microgram/100 gr dried mass.

  16. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense.

    PubMed

    Jijón-Moreno, Saúl; Marcos-Jiménez, Cynthia; Pedraza, Raúl O; Ramírez-Mata, Alberto; de Salamone, I García; Fernández-Scavino, Ana; Vásquez-Hernández, Claudia A; Soto-Urzúa, Lucia; Baca, Beatriz E

    2015-06-01

    Plant growth-promoting bacteria of the genus Azospirillum are present in the rhizosphere and as endophytes of many crops. In this research we studied 40 Azospirillum strains isolated from different plants and geographic regions. They were first characterized by 16S rDNA restriction analysis, and their phylogenetic position was established by sequencing the genes 16S rDNA, ipdC, hisC1, and hisC2. The latter three genes are involved in the indole-3-pyruvic acid (IPyA) biosynthesis pathway of indole-3-acetic acid (IAA). Furthermore, the suitability of the 16S-23S rDNA intergenic spacer sequence (IGS) for the differentiation of closely related Azospirillum taxa and development of PCR protocols allows for specific detection of strains. The IGS-RFLP analysis enabled intraspecies differentiation, particularly of Azospirillum brasilense and Azospirillum lipoferum strains. Results demonstrated that the ipdC, hisC1, and hisC2 genes are highly conserved in all the assessed A. brasilense isolates, suggesting that these genes can be used as an alternative phylogenetic marker. In addition, IAA production determined by HPLC ranged from 0.17 to 98.2 μg mg(-1) protein. Southern hybridization with the A. brasilense ipdC gene probe did not show, a hybridization signal with A. lipoferum, Azospirillum amazonense, Azospirillum halopreferans and Azospirillum irakense genomic DNA. This suggests that these species produce IAA by other pathways. Because IAA is mainly synthesized via the IPyA pathway in A. brasilense strains, a species that is used worldwide in agriculture, the identification of ipdC, hisC1, and hisC2 genes by PCR may be suitable for selecting exploitable strains.

  17. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate

    PubMed Central

    Subramanian, Mohan Raj; Talluri, Suvarna; Christopher, Lew P

    2015-01-01

    Lactic acid is an intermediate-volume specialty chemical for a wide range of food and industrial applications such as pharmaceuticals, cosmetics and chemical syntheses. Although lactic acid production has been well documented, improved production parameters that lead to reduced production costs are always of interest in industrial developments. In this study, we describe the production of lactic acid at high concentration, yield and volumetric productivity utilizing a novel homofermentative, facultative anaerobe Enterococcus faecalis CBRD01. The highest concentration of 182 g lactic acid l−1 was achieved after 38 h of fed-batch fermentation on glucose. The bacterial isolate utilized only 2–13% of carbon for its growth and energy metabolism, while 87–98% of carbon was converted to lactic acid at an overall volumetric productivity of 5 g l−1 h−1. At 13 h of fermentation, the volumetric productivity of lactate production reached 10.3 g l−1 h−1, which is the highest ever reported for microbial production of lactic acid. The lactic acid produced was of high purity as formation of other metabolites was less than 0.1%. The present investigation demonstrates a new opportunity for enhanced production of lactic acid with potential for reduced purification costs. PMID:24894833

  18. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. Results We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, 13C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. Conclusions We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In

  19. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium.

    PubMed

    Varman, Arul M; Yu, Yi; You, Le; Tang, Yinjie J

    2013-11-25

    The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, (13)C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In the late growth phase, the

  20. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties.

  1. Low potential detection of indole-3-acetic acid based on the peroxidase-like activity of hemin/reduced graphene oxide nanocomposite.

    PubMed

    Liu, Fengping; Tang, Jiaqian; Xu, Jun; Shu, Yun; Xu, Qin; Wang, Hongmei; Hu, Xiaoya

    2016-12-15

    An amperometric sensor was firstly established for the detection of indole-3-acetic acid (IAA) at low potential based on the hemin/reduced graphene oxide (hemin/rGO) composite. The hemin/rGO nanocomposite was prepared by a simple and facile hydrothermal method without using any reducing agent. It exhibited peroxidase-like activity for the catalytic oxidation of IAA in the presence of oxygen. The consumption of oxygen has a linear relationship with the concentration of IAA in the range from 0.1 to 43μM and from 43 to 183μM. The detection limit was down to 0.074μM. This sensor was unaffected by many interfering substances and stable over time. Such work broadened the application of hemin/rGO and provided a new method for IAA detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The Maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID Gene Family: Phylogeny, Synteny, and Unique Root-Type and Tissue-Specific Expression Patterns during Development

    PubMed Central

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues. PMID:24223858

  3. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development.

    PubMed

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.

  4. By-products of electrochemical synthesis of suberic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.

    By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.

  5. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    PubMed

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration.

    PubMed

    Cornelis, Tom; Eloot, Sunny; Vanholder, Raymond; Glorieux, Griet; van der Sande, Frank M; Scheijen, Jean L; Leunissen, Karel M; Kooman, Jeroen P; Schalkwijk, Casper G

    2015-08-01

    Protein-bound uraemic toxins (PBUT), dicarbonyl stress and advanced glycation end products (AGEs) associate with cardiovascular disease in dialysis. Intensive haemodialysis (HD) may have significant clinical benefits. The aim of this study was to evaluate the acute effects of conventional and extended HD and haemodiafiltration (HDF) on reduction ratio (RR) and total solute removal (TSR) of PBUT, dicarbonyl stress compounds and AGEs. Thirteen stable conventional HD patients randomly completed a single study of 4-h HD (HD4), 4-h HDF (HDF4), 8-h HD (HD8) and 8-h HDF (HDF8) with a 2-week interval between the study sessions. RR and TSR of PBUT [indoxyl sulphate (IS), p-cresyl sulphate (PCS), p-cresyl glucuronide, 3-carboxyl-4-methyl-5-propyl-2-furanpropionic acid (CMPF), indole-3-acetic acid (IAA) and hippuric acid] of free and protein-bound AGEs [N(ε)-(carboxymethyl)lysine (CML), N(ε)-(carboxyethyl)lysine (CEL), Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine, pentosidine], as well as of dicarbonyl compounds [glyoxal, methylglyoxal, 3-deoxyglucosone], were determined. Compared with HD4, HDF4 resulted in increased RR of total and/or free fractions of IAA and IS as well as increased RR of free CML and CEL. HD8 and HDF8 showed a further increase in TSR and RR of PBUT (except CMPF), as well as of dicarbonyl stress and free AGEs compared with HD4 and HDF4. Compared with HD8, HDF8 only significantly increased RR of total and free IAA and free PCS, as well as RR of free CEL. Dialysis time extension (HD8 and HDF8) optimized TSR and RR of PBUT, dicarbonyl stress and AGEs, whereas HDF8 was superior to HD8 for only a few compounds. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  8. Vinegar production from post-distillation slurry deriving from rice shochu production with the addition of caproic acid-producing bacteria consortium and lactic acid bacterium.

    PubMed

    Yuan, Hua-Wei; Tan, Li; Chen, Hao; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-12-01

    To establish a zero emission process, the post-distillation slurry of a new type of rice shochu (NTRS) was used for the production of health promoting vinegar. Since the NTRS post-distillation slurry contained caproic acid and lactic acid, the effect of these two organic acids on acetic acid fermentation was first evaluated. Based on these results, Acetobacter aceti CICC 21684 was selected as a suitable strain for subsequent production of vinegar. At the laboratory scale, acetic acid fermentation of the NTRS post-distillation slurry in batch mode resulted in an acetic acid concentration of 41.9 g/L, with an initial ethanol concentration of 40 g/L, and the acetic acid concentration was improved to 44.5 g/L in fed-batch mode. Compared to the NTRS post-distillation slurry, the vinegar product had higher concentrations of free amino acids and inhibition of angiotensin I converting enzyme activity. By controlling the volumetric oxygen transfer coefficient to be similar to that of the laboratory scale production, 45 g/L of acetic acid was obtained at the pilot scale, using a 75-L fermentor with a working volume of 40 L, indicating that vinegar production can be successfully scaled up. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  10. Effect of benzyl amino purine and indole-3-acetic acid on propagation of Sterculia foetida in vitro

    NASA Astrophysics Data System (ADS)

    Yuniastuti, E.; Widodo, C. E.; Samanhudi; Delfianti, M. N. I.

    2018-03-01

    Sterculia foetida is an oval seed plants that can be used as biofuel, which is one of the environmental friendly fuels. This plant is quite hard to find because not many peoples cultivate the plants. An in vitro propagation is one way to preserve the plant. This research aimed to determine optimum concentration of benzyl amino purine (BAP) and indole-3-acetic acid (IAA) to propagate S. foetida in vitro. The results showed that woody plant medium (WPM) added by 4 mg L BAP-1 and 0.5 mg L IAA-1 was able to produce complete plantlet, whereas those added by 4 mg L BAP-1 and 1 mg L IAA-1 generated the best growth of shoot and leaves.

  11. The Impact of Reclassification from Division II to DI-AA and from Division I-AA to I-A on NCAA Member Institutions from 1993 to 2003

    ERIC Educational Resources Information Center

    Frieder, Laura L., Comp.; Fulks, Daniel L., Comp.

    2007-01-01

    Recent years have seen a number of National Collegiate Athletic Association (NCAA) Division II institutions seeking reclassification to Division I-AA and Division I-AA institutions moving to Division I-A. Yet, other schools that seem like natural candidates to reclassify have resisted. The purpose of this study is to investigate the impact of the…

  12. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  13. [Dependence of rumen fatty acid production on the composition of rations].

    PubMed

    Lebzien, P; Rohr, K; Oslage, H J

    1981-10-01

    In three experiments with two Black-and-White dairy cows the influence of soybean oil and coconut fat as well as that of rations rich in roughage and concentrated feed on the production of fatty acids were determined with the isotope dilution method. A change in the method of sampling from the rumen in the course of the investigations resulted in distinctly different absolute production quotas, which can presumably be traced back to the disproportionate mixing in of the isotope and/or different production quotas in various regions of the rumen. The relative differences between the production quotas dependent on the rations, however were approximately the same with both sampling methods, so that they make the comparison of the rations concerning rumen fermentation possible. The production of acetic acid and the total production of fatty acids (C2--C4) correlated closely both with the intake of digestible energy and the intake of digestible organic matter. There was also a highly significant correlation o that they make the comparison of the rations concerning rumen fermentation possible. The production of acetic acid and the total production of fatty acids (C2--C4) correlated closely both with the intake of digestible energy and the intake of digestible organic matter. There was also a highly significant correlation o that they make the comparison of the rations concerning rumen fermentation possible. The production of acetic acid and the total production of fatty acids (C2--C4) correlated closely both with the intake of digestible energy and the intake of digestible organic matter. There was also a highly significant correlation between the relation of acetic and propionic acid in the rumen fluid and the quotient from acetic and propionic acid produced. In contrast to this, a significant relation between the concentration of fatty acids and the production of fatty acids could not be ascertained. Soybean oil and coconut fat brought about a slightly better

  14. Ribonucleic Acid Synthesis by Cucumber Chromatin

    PubMed Central

    Johnson, Kenneth D.; Purves, William K.

    1970-01-01

    When intact etiolated 2-day cucumber (Cucumis sativus) embryos were treated with indoleacetic acid (IAA), gibberellin A7 (GA7), or kinetin, chromatin derived from the embryonic axes exhibited an increased capacity to support RNA synthesis in either the presence or the absence of bacterial RNA polymerase. An IAA effect on cucumber RNA polymerase activity was evident after 4 hours of hormone treatment; the IAA effect on DNA template activity (bacterial RNA polymerase added) occurred after longer treatments (12 hours). GA7 also promoted template activity, but again only after a prior stimulation of endogenous chromatin activity. After 12 hours of kinetin treatment, both endogenous chromatin and DNA template activities were substantially above control values, but longer kinetin treatments caused these activities to decline in magnitude. When chromatin was prepared from hypocotyl segments that were floated on a GA7 solution, a GA-induced increase in endogenous chromatin activity occurred, but only if cotyledon tissue was left attached to the segments during the period of hormone treatment. Age of the seedling tissue had a profound influence on the chromatin characteristics. With progression of development from the 2-day to the 4-day stage, the endogenous chromatin activity declined while the DNA template activity increased. PMID:16657509

  15. Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z

    NASA Astrophysics Data System (ADS)

    Wan, Caixia; Li, Yebo; Shahbazi, Abolghasem; Xiu, Shuangning

    Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h-1 L-1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h-1 L-1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.

  16. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  17. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  18. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose.

    PubMed

    Yamada, Ryosuke; Yoshie, Toshihide; Wakai, Satoshi; Asai-Nakashima, Nanami; Okazaki, Fumiyoshi; Ogino, Chiaki; Hisada, Hiromoto; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2014-05-18

    Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals.

  19. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Hangarter, R. P.

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  20. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues.

    PubMed

    Cha M-R; Evans, M L; Hangarter, R P

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  1. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    PubMed

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation.

  2. Biotechnological production of alpha-keto acids: Current status and perspectives.

    PubMed

    Song, Yang; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-11-01

    Alpha-keto (α-keto) acids are used widely in feeds, food additives, pharmaceuticals, and in chemical synthesis processes. Although most α-keto acids are currently produced by chemical synthesis, their biotechnological production from renewable carbohydrates is a promising new approach. In this mini-review, we first present the different types of α-keto acids as well as their applications; next, we summarize the recent progresses in the biotechnological production of some important α-keto acids; namely, pyruvate, α-ketoglutarate, α-ketoisovalerate, α-ketoisocaproate, phenylpyruvate, α-keto-γ-methylthiobutyrate, and 2,5-diketo-d-gluconate. Finally, we discuss the future prospects as well as favorable directions for the biotechnological production of keto acids that ultimately would be more environment-friendly and simpler compared with the production by chemical synthesis. Copyright © 2016. Published by Elsevier Ltd.

  3. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    NASA Technical Reports Server (NTRS)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  4. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    PubMed Central

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  5. Production of sugars and levulinic acid from marine biomass Gelidium amansii.

    PubMed

    Jeong, Gwi-Taek; Park, Don-Hee

    2010-05-01

    This study focused on optimization of reaction conditions for formation of sugars and levulinic acid from marine algal biomass Gelidium amansii using acid catalyst and by using statistical approach. By this approach, optimal conditions for production of sugars and levulinic acid were found as follows: glucose (reaction temperature of 139.4 degrees C, reaction time of 15.0 min, and catalyst concentration of 3.0%), galactose (108.2 degrees C, 45.0 min, and 3.0%), and levulinic acid (160.0 degrees C, 43.1 min, and 3.0%). While trying to optimize the conditions for the production of glucose and galactose, levulinic acid production was found to be minimum. Similarly, the production of glucose and galactose were found to be minimum while optimizing the conditions for the production of levulinic acid. In addition, optimized production of glucose required a higher reaction temperature and shorter reaction time than that of galactose. Levulinic acid was formed at a high reaction temperature, long reaction time, and high catalyst concentration. The combined results of this study may provide useful information to develop more economical and efficient systems for production of sugars and chemicals from marine biomass.

  6. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-07-22

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.

  7. Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.

    PubMed

    Pappenberger, Günter; Hohmann, Hans-Peter

    2014-01-01

    L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.

  8. P-chlorophenoxyisobutyric acid impairs auxin response for gravity-regulated peg formation in cucumber (Cucumis sativus) seedlings.

    PubMed

    Shimizu, Minobu; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki

    2008-01-01

    Cucumber (Cucumis sativus L.) seedlings form a specialized protuberance, the peg, on the transition zone between the hypocotyl and the root. When cucumber seeds germinate in a horizontal position, the seedlings develop a peg on the lower side of the transition zone. To verify the role of auxin action in peg formation, we examined the effect of the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB), on peg formation and mRNA accumulation of auxin-regulated genes. Application of PCIB to cucumber seedlings inhibited peg formation. The application of indole-3-acetic acid (IAA) competed with PCIB and induced peg formation. Furthermore, application of PCIB decreased auxin-inducible CsIAA1 mRNA and increased auxin-repressible CsGRP1 mRNA in the lower side of the transition zone. The differential accumulation of CsIAA1 and CsGRP1 mRNAs in the transition zone of cucumber seedlings grown in a horizontal position was smaller in the PCIB-treated seedlings. These results demonstrate that endogenous auxin redistributes and induces the differential expression of auxin-regulated genes, and ultimately results in the suppression or induction of peg formation in the gravistimulated transition zone of cucumber seedlings.

  9. Biotechnological production of gluconic acid: future implications.

    PubMed

    Singh, Om V; Kumar, Raj

    2007-06-01

    Gluconic acid (GA) is a multifunctional carbonic acid regarded as a bulk chemical in the food, feed, beverage, textile, pharmaceutical, and construction industries. The favored production process is submerged fermentation by Aspergillus niger utilizing glucose as a major carbohydrate source, which accompanied product yield of 98%. However, use of GA and its derivatives is currently restricted because of high prices: about US$ 1.20-8.50/kg. Advancements in biotechnology such as screening of microorganisms, immobilization techniques, and modifications in fermentation process for continuous fermentation, including genetic engineering programmes, could lead to cost-effective production of GA. Among alternative carbohydrate sources, sugarcane molasses, grape must show highest GA yield of 95.8%, and banana must may assist reducing the overall cost of GA production. These methodologies would open new markets and increase applications of GA.

  10. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose

    PubMed Central

    2014-01-01

    Background Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. Results A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Conclusions Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals. PMID:24885968

  11. Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling.

    PubMed

    Zheng, Pu; Zhang, Kunkun; Yan, Qiang; Xu, Yan; Sun, Zhihao

    2013-08-01

    Succinic acid is an important platform chemical for synthesis of C4 compounds. We applied genome shuffling to improve fermentative production of succinic acid by A. succinogenes. Using a screening strategy composed of selection in fermentation broth, cultured in 96-deep-well plates, and condensed HPLC screening, a starting population of 11 mutants producing a higher succinic acid concentration was selected and subjected to recursive protoplasts fusion. After three rounds of genome shuffling, strain F3-II-3-F was obtained, producing succinic acid at 1.99 g/l/h with a yield of 95.6 g/l. The genome shuffled strain had about a 73 % improvement in succinic acid production compared to the parent strain after 48 h in fed-batch fermentation. The genomic variability of F3-II-3-F was confirmed by amplified fragment-length polymorphism. The activity levels of key enzymes involved in end-product formation from glucose and metabolic flux distribution during succinic acid production were compared between A. succinogenes CGMCC 1593 and F3-II-3-F. Increased activity of glucokinase, fructose-1,6-bisphosphate aldolase, PEP carboxykinase and fumarase, as well as decreased activity of pyruvate kinase, pyruvate formate-lyase, and acetate kinase explained the enhanced succinic acid production and decreased acetic acid formation. Metabolic flux analysis suggested that increased flux to NADH was the main reason for increased activity of the C4 pathway resulting in increased yields of succinic acid. The present work will be propitious to the development of a bio-succinic acid fermentation industry.

  12. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject to...

  13. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject to...

  14. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boric acid production subcategory. 415.280 Section 415.280 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ...

  15. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid.

    PubMed

    Dorado, M Pilar; Lin, Sze Ki Carol; Koutinas, Apostolis; Du, Chenyu; Wang, Ruohang; Webb, Colin

    2009-08-10

    A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.

  16. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  17. Formic acid production using a microbial electrolysis desalination and chemical-production cell.

    PubMed

    Lu, Yaobin; Luo, Haiping; Yang, Kunpeng; Liu, Guangli; Zhang, Renduo; Li, Xiao; Ye, Bo

    2017-11-01

    The aim of this study was to investigate the feasibility and optimization of formic acid production in the microbial electrolysis desalination and chemical-production cell (MEDCC). The maximum current density in the MEDCC with 72cm of the anode fiber length (72-MEDCC) reached 24.0±2.0A/m 2 , which was much higher than previously reported. The maximum average formic acid production rate in the 72-MEDCC was 5.28 times higher than that in the MEDCC with 24cm of the anode fiber length (37.00±1.15vs. 7.00±0.25mg/h). High performance in the 72-MEDCC was attributed to small membrane spacing (1mm), high flow rate (1500μL/min) on the membrane surface and high anode biomass. The minimum electricity consumption of 0.34±0.04kWh/kg in the 72-MEDCC was only 3.1-18.8% of those in the EDBMs. The MEDCC should be a promising technology for the formic acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of IAA, IBA, NAA, and GA3 on rooting and morphological features of Melissa officinalis L. stem cuttings.

    PubMed

    Sevik, Hakan; Guney, Kerim

    2013-01-01

    This study analyzed the potential of producing Melissa officinalis L. using stem cuttings. Four different hormones (IAA, IBA, NAA, and GA3) were applied to the cuttings, with and without buds, in two doses (1000 mg/L and 5000 mg/L), and after 60 days, 10 morphological characteristics of newly generated plants were detected, and a statistical analysis was carried out. The results of the study show that the cuttings with at least one bud must be used in order to produce M. officinalis using stem cuttings. Even though the auxin group hormones (IAA, IBA, and NAA) do not have an apparent effect on rooting percentage, these hormones were detected to affect the morphological characteristics of the newly generated plants, especially root generation. GA3 application has a considerable effect on stem height.

  19. Folic Acid Production by Engineered Ashbya gossypii.

    PubMed

    Serrano-Amatriain, Cristina; Ledesma-Amaro, Rodrigo; López-Nicolás, Rubén; Ros, Gaspar; Jiménez, Alberto; Revuelta, José Luis

    2016-11-01

    Folic acid (vitamin B 9 ) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    PubMed

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  1. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    PubMed

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress.

    PubMed

    Mahouachi, Jalel; López-Climent, María F; Gómez-Cadenas, Aurelio

    2014-01-01

    The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. "Grand Nain") subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  3. Survival and Growth of Probiotic Lactic Acid Bacteria in Refrigerated Pickle Products.

    PubMed

    Fan, Sicun; Breidt, Fred; Price, Robert; Pérez-Díaz, Ilenys

    2017-01-01

    We examined 10 lactic acid bacteria that have been previously characterized for commercial use as probiotic cultures, mostly for dairy products, including 1 Pediococcus and 9 Lactobacilli. Our objectives were to develop a rapid procedure for determining the long-term survivability of these cultures in acidified vegetable products and to identify suitable cultures for probiotic brined vegetable products. We therefore developed assays to measure acid resistance of these cultures to lactic and acetic acids, which are present in pickled vegetable products. We used relatively high acid concentrations (compared to commercial products) of 360 mM lactic acid and 420 mM acetic acid to determine acid resistance with a 1 h treatment. Growth rates were measured in a cucumber juice medium at pH 5.3, 4.2, and 3.8, at 30 °C and 0% to 2% NaCl. Significant differences in acid resistance and growth rates were found among the 10 cultures. In general, the acid resistant strains had slower growth rates than the acid sensitive strains. Based on the acid resistance data, selected cultures were tested for long-term survival in a simulated acidified refrigerated cucumber product. We found that one of the most acid resistant strains (Lactobacillus casei) could survive for up to 63 d at 4 °C without significant loss of viability at 10 8 CFU/mL. These data may aid in the development of commercial probiotic refrigerated pickle products. © 2016 Institute of Food Technologists®.

  4. Stable Isotope Labeling, in Vivo, of d- and l-Tryptophan Pools in Lemna gibba and the Low Incorporation of Label into Indole-3-Acetic Acid 1

    PubMed Central

    Baldi, Bruce G.; Maher, Barbara R.; Slovin, Janet Pernise; Cohen, Jerry D.

    1991-01-01

    We present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of [15N-indole]-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of l-[15N]tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled l-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into d-tryptophan. d-[15N]tryptophan supplied to Lemna at rates of approximately 400 times excess of endogenous d-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of l-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that l-tryptophan is a more direct precursor to IAA than the d isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that l-tryptophan also may not be a primary precursor to IAA in plants. PMID:16668112

  5. Optimal production of 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Suh, Min-Jung; Kim, Beom-Soo; Hou, Ching T; Lee, In-Jung; Kim, In-Hwan; Kim, Hak-Ryul

    2010-09-30

    The hydroxylation of unsaturated fatty acids by bacterial strains is one type of value-adding bioconversion processes. This process generates new hydroxy fatty acids (HFA) carrying special properties such as higher viscosity and reactivity compared with normal fatty acids. Among microbial strains tested for HFA production, Pseudomonas aeruginosa PR3 is well known to utilize various unsaturated fatty acids to produce mono-, di- and tri-hydroxy fatty acids. Previously we reported that strain PR3 could produce a novel value-added hydroxy fatty acid 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) from palmitoleic acid (Bae et al. (2007) Appl. Microbiol. Biotechnol. 75, 435-440). In this study, we focused on the development of the optimal nutritional and environmental conditions for DHD production from palmitoleic acid by PR3. Optimal carbon and nitrogen sources for DHD production were fructose and yeast extract, respectively. Optimal initial medium pH and incubation temperature were pH 8.0 and 30 degrees C and magnesium ion was essentially required for DHD production. Substrate concentration and time of substrate addition were also optimized. Under optimized conditions, maximal DHD production was 1600mg/l representing 26.7% conversion yield. Copyright 2009 Elsevier B.V. All rights reserved.

  6. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  7. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  8. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

  9. An ability of endophytic bacteria from nutgrass (cyperus rotundus) from lafau beach of north nias in producing indole acetic acid and in solubilizing phosphate

    NASA Astrophysics Data System (ADS)

    Zega, Atriani; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Endophytic bacteria have taken much attention for their potency to promote plant growth. This study was aimed to isolate endophytic bacteria from nutgrass (Cyperus rotundus) and to examine their potency in producing indole acetic acid (IAA) and in solubilizing phosphate. Isolation of endophytic bacteria was done by slicing and sterilizing root, stem, and leaf sample surface with alcohol 70% and sodium hypochlorite 2%, followed by incubation of the sliced samples in nutrient agar medium. Morphological characterization and simple biochemical tests were performed on bacterial isolates. All bacterial isolates were examined for their ability to produce indole acetic acid and to solubilize phosphate. Three isolates (AZ5, AZ12 and AZ6) out of fifteen indicated the ability to produce indole acetic acid and to solubilize phosphate. IAA producing test using spectrophotometry method showed that AZ5, AZ12,and AZ6 produce more IAA with concentration of 49,91, 48,18, and 44,45 ppm, respectively. Phosphate solubilizing test using Pikovskaya agar medium showed that the three isolates were able to solubilize phosphate with index of 6.27, 3,31, and 3.41 respectively.

  10. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haushalter, Robert W.; Phelan, Ryan M.; Hoh, Kristina M.

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotinmore » and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.« less

  12. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    PubMed

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  13. 2012: no trans fatty acids in Spanish bakery products.

    PubMed

    Ansorena, Diana; Echarte, Andrea; Ollé, Rebeca; Astiasarán, Iciar

    2013-05-01

    Trans fatty acids (TFA) are strongly correlated with an increased risk of cardiovascular and other chronic diseases. Current dietary recommendations exclude bakery products from frequent consumption basically due to their traditionally high content of TFA. The aim of this work was to analyse the lipid profile of different bakery products currently commercialised in Spain and with a conventionally high fat and TFA content. Premium and store brands for each product were included in the study. No significant amounts of TFA were found in any of the analysed products, regardless the brand. TFA content ranged between 0.17 g and 0.22 g/100 g product (mean=0.19 g/100 g product). Expressed on percentage of fatty acids, the maximum value was 0.87 g/100 g fatty acids and the mean value was 0.68%. These data are significantly lower than those observed in previously published papers for these types of products, and highlighted the importance of updating food composition databases in order to accurately estimate the real and current intake of TFA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  15. Enzymatic Production of Ascorbic Acid-2-phosphate by Recombinant Acid Phosphatase.

    PubMed

    Zheng, Kai; Song, Wei; Sun, Anran; Chen, Xiulai; Liu, Jia; Luo, Qiuling; Wu, Jing

    2017-05-24

    In this study, an environmentally friendly and efficient enzymatic method for the synthesis of l-ascorbic acid-2-phosphate (AsA-2P) from l-ascorbic acid (AsA) was developed. The Pseudomonas aeruginosa acid phosphatase (PaAPase) was expressed in Escherichia coli BL21. The optimal temperature, optimal pH, K m , k cat , and catalytic efficiency of recombinant PaAPase were 50 °C, 5.0, 93 mM, 4.2 s -1 , and 2.7 mM -1 min -1 , respectively. The maximal dry cell weight and PaAPase phosphorylating activity reached 8.5 g/L and 1127.7 U/L, respectively. The highest AsA-2P concentration (50.0 g/L) and the maximal conversion (39.2%) were obtained by incubating 75 g/L intact cells with 88 g/L AsA and 160 g/L sodium pyrophosphate under optimal conditions (0.1 mM Ca 2+ , pH 4.0, 30 °C) for 10 h; the average AsA-2P production rate was 5.0 g/L/h, and the AsA-2P production system was successfully scaled up to a 7.5 L fermenter. Therefore, the enzymatic process showed great potential for production of AsA-2P in industry.

  16. Effects of abscisic acid and xanthoxin on elongation and gravitropism in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Hasenstein, K. H.; Mulkey, T. J.; Yang, R. L.; Evans, M. L.

    1990-01-01

    We examined the involvement of abscisic acid (ABA) and xanthoxin (Xan) in maize root gravitropism by (1) testing the ability of ABA to allow positive gravitropism in dark-grown seedlings of the maize cultivar LG11, a cultivar known to require light for positive gravitropism of the primary root, (2) comparing curvature in roots in which half of the cap had been excised and replaced with agar containing either ABA or indole-3-acetic acid (IAA), (3) measuring gravitropism in roots of seedlings submerged in oxygenated solutions of ABA or IAA and (4) testing the effect of Xan on root elongation. Using a variety of methods of applying ABA to the root, we found that ABA did not cause horizontally-oriented primary roots of dark-grown seedlings to become positively gravitropic. Replacing half of the root cap of vertically oriented roots with an agar block containing ABA had little or no effect on curvature relative to that of controls in which the half cap was replaced by a plain agar block. Replacement of the removed half cap with IAA either canceled or reversed the curvature displayed by controls. When light-grown seedlings were submerged in ABA they responded strongly to gravistimulation while those in IAA did not. Xan (up to 0.1 mM) did not affect root elongation. The results indicate that ABA is not a likely mediator of root gravitropism and that the putative ABA precursor, Xan, lacks the appropriate growth-inhibiting properties to serve as a mediator of root gravitropism.

  17. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  18. Production of chlorogenic acid in Varthemia persica DC (var. persica) callus cultures

    PubMed Central

    Siahpoush, A.; Ghasemi, N.; Ardakani, M. Shams; Asghari, G.

    2011-01-01

    Chlorogenic acid, a pharmacologically important compound, is a phenolic compound that occurs in certain commonly used medicinal herbs. We looked for the presence of this compound in the callus cultures of Varthemia persica DC (var. persica). We have evaluated the conditions for establishment of callus cultures of V. persica and the in vitro production of chlorogenic acid. Callus was initiated by culturing seedling of V. persica on MS basal medium supplemented with different concentrations of kinetin, naphthalene acetic acid and 2,4-diphenoxy acetic acid. Also, the influence of light, and phytohormones on the production of chlorogenic acid was examined. Kinetin stimulated the production of chlorogenic acid. Replacement of 2,4-diphenoxy acetic acid with naphthalene acetic acid did not alter the chlorogenic acid production. The ability to induce the accumulation of chlorogenic acid in the V. persica callus cultures offers an opportunity to produce a phenolic compound with therapeutic value. PMID:22049279

  19. Malic acid production from thin stillage by Aspergillus species.

    PubMed

    West, Thomas P

    2011-12-01

    The ability of Aspergillus strains to utilize thin stillage to produce malic acid was compared. The highest malic acid was produced by Aspergillus niger ATCC 9142 at 17 g l(-1). Biomass production from thin stillage was similar with all strains but ATCC 10577 was the highest at 19 g l(-1). The highest malic acid yield (0.8 g g(-1)) was with A. niger ATCC 9142 and ATCC 10577 on the stillage. Thus, thin stillage has the potential to act as a substrate for the commercial production of food-grade malic acid by the A. niger strains. © Springer Science+Business Media B.V. 2011

  20. Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Zhang, Han; Miao, Yelian; Wei, Ping; Chen, Jieyu

    2011-04-07

    Rapeseed meal was evaluated for succinic acid production by simultaneous saccharification and fermentation using Actinobacillus succinogenes ATCC 55618. Diluted sulfuric acid pretreatment and subsequent hydrolysis with pectinase was used to release sugars from rapeseed meal. The effects of culture pH, pectinase loading and yeast extract concentration on succinic acid production were investigated. When simultaneous saccharification and fermentation of diluted acid pretreated rapeseed meal with a dry matter content of 12.5% (w/v) was performed at pH 6.4 and a pectinase loading of 2% (w/w, on dry matter) without supplementation of yeast extract, a succinic acid concentration of 15.5 g/L was obtained at a yield of 12.4 g/100g dry matter. Fed-batch simultaneous saccharification and fermentation was carried out with supplementation of concentrated pretreated rapeseed meal and pectinase at 18 and 28 h to yield a final dry matter content of 20.5% and pectinase loading of 2%, with the succinic acid concentration enhanced to 23.4 g/L at a yield of 11.5 g/100g dry matter and a productivity of 0.33 g/(Lh). This study suggests that rapeseed meal may be an alternative substrate for the efficient production of succinic acid by A. succinogenes without requiring nitrogen source supplementation. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods.

    PubMed

    Hiragaki, Susumu; Suzuki, Takeshi; Mohamed, Ahmed A M; Takeda, Makio

    2015-01-01

    The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system

  2. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors.

    PubMed

    Suzuki, Hiroyoshi; Yokokura, Junpei; Ito, Tsukasa; Arai, Ryoma; Yokoyama, Chiaki; Toshima, Hiroaki; Nagata, Shinji; Asami, Tadao; Suzuki, Yoshihito

    2014-10-01

    Insect galls are abnormal plant tissues induced by galling insects. The galls are used for food and habitation, and the phytohormone auxin, produced by the insects, may be involved in their formation. We found that the silkworm, a non-galling insect, also produces an active form of auxin, indole-3-acetic acid (IAA), by de novo synthesis from tryptophan (Trp). A detailed metabolic analysis of IAA using IAA synthetic enzymes from silkworms indicated an IAA biosynthetic pathway composed of a three-step conversion: Trp → indole-3-acetaldoxime → indole-3-acetaldehyde (IAAld) → IAA, of which the first step is limiting IAA production. This pathway was shown to also operate in gall-inducing sawfly. Screening of a chemical library identified two compounds that showed strong inhibitory activities on the conversion step IAAld → IAA. The inhibitors can be efficiently used to demonstrate the importance of insect-synthesized auxin in gall formation in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products.

    PubMed

    Adeboye, Peter Temitope; Bettiga, Maurizio; Aldaeus, Fredrik; Larsson, Per Tomas; Olsson, Lisbeth

    2015-09-21

    Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds known to be inhibitory to fermentative organisms. It is known that inhibition of Sacchromyces cerevisiae varies among phenolic compounds and the yeast is capable of in situ catabolic conversion and metabolism of some phenolic compounds. In an approach to engineer a S. cerevisiae strain with higher tolerance to phenolic inhibitors, we selectively investigated the metabolic conversion and physiological effects of coniferyl aldehyde, ferulic acid, and p-coumaric acid in Saccharomyces cerevisiae. Aerobic batch cultivations were separately performed with each of the three phenolic compounds. Conversion of each of the phenolic compounds was observed on time-based qualitative analysis of the culture broth to monitor various intermediate and final metabolites. Coniferyl aldehyde was rapidly converted within the first 24 h, while ferulic acid and p-coumaric acid were more slowly converted over a period of 72 h. The conversion of the three phenolic compounds was observed to involved several transient intermediates that were concurrently formed and converted to other phenolic products. Although there were several conversion products formed from coniferyl aldehyde, ferulic acid and p-coumaric acid, the conversion products profile from the three compounds were similar. On the physiology of Saccharomyces cerevisiae, the maximum specific growth rates of the yeast was not affected in the presence of coniferyl aldehyde or ferulic acid, but it was significantly reduced in the presence of p-coumaric acid. The biomass yields on glucose were reduced to 73 and 54 % of the control in the presence of coniferyl aldehyde and ferulic acid, respectively, biomass yield

  5. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    PubMed

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    PubMed

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus. © The Author(s) 2014.

  7. High production of D-tagatose by the addition of boric acid.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2007-01-01

    An L-arabinose isomerase mutant enzyme from Geobacillus thermodenitrificans was used to catalyze the isomerization of D-galactose to D-tagatose with boric acid. Maximum production of D-tagatose occurred at pH 8.5-9.0, 60 degrees C, and 0.4 molar ratio of boric acid to D-galactose, and the production increased with increasing enzyme concentration. Under the optimum conditions, the enzyme (10.8 units/mL) converted 300 g/L D-galactose to 230 g/L D-tagatose for 20 h with a yield of 77% (w/w); the production and conversion yield with boric acid were 1.5-fold and 24% higher than without boric acid, respectively. In 24 h, the enzyme produced 370 g/L D-tagatose from 500 g/L D-galactose with boric acid, corresponding to a conversion yield of 74% (w/w) and a production rate of 15.4 g/L.h. The production and yield of D-tagatose obtained in this study are unprecedented.

  8. Biotechnology for improved hHydroxy fatty acid production in oilseed lesquerella

    USDA-ARS?s Scientific Manuscript database

    The conventional source of hydroxy fatty acid (HFA) is from castor (Ricinus communis), 90% of castor oil is ricinoleic acid (18:1OH). Ricinoleic acid and its derivatives are used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. The production of ca...

  9. Comparison of efficacy of products containing azelaic acid in melasma treatment.

    PubMed

    Mazurek, Klaudia; Pierzchała, Ewa

    2016-09-01

    Melasma is one of the most frequently diagnosed hyperpigmentation changes on the skin of women's faces. Nearly 30% of women using oral estrogen therapy struggle with this problem. A common way of reducing melasma is the application of azelaic acid products. Comparison of efficacy of three dermocosmetic products, containing azelaic acid, in the reduction in melasma for women aged 35-55. A group of 60 women diagnosed with melasma were divided into three even, twenty-person subgroups. Each subgroup was assigned one dermocosmetic product containing azelaic acid. For 24 weeks, the patients applied the assigned product twice a day. The level of the colorant within the hyperpigmentation was marked before the treatment, after 1 month, after 3 months, and after 6 months of therapy. The pigmentation was measured using Mexameter(®) (Courage + Khazaka electronic, Germany). In addition, during each inspection, the patients' level of hydration, elasticity, and intensity of erythema was checked using Corneometer(®) , Reviscometer(®) . All dermocosmetics containing azelaic acid that were applied significantly contributed to the reduction in pigment in the pigmentary lesion. The largest decrease in the amount of pigment was observed in the first 3 months of use of the products. A combination containing 20% azelaic acid and mandelic acid, phytic acid, 4N-butyl resorcinol, and ferulic acid proved to be the most effective dermocosmetic III (Sesderma, Valencia, Spain). Dermocosmetics containing azelaic acid significantly contribute to the clearing of melasma. The effect depends on the treatment time, the acid concentration, and addition of other components. © 2016 Wiley Periodicals, Inc.

  10. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  11. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under this...

  12. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under this...

  13. Acidic organic compounds in beverage, food, and feed production.

    PubMed

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  14. Total growth and root-cluster production by legumes and proteas depends on rhizobacterial strain, host species and nitrogen level

    PubMed Central

    Lamont, Byron B.; Pérez-Fernández, María

    2016-01-01

    Background Root clusters are bunches of hairy rootlets produced by >1800 species in nine families. The possible involvement of micro-organisms in root-cluster formation has produced conflicting results over the last 40 years. In addition, any effect of rhizobacteria on overall plant growth of root-cluster-bearing species remains unknown. Aims To evaluate the effect of seven rhizobacteria on total plant size, and relative cluster production, by three species, and relate outcomes to their indole-3-acetic acid (IAA)-producing ability as part explanation of past disparate results. Methods We grew Leucadendron salicifolium (from South Africa), Viminaria juncea (Australia) and Lupinus albus (Europe) in gnotobiotic, hydroponic culture at two nitrogen (N) levels and inoculated them with seven bacterial strains and harvested the plants after 13 weeks. Key Results Following inoculation with all seven bacteria individually, plant growth sometimes greatly exceeded that of the aseptic controls, but, under other conditions, growth was less than the controls. Leucadendron and Lupinus failed to produce root clusters in the –N aseptic controls and Viminaria in the +N controls that was overcome by inoculating them with selected bacteria. Six bacteria were able to induce far more root clusters than those of the aseptic controls, while all bacteria sometimes suppressed cluster production in other treatments. All nine possible combinations of resource (plant size, indirect) and morphogenetic (relative cluster production, direct) effects were represented among the results, especially positive synergism (larger plants with a greater density of clusters). There was no clear relationship with IAA-producing ability of the seven bacteria, but low IAA strains of Pseudomonas putida and Bacillus magetarium were associated with greatest cluster production. Conclusions While root-cluster formation can sometimes be induced by introducing rhizobacteria to aseptic culture, the growth

  15. Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production.

    PubMed

    Melo, Nadiele T M; Mulder, Kelly C L; Nicola, André Moraes; Carvalho, Lucas S; Menino, Gisele S; Mulinari, Eduardo; Parachin, Nádia S

    2018-02-16

    Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris , a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris . To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.

  16. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized withmore » ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and

  17. EPS production by Propionibacterium freudenreichii facilitates its immobilization for propionic acid production.

    PubMed

    Belgrano, F D S; Verçoza, B R F; Rodrigues, J C F; Hatti-Kaul, R; Pereira, N

    2018-04-28

    Immobilization of microbial cells is a useful strategy for developing high cell density bioreactors with improved stability and productivity for production of different chemicals. Functionalization of the immobilization matrix or biofilm forming property of some strains has been utilized for achieving cell attachment. The aim of the present study was to investigate the production of exopolysaccharide (EPS) by Propionibacterium freudenreichii C.I.P 59.32 and utilize this feature for immobilization of the cells on porous glass beads for production of propionic acid. Propionibacterium freudenreichii was shown to produce both capsular and excreted EPS during batch cultivations using glucose as carbon source. Different electron microscopy techniques confirmed the secretion of EPS and formation of cellular aggregates. The excreted EPS was mainly composed of mannose and glucose in a 5·3 : 1 g g -1 ratio. Immobilization of the cells on untreated and polyethyleneimine (PEI)-treated Poraver beads in a bioreactor was evaluated. Higher productivity and yield of propionic acid (0·566 g l -1  h -1 and 0·314 g g -1 , respectively) was achieved using cells immobilized to untreated beads and EPS production reached 617·5 mg l -1 after 48 h. These results suggest an important role of EPS-producing strains for improving cell immobilization and propionic acid production. This study demonstrates the EPS-producing microbe to be easily immobilized on a solid matrix and to be used in a bioprocess. Such a system could be optimized for achieving high cell density in fermentations without the need for functionalization of the matrix. © 2018 The Society for Applied Microbiology.

  18. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  19. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Enzyme immunoassay for tenuazonic acid in apple and tomato products.

    PubMed

    Gross, Madeleine; Curtui, Valeriu; Ackermann, Yvonne; Latif, Hadri; Usleber, Ewald

    2011-12-14

    The Alternaria mycotoxin tenuazonic acid was derivatized with succinic anhydride and conjugated to keyhole limpet hemocyanin (KLH) and to horseradish peroxidase (HRP), respectively. The KLH conjugate was used to produce polyclonal antibodies in rabbits. A competitive direct enzyme immunoassay (EIA) for tenuazonic acid was established, which was moderately sensitive for tenuazonic acid [50% inhibition concentration (IC(50)): 320 ± 130 ng/mL] but strongly reacted with tenuazonic acid acetate (IC(50): 23.3 ± 7.5 ng/mL). Therefore, an optimized EIA protocol was established, which employed acetylation of standard and sample extract solutions. The mean standard curve detection limit (IC(30)) for tenuazonic acid acetate was 5.4 ± 2.0 ng/mL, enabling detection limits for tenuazonic acid in apple and tomato products of 25-50 ng/g (150 ng/g in tomato paste). Recoveries in a concentration range of 50-2000 ng/g were 60-130% in apple juice and tomato juice and 40-150% in other tomato products. Tenuazonic acid was detected in apple juice and tomato products from German retail shops at levels of 50-200 ng/g. In conclusion, this novel EIA for tenuazonic acid could be useful within a screening program for Alternaria mycotoxins in food.

  1. Occurrence of regulated and emerging iodinated DBPs in the Shanghai drinking water.

    PubMed

    Wei, Xiao; Chen, Xin; Wang, Xia; Zheng, Weiwei; Zhang, Dong; Tian, Dajun; Jiang, Songhui; Ong, Choon Nam; He, Gengsheng; Qu, Weidong

    2013-01-01

    Drinking water chlorination plays a pivotal role in preventing pathogen contamination against water-borne disease. However, chemical disinfection leads to the formation of halogenated disinfection by products (DBPs). Many DBPs are highly toxic and are of health concern. In this study, we conducted a comprehensive measurements of DBPs, including iodoacetic acid (IAA), iodoform (IF), nine haloacetic acids and four trihalomethanes in drinking waters from 13 water plants in Shanghai, China. The results suggested that IAA and IF were found in all the water treatment plants, with maximum levels of 1.66 µg/L and 1.25 µg/L for IAA and IF, respectively. Owing to deterioration of water quality, the Huangpu River has higher IAA and IF than the Yangtze River. Our results also demonstrated that low pH, high natural organic matter, ammonia nitrogen, and iodide in source waters increased IAA and IF formation. Compared to chlorine, chloramines resulted in higher concentration of iodinated DBP, but reduced the levels of trihalomethanes. This is the first study to reveal the widespread occurrence of IAA and IF in drinking water in China. The data provide a better understanding on the formation of iodinated disinfection byproducts and the findings should be useful for treatment process improvement and disinfection byproducts controls.

  2. Occurrence of Regulated and Emerging Iodinated DBPs in the Shanghai Drinking Water

    PubMed Central

    Wei, Xiao; Chen, Xin; Wang, Xia; Zheng, Weiwei; Zhang, Dong; Tian, Dajun; Jiang, Songhui; Ong, Choon Nam; He, Gengsheng; Qu, Weidong

    2013-01-01

    Drinking water chlorination plays a pivotal role in preventing pathogen contamination against water-borne disease. However, chemical disinfection leads to the formation of halogenated disinfection by products (DBPs). Many DBPs are highly toxic and are of health concern. In this study, we conducted a comprehensive measurements of DBPs, including iodoacetic acid (IAA), iodoform (IF), nine haloacetic acids and four trihalomethanes in drinking waters from 13 water plants in Shanghai, China. The results suggested that IAA and IF were found in all the water treatment plants, with maximum levels of 1.66 µg/L and 1.25 µg/L for IAA and IF, respectively. Owing to deterioration of water quality, the Huangpu River has higher IAA and IF than the Yangtze River. Our results also demonstrated that low pH, high natural organic matter, ammonia nitrogen, and iodide in source waters increased IAA and IF formation. Compared to chlorine, chloramines resulted in higher concentration of iodinated DBP, but reduced the levels of trihalomethanes. This is the first study to reveal the widespread occurrence of IAA and IF in drinking water in China. The data provide a better understanding on the formation of iodinated disinfection byproducts and the findings should be useful for treatment process improvement and disinfection byproducts controls. PMID:23555742

  3. Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria.

    PubMed

    Kimoto-Nira, H; Moriya, N; Hayakawa, S; Kuramasu, K; Ohmori, H; Yamasaki, S; Ogawa, M

    2017-07-01

    It has recently been reported that the rare sugar d-allulose has beneficial effects, including the suppression of postprandial blood glucose elevation in humans, and can be substituted for sucrose as a low-calorie food ingredient. To examine the applications of d-allulose in the dairy industry, we investigated the effects of d-allulose on the acid production of 8 strains of yogurt starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and 4 strains of lactococci, including potential probiotic candidates derived from dairy products. Acid production by 2 L. delbrueckii ssp. bulgaricus yogurt starter strains in milk was suppressed by d-allulose, but this phenomenon was also observed in some strains with another sugar (xylose), a sugar alcohol (sorbitol), or both. In contrast, among the dairy probiotic candidates, Lactococcus lactis H61, which has beneficial effects for human skin when drunk as part of fermented milk, was the only strain that showed suppression of acid production in the presence of d-allulose. Strain H61 did not metabolize d-allulose. We did not observe suppression of acid production by strain H61 with the addition of xylose or sorbitol, and xylose and sorbitol were not metabolized by strain H61. The acid production of strain H61 after culture in a constituted medium (tryptone-yeast extract-glucose broth) was also suppressed with the addition of d-allulose, but growth efficiency and sugar fermentation style were not altered. Probiotic activities-such as the angiotensin-converting enzyme inhibitory activity of H61-fermented milk and the superoxide dismutase activity of H61 cells grown in tryptone-yeast extract-glucose broth-were not affected by d-allulose. d-Allulose may suppress acid production in certain lactic acid bacteria without altering their probiotic activity. It may be useful for developing new probiotic dairy products from probiotic strains such as Lactococcus lactis H61. Copyright © 2017 American Dairy Science

  4. Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells.

    PubMed

    Zhao, Yan; Cao, Weijia; Wang, Zhen; Zhang, Bowen; Chen, Kequan; Ouyang, Pingkai

    2016-02-01

    In this study, Actinobacillus succinogenes NJ113 microbial electrolysis cells (MECs) were used to enhance the reducing power responsible for succinic acid production from corncob hydrolysate. During corncob hydrolysate fermentation, electric MECs resulted in a 1.31-fold increase in succinic acid production and a 1.33-fold increase in the reducing power compared with those in non-electric MECs. When the hydrolysate was detoxified by combining Ca(OH)2, NaOH, and activated carbon, succinic acid production increased from 3.47 to 6.95 g/l. Using a constant potential of -1.8 V further increased succinic acid production to 7.18 g/l. A total of 18.09 g/l of succinic acid and a yield of 0.60 g/g total sugar were obtained after a 60-h fermentation when NaOH was used as a pH regulator. The improved succinic acid yield from corncob hydrolysate fermentation using A. succinogenes NJ113 in electric MECs demonstrates the great potential of using biomass as a feedstock to cost-effectively produce succinate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    PubMed

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  7. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis.

    PubMed

    Peat, Thomas S; Böttcher, Christine; Newman, Janet; Lucent, Del; Cowieson, Nathan; Davies, Christopher

    2012-11-01

    Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5'-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins.

  8. Catalytic amino acid production from biomass-derived intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less

  9. Catalytic amino acid production from biomass-derived intermediates

    PubMed Central

    Deng, Weiping; Zhang, Sui; Gupta, Krishna M.; Hülsey, Max J.; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M.; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye

    2018-01-01

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. PMID:29712826

  10. Catalytic amino acid production from biomass-derived intermediates.

    PubMed

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; Gupta, Krishna M; Hülsey, Max J; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M; Beckham, Gregg T; Dyson, Paul J; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye; Yan, Ning

    2018-05-15

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. Copyright © 2018 the Author(s). Published by PNAS.

  11. Catalytic amino acid production from biomass-derived intermediates

    DOE PAGES

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; ...

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less

  12. Production of Fumaric Acid in 20-Liter Fermentors

    PubMed Central

    Rhodes, R. A.; Lagoda, A. A.; Misenheimer, T. J.; Smith, M. L.; Anderson, R. F.; Jackson, R. W.

    1962-01-01

    The conditions necessary for the production of fumaric acid in 20-liter fermentors by fermentation of glucose with Rhizopus arrhizus strain NRRL 2582 were determined. Continuous neutralization of fumaric acid was necessary for optimal yields. Yields of the calcium salt were in excess of 65 g of fumaric acid from 100 g of sugar consumed during fermentation of sugar concentrations of 10 to 16%. Conditions established for calcium fumarate production include a simple mineral salts medium, 0.5 v:v:min aeration rate, 300 rev/min agitation rate in a baffled tank, 33 C incubation temperature, CaCO3 to neutralize the acid formed, and a 4 to 5% (v/v) vegetative inoculum. A suitable procedure and medium for the preparation of a vigorous vegetative inoculum were established. The tendency for calcium fumarate fermentations to foam excessively was controlled with a proper antifoam agent added prior to sterilization of the medium and again at daily intervals during fermentation. The production of soluble sodium or potassium fumarates was inhibited when the concentration of fumarates reached 3.5 to 4.0%. No means of overcoming this inhibition was found. Starches and certain other grain-derived carbohydrates were fermented to form calcium fumarate in flask experiments with approximately the same efficiency as was glucose. PMID:16349614

  13. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    PubMed Central

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  14. Overexpression of a C4-dicarboxylate transporter is the key for rerouting citric acid to C4-dicarboxylic acid production in Aspergillus carbonarius.

    PubMed

    Yang, Lei; Christakou, Eleni; Vang, Jesper; Lübeck, Mette; Lübeck, Peter Stephensen

    2017-03-14

    C 4 -dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C 4 -dicarboxylic acids have been with limited success. In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C 4 -dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C 4 -dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C 4 -dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. This study demonstrates that the key to change the citric acid production into production of C 4 -dicarboxylic acids in A. carbonarius is the C 4 -dicarboxylate transporter. Furthermore it shows that the C 4 -dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C 4 -dicarboxylic acid production.

  15. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    PubMed

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  16. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    PubMed

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  17. Effects of Abscisic Acid, Gibberellin, Ethylene and Their Interactions on Production of Phenolic Acids in Salvia miltiorrhiza Bunge Hairy Roots

    PubMed Central

    Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants. PMID:24023778

  18. Lactic acid production from xylose by Geobacillus stearothermophilus strain 15

    NASA Astrophysics Data System (ADS)

    Kunasundari, B.; Naresh, S.; Chu, J. E.

    2017-09-01

    Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.

  19. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.

    PubMed

    Wang, Chen; Zhang, Hengli; Cai, Heng; Zhou, Zhihui; Chen, Yilu; Chen, Yali; Ouyang, Pingkai

    2014-01-01

    Corynebacterium glutamicum wild type lacks the ability to utilize the xylose fractions of lignocellulosic hydrolysates. In the present work, we constructed a xylose metabolic pathway in C. glutamicum by heterologous expression of the xylA and xylB genes coming from Escherichia coli. Dilute-acid hydrolysates of corn cobs containing xylose and glucose were used as a substrate for succinic acid production by recombinant C. glutamicum NC-2. The results indicated that the available activated charcoal pretreatment in dilute-acid hydrolysates of corn cobs could be able to overcome the inhibitory effect in succinic acid production. Succinic acid was shown to be efficiently produced from corn cob hydrolysates (55 g l(-1) xylose and 4 g l(-1) glucose) under oxygen deprivation with addition of sodium carbonate. Succinic acid concentration reached 40.8 g l(-1) with a yield of 0.69 g g(-1) total sugars within 48 h. It was the first report of succinic acid production from corn cob hydrolysates by metabolically engineered C. glutamicum. This study suggested that dilute-acid hydrolysates of corn cobs may be an alternative substrate for the efficient production of succinic acid by C. glutamicum.

  20. Low-pH production of D-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7.

    PubMed

    Park, Hyun Joo; Bae, Jung-Hoon; Ko, Hyeok-Jin; Lee, Sun-Hee; Sung, Bong Hyun; Han, Jong-In; Sohn, Jung-Hoon

    2018-06-13

    Lactic acid is a platform chemical for the sustainable production of various materials. To develop a robust yeast platform for low-pH production of D-lactic acid, an acid-tolerant yeast strain was isolated from grape skins and named Pichia kudriavzevii NG7 by ribosomal RNA sequencing. This strain was able to grow at pH 2.0 and 50°C. For the commercial application of P. kudriavzevii NG7 as a lactic acid producer, the ethanol fermentation pathway was redirected to lactic acid by replacing pyruvate decarboxylase 1 gene (PDC1) with D-lactate dehydrogenase gene (D-LDH) derived from Lactobacillus plantarum. To enhance lactic acid tolerance, this engineered strain was adapted to high lactic acid concentrations, and a new transcriptional regulator, PAR1, responsible for acid tolerance, was identified by whole-genome resequencing. The final engineered strain produced 135 g/L and 154 g/L of D-lactic acid with productivity over 3.66 g/L/h at pH 3.6 and 4.16 g/L/h at pH 4.7, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Cell immobilization for production of lactic acid biofilms do it naturally.

    PubMed

    Dagher, Suzanne F; Ragout, Alicia L; Siñeriz, Faustino; Bruno-Bárcena, José M

    2010-01-01

    Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Distribution and cellular localization of imidazoleacetic acid-ribotide, an endogenous ligand at imidazol(in)e and adrenergic receptors, in rat brain

    PubMed Central

    Friedrich, Victor L.; Martinelli, Giorgio P.; Prell, George D.; Holstein, Gay R.

    2007-01-01

    Imidazoleacetic acid-ribotide (IAA-RP) is a putative neurotransmitter/modulator recently discovered in mammalian brain. The present study examines the distribution of IAA-RP in the rat CNS using a highly specific antiserum raised in rabbit against IAA-RP with immunostaining of aldehyde-fixed rat CNS. IAA-RP-immunoreactive neurons were present throughout the neuraxis; neuroglia were not labeled. In each region, only a subset of the neuronal pool was immunostained. In the forebrain, ribotide-immunolabeled neurons were common in neocortex, in hippocampal formation, and in subcortical structures including basal ganglia, thalamus and hypothalamus. Labeling was prominent limbic areas including olfactory bulb, basal forebrain, pyriform cortex and amygdala. In the mid- and hindbrain, immunolabled neurons were concentrated in specific nuclei and, in some areas, in specific subregions of those nuclei. Structures of the motor system, including cranial nerve motor nuclei, precerebellar nuclei, the substantia nigra, and the red nucleus were clearly labeled. Staining was intense in cells and/or puncta in the rostral and caudal ventrolateral medullary reticular formation, nucleus tractus solitarius and the caudal vestibular nuclear complex. Within neurons, the ribotide was found predominantly in somata and dendrites; some myelinated axons and occasional synaptic terminals were also immunostained. These data indicate that IAA-RP contributes to the neurochemical phenotype of many neuronal populations further support our suggestion that, in autonomic structures, the IAA-RP may serve as a chemical mediator in complex circuits involved in blood pressure regulation and, more generally, sympathetic drive. PMID:17210242

  3. Production of 5'-phosphodiesterase by Catharanthus roseus cells promoted by heat-degraded products generated from uronic acid.

    PubMed

    Akimoto-Tomiyama, Chiharu; Aoyagi, Hideki; Ozawa, Tetsuo; Tanaka, Hideo

    2002-01-01

    Polyalginate was autoclaved at 121 degrees C for 20 min and its molecular weight distribution was analyzed. The autoclaved alginate yielded alginate polymer, oligomer and heat degraded products (HDPs). Each of the separated substances promoted 5'-phosphodiesterase (5'-PDase) production in suspension culture of Catharanthus roseus cells. HDPs could also be generated from other uronic acids (galacturonic acid and glucuronic acid) by autoclave treatment. The most effective substance in the HDPs was isolated and characterized as trans-4,5-dihydroxy-2-cyclopenten-1-one (DHCP). The optimal conditions for DHCP production were also established (autoclaving 1 mg/ml monogalacturonic acid [pH 2] at 121 degrees C for 2 h). A combination of oligo-alginate (below 4 kDa) and HDPs significantly promoted the production of 5'-PDase in C. roseus. Based on the above results, a novel alginate complex that gave a 44-fold increase in 5'-PDase production by C. roseus was developed.

  4. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods

    PubMed Central

    Hiragaki, Susumu; Suzuki, Takeshi; Mohamed, Ahmed A. M.; Takeda, Makio

    2015-01-01

    The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system

  5. Regulation of lithospermic acid B and shikonin production in Lithospermum erythrorhizon cell suspension cultures.

    PubMed

    Yamamoto, Hirobumi; Zhao, Ping; Yazaki, Kazufumi; Inoue, Kenichiro

    2002-08-01

    Cell suspension cultures of Lithospermum erythrorhizon produced a large amount of lithospermic acid B, a caffeic acid tetramer, as well as shikonin derivatives (each ca. 10% of dry wt.) when cultured in shikonin production medium M-9. Various culture factors for increasing the production of lithospermic acid B were investigated. Lithospermic acid B production was inhibited by 2, 4-D or NH4+, whereas it was stimulated by Cu2+. These regulatory patterns were similar to those for the production of shikonin derivatives in these cell cultures, suggestive of close relations and similar metabolic regulation between the production of these compounds. Cultivation under light illumination, however, showed that these metabolisms were independently regulated. In particular, blue light showed a stimulatory effect on lithospermic acid B production, while shikonin production was strongly inhibited, indicative of an effective condition for lithospermic acid B production.

  6. Production of ω-hydroxy octanoic acid with Escherichia coli.

    PubMed

    Kirtz, Marko; Klebensberger, Janosch; Otte, Konrad B; Richter, Sven M; Hauer, Bernhard

    2016-07-20

    The present proof-of-concept study reports the construction of a whole-cell biocatalyst for the de novo production of ω-hydroxy octanoic acid. This was achieved by hijacking the natural fatty acid cycle and subsequent hydroxylation using a specific monooxygenase without the need for the additional feed of alkene-like precursors. For this, we used the model organism Escherichia coli and increased primarily the release of the octanoic acid precursors by overexpressing the plant thioesterase FatB2 from Cuphea hookeriana in a β-oxidation deficient strain, which lead to the production of 2.32mM (8.38mggcww(-1)) octanoic acid in 24h. In order to produce the corresponding ω-hydroxy derivative, we additionally expressed the engineered self-sufficient monooxygenase fusion protein CYP153AMaq(G307A)-CPRBM3 within the octanoic acid producing strain. With this, we finally produced 234μM (0.95mggcww(-1)) ω-hydroxy octanoic acid in a 20h fed-batch set-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Methyl Jasmonate and Salicylic Acid Enhanced the Production of Ursolic and Oleanolic Acid in Callus Cultures of Lepechinia Caulescens

    PubMed Central

    Vergara Martínez, Víctor M.; Estrada-Soto, Samuel E.; Arellano-García, José de Jesús; Rivera-Leyva, Julio C.; Castillo-España, Patricia; Flores, Angélica Flores; Cardoso-Taketa, Alexandre T.; Perea-Arango, Irene

    2017-01-01

    Background: The production of triterpenes from plants for pharmacological purposes varies in concentration, due to genetic and environmental factors. In vitro culture enables the control and increase of these bioactive molecules. Objective: To evaluate the effect of plant growth regulators and elicitors in the induction of calli and the production of ursolic acid (UA) and oleanolic acid (OA) in Lepechinia caulescens. Materials and Methods: Leaf explants were exposed for the induction of calli at different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). Methyl jasmonate (MJ) and salicylic acid were used as elicitors. High-performance liquid chromatography method was used to quantify UA and OA content in each treatment. Results: Treatment with 3.0 mg/L of 2,4-D and 0.1 mg/L of BAP produced the best results for calli induction and production of UA (1.57 mg/g dry weight [DW]) and OA (1.13 mg/g DW). Both elicitors facilitated the accumulation of triterpenes. Conclusion: The combination of auxins and cytokinins showed favorable results for the induction of calli. Variation concerning the accumulation of UA and OA was observed between treatments. MJ increased the production of triterpenes five times after 8 h of exposure, compared to control treatment. There is a greater accumulation of UA (16.58 mg/g DW) and OA (1.94 mg/g DW) in leaves of wild plants. SUMMARY Callus cultures of Lepechinia caulescens were obtained from leaf explants treated with 2,4-dichlorophenoxyacetic acid and 6-bencylaminopurineResulting cultures were elicited with methyl jasmonate (MJ) and salicylic acid to increase the production of the triterpenes, ursolic acid (UA), and oleanolic acid (OA)The cultures elicited with MJ increased the production of UA and OA five times, as compared to the control. Abbreviations used: 2,4-D: 2,4-dichlorophenoxyacetic acid, BAP: 6-benzylaminopurine, DW: Dry weight, MJ: Methyl jasmonate, OA: Oleanolic acid, PGRs

  8. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    PubMed Central

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  9. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.

    PubMed

    Jang, Yu-Sin; Woo, Hee Moon; Im, Jung Ae; Kim, In Ho; Lee, Sang Yup

    2013-11-01

    Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.

  10. Space-time analysis of gravitropism in etiolated Arabidopsis hypocotyls using bioluminescence imaging of the IAA19 promoter fusion with a destabilized luciferase reporter.

    PubMed

    Yamamoto, Kotaro T; Watahiki, Masaaki K; Matsuzaki, Jun; Satoh, Soichirou; Shimizu, Hisayo

    2017-07-01

    Imaging analysis was carried out during the gravitropic response of etiolated Arabidopsis hypocotyls, using an IAA19 promoter fusion of destabilized luciferase as a probe. From the bright-field images we obtained the local deflection angle to the vertical, A, local curvature, C, and the partial derivative of C with respect to time, [Formula: see text]. These were determined every 19.9 µm along the curvilinear length of the hypocotyl, at ~10 min intervals over a period of ~6 h after turning hypocotyls through 90° to the horizontal. Similarly from the luminescence images we measured the luminescence intensity of the convex and concave flanks of the hypocotyl as well as along the median of the hypocotyl, to determine differential expression of auxin-inducible IAA19. Comparison of these parameters as a function of time and curvilinear length shows that the gravitropic response is composed of three successive elements: the first and second curving responses and a decurving response (autostraightening). The maximum of the first curving response occurs when A is 76° along the entire length of the hypocotyl, suggesting that A is the sole determinant in this response; in contrast, the decurving response is a function of both A and C, as predicted by the newly-proposed graviproprioception model (Bastien et al., Proc Natl Acad Sci USA 110:755-760, 2013). Further, differential expression of IAA19, with higher expression in the convex flank, is observed at A = 44°, and follows the Sachs' sine law. This also suggests that IAA19 is not involved in the first curving response. In summary, the gravitropic response of Arabidopsis hypocotyls consists of multiple elements that are each determined by separate principles.

  11. Bio-based production of methacrylic acid

    USDA-ARS?s Scientific Manuscript database

    Methacrylic acid (MAA) is an important industrial chemical commodity, with annual production exceeding 3 million metric tons and a market value surpassing $9 billion. The primary use of MAA is the conversion to ester derivatives, which are further converted into numerous useful polymers. Despite the...

  12. PLASMA PROTEIN PRODUCTION INFLUENCED BY AMINO ACID MIXTURES AND LACK OF ESSENTIAL AMINO ACIDS

    PubMed Central

    Madden, S. C.; Anderson, F. W.; Donovan, J. C.; Whipple, G. H.

    1945-01-01

    When blood plasma proteins are depleted by bleeding with return of red cells suspended in saline (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a constant level of plasma protein production if the diet nitrogen intake is controlled and limited. Such dogs are outwardly normal but have a lowered resistance to infection and intoxication and probably to vitamin deficiency. When the diet nitrogen is provided by certain mixtures of the ten growth essential amino acids plus glycine, given intravenously at a rapid rate, plasma protein production is good. The same mixture absorbed subcutaneously at a slower rate may be slightly better utilized. Fed orally the same mixture is better utilized and associated with a lower urinary nitrogen excretion. An ample amino acid mixture for the daily intake of a 10 kilo dog may contain in grams dl-threonine 1.4, dl-valine 3, dl-leucine 3, dl-isoleucine 2, l(+)-lysine·HCl·H2O 2.2, dl-tryptophane 0.3, dl-phenylalanine 2, dl-methionine 1.2, l(+)-histidine·HCl·H2O 1, l(+)-arginine·HCl 1, and glycine 2. Half this quantity is inadequate and not improved by addition of a mixture of alanine, serine, norleucine, proline, hydroxyproline, and tyrosine totalling 1.4 gm. Aspartic acid appears to induce vomiting when added to a mixture of amino acids. The same response has been reported for glutamic acid (8). Omission from the intake of leucine or of leucine and isoleucine results in negative nitrogen balance and rapid weight loss but plasma protein production may be temporarily maintained. It is possible that leucine may be captured from red blood cell destruction. Tryptophane deficiency causes an abrupt decline in plasma protein production. No decline occurred during 2 weeks of histidine deficiency but the urinary nitrogen increased to negative balance. Plasma protein production may be impaired during conditions of dietary deficiency not related to the protein or amino acid intake. Skin lesions and liver

  13. Semicontinuous Production of Lactic Acid From Cheese Whey Using Integrated Membrane Reactor

    NASA Astrophysics Data System (ADS)

    Li, Yebo; Shahbazi, Abolghasem; Coulibaly, Sekou; Mims, Michele M.

    Semicontinuous production of lactic acid from cheese whey using free cells of Bifidobacterium longum with and without nanofiltration was studied. For the semicontinuous fermentation without membrane separation, the lactic acid productivity of the second and third runs is much lower than the first run. The semicontinuous fermentation with nanoseparation was run semicontinuously for 72 h with lactic acid to be harvested every 24 h using a nanofiltration membrane unit. The cells and unutilized lactose were kept in the reactor and mixed with newly added cheese whey in the subsequent runs. Slight increase in the lactic acid productivity was observed in the second and third runs during the semicontinuous fermentation with nanofiltration. It can be concluded that nanoseparation could improve the lactic acid productivity of the semicontinuous fermentation process.

  14. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E [Kennewick, WA

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  15. Integrated production of lactic acid and biomass on distillery stillage.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  16. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE PAGES

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.; ...

    2017-09-01

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  17. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  18. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    PubMed

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  19. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Transport of Indole-3-Acetic Acid during Gravitropism in Intact Maize Coleoptiles 1

    PubMed Central

    Parker, Karen E.; Briggs, Winslow R.

    1990-01-01

    We have investigated the transport of tritiated indole-3-acetic acid (IAA) in intact, red light-grown maize (Zea mays) coleoptiles during gravitropic induction and the subsequent development of curvature. This auxin is transported down the length of gravistimulated coleoptiles at a rate comparable to that in normal, upright plants. Transport is initially symmetrical across the coleoptile, but between 30 and 40 minutes after plants are turned horizontal a lateral redistribution of the IAA already present in the transport stream occurs. By 60 minutes after the beginning of the gravitropic stimulus, the ratio of tritiated tracer auxin in the lower half with respect to the upper half is approximately 2:1. The redistribution of growth that causes gravitropic curvature follows the IAA redistribution by 5 or 10 minutes at the minimum in most regions of the coleoptile. Immobilization of tracer auxin from the transport stream during gravitropism was not detectable in the most apical 10 millimeters. Previous reports have shown that in intact, red light-grown maize coleoptiles, endogenous auxin is limiting for growth, the tissue is linearly responsive to linearly increasing concentrations of small amounts of added auxin, and the lag time for the stimulation of straight growth by added IAA is approximately 8 or 9 minutes (TI Baskin, M Iino, PB Green, WR Briggs [1985] Plant Cell Environ 8: 595-603; TI Baskin, WR Briggs, M Iino [1986] Plant Physiol 81: 306-309). We conclude that redistribution of IAA in the transport stream occurs in maize coleoptiles during gravitropism, and is sufficient in degree and timing to be the immediate cause of gravitropic curvature. PMID:16667914

  1. In Vitro Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts.

    PubMed

    Procházka, Erik; Escher, Beate I; Plewa, Michael J; Leusch, Frederic D L

    2015-10-19

    The process of disinfecting drinking water inadvertently leads to the formation of numerous disinfection byproducts (DBPs). Some of these are mutagenic, genotoxic, teratogenic, and cytotoxic, as well as potentially carcinogenic both in vivo and in vitro. We investigated the in vitro biological activity of five DBPs: three monohaloacetic acids (monoHAAs) [chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA)] and two novel halobenzoquinones (HBQs) [2,6-dichloro-p-benzoquinone (DCBQ) and 2,6-dibromo-p-benzoquinone]. We focused particularly on cytotoxicity and induction of two adaptive stress response pathways: the oxidative stress responsive Nrf2/ARE and DNA-damage responsive p53 pathways. All five DBPs were cytotoxic to the Caco-2 cell line after a 4 h exposure, and all DBPs induced both of the adaptive stress response pathways, Nrf2/ARE and p53, in the micromolar range, as measured by two β-lactamase-based reporter gene assays. The decreasing order of potency for all three endpoints for the five DBPs was IAA ∼ BAA > DCBQ ∼ DBBQ > CAA. Induction of oxidative stress was previously proposed to be the molecular initiating event (MIE) for both classes of DBPs. However, comparing the levels of activation of the two pathways uncovered that the Nrf2/ARE pathway was the more sensitive endpoint for HAAs, whereas the p53 pathway was more sensitive in the case of HBQs. Therefore, the DNA damage-responsive p53 pathway may be an important piece of information to fill in a gap in the adverse outcome pathway framework for the assessment of HBQs. Finally, we cautiously compared the potential risk of the two novel HBQs using a benchmarking approach to that of the well-studied CAA, which suggested that their relative risk may be lower than that of BAA and IAA.

  2. Bioanalysis works in the IAA AMS facility: Comparison of AMS analytical method with LSC method in human mass balance study

    NASA Astrophysics Data System (ADS)

    Miyaoka, Teiji; Isono, Yoshimi; Setani, Kaoru; Sakai, Kumiko; Yamada, Ichimaro; Sato, Yoshiaki; Gunji, Shinobu; Matsui, Takao

    2007-06-01

    Institute of Accelerator Analysis Ltd. (IAA) is the first Contract Research Organization in Japan providing Accelerator Mass Spectrometry (AMS) analysis services for carbon dating and bioanalysis works. The 3 MV AMS machines are maintained by validated analysis methods using multiple control compounds. It is confirmed that these AMS systems have reliabilities and sensitivities enough for each objective. The graphitization of samples for bioanalysis is prepared by our own purification lines including the measurement of total carbon content in the sample automatically. In this paper, we present the use of AMS analysis in human mass balance and metabolism profiling studies with IAA 3 MV AMS, comparing results obtained from the same samples with liquid scintillation counting (LSC). Human samples such as plasma, urine and feces were obtained from four healthy volunteers orally administered a 14C-labeled drug Y-700, a novel xanthine oxidase inhibitor, of which radioactivity was about 3 MBq (85 μCi). For AMS measurement, these samples were diluted 100-10,000-fold with pure-water or blank samples. The results indicated that AMS method had a good correlation with LSC method (e.g. plasma: r = 0.998, urine: r = 0.997, feces: r = 0.997), and that the drug recovery in the excreta exceeded 92%. The metabolite profiles of plasma, urine and feces obtained with HPLC-AMS corresponded to radio-HPLC results measured at much higher radioactivity level. These results revealed that AMS analysis at IAA is useful to measure 14C-concentration in bioanalysis studies at very low radioactivity level.

  3. Bioaugmentation with Clostridium tyrobutyricum to improve butyric acid production through direct rice straw bioconversion.

    PubMed

    Chi, Xue; Li, Jianzheng; Wang, Xin; Zhang, Yafei; Leu, Shao-Yuan; Wang, Ying

    2018-05-02

    One-pot bioconversion is an economically attractive biorefinery strategy to reduce enzyme consumption. Direct conversion of lignocellulosic biomass for butyric acid production is still challenging because of competition among microorganisms. In a consolidated hydrolysis/fermentation bioprocessing (CBP) the microbial structure may eventually prefer the production of caproic acid rather than butyric acid production. This paper presents a new bioaugmentation approach for high butyric acid production from rice straw. By dosing 0.03 g/L of Clostridium tyrobutyricum ATCC 25755 in the CBP, an increase of 226% higher butyric acid was yielded. The selectivity and concentration also increased to 60.7% and 18.05 g/L, respectively. DNA-sequencing confirmed the shift of bacterial community in the augmented CBP. Butyric acid producer was enriched in the bioaugmented bacterial community and the bacteria related to long chain acids production was degenerated. The findings may be useful in future research and process design to enhance productivity of desired bio-products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the boric...

  5. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the boric...

  6. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the boric...

  7. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the boric...

  8. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  9. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    PubMed

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  10. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  11. [Aerobic methylobacteria are capable of synthesizing auxins].

    PubMed

    Ivanova, E G; Doronina, N V; Trotsenko, Iu A

    2001-01-01

    Obligately and facultatively methylotrophic bacteria with different pathways of C1 metabolism were found to be able to produce auxins, particularly indole-3-acetic acid (IAA), in amounts of 3-100 micrograms/ml. Indole-3-pyruvic acid and indole-3-acetamide were detected only in methylobacteria with the serine pathway of C1 metabolism, Methylobacterium mesophilicum and Aminobacter aminovorans. The production of auxins by methylobacteria was stimulated by the addition of tryptophan to the growth medium and was inhibited by ammonium ions. The methylobacteria under study lacked tryptophan decarboxylase and tryptophan side-chain oxidase. At the same time, they were found to contain several aminotransferases. IAA is presumably synthesized by methylobacteria through indole-3-pyruvic acid.

  12. Systems metabolic engineering design: Fatty acid production as an emerging case study

    PubMed Central

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-01-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. PMID:24481660

  13. Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy.

    PubMed

    van der Pol, Edwin C; Eggink, Gerrit; Weusthuis, Ruud A

    2016-01-01

    Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of l(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate thermophilic bacterium Bacillus coagulans DSM2314. Saccharification and fermentation were performed simultaneously (SSF), adding acid-pretreated bagasse either in one batch or in two stages. SSF was performed at low enzyme dosages of 10.5-15.8 FPU/g DW bagasse. The first batch SSF resulted in an average productivity of 0.78 g/l/h, which is not sufficient to compete with lactic acid production processes using high-grade sugars. Addition of 1 g/l furfural to precultures can increase B. coagulans resistance towards by-products present in pretreated lignocellulose. Using furfural-containing precultures, productivity increased to 0.92 g/l/h, with a total lactic acid production of 91.7 g in a 1-l reactor containing 20% W/W DW bagasse. To increase sugar concentrations, bagasse was solubilized with a liquid fraction, obtained directly after acid pretreatment. Solubilizing the bagasse fibres with water increased the average productivity to 1.14 g/l/h, with a total lactic acid production of 84.2 g in a 1-l reactor. Addition of bagasse in two stages reduced viscosity during SSF, resulting in an average productivity in the first 23 h of 2.54 g/l/h, similar to productivities obtained in fermentations using high-grade sugars. Due to fast accumulation of lactic acid, enzyme activity was repressed during two-stage SSF, resulting in a decrease in productivity and a slightly lower total lactic acid production of 75.6 g. In this study, it is shown that an adequate production of lactic acid from lignocellulose was successfully accomplished by a two-stage SSF process, which combines acid-pretreated bagasse, B. coagulans precultivated in the presence of furfural as microorganism, and GC220 as enzyme

  14. Production of amino acids - Genetic and metabolic engineering approaches.

    PubMed

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Binding of ring-substituted indole-3-acetic acids to human serum albumin.

    PubMed

    Soskić, Milan; Magnus, Volker

    2007-07-01

    The plant hormone, indole-3-acetic acid (IAA), and its ring-substituted derivatives have recently attracted attention as promising pro-drugs in cancer therapy. Here we present relative binding constants to human serum albumin for IAA and 34 of its derivatives, as obtained using the immobilized protein bound to a support suitable for high-performance liquid chromatography. We also report their octanol-water partition coefficients (logK(ow)) computed from retention data on a C(18) coated silica gel column. A four-parameter QSPR (quantitative structure-property relationships) model, based on physico-chemical properties, is put forward, which accounts for more than 96% of the variations in the binding affinities of these compounds. The model confirms the importance of lipophilicity as a global parameter governing interaction with serum albumin, but also assigns significant roles to parameters specifically related to the molecular topology of ring-substituted IAAs. Bulky substituents at ring-position 6 increase affinity, those at position 2 obstruct binding, while no steric effects were noted at other ring-positions. Electron-withdrawing substituents at position 5 enhance binding, but have no obvious effect at other ring positions.

  16. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  17. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE PAGES

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...

    2018-01-01

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  18. Engineering acyl carrier protein to enhance production of shortened fatty acids.

    PubMed

    Liu, Xueliang; Hicks, Wade M; Silver, Pamela A; Way, Jeffrey C

    2016-01-01

    The acyl carrier protein (ACP) is an essential and ubiquitous component of microbial synthesis of fatty acids, the natural precursor to biofuels. Natural fatty acids usually contain long chains of 16 or more carbon atoms. Shorter carbon chains, with increased fuel volatility, are desired for internal combustion engines. Engineering the length specificity of key proteins in fatty acid metabolism, such as ACP, may enable microbial synthesis of these shorter chain fatty acids. We constructed a homology model of the Synechococcus elongatus ACP, showing a hydrophobic pocket harboring the growing acyl chain. Amino acids within the pocket were mutated to increase steric hindrance to the acyl chain. Certain mutant ACPs, when over-expressed in Escherichia coli, increased the proportion of shorter chain lipids; I75 W and I75Y showed the strongest effects. Expression of I75 W and I75Y mutant ACPs also increased production of lauric acid in E. coli that expressed the C12-specific acyl-ACP thioesterase from Cuphea palustris. We engineered the specificity of the ACP, an essential protein of fatty acid metabolism, to alter the E. coli lipid pool and enhance production of medium-chain fatty acids as biofuel precursors. These results indicate that modification of ACP itself could be combined with enzymes affecting length specificity in fatty acid synthesis to enhance production of commodity chemicals based on fatty acids.

  19. Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate.

    PubMed

    Mi, Le; Qin, Dandan; Cheng, Jie; Wang, Dan; Li, Sha; Wei, Xuetuan

    2017-03-01

    Two engineered Escherichia coli strains, DQ101 (MG1655 fadD - )/pDQTES and DQ101 (MG1655 fadD - )/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase 'TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD - )-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD - )/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD - )/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.

  20. Production and identification of a novel compound, 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Kim, Deuk-Soo; Suh, Min-Jung; Oh, Sei-Ryang; Lee, In-Jung; Kang, Sun-Chul; Hou, Ching T; Kim, Hak-Ryul

    2007-05-01

    Hydroxy fatty acids are considered as important value-added product for industrial application because of their special properties such as higher viscosity and reactivity. Microbial production of the hydroxy fatty acids from various fatty acid substrates have been actively studied using several microorganisms. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were produced from oleic acid and ricinoleic acid, respectively. Based on the postulated common metabolic pathway involved in DOD and TOD formation by PR3, it was assumed that palmitoleic acid containing a singular 9-cis double bond, common structural property sharing with oleic acid and ricinoleic acid, could be utilized by PR3 to produce hydroxy fatty acid. In this study, we tried to use palmitoleic acid as substrate for production of hydroxy fatty acid by PR3 and firstly confirmed that PR3 could produce 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) with 23% yield from palmitoleic acid. DHD production was peaked at 72 h after the substrate was added to the 24-h-culture.

  1. Production of gluconic acid using Micrococcus sp.: optimisation of carbon and nitrogen sources.

    PubMed

    Joshi, V D; Sreekantiah, K R; Manjrekar, S P

    1996-01-01

    A process for production of gluconic acid from glucose by a Micrococcus sp. is described. More than 400 bacterial cultures isolated from local soil were tested for gluconic acid production. Three isolates, were selected on basis of their ability to produce gluconic acid and high titrable acidity. These were identified as Micrococcus sp. and were named M 27, M 54 and M 81. Nutritional and other parameters for maximum production of gluconic acid by the selected isolates were optimised. It was found that Micrococcus sp. isolate M 27 gave highest yield of 8.19 g gluconic acid from 9 g glucose utilised giving 91% conversion effeciency.

  2. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    PubMed

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-05

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors. Copyright © 2013 Elsevier Inc

  3. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes wemore » successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.« less

  4. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L.

    PubMed

    Amin, Aatif; Latif, Zakia

    2017-03-01

    Mercury resistant (Hg R ) bacteria were screened from industrial effluents and effluents-polluted rhizosphere soils near to districts Kasur and Sheikhupura, Pakistan. Out of 60 isolates, three bacterial strains, Bacillus sp. AZ-1, Bacillus cereus AZ-2, and Enterobacter cloacae AZ-3 showed Hg-resistance as 20 μg ml -1 of HgCl 2 and indole-3-acetic acid (IAA) production as 8-38 μg ml -1 . Biochemical and molecular characterization of selected bacteria was confirmed by 16S ribotyping. Mercury resistant genes merA, merB, and merE of mer operon in Bacillus spp. were checked by PCR amplification. The merE gene involved in the transportation of elemental mercury (Hg 0 ) via cell membrane was first time cloned into pHLV vector and transformed in C43(DE3) Escherichia coli cells. The recombinant plasmid (pHLMerE) was expressed and purified by nickel (Ni +2 ) affinity chromatography. Chromatographic techniques viz. thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and Gas chromatography-mass spectrometry (GC-MS) confirmed the presence of Indole-3-acetic acid (IAA) in supernatant of selected bacteria. The strain E. cloacae AZ-3 detoxified 88% of mercury (Hg +2 ) from industrial effluent (p < 0.05) after immobilization in Na-alginate beads. Finally, Hg-resistant and IAA producing bacterial consortium of two strains, Bacillus sp. AZ-1 and E. cloacae AZ-3, inoculated in mercury amended soil with 20 μg ml -1 HgCl 2 resulted 80, 22, 64, 116, 50, 75, 30, and 100% increase as compared to control plants in seed germination, shoot and root length, shoot and root fresh weight, number of pods per plant, number of seeds and weight of seeds, respectively, of chickpea (Cicer arietinum L.) in pot experiments (p < 0.05). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution.

    PubMed

    Su, Jialei; Shen, Feng; Qiu, Mo; Qi, Xinhua

    2017-02-14

    Agricultural waste cow dung was used as feedstock for the production of a high value-added chemical levulinic acid (LA) in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg), mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH) pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  6. Systems metabolic engineering design: fatty acid production as an emerging case study.

    PubMed

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  7. Bioactivity and biotechnological production of punicic acid.

    PubMed

    Holic, Roman; Xu, Yang; Caldo, Kristian Mark P; Singer, Stacy D; Field, Catherine J; Weselake, Randall J; Chen, Guanqun

    2018-04-01

    Punicic acid (PuA; 18: 3Δ 9cis,11trans,13cis ) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major natural source of this remarkable fatty acid. While both PuA and pomegranate seed oil have been used as functional ingredients in foods and cosmetics for some time, their value in pharmaceutical/medical and industrial applications are presently under further exploration. Unfortunately, the availability of PuA is severely limited by the low yield and unstable supply of pomegranate seeds. In addition, efforts to produce PuA in transgenic crops have been limited by a relatively low content of PuA in the resulting seed oil. The production of PuA in engineered microorganisms with modern fermentation technology is therefore a promising and emerging method with the potential to resolve this predicament. In this paper, we provide a comprehensive review of this unusual fatty acid, covering topics ranging from its natural sources, biosynthesis, extraction and analysis, bioactivity, health benefits, and industrial applications, to recent efforts and future perspectives on the production of PuA in engineered plants and microorganisms.

  8. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation

    PubMed Central

    Yang, Suijuan; Zhang, Xinghai; Cao, Zhaoyun; Zhao, Kaipeng; Wang, Sai; Chen, Mingxue; Hu, Xiufang

    2014-01-01

    Growth-promoting Sphingomonas paucimobilis ZJSH1, associated with Dendrobium officinale, a traditional Chinese medicinal plant, was characterized. At 90 days post-inoculation, strain ZJSH1 significantly promoted the growth of D. officinale seedlings, with increases of stems by 8.6% and fresh weight by 7.5%. Interestingly, the polysaccharide content extracted from the inoculated seedlings was 0.6% higher than that of the control. Similar growth promotion was observed with the transplants inoculated with strain ZJSH1. The mechanism of growth promotion was attributed to a combination of phytohormones and nitrogen fixation. Strain ZJSH1 was found using the Kjeldahl method to have a nitrogen fixation activity of 1.15 mg l−1, which was confirmed by sequencing of the nifH gene. Using high-performance liquid chromatography-mass spectrometry, strain ZJSH1 was found to produce various phytohormones, including salicylic acid (SA), indole-3-acetic acid (IAA), Zeatin and abscisic acid (ABA). The growth curve showed that strain ZJSH1 grew well in the seedlings, especially in the roots. Accordingly, much higher contents of SA, ABA, IAA and c-ZR were detected in the inoculated seedlings, which may play roles as both phytohormones and ‘Systemic Acquired Resistance’ drivers. Nitrogen fixation and secretion of plant growth regulators (SA, IAA, Zeatin and ABA) endow S. paucimobilis ZJSH1 with growth-promoting properties, which provides a potential for application in the commercial growth of D. officinale. PMID:25142808

  9. Production of a conjugated fatty acid by Bifidobacterium breve LMC520 from α-linolenic acid: conjugated linolenic acid (CLnA).

    PubMed

    Park, Hui Gyu; Cho, Hyung Taek; Song, Myoung-Chong; Kim, Sang Bum; Kwon, Eung Gi; Choi, Nag Jin; Kim, Young Jun

    2012-03-28

    This study was performed to characterize natural CLnA isomer production by Bifidobacterium breve LMC520 of human origin in comparison to conjugated linoleic acid (CLA) production. B. breve LMC520 was found to be highly active in terms of CLnA production, of which the major portion was identified as cis-9,trans-11,cis-15 CLnA isomer by GC-MS and NMR analysis. B. breve LMC520 was incubated for 48 h using MRS medium (containing 0.05% L-cysteine · HCl) under different environmental conditions such as atmosphere, pH, and substrate concentration. The high conversion rate of α-linolenic acid (α-LNA) to CLnA (99%) was retained up to 2 mM α-LNA, and the production was proportionally increased nearly 7-fold with 8 mM by the 6 h of incubation under anaerobic conditions at a wide range of pH values (between 5 and 9). When α-LNA was compared with linoleic acid (LA) as a substrate for isomerization by B. breve LMC520, the conversion of α-LNA was higher than that of LA. These results demonstrated that specific CLnA isomer could be produced through active bacterial conversion at an optimized condition. Because many conjugated octadecatrienoic acids in nature are shown to play many positive roles, the noble isomer found in this study has potential as a functional source.

  10. Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort Marchantia polymorpha[OPEN

    PubMed Central

    Eklund, D. Magnus; Ishizaki, Kimitsune; Flores-Sandoval, Eduardo; Kikuchi, Saya; Takebayashi, Yumiko; Tsukamoto, Shigeyuki; Hirakawa, Yuki; Nonomura, Maiko; Kato, Hirotaka; Kouno, Masaru; Bhalerao, Rishikesh P.; Lagercrantz, Ulf; Kasahara, Hiroyuki; Kohchi, Takayuki; Bowman, John L.

    2015-01-01

    The plant hormone auxin (indole-3-acetic acid [IAA]) has previously been suggested to regulate diverse forms of dormancy in both seed plants and liverworts. Here, we use loss- and gain-of-function alleles for auxin synthesis- and signaling-related genes, as well as pharmacological approaches, to study how auxin regulates development and dormancy in the gametophyte generation of the liverwort Marchantia polymorpha. We found that M. polymorpha possess the smallest known toolkit for the indole-3-pyruvic acid (IPyA) pathway in any land plant and that this auxin synthesis pathway mainly is active in meristematic regions of the thallus. Previously a Trp-independent auxin synthesis pathway has been suggested to produce a majority of IAA in bryophytes. Our results indicate that the Trp-dependent IPyA pathway produces IAA that is essential for proper development of the gametophyte thallus of M. polymorpha. Furthermore, we show that dormancy of gemmae is positively regulated by auxin synthesized by the IPyA pathway in the apex of the thallus. Our results indicate that auxin synthesis, transport, and signaling, in addition to its role in growth and development, have a critical role in regulation of gemmae dormancy in M. polymorpha. PMID:26036256

  11. Methods for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E. W.

    2016-07-12

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  12. Method for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E.W.

    2016-08-30

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  13. Indole 3-acetic acid, indoxyl sulfate and paracresyl-sulfate do not influence anemia parameters in hemodialysis patients.

    PubMed

    Bataille, Stanislas; Pelletier, Marion; Sallée, Marion; Berland, Yvon; McKay, Nathalie; Duval, Ariane; Gentile, Stéphanie; Mouelhi, Yosra; Brunet, Philippe; Burtey, Stéphane

    2017-07-26

    The main reason for anemia in renal failure patients is the insufficient erythropoietin production by the kidneys. Beside erythropoietin deficiency, in vitro studies have incriminated uremic toxins in the pathophysiology of anemia but clinical data are sparse. In order to assess if indole 3-acetic acid (IAA), indoxyl sulfate (IS), and paracresyl sulfate (PCS) -three protein bound uremic toxins- are clinically implicated in end-stage renal disease anemia we studied the correlation between IAA, IS and PCS plasmatic concentrations with hemoglobin and Erythropoietin Stimulating Agents (ESA) use in hemodialysis patients. Between June and July 2014, we conducted an observational cross sectional study in two hemodialysis center. Three statistical approaches were conducted. First, we compared patients treated with ESA and those not treated. Second, we performed linear regression models between IAA, IS, and PCS plasma concentrations and hemoglobin, the ESA dose over hemoglobin ratio (ESA/Hemoglobin) or the ESA resistance index (ERI). Third, we used a polytomous logistic regression model to compare groups of patients with no/low/high ESA dose and low/high hemoglobin statuses. Overall, 240 patients were included in the study. Mean age ± SD was 67.6 ± 16.0 years, 55.4% were men and 42.5% had diabetes mellitus. When compared with ESA treated patients, patients with no ESA had higher hemoglobin (mean 11.4 ± 1.1 versus 10.6 ± 1.2 g/dL; p <0.001), higher transferrin saturation (TSAT, 31.1 ± 16.3% versus 23.1 ± 11.5%; p < 0.001), less frequently an IV iron prescription (52.1 versus 65.7%, p = 0.04) and were more frequently treated with hemodiafiltration (53.5 versus 36.7%). In univariate analysis, IAA, IS or PCS plasma concentrations did not differ between the two groups. In the linear model, IAA plasma concentration was not associated with hemoglobin, but was negatively associated with ESA/Hb (p = 0.02; R = 0.18) and with the ERI (p = 0.03; R = 0

  14. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain.

    PubMed

    Huang, Xuenian; Lu, Xuefeng; Li, Yueming; Li, Xia; Li, Jian-Jun

    2014-08-11

    Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn't been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity. The genetic engineering approach hasn't been applied in industrial A. terreus strains to increase itaconic acid production. In this study, the genes closely related to itaconic acid production, including cadA, mfsA, mttA, ATEG_09969, gpdA, ATEG_01954, acoA, mt-pfkA and citA, were identified and overexpressed in an industrial A. terreus strain respectively. Overexpression of the genes cadA (cis-aconitate decarboxylase) and mfsA (Major Facilitator Superfamily Transporter) enhanced the itaconate production level by 9.4% and 5.1% in shake flasks respectively. Overexpression of other genes showed varied effects on itaconate production. The titers of other organic acids were affected by the introduced genes to different extent. Itaconic acid production could be improved through genetic engineering of the industrially used A. terreus strain. We have identified some important genes such as cadA and mfsA, whose overexpression led to the increased itaconate productivity, and successfully developed a strategy to establish a highly efficient microbial cell factory for itaconate protuction. Our results will provide a guide for further enhancement of the itaconic acid production level through genetic engineering in future.

  15. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Phylloplane bacteria of Jatropha curcas: diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling.

    PubMed

    Dubey, Garima; Kollah, Bharati; Ahirwar, Usha; Mandal, Asit; Thakur, Jyoti Kumar; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2017-10-01

    The complex role of phylloplane microorganisms is less understood than that of rhizospheric microorganisms in lieu of their pivotal role in plant's sustainability. This experiment aims to study the diversity of the culturable phylloplane bacteria of Jatropha curcas and evaluate their growth-promoting activities towards maize seedling vigor. Heterotrophic bacteria were isolated from the phylloplane of J. curcas and their 16S rRNA genes were sequenced. Sequences of the 16S rRNA gene were very similar to those of species belonging to the classes Bacillales (50%), Gammaproteobacteria (21.8%), Betaproteobacteria (15.6%), and Alphaproteobacteria (12.5%). The phylloplane bacteria preferred to utilize alcohol rather than monosaccharides and polysaccharides as a carbon source. Isolates exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase, phosphatase, potassium solubilization, and indole acetic acid (IAA) production activities. The phosphate-solubilizing capacity (mg of PO 4 solubilized by 10 8 cells) varied from 0.04 to 0.21. The IAA production potential (μg IAA produced by 10 8 cells in 48 h) of the isolates varied from 0.41 to 9.29. Inoculation of the isolates to maize seed significantly increased shoot and root lengths of maize seedlings. A linear regression model of the plant-growth-promoting activities significantly correlated (p < 0.01) with the growth parameters. Similarly, a correspondence analysis categorized ACC deaminase and IAA production as the major factors contributing 41% and 13.8% variation, respectively, to the growth of maize seedlings.

  17. Detection and Quantification of Valerenic Acid in Commercially Available Valerian Products

    ERIC Educational Resources Information Center

    Douglas, Ruth H.; Muldowney, Ciaran A.; Mohamed, Rabab; Keohane, Fiona; Shanahan, Catherine; Walsh, John J.; Kavanagh, Pierce V.

    2007-01-01

    Several valerian-containing products sold in pharmacies were evaluated to verify the presence of Valeriana officinalis by identifying the presence of valerenic acid found only in species of Valeriana. The content of valerenic acid was found to vary considerably in the products analyzed, thus emphasizing the importance of standardizing herbal…

  18. Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid.

    PubMed

    Corona-González, Rosa Isela; Miramontes-Murillo, Ricardo; Arriola-Guevara, Enrique; Guatemala-Morales, Guadalupe; Toriz, Guillermo; Pelayo-Ortiz, Carlos

    2014-07-01

    The production of succinic acid was studied with entrapped and adsorbed Actinobacillus succinogenes. The adsorption of fermentation products (organic acids in the concentration range of 1-20 g/L) on different supports was evaluated. It was found that succinic acid was adsorbed in small quantities on diatomite and zeolite (12.6 mg/g support). The highest production of succinic acid was achieved with A. succinogenes entrapped in agar beads. Batch fermentations with immobilized cells were carried out with glucose concentrations ranging from 20 to 80 g/L. Succinic acid (43.4 g/L) was obtained from 78.3g/L glucose, and a high productivity (2.83 g/Lh) was obtained with a glucose concentration of 37.6g/L. For repeated batch fermentations (5 cycles in 72 h) with immobilized cells in agar, the total glucose consumed was 147.55 g/L, while the production of succinic acid was 107 g/L. Immobilized cells reduced significantly the fermentation time, yield, productivity and final concentration of succinic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O& #x27; Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  20. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde [Sycamore, IL; Ingram, Lonnie O'Neal [Gainesville, FL; Shanmugam, Keelnatham T [Gainesville, FL; Yomano, Lorraine [Gainesville, FL; Grabar, Tammy B [Gainesville, FL; Moore, Jonathan C [Gainesville, FL

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  1. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    PubMed

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates.

  2. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with...

  3. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    PubMed

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H 2 SO 4 ) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Discovery of a Phosphonoacetic Acid Derived Natural Product by Pathway Refactoring.

    PubMed

    Freestone, Todd S; Ju, Kou-San; Wang, Bin; Zhao, Huimin

    2017-02-17

    The activation of silent natural product gene clusters is a synthetic biology problem of great interest. As the rate at which gene clusters are identified outpaces the discovery rate of new molecules, this unknown chemical space is rapidly growing, as too are the rewards for developing technologies to exploit it. One class of natural products that has been underrepresented is phosphonic acids, which have important medical and agricultural uses. Hundreds of phosphonic acid biosynthetic gene clusters have been identified encoding for unknown molecules. Although methods exist to elicit secondary metabolite gene clusters in native hosts, they require the strain to be amenable to genetic manipulation. One method to circumvent this is pathway refactoring, which we implemented in an effort to discover new phosphonic acids from a gene cluster from Streptomyces sp. strain NRRL F-525. By reengineering this cluster for expression in the production host Streptomyces lividans, utility of refactoring is demonstrated with the isolation of a novel phosphonic acid, O-phosphonoacetic acid serine, and the characterization of its biosynthesis. In addition, a new biosynthetic branch point is identified with a phosphonoacetaldehyde dehydrogenase, which was used to identify additional phosphonic acid gene clusters that share phosphonoacetic acid as an intermediate.

  5. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.

    PubMed

    Walton, Sara L; Bischoff, Kenneth M; van Heiningen, Adriaan R P; van Walsum, G Peter

    2010-08-01

    Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose-utilizing capabilities. It was found to have high tolerance for inhibitors such as acetic acid and sodium, which are present in pre-pulping hemicellulose extracts. Fermentation of 20 g/l xylose in the presence of 30 g/l acetic acid required a longer lag phase but overall lactic acid yield was not diminished. Similarly, fermentation of xylose in the presence of 20 g/l sodium increased the lag time but did not affect overall product yield, though 30 g/l sodium proved completely inhibitory. Fermentation of hot water-extracted Siberian larch containing 45 g/l total monosaccharides, mainly galactose and arabinose, produced 33 g/l lactic acid in 60 h and completely consumed all sugars. Small amounts of co-products were formed, including acetic acid, formic acid, and ethanol. Hemicellulose extract formed during autohydrolysis of mixed hardwoods contained mainly xylose and was converted into lactic acid with a 94% yield. Green liquor-extracted hardwood hemicellulose containing 10 g/l acetic acid and 6 g/l sodium was also completely converted into lactic acid at a 72% yield. The Bacillus coagulans MXL-9 strain was found to be well suited to production of lactic acid from lignocellulosic biomass due to its compatibility with conditions favorable to industrial enzymes and its ability to withstand inhibitors while rapidly consuming all pentose and hexose sugars of interest at high product yields.

  6. Increasing carbon availability stimulates growth and secondary metabolites via modulation of phytohormones in winter wheat

    PubMed Central

    Reichelt, Michael; Chowdhury, Somak; Hammerbacher, Almuth; Hartmann, Henrik

    2017-01-01

    Abstract Phytohormones play important roles in plant acclimation to changes in environmental conditions. However, their role in whole-plant regulation of growth and secondary metabolite production under increasing atmospheric CO2 concentrations ([CO2]) is uncertain but crucially important for understanding plant responses to abiotic stresses. We grew winter wheat (Triticum aestivum) under three [CO2] (170, 390, and 680 ppm) over 10 weeks, and measured gas exchange, relative growth rate (RGR), soluble sugars, secondary metabolites, and phytohormones including abscisic acid (ABA), auxin (IAA), jasmonic acid (JA), and salicylic acid (SA) at the whole-plant level. Our results show that, at the whole-plant level, RGR positively correlated with IAA but not ABA, and secondary metabolites positively correlated with JA and JA-Ile but not SA. Moreover, soluble sugars positively correlated with IAA and JA but not ABA and SA. We conclude that increasing carbon availability stimulates growth and production of secondary metabolites via up-regulation of auxin and jasmonate levels, probably in response to sugar-mediated signalling. Future low [CO2] studies should address the role of reactive oxygen species (ROS) in leaf ABA and SA biosynthesis, and at the transcriptional level should focus on biosynthetic and, in particular, on responsive genes involved in [CO2]-induced hormonal signalling pathways. PMID:28159987

  7. Pleiotropic effects of the male sterile33 (ms33) mutation in Arabidopsis are associated with modifications in endogenous gibberellins, indole-3-acetic acid and abscisic acid.

    PubMed

    Fei, Houman; Zhang, Ruichuan; Pharis, Richard P; Sawhney, Vipen K

    2004-08-01

    Earlier, we reported that mutation in the Male Sterile33 (MS33) locus in Arabidopsis thaliana causes inhibition of stamen filament growth and a defect in the maturation of pollen grains [Fei and Sawhney (1999) Physiol Plant 105:165-170; Fei and Sawhney (2001) Can J Bot 79:118-129]. Here we report that the ms33 mutant has other pleiotropic effects, including aberrant growth of all floral organs and a delay in seed germination and in flowering time. These defects could be partially or completely restored by low temperature or by exogenous gibberellin A4 (GA4), which in all cases was more effective than GA3. Analysis of endogenous GAs showed that in wild type (WT) mature flowers GA4 was the major GA, and that relative to WT the ms33 flowers had low levels of the growth active GAs, GA1 and GA4, and very reduced levels of GA9, GA24 and GA15, precursors of GA4. This suggests that mutation in the MS33 gene may suppress the GA biosynthetic pathway that leads to GA4 via GA9 and the early 13-H C20 GAs. WT flowers also possessed a much higher level of indole-3-acetic acid (IAA), and a lower level of abscisic acid (ABA), relative to ms33 flowers. Low temperature induced partial restoration of male fertility in the ms33 flowers and this was associated with partial increase in GA4. In contrast, in WT flowers GA1 and GA4 were very much reduced by low temperature. Low temperature also had little effect on IAA or ABA levels of ms33 flowers, but did reduce (>2-fold) IAA levels in WT flowers. The double mutants, ms33 aba1-1 (an ABA-deficient mutant), and ms33 spy-3 (a GA signal transduction mutant) had flower phenotypes similar to ms33. Together, the data suggest that the developmental defects in the ms33 mutant are unrelated to ABA levels, but may be causally associated with reduced levels of IAA, GA1 and GA4, compared to WT flowers.

  8. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  9. The IAA Cosmic Study 'Protecting the Environment of Celestial Bodies'

    NASA Astrophysics Data System (ADS)

    Rettberg, Petra; Hofmann, Mahulena; Williamson, Mark

    The study group tasked with producing this International Academy of Astronautics (IAA) `Cosmic Study' on Protecting the Environment of Celestial Bodies was formed under the aus-pices of IAA Commission V (Space Policy, Law Economy). The members of the international, multidisciplinary team assembled to undertake the Study accept, as a premise, the Planetary Protection Policy guidelines developed by COSPAR, which differentiate the degree of protec-tion according to the type of space activity and the celestial body under investigation (such that fly-by missions have less stringent requirements than lander missions, while Mars is `better protected' than the Moon). However, this Study goes deliberately beyond the interpretation of `Planetary Protection' as a set of methods for protecting the planets from biological con-tamination and extends consideration to the geophysical, industrial and cultural realms. The Study concludes that, from the perspective of current and future activities in outer space, present measures aimed at protecting the space environment are insufficient. Deficiencies in-clude a lack of suitable in-situ methods of chemical and biological detection and the absence of a systematic record of radioactive contaminants. Other issues identified by the Study include an insufficient legal framework, a shortage of effective economic tools and a lack of political will to address these concerns. It is expected that new detection methods under development, and the resultant increase in microbiological knowledge of the planetary surfaces, will lead to changes in the COSPAR planetary protection guidelines and bioburden limits. It is important, however, that any new approaches should not hamper future exploration and exploitation of celestial bodies more than absolutely necessary. The Study addresses the need to find a balance between protection and freedom of action. From a legal perspective, the Study concludes that a general consensus on protection of the

  10. Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.

    PubMed

    Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens

    2010-05-01

    Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.

  11. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo...

  12. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo...

  13. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.

    PubMed

    Cheng, Chi; Zhou, Yipin; Lin, Meng; Wei, Peilian; Yang, Shang-Tian

    2017-01-01

    Polymalic acid (PMA) production by Aureobasidium pullulans ZX-10 from soybean hull hydrolysate supplemented with corn steep liquor (CSL) gave a malic acid yield of ∼0.4g/g at a productivity of ∼0.5g/L·h. ZX-10 can also ferment soy molasses, converting all carbohydrates including the raffinose family oligosaccharides to PMA, giving a high titer (71.9g/L) and yield (0.69g/g) at a productivity of 0.29g/L·h in fed-batch fermentation under nitrogen limitation. A higher productivity of 0.64g/L·h was obtained in repeated batch fermentation with cell recycle and CSL supplementation. Cost analysis for a 5000 MT plant shows that malic acid can be produced at $1.10/kg from soy molasses, $1.37/kg from corn, and $1.74/kg from soybean hull. At the market price of $1.75/kg, malic acid production from soy molasses via PMA fermentation offers an economically competitive process for industrial production of bio-based malic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276.

    PubMed

    Furlan, Valcenir Júnior Mendes; Maus, Victor; Batista, Irineu; Bandarra, Narcisa Maria

    The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22g/L, and fed-batch system experiments in which 0.14g/L of glucose and 0.0014g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9g/L) was obtained after 96h of cultivation in the batch system using initial concentrations of 0.22g/L total nitrogen and 30g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80g/L, respectively. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  16. A novel extractive fermentation process for propionic acid production from whey lactose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, V.P.; Yang, Shangtian

    An extractive fermentation process was developed to produce propionate from lactose. The bacterium Propionibacterium acidipropionici was immobilized in a spiral wound, fibrous matrix packed in the reactor. Propionic acid is the major product from lactose fermentation, with acetic acid and carbon dioxide as byproducts. Propionic acid is a strong inhibitor to this fermentation. A tertiary amine was used to selectively extract propionic acid from the bioreactor, hence enhancing reactor productivity by over 100%. The authors also speculate that by selectively extracting propionic acid, lactose metabolism can be directed to yield more propionate and less byproducts. Other advantages of extractive fermentationmore » include better pH control and a purer product. The propionic acid present in the extractant can be easily stripped with small amounts of an alkaline solution, resulting in a concentrated propionate salt. The extractant was also regenerated in this stripping step. Thus, the process is energy-efficient and economically attractive.« less

  17. Establishment and assessment of an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Bao, Jia-Wei; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the problem of extraction wastewater in citric acid industrial production, an improved integrated citric acid-methane production process was established in this study. Extraction wastewater was treated by anaerobic digestion and then the anaerobic digestion effluent (ADE) was stripped by air to remove ammonia. Followed by solid-liquid separation to remove metal ion precipitation, the supernatant was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. 130U/g glucoamylase was added to medium after inoculation and the recycling process performed for 10 batches. Fermentation time decreased by 20% in recycling and the average citric acid production (2nd-10th) was 145.9±3.4g/L, only 2.5% lower than that with tap water (149.6g/L). The average methane production was 292.3±25.1mL/g CODremoved and stable in operation. Excessive Na(+) concentration in ADE was confirmed to be the major challenge for the proposed process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  19. Microwave-assisted biodiesel production by esterification of palm fatty acid distillate.

    PubMed

    Lokman, Ibrahim M; Rashid, Umer; Zainal, Zulkarnain; Yunus, Robiah; Taufiq-Yap, Yun Hin

    2014-01-01

    In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.

  20. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    NASA Astrophysics Data System (ADS)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  1. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.

    PubMed

    Hossain, Abeer H; Li, An; Brickwedde, Anja; Wilms, Lars; Caspers, Martien; Overkamp, Karin; Punt, Peter J

    2016-07-28

    The industrially relevant filamentous fungus Aspergillus niger is widely used in industry for its secretion capabilities of enzymes and organic acids. Biotechnologically produced organic acids promise to be an attractive alternative for the chemical industry to replace petrochemicals. Itaconic acid (IA) has been identified as one of the top twelve building block chemicals which have high potential to be produced by biotechnological means. The IA biosynthesis cluster (cadA, mttA and mfsA) has been elucidated in its natural producer Aspergillus terreus and transferred to A. niger to enable IA production. Here we report the rewiring of a secondary metabolite pathway towards further improved IA production through the overexpression of a putative cytosolic citrate synthase citB in a A. niger strain carrying the IA biosynthesis cluster. We have previously shown that expression of cadA from A. terreus results in itaconic acid production in A. niger AB1.13, albeit at low levels. This low-level production is boosted fivefold by the overexpression of mttA and mfsA in itaconic acid producing AB1.13 CAD background strains. Controlled batch cultivations with AB1.13 CAD + MFS + MTT strains showed increased production of itaconic acid compared with AB1.13 CAD strain. Moreover, preliminary RNA-Seq analysis of an itaconic acid producing AB1.13 CAD strain has led to the identification of the putative cytosolic citrate synthase citB which was induced in an IA producing strain. We have overexpressed citB in a AB1.13 CAD + MFS + MTT strain and by doing so hypothesize to have targeted itaconic acid production to the cytosolic compartment. By overexpressing citB in AB1.13 CAD + MFS + MTT strains in controlled batch cultivations we have achieved highly increased titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h while no CA was produced. Expression of the IA biosynthesis cluster in Aspergillus niger AB1.13 strain enables IA production. Moreover, in the AB1.13 CAD

  2. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta).

    PubMed

    Gonzalez-Silvera, Daniel; Pérez, Sandra; Korbee, Nathalie; Figueroa, Félix L; Asencio, Antonia D; Aboal, Marina; López-Jiménez, José Ángel

    2017-10-01

    Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine-like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α-linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α-linolenic acids increased with lowering temperature. γ-linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types. © 2017 Phycological Society of America.

  3. Value of acid metabolic products in identification of certain corynebacteria.

    PubMed Central

    Reddy, C A; Kao, M

    1978-01-01

    Acid metabolic products of 23 strains of human and animal pathogenic corynebacteria, representing eight different species, were determined by gas chromatography. The results showed that the species examined were metabolically heterogeneous and could be presumptively identified based on the acid products produced. Corynebacterium equi did not produce any acids; C. renale produced lactate; and C. pyogenes produced major amounts of lactate, variable amounts of acetate, and minor amounts of succinate and pyruvate. C. kutscheri produced propionate and lactate as major products and pyruvate and oxalacetate as minor products. C. diphtheriae and C. pseudotuberculosis produced major amounts of propionate, acetate, and formate. In addition, C. pseudotuberculosis produced major amounts of pyruvate and minor amounts of succinate, lactate, and oxalacetate, whereas C. diphtheriae strains produced minor but variable amounts of lactate, succinate, fumarate, pyruvate, and oxalacetate. C. bovis produced aicd products similar to those of C. pyogenes but was readily distinguishable from the latter by the lack of hemolysis on blood agar, colony morphology, catalase reaction, and biochemicals. C. suis characteristically produced major amounts of ethanol, acetate, and formate and minor amounts of lactate and succinate but no propionate. PMID:96126

  4. Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus.

    PubMed

    Xu, Qianqian; Zang, Ying; Zhou, Jie; Liu, Peng; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-11-01

    Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of D-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for D-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of D-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest D-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of D-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of D-lactic acid production from inulin by SSF represents a high-yield method for D-lactic acid production from non-food grains.

  5. Gas chromatography-mass spectrometry evidence for several endogenous auxins in pea seedling organs.

    PubMed

    Schneider, E A; Kazakoff, C W; Wightman, F

    1985-08-01

    Qualitative analysis by gas chromatography-mass spectrometry (GC-MS) of the auxins present in the root, cotyledons and epicotyl of 3-dold etiolated pea (Pisum sativum L., cv. Alaska) seedlings has shown that all three organs contain phenylacetic acid (PAA), 3-indoleacetic acid (IAA) and 4-chloro-3-indoleacetic acid (4Cl-IAA). In addition, 3-indolepropionic acid (IPA) was present in the root and 3-indolebutyric acid (IBA) was detected in both root and epicotyl. Phenylacetic acid, IAA and IPA were measured quantitatively in the three organs by GC-MS-single ion monitoring, using deuterated internal standards. Levels of IAA were found to range from 13 to 115 pmol g(-1) FW, while amounts of PAA were considerably higher (347-451 pmol g(-1) FW) and the level of IPA was quite low (5 pmol g(-1) FW). On a molar basis the PAA:IAA ratio in the whole seedling was approx. 15:1.

  6. Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective.

    PubMed

    Boruta, Tomasz; Bizukojc, Marcin

    2017-02-01

    Aspergillus terreus is a textbook example of an industrially relevant filamentous fungus. It is used for the biotechnological production of two valuable metabolites, namely itaconic acid and lovastatin. Itaconic acid serves as a precursor in polymer industry, whereas lovastatin found its place in the pharmaceutical market as a cholesterol-lowering statin drug and a precursor for semisynthetic statins. Interestingly, their biosynthetic gene clusters were shown to reside in the common genetic neighborhood. Despite the genomic proximity of the underlying biosynthetic genes, the production of lovastatin and itaconic acid was shown to be favored by different factors, especially with respect to pH values of the broth. While there are several reviews on various aspects of lovastatin and itaconic acid production, the survey on growth conditions, biochemistry and morphology related to the formation of these two metabolites has never been presented in the comparative manner. The aim of the current review is to outline the correlations and contrasts with respect to process-related and biochemical discoveries regarding itaconic acid and lovastatin production by A. terreus.

  7. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes.

    PubMed

    Xu, Guoqiang; Chen, Xiulai; Liu, Liming; Jiang, Linghuo

    2013-11-01

    In this study, the simultaneous use of reductive and oxidative routes to produce fumaric acid was explored. The strain FMME003 (Saccharomyces cerevisiae CEN.PK2-1CΔTHI2) exhibited capability to accumulate pyruvate and was used for fumaric acid production. The fum1 mutant FMME004 could produce fumaric acid via oxidative route, but the introduction of reductive route derived from Rhizopus oryzae NRRL 1526 led to lower fumaric acid production. Analysis of the key factors associated with fumaric acid production revealed that pyruvate carboxylase had a low degree of control over the carbon flow to malic acid. The fumaric acid titer was improved dramatically when the heterologous gene RoPYC was overexpressed and 32 μg/L of biotin was added. Furthermore, under the optimal carbon/nitrogen ratio, the engineered strain FMME004-6 could produce up to 5.64 ± 0.16 g/L of fumaric acid. These results demonstrated that the proposed fermentative method is efficient for fumaric acid production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses.

    PubMed

    Mucchetti, G; Locci, F; Massara, P; Vitale, R; Neviani, E

    2002-10-01

    Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.

  9. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market.

    PubMed

    Baumann, Ivan; Westermann, Peter

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  10. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    PubMed Central

    Baumann, Ivan

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed. PMID:27556042

  11. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    PubMed

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  12. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  13. Determination of amino acids in grape-derived products: a review.

    PubMed

    Callejón, R M; Troncoso, A M; Morales, M L

    2010-06-15

    The amino acids present in foods and beverages affect the quality of these products and they play an important role in enology. Amino acids are consumed by yeasts as a source of nitrogen during alcoholic fermentation and are precursors of aroma compounds. In this review various chromatographic methodologies for the determination of amino acids are described, and specific applications for the analysis of amino acid content are discussed. Amino acids usually need to be derivatized to make them more detectable. Several derivatizing reagents have been employed for the determination of amino acids in enological applications, and each has its advantages and disadvantages.

  14. Mixed Carboxylic Acid Production by Megasphaera elsdenii from Glucose and Lignocellulosic Hydrolysate

    DOE PAGES

    Nelson, Robert S.; Peterson, Darren J.; Karp, Eric M.; ...

    2017-03-01

    Here, volatile fatty acids (VFAs) can be readily produced from many anaerobic microbes and subsequently utilized as precursors to renewable biofuels and biochemicals. Megasphaera elsdenii represents a promising host for production of VFAs, butyric acid (BA) and hexanoic acid (HA). However, due to the toxicity of these acids, product removal via an extractive fermentation system is required to achieve high titers and productivities. Here, we examine multiple aspects of extractive separations to produce BA and HA from glucose and lignocellulosic hydrolysate with M. elsdenii. A mixture of oleyl alcohol and 10% (v/v) trioctylamine was selected as an extraction solvent duemore » to its insignificant inhibitory effect on the bacteria. Batch extractive fermentations were conducted in the pH range of 5.0 to 6.5 to select the best cell growth rate and extraction efficiency combination. Subsequently, fed-batch pertractive fermentations were run over 230 h, demonstrating high BA and HA concentrations in the extracted fraction (57.2 g/L from ~190 g/L glucose) and productivity (0.26 g/L/h). To our knowledge, these are the highest combined acid titers and productivity values reported for M. elsdenii and bacterial mono-cultures from sugars. Lastly, the production of BA and HA (up to 17 g/L) from lignocellulosic sugars was demonstrated.« less

  15. Mixed Carboxylic Acid Production by Megasphaera elsdenii from Glucose and Lignocellulosic Hydrolysate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Robert S.; Peterson, Darren J.; Karp, Eric M.

    Here, volatile fatty acids (VFAs) can be readily produced from many anaerobic microbes and subsequently utilized as precursors to renewable biofuels and biochemicals. Megasphaera elsdenii represents a promising host for production of VFAs, butyric acid (BA) and hexanoic acid (HA). However, due to the toxicity of these acids, product removal via an extractive fermentation system is required to achieve high titers and productivities. Here, we examine multiple aspects of extractive separations to produce BA and HA from glucose and lignocellulosic hydrolysate with M. elsdenii. A mixture of oleyl alcohol and 10% (v/v) trioctylamine was selected as an extraction solvent duemore » to its insignificant inhibitory effect on the bacteria. Batch extractive fermentations were conducted in the pH range of 5.0 to 6.5 to select the best cell growth rate and extraction efficiency combination. Subsequently, fed-batch pertractive fermentations were run over 230 h, demonstrating high BA and HA concentrations in the extracted fraction (57.2 g/L from ~190 g/L glucose) and productivity (0.26 g/L/h). To our knowledge, these are the highest combined acid titers and productivity values reported for M. elsdenii and bacterial mono-cultures from sugars. Lastly, the production of BA and HA (up to 17 g/L) from lignocellulosic sugars was demonstrated.« less

  16. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    PubMed

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  17. Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil.

    PubMed

    Liphadzi, M S; Kirkham, M B; Paulsen, G M

    2006-06-01

    A technology to increase root growth would be advantageous for phytoremediation of trace metal polluted soil, because more roots would be available for metal uptake. The objective of this study was to determine if the auxin, indole-3-acetic acid (IAA), would increase root growth in soil with metals from sewage sludge, when the tetrasodium salt of the chelate EDTA (ethylenediamine-tetraacetic acid) was added to solubilize the metals. Sunflower (Helianthus annuus L.) plants grew in large pots containing either soil from a sludge farm or composted sludge. The EDTA salt was added at a rate of 1 g kg(-1) soil 37 days after planting. IAA at the rate of 3 or 6 mg l(-1) was sprayed on the leaves (500 ml) and added to the soil (500 ml) three times: 41, 50, and 74 days after planting. At harvest 98 days after planting, oven-dry weights were measured, and plant organs were analyzed for Cd, Cu, Fe, Mn, Ni, Pb, and Zn. Metal uptake was determined as the product of metal concentration in an organ and weight. IAA increased root growth of plants grown in the soil with sludge when no EDTA was present. With no EDTA, Mn and Ni in leaves of plants grown in the soil were higher at 3 and 6 mg l(-1) IAA compared to 0 mg l(-1) IAA. With and without EDTA, Cd and Pb in leaves of plants grown in the compost were higher with 3 and 6 mg l(-1) IAA compared to 0 mg l(-1) IAA.

  18. Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl

    NASA Technical Reports Server (NTRS)

    Jones, A. M.; Cochran, D. S.; Lamerson, P. M.; Evans, M. L.; Cohen, J. D.

    1991-01-01

    We examined the changes in the levels of indoleacetic acid (IAA), IAA esters, and a 22-kilodalton subunit auxin-binding protein (ABP1) in apical mesocotyl tissue of maize (Zea mays L.) during continuous red light (R) irradiation. These changes were compared with the kinetics of R-induced growth inhibition in the same tissue. Upon the onset of continuous irradiation, growth decreased in a continuous manner following a brief lag period. The decrease in growth continued for 5 hours, then remained constant at 25% of the dark rate. The abundance of ABP1 and the level of free IAA both decreased in the mesocotyl. Only the kinetics of the decrease in IAA within the apical mesocotyl correlated with the initial change in growth, although growth continued to decrease even after IAA content reached its final level, 50% of the dark control. This decrease in IAA within the mesocotyl probably occurs primarily by a change in its transport within the shoot since auxin applied as a pulse move basipetally in R-irradiated tissue at the same rate but with half the area as dark control tissue. In situ localization of auxin in etiolated maize shoots revealed that R-irradiated shoots contained less auxin in the epidermis than the dark controls. Irradiated mesocotyl grew 50% less than the dark controls even when incubated in an optimal level of auxin. However, irradiated and dark tissue contained essentially the same amount of radioactivity after incubation in [14C]IAA indicating that the light treatment does not affect the uptake into the tissue through the cut end, although it is possible that a small subset of cells within the mesocotyl is affected. These observations support the hypothesis that R causes a decrease in the level of auxin in epidermal cells of the mesocotyl, consequently constraining the growth of the entire mesocotyl.

  19. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    PubMed

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-12-01

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis.

    PubMed

    Xiao, Zhiping; Cheng, Chu; Bao, Teng; Liu, Lujie; Wang, Bin; Tao, Wenjing; Pei, Xun; Yang, Shang-Tian; Wang, Minqi

    2018-01-01

    Butyric acid is an important chemical currently produced from petrochemical feedstocks. Its production from renewable, low-cost biomass in fermentation has attracted large attention in recent years. In this study, the feasibility of corn husk, an abundant agricultural residue, for butyric acid production by using Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was evaluated. Hydrolysis of corn husk (10% solid loading) with 0.4 M H 2 SO 4 at 110 °C for 6 h resulted in a hydrolysate containing ~ 50 g/L total reducing sugars (glucose:xylose = 1.3:1.0). The hydrolysate was used for butyric acid fermentation by C. tyrobutyricum in a FBB, which gave 42.6 and 53.0% higher butyric acid production from glucose and xylose, respectively, compared to free-cell fermentations. Fermentation with glucose and xylose mixture (1:1) produced 50.37 ± 0.04 g L -1 butyric acid with a yield of 0.38 ± 0.02 g g -1 and productivity of 0.34 ± 0.03 g L -1  h -1 . Batch fermentation with corn husk hydrolysate produced 21.80 g L -1 butyric acid with a yield of 0.39 g g -1 , comparable to those from glucose. Repeated-batch fermentations consistently produced 20.75 ± 0.65 g L -1 butyric acid with an average yield of 0.39 ± 0.02 g g -1 in three consecutive batches. An extractive fermentation process can be used to produce, separate, and concentrate butyric acid to > 30% (w/v) sodium butyrate at an economically attractive cost for application as an animal feed supplement. A high concentration of total reducing sugars at ~ 50% (w/w) yield was obtained from corn husk after acid hydrolysis. Stable butyric acid production from corn husk hydrolysate was achieved in repeated-batch fermentation with C. tyrobutyricum immobilized in a FBB, demonstrating that corn husk can be used as an economical substrate for butyric acid production.

  1. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    PubMed Central

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  2. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.

    PubMed

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-09-02

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids.

  3. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment.

    PubMed

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Dąbkowska, Katarzyna; Angelidaki, Irini

    2018-05-29

    The aim of this study was to develop an integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production process from rapeseed straw after dilute-acid pretreatment. Rapeseed straw pretreatment at 20% (w/v) solid loading and subsequent hydrolysis with Cellic® CTec2 resulted in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10% compared to the process with Cellic® CTec2. Significantly higher amounts of succinic acid were produced after fermentation of pretreatment liquor (48 kg/Mg of rapeseed straw, succinic acid yield: 60%) compared to fermentation of xylose-rich residue after ethanol production (35-37 kg/Mg of rapeseed straw, succinic yield: 68-71%). Results obtained in this study clearly proved the biorefinery potential of rapeseed straw. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Continuous succinic acid production from xylose by Actinobacillus succinogenes.

    PubMed

    Bradfield, Michael F A; Nicol, Willie

    2016-02-01

    Continuous, anaerobic fermentations of D-xylose were performed by Actinobacillus succinogenes 130Z in a custom, biofilm reactor at dilution rates of 0.05, 0.10 and 0.30 h(-1). Succinic acid yields on xylose (0.55-0.68 g g(-1)), titres (10.9-29.4 g L(-1)) and productivities (1.5-3.4 g L(-1) h(-1)) were lower than those of a previous study on glucose, but product ratios (succinic acid/acetic acid = 3.0-5.0 g g(-1)) and carbohydrate consumption rates were similar. Also, mass balance closures on xylose were up to 18.2 % lower than those on glucose. A modified HPLC method revealed pyruvic acid excretion at appreciable concentrations (1.2-1.9 g L(-1)) which improved the mass balance closure by up to 16.8 %. Furthermore, redox balances based on the accounted xylose consumed and the excreted metabolites, indicated an overproduction of reducing power. The oxidative pentose phosphate pathway was shown to be a plausible source of the additional reducing power.

  5. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  6. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin

    PubMed Central

    2011-01-01

    Background Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid. This catalyst had high acid density as characterized by scanning electron microscope (SEM), energy-dispersive x-ray spectrometry (EDX) and Brunauer, Emmett, and Teller (BET) method analyses. It was further used to catalyze the esterification of oleic acid and one-step conversion of non-pretreated Jatropha oil to biodiesel. The effects of catalyst loading, reaction temperature and oil-to-methanol molar ratio, on the catalytic activity of the esterification were investigated. Results The highest catalytic activity was achieved with a 96.1% esterification rate, and the catalyst can be reused three times with little deactivation under optimized conditions. Biodiesel production from Jatropha oil was studied under such conditions. It was found that 96.3% biodiesel yield from non-pretreated Jatropha oil with high-acid value (12.7 mg KOH/g) could be achieved. Conclusions The catalyst can be easily separated for reuse. This single-step process could be a potential route for biodiesel production from high-acid value oil by simplifying the procedure and reducing costs. PMID:22145867

  7. Monascus ruber as cell factory for lactic acid production at low pH.

    PubMed

    Weusthuis, Ruud A; Mars, Astrid E; Springer, Jan; Wolbert, Emil Jh; van der Wal, Hetty; de Vrije, Truus G; Levisson, Mark; Leprince, Audrey; Houweling-Tan, G Bwee; Pha Moers, Antoine; Hendriks, Sjon Na; Mendes, Odette; Griekspoor, Yvonne; Werten, Marc Wt; Schaap, Peter J; van der Oost, John; Eggink, Gerrit

    2017-07-01

    A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate. Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190g/l at pH 3.8 and 129g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature for lactic acid production at low pH. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Effects of N6-benzylaminopurine and Indole Acetic Acid on In Vitro Shoot Multiplication, Nodule-like Meristem Proliferation and Plant Regeneration of Malaysian Bananas (Musa spp.)

    PubMed Central

    Sipen, Philip; Davey, Michael R

    2012-01-01

    Different concentrations of N6-benzylaminopurine (BAP) and indole acetic acid (IAA) in Murashige and Skoog based medium were assessed for their effects on shoot multiplication, nodule-like meristem proliferation and plant regeneration of the Malaysian banana cultivars Pisang Mas, Pisang Nangka, Pisang Berangan and Pisang Awak. BAP at 1–14 mg L−1 with or without 0.2 mg L−1 IAA, or BAP at 7–14 mg L−1 with the same concentration of IAA, was evaluated for shoot multiplication from shoot tips and the proliferation of nodule-like meristems from scalps, respectively. Plant regeneration from scalps was assessed using 1 mg L−1 BAP and 0.2 mg L−1 IAA separately, or a combination of these two growth regulators. Data on shoot multiplication, the proliferation of nodule-like meristems with associated plant regeneration were recorded after 30 days of culture. A maximum of 5 shoots per original shoot tip was achieved on medium supplemented with BAP at 5 mg L−1 (Pisang Nangka), 6 mg L−1 (Pisang Mas and Pisang Berangan), or 7 mg L−1 (Pisang Awak), with 0.2 mg L−1 IAA. BAP at 11 mg L−1 with 0.2 mg L−1 IAA induced the most highly proliferating nodule-like meristems in the four banana cultivars. Plant regeneration from scalps was optimum in all cases on medium containing 1 mg L−1 BAP and 0.2 mg L−1 IAA. This is the first report on the successful induction of highly proliferating nodule-like meristems and plant regeneration from scalps of the Malaysian banana cultivars Pisang Mas, Pisang Nangka, Pisang Berangan and Pisang Awak. PMID:24575235

  9. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.

    PubMed

    Okino, Shohei; Suda, Masako; Fujikura, Keitaro; Inui, Masayuki; Yukawa, Hideaki

    2008-03-01

    In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of L-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce D-lactic acid. The modification involved expression of fermentative D-lactate dehydrogenase (D-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in L-lactate dehydrogenase (L-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum DeltaldhA/pCRB201 and C. glutamicum DeltaldhA/pCRB204, respectively. The productivity of C. glutamicum DeltaldhA/pCRB204 was fivefold higher than that of C. glutamicum DeltaldhA/pCRB201. By using C. glutamicum DeltaldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l(-1)) of D-lactic acid of greater than 99.9% optical purity was produced within 30 h.

  10. Reassessing the Role of N-Hydroxytryptamine in Auxin Biosynthesis1[W][OA

    PubMed Central

    Tivendale, Nathan D.; Davies, Noel W.; Molesworth, Peter P.; Davidson, Sandra E.; Smith, Jason A.; Lowe, Edwin K.; Reid, James B.; Ross, John J.

    2010-01-01

    The tryptamine pathway is one of five proposed pathways for the biosynthesis of indole-3-acetic acid (IAA), the primary auxin in plants. The enzymes AtYUC1 (Arabidopsis thaliana), FZY (Solanum lycopersicum), and ZmYUC (Zea mays) are reported to catalyze the conversion of tryptamine to N-hydroxytryptamine, putatively a rate-limiting step of the tryptamine pathway for IAA biosynthesis. This conclusion was based on in vitro assays followed by mass spectrometry or HPLC analyses. However, there are major inconsistencies between the mass spectra reported for the reaction products. Here, we present mass spectral data for authentic N-hydroxytryptamine, 5-hydroxytryptamine (serotonin), and tryptamine to demonstrate that at least some of the published mass spectral data for the YUC in vitro product are not consistent with N-hydroxytryptamine. We also show that tryptamine is not metabolized to IAA in pea (Pisum sativum) seeds, even though a PsYUC-like gene is strongly expressed in these organs. Combining these findings, we propose that at present there is insufficient evidence to consider N-hydroxytryptamine an intermediate for IAA biosynthesis. PMID:20974893

  11. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves

    USDA-ARS?s Scientific Manuscript database

    The seeds of many non-domesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered ...

  12. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    PubMed

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Organic acid pretreatment of oil palm trunk: effect on enzymatic saccharification and ethanol production.

    PubMed

    Rattanaporn, Kittipong; Tantayotai, Prapakorn; Phusantisampan, Theerawut; Pornwongthong, Peerapong; Sriariyanun, Malinee

    2018-04-01

    Effective lignocellulosic biomass saccharification is one of the crucial requirements of biofuel production via fermentation process. Organic acid pretreatments have been gained much interests as one of the high potential methods for promoting enzymatic saccharification of lignocellulosic materials due to their lower hazardous properties and lower production of inhibitory by-products of fermentation than typical chemical pretreatment methods. In this study, three organic acids, including acetic acid, oxalic acid, and citric acid, were examined for improvement of enzymatic saccharification and bioethanol production from oil palm trunk biomass. Based on response surface methodology, oxalic acid pretreated biomass released the maximum reducing sugar of 144 mg/g-pretreated biomass at the optimum condition, which was higher than untreated samples for 2.30 times. The released sugar yield of oil palm trunk also corresponded to the results of FT-IR analysis, which revealed the physical modification of cellulose and hemicellulose surface structures of pretreated biomass. Nevertheless, citric acid pretreatment is the most efficient pretreatment method to improve bioethanol fermentation of Saccharomyces cerevisiae TISTR 5606 at 1.94 times higher than untreated biomass. These results highlighted the selection of organic acid pretreatment as a potential method for biofuel production from oil palm trunk feedstocks.

  14. Induction of Thymic Stromal Lymphopoietin Production by Nonanoic Acid and Exacerbation of Allergic Inflammation in Mice

    PubMed Central

    Yamashita, Saori; Segawa, Ryosuke; Satou, Nozomi; Hiratsuka, Masahiro; Leonard, Warren J.; Hirasawa, Noriyasu

    2013-01-01

    Background Thymic stromal lymphopoietin (TSLP) plays critical roles in the induction and exacerbation of allergic diseases. We tested various chemicals in the environment and found that xylene and 1,2,4-trimethylbenzene induced the production of TSLP in vivo. These findings prompted us to search for additional chemicals that induce TSLP production. In this study, we examined whether fatty acids could induce the production of TSLP in vivo and exacerbate allergic inflammation. Methods Various fatty acids and related compounds were painted on the ear lobes of mice and the amount of TSLP in the homogenate of ear lobe tissue was determined. The effects of nonanoic acid on allergic inflammation were also examined. Results Octanoic acid, nonanoic acid, and decanoic acid markedly induced TSLP production, while a medium-chain aldehyde and alcohol showed only weak activity. Nonanoic acid induced the production of TSLP with a maximum at 24 h. TSLP production was even observed in nonanoic acid-treated C3H/HeJ mice that lacked functional toll-like receptor 4. The aryl hydrocarbon receptor agonist β-naphthoflavone did not induce TSLP production. Nonanoic acid promoted sensitization to ovalbumin, resulting in an enhancement in the cutaneous anaphylactic response. In addition, painting of nonanoic acid after the sensitization augmented picryl chloride-induced thickening of the ear, which was reversed in TSLP receptor-deficient mice. Conclusion Nonanoic acid and certain fatty acids induced TSLP production, resulting in the exacerbation of allergic inflammation. We propose that TSLP-inducing chemical compounds such as nonanoic acid be recognized as chemical allergo-accelerators. PMID:24060765

  15. Amino acid production exceeds plant nitrogen demand in Siberian tundra

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Eloy Alves, Ricardo J.; Bárta, Jiři; Čapek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas

    2018-03-01

    Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using 15N pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.

  16. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp

    PubMed Central

    Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol−1, 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol−1, 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol−1, incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol−1, and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol−1. The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535

  17. Triacetic acid lactone production from Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  18. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize

    PubMed Central

    Park, Yong-Soon; Bae, Dong-Won; Ryu, Choong-Min

    2015-01-01

    Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants. PMID:26630288

  19. Fatty acid analysis of Iranian junk food, dairy, and bakery products: Special attention to trans-fats

    PubMed Central

    Nazari, Bahar; Asgary, Sedigheh; Azadbakht, Leila

    2012-01-01

    Background: Low attention to dairy product consumptions and high intake of junk foods and bakery products might be related to high prevalence of chronic diseases because of their fat content and fatty acid composition. Objective: In this study we investigated the kind and amount of fatty acid content in Iranian junk foods, dairy, and bakery products Materials and Methods: Some common brands of Iranian’s junk foods, dairy, and bakery products were chosen randomly from different supermarkets in Iran. The amount of 10 g sample was considered for fatty acid analysis by gas chromatography equipment with flam ionization detector. Results: In this study stearic acid (C18:0) and palmitic (C16:0) acid have the highest amount among other saturated fatty acids in all groups. In junk foods and bakery products, the most common trans-fatty acid (TFA) is elaidic acid (C18:1 9t) with ranging from 2.4% to 18.5% and in dairy products vaccinic acid (C18:1 11t) has the high level of TFAs among others (2.1% to 11.5%). Conclusion: The amount of TFAs in Iranian junk foods and bakery products was in a high level. PMID:23825996

  20. Fatty acid analysis of Iranian junk food, dairy, and bakery products: Special attention to trans-fats.

    PubMed

    Nazari, Bahar; Asgary, Sedigheh; Azadbakht, Leila

    2012-10-01

    Low attention to dairy product consumptions and high intake of junk foods and bakery products might be related to high prevalence of chronic diseases because of their fat content and fatty acid composition. In this study we investigated the kind and amount of fatty acid content in Iranian junk foods, dairy, and bakery products. Some common brands of Iranian's junk foods, dairy, and bakery products were chosen randomly from different supermarkets in Iran. The amount of 10 g sample was considered for fatty acid analysis by gas chromatography equipment with flam ionization detector. In this study stearic acid (C18:0) and palmitic (C16:0) acid have the highest amount among other saturated fatty acids in all groups. In junk foods and bakery products, the most common trans-fatty acid (TFA) is elaidic acid (C18:1 9t) with ranging from 2.4% to 18.5% and in dairy products vaccinic acid (C18:1 11t) has the high level of TFAs among others (2.1% to 11.5%). The amount of TFAs in Iranian junk foods and bakery products was in a high level.

  1. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Volatile fatty acids production from marine macroalgae by anaerobic fermentation.

    PubMed

    Pham, Thi Nhan; Nam, Woo Joong; Jeon, Young Joong; Yoon, Hyon Hee

    2012-11-01

    Volatile fatty acids (VFAs) were produced from the marine macroalgae, Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinite by anaerobic fermentation using a microbial community derived from a municipal wastewater treatment plant. Methanogen inhibitor (iodoform), pH control, substrate concentration, and alkaline and thermal pretreatments affected VFA productivity. Acetic, propionic, and butyric acids were the main products. A maximum VFA concentration of 15.2g/L was obtained from 50 g/L of L. japonica in three days at 35°C and pH 6.5-7.0. Pretreatment with 0.5 N NaOH improved VFA productivity by 56% compared to control. The result shows the applicability of marine macroalgae as biomass feedstock for the production of VFAs which can be converted to mixed alcohol fuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V; Kumar, Amit; Hardwidge, Philip R; Govind, Revathi; Tanaka, Tsutomu; Kondo, Akihiko

    2016-01-01

    D-lactic acid is used as a monomer in the production of poly-D-lactic acid (PDLA), which is used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic acid by using all sugars derived from biomass efficiently, xylose-assimilating genes encoding xylose isomerase and xylulokinase were cloned into an L-lactate-deficient strain, Lactobacillus plantarum. The resulting recombinant strain, namely L. plantarum NCIMB 8826 ∆ldhL1-pLEM-xylAB, was able to produce D-lactic acid (at optical purity >99 %) from xylose at a yield of 0.53 g g(-1). Simultaneous utilization of glucose and xylose to produce D-lactic acid was also achieved by this strain, and 47.2 g L(-1) of D-lactic acid was produced from 37.5 g L(-1) glucose and 19.7 g L(-1) xylose. Corn stover and soybean meal extract (SBME) were evaluated as cost-effective medium components for D-lactic acid production. Optimization of medium composition using response surface methodology resulted in 30 % reduction in enzyme loading and 70 % reduction in peptone concentration. In addition, we successfully demonstrated D-lactic acid fermentation from corn stover and SBME in a fed-batch fermentation, which yielded 61.4 g L(-1) D-lactic acid with an overall yield of 0.77 g g(-1). All these approaches are geared to attaining high D-lactic acid production from biomass sugars to produce low-cost, highly thermostable biodegradable plastics.

  4. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    PubMed

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  5. Yarrowia lipolytica: a model yeast for citric acid production.

    PubMed

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Unusal pattern of product inhibition: batch acetic acid fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behaviormore » was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.« less

  7. Improving biomass and starch accumulation of bioenergy crop duckweed (Landoltia punctata) by abscisic acid application.

    PubMed

    Liu, Yang; Chen, Xiaoyi; Wang, Xinhui; Fang, Yang; Huang, Mengjun; Guo, Ling; Zhang, Yin; Zhao, Hai

    2018-06-22

    Duckweed is a valuable feedstock for bioethanol production due to its high biomass and starch accumulation. In our preliminary experiment, we found that abscisic acid (ABA) could simultaneously increase starch and biomass accumulation of duckweed, but the mechanisms are still unclear. The results showed that the biomass production of duckweed reached up to 59.70 and 63.93 g m -2 in 6 days, respectively, with an increase of 7% (P < 0.05) compared to the control. The starch percentage increased from 2.29% up to 46.18% after 14 days of treatment, with a total of starch level 2.6-fold higher than that of the control. Moreover, the level of endogenous ABA, zeatin-riboside (ZR) and indole-3-acetic acid (IAA) increased, while gibberellins (GAs) decreased. Notably, ABA content in treated samples reached 336.5 mg/kg (fresh weight), which was 7.5-fold greater than that of the control. Importantly, the enzyme activities involved in starch biosynthesis increased while those catalyzing starch degradation decreased after ABA application. Taken together, these results indicated that ABA can promote biomass and starch accumulation by regulating endogenous hormone levels and the activity of starch metabolism related key enzymes. These results will provide an operable method for high starch accumulation in duckweed for biofuels production.

  8. Efficient production of free fatty acids from soybean meal carbohydrates.

    PubMed

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids. © 2015 Wiley Periodicals, Inc.

  9. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    PubMed

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria

    PubMed Central

    Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-01-01

    Summary Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar. PMID:27956867

  11. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria.

    PubMed

    Dias, Disney Ribeiro; Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-09-01

    Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba ( Myrciaria jaboticaba ) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans . To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

  12. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    USDA-ARS?s Scientific Manuscript database

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  13. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  14. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  15. Citric acid production by Koji fermentation using banana peel as a novel substrate.

    PubMed

    Karthikeyan, Alagarsamy; Sivakumar, Nallusamy

    2010-07-01

    The growing demand for citric acid and the current need for alternative sources have encouraged biotechnologists to search for novel and economical substrates. Koji fermentation was conducted using the peels of banana (Musa acuminata) as an inexpensive substrate for the production of citric acid using Aspergillus niger. Various crucial parameters that affect citric acid production such as moisture content, temperature, pH, inoculum level and incubation time were quantified. Moisture (70%), 28 degrees C temperature, an initial pH 3, 10(8) spores/ml as inoculum and 72h incubation was found to be suitable for maximum citric acid production by A. niger using banana peel as a substrate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Wang, Dong; Xu, Jiahui; Ying, Hanjie

    2016-09-01

    A mutant strain of Clostridium beijerinckii, with high tolerance to ferulic acid, was generated using atmospheric pressure glow discharge and high-throughput screening of C. beijerinckii NCIMB 8052. The mutant strain M11 produced 7.24 g/L of butanol when grown in P2 medium containing 30 g/L of glucose and 0.5 g/L of ferulic acid, which is comparable to the production from non-ferulic acid cultures (8.11 g/L of butanol). When 0.8 g/L of ferulic acid was introduced into the P2 medium, C. beijerinckii M11 grew well and produced 4.91 g/L of butanol. Both cell growth and butanol production of C. beijerinckii M11 were seriously inhibited when 0.9 g/L of ferulic acid was added into the P2 medium. Furthermore, C. beijerinckii M11 could produce 6.13 g/L of butanol using non-detoxified hemicellulosic hydrolysate from diluted sulfuric acid-treated corn fiber (SAHHC) as the carbon source. These results demonstrate that C. beijerinckii M11 has a high ferulic acid tolerance and is able to use non-detoxified SAHHC for butanol production. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  17. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Asim K.; Aukema, Kelly G.; Elias, Mikael

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas themore » two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.« less

  18. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Kumar, Amit; Hardwidge, Philip R; Tanaka, Tsutomu; Kondo, Akihiko; Vadlani, Praveen V

    2016-03-01

    d-lactic acid is of great interest because of increasing demand for biobased poly-lactic acid (PLA). Blending poly-l-lactic acid with poly-d-lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d-lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l-lactate-deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1-pCU-PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d-lactic acid yield and productivity. d-lactic acid (27.3 g L(-1) ) and productivity (0.75 g L(-1) h(-1) ) was obtained from corn stover and d-lactic acid (22.0 g L(-1) ) and productivity (0.65 g L(-1) h(-1) ) was obtained from sorghum stalks using ΔldhL1-pCU-PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d-lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d-lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271-278, 2016. © 2016 American Institute of Chemical Engineers.

  19. Growth medium sterilization using decomposition of peracetic acid for more cost-efficient production of omega-3 fatty acids by Aurantiochytrium.

    PubMed

    Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee

    2018-06-01

    Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.

  20. A novel cleaner production process of citric acid by recycling its treated wastewater.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-07-01

    In this study, a novel cleaner production process of citric acid was proposed to completely solve the problem of wastewater management in citric acid industry. In the process, wastewater from citric acid fermentation was used to produce methane through anaerobic digestion and then the anaerobic digestion effluent was further treated with air stripping and electrodialysis before recycled as process water for the later citric acid fermentation. This proposed process was performed for 10 batches and the average citric acid production in recycling batches was 142.4±2.1g/L which was comparable to that with tap water (141.6g/L). Anaerobic digestion was also efficient and stable in operation. The average chemical oxygen demand (COD) removal rate was 95.1±1.2% and methane yield approached to 297.7±19.8mL/g TCODremoved. In conclusion, this novel process minimized the wastewater discharge and achieved the cleaner production in citric acid industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of fluoride on growth and acid production by Streptococcus mutans in dental plaque.

    PubMed Central

    van der Hoeven, J S; Franken, H C

    1984-01-01

    The aim of this study was to measure the effect of fluoride on the production of organic acids by Streptococcus mutans in dental plaque. The effect was studied in a simplified model of dental plaque with gnotobiotic rats monoinfected with S. mutans Ny341. Adaptation of S. mutans to fluoride was induced by feeding one group of the rats on fluoride-containing diet and drinking water. No difference was found in the accumulation of S. mutans on the teeth between the fluoride-adapted and the control groups. However, there was a significant difference in the amount of lactic acid in metabolically resting plaque between the groups, lactic acid being lower in the fluoride-adapted plaque. At 5 min after a rinse containing 10% sucrose, a high level of lactic acid was found in plaque from animals not exposed to fluoride. Rinses containing 4 or 20 mM fluoride before the sucrose rinse significantly inhibited the lactic acid production in the control group. In the plaque from rats on fluoridated diet and drinking water the sucrose-induced production of lactic acid was not inhibited by a 4 mM fluoride rinse. Moreover, the production of lactic acid in the fluoride-adapted plaque was prolonged. The results indicate that due to fluoride adaptation the inhibition of acid production is unlikely to be important for the caries-preventive action of fluoride. PMID:6746094

  2. Scale-up laccase production from Trametes versicolor stimulated by vanillic acid.

    PubMed

    Wang, Ke-Feng; Hu, Jian-Hua; Guo, Chen; Liu, Chun-Zhao

    2016-07-01

    An efficient strategy for laccase production in Trametes versicolor cultures was developed using vanillic acid as the inducer. The optimized vanillic acid treatment strategy consisted of exposing 2-day-old mycelia cultures to 80 mg/L vanillic acid. After 4 days, laccase activity of 588.84 U/L was achieved in flasks which represented a 1.79-fold increase compared to the control. In 200-L airlift bioreactor, the maximal laccase activity reached up to 785.12 U/L using the optimized vanillic acid treatment strategy. The zymograms of culture supernatants revealed three bands with laccase activity, among which Lac1 and Lac2 were abundant laccase isoforms constitutively expressed, and Lac3 was an inducible isozyme by vanillic acid. The results of real-time quantitative PCR showed that the transcription level of lcc in T. versicolor cultures grown with vanillic acid for 7 days was about 5.64-fold greater than that without vanillic acid in flasks. In 200-L airlift bioreactor cultures of T. versicolor with addition of vanillic acid, the transcript level of lcc at day 7 was 2.62-fold higher than that in flasks with vanillic acid due to the good mass transfer and oxygen supply in the bioreactor system. This study provides a basis for understanding the induction mechanism of vanillic acid for laccase production and has good potential for industrial applications.

  3. World market and biotechnological production of itaconic acid.

    PubMed

    Cunha da Cruz, Juliana; Machado de Castro, Aline; Camporese Sérvulo, Eliana Flávia

    2018-03-01

    The itaconic acid (IA) world market is expected to exceed 216 million of dollars by 2020 as a result of an increasing demand for bio-based chemicals. The potential of this organic acid produced by fermentation mainly with filamentous fungi relies on the vast industrial applications of polymers derived from it. The applications may be as a superabsorbent polymer for personal care or agriculture, unsaturated polyester resin for the transportation industry, poly(methyl methacrylate) for electronic devices, among many others. However, the existence of other substitutes and the high production cost limit the current IA market. IA manufacturing is done mainly in China and other Asia-Pacific countries. Higher economic feasibility and production worldwide may be achieved with the use of low-cost feedstock of local origin and with the development of applications targeted to specific local markets. Moreover, research on the biological pathway for IA synthesis and the effect of medium composition are important for amplifying the knowledge about the production of that biochemical with great market potential.

  4. High cell density cultivation of probiotics and lactic acid production.

    PubMed

    Schiraldi, Chiara; Adduci, Vincenzo; Valli, Vivien; Maresca, Carmelina; Giuliano, Mariateresa; Lamberti, Monica; Cartenì, Maria; De Rosa, Mario

    2003-04-20

    The commercial interest in functional foods that contain live microorganisms, also named probiotics, is paralleled by the increasing scientific attention to their functionality in the digestive tract. This is especially true of yogurts that contain strains of lactic-acid bacteria of intestinal origin, among these, Lactobacillus delbrueckii ssp. bulgaricus is extensively used in the dairy industry and it has been demonstrated to be a probiotic strain. In this work we describe high cell density cultivations of this microorganism also focusing on the stereospecific production of lactic acid. Key parameters such as medium composition (bactocasitone concentration) and diverse aeration conditions were explored. The results showed that the final concentration of biomass in anaerobic fermentation was lower than the one obtained in microaerophilic conditions, while it gave a very high productivity of lactic acid which was present as a racemic mixture in the permeate. Fermentation experiments carried out with air sparging, even at very low flow-rate, led to the production of the sole L(+) lactic acid giving sevenfold increase in biomass yield in respect to the batch cultivation. Finally, a mathematical model was developed to describe the microfiltration bioprocess applied in this research considering an inhibition kinetic and enucleating a suitable mathematical description for the decrease of the transmembrane flux. Copyright 2003 Wiley Periodicals, Inc.

  5. Omega-3 Fatty Acid Formulations in Cardiovascular Disease: Dietary Supplements are Not Substitutes for Prescription Products.

    PubMed

    Fialkow, Jonathan

    2016-08-01

    Omega-3 fatty acid products are available as prescription formulations (icosapent ethyl, omega-3-acid ethyl esters, omega-3-acid ethyl esters A, omega-3-carboxylic acids) and dietary supplements (predominantly fish oils). Most dietary supplements and all but one prescription formulation contain mixtures of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Products containing both EPA and DHA may raise low-density lipoprotein cholesterol (LDL-C). In clinical trials, the EPA-only prescription product, icosapent ethyl, did not raise LDL-C compared with placebo. To correct a common misconception, it is important to note that omega-3 fatty acid dietary supplements are not US FDA-approved over-the-counter drugs and are not required to demonstrate safety and efficacy prior to marketing. Conversely, prescription products are supported by extensive clinical safety and efficacy investigations required for FDA approval and have active and ongoing safety monitoring programs. While omega-3 fatty acid dietary supplements may have a place in the supplementation of diet, they generally contain lower levels of EPA and DHA than prescription products and are not approved or intended to treat disease. Perhaps due to the lack of regulation of dietary supplements, EPA and DHA levels may vary widely within and between brands, and products may also contain unwanted cholesterol or fats or potentially harmful components, including toxins and oxidized fatty acids. Accordingly, omega-3 fatty acid dietary supplements should not be substituted for prescription products. Similarly, prescription products containing DHA and EPA should not be substituted for the EPA-only prescription product, as DHA may raise LDL-C and thereby complicate the management of patients with dyslipidemia.

  6. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  7. A stimuli-responsive fluorescence platform for simultaneous determination of D-isoascorbic acid and Tartaric acid based on Maillard reaction product

    NASA Astrophysics Data System (ADS)

    Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong

    2018-05-01

    An activatable fluorescence monitoring platform based on a novel Maillard reaction product from D-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of D-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO4, resulting from a new complex (GLA-KMnO4) formation between GLA and KMnO4. Upon addition of D-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for D-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for D-isoascorbic acid or tartaric acid, because the detection limits were 5.9 μM and 21.5 μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of D-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results.

  8. Development of a semipurified test diet for determining amino acid requirements of Florida pompano Trachinotus carolinus reared under low-salinity conditions

    USDA-ARS?s Scientific Manuscript database

    Two trials were conducted to develop a semipurified test diet for determining indispensable amino acid (IAA) requirements for Florida pompano Trachinotus carolinus. The objective of the first trial was to evaluate casein and corn gluten meal as principal intact protein sources, and the ability of F...

  9. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    PubMed

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  10. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza.

    PubMed

    Shi, Min; Huang, Fenfen; Deng, Changping; Wang, Yao; Kai, Guoyin

    2018-05-10

    Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.

  11. Comparative effects of wild type Stenotrophomonas maltophilia and its indole acetic acid-deficient mutants on wheat.

    PubMed

    Hassan, T U; Bano, A

    2016-09-01

    The present investigation evaluated the role of Stenotrophomonas maltophilia and its IAA-deficient mutant on soil health and plant growth under salinity stress in the presence of tryptophan. In the first phase, S. maltophilia isolated from roots of the halo- phytic herb, Cenchrus ciliaris was used as bio-inoculant on wheat grown in saline sodic soil. A field experiment was conducted at Soil Salinity Research Institute during 2010-2011. Treatments included seed inoculation with S. maltophilia with or without tryptophan; uninoculated untreated plants were taken as control. An aqueous solution of tryptophan was added to rhizosphere soil at 1 μg l(_1) after seed germination. Inoculation with S. maltophilia significantly increased soil organic matter, enhanced (20-30%) availability of P, K, Ca and NO3 -N and decreased Na content and electrical conductivity of rhizosphere soil. Plant height, fresh weight, proline and phytohormone content of leaves were increased 30-40% over the control. Activities of superoxide dismutase (SOD) and peroxidase (POD) were 40-50% higher than control. Addition of tryptophan further augmented (10-15%) growth parameters, whereas NO3 -N, P, K and Ca content, proline content and SOD and POD increased 20-30%. In a second phase, indoleacetic acid (IAA)-deficient mutants of S. maltophilia were constructed and evaluated for conversion of tryptophan to IAA at the University of Calgary, Canada, during 2013-2014. About 1800 trans-conjugants were constructed that were unable to produce IAA in the presence of tryptophan. The results suggest that tryptophan assisted S. maltophilia in the amelioration of salt stress, and that IAA played positive role in induction of salt tolerance. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Enhanced itaconic acid production in Aspergillus with increased LaeA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ziyu; Baker, Scott E.

    Fungi, such as Aspergillus niger, having a dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase (Alg3) gene genetic inactivation, increased expression of a loss of aflR expression A (LaeA), or both, are described. In some examples, such mutants have several phenotypes, including an increased production of citric acid relative to the parental strain. Methods of using the disclosed fungi to make citric acid are also described, as are compositions and kits including the disclosed fungi. Further described are Aspergillus terreus fungi overexpressing the LaeA gene and the use of such fungi for the production of itaconic acid.

  13. Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production.

    PubMed

    Ju, Si Yeon; Kim, Jin Ho; Lee, Pyung Cheon

    2016-01-01

    Lactic acid has been approved by the United States Food and Drug Administration as Generally Regarded As Safe (GRAS) and is commonly used in the cosmetics, pharmaceutical, and food industries. Applications of lactic acid have also emerged in the plastics industry. Lactic acid bacteria (LAB), such as Leuconostoc and Lactobacillus , are widely used as lactic acid producers for food-related and biotechnological applications. Nonetheless, industrial mass production of lactic acid in LAB is a challenge mainly because of growth inhibition caused by the end product, lactic acid. Thus, it is important to improve acid tolerance of LAB to achieve balanced cell growth and a high titer of lactic acid. Recently, adaptive evolution has been employed as one of the strategies to improve the fitness and to induce adaptive changes in bacteria under specific growth conditions, such as acid stress. Wild-type Leuconostoc mesenteroides was challenged long term with exogenously supplied lactic acid, whose concentration was increased stepwise (for enhancement of lactic acid tolerance) during 1 year. In the course of the adaptive evolution at 70 g/L lactic acid, three mutants (LMS50, LMS60, and LMS70) showing high specific growth rates and lactic acid production were isolated and characterized. Mutant LMS70, isolated at 70 g/L lactic acid, increased d-lactic acid production up to 76.8 g/L, which was twice that in the wild type (37.8 g/L). Proteomic, genomic, and physiological analyses revealed that several possible factors affected acid tolerance, among which a mutation of ATPase ε subunit (involved in the regulation of intracellular pH) and upregulation of intracellular ammonia, as a buffering system, were confirmed to contribute to the observed enhancement of tolerance and production of d-lactic acid. During adaptive evolution under lethal stress conditions, the fitness of L. mesenteroides gradually increased to accumulate beneficial mutations according to the stress level. The

  14. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    PubMed

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-04-01

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Citric acid production using immobilized conidia of Aspergillus niger TMB 2022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsay, S.S.; To, K.Y.

    1987-02-20

    Conidia of Aspergillus niger TMB 2022 were immobilized in calcium alginate for the production of citric acid. A 1-ml condidia suspension containing ca. 2.32 x 10/sup 8/ conidia were entrapped into sodium alginate solution in order to prepare 3% Ca-alginate (w/v) gel bead. Immobilized conidia were inoculated into productive medium containing 14% sucrose, 0.25% (NH/sub 4/)/sub 2/CO/sub 3/, 0.25% KH/sub 2/PO/sub 4/, and 0.025% MgSO/sub 4/.7H/sub 2/O with addition of 0.06 mg/l CuSO/sub 4/.5H/sub 2/O, 0.25 mg/l ZnCl/sub 2/, 1.3 mg/l FeCl/sub 3/.6H/sub 2/O, pH 3.8, and incubated at 35 degrees C for 13 days by surface culture to producemore » 61.53 g/l anhydrous citric acid. Under the same conditions with a batchwise culture, it was found that immobilized conidia could maintain a longer period for citric acid production (31 days): over 70 g/l anhydrous citric acid from runs No. 2-4, with the maximum yield for anhydrous citric acid reaching 77.02 g/l for run No. 2. In contrast, free conidia maintained a shorter acid-producing phase, circa 17 days; the maximum yield for anhydrous citric acid was 71.07 g/l for run No. 2 but dropped quickly as the run number increased. 14 references.« less

  16. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production.

    PubMed

    Moi, Ibrahim Musa; Leow, Adam Thean Chor; Ali, Mohd Shukuri Mohamad; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Sabri, Suriana

    2018-05-10

    Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.

  17. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    PubMed

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  18. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  19. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  20. Production of γ-aminobutyric acid by microorganisms from different food sources.

    PubMed

    Hudec, Jozef; Kobida, Ľubomír; Čanigová, Margita; Lacko-Bartošová, Magdaléna; Ložek, Otto; Chlebo, Peter; Mrázová, Jana; Ducsay, Ladislav; Bystrická, Judita

    2015-04-01

    γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used. © 2014 Society of Chemical Industry.

  1. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens

    DOE PAGES

    Salvachúa, Davinia; Smith, Holly; St. John, Peter C.; ...

    2016-05-09

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60 g/L reached up tomore » 30 g/L, with metabolic yields of 0.69 g/g, and an overall productivity of 0.43 g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates.« less

  2. Net endogenous acid production is associated with a faster decline in GFR in African Americans

    PubMed Central

    Scialla, Julia J.; Appel, Lawrence J.; Astor, Brad C.; Miller, Edgar R.; Beddhu, Srinivasan; Woodward, Mark; Parekh, Rulan S.; Anderson, Cheryl A. M.

    2012-01-01

    Increased acid excretion may promote renal injury. To evaluate this in African Americans with hypertensive nephrosclerosis, we studied the association between the net endogenous acid production and progression of kidney disease in 632 patients in the AASK trial. Protein and potassium intakes were estimated from 24-hour urea nitrogen and potassium excretion, and used to estimate net endogenous acid production, averaged over 2 years, approximating routine intake. The link between net endogenous acid production and the I125iothalamate glomerular filtration rate (iGFR) and time to end stage renal disease or doubling of serum creatinine was analyzed using mixed models and Cox proportional hazards regressions. The trend in higher net endogenous acid production was significantly associated with a faster decline in iGFR over a median of 3.2 years. After adjustment for age, body mass index, baseline iGFR, urine protein to creatinine ratio and randomized treatment group, the trend in higher net endogenous acid production remained significantly associated with a faster decline in iGFR at a rate 1.01 mL/min/1.73 m2 per year faster in the highest to the lowest quartile. However, in time to event analyses over a median of 7.7 years, the adjusted hazard ratio (1.10) for composite renal events per 25 mEq/day higher net endogenous acid production was not significant. Hence, our findings implicate endogenous acid production as a potential modifiable risk factor for progressive kidney disease. PMID:22475819

  3. Sensorially important aldehyde production from amino acids in model wine systems: impact of ascorbic acid, erythorbic acid, glutathione and sulphur dioxide.

    PubMed

    Grant-Preece, Paris; Fang, Hongjuan; Schmidtke, Leigh M; Clark, Andrew C

    2013-11-01

    The efficiency of different white wine antioxidant systems in preventing aldehyde production from amino acids by oxidative processes is not well understood. The aim of this study was to assess the efficiency of sulphur dioxide alone and in combination with either glutathione, ascorbic acid or its stereoisomer erythorbic acid, in preventing formation of the sensorially important compounds methional and phenylacetaldehyde from methionine and phenylalanine in model white wine. UHPLC, GC-MS/MS, LC-MS/MS, flow injection analysis and luminescence sensors determined both compositional changes during storage, and sulphur dioxide-aldehyde apparent equilibrium constants. Depending on temperature (25 or 45°C) or extent of oxygen supply, sulphur dioxide was equally or more efficient in impeding the production of methional compared to the other antioxidant systems. For phenylacetaldehyde, erythorbic acid or glutathione with sulphur dioxide provided improved inhibition compared to sulphur dioxide alone, in conditions of limited oxygen consumption. The results also demonstrate the extent to which sulphur dioxide addition can lower the free aldehyde concentrations to below their aroma thresholds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    PubMed

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples.

  5. Increasing carbon availability stimulates growth and secondary metabolites via modulation of phytohormones in winter wheat.

    PubMed

    Huang, Jianbei; Reichelt, Michael; Chowdhury, Somak; Hammerbacher, Almuth; Hartmann, Henrik

    2017-02-01

    Phytohormones play important roles in plant acclimation to changes in environmental conditions. However, their role in whole-plant regulation of growth and secondary metabolite production under increasing atmospheric CO2 concentrations ([CO2]) is uncertain but crucially important for understanding plant responses to abiotic stresses. We grew winter wheat (Triticum aestivum) under three [CO2] (170, 390, and 680 ppm) over 10 weeks, and measured gas exchange, relative growth rate (RGR), soluble sugars, secondary metabolites, and phytohormones including abscisic acid (ABA), auxin (IAA), jasmonic acid (JA), and salicylic acid (SA) at the whole-plant level. Our results show that, at the whole-plant level, RGR positively correlated with IAA but not ABA, and secondary metabolites positively correlated with JA and JA-Ile but not SA. Moreover, soluble sugars positively correlated with IAA and JA but not ABA and SA. We conclude that increasing carbon availability stimulates growth and production of secondary metabolites via up-regulation of auxin and jasmonate levels, probably in response to sugar-mediated signalling. Future low [CO2] studies should address the role of reactive oxygen species (ROS) in leaf ABA and SA biosynthesis, and at the transcriptional level should focus on biosynthetic and, in particular, on responsive genes involved in [CO2]-induced hormonal signalling pathways. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid.

    PubMed

    Abdel-Rahman, Mohamed Ali; Sonomoto, Kenji

    2016-10-20

    There has been growing interest in the microbial production of optically pure lactic acid due to the increased demand for lactic acid-derived environmentally friendly products, for example biodegradable plastic (poly-lactic acid), as an alternative to petroleum-derived materials. To maximize the market uptake of these products, their cost should be competitive and this could be achieved by decreasing the production cost of the raw material, that is, lactic acid. It is of great importance to isolate and develop robust and highly efficient microbial lactic acid producers. Alongside the fermentative substrate and concentration, the yield and productivity of lactic acid are key parameters and major factors in determining the final production cost of lactic acid. In this review, we will discuss the current limitations and challenges for cost-efficient microbial production of optically pure lactic acid. The main obstacles to effective fermentation are the use of food resources, indirect utilization of polymeric sugars, sensitivity to inhibitory compounds released during biomass treatments, substrate inhibition, decreased lactic acid yield and productivity, inefficient utilization of mixed sugars, end product inhibition, increased use of neutralizing agents, contamination problems, and decreased optical purity of lactic acid. Furthermore, opportunities to address and overcome these limitations, either by fermentation technology or metabolic engineering approaches, will be introduced and discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear.

    PubMed

    Heinrich, Ulf-Rüdiger; Fischer, Ilka; Brieger, Jürgen; Rümelin, Andreas; Schmidtmann, Irene; Li, Huige; Mann, Wolf J; Helling, Kai

    2008-05-01

    Noise-induced hearing loss can be caused, among other causes, by increased nitric oxide (NO) production in the inner ear leading to nitroactive stress and cell destruction. Some studies in the literature suggest that the degree of hearing loss (HL) could be reduced in an animal model through ascorbic acid supplementation. To identify the effect of ascorbic acid on tissue-dependent NO content in the inner ear of the guinea pig, we determined the local NO production in the organ of Corti and the lateral wall separately 6 hours after noise exposure. Prospective animal study in guinea pigs. Over a period of 7 days, male guinea pigs were supplied with minimum (25 mg/kg body weight/day) and maximum (525 mg/kg body weight/day) ascorbic acid doses, and afterwards exposed to noise (90 dB sound pressure level for 1 hour). The acoustic-evoked potentials were recorded before and after noise exposure. The organ of Corti and the lateral wall were incubated differently for 6 hours in culture medium, and the degree of NO production was determined by chemiluminescence. Ascorbic acid treatment reduced the hearing threshold shift after noise exposure depending on concentration. When the maximum ascorbic acid dose was substituted, NO production was significantly reduced in the lateral wall after noise exposure and slightly reduced in the organ of Corti. Oral supplementation of the natural radical scavenger ascorbic acid reduces the NO-production rate in the inner ear in noisy conditions. This finding supports the concept of inner ear protection by ascorbic acid supplementation.

  8. Production of Structured Triacylglycerols Containing Palmitic Acids at sn-2 Position and Docosahexaenoic Acids at sn-1, 3 Positions.

    PubMed

    Liu, Yanjun; Guo, Yongli; Sun, Zhaomin; Jie, Xu; Li, Zhaojie; Wang, Jingfeng; Wang, Yuming; Xue, Changhu

    2015-01-01

    Docosahexaenoic acid supplementation has been shown well-established health benefits that justify their use as functional ingredients in healthy foods and nutraceutical products. Structured triacylglycerols rich in 1,3-docosahexenoyl-2-palmitoyl-sn-glycerol were produced from algal oil (Schizochytrium sp) which was prepared by a two-step process. Novozym 435 lipase was used to produce tripalmitin. Tripalmitin was then used to produce the final structured triacylglycerol (STAG) through interesterification reactions using Lipozyme RM IM. The optimum conditions for the enzymatic reaction were a mole ratio of tripalmitin/fatty acid ethyl esters 1:9, 60°C, 10% enzyme load (wt % of substrates), 10 h; the enzymatic product contained 51.6% palmitic acid (PA), 30.13% docosahexaenoic acid (DHA, C22:6 n-3) and 5.33% docosapentanoic acid (DPA, C22:5 n-3), 12.15% oleic acid (OLA). This STAG can be used as a functional ingredient in dietary supplementation to provide the benefits of DHA.

  9. Product study of oleic acid ozonolysis as function of humidity

    NASA Astrophysics Data System (ADS)

    Vesna, O.; Sax, M.; Kalberer, M.; Gaschen, A.; Ammann, M.

    The heterogeneous reaction of ozone with oleic acid (OA) aerosol particles was studied as function of humidity and reaction time in an aerosol flow reactor using an off-line gas chromatography mass spectrometry (GC-MS) technique. We report quantitative yields of the major C9 ozonolysis products in both gas and condensed phases and the effect of relative humidity on the product distribution. The measurements were carried out with OA aerosol particles at room temperature. The results indicate that the product yields are increasing with increasing relative humidity during the reaction. Nonanal (NN) was detected as the major gas-phase product (55.6 ± 2.3%), with 94.5 ± 2.4% of the NN yield in the gas, and 5.5 ± 2.7% in the particulate phase, whereas nonanoic, oxononanoic and azelaic acids were detected exclusively in the particulate phase. Using UV-spectrometry, we observed that peroxides make up the largest fraction of products, about half of the product aerosol mass, and their concentration decreased with increasing humidity.

  10. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons.

    PubMed

    Zhang, Yiming; Nielsen, Jens; Liu, Zihe

    2018-06-05

    Fatty acid-derived hydrocarbons attract increasing attention as biofuels due to their immiscibility with water, high-energy content, low freezing point, and high compatibility with existing refineries and end-user infrastructures. Yeast Saccharomyces cerevisiae has advantages for production of fatty acid-derived hydrocarbons as its native routes toward fatty acid synthesis involve only a few reactions that allow more efficient conversion of carbon substrates. Here we describe major biosynthetic pathways of fatty acid-derived hydrocarbons in yeast, and summarize key metabolic engineering strategies, including enhancing precursor supply, eliminating competing pathways, and expressing heterologous pathways. With recent advances in yeast production of fatty acid-derived hydrocarbons, our review identifies key research challenges and opportunities for future optimization, and concludes with perspectives and outlooks for further research directions. © 2018 Wiley Periodicals, Inc.

  11. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity

    PubMed Central

    2013-01-01

    Background Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. Results T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. Conclusions Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be

  12. Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji

    2015-01-01

    Production of optically pure lactic acid from lignocellulosic material for commercial purposes is hampered by several difficulties, including heterofermentation of pentose sugars and high energy consumption by mesophilic lactic acid bacteria. Here, we report a novel lactic acid bacterium, strain QU 50, that has the potential to produce optically pure l-lactic acid (≥99.2%) in a homofermentative manner from xylose under thermophilic conditions. Strain QU 50 was isolated from Egyptian fertile soil and identified as Enterococcus faecium QU 50 by analyzing its sugar fermentation pattern and 16S rRNA gene sequence. Enterococcus faecium QU 50 fermented xylose efficiently to produce lactic acid over wide pH (6.0-10.0) and temperature ranges (30-52°C), with a pH of 6.5 and temperature of 50°C being optimal. To our knowledge, this is the first report of homofermentative lactic acid production from xylose by a thermophilic lactic acid bacterium. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    PubMed

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  14. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.

    PubMed

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  15. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  16. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  17. Enhancement of L(+)-Lactic Acid Production of Immobilized Rhizopus Oryzae Implanted by Ion Beams

    NASA Astrophysics Data System (ADS)

    Fan, Yonghong; Yang, Yingge; Zheng, Zhiming; Li, Wen; Wang, Peng; Yao, Liming; Yu, Zengliang

    2008-02-01

    Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 × 1015 ions/cm2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38°C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.

  18. Hyper-production of butyric acid from delignified rice straw by a novel consolidated bioprocess.

    PubMed

    Chi, Xue; Li, Jianzheng; Wang, Xin; Zhang, Yafei; Antwi, Philip

    2018-04-01

    A novel consolidated bioprocess for hyper-production of butyric acid from delignified rice straw without exogenous enzymes involved was developed by co-fermentation of Clostridium thermocellum ATCC 27405 and C. thermobutyricum ATCC 49875. Feasibility of the consolidated bioprocess was approved by batch fermentations, with the optimum pH of 6.5. Fed-batch fermentation with a constant pH of 6.5 at 55 °C could enhance the butyric acid yield to a remarkable 33.9 g/L with a selectivity as high as 78%. Metabolic analysis of the co-culture indicated that sugars liberated by C. thermocellum ATCC 27405 were effectively converted to butyric acid by C. thermobutyricum ATCC 49875. Secondary metabolism of C. thermobutyricum ATCC 49875 also contributed to the hyper-production of butyric acid, resulting in the re-assimilation of by-products such as acetic acid and ethanol. This work provides a more effective fermentation process for butyric acid production from lignocellulosic biomass for future applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Characterization of a tryptophan 2-monooxygenase gene from Puccinia graminis f. sp. tritici involved in auxin biosynthesis and rust pathogenicity.

    PubMed

    Yin, Chuntao; Park, Jeong-Jin; Gang, David R; Hulbert, Scot H

    2014-03-01

    The plant hormone indole-3-acetic acid (IAA) is best known as a regulator of plant growth and development but its production can also affect plant-microbe interactions. Microorganisms, including numerous plant-associated bacteria and several fungi, are also capable of producing IAA. The stem rust fungus Puccinia graminis f. sp. tritici induced wheat plants to accumulate auxin in infected leaf tissue. A gene (Pgt-IaaM) encoding a putative tryptophan 2-monooxygenase, which makes the auxin precursor indole-3-acetamide (IAM), was identified in the P. graminis f. sp. tritici genome and found to be expressed in haustoria cells in infected plant tissue. Transient silencing of the gene in infected wheat plants indicated that it was required for full pathogenicity. Expression of Pgt-IaaM in Arabidopsis caused a typical auxin expression phenotype and promoted susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000.

  20. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae.

    PubMed

    Liaud, Nadège; Rosso, Marie-Noëlle; Fabre, Nicolas; Crapart, Sylvaine; Herpoël-Gimbert, Isabelle; Sigoillot, Jean-Claude; Raouche, Sana; Levasseur, Anthony

    2015-05-03

    Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.g. cellulose, hemicellulose, starch). Aspergilli are versatile microbial cell factories able to naturally produce large amounts of organic acids at low pH and to metabolize cheap abundant carbon sources such as plant biomass. However, they have never been used for lactic acid production. To investigate the feasibility of lactic acid production with Aspergillus, the NAD-dependent lactate dehydrogenase (LDH) responsible for lactic acid production by Rhizopus oryzae was produced in Aspergillus brasiliensis BRFM103. Among transformants, the best lactic acid producer, A. brasiliensis BRFM1877, integrated 6 ldhA gene copies, and intracellular LDH activity was 9.2 × 10(-2) U/mg. At a final pH of 1.6, lactic acid titer reached 13.1 g/L (conversion yield: 26%, w/w) at 138 h in glucose-ammonium medium. This extreme pH drop was subsequently prevented by switching nitrogen source from ammonium sulfate to Na-nitrate, leading to a final pH of 3 and a lactic acid titer of 17.7 g/L (conversion yield: 47%, w/w) at 90 h of culture. Final titer was further improved to 32.2 g/L of lactic acid (conversion yield: 44%, w/w) by adding 20 g/L glucose to the culture medium at 96 h. This strain was ultimately able to produce lactic acid from xylose, arabinose, starch and xylan. We obtained the first Aspergillus strains able to produce large amounts of lactic acid by inserting recombinant ldhA genes from R. oryzae into a wild-type A. brasiliensis strain. pH regulation failed to significantly increase lactic acid production, but switching nitrogen source and changing culture feed