Science.gov

Sample records for acid induced cell

  1. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    PubMed

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  2. Chrysophanic Acid Induces Necrosis but not Necroptosis in Human Renal Cell Carcinoma Caki-2 Cells

    PubMed Central

    Choi, Joon-Seok

    2016-01-01

    Background: Chrysophanic acid, also known as chrysophanol, has a number of biological activities. It enhances memory and learning abilities, raises superoxide dismutase activity, and has anti-cancer effects in several model systems. According to previous reports, chrysophanic acid-induced cell death shares features of necrotic cell death. However, the molecular and cellular processes underlying chrysophanic acid-induced cell death remain poorly understood. Methods: Chrysophanic acid-induced cell death was monitored by cell viability assay and Annexin V-propidium iodide (PI) staining of renal cell carcinoma Caki-2 cells. The induction of intracellular reactive oxygen species (ROS) by chrysophanic acid and the suppression of ROS by anti-oxidants were evaluated by 2′,7′-dichlorofluorescin diacetate staining. The expression and phosphorylation of proteins that are involved in apoptosis and necroptosis were detected by immunoblotting. Results: The extent of chrysophanic acid-induced cell death was concentration and time dependent, and dead cells mainly appeared in the PI-positive population, which is a major feature of necrosis, upon fluorescence-activated cell sorting analysis. Chrysophanic acid-induced cell death was associated with the generation of intracellular ROS, and this effect was reversed by pretreatment with N-acetyl cysteine. Chrysophanic acid-induced cell death was not associated with changes in apoptotic or necroptotic marker proteins. Conclusions: The cell death induced by chrysophanic acid resembled neither apoptotic nor necroptotic cell death in human renal cell carcinoma Caki-2 cells. PMID:27390736

  3. Formic acid and acetic acid induce a programmed cell death in pathogenic Candida species.

    PubMed

    Lastauskienė, Eglė; Zinkevičienė, Auksė; Girkontaitė, Irutė; Kaunietis, Arnoldas; Kvedarienė, Violeta

    2014-09-01

    Cutaneous fungal infections are common and widespread. Antifungal agents used for the treatment of these infections often have undesirable side effects. Furthermore, increased resistance of the microorganisms to the antifungal drugs becomes the growing problem. Accordingly, the search for natural antifungal compounds continues to receive attention. Apoptosis is highly regulated programmed cell death. During yeast cell apoptosis, amino acids and peptides are released and can stimulate regeneration of human epithelium cells. Thus, detection of chemical compounds inducing apoptosis in yeast and nontoxic for humans is of great medical relevance. The aim of this study was to detect chemical compound inducing apoptosis in pathogenic Candida species with the lowest toxicity to the mammalian cells. Five chemical compounds--acetic acid, sodium bicarbonate, potassium carbonate, lithium acetate, and formic acid--were tested for evaluation of antifungal activity on C. albicans, C. guilliermondii, and C. lusitaniae. The results showed that acetic acid and formic acid at the lowest concentrations induced yeast cells death. Apoptosis analysis revealed that cells death was accompanied by activation of caspase. Minimal inhibitory concentrations of potassium carbonate and sodium bicarbonate induced Candida cells necrosis. Toxicity test with mammalian cell cultures showed that formic acid has the lowest effect on the growth of Jurkat and NIH 3T3 cells. In conclusion, our results show that a low concentration of formic acid induces apoptosis-like programmed cell death in the Candida yeast and has a minimal effect on the survivability of mammalian cells, suggesting potential applications in the treatment of these infections. PMID:24752490

  4. Bile acids induce hepatic differentiation of mesenchymal stem cells

    PubMed Central

    Sawitza, Iris; Kordes, Claus; Götze, Silke; Herebian, Diran; Häussinger, Dieter

    2015-01-01

    Mesenchymal stem cells (MSC) have the potential to differentiate into multiple cell lineages and their therapeutic potential has become obvious. In the liver, MSC are represented by stellate cells which have the potential to differentiate into hepatocytes after stimulation with growth factors. Since bile acids can promote liver regeneration, their influence on liver-resident and bone marrow-derived MSC was investigated. Physiological concentrations of bile acids such as tauroursodeoxycholic acid were able to initiate hepatic differentiation of MSC via the farnesoid X receptor and transmembrane G-protein-coupled bile acid receptor 5 as investigated with knockout mice. Notch, hedgehog, transforming growth factor-β/bone morphogenic protein family and non-canonical Wnt signalling were also essential for bile acid-mediated differentiation, whereas β-catenin-dependent Wnt signalling was able to attenuate this process. Our findings reveal bile acid-mediated signalling as an alternative way to induce hepatic differentiaion of stem cells and highlight bile acids as important signalling molecules during liver regeneration. PMID:26304833

  5. Retinoic acid-induced neural differentiation of embryonal carcinoma cells.

    PubMed Central

    Jones-Villeneuve, E M; Rudnicki, M A; Harris, J F; McBurney, M W

    1983-01-01

    We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs. Images PMID:6656766

  6. Bile-acid-induced cell injury and protection

    PubMed Central

    Perez, Maria J; Briz, Oscar

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-N-methylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties. PMID:19360911

  7. Orexin A attenuates palmitic acid-induced hypothalamic cell death.

    PubMed

    Duffy, Cayla M; Nixon, Joshua P; Butterick, Tammy A

    2016-09-01

    Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health. PMID:27449757

  8. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition

    PubMed Central

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-01-01

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment. PMID:25853502

  9. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  10. Acid-induced secretory cell metaplasia in hamster bronchi

    SciTech Connect

    Christensen, T.G.; Lucey, E.C.; Breuer, R.; Snider, G.L.

    1988-02-01

    Hamsters were exposed to an intratracheal instillation of 0.5 ml of 0.08 N nitric, hydrochloric, or sulfuric acid to determine their airway epithelial response. Three weeks after exposure, the left intrapulmonary bronchi in Alcian blue/PAS-strained paraffin sections were evaluated for the amount of secretory product in the airway epithelium as a measure of secretory cell metaplasia (SCM). Compared to saline-treated control animals, all three acids caused statistically significant SCM. In addition to the bronchial lesion, all three acids caused similar interstitial fibrosis, bronchiolectasis, and bronchiolization of alveoli that varied in individual animals from mild to severe. In a separate experiment to study the persistence of the SCM, hamsters treated with a single instillation of 0.1 N nitric acid showed significant SCM 3, 7, and 17 weeks after exposure. There was a high correlation (r = 0.96) between a subjective assessment of SCM and objective assessment using a digital image-analysis system. We conclude that protons induce SCM independently of the associated anion; the SCM persists at least 17 weeks. Sulfuric acid is an atmospheric pollutant and nitric acid may form locally on the mucosa of lungs exposed to nitrogen dioxide. These acids may contribute to the development of maintenance of the SCM seen in the conducting airways of humans with chronic obstructive pulmonary disease.

  11. Monomethylarsonous acid induces transformation of human bladder cells

    SciTech Connect

    Bredfeldt, Tiffany G.; Jagadish, Bhumasamudram; Eblin, Kylee E.; Mash, Eugene A.; Gandolfi, A. Jay . E-mail: gandolfi@pharmacy.arizona.edu

    2006-10-01

    Arsenic is a human bladder carcinogen. Arsenic is methylated to both monomethyl and dimethyl metabolites which have been detected in human urine. The trivalent methylated arsenicals are more toxic than inorganic arsenic. It is unknown if these trivalent methylated metabolites can directly cause malignant transformation in human cells. The goal of this study is determine if monomethylarsonous acid (MMA{sup III}) can induce malignant transformation in a human bladder urothelial cell line. To address this goal, a non-tumorigenic human urothelial cell line (UROtsa) was continuously exposed to 0.05 {mu}M MMA{sup III} for 52 weeks. Hyperproliferation was the first phenotypic change observed in exposed UROtsa (URO-MSC). After 12 weeks of exposure, doubling time had decreased from 42 h in unexposed control cells to 27 h in URO-MSC. Hyperproliferation continued to be a quality possessed by the URO-MSC cells after both 24 and 52 weeks of exposure to MMA{sup III}, which had a 40-50% reduction in doubling time. Throughout the 52-week exposure, URO-MSC cells retained an epithelial morphology with subtle morphological differences from control cells. 24 weeks of MMA{sup III} exposure was required to induce anchorage-independent growth as detected by colony formation in soft agar, a characteristic not found in UROtsa cells. To further substantiate that malignant transformation had occurred, URO-MSC cells were tested after 24 and 52 weeks of exposure to MMA{sup III} for the ability to form tumors in SCID mice. Enhanced tumorigenicity in SCID mouse xenografts was observed after 52 weeks of treatment with MMA{sup III}. These observations are the first demonstration of MMA{sup III}-induced malignant transformation in a human bladder urothelial cell line and provide important evidence that MMA{sup III} may be carcinogenic in human tissues.

  12. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells.

    PubMed

    Wang, I-Te; Chou, Shou-Chu; Lin, Ying-Chin

    2014-12-01

    Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.

  13. Aminomethylphosphonic acid and methoxyacetic acid induce apoptosis in prostate cancer cells.

    PubMed

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-01-01

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  14. Gambogic acid induces apoptotic cell death in T98G glioma cells.

    PubMed

    Thida, Mya; Kim, Dae Won; Tran, Thi Thu Thuy; Pham, Minh Quan; Lee, Heesu; Kim, Inki; Lee, Jae Wook

    2016-02-01

    Gambogic acid (GA), a natural product with a xanthone structure, has a broad range of anti-proliferative effects on cancer cell lines. We evaluated GA for its cytotoxic effects on T98G glioblastoma cells. GA exhibited potent anti-proliferative activity and induced apoptosis in T98G glioblastoma cells in a dose-dependent manner. Incubation of cells with GA revealed apoptotic features including increased Bax and AIF expression, cytochrome c release, and cleavage of caspase-3, -8, -9, and PARP, while Bcl-2 expression was downregulated. Furthermore, GA induced reactive oxygen species (ROS) generation in T98G cells. Our results indicate that GA increases Bax- and AIF-associated apoptotic signaling in glioblastoma cells. PMID:26631318

  15. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells.

    PubMed

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-09

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting.

  16. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells

    PubMed Central

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-01

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting. PMID:25571970

  17. Okadaic acid inhibits cell multiplication and induces apoptosis in a549 cells, a human lung adenocarcinoma cell line

    PubMed Central

    Wang, Renjun; Lv, Lili; Zhao, Yunfeng; Yang, Nana

    2014-01-01

    This essay aims to research the effect of okadaic acid (OA) on A549 cell multiplication, and cell apoptosis induced by OA was observed by cell morphology. MTT assay, trypan blue exclusion test (TBET), Giemsa staining method and acridine orange (AO) fluorescence staining assay were applied. The results of cell survival evaluated by TBET and colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) showed: The number of A549 cells was decreased in a dose-dependent manner. Cytomorphology observation of okadaic acid-treated cells showed that cells became shrinkage and turned round, some cells floated in the nutrient medium with nucleus agglutination broken, resulting in apoptotic bodies. Above-mentioned results indicated that OA exerted significantly inhibitory effect on A549 cell multiplication due to the apoptosis induced by OA. PMID:25232383

  18. Clavulanic acid inhibits MPP⁺-induced ROS generation and subsequent loss of dopaminergic cells.

    PubMed

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-08-21

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival.

  19. Luteolin prevents uric acid-induced pancreatic β-cell dysfunction

    PubMed Central

    Ding, Ying; Shi, Xuhui; Shuai, Xuanyu; Xu, Yuemei; Liu, Yun; Liang, Xiubin; Wei, Dong; Su, Dongming

    2014-01-01

    Abstract Elevated uric acid causes direct injury to pancreatic β-cells. In this study, we examined the effects of luteolin, an important antioxidant, on uric acid-induced β-cell dysfunction. We first evaluated the effect of luteolin on nitric oxide (NO) formation in uric acid-stimulated Min6 cells using the Griess method. Next, we performed transient transfection and reporter assays to measure transcriptional activity of nuclear factor (NF)-κB. Western blotting assays were also performed to assess the effect of luteolin on the expression of MafA and inducible NO synthase (iNOS) in uric acid-treated cells. Finally, we evaluated the effect of luteolin on uric acid-induced inhibition of glucose-stimulated insulin secretion (GSIS) in Min6 cells and freshly isolated mouse pancreatic islets. We found that luteolin significantly inhibited uric acid-induced NO production, which was well correlated with reduced expression of iNOS mRNA and protein. Furthermore, decreased activity of NF-κB was implicated in inhibition by luteolin of increased iNOS expression induced by uric acid. Besides, luteolin significantly increased MafA expression in Min6 cells exposed to uric acid, which was reversed by overexpression of iNOS. Moreover, luteolin prevented uric acid-induced inhibition of GSIS in both Min6 cells and mouse islets. In conclusion, luteolin protects pancreatic β-cells from uric acid-induced dysfunction and may confer benefit on the protection of pancreatic β-cells in hyperuricemia-associated diabetes. PMID:25050113

  20. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  1. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa.

    PubMed

    Feria-Romero, Iris; Lazo, Elizabeth; Ponce-Noyola, Teresa; Cerda-García-Rojas, Carlos M; Ramos-Valdivia, Ana C

    2005-06-01

    Increasing sucrose from 20 to 50 g l(-1) in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 +/- 61 to 553 +/- 193 microg g(-1) cell dry wt. The maximal concentration of both triterpenes (1680 +/- 39 microg g(-1) cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 +/- 20 or 1120 +/- 26 microg g(-1) cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30.

  2. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  3. Lysophosphatidic acid induces cell migration through the selective activation of Akt1

    PubMed Central

    Kim, Eun Kyoung; Yun, Sung Ji; Do, Kee Hun; Kim, Min Sung; Cho, Mong; Suh, Dong-Soo; Kim, Chi Dae; Kim, Jae Ho; Birnbaum, Morris J.

    2008-01-01

    Akt plays pivotal roles in many physiological responses including growth, proliferation, survival, metabolism, and migration. In the current studies, we have evaluated the isoform-specific role of akt in lysophosphatidic acid (LPA)-induced cell migration. Ascites from ovarian cancer patients (AOCP) induced mouse embryo fibroblast (MEF) cell migration in a dose-dependent manner. On the other hand, ascites from liver cirrhosis patients (ALCP) did not induce MEF cell migration. AOCP-induced MEF cell migration was completely blocked by pre-treatment of cells with LPA receptor antagonist, Ki16425. Both LPA- and AOCP-induced MEF cell migration was completely attenuated by PI3K inhibitor, LY294002. Furthermore, cells lacking Akt1 displayed defect in LPA-induced cell migration. Re-expression of Akt1 in DKO (Akt1-/-Akt2-/-) cells restored LPA-induced cell migration, whereas re-expression of Akt2 in DKO cells could not restore the LPA-induced cell migration. Finally, Akt1 was selectively phosphorylated by LPA and AOCP stimulation. These results suggest that LPA is a major factor responsible for AOCP-induced cell migration and signaling specificity of Akt1 may dictate LPA-induced cell migration. PMID:18779657

  4. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    PubMed Central

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery. Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells. To assess the role of calcium in the DHA-induced acidification, we conducted experiments in Ca2+-free (0% Ca2+) and Ca2+-containing (100% Ca2+) buffer. We observed that there was no difference in the degree of DHA-induced transient acidification in both the experimental conditions, though pHi recovery was faster in 0% Ca2+ medium than that in 100% Ca2+ medium. In the presence of BAPTA, a calcium chelator, a rapid recovery of DHA-induced acidosis was observed. Furthermore, addition of CaCl2 into 0% Ca2+ medium curtailed DHA-evoked rapid pHi recovery. In 0% Ca2+ medium, containing BAPTA, DHA did not evoke increases in [Ca2+]i, though this fatty acid still induced a rapid acidification in these cells. These observations suggest that calcium is implicated in the long-lasting DHA-induced acidosis. DHA-induced rapid acidification may be due to its deprotonation in the plasma membrane (flip-flop model), as suggested by the following observations: (1) DHA with a –COOH group induced intracellular acidification, but this fatty acid with a –COOCH3 group failed to do so, and (2) DHA, but not propionic acid, -induced acidification was completely reversed by addition of fatty acid-free bovine serum albumin in these cells. These results suggest that DHA induces acidosis via deprotonation and Ca2+ mobilization in human T-cells. PMID:14645139

  5. Histone Deacetylase Inhibitor Valproic Acid Promotes the Differentiation of Human Induced Pluripotent Stem Cells into Hepatocyte-Like Cells

    PubMed Central

    Kondo, Yuki; Iwao, Takahiro; Yoshihashi, Sachimi; Mimori, Kayo; Ogihara, Ruri; Nagata, Kiyoshi; Kurose, Kouichi; Saito, Masayoshi; Niwa, Takuro; Suzuki, Takayoshi; Miyata, Naoki; Ohmori, Shigeru; Nakamura, Katsunori; Matsunaga, Tamihide

    2014-01-01

    In this study, we aimed to elucidate the effects and mechanism of action of valproic acid on hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. Human induced pluripotent stem cells were differentiated into endodermal cells in the presence of activin A and then into hepatic progenitor cells using dimethyl sulfoxide. Hepatic progenitor cells were matured in the presence of hepatocyte growth factor, oncostatin M, and dexamethasone with valproic acid that was added during the maturation process. After 25 days of differentiation, cells expressed hepatic marker genes and drug-metabolizing enzymes and exhibited drug-metabolizing enzyme activities. These expression levels and activities were increased by treatment with valproic acid, the timing and duration of which were important parameters to promote differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells into hepatocytes. Valproic acid inhibited histone deacetylase activity during differentiation of human induced pluripotent stem cells, and other histone deacetylase inhibitors also enhanced differentiation into hepatocytes. In conclusion, histone deacetylase inhibitors such as valproic acid can be used to promote hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. PMID:25084468

  6. Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells.

    PubMed

    Liese, Juliane; Abhari, Behnaz Ahangarian; Fulda, Simone

    2015-08-28

    Chemotherapy resistance of hepatocellular carcinoma (HCC) is still a major unsolved problem highlighting the need to develop novel therapeutic strategies. Here, we identify a novel synergistic induction of cell death by the combination of the Smac mimetic BV6, which antagonizes Inhibitor of apoptosis (IAP) proteins, and the triterpenoid oleanolic acid (OA) in human HCC cells. Importantly, BV6 and OA also cooperate to suppress long-term clonogenic survival as well as tumor growth in a preclinical in vivo model of HCC underscoring the clinical relevance of our findings. In contrast, BV6/OA cotreatment does not exert cytotoxic effects against normal primary hepatocytes, pointing to some tumor selectivity. Mechanistic studies show that BV6/OA cotreatment leads to DNA fragmentation and caspase-3 cleavage, while supply of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) revealed a cell type-dependent requirement of caspases for BV6/OA-induced cell death. The receptor interacting protein (RIP)1 kinase Inhibitor Necrostatin-1 (Nec-1) or genetic knockdown of RIP1 fails to rescue BV6/OA-mediated cell death, indicating that BV6/OA cotreatment does not primarily engage necroptotic cell death. Notably, the addition of several reactive oxygen species (ROS) scavengers significantly decreases BV6/OA-triggered cell death, indicating that ROS production contributes to BV6/OA-induced cell death. In conclusion, cotreatment of Smac mimetic and OA represents a novel approach for the induction of cell death in HCC and implicates further studies.

  7. Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells.

    PubMed

    Liese, Juliane; Abhari, Behnaz Ahangarian; Fulda, Simone

    2015-08-28

    Chemotherapy resistance of hepatocellular carcinoma (HCC) is still a major unsolved problem highlighting the need to develop novel therapeutic strategies. Here, we identify a novel synergistic induction of cell death by the combination of the Smac mimetic BV6, which antagonizes Inhibitor of apoptosis (IAP) proteins, and the triterpenoid oleanolic acid (OA) in human HCC cells. Importantly, BV6 and OA also cooperate to suppress long-term clonogenic survival as well as tumor growth in a preclinical in vivo model of HCC underscoring the clinical relevance of our findings. In contrast, BV6/OA cotreatment does not exert cytotoxic effects against normal primary hepatocytes, pointing to some tumor selectivity. Mechanistic studies show that BV6/OA cotreatment leads to DNA fragmentation and caspase-3 cleavage, while supply of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) revealed a cell type-dependent requirement of caspases for BV6/OA-induced cell death. The receptor interacting protein (RIP)1 kinase Inhibitor Necrostatin-1 (Nec-1) or genetic knockdown of RIP1 fails to rescue BV6/OA-mediated cell death, indicating that BV6/OA cotreatment does not primarily engage necroptotic cell death. Notably, the addition of several reactive oxygen species (ROS) scavengers significantly decreases BV6/OA-triggered cell death, indicating that ROS production contributes to BV6/OA-induced cell death. In conclusion, cotreatment of Smac mimetic and OA represents a novel approach for the induction of cell death in HCC and implicates further studies. PMID:25917078

  8. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  9. Inhibition of Fatty Acid Synthesis Induces Apoptosis of Human Pancreatic Cancer Cells.

    PubMed

    Nishi, Koji; Suzuki, Kenta; Sawamoto, Junpei; Tokizawa, Yuma; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko

    2016-09-01

    Cancer cells tend to have a high requirement for lipids, including fatty acids, cholesterol and triglyceride, because of their rapid proliferative rate compared to normal cells. In this study, we investigated the effects of inhibition of lipid synthesis on the proliferation and viability of human pancreatic cancer cells. Of the inhibitors of lipid synthesis that were tested, 5-(tetradecyloxy)-2-furoic acid (TOFA), which is an inhibitor of acetyl-CoA carboxylase, and the fatty acid synthase (FAS) inhibitors cerulenin and irgasan, significantly suppressed the proliferation of MiaPaCa-2 and AsPC-1 cells. Treatment of MiaPaCa-2 cells with these inhibitors significantly increased the number of apoptotic cells. In addition, TOFA increased caspase-3 activity and induced cleavage of poly (ADP-ribose) polymerase in MiaPaCa-2 cells. Moreover, addition of palmitate to MiaPaCa-2 cells treated with TOFA rescued cells from apoptotic cell death. These results suggest that TOFA induces apoptosis via depletion of fatty acids and that, among the various aspects of lipid metabolism, inhibition of fatty acid synthesis may be a notable target for the treatment of human pancreatic cancer cells. PMID:27630308

  10. Ascorbic acid protects against cadmium-induced endoplasmic reticulum stress and germ cell apoptosis in testes.

    PubMed

    Ji, Yan-Li; Wang, Zhen; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Meng, Xiu-Hong; Xu, De-Xiang

    2012-11-01

    Cadmium (Cd) is a testicular toxicant which induces endoplasmic reticulum (ER) stress and germ cell apoptosis in testes. This study investigated the effects of ascorbic acid on Cd-evoked ER stress and germ cell apoptosis in testes. Male mice were intraperitoneally injected with CdCl(2) (2.0 mg/kg). As expected, a single dose of Cd induced testicular germ cell apoptosis. Interestingly, Cd-triggered testicular germ cell apoptosis was almost completely inhibited in mice treated with ascorbic acid. Interestingly, ascorbic acid significantly attenuated Cd-induced upregulation of GRP78 in testes. In addition, ascorbic acid significantly attenuated Cd-triggered testicular IRE1α and eIF2α phosphorylation and XBP-1 activation, indicating that this antioxidant counteracts Cd-induced unfolded protein response (UPR) in testes. Finally, ascorbic acid significantly attenuated Cd-evoked upregulation of CHOP and JNK phosphorylation, two components in ER stress-mediated apoptotic pathway. In conclusion, ascorbic acid protects mice from Cd-triggered germ cell apoptosis via inhibiting ER stress and UPR in testes. PMID:22569276

  11. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    PubMed

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  12. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells.

    PubMed

    Göttlicher, M; Minucci, S; Zhu, P; Krämer, O H; Schimpf, A; Giavara, S; Sleeman, J P; Lo Coco, F; Nervi, C; Pelicci, P G; Heinzel, T

    2001-12-17

    Histone deacetylases (HDACs) play important roles in transcriptional regulation and pathogenesis of cancer. Thus, HDAC inhibitors are candidate drugs for differentiation therapy of cancer. Here, we show that the well-tolerated antiepileptic drug valproic acid is a powerful HDAC inhibitor. Valproic acid relieves HDAC-dependent transcriptional repression and causes hyperacetylation of histones in cultured cells and in vivo. Valproic acid inhibits HDAC activity in vitro, most probably by binding to the catalytic center of HDACs. Most importantly, valproic acid induces differentiation of carcinoma cells, transformed hematopoietic progenitor cells and leukemic blasts from acute myeloid leukemia patients. More over, tumor growth and metastasis formation are significantly reduced in animal experiments. Therefore, valproic acid might serve as an effective drug for cancer therapy. PMID:11742974

  13. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells

    PubMed Central

    Göttlicher, Martin; Minucci, Saverio; Zhu, Ping; Krämer, Oliver H.; Schimpf, Annemarie; Giavara, Sabrina; Sleeman, Jonathan P.; Lo Coco, Francesco; Nervi, Clara; Pelicci, Pier Giuseppe; Heinzel, Thorsten

    2001-01-01

    Histone deacetylases (HDACs) play important roles in transcriptional regulation and pathogenesis of cancer. Thus, HDAC inhibitors are candidate drugs for differentiation therapy of cancer. Here, we show that the well-tolerated antiepileptic drug valproic acid is a powerful HDAC inhibitor. Valproic acid relieves HDAC-dependent transcriptional repression and causes hyperacetylation of histones in cultured cells and in vivo. Valproic acid inhibits HDAC activity in vitro, most probably by binding to the catalytic center of HDACs. Most importantly, valproic acid induces differentiation of carcinoma cells, transformed hematopoietic progenitor cells and leukemic blasts from acute myeloid leukemia patients. More over, tumor growth and metastasis formation are significantly reduced in animal experiments. Therefore, valproic acid might serve as an effective drug for cancer therapy. PMID:11742974

  14. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    PubMed

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent. PMID:26381667

  15. Valproic acid sensitizes human glioma cells to gefitinib-induced autophagy.

    PubMed

    Chang, Cheng-Yi; Li, Jian-Ri; Wu, Chih-Cheng; Ou, Yen-Chuan; Chen, Wen-Ying; Kuan, Yu-Hsiang; Wang, Wen-Yi; Chen, Chun-Jung

    2015-11-01

    Autophagy and apoptosis represent important cellular processes involved in cancer cell killing mechanisms. Epidermal growth factor receptor inhibitor gefitinib and valproic acid have been implicated in the treatment of malignancies including glioma involving autophagic and apoptotic mechanisms. Therefore, it is interesting to investigate whether a combination of gefitinib and valproic acid shows better cancer cell killing effect on human glioma cells. We found that a nontoxic concentration of valproic acid sensitized U87 and T98G glioma cells to gefitinib cytotoxicity by inhibiting cell growth and long-term clonogenic survival. The augmented consequences were accompanied by the formation of autophagic vacuoles, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), and degradation of p62. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 but not broad-spectrum caspase inhibitor attenuated gefitinib/valproic acid-induced growth inhibition. Gefitinib/valproic acid-induced autophagy was accompanied by the activation of liver kinase-B1 (LKB1)/AMP-activated protein kinase (AMPK)/ULK1. Silencing of AMPK and ULK1 suppressed gefitinib/valproic acid-induced autophagy and growth inhibition. Mechanistic studies showed that gefitinib/valproic acid increased intracellular reactive oxygen species generation and N-acetyl cysteine attenuated gefitinib/valproic acid-caused autophagy and growth inhibition. In addition to demonstrating the autophagic mechanisms of gefitinib/valproic acid, the results of this study further suggest that intracellular oxidative stress and the LKB1/AMPK signaling might be a potential target for the development of therapeutic strategy against glioma. PMID:26488897

  16. Alpha-amylase production is induced by sulfuric acid in rice aleurone cells.

    PubMed

    Mitsunaga, Shin-ichiro; Kobayashi, Midori; Fukui, Satoe; Fukuoka, Kayoko; Kawakami, Osamu; Yamaguchi, Junji; Ohshima, Masahiro; Mitsui, Toshiaki

    2007-12-01

    The hydrolytic enzyme alpha-amylase (EC 3.2.1.1) is produced mainly in aleurone cells of germinating cereals, and the phytohormone gibberellin (GA) is essential for its induction. However, in rice (Oryza sativa L.), sulfuric acid (H(2)SO(4)) induces alpha-amylase production in aleurone tissue even in the absence of GA. Here, the pre-treatment of rice aleurone cells with H(2)SO(4) and incubation in water induced alpha-amylase activity, as if the cells had been incubated in GA solution. PMID:17988885

  17. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells.

    PubMed

    Niero, Evandro Luís de Oliveira; Machado-Santelli, Gláucia Maria

    2013-05-23

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

  18. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells

    PubMed Central

    2013-01-01

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation. PMID:23701745

  19. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells.

    PubMed

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells' molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  20. Protective effect of oleanolic acid on oxidized-low density lipoprotein induced endothelial cell apoptosis.

    PubMed

    Cao, Jianhua; Li, Guanghui; Wang, Meizhi; Li, Hui; Han, Zhiwu

    2015-10-01

    Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a naturally-occurring triterpenoid with various promising pharmacological properties. The present study was conducted to determine the protective effects of OA against oxidized low-density lipoprotein (ox-LDL) induced endothelial cell apoptosis and the possible underlying mechanisms. Our results showed that ox-LDL significantly decreased cell viability and induced apoptosis in human umbilical vein endothelial cells (HUVECs). OA in the co-treatment showed a protective effect against ox-LDL induced loss in cell viability and an increase in apoptosis, which was associated with the modulating effect of OA on ox-LDL induced hypoxia-inducible factor 1α(HIF-1α) expression. Moreover, our results showed that the modulating effect of OA against ox-LDL induced HIF-1α expression was obtained via inhibition of lipoprotein receptor 1 (LOX-1)/reactive oxygen species (ROS) signaling. Collectively, we suggested that the protective effect of OA against ox-LDL induced HUVEC apoptosis might, at least in part, be obtained via inhibition of the LOX-1/ROS/HIF-1α signaling pathway. PMID:26559024

  1. Protective effect of oleanolic acid on oxidized-low density lipoprotein induced endothelial cell apoptosis.

    PubMed

    Cao, Jianhua; Li, Guanghui; Wang, Meizhi; Li, Hui; Han, Zhiwu

    2015-10-01

    Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a naturally-occurring triterpenoid with various promising pharmacological properties. The present study was conducted to determine the protective effects of OA against oxidized low-density lipoprotein (ox-LDL) induced endothelial cell apoptosis and the possible underlying mechanisms. Our results showed that ox-LDL significantly decreased cell viability and induced apoptosis in human umbilical vein endothelial cells (HUVECs). OA in the co-treatment showed a protective effect against ox-LDL induced loss in cell viability and an increase in apoptosis, which was associated with the modulating effect of OA on ox-LDL induced hypoxia-inducible factor 1α(HIF-1α) expression. Moreover, our results showed that the modulating effect of OA against ox-LDL induced HIF-1α expression was obtained via inhibition of lipoprotein receptor 1 (LOX-1)/reactive oxygen species (ROS) signaling. Collectively, we suggested that the protective effect of OA against ox-LDL induced HUVEC apoptosis might, at least in part, be obtained via inhibition of the LOX-1/ROS/HIF-1α signaling pathway.

  2. Pseudolaric Acid B Induced Cell Cycle Arrest, Autophagy and Senescence in Murine Fibrosarcoma L929 Cell

    PubMed Central

    hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao

    2013-01-01

    Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC. PMID:23630435

  3. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover.

  4. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. PMID:27597244

  5. Humic acid inhibits HBV-induced autophagosome formation and induces apoptosis in HBV-transfected Hep G2 cells

    PubMed Central

    Pant, Kishor; Yadav, Ajay K.; Gupta, Parul; Rathore, Abhishek Singh; Nayak, Baibaswata; Venugopal, Senthil K.

    2016-01-01

    Hepatitis B Virus (HBV) utilizes several mechanisms to survive in the host cells and one of the main pathways being autophagosome formation. Humic acid (HA), one of the major components of Mineral pitch, is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. We hypothesized that HA could induce cell death and inhibit HBV-induced autophagy in hepatic cells. Incubation of Hep G2.2.1.5 cells (HepG2 cells stably expressing HBV) with HA (100 μM) inhibited both cell proliferation and autophagosome formation significantly, while apoptosis induction was enhanced. Western blot results showed that HA incubation resulted in decreased levels of beclin-1, SIRT-1 and c-myc, while caspase-3 and β-catenin expression were up-regulated. Western blot results showed that HA significantly inhibited the expression of HBx (3-fold with 50 μM and 5-fold with 100 μM) compared to control cells. When HA was incubated with HBx-transfected Hep G2 cells, HBx-induced autophagosome formation and beclin-1 levels were decreased. These data showed that HA induced apoptosis and inhibited HBV-induced autophagosome formation and proliferation in hepatoma cells. PMID:27708347

  6. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  7. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid

    SciTech Connect

    Qi Xinming; Cai Yan; Gong Likun; Liu Linlin; Chen Fangping; Xiao Ying; Wu Xiongfei; Li Yan; Xue Xiang |; Ren Jin . E-mail: cdser_simm@mail.shcnc.ac.cn

    2007-07-01

    Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca{sup 2+}, AAI caused mitochondrial swelling, leakage of Ca{sup 2+}, membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid.

  8. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity.

    PubMed

    Park, Jeong Su; Kang, Dong Hoon; Lee, Da Hyun; Bae, Soo Han

    2015-10-01

    Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-induced lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. PMID:26325428

  9. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  10. Free fatty acids induce cell differentiation to infective forms in Trypanosoma cruzi.

    PubMed Central

    Wainszelbaum, Marisa J; Belaunzarán, María L; Lammel, Estela M; Florin-Christensen, Mónica; Florin-Christensen, Jorge; Isola, Elvira L D

    2003-01-01

    Intestinal extracts of Triatoma infestans induce cell differentiation of Trypanosoma cruzi epimastigotes into the infective metacyclic form. Part of this effect can be explained by the presence of haemoglobin fragments, which stimulate trypanosomal adenylate cyclase. In this work we examined the metacyclogenic activity of lipids present in this intestinal extract. We found that lipid extracts of the intestinal extract have significant stimulatory effects that reside with the free-fatty-acid fraction, especially oleic acid. These compounds stimulate de novo diacylglycerol formation and protein kinase C activity in the parasite. Moreover, metacyclogenesis is stimulated by phorbol esters and cell-permeant diacylglycerol, while protein kinase C down-regulation or incubation with inhibitors of this kinase abrogates this effect. These results indicate that free fatty acids are a novel signal, inducing metacyclogenesis, acting through a pathway involving diacylglycerol biosynthesis and protein kinase C activation. PMID:12887332

  11. Vasopressin induces release of arachidonic acid from vascular smooth muscle cells

    SciTech Connect

    Grillone, L.R.; Clark, M.A.; Heckman, G.; Schmidt, D.; Stassen, F.L.; Crooke, S.T.

    1986-05-01

    Cultured smooth muscle cells (A-10), derived from rat thoracic aorta, have vascular (V/sub 1/) vasopressin receptors. They have previously shown that these receptors mediate phosphatidylinositol turnover, Ca/sup 2 +/ efflux, and inhibition of isoproterenol-induced increases in cAMP. Here they studied the effect of vasopressin on arachidonic acid metabolism of A-10 cells. Cells were incubated for 18-20 hr with (/sup 3/H)-arachidonic acid (80 Ci/mmol). Vasopressin stimulated release of arachidonic acid in a time- and dose-dependent manner. Significant release of arachidonic acid was observed after 4 min with 10/sup -9/ M vasopressin. Maximum release was reached 4 min after addition of 10/sup -7/ M vasopressin (1100 dpm/10/sup 6/ cells). About 800 dmp were released after 1 and 4 min with 10/sup -7/ M and 10/sup -8/ M vasopressin, respectively. The vasopressin-stimulated release of arachidonic acid was blocked by the specific V/sub 1//V/sub 2/ vasopressin antagonist d(CH2)5D-Tyr(Et)VAVP. These data indicate that vascular smooth muscle cells increase arachidonic acid release in response to vasopressin. This response is likely mediated by V/sub 1/ receptors.

  12. Differential cell fates induced by all-trans retinoic acid-treated HL-60 human leukemia cells.

    PubMed

    Ozeki, Munetaka; Shively, John E

    2008-09-01

    HL-60 human leukemia cells, differentiated into a neutrophil lineage by all-trans retinoic acid (ATRA) treatment, express three members of the carcinoembryonic antigen (CEA) gene family, CEA-related cell adhesion molecule 1 (CEACAM1; CD66a), CEACAM3 (CD66d), and CEACAM6 (CD66c). CD66d is a neutrophil lineage-specific marker, and CD66a and CD66c are found on epithelial and other cells. HL-60 cells continuously treated with ATRA underwent apoptosis, and cells transiently treated for 1 day underwent cell-cycle arrest, entered into senescence, and exhibited reduced apoptosis with CD66-positive cells accounting for the majority of live cells. CD66 antigens were also induced in NB4 leukemic cells upon continuous treatment with ATRA. NB4 cells underwent apoptosis with a higher frequency in transient versus continuous-treated cells (38% vs. 19% at Day 5), in contrast to HL-60 cells that underwent cell-cycle arrest and senescence when transiently treated with ATRA. CD66 antigens were not induced in transient, ATRA-treated NB4 cells compared with HL-60 cells. Cell-cycle arrest in HL-60 cells involved reduction in expression levels of p21, cyclins D and E, while Rb1 exhibited reduction in protein levels without changes in mRNA levels over the time course of ATRA treatment. Analysis of several proapoptotic proteins implicated the activation of calpain and cleavage of Bax in the intrinsic apoptotic pathway, similar to published studies about the apoptosis of neutrophils. CD1d expression was also induced by ATRA in HL-60 cells and ligation with anti-CD1d antibody-induced apoptosis. In contrast, CD1d-positive primary monocytes were protected from spontaneous apoptosis by CD1d ligation. These studies demonstrate distinct cell fates for ATRA-treated HL-60 cells that provide new insights into ATRA-induced cell differentiation.

  13. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  14. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration.

    PubMed

    Gómez-Vicente, Violeta; Lax, Pedro; Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss.

  15. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    PubMed Central

    Dong, Xue-Jun; Zhang, Guo-Rong; Zhou, Qing-Jun; Pan, Ruo-Lang; Chen, Ye; Xiang, Li-Xin; Shao, Jian-Zhong

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  16. Retinoic acid alleviates Con A-induced hepatitis and differentially regulates effector production in NKT cells.

    PubMed

    Lee, Kyoo-A; Song, You Chan; Kim, Ga-Young; Choi, Gyeyoung; Lee, Yoon-Sook; Lee, Jung-Mi; Kang, Chang-Yuil

    2012-07-01

    Retinoic acid (RA) is a diverse regulator of immune responses. Although RA promotes natural killer T (NKT) cell activation in vitro by increasing CD1d expression on antigen-presenting cells (APCs), the direct effects of RA on NKT-cell responses in vivo are not known. In the present study, we demonstrated the effect of RA on the severity of Con A-induced hepatitis and molecular changes of NKT cells. First, we demonstrated that Con A-induced liver damage was ameliorated by RA. In correlation with cytokine levels in serum, RA regulated the production of IFN-γ and IL-4 but not TNF-α by NKT cells without influencing the NKT-cell activation status. However, RA did not alleviate α-GalCer-induced liver injury, even though it reduced IFN-γ and IL-4 but not TNF-α levels in serum. This regulation was also detected when liver mononuclear cells (MNCs) or NKT hybridoma cells were treated with RA in vitro. The regulatory effect of RA on NKT cells was mediated by RAR-α, and RA reduced the phosphorylation of MAPK. These results suggest that RA differentially modulates the production of effector cytokines by NKT cells in hepatitis, and the suppressive effect of RA on hepatitis varies with the pathogenic mechanism of liver injury.

  17. Abscisic acid induces ectopic outgrowth in epidermal cells through cortical microtubule reorganization in Arabidopsis thaliana

    PubMed Central

    Takatani, Shogo; Hirayama, Takashi; Hashimoto, Takashi; Takahashi, Taku; Motose, Hiroyasu

    2015-01-01

    Abscisic acid (ABA) regulates seed maturation, germination and various stress responses in plants. The roles of ABA in cellular growth and morphogenesis, however, remain to be explored. Here, we report that ABA induces the ectopic outgrowth of epidermal cells in Arabidopsis thaliana. Seedlings of A. thaliana germinated and grown in the presence of ABA developed ectopic protrusions in the epidermal cells of hypocotyls, petioles and cotyledons. One protrusion was formed in the middle of each epidermal cell. In the hypocotyl epidermis, two types of cell files are arranged alternately into non-stoma cell files and stoma cell files, ectopic protrusions being restricted to the non-stoma cell files. This suggests the presence of a difference in the degree of sensitivity to ABA or in the capacity of cells to form protrusions between the two cell files. The ectopic outgrowth was suppressed in ABA insensitive mutants, whereas it was enhanced in ABA hypersensitive mutants. Interestingly, ABA-induced ectopic outgrowth was also suppressed in mutants in which microtubule organization was compromised. Furthermore, cortical microtubules were disorganized and depolymerized by the ABA treatment. These results suggest that ABA signaling induces ectopic outgrowth in epidermal cells through microtubule reorganization. PMID:26068445

  18. Cinnamic acid derivatives induce cell cycle arrest in carcinoma cell lines.

    PubMed

    Sova, Matej; Žižak, Željko; Stanković, Jelena A Antic; Prijatelj, Matevž; Turk, Samo; Juranić, Zorica D; Mlinarič-Raščan, Irena; Gobec, Stanislav

    2013-08-01

    Cinnamic acid derivatives can be found in plant material, and they possess a remarkable variety of biological effects. In the present study, we have investigated the cytotoxic effects of representative cinnamic acid esters and amides. The cytotoxicity was determined by MTT test on human cervix adenocarcinoma (HeLa), myelogenous leukemia (K562), malignant melanoma (Fem-x), and estrogen-receptor-positive breast cancer (MCF-7) cells, versus peripheral blood mononuclear cells (PBMCs) without or with the addition of the plant lectin phytohemaglutinin (PHA). The compounds tested showed significant cytotoxicity (IC50s between 42 and 166 µM) and furthermore selectivity of these cytotoxic effects on the malignant cell lines versus the PBMCs was also seen, especially when electron-withdrawing groups, such as a cyano group (compound 5), were present on the aromatic rings of the alcohol or amine parts of the cinnamic acid derivatives. The additional study on cell cycle phase distribution indicated that novel cinnamic acid derivatives inhibit cell growth by induction of cell death. Thus, cinnamic acids derivatives represent important lead compounds for further development of antineoplastic agents.

  19. Rapid Formation of Cell Aggregates and Spheroids Induced by a "Smart" Boronic Acid Copolymer.

    PubMed

    Amaral, Adérito J R; Pasparakis, George

    2016-09-01

    Cell surface engineering has emerged as a powerful approach to forming cell aggregates/spheroids and cell-biomaterial ensembles with significant uses in tissue engineering and cell therapeutics. Herein, we demonstrate that cell membrane remodeling with a thermoresponsive boronic acid copolymer induces the rapid formation of spheroids using either cancer or cardiac cell lines under conventional cell culture conditions at minute concentrations. It is shown that the formation of well-defined spheroids is accelerated by at least 24 h compared to non-polymer-treated controls, and, more importantly, the polymer allows for fine control of the aggregation kinetics owing to its stimulus response to temperature and glucose content. On the basis of its simplicity and effectiveness to promote cellular aggregation, this platform holds promise in three-dimensional tissue/tumor modeling and tissue engineering applications. PMID:27571512

  20. Combined staurosporine and retinoic acid induces differentiation in retinoic acid resistant acute promyelocytic leukemia cell lines

    PubMed Central

    Ge, Dong-zheng; Sheng, Yan; Cai, Xun

    2014-01-01

    All-trans retinoic acid (ATRA) resistance has been a critical problem in acute promyelocytic leukemia (APL) relapsed patients. In ATRA resistant APL cell lines NB4-R1 and NB4-R2, the combination of staurosporine and ATRA synergized to trigger differentiation accompanied by significantly enhanced protein level of CCAAT/enhancer binding protein ε (C/EBPε) and C/EBPβ as well as the phosphorylation of mitogen-activated protein (MEK) and extracellular signal-regulated kinase (ERK). Furthermore, attenuation of the MEK activation blocked not only the differentiation but also the increased protein level of C/EBPε and C/EBPβ. Taken together, we concluded that the combination of ATRA and staurosporine could overcome differentiation block via MEK/ERK signaling pathway in ATRA-resistant APL cell lines. PMID:24769642

  1. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells.

    PubMed

    Wang, Ke; Zhu, Xue; Zhang, Kai; Zhu, Ling; Zhou, Fanfan

    2014-09-01

    Gallic acid (GA), a polyhydroxylphenolic compound abundantly distributed in plants, fruits, and foods, has been reported to have various biological activities including an anticancer effect. In this study, we extensively investigated the anticancer effect of GA in human breast carcinoma MCF-7 cells. Our study indicated that treatment with GA resulted in inhibition of proliferation and induction of apoptosis in MCF-7 cells. Then, the molecular mechanism of GA's apoptotic action in MCF-7 cells was further investigated. The results revealed that GA induced apoptosis by triggering the extrinsic or Fas/FasL pathway as well as the intrinsic or mitochondrial pathway. Furthermore, the apoptotic signaling induced by GA was amplified by cross-link between the two pathways. Taken together, our findings may be useful for understanding the mechanism of action of GA on breast cancer cells and provide new insights into the possible application of such compound and its derivatives in breast cancer therapy.

  2. Protection against arsenic trioxide-induced autophagic cell death in U118 human glioma cells by use of lipoic acid.

    PubMed

    Cheng, Tain-Junn; Wang, Ying-Jan; Kao, Wei-Wan; Chen, Rong-Jane; Ho, Yuan-Soon

    2007-06-01

    Arsenic is an environmental toxicant found naturally in ground water. Epidemiological studies have suggested a correlation between chronic arsenic exposure and potential brain tissue damage in clinical case and animal experiments. Lipoic acid (LA) is a thiol-compound naturally occurring in plants and animals, which is thought to be a strong antioxidant and possess neuroprotective effects. The objective of this study was to determine if the AS(2)O(3)-induced glial cell toxicity could be prevented by LA. The human malignant glioma cell (U118) was selected as a research model. By using acridine orange staining and flow cytometry analysis, we found that autophagic, but not apoptotic, cell death was significantly induced by AS(2)O(3) in U118 cells, and that AS(2)O(3)-mediated autophagic cell death was nearly completely attenuated by LA. Down-regulation of p53 and Bax proteins and the up-regulation of Bcl-2 and HSP-70 proteins were observed by western blot in AS(2)O(3)-mediated autophagic cell death. Our results implied that LA completely inhibited U118 cells autophagic cell death induced by AS(2)O(3). We suggested that LA may emerge as a useful protective agent against arsenic-induced glial cell toxicity and reversing arsenic-induced damage in human brain.

  3. [The parietal cell mass and acid secretion: Helicobacter pylori does not induce changes in the course of a duodenal ulcer].

    PubMed

    Testino, G; Sumberaz, A; Cornaggia, M

    1995-12-01

    Some studies have postulated that Helicobacter pylori (HP) itself might be responsible for hypergastrinemia and acid secretion in duodenal ulcer (DU). In each DU patient parietal cell mass (expressed by a parietal index) and stimulated acid secretion (expressed by maximal acid output) were evaluated. The study has been conducted grouping DU patients in relation to HP infection in antral mucosa. HP infection does not modify parietal cell mass and stimulated acid secretion. Therefore, mild chronic hypergastrinemia induced by HP infection is not sufficient to justify any increase of parietal index and acid secretion. In fact, parietal cells and acid secretion remain higher in DU subjects independently from HP infection.

  4. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    SciTech Connect

    Lin, C.-H.; Lai, Y.-L. . E-mail: tiger@ha.mc.ntu.edu.tw

    2005-08-15

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H{sub 1} receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C{sub 4} (LTC{sub 4}) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV{sub 0.1}) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV{sub 0.1}, indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC{sub 4} and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction.

  5. Mast cells in citric acid-induced cough of guinea pigs

    SciTech Connect

    Lai, Y.-L. . E-mail: tiger@ha.mc.ntu.edu.tw; Lin, T.-Y.

    2005-01-01

    It was demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. To investigate the role of mast cells in CA-induced cough, three experiments were carried out in this study. In the first experiment, 59 guinea pigs were employed and we used compound 48/80 to deplete mast cells, cromolyn sodium to stabilize mast cells, MK-886 to inhibit leukotriene synthesis, pyrilamine to antagonize histamine H{sub 1} receptor, methysergide to antagonize serotonin receptor, and indomethacin to inhibit cyclooxygenase. In the second experiment, 56 compound 48/80-pretreated animals were divided into two parts; the first one was used to test the role of exogenous leukotriene (LT) C{sub 4}, while the second one to test the role of exogenous histamine in CA-induced cough. Each animal with one of the above pretreatments was exposed sequentially to saline (baseline) and CA (0.6 M) aerosol, each for 3 min. Then, cough was recorded for 12 min using a barometric body plethysmograph. In the third experiment, the activation of mast cells upon CA inhalation was investigated by determining arterial plasma histamine concentration in 17 animals. Exposure to CA induced a marked increase in cough number. Compound 48/80, cromolyn sodium, MK-886 and pyrilamine, but not indomethacin or methysergide, significantly attenuated CA-induced cough. Injection of LTC{sub 4} or histamine caused a significant increase in CA-induced cough in compound 48/80-pretreated animals. In addition, CA inhalation caused significant increase in plasma histamine concentration, which was blocked by compound 48/80 pretreatment. These results suggest that mast cells play an important role in CA aerosol inhalation-induced cough via perhaps mediators LTs and histamine.

  6. Green tea polyphenol epigallocatechin-O-gallate induces cell death by acid sphingomyelinase activation in chronic myeloid leukemia cells

    PubMed Central

    HUANG, YUHUI; KUMAZOE, MOTOFUMI; BAE, JAEHOON; YAMADA, SHUHEI; TAKAI, MIKA; HIDAKA, SHIORI; YAMASHITA, SHUYA; KIM, YOONHEE; WON, YEONGSEON; MURATA, MOTOKI; TSUKAMOTO, SHUNTARO; TACHIBANA, HIROFUMI

    2015-01-01

    An epidemiological study showed that green tea consumption is associated with a reduced risk of hematopoietic malignancy. The major green tea polyphenol epigallocatechin-3-O-gallate (EGCG) is reported to have anticancer effects. Chronic myeloid leukemia (CML) is a major hematopoietic malignancy characterized by expansion of myeloid cells. In the present study, we showed EGCG-induced acid sphingomyelinase (ASM) activation and lipid raft clustering in CML cells. The ASM inhibitor desipramine significantly reduced EGCG-induced cell death. Protein kinase Cδ is a well-known kinase that plays an important role in ASM activation. We observed EGCG-induced phos-phorylation of protein kinase Cδ at Ser664. Importantly, EGCG-induced ASM activation was significantly reduced by pretreatment of CML cells with the soluble guanylate cyclase inhibitor NS2028, suggesting that EGCG induced ASM activation through the cyclic guanosine monophosphate (cGMP)-dependent pathway. Indeed, pharmacological inhibition of a cGMP-negative regulator enhanced the anti-CML effect of EGCG. These results indicate that EGCG-induced cell death via the cGMP/ASM pathway in CML cells. PMID:26135316

  7. Dehydroabietic Acid Derivative QC4 Induces Gastric Cancer Cell Death via Oncosis and Apoptosis

    PubMed Central

    Luo, Dongjun; Ni, Qing; Ji, Anlai; Gu, Wen; Wu, Junhua

    2016-01-01

    Aim. QC4 is the derivative of rosin's main components dehydroabietic acid (DHA). We investigated the cytotoxic effect of QC4 on gastric cancer cells and revealed the mechanisms beneath the induction of cell death. Methods. The cytotoxic effect of QC4 on gastric cancer cells was evaluated by CCK-8 assay and flow cytometry. The underlying mechanisms were tested by administration of cell death related inhibitors and detection of apoptotic and oncosis related proteins. Cytomembrane integrity and organelles damage were confirmed by lactate dehydrogenase (LDH) leakage assay, mitochondrial function test, and cytosolic free Ca2+ concentration detection. Results. QC4 inhibited cell proliferation dose- and time-dependently and destroyed cell membrane integrity, activated calpain-1 autolysis, and induced apoptotic protein cleavage in gastric cancer cells. The detection of decreased ATP and mitochondrial membrane potential, ROS accumulation, and cytosolic free Ca2+ elevation confirmed organelles damage in QC4-treated gastric cancer cells. Conclusions. DHA derivative QC4 induced the damage of cytomembrane and organelles which finally lead to oncosis and apoptosis in gastric cancer cells. Therefore, as a derivative of plant derived small molecule DHA, QC4 might become a promising agent in gastric cancer therapy. PMID:27057539

  8. Gallic acid induced apoptotic events in HCT-15 colon cancer cells

    PubMed Central

    Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu

    2016-01-01

    AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2’,7’-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells. PMID:27099438

  9. Interplay between cell cycle and autophagy induced by boswellic acid analog

    PubMed Central

    Pathania, Anup S.; Guru, Santosh K.; Kumar, Suresh; Kumar, Ashok; Ahmad, Masroor; Bhushan, Shashi; Sharma, Parduman R.; Mahajan, Priya; Shah, Bhahwal A.; Sharma, Simmi; Nargotra, Amit; Vishwakarma, Ram; Korkaya, Hasan; Malik, Fayaz

    2016-01-01

    In this study, we investigated the role of autophagy induced by boswellic acid analog BA145 on cell cycle progression in pancreatic cancer cells. BA145 induced robust autophagy in pancreatic cancer cell line PANC-1 and exhibited cell proliferation inhibition by inducing cells to undergo G2/M arrest. Inhibition of G2/M progression was associated with decreased expression of cyclin A, cyclin B, cyclin E, cdc2, cdc25c and CDK-1. Pre-treatment of cells with autophagy inhibitors or silencing the expression of key autophagy genes abrogated BA145 induced G2/M arrest and downregulation of cell cycle regulatory proteins. It was further observed that BA145 induced autophagy by targeting mTOR kinase (IC50 1 μM), leading to reduced expression of p-mTOR, p-p70S6K (T389), p-4EBP (T37/46) and p-S6 (S240/244). Notably, inhibition of mTOR signalling by BA145 was followed by attendant activation of AKT and its membrane translocation. Inhibition of Akt through pharmacological inhibitors or siRNAs enhanced BA145 mediated autophagy, G2/M arrest and reduced expression of G2/M regulators. Further studies revealed that BA145 arbitrated inhibition of mTOR led to the activation of Akt through IGFR/PI3k/Akt feedback loop. Intervention in IGFR/PI3k/Akt loop further depreciated Akt phosphorylation and its membrane translocation that culminates in augmented autophagy with concomitant G2/M arrest and cell death. PMID:27680387

  10. Lactoferrin attenuates fatty acid-induced lipotoxicity via Akt signaling in hepatocarcinoma cells.

    PubMed

    Morishita, Satoru; Tomita, Keiko; Ono, Tomoji; Murakoshi, Michiaki; Saito, Kenji; Sugiyama, Keikichi; Nishino, Hoyoku; Kato, Hisanori

    2015-12-01

    Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of lesions ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). The excess influx of fatty acids (FAs) into the liver is recognized as a main cause of simple steatosis formation and progression to NASH. Recently, administration of lactoferrin (LF), a glycoprotein present in milk, was suggested to prevent NAFLD development. However, the effect of LF on the contribution of FA to NAFLD development remains unclear. In this study, the effects of LF on FA mixture (FAm)-induced lipotoxicity using human hepatocarcinoma G2 cells were assessed. FAm significantly decreased cell viability and increased intracellular lipid accumulation, whereas LF significantly recovered cell viability without affecting lipid accumulation. FAm-induced lactic dehydrogenase (LDH) and caspase-3/7 activities were significantly decreased by LF and SP600125, a c-Jun N-terminal kinase (JNK) specific inhibitor. We also found that LF added to FAm-treated cells induced Akt phosphorylation, which contributed to inhibition of JNK signaling pathway-dependent apoptosis. Akt inhibitor VIII, an allosteric Akt inhibitor, significantly attenuated the effect of LF on LDH activity and abrogated the ones on cell viability and caspase-3/7 activity. In summary, the present study has revealed that LF has a protective effect on FAm-induced lipotoxicity in a HepG2 model of NAFLD and identified the activation of the Akt signaling pathway as a possibly major mechanism.

  11. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells

    PubMed Central

    WEN, CHUANGYU; HUANG, LANLAN; CHEN, JUNXIONG; LIN, MENGMENG; LI, WEN; LU, BIYAN; RUTNAM, ZINA JEYAPALAN; IWAMOTO, AIKICHI; WANG, ZHONGYANG; YANG, XIANGLING; LIU, HUANLIANG

    2015-01-01

    The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy. PMID:26397804

  12. Ascorbic acid inhibits TPA-induced HL-60 cell differentiation by decreasing cellular H₂O₂ and ERK phosphorylation.

    PubMed

    Yiang, Giou-Teng; Chen, Jen-Ni; Wu, Tsai-Kun; Wang, Hsueh-Fang; Hung, Yu-Ting; Chang, Wei-Jung; Chen, Chinshuh; Wei, Chyou-Wei; Yu, Yung-Luen

    2015-10-01

    Retinoic acid (RA), vitamin D and 12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High‑dose ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and induces a small fraction of HL‑60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti‑oxidative stress function. Oxidative stress is required for HL‑60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL‑60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low‑dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL‑60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low‑dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL‑60 cell differentiation following treatment with TPA.

  13. MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation.

    PubMed

    Stallings, Raymond L; Foley, Niamh H; Bray, Isabella M; Das, Sudipto; Buckley, Patrick G

    2011-10-01

    Many neuroblastoma cell lines can be induced to differentiate into a mature neuronal cell type with retinoic acid and other compounds, providing an important model system for elucidating signalling pathways involved in this highly complex process. Recently, it has become apparent that miRNAs, which act as regulators of gene expression at a post-transcriptional level, are differentially expressed in differentiating cells and play important roles governing many aspects of this process. This includes the down-regulation of DNA methyltransferases that cause the de-methylation and transcriptional activation of numerous protein coding gene sequences. The purpose of this article is to review involvement of miRNAs and DNA methylation alterations in the process of neuroblastoma cell differentiation. A thorough understanding of miRNA and genetic pathways regulating neuroblastoma cell differentiation potentially could lead to targeted therapies for this disease.

  14. Dehydroabietic Acid Derivative QC2 Induces Oncosis in Hepatocellular Carcinoma Cells

    PubMed Central

    Zhang, Guang; Jiang, Chunping; Wang, Zhongxia; Chen, Weibo; Gu, Wen; Ding, Yitao

    2014-01-01

    Aim. Rosin, the traditional Chinese medicine, is reported to be able to inhibit skin cancer cell lines. In this report, we investigate the inhibitory effect against HCC cells of QC2, the derivative of rosin's main components dehydroabietic acid. Methods. MTT assay was used to determine the cytotoxicity of QC2. Morphological changes were observed by time-lapse microscopy and transmission electron microscopy and the cytoskeleton changes were observed by laser-scanning confocal microscopy. Cytomembrane integrity and organelles damage were confirmed by detection of the reactive oxygen (ROS), lactate dehydrogenase (LDH), and mitochondrial membrane potential (Δψm). The underlying mechanism was manifested by Western blotting. The oncotic cell death was further confirmed by detection of oncosis related protein calpain. Results. Swelling cell type and destroyed cytoskeleton were observed in QC2-treated HCC cells. Organelle damage was visualized by transmission electron microscopy. The detection of ROS accumulation, increased LDH release, and decreased ATP and Δψm confirmed the cell death. The oncotic related protein calpain was found to increase time-dependently in QC2-treated HCC cells, while its inhibitor PD150606 attenuated the cytotoxicity. Conclusions. Dehydroabietic acid derivative QC2 activated oncosis related protein calpain to induce the damage of cytomembrane and organelles which finally lead to oncosis in HCC cells. PMID:25110686

  15. Fatty Acid Esters of Phloridzin Induce Apoptosis of Human Liver Cancer Cells through Altered Gene Expression

    PubMed Central

    Nair, Sandhya V. G.; Ziaullah; Rupasinghe, H. P. Vasantha

    2014-01-01

    Phloridzin (phlorizin or phloretin 2′-O-glucoside) is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin) using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA) ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2), growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR) and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK), cell cycle machinery (CDKs, TERT, TOP2A, TOP2B) as well as epigenetics regulators (HDACs). These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects mediated

  16. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis

    PubMed Central

    ZHAO, PENG; MAO, JUN-MIN; ZHANG, SHU-YUN; ZHOU, ZE-QUAN; TAN, YANG; ZHANG, YU

    2014-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a ‘chemopreventer’. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer. PMID:25009654

  17. Gallic Acid Induces Necroptosis via TNF–α Signaling Pathway in Activated Hepatic Stellate Cells

    PubMed Central

    Chang, Ya Ju; Hsu, Shih Lan; Liu, Yi Ting; Lin, Yu Hsuan; Lin, Ming Hui; Huang, Shu Jung; Ho, Ja-an Annie; Wu, Li-Chen

    2015-01-01

    Gallic acid (3, 4, 5-trihydroxybenzoic acid, GA), a natural phenolic acid widely found in gallnuts, tea leaves and various fruits, possesses several bioactivities against inflammation, oxidation, and carcinogenicity. The beneficial effect of GA on the reduction of animal hepatofibrosis has been indicated due to its antioxidative property. However, the cytotoxicity of GA autoxidation causing cell death has also been reported. Herein, we postulated that GA might target activated hepatic stellate cells (aHSCs), the cell type responsible for hepatofibrosis, to mitigate the process of fibrosis. The molecular cytotoxic mechanisms that GA exerted on aHSCs were then analyzed. The results indicated that GA elicited aHSC programmed cell death through TNF–α–mediated necroptosis. GA induced significant oxidative stress through the suppression of catalase activity and the depletion of glutathione (GSH). Elevated oxidative stress triggered the production of TNF–α facilitating the undergoing of necroptosis through the up-regulation of key necroptotic regulatory proteins TRADD and receptor-interacting protein 3 (RIP3), and the inactivation of caspase–8. Calmodulin and calpain–1 activation were engaged, which promoted subsequent lysosomal membrane permeabilization (LMP). The TNF–α antagonist (SPD–304) and the RIP1 inhibitor (necrostatin–1, Nec–1) confirmed GA-induced TNFR1–mediated necroptosis. The inhibition of RIP1 by Nec–1 diverted the cell death from necroptosis to apoptosis, as the activation of caspase 3 and the increase of cytochrome c. Collectively, this is the first report indicating that GA induces TNF signaling–triggered necroptosis in aHSCs, which may offer an alternative strategy for the amelioration of liver fibrosis. PMID:25816210

  18. Lysophosphatidic Acid Inhibits Apoptosis Induced by Cisplatin in Cervical Cancer Cells

    PubMed Central

    Sui, Yanxia; Yang, Ya; Wang, Ji; Li, Yi; Ma, Hongbing; Cai, Hui; Liu, Xiaoping; Zhang, Yong; Wang, Shufeng; Li, Zongfang; Zhang, Xiaozhi; Wang, Jiansheng; Liu, Rui; Yan, Yanli; Xue, Chaofan; Shi, Xiaowei; Tan, Li; Ren, Juan

    2015-01-01

    Cervical cancer is the second most common cause of cancer death in women worldwide. Lysophosphatidic acid (LPA) level has been found significantly increased in the serum of patients with ovarian, cervical, and colon cancers. LPA level in cervical cancer patients is significantly higher than in healthy controls. LPA receptors were found highly expressed in cervical cancer cells, suggesting LPA may play a role in the development of cervical cancer. The aim of this study is to investigate the effect of LPA on the apoptosis induced by cisplatin (DDP) in cervical cancer cell line and the underlying changes in signaling pathways. Our study found that cisplatin induced apoptosis of Hela cell through inhibiting expression of Bcl-2, upregulating the expression of Bax, Fas-L, and the enzyme activity of caspase-3 (p < 0.05); LPA significantly provided protection against the apoptosis induced by cisplatin by inhibiting the above alterations in apoptotic factor caused by cisplatin (p < 0.05). Moreover, PI3K/AKT pathway was found to be important for the LPA antiapoptosis effect, and administration of PI3K/AKT partially reversed the LPA-mediated protection against cisplatin-induced apoptosis (p < 0.05). These findings have shed new lights on the LPA bioactivity in cervical cancer cells and pointed to a possible sensitization scheme through combined administration of PI3K inhibitor and cisplatin for better treatment of cervical cancer patients, especially those with elevated LPA levels. PMID:26366416

  19. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells

    SciTech Connect

    Masiello, Lisa M.; Fotos, Joseph S.; Galileo, Deni S.; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that has pleiotropic effects on a variety of cell types and enhances the migration of endothelial and cancer cells, but it is not known if this lipid can alter osteoblast motility. We performed transwell migration assays using MC3T3-E1 osteoblastic cells and found LPA to be a potent chemotactic agent. Quantitative time-lapse video analysis of osteoblast migration after wounds were introduced into cell monolayers indicated that LPA stimulated both migration velocity and the average migration distance per cell. LPA also elicited substantial changes in cell shape and actin cytoskeletal structure; lipid-treated cells contained fewer stress fibers and displayed long membrane processes that were enriched in F-actin. Quantitative RT-PCR analysis showed that MC3T3-E1 cells express all four known LPA-specific G protein-coupled receptors (LPA1-LPA4) with a relative mRNA abundance of LPA1 > LPA4 > LPA2 >> LPA3. LPA-induced changes in osteoblast motility and morphology were antagonized by both pertussis toxin and Ki16425, a subtype-specific blocker of LPA1 and LPA3 receptor function. Cell migration in many cell types is linked to changes in intracellular Ca2+. Ki16425 also inhibited LPA-induced Ca2+ signaling in a dose-dependent manner, suggesting a link between LPA-induced Ca2+ transients and osteoblast chemotaxis. Our data show that LPA stimulates MC3T3-E1 osteoblast motility via a mechanism that is linked primarily to the G protein-coupled receptor LPA1.

  20. Adipokines enhance oleic acid-induced proliferation of vascular smooth muscle cells by inducing CD36 expression.

    PubMed

    Schlich, Raphaela; Lamers, Daniela; Eckel, Jürgen; Sell, Henrike

    2015-01-01

    Adipose tissue is not only releasing lipids but also various adipokines that are both dysregulated in the obese state and may contribute to obesity-associated vascular dysfunction and cardiovascular risk. We have previously shown that the combination of adipocyte-conditioned medium (CM) and oleic acid (OA) increases proliferation of human vascular smooth muscle cells (VSMC) in a synergistic way. We identified vascular endothelial growth factor (VEGF) as a component within CM that is responsible for most of the observed effects. In this study, we investigate novel mechanisms that underlie the combined effects of adipokine and oleic acid-induced proliferation of VSMC. Oleic acid leads to significant lipid accumulation in VSMC that is further enhanced by the combined treatment with CM. Accordingly CM stimulates CD36 expression in VSMC while OA is not affecting CD36. Silencing of CD36 was established and prevents lipid accumulation in all tested conditions. CD36 silencing also abrogates CM- and OA-induced proliferation and considerably reduces proliferation induced by the combination of CM and OA. At the same time, VEGF secretion and VEGF-receptor 1 (VEGF-R1) by VSMC was not affected by CD36 silencing. However, VEGF was not able to induce any proliferation in VSMC after CD36 silencing that also blunted VEGF-induced extracellular signal-regulated kinase (ERK) activation. Finally, combined silencing of CD36 together with a blocking antibody against VEGF prevented most of CMOA-induced proliferation. In conclusion, our results demonstrate that CD36 is mediating CM-induced proliferation of VSMC. Induction of CD36 by adipokines enhances the response of VSMC towards VEGF and OA.

  1. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells

    PubMed Central

    Shen, Yan; Takahashi, Masanobu; Byun, Hyang-Min; Link, Alexander; Sharma, Nupur; Balaguer, Francesc; Leung, Hon-Chiu; Boland, C. Richard; Goel, Ajay

    2012-01-01

    Accumulating evidence suggests that chemopreventive effects of some dietary polyphenols may in part be mediated by their ability to influence epigenetic mechanisms in cancer cells. Boswellic acids, derived from the plant Boswellia serrata, have long been used for the treatment of various inflammatory diseases due to their potent anti-inflammatory activities. Recent preclinical studies have also suggested that this compound has anti-cancer potential against various malignancies. However, the precise molecular mechanisms underlying their anti-cancer effects remain elusive. Herein, we report that boswellic acids modulate DNA methylation status of several tumor suppressor genes in colorectal cancer (CRC) cells. We treated RKO, SW48 and SW480 CRC cell lines with the active principle present in boswellic acids, acetyl-keto-β-boswellic acid (AKBA). Using genome-wide DNA methylation and gene expression microarray analyses, we discovered that AKBA induced a modest genome-wide demethylation that permitted simultaneous re-activation of the corresponding tumor suppressor genes. The quantitative methylation-specific PCR and RT-PCR validated the gene demethylation and re-expression in several putative tumor suppressor genes including SAMD14 and SMPD3. Furthermore, AKBA inhibited DNMT activity in CRC cells. Taken together, these results lend further support to the growing notion that anti-cancer effect of boswellic acids may in part be due to its ability to demethylate and reactivate methylation-silenced tumor suppressor genes. These results suggest that not only boswellic acid might be a promising epigenetic modulator in the chemoprevention and treatment of CRC, but also provide a rationale for future investigations on the usefulness of such botanicals for epigenetic therapy in other human malignancies. PMID:22415137

  2. Beneficial effects of chlorogenic acid on alcohol-induced damage in PC12 cells.

    PubMed

    Fang, Shi-Qi; Wang, Yong-Tang; Wei, Jing-Xiang; Shu, Ya-Hai; Xiao, Lan; Lu, Xiu-Min

    2016-04-01

    As one of the most commonly abused psychotropic substances, ethanol exposure has deleterious effects on the central nervous system (CNS). The most detrimental results of ethanol exposure during development are the loss of neurons in brain regions such as the hippocampus and neocortex, which may be related to the apoptosis and necrosis mediated by oxidative stress. Recent studies indicated that a number of natural drugs from plants play an important role in protection of nerve cells from damage. Among these, it has been reported that chlorogenic acid (CA) has neuroprotective effects against oxidative stress. Thus, it may play some beneficial effects on ethanol-induced neurotoxicity. However, the effects of CA on ethanol-induced nerve damage remain unclear. In order to investigate the protective effects of CA on alcohol-induced apoptosis in rat pheochromocytoma PC12 cells, in the present study, cell viability and the optimal dosage of CA were first quantified by MTT assay. Then, the cell apoptosis and cell cycle were respectively investigated by Hoechst 33258 staining and flow cytometer (FCM). To further clarify the possible mechanism, followed with the test of mitochondria transmembrane potential with Rhodamine 123 (Rho 123) staining, the expression of Bcl-2, Capase-3 and growth associated protein-43 (GAP-43) were analyzed by immunofluorescence assay separately. The results showed that treatment with 500 mM alcohol decreased the cell viability and then significantly induced apoptosis in PC12 cells. However, when pretreated with different concentrations of CA (1, 5, 10, 50 μM), cell viability increased in different degree. Comparatively, CA with the concentration of 10 μM most effectively promoted the proliferation of damaged cells, increased the distribution ratio of the cells at the G2/M and S phases, and enhanced mitochondria transmembrane potential. This appears to be in agreement with up-regulation of the expression of Bcl-2 and GAP-43, and down-regulation of

  3. Nuclear CD38 in retinoic acid-induced HL-60 cells

    SciTech Connect

    Yalcintepe, Leman . E-mail: lemany@istanbul.edu.tr; Albeniz, Isil; Adin-Cinar, Suzan; Tiryaki, Demir; Bermek, Engin; Graeff, Richard M.; Lee, Hon Cheung

    2005-02-01

    The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. With Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.

  4. Tolfenamic acid inhibits neuroblastoma cell proliferation and induces apoptosis: a novel therapeutic agent for neuroblastoma.

    PubMed

    Eslin, Don; Sankpal, Umesh T; Lee, Chris; Sutphin, Robert M; Maliakal, Pius; Currier, Erika; Sholler, Giselle; Khan, Moeez; Basha, Riyaz

    2013-05-01

    Current therapeutic options for recurrent neuroblastoma have poor outcomes that warrant the development of novel therapeutic strategies. Specificity protein (Sp) transcription factors regulate several genes involved in cell proliferation, survival, and angiogenesis. Sp1 regulates genes believed to be important determinants of the biological behavior of neuroblastoma. Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to induce the degradation of Sp proteins and may serve as a novel anti-cancer agent. The objective of this investigation was to examine the anti-cancer activity of TA using established human neuroblastoma cell lines. We tested the anti-proliferative effect of TA using SH-SY5Y, CHLA90, LA1 55n, SHEP, Be2c, CMP 13Y, and SMS KCNR cell lines. Cells were treated with TA (0/25/50/100 µM) and cell viability was measured at 24, 48, and 72 h post-treatment. Selected neuroblastoma cell lines were treated with 50 µM TA for 24 and 48 h and tested for cell apoptosis using Annexin-V staining. Caspase activity was measured with caspase 3/7 Glo kit. Cell lysates were prepared and the expression of Sp1, survivin, and c-PARP were evaluated through Western blot analysis. TA significantly inhibited the growth of neuroblastoma cells in a dose/time-dependent manner and significantly decreased Sp1 and survivin expression. Apart from cell cycle (G0/G1) arrest, TA caused significant increase in the apoptotic cell population, caspase 3/7 activity, and c-PARP expression. These results show that TA effectively inhibits neuroblastoma cell growth potentially through suppressing mitosis, Sp1, and survivin expression, and inducing apoptosis. These results show TA as a novel therapeutic agent for neuroblastoma.

  5. Omega-3 free fatty acids inhibit tamoxifen-induced cell apoptosis.

    PubMed

    Wu, Shufan; Guo, Yang; Wu, Yikuan; Zhu, Shenglong; He, Zhao; Chen, Yong Q

    2015-04-01

    Fish oil, which contains omega-3 fatty acids mainly in the form of triglycerides, has benefits for reducing breast cancer risk, similar to tamoxifen action. However, it remains to be elucidated whether the combination of omega-3 free fatty acid (ω-3FFA) with tamoxifen leads to improved treatment in breast cancer. In this study, we observed that ω-3FFA induces MCF-7 cell apoptosis to suppress cell growth. The treatment of breast cancer cells with ω-3FFA attenuated tamoxifen-induced cell apoptosis. ω-3FFA and tamoxifen significantly increased Erk1/2 and Akt phosphorylation levels in a dose and time dependent manner. Compared to ω-3FFA alone, the combination of tamoxifen with ω-3FFA significantly increased Erk1/2 and Akt phosphorylation levels. Because Erk1/2 and Akt activation has been linked to tamoxifen-related anti-estrogen resistance in breast cancer patients, these results indicate that ω-3FFA may interfere with the effects of tamoxifen in the prevention of breast cancer risk.

  6. Omega-3 Polyunsaturated Fatty Acids Trigger Cell Cycle Arrest and Induce Apoptosis in Human Neuroblastoma LA-N-1 Cells.

    PubMed

    So, Wai Wing; Liu, Wai Nam; Leung, Kwok Nam

    2015-08-18

    Omega-3 (n-3) fatty acids are dietary long-chain fatty acids with an array of health benefits. Previous research has demonstrated the growth-inhibitory effect of n-3 fatty acids on different cancer cell lines in vitro, yet their anti-tumor effects and underlying action mechanisms on human neuroblastoma LA-N-1 cells have not yet been reported. In this study, we showed that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exhibited time- and concentration-dependent anti-proliferative effect on the human neuroblastoma LA-N-1 cells, but had minimal cytotoxicity on the normal or non-tumorigenic cells, as measured by MTT reduction assay. Mechanistic studies indicated that DHA and EPA triggered G0/G1 cell cycle arrest in LA-N-1 cells, as detected by flow cytometry, which was accompanied by a decrease in the expression of CDK2 and cyclin E proteins. Moreover, DHA and EPA could also induce apoptosis in LA-N-1 cells as revealed by an increase in DNA fragmentation, phosphatidylserine externalization and mitochondrial membrane depolarization. Up-regulation of Bax, activated caspase-3 and caspase-9 proteins, and down-regulation of Bcl-XL protein, might account for the occurrence of apoptotic events. Collectively, our results suggest that the growth-inhibitory effect of DHA and EPA on LA-N-1 cells might be mediated, at least in part, via triggering of cell cycle arrest and apoptosis. Therefore, DHA and EPA are potential anti-cancer agents which might be used for the adjuvant therapy or combination therapy with the conventional anti-cancer drugs for the treatment of some forms of human neuroblastoma with minimal toxicity.

  7. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells.

    PubMed

    Koskela, Ali; Reinisalo, Mika; Petrovski, Goran; Sinha, Debasish; Olmiere, Céline; Karjalainen, Reijo; Kaarniranta, Kai

    2016-05-11

    Impaired autophagic and proteasomal cleansing have been documented in aged retinal pigment epithelial (RPE) cells and age-related macular degeneration (AMD). Omega-3 fatty acids and resveratrol have many positive homeostatic effects in RPE cells. In this work, ARPE-19 cells were treated with 288 ng of Resvega, containing 30 mg of trans resveratrol and 665 mg of omega-3 fatty acids, among other nutrients, with proteasome inhibitor MG-132 or autophagy inhibitor bafilomycin A1 up to 48 h. Autophagy markers p62/SQSTM1 (p62) and LC3 (microtubule-associated protein 1A/1B-light chain 3) were analyzed by Western blotting. Fluorescence microscopy with mCherry-GFP-LC3 plasmid was applied to study the autophagy flux, and cytoprotective effects were investigated with colorimetric MTT and LDH assays. Resvega induced autophagy by showing increased autolysosome formation and autophagy flux, and the change in the p62 and LC3 protein levels further confirmed the fluorescent microscopy results. Moreover, Resvega provided a clear cytoprotection under proteasome inhibition. These findings highlight the potential of the nutraceuticals containing resveratrol, omega-3 fatty acids and other nutrients in the prevention of ARPE-19 cell damage.

  8. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells.

    PubMed

    Koskela, Ali; Reinisalo, Mika; Petrovski, Goran; Sinha, Debasish; Olmiere, Céline; Karjalainen, Reijo; Kaarniranta, Kai

    2016-01-01

    Impaired autophagic and proteasomal cleansing have been documented in aged retinal pigment epithelial (RPE) cells and age-related macular degeneration (AMD). Omega-3 fatty acids and resveratrol have many positive homeostatic effects in RPE cells. In this work, ARPE-19 cells were treated with 288 ng of Resvega, containing 30 mg of trans resveratrol and 665 mg of omega-3 fatty acids, among other nutrients, with proteasome inhibitor MG-132 or autophagy inhibitor bafilomycin A1 up to 48 h. Autophagy markers p62/SQSTM1 (p62) and LC3 (microtubule-associated protein 1A/1B-light chain 3) were analyzed by Western blotting. Fluorescence microscopy with mCherry-GFP-LC3 plasmid was applied to study the autophagy flux, and cytoprotective effects were investigated with colorimetric MTT and LDH assays. Resvega induced autophagy by showing increased autolysosome formation and autophagy flux, and the change in the p62 and LC3 protein levels further confirmed the fluorescent microscopy results. Moreover, Resvega provided a clear cytoprotection under proteasome inhibition. These findings highlight the potential of the nutraceuticals containing resveratrol, omega-3 fatty acids and other nutrients in the prevention of ARPE-19 cell damage. PMID:27187449

  9. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells

    PubMed Central

    Koskela, Ali; Reinisalo, Mika; Petrovski, Goran; Sinha, Debasish; Olmiere, Céline; Karjalainen, Reijo; Kaarniranta, Kai

    2016-01-01

    Impaired autophagic and proteasomal cleansing have been documented in aged retinal pigment epithelial (RPE) cells and age-related macular degeneration (AMD). Omega-3 fatty acids and resveratrol have many positive homeostatic effects in RPE cells. In this work, ARPE-19 cells were treated with 288 ng of Resvega, containing 30 mg of trans resveratrol and 665 mg of omega-3 fatty acids, among other nutrients, with proteasome inhibitor MG-132 or autophagy inhibitor bafilomycin A1 up to 48 h. Autophagy markers p62/SQSTM1 (p62) and LC3 (microtubule-associated protein 1A/1B-light chain 3) were analyzed by Western blotting. Fluorescence microscopy with mCherry-GFP-LC3 plasmid was applied to study the autophagy flux, and cytoprotective effects were investigated with colorimetric MTT and LDH assays. Resvega induced autophagy by showing increased autolysosome formation and autophagy flux, and the change in the p62 and LC3 protein levels further confirmed the fluorescent microscopy results. Moreover, Resvega provided a clear cytoprotection under proteasome inhibition. These findings highlight the potential of the nutraceuticals containing resveratrol, omega-3 fatty acids and other nutrients in the prevention of ARPE-19 cell damage. PMID:27187449

  10. SV40 enhancer activation during retinoic acid-induced differentiation of F9 embryonal carcinoma cells.

    PubMed Central

    Sleigh, M J; Lockett, T J

    1985-01-01

    The transient expression vector pSV2CAT, which carries the bacterial chloramphenicol acetyl transferase (CAT) gene under the control of the SV40 early promoter, was used to transfect the murine embryonal carcinoma cell line F9 at various times during the retinoic acid-induced differentiation of these cells. Expression of the CAT gene under SV40 promoter control was found to increase markedly on F9 cell differentiation, measured relative to expression from the thymidine kinase promoter in the same cells. A series of constructs was prepared to identify the features of the SV40 early promoter required for transcription in differentiated and undifferentiated cells, as well as the factors limiting transcription in each case. The increased transcription seen on F9 cell differentiation was not observed when cells were transfected with molecules lacking a functional enhancer. It appears that as embryonal carcinoma cells differentiate, increased SV40 transcription results from enhancer sequence activation. In both differentiated and undifferentiated cell types the level of transcription was found to be limited by the availability and/or activity of cellular factors necessary for enhancer function. Images Fig. 1. PMID:3004973

  11. Bcl-2 accelerates retinoic acid-induced growth arrest and recovery in human gastric cancer cells.

    PubMed Central

    Chou, H K; Chen, S L; Hsu, C T; Chao, Y C; Tsao, Y P

    2000-01-01

    The role of Bcl-2 as an anti-apoptotic protein has been well documented. In the present work, we present evidence that Bcl-2 may also be involved in cell growth regulation. SC-M1 is an unique cell line which responds to retinoic acid (RA) treatment with reversible growth arrest [Shyu, Jiang, Huang, Chang, Wu, Roffler and Yeh (1995) Eur. J. Cancer 31, 237-243]. In this study, when treated with RA, SC-M1/Bcl2 cells, which were generated by transfecting SC-M1 cells with bcl-2 DNA, were growth-arrested two days earlier than SC-M1/neo cells, which were generated by transfecting SC-M1 cells with vector DNA. This indicates that Bcl-2 accelerates RA-induced growth arrest. In addition to the accelerated growth arrest, RA-treated SC-M1/Bcl2 cells also recovered from growth arrest two days faster than SC-M1/neo cells after the removal of RA. Previously, we had identified the cyclin-dependent kinase inhibitor p21((WAF1/CIP1)) (p21) as a mediator of RA-induced growth arrest [Tsao, Li, Kuo, Liu and Chen (1996) Biochem. J. 317, 707-711]. In a search for the mechanism by which Bcl-2 affects growth regulation, we found that p21 gene expression was more prominent in SC-M1/Bcl2 cells than in SC-M1/neo cells in the presence of RA, but when RA was removed, p21 gene expression levels in SC-M1/Bcl2 cells were also reduced earlier than in SC-M1/neo cells. The present report is the first to show that Bcl-2 accelerates not only growth arrest but also recovery from growth arrest. Moreover, the close correlation between the effect of Bcl-2 on both RA-induced growth arrest and RA-induced p21 gene expression suggests the possibility that Bcl-2 affects cell growth through the mechanism of p21. PMID:10816444

  12. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures.

    PubMed

    Rodas-Junco, Beatriz A; Cab-Guillén, Yahaira; Muñoz-Sánchez, J Armando; Vázquez-Flota, Felipe; Monforte-González, Miriam; Hernández-Sotomayor, S M Teresa

    2013-10-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  13. Investigation of the apoptotic way induced by digallic acid in human lymphoblastoid TK6 cells

    PubMed Central

    2012-01-01

    Background The digallic acid (DGA) purified from Pistacia lentiscus. L fruits was investigated for its antiproliferative and apoptotic activities on human lymphoblastoid TK6 cells. Methods We attempt to characterize the apoptotic pathway activated by DGA. Apoptosis was detected by DNA fragmentation, PARP cleavage and by evaluating caspase activities. Results The inhibition of lymphoblastoid cell proliferation was noted from 8.5 μg/ml of DGA. The induction of apoptosis was confirmed by DNA fragmentation and PARP cleavage. We have demonstrated that DGA induces apoptosis by activating the caspase-8 extrinsic pathway. Caspase-3 was also activated in a dose dependent manner. Conclusion In summary, DGA exhibited an apoptosis inductor effect in TK6 cells revealing thus its potential as a cancer-preventive agent. PMID:22686580

  14. Nitro-Arachidonic Acid Prevents Angiotensin II-Induced Mitochondrial Dysfunction in a Cell Line of Kidney Proximal Tubular Cells.

    PubMed

    Sánchez-Calvo, Beatriz; Cassina, Adriana; Rios, Natalia; Peluffo, Gonzalo; Boggia, José; Radi, Rafael; Rubbo, Homero; Trostchansky, Andres

    2016-01-01

    Nitro-arachidonic acid (NO2-AA) is a cell signaling nitroalkene that exerts anti-inflammatory activities during macrophage activation. While angiotensin II (ANG II) produces an increase in reactive oxygen species (ROS) production and mitochondrial dysfunction in renal tubular cells, little is known regarding the potential protective effects of NO2-AA in ANG II-mediated kidney injury. As such, this study examines the impact of NO2-AA on ANG II-induced mitochondrial dysfunction in an immortalized renal proximal tubule cell line (HK-2 cells). Treatment of HK-2 cells with ANG II increases the production of superoxide (O2●-), nitric oxide (●NO), inducible nitric oxide synthase (NOS2) expression, peroxynitrite (ONOO-) and mitochondrial dysfunction. Using high-resolution respirometry, it was observed that the presence of NO2-AA prevented ANG II-mediated mitochondrial dysfunction. Attempting to address mechanism, we treated isolated rat kidney mitochondria with ONOO-, a key mediator of ANG II-induced mitochondrial damage, in the presence or absence of NO2-AA. Whereas the activity of succinate dehydrogenase (SDH) and ATP synthase (ATPase) were diminished upon exposure to ONOO-, they were restored by pre-incubating the mitochondria with NO2-AA. Moreover, NO2-AA prevents oxidation and nitration of mitochondrial proteins. Combined, these data demonstrate that ANG II-mediated oxidative damage and mitochondrial dysfunction is abrogated by NO2-AA, identifying this compound as a promising pharmacological tool to prevent ANG II-induced renal disease. PMID:26943326

  15. Nitro-Arachidonic Acid Prevents Angiotensin II-Induced Mitochondrial Dysfunction in a Cell Line of Kidney Proximal Tubular Cells

    PubMed Central

    Sánchez-Calvo, Beatriz; Cassina, Adriana; Rios, Natalia; Boggia, José; Radi, Rafael; Rubbo, Homero; Trostchansky, Andres

    2016-01-01

    Nitro-arachidonic acid (NO2-AA) is a cell signaling nitroalkene that exerts anti-inflammatory activities during macrophage activation. While angiotensin II (ANG II) produces an increase in reactive oxygen species (ROS) production and mitochondrial dysfunction in renal tubular cells, little is known regarding the potential protective effects of NO2-AA in ANG II-mediated kidney injury. As such, this study examines the impact of NO2-AA on ANG II-induced mitochondrial dysfunction in an immortalized renal proximal tubule cell line (HK-2 cells). Treatment of HK-2 cells with ANG II increases the production of superoxide (O2●-), nitric oxide (●NO), inducible nitric oxide synthase (NOS2) expression, peroxynitrite (ONOO-) and mitochondrial dysfunction. Using high-resolution respirometry, it was observed that the presence of NO2-AA prevented ANG II-mediated mitochondrial dysfunction. Attempting to address mechanism, we treated isolated rat kidney mitochondria with ONOO-, a key mediator of ANG II-induced mitochondrial damage, in the presence or absence of NO2-AA. Whereas the activity of succinate dehydrogenase (SDH) and ATP synthase (ATPase) were diminished upon exposure to ONOO-, they were restored by pre-incubating the mitochondria with NO2-AA. Moreover, NO2-AA prevents oxidation and nitration of mitochondrial proteins. Combined, these data demonstrate that ANG II-mediated oxidative damage and mitochondrial dysfunction is abrogated by NO2-AA, identifying this compound as a promising pharmacological tool to prevent ANG II–induced renal disease. PMID:26943326

  16. The Acid Growth Theory of auxin-induced cell elongation is alive and well

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.; Cleland, R. E.

    1992-01-01

    Plant cells elongate irreversibly only when load-bearing bonds in the walls are cleaved. Auxin causes the elongation of stem and coleoptile cells by promoting wall loosening via cleavage of these bonds. This process may be coupled with the intercalation of new cell wall polymers. Because the primary site of auxin action appears to be the plasma membrane or some intracellular site, and wall loosening is extracellular, there must be communication between the protoplast and the wall. Some "wall-loosening factor" must be exported from auxin-impacted cells, which sets into motion the wall loosening events. About 20 years ago, it was suggested that the wall-loosening factor is hydrogen ions. This idea and subsequent supporting data gave rise to the Acid Growth Theory, which states that when exposed to auxin, susceptible cells excrete protons into the wall (apoplast) at an enhanced rate, resulting in a decrease in apoplastic pH. The lowered wall pH then activates wall-loosening processes, the precise nature of which is unknown. Because exogenous acid causes a transient (1-4 h) increase in growth rate, auxin must also mediate events in addition to wall acidification for growth to continue for an extended period of time. These events may include osmoregulation, cell wall synthesis, and maintenance of the capacity of walls to undergo acid-induced wall loosening. At present, we do not know if these phenomena are tightly coupled to wall acidification or if they are the products of multiple independent signal transduction pathways.

  17. Myoinositol Attenuates the Cell Loss and Biochemical Changes Induced by Kainic Acid Status Epilepticus

    PubMed Central

    Kikvidze, Marina

    2016-01-01

    Identification of compounds preventing or modifying the biochemical changes that underlie the epileptogenesis process and understanding the mechanism of their action are of great importance. We have previously shown that myoinositol (MI) daily treatment for 28 days prevents certain biochemical changes that are triggered by kainic acid (KA) induced status epilepticus (SE). However in these studies we have not detected any effects of MI on the first day after SE. In the present study we broadened our research and focused on other molecular and morphological changes at the early stages of SE induced by KA and effects of MI treatment on these changes. The increase in the amount of voltage-dependent anionic channel-1 (VDAC-1), cofilin, and caspase-3 activity was observed in the hippocampus of KA treated rats. Administration of MI 4 hours later after KA treatment abolishes these changes, whereas diazepam treatment by the same time schedule has no significant influence. The number of neuronal cells in CA1 and CA3 subfields of hippocampus is decreased after KA induced SE and MI posttreatment significantly attenuates this reduction. No significant changes are observed in the neocortex. Obtained results indicate that MI posttreatment after KA induced SE could successfully target the biochemical processes involved in apoptosis, reduces cell loss, and can be successfully used in the future for translational research.

  18. Myoinositol Attenuates the Cell Loss and Biochemical Changes Induced by Kainic Acid Status Epilepticus

    PubMed Central

    Kikvidze, Marina

    2016-01-01

    Identification of compounds preventing or modifying the biochemical changes that underlie the epileptogenesis process and understanding the mechanism of their action are of great importance. We have previously shown that myoinositol (MI) daily treatment for 28 days prevents certain biochemical changes that are triggered by kainic acid (KA) induced status epilepticus (SE). However in these studies we have not detected any effects of MI on the first day after SE. In the present study we broadened our research and focused on other molecular and morphological changes at the early stages of SE induced by KA and effects of MI treatment on these changes. The increase in the amount of voltage-dependent anionic channel-1 (VDAC-1), cofilin, and caspase-3 activity was observed in the hippocampus of KA treated rats. Administration of MI 4 hours later after KA treatment abolishes these changes, whereas diazepam treatment by the same time schedule has no significant influence. The number of neuronal cells in CA1 and CA3 subfields of hippocampus is decreased after KA induced SE and MI posttreatment significantly attenuates this reduction. No significant changes are observed in the neocortex. Obtained results indicate that MI posttreatment after KA induced SE could successfully target the biochemical processes involved in apoptosis, reduces cell loss, and can be successfully used in the future for translational research. PMID:27642592

  19. Myoinositol Attenuates the Cell Loss and Biochemical Changes Induced by Kainic Acid Status Epilepticus.

    PubMed

    Tsverava, Lia; Lordkipanidze, Tamar; Lepsveridze, Eka; Nozadze, Maia; Kikvidze, Marina; Solomonia, Revaz

    2016-01-01

    Identification of compounds preventing or modifying the biochemical changes that underlie the epileptogenesis process and understanding the mechanism of their action are of great importance. We have previously shown that myoinositol (MI) daily treatment for 28 days prevents certain biochemical changes that are triggered by kainic acid (KA) induced status epilepticus (SE). However in these studies we have not detected any effects of MI on the first day after SE. In the present study we broadened our research and focused on other molecular and morphological changes at the early stages of SE induced by KA and effects of MI treatment on these changes. The increase in the amount of voltage-dependent anionic channel-1 (VDAC-1), cofilin, and caspase-3 activity was observed in the hippocampus of KA treated rats. Administration of MI 4 hours later after KA treatment abolishes these changes, whereas diazepam treatment by the same time schedule has no significant influence. The number of neuronal cells in CA1 and CA3 subfields of hippocampus is decreased after KA induced SE and MI posttreatment significantly attenuates this reduction. No significant changes are observed in the neocortex. Obtained results indicate that MI posttreatment after KA induced SE could successfully target the biochemical processes involved in apoptosis, reduces cell loss, and can be successfully used in the future for translational research. PMID:27642592

  20. Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells.

    PubMed

    Sheik Abdul, Naeem; Nagiah, Savania; Chuturgoon, Anil A

    2016-09-01

    Fusarium spp are common contaminants of maize and produce many mycotoxins, including the fusariotoxin fusaric acid (FA). FA is a niacin related compound, chelator of divalent cations, and mediates toxicity via oxidative stress and possible mitochondrial dysregulation. Sirtuin 3 (SIRT3) is a stress response deacetylase that maintains proper mitochondrial function. We investigated the effect of FA on SIRT3 and oxidative and mitochondrial stress pathways in the hepatocellular carcinoma (HepG2) cell line. We determined FA toxicity (24 h incubation; IC50 = 104 μg/ml) on mitochondrial output, cellular and mitochondrial stress responses, mitochondrial biogenesis and markers of cell death using spectrophotometry, luminometry, qPCR and western blots. FA caused a dose dependent decrease in metabolic activity along with significant depletion of intracellular ATP. FA induced a significant increase in lipid peroxidation, despite up-regulation of the antioxidant transcription factor, Nrf2. FA significantly decreased expression of SIRT3 mRNA with a concomitant decrease in protein expression. Lon protease was also significantly down-regulated. FA induced aberrant mitochondrial biogenesis as evidenced by significantly decreased protein expressions of: PGC-1α, p-CREB, NRF1 and HSP70. Finally, FA activated apoptosis as noted by the significantly increased activity of caspases 3/7 and also induced cellular necrosis. This study provides insight into the molecular mechanisms of FA (a neglected mycotoxin) induced hepatotoxicity. PMID:27390038

  1. SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).

    PubMed

    Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T

    2016-01-01

    In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity.

  2. Rhabdovirus-induced apoptosis in a fish cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.

    PubMed

    Björklund, H V; Johansson, T R; Rinne, A

    1997-07-01

    To determine the mechanisms of cell death in rhabdovirus-infected cells, we studied the infection of the epithelial papilloma of carp cell line with spring viremia of carp virus. Studies using electron microscopy, confocal microscopy, and agarose gel electrophoresis revealed changes in cell morphology and DNA fragmentation indicative of apoptosis. The virus-induced apoptosis was inhibited in cells treated with a human endogenous acid cysteine proteinase inhibitor. PMID:9188644

  3. Trans Fatty Acids Induce Vascular Inflammation and Reduce Vascular Nitric Oxide Production in Endothelial Cells

    PubMed Central

    Iwata, Naomi G.; Pham, Matilda; Rizzo, Norma O.; Cheng, Andrew M.; Maloney, Ezekiel; Kim, Francis

    2011-01-01

    Intake of trans fatty acids (TFA), which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO) bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived—dairy products and meat) on endothelial NF-κB activation and nitric oxide (NO) production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans)), Linoelaidic (trans-C18:2 (9 trans, 12 trans)), and Transvaccenic (trans-C18:1 (11 trans)) for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses) did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation. PMID:22216328

  4. Adenovirus carrying gene encoding Haliotis discus discus sialic acid binding lectin induces cancer cell apoptosis.

    PubMed

    Yang, Xinyan; Wu, Liqin; Duan, Xuemei; Cui, Lianzhen; Luo, Jingjing; Li, Gongchu

    2014-06-30

    Lectins exist widely in marine bioresources such as bacteria, algae, invertebrate animals and fishes. Some purified marine lectins have been found to elicit cytotoxicity to cancer cells. However, there are few reports describing the cytotoxic effect of marine lectins on cancer cells through virus-mediated gene delivery. We show here that a replication-deficient adenovirus-carrying gene encoding Haliotis discus discus sialic acid binding lectin (Ad.FLAG-HddSBL) suppressed cancer cell proliferation by inducing apoptosis, as compared to the control virus Ad.FLAG. A down-regulated level of anti-apoptosis factor Bcl-2 was suggested to be responsible for the apoptosis induced by Ad.FLAG-HddSBL infection. Further subcellular localization studies revealed that HddSBL distributed in cell membrane, ER, and the nucleus, but not in mitochondria and Golgi apparatus. In contrast, a previously reported mannose-binding lectin Pinellia pedatisecta agglutinin entered the nucleus as well, but did not distribute in inner membrane systems, suggesting differed intracellular sialylation and mannosylation, which may provide different targets for lectin binding. Further cancer-specific controlling of HddSBL expression and animal studies may help to provide insights into a novel way of anti-cancer marine lectin gene therapy. Lectins may provide a reservoir of anti-cancer genes.

  5. Modulation of docetaxel-induced apoptosis and cell cycle arrest by all- trans retinoic acid in prostate cancer cells

    PubMed Central

    Nehmé, A; Varadarajan, P; Sellakumar, G; Gerhold, M; Niedner, H; Zhang, Q; Lin, X; Christen, R D

    2001-01-01

    We report that all- trans retinoic acid (ATRA) enhanced the toxicity of docetaxel against DU145 and LNCaP prostate cancer cells, and that the nature of the interaction between ATRA and docetaxel was highly synergistic. Docetaxel-induced apoptotic cell death was associated with phosphorylation and hence inactivation of Bcl-2. ATRA enhanced docetaxel-induced apoptosis and combined treatment with ATRA and docetaxel resulted in down-regulation of Bcl-2. Docetaxel caused phosphorylation and hence inactivation of cdc2 kinase result ing in G2/M arrest. ATRA inhibited docetaxel-induced phosphorylation of cdc2 resulting in activation of cdc2 kinase and partial reversal of the G2/M arrest. ATRA also inhibited docetaxel-induced activation of MAPK indicating that the effects of docetaxel and ATRA on cdc2 phosphorylation are dependent on MAPK. We conclude that ATRA synergistically enhances docetaxel toxicity by down-regulating Bcl-2 expression and partially reverses the docetaxel-induced G2/M arrest by inhibiting docetaxel-induced cdc2 phosphorylation in a pathway that is dependent on MAPK. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11384110

  6. Salvianolic acid Y: a new protector of PC12 cells against hydrogen peroxide-induced injury from Salvia officinalis.

    PubMed

    Gong, Jun; Ju, Aichun; Zhou, Dazheng; Li, Dekun; Zhou, Wei; Geng, Wanli; Li, Bing; Li, Li; Liu, Yanjie; He, Ying; Song, Meizhen; Wang, Yunhua; Ye, Zhengliang; Lin, Ruichao

    2015-01-06

    Salvianolic acid Y (TSL 1), a new phenolic acid with the same planar structure as salvianolic acid B, was isolated from Salvia officinalis. The structural elucidation and stereochemistry determination were achieved by spectroscopic and chemical methods, including 1D, 2D-NMR (1H-1H COSY, HMQC and HMBC) and circular dichroism (CD) experiments. The biosynthesis pathway of salvianolic acid B and salvianolic acid Y (TSL 1) was proposed based on structural analysis. The protection of PC12 cells from injury induced by H2O2 was assessed in vitro using a cell viability assay. Salvianolic acid Y (TSL 1) protected cells from injury by 54.2%, which was significantly higher than salvianolic acid B (35.2%).

  7. Modeling and analysis of retinoic acid induced differentiation of uncommitted precursor cells.

    PubMed

    Tasseff, Ryan; Nayak, Satyaprakash; Song, Sang Ok; Yen, Andrew; Varner, Jeffrey D

    2011-05-01

    Manipulation of differentiation programs has therapeutic potential in a spectrum of human cancers and neurodegenerative disorders. In this study, we integrated computational and experimental methods to unravel the response of a lineage uncommitted precursor cell-line, HL-60, to Retinoic Acid (RA). HL-60 is a human myeloblastic leukemia cell-line used extensively to study human differentiation programs. Initially, we focused on the role of the BLR1 receptor in RA-induced differentiation and G1/0-arrest in HL-60. BLR1, a putative G protein-coupled receptor expressed following RA exposure, is required for RA-induced cell-cycle arrest and differentiation and causes persistent MAPK signaling. A mathematical model of RA-induced cell-cycle arrest and differentiation was formulated and tested against BLR1 wild-type (wt) knock-out and knock-in HL-60 cell-lines with and without RA. The current model described the dynamics of 729 proteins and protein complexes interconnected by 1356 interactions. An ensemble strategy was used to compensate for uncertain model parameters. The ensemble of HL-60 models recapitulated the positive feedback between BLR1 and MAPK signaling. The ensemble of models also correctly predicted Rb and p47phox regulation and the correlation between p21-CDK4-cyclin D formation and G1/0-arrest following exposure to RA. Finally, we investigated the robustness of the HL-60 network architecture to structural perturbations and generated experimentally testable hypotheses for future study. Taken together, the model presented here was a first step toward a systematic framework for analysis of programmed differentiation. These studies also demonstrated that mechanistic network modeling can help prioritize experimental directions by generating falsifiable hypotheses despite uncertainty.

  8. Role of COUP-TFI during retinoic acid-induced differentiation of P19 cells to endodermal cells.

    PubMed

    Pickens, Brandy S; Teets, Bryan W; Soprano, Kenneth J; Soprano, Dianne Robert

    2013-04-01

    Retinoic acid (RA) is a positive regulator of P19 cell differentiation. Silencing of pre-B cell leukemia transcription factors (PBXs) expression in P19 cells (AS cells) results in a failure of these cells to differentiate to endodermal cells upon RA treatment. Chicken Ovalbumin Upstream Promoter Transcription Factor I (COUP-TFI) is an orphan member of the steroid-thyroid hormone superfamily. RA treatment of wild type P19 cells results in a dramatic increase in the expression of COUP-TFI; however, COUP-TFI mRNA levels fail to be elevated upon RA treatment of AS cells indicating that PBX expression is required for elevation in COUP-TFI expression. To study the role of COUP-TFI during RA-dependent differentiation of P19 cells, AS cells that inducibly express various levels of COUP-TFI were prepared. Exogenous expression of COUP-TFI in AS cells, in a dose-dependent fashion, leads to growth inhibition, modest cell cycle disruption, and early apoptosis. Furthermore, AS cells can overcome the blockage in RA-dependent differentiation to endodermal cells when either pharmacological levels of COUP-TFI are expressed or a combination of both the expression of physiological levels of COUP-TFI and RA treatment. Additionally, the mRNA level of several pluripotency associated genes including OCT-4, DAX-1, and SF-1 in the COUP-TFI expressing AS cells are reduced. Moreover, analysis of the expression of primary RA response genes indicates that COUP-TFI is involved in the regulatory modulation of the expression of at least two genes, CYP26A1 and HoxA1. These studies demonstrate that COUP-TFI functions as a physiologically relevant regulator during RA-mediated endodermal differentiation of P19 cells. PMID:23018522

  9. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation

    SciTech Connect

    Kauss, M. Ariel; Reiterer, Gudrun; Bunaciu, Rodica P.; Yen, Andrew

    2008-10-01

    Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G{sub 1} to S to G{sub 2}/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G{sub 0} cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.

  10. Folic Acid Protected Neural Cells Against Aluminum-Maltolate-Induced Apoptosis by Preventing miR-19 Downregulation.

    PubMed

    Zhu, Mingming; Li, Bingfei; Ma, Xiao; Huang, Cong; Wu, Rui; Zhu, Weiwei; Li, Xiaoting; Liang, Zhaofeng; Deng, Feifei; Zhu, Jianyun; Xie, Wei; Yang, Xue; Jiang, Ye; Wang, Shijia; Wu, Jieshu; Geng, Shanshan; Xie, Chunfeng; Zhong, Caiyun; Liu, Haiyan

    2016-08-01

    Aluminum (Al)-induced apoptosis is considered as the major cause of its neurotoxicity. Folic acid possesses neuroprotective function by preventing neural cell apoptosis. microRNAs (miRNAs) are important regulators of gene expression participating in cellular processes. As a key component of the miR-17-92 cluster, miR-19 is implicated in regulating apoptotic process, while its role in the neuroprotective effect of folic acid has not been investigated. The present study aimed to investigate the potential involvement and function of miR-19 in the protective action of folic acid against Al-induced neural cell apoptosis. Human SH-SY5Y cells were treated with Al-maltolate (Al-malt) in the presence or absence of folic acid. Results showed that Al-malt-induced apoptosis of SH-SY5Y cells was effectively prevented by folic acid. Al-malt suppressed the expression of miR-19a/19b, along with alterations of miR-19 related apoptotic proteins including PTEN, p-AKT, p53, Bax, Bcl-2, caspase 9 and caspase 3; and these effects were ameliorated by folic acid. miR-19 inhibitor alone induced apoptosis of SH-SY5Y cells. Combination treatment of folic acid and miR-19 inhibitor diminished the neuroprotective effect of folic acid. These findings demonstrated that folic acid protected neuronal cells against Al-malt-induced apoptosis by preventing the downregulation of miR-19 and modulation of miR-19 related downstream PTEN/AKT/p53 pathway.

  11. Regional Differentiation of Retinoic Acid-Induced Human Pluripotent Embryonic Carcinoma Stem Cell Neurons

    PubMed Central

    Coyle, Dennis E.; Li, Jie; Baccei, Mark

    2011-01-01

    The NTERA2 cl D1 (NT2) cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES) cells or very early neuroepitheial progenitors. NT2 cells can be induced to become postmitotic central nervous system neurons (NT2N) with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a monolayer differentiation paradigm using quantitative PCR (qPCR). Purified NT2N mainly expressed both GABAergic and glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within the CNS. PMID:21283767

  12. TRIP6 Enhances Lysophosphatidic Acid-induced Cell Migration by Interacting with the Lysophosphatidic Acid 2 Receptor*

    PubMed Central

    Xu, Jun; Lai, Yun-Ju; Lin, Weei-Chin; Lin, Fang-Tsyr

    2014-01-01

    Lysophosphatidic acid (LPA) induces actin rearrangement, focal adhesion assembly, and cell migration through the activation of small G protein Rho and its downstream effectors. These diverse cellular responses are mediated by its associated G protein-coupled receptors. However, the mechanisms and specificity by which these LPA receptors mediate LPA actions are still poorly understood. Here we show that LPA stimulation promotes the interaction of the LPA2 receptor with a focal adhesion molecule, TRIP6 (thyroid receptor interacting protein 6)/ZRP-1 (zyxin-related protein 1). TRIP6 directly binds to the carboxyl-terminal tail of the LPA2 receptor through its LIM domains. LPA-dependent recruitment of TRIP6 to the plasma membrane promotes its targeting to focal adhesions and co-localization with actin stress fibers. In addition, TRIP6 associates with the components of focal complexes including paxillin, focal adhesion kinase, c-Src, and p130cas in an agonist-dependent manner. Overexpression of TRIP6 augments LPA-induced cell migration; in contrast, suppression of endogenous TRIP6 expression by a TRIP6-specific small interfering RNA reduces it in SKOV3 ovarian cancer cells. Strikingly, the association with TRIP6 is specific to the LPA2 receptor but not LPA1 or LPA3 receptor, indicating a specific role for TRIP6 in regulating LPA2 receptor-mediated signaling. Taken together, our results suggest that TRIP6 functions at a point of convergence between the activated LPA2 receptor and downstream signals involved in cell adhesion and migration. PMID:14688263

  13. Ozone-induced alterations in arachidonic acid metabolism in cultured lung cell types

    SciTech Connect

    Madden, M.C.

    1986-01-01

    One of the most sensitive cells to ozone (O/sub 3/) damage is the pulmonary endothelial cell which may mediate the response of the lung to injury by productions of the autacoid prostacyclin (PGl/sub 2/), a metabolite of arachidonic acid. Exposure of endothelial cell cultures to ozone produced a concentration dependent decreases in the synthesis of PGl/sub 2/. Release of /sup 3/H-arachidonic acid from endothelial cells was increased after two hours of 0.3 and 1.0 ppm O/sub 3/ exposure while incubation of cells with 20 ..mu..M and arachidonate (4 min) after exposure resulted in a decreased PGl/sub 2/ synthesis. Cells exposed to 1.0 ppm O/sub 3/ did not have a decreased PGl/sub 2/ production when incubated with 5 ..mu..M PGH/sub 2/ immediately after exposure. These results are consistent with an O/sub 3/-induced inhibition of cyclooxygenase activity. O/sub 3/ exposure (1.0 ppm) produced a rapid decrease in endothelial PGl/sub 2/ synthesis. The data suggest that cyclooxygenase was not inactivated by increased autooxidation due to metabolism of increased free arachidonate. PGl/sub 2/ synthesis returned to control amounts within 12 hours after ozone exposure similar to the recovery time of irreversibly inhibited cyclooxygenase suggesting that recovery was due to de novo synthesis of enzyme. Lipid peroxides and/or hydrogen peroxide (H/sub 2/O/sub 2/) may have caused the inhibition of cyclooxygenase. Incubation of cells with catalase (5 U/ml) protected against the O/sub 3/-induced depression in PGl/sub 2/ synthesis. Exogenously added H/sub 2/O/sub 2/ (greater than or equal to 75 ..mu..M) caused a stimulation of basal PGl/sub 2/ production but depressed arachidonate-stimulated synthesis. O/sub 3/ exposure (2 hr, 1.0 ppm) produced altered metabolism of arachidonate in other important lung cell types, e.g., a decreased PGl/sub 2/ synthesis in smooth muscle cultures. Exposure of lung macrophages to O/sub 3/ caused an increase in almost all arachidonate metabolites produced.

  14. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    SciTech Connect

    Svensson Holm, Ann-Charlotte B.; Bengtsson, Torbjoern; Grenegard, Magnus; Lindstroem, Eva G.

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  15. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells.

    PubMed

    Ustündağ, Aylin; Behm, Claudia; Föllmann, Wolfram; Duydu, Yalçin; Degen, Gisela H

    2014-06-01

    The toxic heavy metals cadmium (Cd) and lead (Pb) are important environmental pollutants which can cause serious damage to human health. As the metal ions (Cd(2+) and Pb(2+)) accumulate in the organism, there is special concern regarding chronic toxicity and damage to the genetic material. Metal-induced genotoxicity has been attributed to indirect mechanisms, such as induction of oxidative stress and interference with DNA repair. Boron is a naturally occurring element and considered to be an essential micronutrient, although the cellular activities of boron compounds remain largely unexplored. The present study has been conducted to evaluate potential protective effects of boric acid (BA) against genotoxicity induced by cadmium chloride (CdCl2) and lead chloride (PbCl2) in V79 cell cultures. Cytotoxicity assays (neutral red uptake and cell titer blue assay) served to determine suitable concentrations for subsequent genotoxicity assays. Chromosomal damage and DNA strand breaks were assessed by micronucleus tests and comet assays. Both PbCl2 and CdCl2 (at 3, 5 and 10 µM) were shown to induce concentration-dependent increases in micronucleus frequencies and DNA strand breaks in V79 cells. BA itself was not cytotoxic (up to 300 µM) and showed no genotoxic effects. Pretreatment of cells with low levels of BA (2.5 and 10 µM) was found to strongly reduce the genotoxic effects of the tested metals. Based on the findings of this in vitro study, it can be suggested that boron provides an efficient protection against the induction of DNA strand breaks and micronuclei by lead and cadmium. Further studies on the underlying mechanisms for the protective effect of boron are needed.

  16. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    PubMed

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-01

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells.

  17. The Histone Deacetylase Inhibitor Vaproic Acid Induces Cell Growth Arrest in Hepatocellular Carcinoma Cells via Suppressing Notch Signaling

    PubMed Central

    Sun, Guangchun; Mackey, Lily V.; Coy, David H.; Yu, Cui-Yun; Sun, Lichun

    2015-01-01

    Hepatocellular carcinoma (HCC) is a type of malignant cancer. Notch signaling is aberrantly expressed in HCC tissues with more evidence showing that this signaling plays a critical role in HCCs. In the present study, we investigate the effects of the anti-convulsant drug valproic acid (VPA) in HCC cells and its involvement in modulating Notch signaling. We found that VPA, acting as a histone deacetylase (HDAC) inhibitor, induced a decrease in HDAC4 and an increase in acetylated histone 4 (AcH4) and suppressed HCC cell growth. VPA also induced down-regulation of Notch signaling via suppressing the expression of Notch1 and its target gene HES1, with an increase of tumor suppressor p21 and p63. Furthermore, Notch1 activation via overexpressing Notch1 active form ICN1 induced HCC cell proliferation and anti-apoptosis, indicating Notch signaling played an oncogenic role in HCC cells. Meanwhile, VPA could reverse Notch1-induced increase of cell proliferation. Interestingly, VPA was also observed to stimulate the expression of G protein-coupled somatostatin receptor type 2 (SSTR2) that has been used in receptor-targeting therapies. This discovery supports a combination therapy of VPA with the SSTR2-targeting agents. Our in vitro assay did show that the combination of VPA and the peptide-drug conjugate camptothecin-somatostatin (CPT-SST) displayed more potent anti-proliferative effects on HCC cells than did each alone. VPA may be a potential drug candidate in the development of anti-HCC drugs via targeting Notch signaling, especially in combination with receptor-targeting cytotoxic agents. PMID:26366213

  18. γ-Aminbuturic Acid A Receptor Mitigates Homocysteine-Induced Endothelial Cell Permeability

    PubMed Central

    Tyagi, Neetu; Moshal, Karni S.; Tyagi, Suresh C.; Lominadze, David

    2010-01-01

    Many cerebrovascular disorders are accompanied by an increased homocysteine (Hcy) levels. We have previously shown that acute hyperhomocysteinemia (HHcy) leads to an increased microvascular permeability in the mouse brain. Hcy competitively binds to γ -aminbuturic acid (GABA) receptors and may increase vascular permeability by acting as an excitatory neurotransmitter. However, the role of GABA-A (GABAA) receptor in Hcy-induced endothelial cell (EC) permeability remains unclear. In the present study we attempted to determine the role of GABAA receptor and the possible mechanisms involved in Hcy-induced EC layer permeability. Mouse aortic and brain ECs were grown in Transwells and treated with 50 μM Hcy in the presence or absence of GABAA-specific agonist muscimol. Role of matrix metalloproteinase-9 (MMP-9) was determined using its activity inhibitor GM-6001. Involvement of extracellular signal-regulated kinase (ERK) signaling was assessed using its kinase activity inhibitors PD98059 or U0126. EC permeability to the known content of bovine serum albumin (BSA)-conjugated with Alexa Flour-488 was assessed by measuring fluorescence intensity of the solutes in the Transwell's lower chambers. It was found that Hcy induced the formation of filamentous actin (F-actin). Hcy-induced EC permeability to BSA was significantly decreased by GABA and muscimol treatments. Presence of MMP-9 or ERK kinase activity inhibitors restored the Hcy-induced EC permeability to its baseline level. The mediation BSA leakage through the ECs was further confirmed in the experiments where Hcy-induced alterations in transendothelial electrical resistance of confluent ECs were assessed. The data suggest that Hcy increases EC layer permeability through inhibition of GABAA receptor and F-actin formation, in part, by transducing ERK and MMP-9 activation. PMID:18080868

  19. Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells.

    PubMed

    Cao, Yidong; Zhang, Liang; Sun, Shukai; Yi, Zhenheng; Jiang, Xue; Jia, Dong

    2016-08-01

    Cerebral ischemic injury and treatment are important topics in neurological science. In the present study, an in vitro model of cerebral ischemia was established by subjecting primary cultures of hippocampal neuronal cells to oxygen-glucose deprivation followed by reperfusion (OGD/R), in order to evaluate the possible neuroprotective role of syringic acid (SA). The results of 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays showed that pre-treatment with SA (0.1, 1, 10, and 20 µM) attenuated OGD/R-induced neuronal injury in a dose-dependent manner, with evidence of increased cell viability and decreased LDH leakage. In addition, oxidative stress markers were evaluated using commercial kits, and the results demonstrated that OGD/R exposure induced distinct oxidative stress, accompanied by elevated levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) production, and reduced activity of the antioxidant enzyme superoxide dismutase (SOD), which were dose-dependently restored by pre-treatment with SA. In addition, the concentration of intracellular free calcium [Ca2+]i and mitochondrial membrane potential (MMP or Δψm) were determined in order to evaluate the degree of neuronal damage by performing flow cytometric analysis and observing the cells under a fluorescence microscope, respectively. We demonstrated that pre-treatment with SA inhibited elevations in [Ca2+]i, whereas it increased the MMP dose-dependently following exposure to OGD/R. Western blot analysis revealed that OGD/R promoted cell apoptosis with concomitant increases in Bax and caspase-3 expression, and reduced Bcl-2 expression, which was reversed by pre‑treatment with SA in a dose-dependent manner. Moreover, these effects were mediated through the JNK and p38 pathways, as pre‑treatment with SA inhibited the OGD/R-induced increase in phosphorylated (p-)JNK and p-p38 expression. Taken together, these

  20. Acute acidic exposure induces p53-mediated oxidative stress and DNA damage in tilapia (Oreochromis niloticus) blood cells.

    PubMed

    Mai, Wei-jun; Yan, Jun-lun; Wang, Lei; Zheng, Ying; Xin, Yu; Wang, Wei-na

    2010-11-01

    Acid rain and inputs of acidic effluent can result in increased acidity in aquatic ecosystems, where it is known to have a significant impact and possibly, to cause the decline of some populations of aquatic organisms. In previous studies, intracellular acid-induced oxidative stress has been shown to cause DNA damage, and cooperatively activate the expression of the p53 gene. The acute effects of acidic environments on shrimp and fish have been widely studied. However, the molecular mechanism of acid-induced injury remains largely unknown. In this study, we examined the cellular responses of tilapia to acidic exposure-induced oxidative stress and antioxidant enzyme gene expression. Furthermore, we determined how acute acid stress activates the ATM-p53 signal pathway. We measured the upregulation of reactive oxygen species (ROS) production, the intracellular Ca(2)(+) concentration ([Ca(2)(+)](i)), the tail DNA values, the malondialdehyde (MDA) level in the blood cells and the percentage of dead and damaged blood cells. Our results suggest that oxidative stress and DNA damage occurred in tilapia in conditions where the pH was 5.3. Apoptosis was detected by Hoechst staining, which was mainly associated with changes in cell viability. The parameters that we measured were related to acid-induced DNA damage, and all parameters changed in the blood cells through time. The effects of acute acid exposure (pH 5.3) on the expression of ATM, p53, p21, Bax, manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) were investigated in tilapia blood cells. The results showed that acute acid stress induced upregulation of ATM, p53 and p21, associated with increasing of DNA damage and apoptosis in blood cells. Additionally, the expression of Bax was slightly increased. Moreover, consensus p53-binding sequences were identified in tilapia MnSOD and GPx gene promoter regions and increased levels of ROS in the blood cells coincided with increased mRNA expression of p53, Mn

  1. Domoic acid induces direct DNA damage and apoptosis in Caco-2 cells: recent advances.

    PubMed

    Pinto-Silva, C R Carvalho; Moukha, S; Matias, W G; Creppy, E E

    2008-12-01

    Domoic acid (DA) is a neurotoxin produced by sea-water phytoplankton. Shellfish feeding on the phytoplankton can bioconcentrate DA, leading to a potentially serious health hazard for people consuming the contaminated shellfish. DA is the principal toxin responsible for amnesic shellfish poisoning (ASP). The toxic mechanism of DA is believed to be mediated at the level of the mitochondria, where uncoupling of oxidative phosphorylation decreases membrane permeability, causing cell swelling and ultimately lysis. Literature is poor concerning data on the possible genotoxicity and cytotoxicity of DA. In the present study, we have evaluated the cytotoxicity and genotoxicity of DA on a human colorectal adenocarcinoma cell line (Caco-2). Our results clearly demonstrate that DA decreased cell viability (IC(50) about 70 ng/mL), induced direct DNA damage from 15 ng/mL, and apoptosis in Caco-2 cells at 100 ng/mL. This apoptosis is likely bax-dependent and occurred only at high concentrations of DA, while lower concentrations upregulated both bax and bcl-2 at an apparent constant ratio until a sudden decrease of bcl-2 at 100 ng/mL and increase of bax. PMID:18293405

  2. Modulatory Effect of Betulinic Acid on the Genotoxicity Induced by Different Mutagens in V79 Cells

    PubMed Central

    Acésio, Nathália Oliveira; de Oliveira, Pollyanna Francielli; Mastrocola, Daiane Fernanda Pereira; Lima, Ildercílio Mota de Souza; Munari, Carla Carolina; Sato, Vânia Luiza Ferreira Lucatti; Souza, Andressa Aparecida Silva; Flauzino, Lúzio Gabriel Bocalon; Cunha, Wilson Roberto; Tavares, Denise Crispim

    2016-01-01

    Betulinic acid (BA) is a pentacyclic triterpene that can be isolated from many medicinal plants around the world. The aim of this study was to evaluate the genotoxic potential of BA and its effect on the genotoxicity induced by different mutagens in V79 cells using the cytokinesis-block micronucleus assay. Different BA concentrations were combined with methyl methanesulfonate (MMS), doxorubicin (DXR), camptothecin (CPT), and etoposide (VP-16). The frequencies of micronuclei in cultures treated with different BA concentrations did not differ from those of the negative control. Treatment with BA and MMS resulted in lower micronucleus frequencies than those observed for cultures treated with MMS alone. On the other hand, a significant increase in micronucleus frequencies was observed in cultures treated with BA combined with DXR or VP-16 when compared to these mutagens alone. The results showed no effect of BA on CPT-induced genotoxicity. Therefore, BA was not genotoxic under the present experimental conditions and exerted a different influence on the genotoxicity induced by different mutagens. The modulatory effect of BA depends on the type of mutagen and concentrations used. PMID:27195016

  3. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells

    PubMed Central

    Cao, Weibiao

    2016-01-01

    Mechanisms of the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA. PMID:26901778

  4. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice

    SciTech Connect

    Okano, Junko . E-mail: okajun@anat1.med.kyoto-u.ac.jp; Suzuki, Shigehiko; Shiota, Kohei

    2007-05-15

    Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior to palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G{sub 1}/S progression of palatal mesenchymal cells through upregulation of p21 {sup Cip1}, leading to Rb hypophospholylation. Thus, RA appears to cause G{sub 1} arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA.

  5. 5-caffeoylquinic acid and caffeic acid down-regulate the oxidative stress- and TNF-alpha-induced secretion of interleukin-8 from Caco-2 cells.

    PubMed

    Zhao, Zhaohui; Shin, Hee Soon; Satsu, Hideo; Totsuka, Mamoru; Shimizu, Makoto

    2008-05-28

    Although chlorogenic acid (CHA) easily reaches a millimolar level in the gastrointestinal tract because of its high concentration in coffee and fruits, its effects on intestinal epithelial cells have been little reported. We investigated in this study the down-regulative effects of 5-caffeoylquinic acid (CQA), the predominant isomer of CHA, on the H(2)O(2-) or TNF-alpha-induced secretion of interleukin (IL)-8, a central pro-inflammatory chemokine involved in the pathogenesis of inflammatory bowel diseases, in human intestinal epithelial Caco-2 cells. After the cells had been pre- and simultaneously treated with CQA, the oversecretion of IL-8 and overexpression of its mRNA induced by H(2)O(2) were significantly suppressed in a dose-dependent manner in the range of 0.25-2.00 mmol/L. We further found that a metabolite of CQA, caffeic acid (CA), but not quinic acid, significantly inhibited the H(2)O(2)-induced IL-8 secretion and its mRNA expression in the same dose-dependent manner. Both CQA and CA suppressed the TNF-alpha-induced IL-8 secretion as well. Caffeic acid at 2.00 mmol/l was able to absolutely block the H(2)O(2)- or TNF-alpha-induced oversecretion of IL-8 in Caco-2 cells. However, CQA and CA did not suppress the TNF-alpha-induced increase in the IL-8 mRNA expression, indicating that the suppressive mechanisms are different between TNF-alpha-induced and H(2)O(2)-induced IL-8 production models. These results suggest that the habit of drinking coffee and/or eating fruits with a high CHA content may be beneficial to humans in preventing the genesis of inflammatory bowel diseases.

  6. Activation of p53 contributes to pseudolaric acid B-induced senescence in human lung cancer cells in vitro

    PubMed Central

    Yao, Guo-dong; Yang, Jing; Li, Qiang; Zhang, Ye; Qi, Min; Fan, Si-miao; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2016-01-01

    Aim: Pseudolaric acid B (PAB), a diterpene acid isolated from the root bark of Pseudolarix kaempferi Gordon, has shown to exert anti-tumor effects via inducing cell cycle arrest followed by apoptosis in several cancer cell lines. Here we reported that PAB induced a mitotic catastrophe in human lung cancer A549 cells, which resulted in senescence without apoptosis or necrosis. Methods: Three human lung cancer cell lines (A549, H460 and H1299 cells) were examined. Cell growth inhibition was assessed with MTT assay. Cell cycle distribution was determined using a flow cytometer. Cell nuclear morphology was observed under a fluorescence microscope. Senescent cells were detected using SA-β-Gal staining. Apoptotic and senescent protein expression was examined using Western blot analysis. The expression of p53 and p21 in the cells was downregulated by siRNAs. Results: Treatment with PAB (5–80 μmol/L) inhibited the growth of A549 cells in dose- and time-dependent manners. Prolonged treatment with PAB (20 μmol/L) caused G2/M arrest at day 1 followed by mitotic catastrophe from day 2, which eventually resulted in cell senescence between days 3 and 4 without cell death (apoptosis or necrosis). Knockdown of p53 expression with siRNA significantly suppressed PAB-induced senescence in A549 cells (p53 wild). Furthermore, PAB-induced senescence was also observed in human lung cancer H460 cells (p53 wild), but not in human lung cancer H1299 cells (p53 null). Conclusion: The anti-tumor action of PAB against human lung cancer A549 cells in vitro involves the induction of senescence through activation of the p53 pathway. PMID:27041461

  7. Acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) contributes to retinoic acid-induced differentiation of leukemic cells

    SciTech Connect

    Yu, Yun; Shen, Shao-Ming; Zhang, Fei-Fei; Wu, Zhao-Xia; Han, Bin; Wang, Li-Shun

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer ANP32B was down-regulated during ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer Knockdown of ANP32B enhanced ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer Ectopic expression of ANP32B inhibited ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer ANP32B inhibited ATRA activated transcriptional activity of RAR{alpha}. -- Abstract: The acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) is a member of a conserved superfamily of nuclear proteins whose functions are largely unknown. In our previous work, ANP32B was identified as a novel direct substrate for caspase-3 and acted as a negative regulator for leukemic cell apoptosis. In this work, we provided the first demonstration that ANP32B expression was down-regulated during differentiation induction of leukemic cells by all-trans retinoic acid (ATRA). Knockdown of ANP32B expression by specific shRNA enhanced ATRA-induced leukemic cell differentiation, while ectopic expression of ANP32B attenuated it, indicating an inhibitory role of ANP32B against leukemic cell differentiation. Furthermore, luciferase reporter assay revealed that ANP32B might exert this role through inhibiting the ATRA dependent transcriptional activity of retinoic acid receptor (RAR{alpha}). These data will shed new insights into understanding the biological functions of ANP32B protein.

  8. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    SciTech Connect

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  9. n-3 Fatty Acids Induce Neurogenesis of Predominantly POMC-Expressing Cells in the Hypothalamus.

    PubMed

    Nascimento, Lucas F R; Souza, Gabriela F P; Morari, Joseane; Barbosa, Guilherme O; Solon, Carina; Moura, Rodrigo F; Victório, Sheila C; Ignácio-Souza, Letícia M; Razolli, Daniela S; Carvalho, Hernandes F; Velloso, Lício A

    2016-03-01

    Apoptosis of hypothalamic neurons is believed to play an important role in the development and perpetuation of obesity. Similar to the hippocampus, the hypothalamus presents constitutive and stimulated neurogenesis, suggesting that obesity-associated hypothalamic dysfunction can be repaired. Here, we explored the hypothesis that n-3 polyunsaturated fatty acids (PUFAs) induce hypothalamic neurogenesis. Both in the diet and injected directly into the hypothalamus, PUFAs were capable of increasing hypothalamic neurogenesis to levels similar or superior to the effect of brain-derived neurotrophic factor (BDNF). Most of the neurogenic activity induced by PUFAs resulted in increased numbers of proopiomelanocortin but not NPY neurons and was accompanied by increased expression of BDNF and G-protein-coupled receptor 40 (GPR40). The inhibition of GPR40 was capable of reducing the neurogenic effect of a PUFA, while the inhibition of BDNF resulted in the reduction of global hypothalamic cell. Thus, PUFAs emerge as a potential dietary approach to correct obesity-associated hypothalamic neuronal loss.

  10. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    PubMed

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  11. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: Protective role of arjunolic acid

    SciTech Connect

    Manna, Prasenjit; Ghosh, Jyotirmoy; Das, Joydeep

    2010-04-15

    Present study investigates the beneficial role of arjunolic acid (AA) against the alteration in the cytokine levels and simultaneous activation of oxidative stress responsive signaling pathways in spleen under hyperglycemic condition. Diabetes was induced by injection of streptozotocin (STZ) (at a dose of 70 mg/kg body weight, injected in the tail vain). STZ administration elevated the levels of IL-2 as well as IFN-gamma and attenuated the level of TNF-alpha in the sera of diabetic animals. In addition, hyperglycemia is also associated with the increased production of intracellular reactive intermediates resulting with the elevation in lipid peroxidation, protein carbonylation and reduction in intracellular antioxidant defense. Investigating the oxidative stress responsive cell signaling pathways, increased expressions (immunoreactive concentrations) of phosphorylated p65 as well as its inhibitor protein phospho IkappaBalpha and phosphorylated mitogen activated protein kinases (MAPKs) have been observed in diabetic spleen tissue. Studies on isolated splenocytes revealed that hyperglycemia caused disruption of mitochondrial membrane potential, elevation in the concentration of cytosolic cytochrome c as well as activation of caspase 3 leading to apoptotic cell death. Histological examination revealed that diabetic induction depleted the white pulp scoring which is in agreement with the reduced immunological response. Treatment with AA prevented the hyperglycemia and its associated pathogenesis in spleen tissue. Results suggest that AA might act as an anti-diabetic and immunomodulatory agent against hyperglycemia.

  12. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    SciTech Connect

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  13. Retinoic acid induced growth arrest of human breast carcinoma cells requires protein kinase C alpha expression and activity.

    PubMed

    Cho, Y; Tighe, A P; Talmage, D A

    1997-09-01

    Retinoic acid inhibits proliferation of hormone-dependent, but not hormone-independent breast cancer cells. Retinoic acid-induced changes in cellular proliferation and differentiation are associated with disturbances in growth factor signaling and frequently with changes in protein kinase C expression. PKC delta, epsilon, and zeta are expressed in both hormone-dependent (T-47D) and hormone-independent (MDA-MB-231) cell lines. Retinoic acid arrested T-47D proliferation, induced PKC alpha expression and concomitantly repressed PKC zeta expression. The changes in PKC alpha and PKC zeta reflect retinoic acid-induced changes in mRNA. In contrast, retinoic acid had no effect on growth, or PKC expression in MDA-MB-231 cells. Growth arrest and the induction of PKC alpha, but not the reduction in PKC zeta, resulted from selective activation of RAR alpha. In total, these results support an important role for PKC alpha in mediating the anti-proliferative action of retinoids on human breast carcinoma cells.

  14. 2α-Hydroxyursolic Acid Inhibited Cell Proliferation and Induced Apoptosis in MDA-MB-231 Human Breast Cancer Cells through the p38/MAPK Signal Transduction Pathway.

    PubMed

    Jiang, Xue; Li, Tong; Liu, Rui Hai

    2016-03-01

    The mechanisms of action of 2α-hydroxyursolic acid in inhibiting cell proliferation and inducing apoptosis in MDA-MB-231 human breast cancer cells were investigated. The antiproliferative activity and cytotoxicity were determined by the methylene blue assay. The expression of proteins was determined using Western blot. 2α-Hydroxyursolic acid significantly inhibited MDA-MB-231 cell proliferation, and no cytotoxicity was observed at concentrations below 30 μM. 2α-Hydroxyursolic acid significantly down-regulated expressions of TRAF2, PCNA, cyclin D1, and CDK4 and up-regulated the expressions of p-ASK1, p-p38, p-p53, and p-21. 2α-Hydroxyursolic acid induced apoptosis in MDA-MB-231 cells by significantly increasing the Bax/Bcl-2 ratio and inducing the cleaved caspase-3. Additionally, treatment of SB203580, a p38 MAPK specific inhibitor, reversed the inhibition of PCNA, cyclin D1, and Bcl-2 expression induced by 2α-hydroxyursolic acid in MDA-MB-231 cells. These results suggested that 2α-hydroxyursolic acid exhibited anticancer activity through the inhibition of cell proliferation and the induction of apoptosis by regulating the p38/MAPK signal transduction pathway.

  15. Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: The relationship between free radical generation, glutathione depletion and cell death.

    PubMed

    Locatelli, Claudriana; Leal, Paulo C; Yunes, Rosendo A; Nunes, Ricardo J; Creczynski-Pasa, Tânia B

    2009-10-01

    Malignant melanoma is a lethal disease, and the incidence and mortality associated with it are increasing worldwide. It has a significant tendency to develop both metastasis and resistance to chemotherapy. The tumor cells show abnormal redox regulation, and although the molecular mechanisms involved are not well characterized, they seem to be related to oxidative stress. In a previous study, we showed the antitumoral properties of gallic acid ester derivatives in leukemia cells. Here, we show the effect of octyl, decyl, dodecyl and tetradecyl gallates on B16F10 cells, a melanoma cell line. All compounds induced cytotoxic effects, and the IC(50) values obtained were between 7microM and 17microM after 48h of incubation. Cell death occurred through apoptosis, as demonstrated by the genomic DNA fragmentation pattern. The gallates were able to induce significant production of free radicals, deplete both glutathione and ATP, activate NF-kappaB and promote the inhibition of cell adhesion under the experimental conditions. The glutathione depletion induced by these compounds was related to the inhibition of gamma-glutamylcysteine synthase activity. These results suggest that gallates induce tumoral cell death through apoptosis as a consequence of oxidative stress, though they use different mechanisms to do so. These findings are important since melanoma cells are resistant to death because of their high level of antioxidant defense, adhesion capability and propensity to metastasize.

  16. Mechanism of angiotensin II-induced arachidonic acid metabolite release in aortic smooth muscle cells: involvement of phospholipase D.

    PubMed

    Shinoda, J; Kozawa, O; Suzuki, A; Watanabe-Tomita, Y; Oiso, Y; Uematsu, T

    1997-02-01

    In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholine-hydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/I and 0.1 mumol/I. D.L.-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells.

  17. Ursodeoxycholic acid inhibits overexpression of P-glycoprotein induced by doxorubicin in HepG2 cells.

    PubMed

    Komori, Yuki; Arisawa, Sakiko; Takai, Miho; Yokoyama, Kunihiro; Honda, Minako; Hayashi, Kazuhiko; Ishigami, Masatoshi; Katano, Yoshiaki; Goto, Hidemi; Ueyama, Jun; Ishikawa, Tetsuya; Wakusawa, Shinya

    2014-02-01

    The hepatoprotective action of ursodeoxycholic acid (UDCA) was previously suggested to be partially dependent on its antioxidative effect. Doxorubicin (DOX) and reactive oxygen species have also been implicated in the overexpression of P-glycoprotein (P-gp), which is encoded by the MDR1 gene and causes antitumor multidrug resistance. In the present study, we assessed the effects of UDCA on the expression of MDR1 mRNA, P-gp, and intracellular reactive oxygen species levels in DOX-treated HepG2 cells and compared them to those of other bile acids. DOX-induced increases in reactive oxygen species levels and the expression of MDR1 mRNA were inhibited by N-acetylcysteine, an antioxidant, and the DOX-induced increase in reactive oxygen species levels and DOX-induced overexpression of MDR1 mRNA and P-gp were inhibited by UDCA. Cells treated with UDCA showed improved rhodamine 123 uptake, which was decreased in cells treated with DOX alone. Moreover, cells exposed to DOX for 24h combined with UDCA accumulated more DOX than that of cells treated with DOX alone. Thus, UDCA may have inhibited the overexpression of P-gp by suppressing DOX-induced reactive oxygen species production. Chenodeoxycholic acid (CDCA) also exhibited these effects, whereas deoxycholic acid and litocholic acid were ineffective. In conclusion, UDCA and CDCA had an inhibitory effect on the induction of P-gp expression and reactive oxygen species by DOX in HepG2 cells. The administration of UDCA may be beneficial due to its ability to prevent the overexpression of reactive oxygen species and acquisition of multidrug resistance in hepatocellular carcinoma cells.

  18. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells

    PubMed Central

    SUN, GUOJUN; ZHANG, SHUQIN; XIE, YANRU; ZHANG, ZIYU; ZHAO, WENJING

    2016-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid; GA) is a naturally occurring plant polyphenol, isolated from water caltrop, which has been reported to exert anticancer effects. The present study investigated the antiproliferative effects of GA on the HepG2 and SMMC-7721 human hepatocellular carcinoma (HCC) cell lines using MTT and colony formation assays. In particular, the underlying mechanism of GA-induced apoptosis in SMMC-7721 cells was studied in vitro by flow cytometry and western blotting. The results of the present study indicated that GA was capable of inhibiting the proliferation of HepG2 and SMMC-7721 cells in a time- and dose-dependent manner, as well as inducing the apoptosis of SMMC-7721 cells. GA induced caspase-3, caspase-9 and reactive oxygen species activity, elevated the expression of apoptosis regulator Bcl-2-like protein 4 and reduced the mitochondrial membrane potential in SMMC-7721 cells. When compared with HL-7702 normal human hepatocytes, GA demonstrated selective toxicity for HCC cells. In conclusion, GA is able to induce apoptosis in SMMC-7721 cells in vitro via mitochondrial-mediated pathways, and may possess the potential to be a novel therapeutic compound for use in the treatment of HCC. PMID:26870182

  19. The cell wall component lipoteichoic acid of Staphylococcus aureus induces chemokine gene expression in bovine mammary epithelial cells

    PubMed Central

    KIKU, Yoshio; NAGASAWA, Yuya; TANABE, Fuyuko; SUGAWARA, Kazue; WATANABE, Atsushi; HATA, Eiji; OZAWA, Tomomi; NAKAJIMA, Kei-ichi; ARAI, Toshiro; HAYASHI, Tomohito

    2016-01-01

    Staphylococcus aureus (SA) is a major cause of bovine mastitis, but its pathogenic mechanism remains poorly understood. To evaluate the role of lipoteichoic acid (LTA) in the immune or inflammatory response of SA mastitis, we investigated the gene expression profile in bovine mammary epithelial cells stimulated with LTA alone or with formalin-killed SA (FKSA) using cap analysis of gene expression. Seven common differentially expressed genes related to immune or inflammatory mediators were up-regulated under both LTA and FKSA stimulations. Three of these genes encode chemokines (IL-8, CXCL6 and CCL2) functioning as chemoattractant molecules for neutrophils and macrophages. These results suggest that the initial inflammatory response of SA infection in mammary gland may be related with LTA induced chemokine genes. PMID:27211287

  20. Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic β-Cells.

    PubMed

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Kovář, Jan

    2016-01-01

    Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells. PMID:27626409

  1. Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic β-Cells

    PubMed Central

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Kovář, Jan

    2016-01-01

    Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells. PMID:27626409

  2. Gambogic Acid Induces Apoptosis in Imatinib-Resistant Chronic Myeloid Leukemia Cells via Inducing Proteasome Inhibition and Caspase-Dependent Bcr-Abl Downregulation

    PubMed Central

    Shi, Xianping; Chen, Xin; Li, Xiaofen; Lan, Xiaoying; Zhao, Chong; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Liao, Siyan; Song, Wenbin; Zhou, Ping; Wang, Shunqing; Xu, Li; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2014-01-01

    Purpose Chronic myelogenous leukemia (CML) is characterized by the constitutive activation of Bcr-Abl tyrosine kinase. Bcr-Abl-T315I is the predominant mutation that causes resistance to imatinib, cytotoxic drugs, and the second-generation tyrosine kinase inhibitors. The emergence of imatinib resistance in patients with CML leads to searching for novel approaches to the treatment of CML. Gambogic acid, a small molecule derived from Chinese herb gamboges, has been approved for phase II clinical trial for cancer therapy by the Chinese Food and Drug Administration (FDA). In this study, we investigated the effect of gambogic acid on cell survival or apoptosis in CML cells bearing Bcr-Abl-T315I or wild-type Bcr-Abl. Experimental Design CML cell lines (KBM5, KBM5-T315I, and K562), primary cells from patients with CML with clinical resistance to imatinib, and normal monocytes from healthy volunteers were treated with gambogic acid, imatinib, or their combination, followed by measuring the effects on cell growth, apoptosis, and signal pathways. The in vivo antitumor activity of gambogic acid and its combination with imatinib was also assessed with nude xenografts. Results Gambogic acid induced apoptosis and cell proliferation inhibition in CML cells and inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Our data suggest that GA-induced proteasome inhibition is required for caspase activation in both imatinib-resistant and -sensitive CML cells, and caspase activation is required for gambogic acid–induced Bcr-Abl downregulation and apoptotic cell death. Conclusions These findings suggest an alternative strategy to overcome imatinib resistance by enhancing Bcr-Abl downregulation with the medicinal compound gambogic acid, which may have great clinical significance in imatinib-resistant cancer therapy. PMID:24334603

  3. Cellular responses induced in vitro by pestheic acid, a fungal metabolite, in a gastric adenocarcinoma cell line (PG100).

    PubMed

    Sousa, J M C; Matos, L A; Alcântara, D F A; Ribeiro, H F; Santos, L S; Oliveira, M N; Brito-Junior, L C; Khayat, A S; Guimarães, A C; Cunha, L A; Burbano, R R; Bahia, M O

    2013-01-01

    There is a constant search for new cancer treatments that are less aggressive and economically affordable. In this context, natural products extracted from plants, fungi, and microorganisms are of great interest. Pestheic acid, or dihidromaldoxin, is a chlorinated diphenylic ether extracted from the phytopathogenic fungus Pestalotiopsis guepinii (Amphisphaeriaceae). We assessed the cytotoxic, cytostatic, and genotoxic effects of pestheic acid in a gastric adenocarcinoma cell line (PG100). A decrease in clonogenic survival was observed. Pestheic acid also induced significant increases in both micronucleus and nucleoplasmic bridge frequency. However, we did not observe changes in cell cycle kinetics or apoptosis induction. Reactive oxygen species induced by diphenylic ethers may explain the genotoxicity and mutagenicity of pestheic acid. The absence of repair checkpoints that we observed is probably due to the fact that the PG100 cell line lacks the TP53 gene, which is common in gastric cancers. Even though pestheic acid has had a clear cytotoxic effect, the minimal inhibitory concentration was high, which shows that pestheic acid is not an active anticancer compound under these conditions. PMID:24114206

  4. Aristolochic acids - Induced transcriptomic responses in rat renal proximal tubule cells in vitro.

    PubMed

    Bloch, Katarzyna M; Evans, Andrew; Lock, Edward A

    2015-09-01

    Aristolochic acids (AAs) are the active components of herbal drugs derived from Aristolochia species that have been used for medicinal purposes since antiquity. However, AAs have recently been discovered to be highly nephrotoxic and induced urothelial cancer in humans and malignant tumors in the kidney and urinary tract of rodents. In this study, we exposed rat renal proximal tubule cells in vitro to a sub-cytotoxic level of AAs at three different time points (6 h, 24 h and 72 h). We then analyzed the gene expression profile after the compound exposure. Functional analysis with Ingenuity Pathways Analysis and DAVID tools revealed that at the late time point (72 h) there are many significantly altered genes involved in cancer-related pathways such as p53 signaling. MIAMI-compliant microarray data are deposited in the NCBI GEO database under accession number GSE68687 and can be found at: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68687.

  5. Gallic acid induces mitotic catastrophe and inhibits centrosomal clustering in HeLa cells.

    PubMed

    Tan, Si; Guan, Xin; Grün, Christoph; Zhou, Zhiqin; Schepers, Ute; Nick, Peter

    2015-12-25

    Cancer cells divide rapidly, providing medical targets for anticancer agents. The polyphenolic gallic acid (GA) is known to be toxic for certain cancer cells. However, the cellular mode of action has not been elucidated. Therefore, the current study addressed a potential effect of GA on the mitosis of cancer cells. GA inhibited viability of HeLa cells in a dose-dependent and time-dependent manner. We could show, using fluorescence-activated cell sorting (FACS), that this inhibition was accompanied by elevated frequency of cells arrested at the G2/M transition. This cell-cycle arrest was accompanied by mitotic catastrophe, and formation of cells with multiple nuclei. These aberrations were preceded by impaired centrosomal clustering. We arrive at a model of action, where GA inhibits the progression of the cell cycle at the G2/M phase by impairing centrosomal clustering which will stimulate mitotic catastrophe. Thus, GA has potential as compound against cervical cancer.

  6. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    PubMed

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors. PMID:27165526

  7. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    PubMed

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors.

  8. Bleb formation is induced by alkaline but not acidic pH in estrogen receptor silenced breast cancer cells.

    PubMed

    Khajah, Maitham A; Mathew, Princy M; Alam-Eldin, Nada S; Luqmani, Yunus A

    2015-04-01

    De novo and acquired resistance to endocrine-based therapies in breast cancer occurs in parallel with epithelial to mesenchymal transition (EMT), which is associated with enhanced proliferative and metastatic potential, and poor clinical outcome. We have established several endocrine insensitive breast cancer lines by shRNA-induced depletion of estrogen receptor (ER) by transfection of MCF7 cells. All of these exhibit EMT. We have previously reported that brief exposure of specifically ER- breast cancer cells, to extracellular alkaline pH, results in cell rounding and segregation, and leads to enhanced invasive potential. In this study we describe more detailed morphological changes and compare these with cell exposure to acidic pH. Morphological changes and localization of various molecules critical for cell adhesion and motility, associated with pH effects, were assessed by live cell microscopy, electron microscopy, and immunofluorescence. Exposure of either ER- or ER+ breast cancer cells to extracellular acidic pH did not induce significant changes in morphological appearance. Conversely, brief exposure of specifically ER silenced cells, to alkaline pH, resulted in cell contractolation and formation of bleb-like actin-rich structures which were evenly distributed on the outer membrane. Integrin α2, FAK, and JAM-1 were found in the cytoplasm streaming into the newly formed blebs. These blebs appear to be related to cell polarity and movement. Pre-treatment with cytochalasin-D or inhibitors of Rho or MLCK prevented both contractolation and bleb formation. Our data suggest that the effect of pH on the microenvironment of endocrine resistant breast cancer cells needs to be more extensively investigated. Alkaline, rather than acidic pH, appears to induce dramatic morphological changes, and enhances their invasive capabilities, through re-organization of cortical actin. PMID:25672508

  9. Ascorbic acid delivered by mesoporous silica nanoparticles induces the differentiation of human embryonic stem cells into cardiomyocytes.

    PubMed

    Ren, Mingming; Han, Zhen; Li, Jinglai; Feng, Gang; Ouyang, Shuyuan

    2015-11-01

    Embryonic stem (ES) cells offer the potential to generate all cell types in the body, which provide a promising approach to repair tissue damage or dysfunction. In the past decade, great efforts have been made to induce the differentiation of ES cells into numerous types of cells, such as adipocytes, neurocytes and cardiomyocytes. However, the low differentiated efficiency and successful rate limit the development of induction of the differentiation of stem cells for tissue engineering. Here, we utilize ascorbic acid (AA)-loaded fluorescent TRITC-mesoporous silica nanoparticles (TMSN-AA) as a potential tool to induce the differentiation of human ES cells into cardiomyocytes. The treatment of human ES cells by TMSN-AA nanoplex arrests cell cycle at G1 phase and decreases the expression of stemness genes octamer-binding transcription factor 4 (OCT4) and sex determining region Y-box 2 (SOX2), which exhibits more significant induction efficiency of stem cell differentiation than the treatment by AA alone. Furthermore, we have tested the myocardial marker genes cardiac Troponin I (cTnI) and fetal liver kinase 1 (FLK-1), and found these genes are up-regulated by TMSN-AA nanoplex. Importantly, this work demonstrates the more efficient induction efficiency of human ES cells differentiation by the nanoparticle-drug formulation. Our studies reveal a novel approach based on MSNs as nanocarriers to induce the differentiation of human ES cells into cardiomyocytes efficiently and feasibly, and offer the potential perspectives for tissue engineering, eventually in clinical applications.

  10. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells

    PubMed Central

    Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun

    2011-01-01

    Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AX (γH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631

  11. The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion.

    PubMed

    Jeong, K J; Park, S Y; Cho, K H; Sohn, J S; Lee, J; Kim, Y K; Kang, J; Park, C G; Han, J W; Lee, H Y

    2012-09-27

    Lysophosphatidic acid (LPA) is a biolipid that has diverse biological activities implicated in ovarian cancer initiation and progression. Previous studies have shown the critical role of the Rho/Rho-associated kinase (ROCK) pathway in LPA-induced ovarian cancer progression. However, detailed underlying mechanism by which the Rho/ROCK pathway induces ovarian cancer cell invasion is still incompletely understood. In the present study, we observed that the Rho/ROCK pathway is implicated in the production of proteolytic enzymes, leading to LPA-induced ovarian cancer cell invasion. LPA induced matrix metalloproteinase (MMP)-9 expression in CAOV-3 and PA-1 cells and urokinase-type plasminogen activator (uPA) expression in SKOV-3 cells. LPA-induced proteolytic enzyme expression was required for the invasion of ovarian cancer cells expressing corresponding enzymes. Pretreatment of cells with a pharmacological inhibitor of Rho/ROCK (Y-27632) or overexpression of a dominant-negative mutant of Rho (Rho N19) profoundly inhibited LPA-induced proteolytic enzyme expression as well as the invasive potential of ovarian cancer cells. In addition, transfection with dominant-negative Ras (Ras N17) significantly inhibited LPA-induced Rho activation as well as MMP-9 and uPA expression. Consistently, Y-27632 reduced LPA-induced nuclear factor (NF)-κB activation that is critical for proteolytic enzyme expression and cellular invasion. Collectively, we demonstrate a mechanism by which LPA promotes ovarian cancer progression through coordinate activation of a Ras/Rho/ROCK/NF-κB signaling pathway and the proteolytic enzyme secretion, providing novel biomarkers and promising therapeutic targets for ovarian cancer cell progression.

  12. Radiation-induced neoplastic transformation of C3H10T1/2 cells is suppressed by ascorbic acid

    SciTech Connect

    Yasukawa, M.; Terasima, T.; Seki, M. )

    1989-12-01

    X-ray induced transformation of C3H10T1/2 cells was suppressed in a concentration-dependent manner by administration of ascorbic acid after irradiation (0.1-20 micrograms/ml for the first week) in the culture medium. The dose-response curve was shifted about 60% downward and was slightly steeper in the presence of ascorbic acid (5 micrograms/ml for the first week) than in its absence. The 1-week treatment procedure revealed that cells initiated by radiation remained susceptible to ascorbic acid until the time of morphological phenotype expression. The neoplastically transformed phenotype expressed after incubation for 8 weeks could no longer be suppressed by ascorbic acid even after culture transfer. Similarly, the neoplastically transformed phenotype suppressed for 8 weeks by ascorbic acid treatment was not subsequently expressed in the absence of ascorbic acid. On the basis of the oxygen-detoxifying nature of ascorbic acid, we postulated that expression of the neoplastically transformed phenotype is promoted by reactive oxygen species and peroxy radicals generated in cells during the whole assay period. The data may be useful as a guide for chemopreventive efforts against radiation carcinogenesis.

  13. Suberoyl bishydroxamic acid-induced apoptosis in HeLa cells via ROS-independent, GSH-dependent manner.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2013-05-01

    Suberoyl bishydroxamic acid (SBHA) is a HDAC inhibitor that can regulate many biological functions including apoptosis and proliferation in various cancer cells. Here, we evaluated the effect of SBHA on the growth of HeLa cervical cancer cells in relation to apoptosis, reactive oxygen species (ROS) and glutathione (GSH) levels. Dose-dependent inhibition of cell growth was observed in HeLa cells with an IC50 of approximately 15 μM at 72 h. SBHA also induced apoptosis in HeLa cells, as evidenced by sub-G1 cells, annexin V-FITC staining cells, activations of caspase 3 and 8, and the loss of mitochondrial membrane potential (ΔΨm). In addition, all of the tested caspase inhibitors rescued some cells from SBHA-induced HeLa cell death. SBHA increased ROS levels including O2(•-) and induced GSH depletion in HeLa cells. Generally, caspase inhibitors did not affect ROS levels in SBHA-treated HeLa cells, but they significantly prevented GSH depletion in these cells. Furthermore, while the well-known antioxidants, N-acetyl cysteine and vitamin C, did not affect cell death, ROS level or GSH depletion in SBHA-treated HeLa cells, L-buthionine sulfoximine, a GSH synthesis inhibitor, enhanced cell death and GSH depletion in these cells. In conclusion, SBHA inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis, and the inhibition is independent of ROS level changes, but dependent on GSH level changes.

  14. Ascorbic acid supplementation enhances recovery from ethanol induced inhibition of Leydig cell steroidogenesis than abstention in male guinea pigs.

    PubMed

    Radhakrishnakartha, Harikrishnan; Appu, Abhilash Puthuvelvippel; Indira, Madambath

    2014-01-15

    The impact of ascorbic acid supplementation against ethanol induced Leydig cell toxicity was studied in guinea pigs. Male guinea pigs were exposed to ethanol (4g/kgb.wt.) for 90 days. After 90 days, ethanol administration was completely stopped and animals in the ethanol group were divided into abstention group and ascorbic acid supplemented group (25mg/100gb.wt.) and those in control group were maintained as control and control+ascorbic acid group. Ethanol administration reduced the serum testosterone and LH (luteinising hormone) levels and elevated estradiol levels. Cholesterol levels in Leydig cell were increased whereas the mRNA and protein expressions of StAR (steroidogenic acute regulatory) protein, cytochrome P450scc (cytochrome p450side chain cleavage enzyme), 3β-HSD (3β-hydroxysteroid dehydrogenase), 17β-HSD (17β-hydroxysteroid dehydrogenase) and LH receptor were drastically reduced. Administration of ascorbic acid resulted in alteration of all these parameters indicating enhanced recovery from ethanol induced inhibition of Leydig cell steroidogenesis. Although abstention could also reduce the inhibition of steroidogenesis, this was lesser in comparison with ascorbic acid supplemented group.

  15. Protective effects of hydroxybenzoic acids and their esters on cell damage induced by hydroxyl radicals and hydrogen peroxides.

    PubMed

    Masaki, H; Okamoto, N; Sakaki, S; Sakurai, H

    1997-04-01

    The purpose of this study was to evaluate the hydroxyl radical scavenging activities of hydroxybenzoic acids and their esters from both chemical and biological aspects. These activities of hydroxybenzoic acids and their related compounds were estimated by ESR-spin trapping method, in which 3,4,5-trihydroxybenzoic acid and its ethyl and propyl esters showed the highest activities as estimated by IC50 value (50% inhibition concentration of hydroxyl radicals generated in the system): 78.04 +/- 11.23, 95.95 +/- 2.64, and 86.46 +/- 2.31 microM, respectively. In addition, 3,4,5-trihydroxybenzoic acid (gallic acid) at a concentration of 25 microM, protected against dermal fibroblast cell damage induced by H2O2, and enhanced the survival to 83.8 +/- 3.1%, in which the survival of control was 44.2 +/- 1.0%. Based on these results, the pretreatment effects of 3,4,5-trihydroxybenzoic acid n-alkyl esters on cell damage induced by H2O2 were examined. The survival of fibroblasts pretreated with the esters increased depending on the alkyl chain-length. Both C12 and C16 alkyl esters gave almost complete cell survival of 89.5 +/- 2.0% and 91.3 +/- 1.0%, respectively. The order of the protective effects of the compounds was in good agreement with that of their partition coefficients, suggesting that 3,4,5-trihydroxybenzoic acid alkyl esters are incorporated into fibroblasts, and thus prevent the cells from the toxicity caused by H2O2. In addition, an increase of intracellular peroxide formation in fibroblasts induced by UVA-irradiation, was suppressed to 2.27 +/- 0.41 nmol/10(4) cells by pretreatment with C16 alkyl ester at a concentration of 25 microM. Since 3,4,5-trihydroxybenzoic group has been demonstrated to possess a potent scavenging activity of hydroxyl radicals, this moiety was indicated to be important in preventing cell damage induced by UVA or H2O2: in turn, these produce hydroxyl radicals in the presence of trace metal ions such as iron and copper in cells.

  16. Arachidonic acid is involved in the regulation of hCG induced steroidogenesis in rat Leydig cells

    SciTech Connect

    Didolkar, A.K.; Sundaram, K.

    1987-07-27

    Phospholipase C (PLC), an enzyme involved in the hydrolysis of membrane phospholipid- phosphatidylinositol-bisphosphate to insositol triphosphate and diacylglycerol, and Phorbol 12, myristate 13, acetate (PMA) could significantly stimulate testosterone (T) secretion from Leydig cells. Arachidonic acid (AA) stimulated T secretion by about 2 fold. The steroidogenic effect of PLC and AA was biphasic. At low concentrations both PLC and AA augmented hCG induced T secretion, while at higher concentrations they inhibited steroid production. AA also had a biphasic effect on hCG induced cyclic AMP secretion. 5,8,11,14 Eicosatetrayenoic acid, a general inhibitor of AA metabolism, and Nordihydroguaiaretic acid, an inhibitor of the lipoxygenase pathway of AA metabolism, inhibited hCG induced T secretion while indomethacin, an inhibitor of cyclo-oxygenase pathway, had no effect on hCG induced T secretion. The authors conclude from these data that AA plays a role in the regulation of hCG induced steroidogenic responses in rat Leydig cells and that the metabolite(s) of AA that are involved are not cyclo-oxygenase products. 28 references, 4 figures, 2 tables.

  17. CYP epoxygenase metabolites of docosahexaenoic acid protect HL-1 cardiac cells against LPS-induced cytotoxicity through SIRT1

    PubMed Central

    Samokhvalov, V; Jamieson, K L; Vriend, J; Quan, S; Seubert, J M

    2015-01-01

    Bacterial LPS is an environmental toxin capable of promoting various cardiac complications. Current evidence suggests that LPS-induced myocardial dysfunction emerges as a consequence of compromised quality of cardiac mitochondria. Docosahexaenoic acid (DHA, 22:6n3) is an n-3 polyunsaturated fatty acid (PUFA), which produces a broad spectrum of intrinsic physiological effects including regulation of cell survival and death mechanisms. Although, numerous studies revealed fundamentally beneficial effects of DHA on cardiovascular system, it remains unknown whether these effects were produced by DHA or one of its possibly more potent metabolites. Emerging evidence indicates that cytochrome P450 (CYP) epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs), produce more potent biological activity compared to its precursor DHA. In this study, we investigated whether DHA and its metabolite 19,20-EDP could protect HL-1 cardiac cells against LPS-induced cytotoxicity. We provide evidence that exogenously added or DHA-derived EDPs promote mitochondrial biogenesis and function in HL-1 cardiac cells. Our results illustrate the CYP epoxygenase metabolite of DHA, 19,20-EDP, confers extensive protection to HL-1 cardiac cells against LPS-induced cytotoxicity via activation of SIRT1. PMID:27182450

  18. Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide.

    PubMed

    López-Lázaro, Miguel; Calderón-Montaño, José Manuel; Burgos-Morón, Estefanía; Austin, Caroline A

    2011-07-01

    Green tea and its major active constituent, (-)-epigallocatechin-3-gallate (EGCG), are in clinical trials for the prevention and treatment of several diseases such as cancer. DNA topoisomerase (topo) poisons are commonly prescribed anticancer drugs that kill cancer cells by inducing topo-DNA complexes. Using purified topoisomerases, previous in vitro studies have shown that EGCG induces the formation of topo-DNA complexes. Because the activity of a drug on purified topoisomerases does not always represent the activity in a cell, we have used an immunofluorescence technique that allows the visualisation of topo I- and topo II-DNA complexes produced in individual cells to evaluate the activity of EGCG on both enzymes. High levels of topo I- and topo II-DNA complexes were observed in K562 leukaemia cells exposed to EGCG. Similar levels of topo I- and topo II-DNA complexes were visualised in cells treated with gallic acid (GA) (the acid part of the EGCG ester). Pyrogallol (PG) also induced topo-DNA complexes with both enzymes, therefore suggesting that the activity of EGCG and GA is mediated by their PG moieties. Catalase prevented both the cytotoxicity and the formation of topo I- and topo II-DNA complexes induced by EGCG, GA, PG and myricetin (a PG-containing flavonoid recently shown to induce topo I- and topo II-DNA complexes in cells), indicating that hydrogen peroxide mediates these activities. Hydrogen peroxide induced topo I- and topo II (α and β)-DNA complexes in a time- and dose-dependent manner. The formation of topo I- and topo II-DNA complexes in cells exposed to hydrogen peroxide correlated well with the induction of apoptosis, suggesting that the topo-DNA complexes induced at long exposure times by the compounds tested in our study may be apoptotic topo-DNA complexes. Finally, we report results suggesting that PG-containing drugs may selectively kill tumour cells by generating hydrogen peroxide.

  19. Palmitic acid induces osteoblastic differentiation in vascular smooth muscle cells through ACSL3 and NF-κB, novel targets of eicosapentaenoic acid.

    PubMed

    Kageyama, Aiko; Matsui, Hiroki; Ohta, Masahiko; Sambuichi, Keisuke; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Yokoyama, Tomoyuki; Kurabayashi, Masahiko

    2013-01-01

    Free fatty acids (FFAs), elevated in metabolic syndrome and diabetes, play a crucial role in the development of atherosclerotic cardiovascular disease, and eicosapentaenoic acid (EPA) counteracts many aspects of FFA-induced vascular pathology. Although vascular calcification is invariably associated with atherosclerosis, the mechanisms involved are not completely elucidated. In this study, we tested the hypothesis that EPA prevents the osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC) induced by palmitic acid (PA), the most abundant long-chain saturated fatty acid in plasma. PA increased and EPA abolished the expression of the genes for bone-related proteins, including bone morphogenetic protein (BMP)-2, Msx2 and osteopontin in human aortic smooth muscle cells (HASMC). Among the long-chain acyl-CoA synthetase (ACSL) subfamily, ACSL3 expression was predominant in HASMC, and PA robustly increased and EPA efficiently inhibited ACSL3 expression. Importantly, PA-induced osteoblastic differentiation was mediated, at least in part, by ACSL3 activation because acyl-CoA synthetase (ACS) inhibitor or siRNA targeted to ACSL3 completely prevented the PA induction of both BMP-2 and Msx2. Conversely, adenovirus-mediated ACSL3 overexpression enhanced PA-induced BMP-2 and Msx2 expression. In addition, EPA, ACSL3 siRNA and ACS inhibitor attenuated calcium deposition and caspase activation induced by PA. Notably, PA induced activation of NF-κB, and NF-κB inhibitor prevented PA-induction of osteoblastic gene expression and calcium deposition. Immunohistochemistry revealed the prominent expression of ACSL3 in VSMC and macrophages in human non-calcifying and calcifying atherosclerotic plaques from the carotid arteries. These results identify ACSL3 and NF-κB as mediators of PA-induced osteoblastic differentiation and calcium deposition in VSMC and suggest that EPA prevents vascular calcification by inhibiting such a new molecular pathway elicited

  20. Bile acid receptor TGR5, NADPH Oxidase NOX5-S and CREB Mediate Bile Acid-Induced DNA Damage In Barrett’s Esophageal Adenocarcinoma Cells

    PubMed Central

    Li, Dan; Cao, Weibiao

    2016-01-01

    The mechanisms whereby bile acid reflux may accelerate the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. In this study we found that bile acid taurodeoxycholic acid (TDCA) significantly increased the tail moment (TM) and histone H2AX phosphorylation in FLO-1 EA cells, an increase which was significantly decreased by knockdown of TGR5. Overexpression of TGR5 significantly increased TDCA-induced TM increase and H2AX phosphorylation. In addition, NADPH oxidase inhibitor diphenylene iodonium significantly inhibited the TDCA-induced increase in TM and H2AX phosphorylation. TDCA-induced increase in TM and H2AX phosphorylation was significantly decreased by knockdown of NOX5-S and overexpression of NOX5-S significantly increased TDCA-induced increase in the tail moment and H2AX phosphorylation. Furthermore, TDCA significantly increased cAMP response element binding protein (CREB) phosphorylation in FLO-1 cells. Knockdown of CREB significantly decreased TDCA-induced increase in NOX5-S mRNA and the tail moment. Conversely, overexpression of CREB significantly increased TDCA-induced TM increase. We conclude that TDCA-induced DNA damage may depend on the activation of TGR5, CREB and NOX5-S. It is possible that in Barrett’s patients bile acids may activate NOX5-S and increase reactive oxygen species (ROS) production via activation of TGR5 and CREB. NOX5-S-derived ROS may cause DNA damage, thereby contributing to the progression from BE to EA. PMID:27511066

  1. Bile acid receptor TGR5, NADPH Oxidase NOX5-S and CREB Mediate Bile Acid-Induced DNA Damage In Barrett's Esophageal Adenocarcinoma Cells.

    PubMed

    Li, Dan; Cao, Weibiao

    2016-01-01

    The mechanisms whereby bile acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. In this study we found that bile acid taurodeoxycholic acid (TDCA) significantly increased the tail moment (TM) and histone H2AX phosphorylation in FLO-1 EA cells, an increase which was significantly decreased by knockdown of TGR5. Overexpression of TGR5 significantly increased TDCA-induced TM increase and H2AX phosphorylation. In addition, NADPH oxidase inhibitor diphenylene iodonium significantly inhibited the TDCA-induced increase in TM and H2AX phosphorylation. TDCA-induced increase in TM and H2AX phosphorylation was significantly decreased by knockdown of NOX5-S and overexpression of NOX5-S significantly increased TDCA-induced increase in the tail moment and H2AX phosphorylation. Furthermore, TDCA significantly increased cAMP response element binding protein (CREB) phosphorylation in FLO-1 cells. Knockdown of CREB significantly decreased TDCA-induced increase in NOX5-S mRNA and the tail moment. Conversely, overexpression of CREB significantly increased TDCA-induced TM increase. We conclude that TDCA-induced DNA damage may depend on the activation of TGR5, CREB and NOX5-S. It is possible that in Barrett's patients bile acids may activate NOX5-S and increase reactive oxygen species (ROS) production via activation of TGR5 and CREB. NOX5-S-derived ROS may cause DNA damage, thereby contributing to the progression from BE to EA. PMID:27511066

  2. A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells.

    PubMed

    Mondal, Arijit; Guria, Tanmoy; Maity, Tapan Kumar; Bishayee, Anupam

    2016-01-01

    Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic effects of a novel fatty acid isolated from A. spinosus-(14E,18E,22E,26E)-methyl nonacosa-14,18,22,26 tetraenoate-against HepG2 human liver cancer cells. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability, flow cytometry assay for cell cycle analysis, and Western blot analysis to measure protein expression of Cdc2), cyclin B1, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The MTT assay showed that the fatty acid markedly inhibited the proliferation of HepG2 cells in a dosage-dependent fashion, with a half maximal inhibitory concentration (IC50) value of 25.52 µmol/L. This antiproliferative result was superior to that of another known fatty acid, linoleic acid (IC50 38.65 µmol/L), but comparable to that of standard anticancer drug doxorubicin (IC50 24.68 µmol/L). The novel fatty acid also induced apoptosis mediated by downregulation of cyclin B1, upregulation of Bax, and downregulation of Bcl-2, resulting in the G₂/M transition arrest. Our results provide the first experimental evidence that a novel fatty acid isolated from A. spinosus exhibits significant antiproliferative activity mediated through the induction of apoptosis in HepG2 cells. These encouraging results may facilitate the development of A. spinosus fatty acid for the prevention and intervention of hepatocellular carcinoma. PMID:27669220

  3. A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells.

    PubMed

    Mondal, Arijit; Guria, Tanmoy; Maity, Tapan Kumar; Bishayee, Anupam

    2016-09-22

    Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic effects of a novel fatty acid isolated from A. spinosus-(14E,18E,22E,26E)-methyl nonacosa-14,18,22,26 tetraenoate-against HepG2 human liver cancer cells. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability, flow cytometry assay for cell cycle analysis, and Western blot analysis to measure protein expression of Cdc2), cyclin B1, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The MTT assay showed that the fatty acid markedly inhibited the proliferation of HepG2 cells in a dosage-dependent fashion, with a half maximal inhibitory concentration (IC50) value of 25.52 µmol/L. This antiproliferative result was superior to that of another known fatty acid, linoleic acid (IC50 38.65 µmol/L), but comparable to that of standard anticancer drug doxorubicin (IC50 24.68 µmol/L). The novel fatty acid also induced apoptosis mediated by downregulation of cyclin B1, upregulation of Bax, and downregulation of Bcl-2, resulting in the G₂/M transition arrest. Our results provide the first experimental evidence that a novel fatty acid isolated from A. spinosus exhibits significant antiproliferative activity mediated through the induction of apoptosis in HepG2 cells. These encouraging results may facilitate the development of A. spinosus fatty acid for the prevention and intervention of hepatocellular carcinoma.

  4. A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells

    PubMed Central

    Mondal, Arijit; Guria, Tanmoy; Maity, Tapan Kumar; Bishayee, Anupam

    2016-01-01

    Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic effects of a novel fatty acid isolated from A. spinosus—(14E,18E,22E,26E)-methyl nonacosa-14,18,22,26 tetraenoate—against HepG2 human liver cancer cells. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability, flow cytometry assay for cell cycle analysis, and Western blot analysis to measure protein expression of Cdc2), cyclin B1, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The MTT assay showed that the fatty acid markedly inhibited the proliferation of HepG2 cells in a dosage-dependent fashion, with a half maximal inhibitory concentration (IC50) value of 25.52 µmol/L. This antiproliferative result was superior to that of another known fatty acid, linoleic acid (IC50 38.65 µmol/L), but comparable to that of standard anticancer drug doxorubicin (IC50 24.68 µmol/L). The novel fatty acid also induced apoptosis mediated by downregulation of cyclin B1, upregulation of Bax, and downregulation of Bcl-2, resulting in the G2/M transition arrest. Our results provide the first experimental evidence that a novel fatty acid isolated from A. spinosus exhibits significant antiproliferative activity mediated through the induction of apoptosis in HepG2 cells. These encouraging results may facilitate the development of A. spinosus fatty acid for the prevention and intervention of hepatocellular carcinoma. PMID:27669220

  5. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    SciTech Connect

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  6. Agathisflavone enhances retinoic acid-induced neurogenesis and its receptors α and β in pluripotent stem cells.

    PubMed

    Paulsen, Bruna S; Souza, Cleide S; Chicaybam, Leonardo; Bonamino, Martin Hernán; Bahia, Marcus; Costa, Silvia Lima; Borges, Helena L; Rehen, Stevens K

    2011-10-01

    Flavonoids have key functions in the regulation of multiple cellular processes; however, their effects have been poorly examined in pluripotent stem cells. Here, we tested the hypothesis that neurogenesis induced by all-trans retinoic acid (RA) is enhanced by agathisflavone (FAB, Caesalpinia pyramidalis Tull). Mouse embryonic stem (mES) cells and induced pluripotent stem (miPS) cells growing as embryoid bodies (EBs) for 4 days were treated with FAB (60 μM) and/or RA (2 μM) for additional 4 days. FAB did not interfere with the EB mitotic rate of mES cells, as evidenced by similar percentages of mitotic figures labeled by phospho-histone H3 in control (3.4% ± 0.4%) and FAB-treated groups (3.5% ± 1.1%). Nevertheless, the biflavonoid reduced cell death in both control and RA-treated EBs from mES cells by almost 2-fold compared with untreated EBs. FAB was unable, by itself, to induce neuronal differentiation in EBs after 4 days of treatment. On the other hand, FAB enhanced neuronal differentiation induced by RA in both EBs of mES and miPS. FAB increased the percentage of nestin-labeled cells by 2.7-fold (mES) and 2.4 (miPS) and β-tubulin III-positive cells by 2-fold (mES) and 2.7 (miPS) in comparison to RA-treated EBs only. FAB increased the expression of RA receptors α and β in mES EBs, suggesting that the availability of RA receptors is limiting RA-induced neurogenesis in pluripotent stem cells. This is the first report to describe that naturally occurring biflavonoids regulate apoptosis and neuronal differentiation in pluripotent stem cells.

  7. Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2014-05-01

    Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor which has anticancer effects. We evaluated the growth inhibitory effects of SAHA on HeLa cervical cancer cells in relation to reactive oxygen species (ROS) levels. SAHA inhibited the growth of HeLa cells with an IC(50) of approximately 10 µM at 24 h, and induced apoptosis which was accompanied by the cleavage of PARP, caspase-3 activation and loss of mitochondrial membrane potential (MMP; ∆ψ(m)). All the tested caspase inhibitors prevented HeLa cell death induced by SAHA whereas TNF-α intensified apoptotic cell death in SAHA-treated HeLa cells. With respect to ROS and glutathione (GSH) levels, SAHA increased ROS levels, especially mitochondrial O(2)•- in HeLa cells and also induced GSH depletion. Caspase inhibitors reduced the levels of ROS and GSH depletion in SAHA-treated HeLa cells whereas TNF-α enhanced the levels in these cells. The well-known antioxidant N-acetyl cysteine (NAC) attenuated cell death and an increase in ROS levels was caused by SAHA. Moreover, SAHA decreased the levels of thioredoxin 1 (Trx1) in HeLa cells. While the downregulation of Trx1 enhanced cell death and ROS levels in SAHA-treated HeLa cells, the overexpression of Trx1 attenuated the levels in these cells. In conclusion, SAHA inhibited the growth of HeLa cell via caspase-dependent apoptosis, which was influenced by the mitochondrial O(2)•- and Trx1 levels.

  8. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells.

    PubMed

    Kobashigawa, Shinko; Kashino, Genro; Mori, Hiromu; Watanabe, Masami

    2015-03-01

    Ionizing radiation-induced cellular senescence is thought to be caused by nuclear DNA damage that cannot be repaired. However, here we found that radiation induces delayed increase of intracellular oxidative stress after irradiation. We investigated whether the relief of delayed oxidative stress by ascorbic acid would suppress the radiation-induced cellular senescence in Syrian golden hamster embryo (SHE) cells. We observed that the level of oxidative stress was drastically increased soon after irradiation, then declined to the level in non-irradiated cells, and increased again with a peak on day 3 after irradiation. We found that the inductions of cellular senescence after X-irradiation were reduced along with suppression of the delayed induction of oxidative stress by treatment with ascorbic acid, but not when oxidative stress occurred immediately after irradiation. Moreover, treatment of ascorbic acid inhibited p53 accumulation at 3 days after irradiation. Our data suggested a delayed increase of intracellular oxidative stress levels plays an important role in the process of radiation-induced cellular senescence by p53 accumulation.

  9. Allicin alleviates inflammation of trinitrobenzenesulfonic acid-induced rats and suppresses P38 and JNK pathways in Caco-2 cells.

    PubMed

    Li, Chen; Lun, Weijian; Zhao, Xinmei; Lei, Shan; Guo, Yandong; Ma, Jiayi; Zhi, Fachao

    2015-01-01

    Background. Allicin has anti-inflammatory, antioxidative and proapoptotic properties. Aims. To evaluate the effects and investigate the mechanism of allicin on trinitrobenzenesulfonic acid-induced colitis, specifically with mesalazine or sulfasalazine. Methods. 80 rats were divided equally into 8 groups: control; trinitrobenzenesulfonic acid; allicin prevention; allicin; mesalazine; sulfasalazine; allicin + sulfasalazine, and mesalazine + allicin. Systemic and colonic inflammation parameters were analysed. In addition, protein and culture medium of Caco-2 cells treated with various concentrations of IL-1β or allicin were collected for investigation of IL-8, NF-κB p65 P38, ERK, and JNK. One-way ANOVA and Kruskal-Wallis H test were used for parametric and nonparametric tests, respectively. Results. Allicin reduced the body weight loss of trinitrobenzenesulfonic acid-induced rats, histological score, serum TNF-α and IL-1β levels, and colon IL-1β mRNA level and induced serum IL-4 level, particularly in combination with mesalazine. In addition, 1 ng/mL IL-1β stimulated the P38, ERK, and JNK pathways, whereas pretreatment with allicin depressed this phenomenon, except for the ERK pathway. Conclusions. The inflammation induced by trinitrobenzenesulfonic acid is mitigated significantly by allicin treatment, particularly combined with mesalazine. Allicin inhibits the P38 and JNK pathways and the expression of NF-κB which explained the potential anti-inflammatory mechanisms of allicin. PMID:25729217

  10. Cytosolic phospholipase A2-driven PGE2 synthesis within unsaturated fatty acids-induced lipid bodies of epithelial cells.

    PubMed

    Moreira, Luciana S; Piva, Bruno; Gentile, Luciana B; Mesquita-Santos, Fabio P; D'Avila, Heloisa; Maya-Monteiro, Clarissa M; Bozza, Patricia T; Bandeira-Melo, Christianne; Diaz, Bruno L

    2009-03-01

    Cytoplasmic lipid bodies (also known as lipid droplets) are intracellular deposits of arachidonic acid (AA), which can be metabolized for eicosanoid generation. PGE2 is a major AA metabolite produced by epithelial cells and can modulate restoration of epithelium homeostasis after injury. We studied lipid body biogenesis and their role in AA metabolic pathway in an epithelial cell line derived from normal rat intestinal epithelium, IEC-6 cells. Lipid bodies were virtually absent in confluent IEC-6 cells. Stimulation of confluent IEC-6 cells with unsaturated fatty acids, including AA or oleic acid (OA), induced rapid lipid body assembly that was independent on its metabolism to PGE(2), but dependent on G-coupled receptor-driven signaling through p38, PKC, and PI3 K. Newly formed lipid bodies compartmentalized cytosolic phospholipase (cPL)A(2)-alpha, while facilitated AA mobilization and synthesis of PGE(2) within epithelial cells. Thus, both lipid body-related events, including highly regulated biogenesis and functional assembly of cPLA (2)-alpha-driven enhanced AA mobilization and PGE(2)production, may have key roles in epithelial cell-driven inflammatory functions, and may represent relevant therapeutic targets of epithelial pathologies.

  11. Valproic acid and all trans retinoic acid differentially induce megakaryopoiesis and platelet-like particle formation from the megakaryoblastic cell line MEG-01.

    PubMed

    Schweinfurth, N; Hohmann, S; Deuschle, M; Lederbogen, F; Schloss, P

    2010-01-01

    Both, the activity of transcription factors as well as epigenetic alterations in defined DNA regions regulate cellular differentiation processes. Hence, neuronal differentiation from neural progenitor cells is promoted by the transcription factor all trans retinoic acid (ATRA) and the histone deacetylase inhibitor valproic acid (VPA). VPA has also been shown to be involved in differentiation of tumor cells and to greatly improve the reprogramming of human somatic cells to induced pluripotent stem cells. Here we have investigated the impact of ATRA and VPA on the differentiation of megakaryoctes and platelets from the megakaryocyte progenitor cell line MEG-01. Our results show that treatment with ATRA (10⁻¹¹ M) and VPA (2 × 10⁻³ M) induces megakaryopoiesis of MEG-01 cells as estimated by polyploidy, formation of characteristic proplatelets and elevated expression of the megakaryocytic markers CD41 and CD61. The resulting megakaryocytes stayed viable for more than 3 weeks and shed platelet-like particles positive for CD41, CD61 and CD42b into the supernatant. Platelet-like particles responded to thrombin receptor activating peptide (TRAP-6) with increased externalization of P-selectin. Thus, ATRA and VPA proved to be efficient agents for the gentle induction of megakaryopoiesis and thrombopoiesis of MEG-01 cells providing the possibility to study molecular events underlying megakaryopoiesis and human platelet production over longer time periods. PMID:20942599

  12. Surfactant-induced alteration of arachidonic acid metabolism of mammalian cells in culture.

    PubMed

    De Leo, V A; Harber, L C; Kong, B M; De Salva, S J

    1987-04-01

    Primary irritancy in human and animal skin is characterized by an inflammatory reaction mediated, in part, by membrane-derived arachidonate metabolites. One of the mechanisms of this reaction was investigated in cultured mammalian cells using three surfactants: linear alkyl benzene sulfonate (LAS), alkyl ethoxylate sulfate (AEOS), and TWEEN 20. These compounds listed in order in vivo irritancy are LAS greater than AEOS greater than TWEEN 20. Each of these compounds was studied in C3H-10T1/2 cells and human keratinocytes which had been prelabeled with 3H-labeled arachidonic acid (AA). After labeling, media were removed, cells were washed, and fresh media with or without surfactant were added. Cells were then incubated for 2 hr, media were removed and centrifuged, and an aliquot was assayed by liquid scintillation for release of label. In C3H-10T1/2 cells LAS and AEOS in 5-50 microM concentration stimulated 2 to 10 times the release of [3H]AA as compared to controls. In contrast, concentrations of 50-100 microM of TWEEN were required to release [3H]AA. With keratinocytes the same rank order of surfactant concentrations necessary for release was obtained as found with C3H-10T1/2 cells. High-performance liquid chromatography of media extracts of both cell systems revealed surfactant stimulation of the production of cyclooxygenase AA metabolites. These results confirm the induction of release by primary irritants of fatty acid groups from membrane phospholipids. Subsequent metabolism of these fatty acid groups are an integral part of the primary irritant response. Data presented with three known irritants in this in vitro model show a direct correlation with in vivo studies.

  13. Galactomutarotase and other galactose-related genes are rapidly induced by retinoic acid in human myeloid cells.

    PubMed

    Pai, Tongkun; Chen, Qiuyan; Zhang, Yao; Zolfaghari, Reza; Ross, A Catharine

    2007-12-25

    Aldose-1-epimerase (mutarotase) catalyzes the interconversion of alpha and beta hexoses, which is essential for normal carbohydrate metabolism and the production of complex oligosaccharides. Galactose mutarotase (GALM) has been well characterized at the protein level, but information is lacking on the regulation of GALM gene expression. We report herein that all-trans-retinoic acid (RA), an active metabolite of vitamin A that is known to induce myeloid lineage cell differentiation into macrophage-like cells, induces a rapid and robust regulation of GALM mRNA expression in human myeloid cells. all-trans-RA at a physiological concentration (20 nM), or Am580, a ligand selective for the nuclear retinoid receptor RARalpha, increased GALM mRNA in THP-1 cells, with significantly increased expression in 2 h, increasing further to an approximately 8-fold elevation after 6-40 h (P < 0.005). In contrast, tumor necrosis factor-alpha did not increase GALM mRNA expression, although it is capable of inducing cell differentiation. RA also increased GALM mRNA in U937 and HL-60 cells. The increase in GALM mRNA by RA was blocked by pretreating THP-1 cells with actinomycin D but not by cycloheximide. GALM protein and mutarotase activity were also increased time dependently in RA-treated THP-1 cells. In addition to GALM, several other genes in the biosynthetic pathway of galactosyl-containing complex oligosaccharides were more highly expressed in RA-treated THP-1 cells, including B4GALT5, ST3GAL3, ST6GALNAC5, and GALNAC4S-6ST. Thus, the results of this study identify RA as a significant regulator of GALM and other galactose-related genes in myeloid-monocytic cells, which could affect energy utilization and synthesis of cell-surface glycoproteins or glycolipids involved in cell motility, adhesion, and/or functional properties.

  14. Protection of Nicotinic Acid against Oxidative Stress-Induced Cell Death in Hepatocytes Contributes to Its Beneficial Effect on Alcohol-induced Liver Injury in Mice

    PubMed Central

    Dou, Xiaobing; Shen, Chen; Wang, Zhigang; Li, Songtao; Zhang, Ximei; Song, Zhenyuan

    2013-01-01

    Oxidative stress plays a pathological role in the development of alcoholic liver disease. In this study, we investigated the effects of nicotinic acid (NA) supplementation on H2O2-induced cell death in hepatocytes and alcohol-induced liver injury in mice. Hepatocytes were exposed to H2O2 (0–0.4 mM) for 16 hours after a 2-hour pretreatment with NA (0–100 µM). Cell viability, intracellular glutathione and total NAD contents were determined. In animal experiments, male C57 BL/6 mice were exposed to Lieber-De Carli liquid diet (+/− ethanol with/without NA supplementation (0.5%, w/v) for 4 weeks. Nicotinic acid phosphoribosyltransferase (NaPRT) is the first enzyme participated in the NA metabolism, converting NA to nicotinic acid mononucleotide (NaMN). In NaPRT-expressing Hep3B cells, H2O2-induced cell death was attenuated by NA, whereas in NaPRT-lost HepG2 cells, only NaMN conferred protective effect, suggesting that NA metabolism is required for its protective action against H2O2. In Hep3B cells, NA supplementation prevented H2O2-inudced declines in intracellular total NAD and GSH/GSSG ratios. Further mechanistic investigations revealed that conservation of Akt activity contributed to NA’s protective effect against H2O2-inudced cell death. In alcohol-fed mice, NA supplementation attenuated liver injury induced by chronic alcohol exposure, which was associated with alleviated hepatic lipid peroxidation and increased liver GSH concentrations. In conclusion, our findings indicate that exogenous NA supplementation may be an ideal choice for the treatment of liver diseases involved oxidative stress. PMID:23465591

  15. Beyond gastric acid reduction: Proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells

    SciTech Connect

    Becker, Jan C. . E-mail: beckeja@uni-muenster.de; Grosser, Nina; Waltke, Christian; Schulz, Stephanie; Erdmann, Kati; Domschke, Wolfram; Schroeder, Henning; Pohle, Thorsten

    2006-07-07

    Proton pump inhibitors (PPIs) have been demonstrated to prevent gastric mucosal injury by mechanisms independent of acid inhibition. Here we demonstrate that both omeprazole and lansoprazole protect human gastric epithelial and endothelial cells against oxidative stress. This effect was abrogated in the presence of the heme oxygenase-1 (HO-1) inhibitor ZnBG. Exposure to either PPI resulted in a strong induction of HO-1 expression on mRNA and protein level, and led to an increased activity of this enzyme. Expression of cyclooxygenase isoforms 1 and 2 remained unaffected, and COX-inhibitors did not antagonize HO-1 induction by PPIs. Our results suggest that the antioxidant defense protein HO-1 is a target of PPIs in both endothelial and gastric epithelial cells. HO-1 induction might account for the gastroprotective effects of PPIs independently of acid inhibition, especially in NSAID gastropathy. Moreover, our findings provide additional perspectives for a possible but yet unexplored use of PPIs in vasoprotection.

  16. Salubrinal, ER stress inhibitor, attenuates kainic acid-induced hippocampal cell death.

    PubMed

    Kim, Jung Soo; Heo, Rok Won; Kim, Hwajin; Yi, Chin-Ok; Shin, Hyun Joo; Han, Jong Woo; Roh, Gu Seob

    2014-10-01

    Kainic acid (KA)-induced neuronal death is closely linked to endoplasmic reticulum (ER) and mitochondrial dysfunction. Parkin is an ubiquitin E3 ligase that mediates the ubiquitination of the Bcl-2 family of proteins and its mutations are associated with neuronal apoptosis in neurodegenerative diseases. We investigated the effect of salubrinal, an ER stress inhibitor, on the regulation of ER stress and mitochondrial apoptosis induced by KA, in particular, by controlling parkin expression. We showed that salubrinal significantly reduced seizure activity and increased survival rates of mice with KA-induced seizures. We found that salubrinal protected neurons against apoptotic death by reducing expression of mitochondrial apoptotic factors and elF2α-ATF4-CHOP signaling proteins. Interestingly, we showed that salubrinal decreased the KA-induced parkin expression and inhibited parkin translocation to mitochondria, which suggests that parkin may regulate a cross-talk between ER and mitochondria. Collectively, inhibition of ER stress attenuates mitochondrial apoptotic and ER stress pathways and controls parkin-mediated neuronal death following KA-induced seizures. PMID:24728926

  17. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    SciTech Connect

    Gill, Randall; Lanni, Lydia; Jen, K.-L. Catherine; McCabe, Michael J.; Rosenspire, Allen

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.

  18. Eicosapentaenoic acid inhibits TNF-{alpha}-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    SciTech Connect

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul Chung, Jin Ho

    2008-04-04

    Eicosapentaenoic acid (EPA) is an omega-3 ({omega}-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-{kappa}B activation induced by tumor necrosis factor (TNF)-{alpha} or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-{alpha}-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-{alpha} induced MMP-9 expression by NF-{kappa}B-dependent pathway. Pretreatment of EPA inhibited TNF-{alpha}-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect I{kappa}B-{alpha} phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-{kappa}B. EPA inhibited TNF-{alpha}-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKK{alpha}-dependent event. Taken together, we demonstrate that EPA inhibits TNF-{alpha}-induced MMP-9 expression through inhibition of p38 and Akt activation.

  19. Palmitic Acid-Induced Neuron Cell Cycle G2/M Arrest and Endoplasmic Reticular Stress through Protein Palmitoylation in SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Hsiao, Yung-Hsuan; Lin, Ching-I; Liao, Hsiang; Chen, Yue-Hua; Lin, Shyh-Hsiang

    2014-01-01

    Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer’s disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction. PMID:25402647

  20. Inhibition of fatty acid amide hydrolase activates Nrf2 signalling and induces heme oxygenase 1 transcription in breast cancer cells

    PubMed Central

    Li, H; Wood, J T; Whitten, K M; Vadivel, S K; Seng, S; Makriyannis, A; Avraham, H K

    2013-01-01

    BACKGROUND AND PURPOSE Endocannabinoids such as anandamide (AEA) are important lipid ligands regulating cell proliferation, differentiation and apoptosis. Their levels are regulated by hydrolase enzymes, the fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Here, we investigated whether FAAH or AEA are involved in NF (erythroid-derived 2)-like 2 (Nrf2)/antioxidant responsive element (ARE) pathway. EXPERIMENTAL APPROACH The aim of this study was to analyse the effects of AEA or FAAH inhibition by the URB597 inhibitor or FAAH/siRNA on the activation of Nrf2-ARE signalling pathway and heme oxygenase-1 (HO-1) induction and transcription. KEY RESULTS Endogenous AEA was detected in the immortalized human mammary epithelial MCF-10A cells (0.034 ng per 106 cells) but not in MCF-7 or MDA-MB-231 breast cancer cells. Because breast tumour cells express FAAH abundantly, we examined the effects of FAAH on Nrf2/antioxidant pathway. We found that inhibition of FAAH by the URB597 inhibitor induced antioxidant HO-1 in breast cancer cells and MCF-10A cells. RNAi-mediated knockdown of FAAH or treatment with AEA-activated ARE-containing reporter induced HO-1 mRNA and protein expression, independent of the cannabinoid receptors, CB1, CB2 or TRPV1. Furthermore, URB597, AEA and siRNA-FAAH treatments induced the nuclear translocation of Nrf2, while siRNA-Nrf2 treatment and Keap1 expression blocked AEA, URB597 and si-FAAH from activation of ARE reporter and HO-1 induction. siRNA-HO-1 treatment decreased the viability of breast cancer cells and MCF-10A cells. CONCLUSIONS AND IMPLICATIONS These data uncovered a novel mechanism by which inhibition of FAAH or exposure to AEA induced HO-1 transcripts and implicating AEA and FAAH as direct modifiers in signalling mediated activation of Nrf2-HO-1 pathway, independent of cannabinoid receptors. PMID:23347118

  1. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia.

    PubMed

    Brose, Stephen A; Marquardt, Amanda L; Golovko, Mikhail Y

    2014-05-01

    Hypoxia is involved in many neuronal and non-neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined incorporation of Gln/Glu and other lipogenic substrates into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non-neuronal primary cells and non-neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0- and 3.0-fold for Gln and Glu, respectively) and immortalized cultures (3.5- and 8.0-fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non-neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, triacylglycerols, diacylglycerols, free FA, and phospholipids, with the highest rate of incorporation into triacylglycerols. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia. We identified a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid biosynthesis from glutamine and glutamate (Gln/Glu) followed by esterification into lipids. All other non-neuronal cells tested demonstrated decreased or unchanged lipid synthesis from Gln

  2. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia

    PubMed Central

    Brose, Stephen A.; Marquardt, Amanda L.; Golovko, Mikhail Y.

    2014-01-01

    Hypoxia is involved in many neuronal and non-neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined total Gln/Glu incorporation into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non-neuronal primary cells and non-neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0- and 3.0- fold for Gln and Glu, respectively) and immortalized cultures (3.5- and 8.0- fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non-neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, TAGs, DAGs, free FA, and phospholipids, with the highest rate of incorporation into TAGs. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia. PMID:24266789

  3. Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic β cells.

    PubMed

    Zhang, Yongneng; Yamamoto, Tetsuya; Hisatome, Ichiro; Li, Youfeng; Cheng, Weijie; Sun, Ning; Cai, Bozhi; Huang, Tianliang; Zhu, Yuzhang; Li, Zhi; Jing, Xubin; Zhou, Rui; Cheng, Jidong

    2013-08-15

    Hyperuricaemia is a disorder of purine metabolism, and is strongly associated with insulin resistance and abnormal glucose metabolism. As the producer of insulin, pancreatic β cells might be affected by elevated serum uric acid levels and contribute to the disregulated glucose metabolism. In this study, we investigated the effect of high uric acid on rat pancreatic β cell function. Under high uric acid condition, proliferation of pancreatic β cells was inhibited, production of reactive oxygen species increased, and glucose stimulated insulin secretion was also compromised. Further examination on signal transduction pathways revealed that uric acid-induced ROS is involved in the activation of adenosine monophosphate-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK). Pharmacological inhibition of ERK activation rescued β cells from growth inhibition. More importantly, activation of ERK induced by uric acid is significantly diminished by AMPK inhibitor, indicating ERK as a downstream target of AMPK in response to high uric acid condition. We also investigated the transportation channel for uric acid into pancreatic β cells. While major urate transporter URAT1 is not expressed in β cells, organic anion transporter (OAT) inhibitor successfully blocked the activation of ERK by uric acid. Our data indicate that high uric acid levels induce oxidative damage and inhibit growth of rat pancreatic β cells by activating the AMPK and ERK signal pathways. Hyperuricemia may contribute to abnormal glucose metabolism by causing oxidative damage and function inhibition of pancreatic β cells.

  4. CD4+ T cell responses in Balb/c mice with food allergy induced by trinitrobenzene sulfonic acid and ovalbumin.

    PubMed

    Sun, Chen-Yi; Bai, Jie; Hu, Tian-Yong; Cheng, Bao-Hui; Ma, Li; Fan, Xiao-Qin; Yang, Ping-Chang; Zheng, Peng-Yuan; Liu, Zhi-Qiang

    2016-06-01

    The rapid increase in atopic diseases is potentially linked to increased hapten exposure, however, the role of haptens in the pathogenesis of food allergy remains unknown. Further studies are required to elucidate the cluster of differentiation 4 positive (CD4+) T cell response to food allergy induced by haptens. Dendritic cells were primed by trinitrobenzene sulfonic acid (TNBS) as a hapten or ovalbumin (OVA) as a model antigen, in a cell culture model. BALB/c mice were sensitized using TNBS and/or OVA. Intestinal Th1/Th2 cell and ovalbumin specific CD4+ T cells proliferation, intestinal cytokines (interleukin‑4 and interferon‑γ) in CD4+ T cells were evaluated. TNBS increased the expression of T cell immunoglobulin and mucin domain‑4 and tumor necrosis factor ligand superfamily member 4 in dendritic cells. Skewed Th2 cell polarization, extensive expression of interleukin‑4, reduced expression of interferon‑γ and forkhead box protein P3 were elicited following concomitant exposure to TNBS and OVA, with reduced regulatory T cells in the mouse intestinal mucosa, whereas a Th1 response was detected when challenged by TNBS or OVA alone. This data suggests that TNBS, as a hapten, combined with food antigens may lead to a Th2 cell response in the intestinal mucosa.

  5. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    PubMed Central

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  6. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    PubMed

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  7. Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs.

    PubMed

    Huang, Sheng; Tang, Yubo; Peng, Xinsheng; Cai, Xingdong; Wa, Qingde; Ren, Dong; Li, Qiji; Luo, Jiaquan; Li, Liangping; Zou, Xuenong; Huang, Shuai

    2016-10-01

    Bone metastasis is a main cause of cancer-related mortality in patients with advanced prostate cancer. Emerging evidence suggests that the acidic extracellular microenvironment plays significant roles in the growth and metastasis of tumors. However, the effects of acidity on bone metastasis of PCa remain undefined. In the present study, PC-3 cells were cultured in acidic medium (AM; pH 6.5) or neutral medium (NM; pH 7.4), aiming to investigate the effects and possible mechanisms of acidic extracellular microenvironment in bone metastasis of PCa. Our results showed that AM can promote spheroid and colony formations, cell viability and expression of stem cell characteristic-related markers in PC-3 cells. Moreover, AM stimulates MMP-9 secretion and promotes invasiveness of PC-3 cells, and these effects can be inhibited by blocking of MMP-9. Furthermore, AM stimulates VEGF secretion of PC-3 and AM conditioned medium (CMAM) promotes vasculogenesis of BM-EPCs by increasing cell viability, migration, tube formation, which involved activating the phosphorylation of VEGFR-2, Akt and P38, when pH of NM conditioned medium (CMNM) was modulated the same as AM conditioned medium (CMAM). Further studies have shown that CMNM induced vasculogenesis of BM-EPCs can be inhibited by the inhibition of VEGFR2 with DMH4. These findings suggest that acidic extracellular microenvironment may have the potential to modulate prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Improved anticancer strategies should be designed to selectively target acidic tumor microenvironment.

  8. Caffeic acid phenethyl ester prevents apoptotic cell death in the developing rat brain after pentylenetetrazole-induced status epilepticus.

    PubMed

    Yiş, Uluç; Topçu, Yasemin; Özbal, Seda; Tuğyan, Kazım; Bayram, Erhan; Karakaya, Pakize; Yilmaz, Osman; Kurul, Semra Hız

    2013-11-01

    Population-based studies suggest that seizure incidence is highest during the first year of life, and early-life seizures frequently result in the development of epilepsy and behavioral alterations later in life. The early-life insults like status epilepticus often lead to epileptogenesis, a process in which initial brain injury triggers cascades of molecular, cellular, and network changes and eventually spontaneous seizures. Caffeic acid phenethyl ester is an active component of propolis obtained from honeybees and has neuroprotective properties. The aim of this study was to investigate whether caffeic acid phenethyl ester exerts neuroprotective effects on the developing rat brain after status epilepticus. Twenty-one dams reared Wistar male rats, and 21-day-old rats were divided into three groups: control group, pentylenetetrazole-induced status epilepticus group, and caffeic acid phenethyl ester-treated group. Status epilepticus was induced on the first day of experiment. Caffeic acid phenethyl ester injections (30 mg/kg intraperitoneally) started 40 min after the tonic phase of status epilepticus was reached, and the injections of caffeic acid phenethyl ester were repeated over 5 days. Rats were sacrificed, and brain tissues were collected on the 5th day of experiment after the last injection of caffeic acid phenethyl ester. Apoptotic cell death was evaluated. Histopathological examination showed that caffeic acid phenethyl ester significantly preserved the number of neurons in the CA1, CA3, and dentate gyrus regions of the hippocampus and the prefrontal cortex. It also diminished apoptosis in the hippocampus and the prefrontal cortex. In conclusion, this experimental study suggests that caffeic acid phenethyl ester administration may be neuroprotective in status epilepticus in the developing rat brain.

  9. c9, t11- conjugated linoleic acid induces HCC cell apoptosis and correlation with PPAR-γ signaling pathway

    PubMed Central

    Lu, Guozhong; Zhang, Guoqing; Zheng, Xing; Zeng, Yan; Xu, Ziqi; Zeng, Weichi; Wang, Kebing

    2015-01-01

    Objective: Cis9, trans11 conjugated linoleic acid (c9, t11-CLA.) is one of the most important isomers of conjugated linoleic acid, which have a strong anti-tumor effects. Based on previous studies, we further explored the molecular mechanism of inducing cells apoptosis in human hepatocellular carcinoma cell line HepG2 and Hep3B. Methods: Cell Counting Kit 8 (CCK-8) assay was used to investigate the effects of c9, t11-CLA on cell viability and cell proliferation ability; The effects of c9, t11-CLA on cell apoptosis was analyzed by DNA ladder assay, immuno-fluorescence and flow cytometry, respectively. Apoptotic related gene (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, Bax, Bak, Bad, Bid and Bim), PPAR family member (PPAR-α, PPAR-β and PPAR-γ), and Cox2 mRNA and protein expression were analyzed by RT-PCR and western blotting. ELISA assay was used to detect the content of Caspase-3. Results: Our data were confirmed that c9, t11-CLA could inhibit the HCC cells proliferation ability and decrease the cells viability. RT-PCR and western blotting assay verified that c9, t11-CLA obviously increased the transcription and protein expression levels of PPAR-γ. The synchronism and correlation between PPAR-γ and apoptotic proteins Bcl-2, Bax and Caspase-3 were found with a dose- and time-dependent manner. PPAR-γ inhibitor GW9662 and activator Rosilitazone were further verified that there was cooperative relation between them. Conclusion: In our study, we first report that c9, t11-CLA induces apoptosis in HCC cells by activation of PPARγ-Bcl-2-Caspase-3 signal pathway. These results indicated that c9, t11-CLA will be useful for clinic therapy of anti-tumor and as a new regulator of PPAR-γ in the future. PMID:26885272

  10. Maslinic Acid Protected PC12 Cells Differentiated by Nerve Growth Factor against β-Amyloid-Induced Apoptosis.

    PubMed

    Yang, Yu-wan; Tsai, Chia-wen; Mong, Mei-chin; Yin, Mei-chin

    2015-12-01

    β-Amyloid peptide (Abeta) was used to induce apoptosis in PC12 cells differentiated by nerve growth factor, and the protective activities of maslinic acid (MA) at 2-16 μM were examined. Abeta treatment lowered Bcl-2 expression, raised Bax expression, and decreased cell viability. MA pretreatments decreased Bax expression, raised the Bcl-2/Bax ratio, and increased cell viability. MA pretreatments retained glutathione content and decreased subsequent Abeta-induced release of reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Abeta treatment up-regulated protein expression of p47(phox), gp91(phox), mitogen-activated protein kinase, advanced glycation end product receptor (RAGE), and nuclear factor-κ B (NF-κB). MA pretreatments at 2-16 μM suppressed the expression of proteins including gp91(phox), p47(phox), p-p38, and NF-κB p65, at 4-16 μM down-regulated RAGE and NF-κB p50 expression, and at 8 and 16 μM reduced p-ERK1/2 expression. These novel findings suggest that maslinic acid is a potent compound against Abeta-induced cytotoxicity.

  11. Gibberellic-acid-induced cell elongation in pea epicotyls: Effect on polyploidy and DNA content.

    PubMed

    Boeken, G; Van Oostveldt, P

    1977-01-01

    In gibberellic-acid(GA3)-treated epicotyls of dwarf peas (Pisum sativum L.) grown in the light, DNA (per cell and per epicotyl) is followed. Histofluorometric DNA determinations show that GA3-promoted cell elongation is not accompanied by increased endomitosis, but chemical estimations show an increased DNA content per epicotyl. This difference must therefore be the result of increased mitotic activity in the GA3-treated tissue. Epicotyls of seedlings grown with or without cotyledons under continuous light with GA3 are tetraploid, as are those of ecotylized embryos grown in darkness. These epicotyls reach no more than half the length of octaploid epicotyls of seedlings grown in darkness. This result provides evidence for a relationship between polyploidy and final possible cell length. PMID:24419898

  12. Molecular mechanism of cell death induced by king cobra (Ophiophagus hannah) venom l-amino acid oxidase.

    PubMed

    Fung, Shin Yee; Lee, Mui Li; Tan, Nget Hong

    2015-03-01

    Snake venom LAAOs have been reported to exhibit a wide range of pharmacological activities, including cytotoxic, edema-inducing, platelet aggregation-inducing/platelet aggregation-inhibiting, bactericidal and antiviral activities. A heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom (OH-LAAO) has been shown to exhibit very potent cytotoxicity against human tumorigenic cells but not in their non-tumorigenic counterparts, and the cytotoxicity was due to the apoptosis-inducing effect of the enzyme. In this work, the molecular mechanism of cell death induced by OH-LAAO was investigated. The enzyme exerts its apoptosis-inducing effect presumably via both intrinsic and extrinsic pathways as suggested by the increase in caspase-8 and -9 activities. Oligonucleotide microarray analysis showed that the expression of a total of 178 genes was significantly altered as a result of oxidative stress induced by the hydrogen peroxide generated by the enzyme. Of the 178 genes, at least 27 genes are involved in apoptosis and cell death. These alterations of gene expression was presumably caused by the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidative modifications of signaling molecules that eventually lead to apoptosis and cell death. The very substantial up-regulation of cytochrome P450 genes may also contribute to the potent cytotoxic action of OH-LAAO by producing excessive reactive oxygen species (ROS). In conclusion, the potent apoptosis inducing activity of OH-LAAO was likely due to the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidation of signalling molecules. PMID:25615711

  13. Molecular mechanism of cell death induced by king cobra (Ophiophagus hannah) venom l-amino acid oxidase.

    PubMed

    Fung, Shin Yee; Lee, Mui Li; Tan, Nget Hong

    2015-03-01

    Snake venom LAAOs have been reported to exhibit a wide range of pharmacological activities, including cytotoxic, edema-inducing, platelet aggregation-inducing/platelet aggregation-inhibiting, bactericidal and antiviral activities. A heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom (OH-LAAO) has been shown to exhibit very potent cytotoxicity against human tumorigenic cells but not in their non-tumorigenic counterparts, and the cytotoxicity was due to the apoptosis-inducing effect of the enzyme. In this work, the molecular mechanism of cell death induced by OH-LAAO was investigated. The enzyme exerts its apoptosis-inducing effect presumably via both intrinsic and extrinsic pathways as suggested by the increase in caspase-8 and -9 activities. Oligonucleotide microarray analysis showed that the expression of a total of 178 genes was significantly altered as a result of oxidative stress induced by the hydrogen peroxide generated by the enzyme. Of the 178 genes, at least 27 genes are involved in apoptosis and cell death. These alterations of gene expression was presumably caused by the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidative modifications of signaling molecules that eventually lead to apoptosis and cell death. The very substantial up-regulation of cytochrome P450 genes may also contribute to the potent cytotoxic action of OH-LAAO by producing excessive reactive oxygen species (ROS). In conclusion, the potent apoptosis inducing activity of OH-LAAO was likely due to the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidation of signalling molecules.

  14. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    PubMed

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  15. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: role of the Akt/mTOR survival pathway and Bcl-2 family proteins.

    PubMed

    Marin, Jose J G; Hernandez, Alicia; Revuelta, Isabel E; Gonzalez-Sanchez, Ester; Gonzalez-Buitrago, Jose M; Perez, Maria J

    2013-08-01

    Acute accumulation of bile acids in hepatocytes may cause cell death. However, during long-term exposure due to prolonged cholestasis, hepatocytes may develop a certain degree of chemoresistance to these compounds. Because mitochondrial adaptation to persistent oxidative stress may be involved in this process, here we have investigated the effects of complete mitochondrial genome depletion on the response to bile acid-induced hepatocellular injury. A subline (Rho) of human hepatoma SK-Hep-1 cells totally depleted of mitochondrial DNA (mtDNA) was obtained, and bile acid-induced concentration-dependent activation of apoptosis/necrosis and survival signaling pathways was studied. In the absence of changes in intracellular ATP content, Rho cells were highly resistant to bile acid-induced apoptosis and partially resistant to bile acid-induced necrosis. In Rho cells, both basal and bile acid-induced generation of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, was decreased. Bile acid-induced proapoptotic signals were also decreased, as evidenced by a reduction in the expression ratios Bax-α/Bcl-2, Bcl-xS/Bcl-2, and Bcl-xS/Bcl-xL. This was mainly due to a downregulation of Bax-α and Bcl-xS. Moreover, in these cells the Akt/mTOR pathway was constitutively activated in a ROS-independent manner and remained similarly activated in the presence of bile acid treatment. In contrast, ERK1/2 activation was constitutively reduced and was not activated by incubation with bile acids. In conclusion, these results suggest that impaired mitochondrial function associated with mtDNA alterations, which may occur in liver cells during prolonged cholestasis, may activate mechanisms of cell survival accounting for an enhanced resistance of hepatocytes to bile acid-induced apoptosis. PMID:23597504

  16. Oxidative stress-driven mechanisms of nordihydroguaiaretic acid-induced apoptosis in FL5.12 cells

    SciTech Connect

    Deshpande, Vaidehee S. . E-mail: vaidehee@hotmail.com; Kehrer, James P.

    2006-08-01

    Nordihydroguaiaretic acid (NDGA), a general lipoxygenase (LOX) enzyme inhibitor, induces apoptosis independently of its activity as a LOX inhibitor in murine pro-B lymphocytes (FL.12 cells) by a mechanism that is still not fully understood. Glutathione depletion, oxidative processes and mitochondrial depolarization appear to contribute to the apoptosis induced by NDGA. The current data demonstrate that NDGA (20 {mu}M)-induced apoptosis in FL5.12 cells is partially protected by N-acetylcysteine (NAC) (10 mM) and dithiothreitol (DTT) (500 {mu}M) pretreatment, confirming a role for oxidative processes. In addition, the treatment of FL5.12 cells with NDGA led to an increase in phosphorylation and activation of the MAP kinases ERK, JNK and p38. Although pretreatment with ERK inhibitors (PD98059 or U0126) abolished ERK phosphorylation in response to NDGA, neither inhibitor had any effect on NDGA-induced apoptosis. SP600125, a JNK inhibitor, did not have any effect on NDGA-induced phosphorylation of JNK nor apoptosis. Pretreatment with the p38 inhibitor SB202190 attenuated NDGA-induced apoptosis by 30% and also abolished p38 phosphorylation, compared to NDGA treatment alone. NAC, but not DTT, also decreased the phosphorylation of p38 and JNK supporting a role for oxidative processes in activating these kinases. Neither NAC nor DTT blocked the phosphorylation of ERK suggesting that this activation is not related to oxidative stress. The release of cytochrome c and activation of caspase-3 induced by NDGA were inhibited by NAC. SB202190 slightly attenuated caspase-3 activation and had no effect on the release of cytochrome c. These data suggest that several independent mechanisms, including oxidative reactions, activation of p38 kinase and cytochrome c release contribute to NDGA-induced apoptosis.

  17. Gallic acid induces apoptosis in human cervical epithelial cells containing human papillomavirus type 16 episomes.

    PubMed

    Shi, Lin; Lei, Yanjun; Srivastava, Ranjana; Qin, Weihua; Chen, Jason J

    2016-01-01

    The high-risk human papillomaviruses (HPV) that infect the anogenital tract are strongly associated with the development of cervical carcinoma, which is the second most common cancer in women worldwide. Therapeutic drugs specifically targeting HPV are not available. Polyphenolic compounds have gained considerable attention because of their cytotoxic effects against a variety of cancers and certain viruses. In this study, we examined the effects of several polyphenols on cellular proliferation and death of the human cervical cancer cells and human cervical epithelial cells containing stable HPV type 16 episomes (HPVep). Our results show that three polyphenols inhibited proliferation of HeLa cells dose-dependently. Furthermore, one of the examined polyphenols, gallic acid (GA), also inhibited the proliferation of HPVep cells and exhibited significant specificity towards HPV-positive cells. The anti-proliferative effect of GA on HPVep and HeLa cells was associated with apoptosis and upregulation of p53. These results suggest that GA can be a potential candidate for the development of anti-HPV agents.

  18. Ursolic acid from Trailliaedoxa gracilis induces apoptosis in medullary thyroid carcinoma cells

    PubMed Central

    AGUIRIANO-MOSER, VICTOR; SVEJDA, BERNHARD; LI, ZENG-XIA; STURM, SONJA; STUPPNER, HERMANN; INGOLIC, ELISABETH; HÖGER, HARALD; SIEGL, VERONIKA; MEIER-ALLARD, NATHALIE; SADJAK, ANTON; PFRAGNER, ROSWITHA

    2015-01-01

    Medullary thyroid carcinoma (MTC) originates from the C-cells of the thyroid and is not sensitive to radiation or chemotherapy. Therefore, surgical removal of the tumor tissue in its entirety is the only curative treatment for MTC. The present study aimed to examine the potential mechanisms of action of extracts of Trailliaedoxa gracilis (TG; WW Smith & Forrest), a plant from the province of Sichuan, China, and of ursolic acid (UA), a pentacyclic triterpen present in TG, on the MTC-SK MTC cell line. A total of 13 TG fractions and UA were examined in vitro for their effects on cell morphology, cell number, proliferation and rates of apoptosis. Reverse transcription-quantitative polymerase chain reaction of nuclear factor-κB essential modifier (NEMO) was performed to delineate the role of the apoptotic pathway following treatment with UA. TG and UA were examined in vivo in xenotransplanted MTC-bearing severe combined immunodeficient mice. The TG fractions exhibited antiproliferative effects, with inhibition of mitochondrial activity in the tumor cells at concentrations, which caused no impairment of the normal control cells. The apoptotic rates of the MTC-SK cells treated with the TG fractions and UA were determined, in which no marked tumor inhibition was observed in the treated MTC-mice, and no change in the expression of NEMO was detected in the treated MTC-SK cells. The observation of early-onset activation of caspase 8 suggested that the responsible factor was linked to NEMO, an anti-apoptotic protein. However, no differences in the mRNA transcription levels of NEMO were detected in MTC-SK cells treated with UA, suggesting that this protein was not associated with the signal transducer and activator of transcription 3 pathway. PMID:26151624

  19. Lack of amino acids in mouse hepatocytes in culture induces the selection of preneoplastic cells.

    PubMed

    Chisari, Andrea N; Sancho, Patricia; Caja, Laia; Bertran, Esther; Fabregat, Isabel

    2012-01-01

    Protein malnutrition occurs when there is insufficient protein to meet metabolic demands. Previous works have indicated that cycles of protein fasting/refeeding enhance the incidence of early lesions during chemical carcinogenesis in rat liver. The general objective of this work was to study the effect of aminoacids (Aa) deprivation on the proliferation and survival of hepatocytes, to understand its possible involvement in the generation of pre-neoplastic stages in the liver. Lack of Aa in the culture medium of an immortalized mice hepatocyte cell line induced loss in cell viability, correlating with apoptosis. However, a subpopulation of cells was able to survive, which showed a more proliferative phenotype and resistance to apoptotic stimuli. Escaping to Aa deprivation-induced death is coincident with an activated mTOR signaling and higher levels of phospho-AKT and phospho-ERKs, which correlated with increased activation of EGFR/SRC pathway and overexpression of EGFR ligands, such as TGF-α and HB-EGF. Lack of Aa induced a rapid increase in reactive oxygen species (ROS) production. However, cells that survived showed an enhancement in the levels of reduced glutathione and a higher expression of γ-GCS, the regulatory enzyme of glutathione synthesis, which can be interpreted as an adaptation of the cells to counteract the oxidative stress. In conclusion, results presented in this paper indicate that it is possible to isolate a subpopulation of hepatocytes that are able to grow in the absence of Aa, showing higher capacity to proliferate and survive, reminiscent of a preneoplastic phenotype. PMID:21964063

  20. Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells.

    PubMed

    Huang, Yingjuan; Jin, Minghua; Pi, Rongbiao; Zhang, Junjie; Chen, Meihui; Ouyang, Ying; Liu, Anmin; Chao, Xiaojuan; Liu, Peiqing; Liu, Jun; Ramassamy, Charles; Qin, Jian

    2013-02-22

    Acrolein-induced oxidative stress is hypothesized to involve in the etiology of Alzheimer's disease (AD). Caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) have antioxidative and neuroprotective properties. The present study investigated the protective effects of CA/CAPE on acrolein-induced oxidative neuronal toxicity. HT22 mouse hippocampal cells were pretreated with CA/CAPE and then exposed to acrolein. Cell viability, intracellular reactive oxygen species (ROS), and glutathione (GSH) level were measured. MAPKs and Akt/GSK3β signaling proteins as well as α/β-secretase of amyloid protein precursor were assayed by Western blotting. Pretreatment with CA/CAPE significantly attenuated acrolein-induced neurotoxicity, ROS accumulation, and GSH depletion. Further study suggested that CA/CAPE showed protective effects against acrolein by modulating MAPKs and Akt/GSK3β signaling pathways. Moreover, CA/CAPE restored the changes of β-secretase (BACE-1) and/or activation of α-secretase (ADAM-10) induced by acrolein. These findings suggest that CA/CAPE may provide a promising approach for the treatment of acrolein-related neurodegenerative diseases, such as AD.

  1. New in vitro insights on a cell death pathway induced by magnolol and honokiol in aristolochic acid tubulotoxicity.

    PubMed

    Bunel, Valérian; Antoine, Marie-Hélène; Stévigny, Caroline; Nortier, Joëlle; Duez, Pierre

    2016-01-01

    Aristolochic acids (AA) are nephrotoxic agents found in Aristolochia species whose consumption leads to the onset of a progressive tubulointerstitial fibrosis. This AA-nephropathy was first reported during the Belgian outbreak of the 1990's in which more than a hundred patients consumed slimming pills containing an Aristolochia species and Magnolia officinalis. The patients developed an end-stage kidney disease requiring dialysis or transplantation. Magnolol and honokiol are bioactive compounds from M. officinalis known for their potent antioxidant activity. As they can alleviate oxidative stress, we investigated their respective effects on AA-mediated tubulotoxicity using HK-2 cells. Magnolol and honokiol were able to reduce the oxidative stress associated with AA-treatment. Cytotoxicity alleviation was further investigated and overall cell viability measurements unexpectedly revealed that both compounds worsened the survival of AA-treated cells. Flow cytometry analyses of annexin V/PI stained cells indicated that the lignans efficiently prevented AA-induced apoptosis; but favored necrosis. Microscopy observations highlighted extensive vacuolization; other types of cell death, including autophagy, paraptosis or accelerated senescence were excluded. Ki-67 index and cell cycle analysis indicated that both magnolol and honokiol inhibited proliferation by blocking the cell cycle at the G1 phase; they also prevented the AA-induced G2/M arrest. PMID:26631295

  2. Gamma-aminobutyric acid induces tumor cells apoptosis via GABABR1·β-arrestins·JNKs signaling module.

    PubMed

    Tian, Hui; Wu, Jin-Xia; Shan, Feng-Xiao; Zhang, Shang-Nuan; Cheng, Qian; Zheng, Jun-Nian; Pei, Dong-Sheng

    2015-03-01

    Gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter in central nervous system, has yet been found to widely exist in tumor tissues to regulate tumor cells growth. However, the function of GABA on inducing tumor cells apoptosis and the potential mechanism are still unclear. In order to detect whether GABA via GABAB receptor GABABR1 would activate c-Jun N-terminal kinases (JNKs) to promote tumor cells apoptosis, co-immunoprecipitation assay was used to investigate the association of β-arrestins with GABABR1 and JNKs in the different four cancer cell lines. Our observation demonstrated that β-arrestins, in addition to their role in G protein-coupled receptors desensitization, had an additional function as adapter proteins to recruit JNKs to GABABR1, thereby conferring distinct enzymatic activities upon the receptor, which may trigger JNKs signal pathway involved in the regulation of cellular growth. Activated JNKs subsequently phosphorylated downstream c-Jun to transcribe a wide variety of pro-apoptotic genes. Additionally, GABA up-regulated the ratio of pro-apoptotic protein Bax to anti-apoptotic protein Bcl-2, and thus facilitated caspase-3 cleavage, leading to tumor cells apoptosis in a mitochondrial-dependent pathway. In contrast, GABABR antagonist CGP35348 reversed GABA-induced JNKs phosphorylation and its downstream proteins activation, which consequently restrained tumor cells apoptosis. Taken together, our study suggested that GABA via its receptor GABABR1 recruited β-arrestins to facilitate the activation of JNKs cascade, resulting in tumor cells growth inhibition.

  3. Amino acid sequence of an intracellular, phosphate-starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells.

    PubMed

    Löffler, A; Glund, K; Irie, M

    1993-06-15

    The primary structure of an intracellular ribonuclease (RNase LX) from cultured tomato (Lycopersicon esculentum) cells has been determined. Previous studies have shown that the protein is located inside the tomato cells but outside the vacuoles and that its synthesis is induced after depleting the cells for phosphate [Löffler, A., Abel, S., Jost, W., Beintema, J. J., Glund, K. (1992) Plant Physiol. 98, 1472-1478]. Sequence analysis was carried out by analysis of peptides isolated after enzymatic and chemical cleavage of the protein. RNase LX consists of 213 amino acids and has a molecular mass of 24300 Da and an isoelectric point of 5.33. The enzyme contains 10 half-cystines and there are no potential N-glycosylation sites detectable in the sequence. RNase LX, as compared to an extracellular tomato RNase (RNase LE), which is also phosphate regulated and the amino acid sequence of which was recently established [Jost, W., Bak, H., Glund, K., Terpstra, P. & Beintema, J. J. (1991) Eur. J. Biochem. 198, 1-6] has 60% of all amino acids identical and in identical positions, revealing a high degree of similarity between both proteins. In contrast to RNase LE, RNase LX has a C-terminal extension of nine amino acids. The C-terminal tetrapeptide HDEF may be a retention signal of the protein in the endoplasmic reticulum. PMID:8319673

  4. Triplex-forming Peptide Nucleic Acids Induce Heritable Elevations in Gamma-globin Expression in Hematopoietic Progenitor Cells

    PubMed Central

    Chin, Joanna Y; Reza, Faisal; Glazer, Peter M

    2013-01-01

    Potentiating homologous recombination using triplex-forming peptide nucleic acids (PNAs) can be used to mediate targeted sequence editing by donor DNAs and thereby induce functional gene expression to supplant non-functional counterparts. Mutations that disrupt the normal function of the β-globin subunit cause hemoglobinopathies such as sickle cell disease and β-thalassemias. However, expression of the functional γ-globin subunit in adults, a benign condition called hereditary persistence of fetal hemoglobin (HPFH), can ameliorate the severity of these disorders, but this expression is normally silenced. Here, we harness triplex-forming PNA-induced donor DNA recombination to create HPFH mutations that increase the expression of γ-globin in adult mammalian cells, including β-yeast artificial chromosome (YAC) bone marrow and hematopoietic progenitor cells (HPCs). Transfection of human cells led to site-specific modification frequencies of 1.63% using triplex-forming PNA γ-194-3K in conjunction with donor DNAs, compared with 0.29% using donor DNAs alone. We also concurrently modified the γ-globin promoter to insert both HPFH-associated point mutations and a hypoxia-responsive element (HRE), conferring increased expression that was also regulated by oxygen tension. This work demonstrates application of oligonucleotide-based gene therapy to induce a quiescent gene promoter in mammalian cells and regulate its expression via an introduced HRE transcription factor binding site for potential therapeutic purposes. PMID:23337982

  5. The N-acetylcysteine-insensitive acetic acid-induced yeast programmed cell death occurs without macroautophagy.

    PubMed

    Antonacci, Lucia; Guaragnella, Nicoletta; Ždralevic, Maša; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2012-12-01

    Programmed cell death can occur through two separate pathways caused by treatment of Saccharomyces cerevisiae with acetic acid (AA-PCD), which differ from one another essentially with respect to their sensitivity to N-acetylcysteine (NAC) and to the role played by cytochrome c and metacaspase YCA1. Moreover, yeast can also undergo macroautophagy which occurs in NAC-insensitive manner. In order to gain some insight into the relationship between AA-PCD and macroautophagy use was made of WT and knock-out cells lacking YCA1 and/or cytochrome c. We show that i. macroautophagy is modulated by YCA1 and by cytochrome c in a negative and positive manner, respectively, ii. the NAC-insensitive AA-PCD and macroautophagy differ from one another and iii. NAC-insensitive AA-PCD pathway takes place essentially without macroautophagy, even if the shift of extracellular pH to acidic values required for AA-PCD to occur leads itself to increased or decreased macroautophagy in YCA1 or cytochrome c-lacking cells. PMID:23072389

  6. Dominant negative mutant of retinoic acid receptor alpha inhibits retinoic acid-induced P19 cell differentiation by binding to DNA.

    PubMed

    Costa, S L; McBurney, M W

    1996-05-25

    Retinoic acid (RA) is a potent inducer of P19 cell differentiation. RA activity is thought to be mediated by nuclear RA receptors (RARs), transcription factors whose activity is dependent on RA. There are three RARs called alpha, beta, and gamma. We created truncated versions of the three RARs and compared their activities as inhibitors of RA-mediated gene transcription and of P19 cell differentiation. Only mutants of the RAR alpha were inhibitory in these assays. A mutant of RAR alpha carrying a 10-amino-acid insert was able to heterodimerize with RXRbeta or with the normal RAR alpha and the inhibitory activity of this mutant was dependent on an intact DNA binding domain. We conclude that dominant negative mutants of RAR alpha act by heterodimerizing with RXRs or RARs and binding to RA response elements on DNA, thereby preventing binding of the normal receptors to those sites. PMID:8635515

  7. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    SciTech Connect

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-09-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  8. All trans-retinoic acid (ATRA) induces re-differentiation of early transformed breast epithelial cells

    PubMed Central

    ARISI, MARIA F.; STARKER, REBECCA A.; ADDYA, SANKAR; HUANG, YONG; FERNANDEZ, SANDRA V.

    2014-01-01

    Retinoids have been used as potential chemotherapeutic or chemopreventive agents because of their differentiative, anti-proliferative, pro-apoptotic and antioxidant properties. We investigated the effect of all trans-retinoic acid (ATRA) at different stages of the neoplastic transformation using an in vitro model of breast cancer progression. This model was previously developed by treating the MCF-10F human normal breast epithelial cells with high dose of estradiol and consists of four cell lines which show a progressive neoplastic transformation: MCF-10F, normal stage; trMCF, transformed MCF-10F; bsMCF, invasive stage; and caMCF, tumorigenic stage. In 3D cultures, MCF-10F cells form tubules resembling the structures in the normal mammary gland. After treatment with estradiol, these cells formed tubules and spherical masses which are indicative of transformation. Cells that only formed spherical masses in collagen were isolated (trMCF clone 11) and treated with ATRA. After treatment with 10 or 1 μM ATRA, the trMCF clone 11 cells showed tubules in collagen; 10 and 43% of the structures were tubules in cells treated with 10 and 1 μM ATRA, respectively. Gene expression studies showed that 207 genes upregulated in transformed trMCF clone 11 cells were downregulated after 1 μM ATRA treatment to levels comparable to those found in the normal breast epithelial cells MCF-10F. Furthermore, 236 genes that were downregulated in trMCF clone 11 were upregulated after 1 μM ATRA treatment to similar levels shown in normal epithelial cells. These 443 genes defined a signature of the ATRA re-programming effect. Our results showed that 1 μM ATRA was able to re-differentiate transformed cells at early stages of the neoplastic process and antagonistically regulate breast cancer associated genes. The invasive and tumorigenic cells did not show any changes in morphology after ATRA treatment. These results suggest that ATRA could be used as a chemopreventive agent to inhibit the

  9. Bone morphogenetic protein 4 and retinoic acid trigger bovine VASA homolog expression in differentiating bovine induced pluripotent stem cells.

    PubMed

    Malaver-Ortega, Luis F; Sumer, Huseyin; Jain, Kanika; Verma, Paul J

    2016-02-01

    Primordial germ cells (PGCs) are the earliest identifiable and completely committed progenitors of female and male gametes. They are obvious targets for genome editing because they assure the transmission of desirable or introduced traits to future generations. PGCs are established at the earliest stages of embryo development and are difficult to propagate in vitro--two characteristics that pose a problem for their practical application. One alternative method to enrich for PGCs in vitro is to differentiate them from pluripotent stem cells derived from adult tissues. Here, we establish a reporter system for germ cell identification in bovine pluripotent stem cells based on green fluorescent protein expression driven by the minimal essential promoter of the bovine Vasa homolog (BVH) gene, whose regulatory elements were identified by orthologous modelling of regulatory units. We then evaluated the potential of bovine induced pluripotent stem cell (biPSC) lines carrying the reporter construct to differentiate toward the germ cell lineage. Our results showed that biPSCs undergo differentiation as embryoid bodies, and a fraction of the differentiating cells expressed BVH. The rate of differentiation towards BVH-positive cells increased up to tenfold in the presence of bone morphogenetic protein 4 or retinoic acid. Finally, we determined that the expression of key PGC genes, such as BVH or SOX2, can be modified by pre-differentiation cell culture conditions, although this increase is not necessarily mirrored by an increase in the rate of differentiation.

  10. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures

    PubMed Central

    Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

    2013-01-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  11. Corosolic acid analogue, a natural triterpenoid saponin, induces apoptosis on human hepatocarcinoma cells through mitochondrial pathway in vitro.

    PubMed

    Qu, Liping; Zhang, Huiqing; Yang, Yanlong; Yang, Geliang; Xin, Hailiang; Ling, Changquan

    2016-08-01

    Context 2a,-3a,-24-Trihydroxyurs-12-en-28-oic acid (TEO, a corosolic acid analogue) is a triterpenoid saponin isolated from Actinidia valvata Dunn (Actinidiaceae), a well-known traditional Chinese medicine. Objective This study investigated the anti-proliferation and inducing apoptosis effects of TEO in three human hepatocellular carcinoma (HCC) cell lines. Materials and methods Cytotoxic activity of TEO was determined by the MTT assay at various concentrations from 2.5 to 40 μg/mL in BEL-7402, BEL-7404 and SMMC-7721 cell lines. Cell morphology was assessed by acridine orange/ethidium bromide and 4'-6-diamidino-2-phenylindole dihydrochloride staining and fluorescence microscopy. Cell-cycle distribution and DNA damage were determined by flow cytometry and comet assay. Mitochondrial dysfunction was assessed by JC-1 staining and transmission electron microscopy. Apoptosis changes were explored by Western blot, TNF-α and caspase-3, -8, -9 assays. Results TEO exhibited inhibition effects on BEL-7402, BEL-7404 and SMMC-7721 cells treated for 24 h, the IC50 values were 34.6, 30.8 and 30.5 μg/mL, respectively. TEO (40 μg/mL)-treated three cell lines increased by more than 21% in the G1 phase and presented the morphological change and DNA damage. TEO also declined the mitochondrial membrane potential and altered mitochondrial ultra-structure. Furthermore, caspase-3, caspase-8, caspase-9 and TNF-α were also activated. Mechanism investigation showed that TEO could decrease anti-apoptotic Bcl-2 protein expression, increase proapoptotic Bax and Bid proteins expressions and increase Bax/Bcl-2 ratio. Conclusion Our results demonstrate for the first time that TEO inhibited growth of HCC cell lines and induced G1 phase arrest. Moreover, proapoptotic effects of TEO were mediated through the activation of TNF-α, caspases and mitochondrial pathway. PMID:26810384

  12. 3-O-(E)-p-coumaroyl tormentic acid from Eriobotrya japonica leaves induces caspase-dependent apoptotic cell death in human leukemia cell line.

    PubMed

    Kikuchi, Takashi; Akazawa, Hiroyuki; Tabata, Keiichi; Manosroi, Aranya; Manosroi, Jiradej; Suzuki, Takashi; Akihisa, Toshihiro

    2011-01-01

    Eleven triterpene acids, 1-11, isolated from the leaves of Eriobotrya japonica, were evaluated for inhibition of DNA topoisomerase (Topo) I and cytotoxicity against human leukemia (HL60) and melanoma cell lines (CRL1579). Among the compounds tested, four compounds, δ-oleanolic acid (4), ursolic acid (5), 3-O-(E)-p-coumaroyl tormentic acid (8), and betulinic acid (10), exhibited potent Topo I inhibitory activity (IC(50) 20.3-36.5 µM) and cytotoxicity against HL60 (EC(50) 5.0-8.1 µM). Upon assessing the apoptosis-inducing activity in HL60 cells, compound 8 exhibited induction of apoptosis detected by the observation of DNA fragmentation and membrane phospholipid exposure in flow cytometry. Western blot analysis showed that compound 8 markedly reduced the levels of procaspases-3 and 9, while being increased the levels of cleaved caspases-3 and 9. On the other hand, compound 8 exerted almost no influence on the expression of caspase-8. In addition, compound 8 increased significantly Bax/Bcl-2 ratio and activated caspase-2. These results suggested that compound 8 induced apoptotic cell death in HL60 via mainly mitochondrial pathway by, at least in part, Topo I inhibition. Therefore, compound 8 may be promising lead compound for developing an effective drug for treatment of leukemia.

  13. Effect of Polyunsaturated Fatty Acids and Their Metabolites on Bleomycin-Induced Cytotoxic Action on Human Neuroblastoma Cells In Vitro

    PubMed Central

    Polavarapu, Sailaja; Mani, Arul M.; Gundala, Naveen K. V.; Hari, Anasuya D.; Bathina, Siresha; Das, Undurti N.

    2014-01-01

    In the present study, we noted that bleomycin induced growth inhibitory action was augmented by all the polyunsaturated fatty acids (PUFAs) tested on human neuroblastoma IMR-32 (0.5×104 cells/100 µl of IMR) cells (EPA> DHA> ALA = GLA = AA> DGLA = LA: ∼60, 40, 30, 10–20% respectively) at the maximum doses used. Of all the prostaglandins (PGE1, PGE2, PGF2α, and PGI2) and leukotrienes (LTD4 and LTE4) tested; PGE1, PGE2 and LTD4 inhibited the growth of IMR-32 cells to a significant degree at the highest doses used. Lipoxin A4 (LXA4), 19,20-dihydroxydocosapentaenoate (19, 20 DiHDPA) and 10(S),17(S)-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid (protectin: 10(S),17(S)DiHDoHE), metabolites of DHA, significantly inhibited the growth of IMR-32 cells. Pre-treatment with AA, GLA, DGLA and EPA and simultaneous treatment with all PUFAs used in the study augmented growth inhibitory action of bleomycin. Surprisingly, both indomethacin and nordihydroguaiaretic acid (NDGA) at 60 and 20 µg/ml respectively enhanced the growth of IMR-32 cells even in the presence of bleomycin. AA enhanced oxidant stress in IMR-32 cells as evidenced by an increase in lipid peroxides, superoxide dismutase levels and glutathione peroxidase activity. These results suggest that PUFAs suppress growth of human neuroblastoma cells, augment growth inhibitory action of bleomycin by enhancing formation of lipid peroxides and altering the status of anti-oxidants and, in all probability, increase the formation of lipoxins, resolvins and protectins from their respective precursors that possess growth inhibitory actions. PMID:25536345

  14. Lysophosphatidic acid-induced calcium mobilization and proliferation in kidney proximal tubular cells.

    PubMed

    Dixon, R J; Young, K; Brunskill, N J

    1999-02-01

    Patients with proteinuria tend to develop progressive renal disease with proximal tubular cell atrophy and interstitial scarring. It has been suggested that the nephrotoxicity of albuminuric states may be due to the protein molecule itself or by lipids, such as lysophosphatidic acid (LPA), that albumin carries. LPA was found to cause a transient increase in intracytoplasmic free Ca2+ ([Ca2+]i) in opossum kidney proximal tubule cells (OK) that was maximal at 100 microM LPA and was dose dependent with an EC50 of 2.6 x 10(-6) M. This Ca2+ mobilization was from both internal stores and across the plasma membrane and was pertussis toxin (PTX) insensitive. Treatment of OK cells with 100 microM LPA for 5 min was found to cause a twofold increase in [3H]thymidine incorporation and a three- to fivefold increase over control after 24 h. This was highly PTX sensitive and insensitive to pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A. These findings may be of significance in the progression of renal disease and indicate the potential importance of lipids in modulating proximal tubule cell function and growth. PMID:9950949

  15. Bile acids reduce the apoptosis-inducing effects of sodium butyrate on human colon adenoma (AA/C1) cells: implications for colon carcinogenesis.

    PubMed

    McMillan, L; Butcher, S; Wallis, Y; Neoptolemos, J P; Lord, J M

    2000-06-24

    Butyrate is produced in the colon by fermentation of dietary fibre and induces apoptosis in colon adenoma and cancer cell lines, which may contribute to the protective effect of a high fibre diet against colorectal cancer (CRC). However, butyrate is present in the colon together with unconjugated bile acids, which are tumour promoters in the colon. We show here that bile acids deoxycholate (DCA) and chenodeoxycholate (CDCA), at levels present in the colon, gave a modest increase in cell proliferation and decreased spontaneous apoptosis in AA/C1 adenoma cells. Bile acids significantly inhibited the induction of apoptosis by butyrate in AA/C1 cells. However, the survival-inducing effects of bile acids on AA/C1 cells could be overcome by increasing the concentration of sodium butyrate. These results suggest that dysregulation of apoptosis in colonic epithelial cells by dietary factors is a key factor in the pathophysiology of CRC.

  16. Lactic acid bacteria and bifidobacteria attenuate the proinflammatory response in intestinal epithelial cells induced by Salmonella enterica serovar Typhimurium.

    PubMed

    Carey, Christine M; Kostrzynska, Magdalena

    2013-01-01

    Inflammation is a physiological response to infections and tissue injury; however, abnormal immune responses can give rise to chronic inflammation and contribute to disease progression. Various dietary components, including probiotic lactic acid bacteria and prebiotics, have the potential to modulate intestinal inflammatory responses. One factor in particular, the chemokine interleukin-8 (IL-8, CXCL-8), is one of the major mediators of the inflammatory response. The purpose of this study was to investigate modulation of the inflammatory host response induced by Salmonella enterica serovar Typhimurium DT104 in the presence of selected probiotics and lactic acid bacteria (LAB) isolated from human sources, dairy products, and farm animals. IL-8 gene expression and protein production in HT-29 cells were evaluated by real-time PCR and ELISA, respectively. Pre-incubation of HT-29 cells with Lactobacillus kefir IM002, Bifidobacterium adolescentis FRP 61, Bifidobacterium longum FRP 68 and FRP 69, Bifidobacterium breve FRP 334, and Leuconostoc mesenteroides IM080 significantly inhibited IL-8 secretion induced by Salmonella Typhimurium DT104. Co-culture of selected probiotics and Salmonella Typhimurium DT104 reduced IL-8 production, while potential probiotics and LAB had no effect on IL-8 secretion in HT-29 cells preincubated with Salmonella Typhimurium DT104 prior to adding probiotics. Lactobacillus kefir IM002 supernatant also significantly reduced IL-8 production. In conclusion, our study suggests that probiotic bifidobacteria and LAB modulate cytokine induction and possess anti-inflammatory properties; however, the effectiveness is strain dependent.

  17. Valproic acid inhibits irradiation-induced epithelial-mesenchymal transition and stem cell-like characteristics in esophageal squamous cell carcinoma

    PubMed Central

    Kanamoto, Ayako; Ninomiya, Itasu; Harada, Shinichi; Tsukada, Tomoya; Okamoto, Koichi; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Oyama, Katsunobu; Miyashita, Tomoharu; Tajima, Hidehiro; Takamura, Hiroyuki; Fushida, Sachio; Ohta, Tetsuo

    2016-01-01

    Esophageal carcinoma is one of the most aggressive malignancies, and is characterized by poor response to current therapy and a dismal survival rate. In this study we investigated whether irradiation induces epithelial-mesenchymal transition (EMT) in esophageal squamous cell carcinoma (ESCC) TE9 cells and whether the classic histone deacetylase (HDAC) inhibitor valproic acid (VPA) suppresses these changes. First, we showed that 2 Gy irradiation induced spindle cell-like morphologic changes, decreased expression of membranous E-cadherin, upregulated vimentin expression, and altered the localization of β-catenin from its usual membrane-bound location to cytoplasm in TE9 cells. Irradiation induced upregulation of transcription factors including Slug, Snail, and Twist, which regulate EMT. Stimulation by irradiation resulted in increased TGF-β1 and HIF-1α expression and induced Smad2 and Smad3 phosphorylation. Furthermore, irradiation enhanced CD44 expression, indicating acquisition of cancer stem-like cell properties. In addition, irradiation enhanced invasion and migration ability with upregulation of matrix metalloproteinases. These findings indicate that single-dose irradiation can induce EMT in ESCC cells. Second, we found that treatment with 1 mM VPA induced reversal of EMT caused by irradiation in TE9 cells, resulting in attenuated cell invasion and migration abilities. These results suggest that VPA might have clinical value to suppress irradiation-induced EMT. The reversal of EMT by HDAC inhibitors may be a new therapeutic strategy to improve the effectiveness of radiotherapy in ESCC by inhibiting the enhancement of invasion and metastasis.

  18. Decatungstate acid improves the photo-induced electron lifetime and retards the recombination in dye sensitized solar cells.

    PubMed

    Li, Liang; Yang, Yulin; Fan, Ruiqing; Liu, Jian; Jiang, Yanxia; Yang, Bin; Cao, Wenwu

    2016-10-14

    Decatungstate acid (DA) was utilized to modify TiO2 in the photoanode of dye sensitized solar cells. The photo-induced electron lifetime was evidently improved and the recombination was greatly inhibited. DA can introduce levels of impurities and lower the Fermi level through a doping effect and thus increase the photocurrent. Moreover, the improved charge carrier density can be found through external electric field surface photovoltage and Mott-Schottky plots. A 22.94% enhancement in photocurrent was achieved with little degradation in photovoltage, leading to a 10.28% increase in optic-to-electric power conversion efficiency. PMID:27550800

  19. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products.

    PubMed

    Dad, Azra; Jeong, Clara H; Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J

    2013-10-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) > chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs.

  20. Pyruvate Remediation of Cell Stress and Genotoxicity Induced by Haloacetic Acid Drinking Water Disinfection By-Products

    PubMed Central

    Dad, Azra; Jeong, Clara H.; Pals, Justin A.; Wagner, Elizabeth D.; Plewa, Michael J.

    2014-01-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) >> chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs. PMID:23893730

  1. Enhancement of caffeic acid phenethyl ester on all-trans retinoic acid-induced differentiation in human leukemia HL-60 cells

    SciTech Connect

    Kuo, H.-C.; Kuo, W.-H.; Lee, Y.-J.; Wang, C.-J.; Tseng, T.-H. . E-mail: tht@csmu.edu.tw

    2006-10-01

    All-trans retinoic acid (ATRA) induces complete remission in a high proportion of patients with acute promyelocytic leukemia (APL); however, the response is sometimes very slow. Furthermore, relapse and resistance to treatment often occur despite continued treatment with ATRA. Thereafter, combination treatment strategies have been suggested to circumvent these problems. The present study demonstrates that caffeic acid phenethyl ester (CAPE), a major component of honeybee propolis, enhanced ATRA-induced granulocytic differentiation in HL-60, a human promyelocytic cell line. The differentiation was assessed by Wright-Giemsa stain, nitroblue tetrazolium reduction, and membrane differentiation marker CD11b. In addition, CAPE enhanced ATRA-induced cell cycle arrest at the G1 phase by decreasing the association of cdk2-cyclin E complex. Finally, it was demonstrated that CAPE promoted the ATRA-mediated nuclear transcription activation of RAR{alpha} assessed by EMSA assay and enhanced the expression of target genes including RAR{alpha}, C/EBP{epsilon}, and p21 protein resulting in the differentiation development of leukemia. It is suggested that CAPE possesses the potential to enhance the efficiency of ATRA in the differentiation therapy of APL.

  2. The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis.

    PubMed

    Sugiyama, Yuta; Hagiya, Yuichiro; Nakajima, Motowo; Ishizuka, Masahiro; Tanaka, Tohru; Ogura, Shun-Ichiro

    2014-03-01

    Our previous study demonstrated that 5-aminolevulinic acid (ALA) administered to mice stimulates oxidative phosphorylation by upregulation of the mitochondrial respiratory chain complex IV enzyme cytochrome c oxidase (COX). The present study investigated whether ALA disrupts the Warburg effect, which represents a shift in ATP generation from oxidative phosphorylation to glycolysis, protecting tumor cells against oxidative stress-mediated apoptosis. The human lung carcinoma cell line A549 exposed to ALA exhibited enhanced oxidative phosphorylation, which was indicated by an increase in COX protein expression and oxygen consumption. Furthermore, ALA suppressed glycolysis-mediated acidosis. This normalization of the ATP metabolic pathways significantly increased the generation of superoxide anion radical (O2•-) and the functional expression of active caspase-3, leading to caspase-dependent apoptosis. These data demonstrate that ALA inhibits the Warburg effect and induces cancer cell death. Use of this endogenous compound might constitute a novel approach to cancer therapy. PMID:24366173

  3. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid.

    PubMed

    Jahan, Md Sarwar; Nozulaidi, Mohd; Khairi, Mohd; Mat, Nashriyah

    2016-05-20

    Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure.

  4. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid.

    PubMed

    Jahan, Md Sarwar; Nozulaidi, Mohd; Khairi, Mohd; Mat, Nashriyah

    2016-05-20

    Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure. PMID:26970687

  5. The secreted protein acidic and rich in cysteine is a critical mediator of cell death program induced by WIN/TRAIL combined treatment in osteosarcoma cells.

    PubMed

    Notaro, Antonietta; Sabella, Selenia; Pellerito, Ornella; Vento, Renza; Calvaruso, Giuseppe; Giuliano, Michela

    2016-03-01

    Secreted protein acidic and rich in cysteine (SPARC) is a multi-functional protein which modulates cell-cell and cell-matrix interactions. In cancer cells, SPARC behaves as a tumor promoter in a number of tumors, but it can also act as a tumor suppressor factor. Our previous results showed that the synthetic cannabinoid WIN55,212-2 (WIN), a potent cannabinoid receptor agonist, is able to sensitize osteosarcoma MG63 cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis which is accompanied with endoplasmic reticulum (ER)-stress induction and the increase in autophagic markers. In the present investigation, we studied the role of SPARC in WIN/TRAIL-induced apoptosis demonstrating that WIN increased the level of SPARC protein and mRNA in a time-dependent manner. This event was functional to WIN/TRAIL-dependent apoptosis as demonstrated by RNA interfering analysis which indicated that SPARC-silenced cells were less sensitive to cytotoxic effects induced by the combined treatment. Our experiments also demonstrate that SPARC interacts with caspase-8 thus probably favoring its translocation to plasma membrane and the activation of extrinsic apoptotic pathway. In conclusion, to the best of our knowledge, our results are the first to show that WIN-dependent increase in the level of SPARC plays a critical role in sensitizing osteosarcoma cells to TRAIL action.

  6. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    PubMed

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS. PMID:26985864

  7. Ferulic acid renders protection to HEK293 cells against oxidative damage and apoptosis induced by hydrogen peroxide.

    PubMed

    Bian, Yuan-Yuan; Guo, Jia; Majeed, Hamid; Zhu, Ke-Xue; Guo, Xiao-Na; Peng, Wei; Zhou, Hui-Ming

    2015-08-01

    The application of antioxidants has been considered as an important and effective approach against conditions in which oxidative stress occurs. Especially, ferulic acid (FA) is an important antioxidant which exerts potency against cellular damage in the presence of oxidants. In the current study, the resistance effect of FA on hydrogen peroxide (H2O2)-stressed human embryonic kidney 293 cells (HEK293) in vitro was investigated. FA (1 mM) increased HEK293 cells' viability and significantly reduced H2O2-induced cellular apoptosis, which was confirmed with flow cytometry and morphological results. Cell cycle analysis indicated low percentage of sub-G0 population of FA-treated HEK293 cells that confirmed its resistance effect. The FA-treated HEK293 cells followed by H2O2 exposure resulted in decreased ROS levels compared to control (H2O2-treated only). The results indicated that pretreatment of FA on cell prior to H2O2 exposure could significantly improve cell survival and increase catalase (CAT) and superoxide dismutase (SOD) levels. On the other hand, reduction in the levels of MDA and ROS was obvious. It can be concluded that FA may protect HEK293 cells from injury induced by H2O2 through regulation of intracellular antioxidant enzyme activities and cell cycle distribution. The reduction in mitochondrial membrane potential was also inhibited by FA treatment. These results suggested the importance of naturally occurring antioxidants such as FA in therapeutic intervention methodology against oxidative stress-related diseases.

  8. Protocatechuic Acid from Alpinia oxyphylla Induces Schwann Cell Migration via ERK1/2, JNK and p38 Activation.

    PubMed

    Ju, Da-Tong; Kuo, Wei-Wen; Ho, Tsung-Jung; Paul, Catherine Reena; Kuo, Chia-Hua; Viswanadha, Vijaya Padma; Lin, Chien-Chung; Chen, Yueh-Sheng; Chang, Yung-Ming; Huang, Chih-Yang

    2015-01-01

    Alpinia oxyphylla MIQ (Alpinate Oxyphyllae Fructus, AOF) is an important traditional Chinese medicinal herb whose fruits is widely used to prepare tonics and is used as an aphrodisiac, anti salivary, anti diuretic and nerve-protective agent. Protocatechuic acid (PCA), a simple phenolic compound was isolated from the kernels of AOF. This study investigated the role of PCA in promoting neural regeneration and the underlying molecular mechanisms. Nerve regeneration is a complex physiological response that takes place after injury. Schwann cells play a crucial role in the endogenous repair of peripheral nerves due to their ability to proliferate and migrate. The role of PCA in Schwann cell migration was determined by assessing the induced migration potential of RSC96 Schwann cells. PCA induced changes in the expression of proteins of three MAPK pathways, as determined using Western blot analysis. In order to determine the roles of MAPK (ERK1/2, JNK, and p38) pathways in PCA-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production, the expression of several MAPK-associated proteins was analyzed after siRNA-mediated inhibition assays. Treatment with PCA-induced ERK1/2, JNK, and p38 phosphorylation that activated the downstream expression of PAs and MMPs. PCA-stimulated ERK1/2, JNK and p38 phosphorylation was attenuated by individual pretreatment with siRNAs or MAPK inhibitors (U0126, SP600125, and SB203580), resulting in the inhibition of migration and the uPA-related signal pathway. Taken together, our data suggest that PCA extract regulate the MAPK (ERK1/2, JNK, and p38)/PA (uPA, tPA)/MMP (MMP2, MMP9) mediated regeneration and migration signaling pathways in Schwann cells. Therefore, PCA plays a major role in Schwann cell migration and the regeneration of damaged peripheral nerve.

  9. Renoprotective effect of DPP-4 inhibitors against free fatty acid-bound albumin-induced renal proximal tubular cell injury.

    PubMed

    Tanaka, Yuki; Kume, Shinji; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi; Ugi, Satoshi; Sugaya, Takeshi; Uzu, Takashi; Maegawa, Hiroshi

    2016-02-12

    Dipeptidyl peptidase (DPP)-4 inhibitors, a new class of antidiabetic agent, have recently been suggested to exert pleiotropic effects beyond glucose lowering. Renal prognosis in patients with diabetic nephropathy depends on the severity of tubulointerstitial injury induced by massive proteinuria. We thus examined the renoprotective effect of DPP-4 inhibitors on inflammation in cultured mouse proximal tubular cells stimulated with free fatty acid (FFA)-bound albumin. Linagliptin and higher concentrations of sitagliptin, vildagliptin, and alogliptin all inhibited FFA-bound albumin-induced increases in mRNA expression of MCP-1 in cultured mouse proximal tubular cells. Furthermore, linagliptin significantly inhibited tubulointerstitial injury induced by peritoneal injection of FFA-bound albumin, such as inflammation, fibrosis, and apoptosis, in mice without altering systemic characteristics including body weight, fasting blood glucose, and food intake. These results indicate that DPP-4 inhibitors pleiotropically exert a direct renoprotective effect, and may serve as an additional therapeutic strategy to protect proximal tubular cells against proteinuria in patients with diabetic nephropathy. PMID:26802469

  10. Derivatives of Dictyostelium differentiation-inducing factors inhibit lysophosphatidic acid-stimulated migration of murine osteosarcoma LM8 cells.

    PubMed

    Kubohara, Yuzuru; Komachi, Mayumi; Homma, Yoshimi; Kikuchi, Haruhisa; Oshima, Yoshiteru

    2015-08-01

    Osteosarcoma is a common metastatic bone cancer that predominantly develops in children and adolescents. Metastatic osteosarcoma remains associated with a poor prognosis; therefore, more effective anti-metastatic drugs are needed. Differentiation-inducing factor-1 (DIF-1), -2, and -3 are novel lead anti-tumor agents that were originally isolated from the cellular slime mold Dictyostelium discoideum. Here we investigated the effects of a panel of DIF derivatives on lysophosphatidic acid (LPA)-induced migration of mouse osteosarcoma LM8 cells by using a Boyden chamber assay. Some DIF derivatives such as Br-DIF-1, DIF-3(+2), and Bu-DIF-3 (5-20 μM) dose-dependently suppressed LPA-induced cell migration with associated IC50 values of 5.5, 4.6, and 4.2 μM, respectively. On the other hand, the IC50 values of Br-DIF-1, DIF-3(+2), and Bu-DIF-3 versus cell proliferation were 18.5, 7.2, and 2.0 μM, respectively, in LM8 cells, and >20, 14.8, and 4.3 μM, respectively, in mouse 3T3-L1 fibroblasts (non-transformed). Together, our results demonstrate that Br-DIF-1 in particular may be a valuable tool for the analysis of cancer cell migration, and that DIF derivatives such as DIF-3(+2) and Bu-DIF-3 are promising lead anti-tumor agents for the development of therapies that suppress osteosarcoma cell proliferation, migration, and metastasis. PMID:26056940

  11. Oleanolic Acid Inhibits High Salt-Induced Exaggeration of Warburg-like Metabolism in Breast Cancer Cells.

    PubMed

    Amara, Suneetha; Zheng, Mu; Tiriveedhi, Venkataswarup

    2016-09-01

    Cancer cells have a proliferative advantage by utilizing intermediates of aerobic glycolysis (Warburg effect) for their macromolecule synthesis. Although the exact causes of this Warburg effect are unclear, high osmotic stress in solid tumor microenvironment is considered one of the important factors. Oleanolic acid (OA) is known to exert anti-inflammatory and anti-cancer effect. In our current studies, using breast cancer cell lines, we determined the protective role of OA in high salt-mediated osmotic stress-induced cancer growth. Hypertonic (0.16 M NaCl) culture conditions enhanced the cancer cell growth (26 %, p < 0.05) and aerobic glycolysis as marked by increased glucose consumption (34 %, p < 0.05) and lactate production (25 %, p < 0.05) over untreated cells. This effect was associated with increased expression and activity of key rate-limiting enzymes of aerobic glycolysis, namely hexokinase, pyruvate kinase type M2, and lactate dehydrogenase A. Interestingly, this high salt-mediated enhanced expression of aerobic glycolytic enzymes was efficiently reversed by OA along with the decreased cancer cell proliferation. In cancer cells, enhanced aerobic glycolysis is associated with the decreased mitochondrial activity and mitochondrial-associated caspase activity. As expected, high salt further inhibited the mitochondrial related cytochrome oxidase and caspase-3 activity. However, OA efficiently reversed the high salt-mediated inhibition of cytochrome oxidase, caspase activity, and pro-apoptotic Bax expression, thus suggesting that OA induced mitochondrial activity and enhanced apoptosis. Taken together, our data indicate that OA efficiently reverses the enhanced Warburg-like metabolism induced by high salt-mediated osmotic stress along with potential application of OA in anti-cancer therapy. PMID:27236294

  12. Galbanic acid decreases androgen receptor abundance and signaling and induces G1 arrest in prostate cancer cells

    PubMed Central

    Zhang, Yong; Kim, Kwan-Hyun; Zhang, Wei; Guo, Yinglu; Kim, Sung-Hoon; Lü, Junxuan

    2011-01-01

    Androgen receptor (AR) signaling is crucial for the genesis and progression of prostate cancer (PCa). We compared the growth responses of AR(+) LNCaP and LNCaP C4-2 vs. AR(−) DU145 and PC-3 PCa cell lines to galbanic acid (GBA) isolated from the resin of medicinal herb Ferula assafoetida and assessed their connection to AR signaling and cell cycle regulatory pathways. Our results showed that GBA preferentially suppressed AR(+) PCa cell growth than AR(−) PCa cells. GBA induced a caspase-mediated apoptosis that was attenuated by a general caspase inhibitor. Subapoptotic GBA down-regulated AR protein in LNCaP cells primarily through promoting its proteasomal degradation, and inhibited AR-dependent transcription without affecting AR nuclear translocation. Whereas docking simulations predicted binding of GBA to the AR ligand binding domain with similarities and differences with the AR antagonist drug bicalutamide, LNCaP cell culture assays did not detect agonist activity of GBA. GBA and bicalutamide exerted greater than additive inhibitory effect on cell growth when used together. Subapoptotic GBA induced G1 arrest associated with an inhibition of cyclin/CDK4/6 pathway, especially cyclin D1 without the causal involvement of CDK inhibitory proteins P21Cip1 and P27Kip1. In summary, the novelty of GBA as an anti-AR compound resides in the distinction between GBA and bicalutamide with respect to AR protein turnover and a lack of agonist effect. Our observations of anti-AR and cell cycle arrest actions plus the anti-angiogenesis effect reported elsewhere suggest GBA as a multi-targeting drug candidate for the prevention and therapy of PCa. PMID:21328348

  13. Methotrexate-induced cytotoxicity and genotoxicity in germ cells of mice: intervention of folic and folinic acid.

    PubMed

    Padmanabhan, S; Tripathi, D N; Vikram, A; Ramarao, P; Jena, G B

    2009-02-19

    Methotrexate (MTX) is an anti-metabolite widely used in the treatment of neoplastic disorders, rheumatoid arthritis and psoriasis. The basis for its therapeutic efficacy is the inhibition of dihydrofolate reductase (DHFR), a key enzyme in the folic acid (FA) metabolism. FA is a water-soluble vitamin which is involved in the synthesis of purines and pyrimidines, the essential precursors of DNA. Folinic acid (FNA) is the reduced form of FA that circumvents the inhibition of DHFR. Folate supplementation during MTX therapy for psoriasis and inflammatory arthritis reduces both toxicity and side effects without compromising the efficacy. Further, FNA supplementation reduces the common side effects of MTX in the treatment of juvenile idiopathic arthritis. FA and FNA are reported to have protective effects on MTX-induced genotoxicity in the somatic cells; however their protective effects on the germ cells have not been much explored. Previously, we evaluated the cytotoxic and genotoxic effects of MTX in the germ cells of mice. In the present study, we have intervened FA and FNA for the protection of germ cell toxicity induced by MTX in male swiss mice. The animals were pre-treated with FA at the doses of 50, 100 and 200 microg/kg for 4 consecutive days per week and on day five; MTX was administered at the dose of 20mg/kg once. FNA was administered at the doses of 2.5, 5 and 10 mg/kg, 6 h (h) after single administration of MTX at the dose of 20 mg/kg. The dosing regimen was continued up to 10 weeks. The germ cell toxicity was evaluated using testes weight (wt), sperm count, sperm head morphology, sperm comet assay, histology, TUNEL and halo assay in testis. The results clearly demonstrate that prior administration of FA and post-treatment with FNA reduces the germ cell toxicity induced by MTX as evident from the decreased sperm head abnormalities, seminiferous tubule damage, sperm DNA damage, TUNEL positive cells and increased sperm counts. In the present study, we report

  14. Cis-vaccenic acid induces differentiation and up-regulates gamma globin synthesis in K562, JK1 and transgenic mice erythroid progenitor stem cells.

    PubMed

    Aimola, Idowu A; Inuwa, Hajiya M; Nok, Andrew J; Mamman, Aisha I; Bieker, James J

    2016-04-01

    Gamma globin induction remains a promising pharmacological therapeutic treatment mode for sickle cell anemia and beta thalassemia, however Hydroxyurea remains the only FDA approved drug which works via this mechanism. In this regard, we assayed the γ-globin inducing capacity of Cis-vaccenic acid (CVA). CVA induced differentiation of K562, JK1 and transgenic mice primary bone marrow hematopoietic progenitor stem cells. CVA also significantly up-regulated γ-globin gene expression in JK-1 and transgenic mice bone marrow erythroid progenitor stem cells (TMbmEPSCs) but not K562 cells without altering cell viability. Increased γ-globin expression was accompanied by KLF1 suppression in CVA induced JK-1 cells. Erythropoietin induced differentiation of JK-1 cells 24h before CVA induction did not significantly alter CVA induced differentiation and γ-globin expression in JK-1 cells. Inhibition of JK-1 and Transgenic mice bone marrow erythroid progenitor stem cells Fatty acid elongase 5 (Elovl5) and Δ(9) desaturase suppressed the γ-globin inductive effects of CVA. CVA treatment failed to rescue γ-globin expression in Elovl5 and Δ(9)-desaturase inhibited cells 48 h post inhibition in JK-1 cells. The data suggests that CVA directly modulates differentiation of JK-1 and TMbmEPSCs, and indirectly modulates γ-globin gene expression in these cells. Our findings provide important clues for further evaluations of CVA as a potential fetal hemoglobin therapeutic inducer. PMID:26879870

  15. Myeloid-derived suppressor cells are involved in lysosomal acid lipase deficiency-induced endothelial cell dysfunctions.

    PubMed

    Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong

    2014-08-15

    The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal(-/-)) mice. We found that Ly6G(+) cells transmigrated more efficiently across lal(-/-) ECs than wild-type (lal(+/+)) ECs, which were associated with increased levels of PECAM-1 and MCP-1 in lal(-/-) ECs. In addition, lal(-/-) ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal(-/-) ECs also suppressed T cell proliferation in vitro. Interestingly, lal(-/-) Ly6G(+) cells promoted in vivo angiogenesis (including a tumor model), EC tube formation, and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal(-/-) ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G(+) cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species. Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL deficiency-related diseases. PMID:25000979

  16. The toxicity of bovine α-lactalbumin made lethal to tumor cells is highly dependent on oleic acid and induces killing in cancer cell lines and noncancer-derived primary cells.

    PubMed

    Brinkmann, Christel Rothe; Heegaard, Christian Würtz; Petersen, Torben Ellebæk; Jensenius, Jens Christian; Thiel, Steffen

    2011-06-01

    A complex between α-lactalbumin and oleic acid (C18:1, 9 cis) has been reported to be cytotoxic to cancer cells. We have prepared such complexes and tested their activity against both cancer cell lines and noncancer-derived primary cells. Unexpectedly, some primary cell types were more sensitive to treatment than cancer cell lines. We found the complex to be cytotoxic to all of the tested cells, with a 46-fold difference between the most sensitive and the least sensitive cell type. Oleic acid by itself exhibited a remarkably similar activity. The cell-killing mechanisms of the complex and of oleic acid alone were examined by flow cytometry, testing for apoptosis- and necrosis- inducing activity. The T-cell leukemia-derived Jurkat cells primarily underwent cell death resembling apoptosis, whereas the monocytic leukemia-derived THP1 cells adopted a more necrotic-like cell death. Erythrocytes were sensitive to lysis by the complex and oleic acid. We conclude that oleic acid is cytotoxic by itself and that, in contrast to the literature, a complex of α-lactalbumin and oleic acid has cytotoxic activity against primary cells, as well as cancer cells.

  17. Cell cycle arrest evidence, parasiticidal and bactericidal properties induced by L-amino acid oxidase from Bothrops atrox snake venom.

    PubMed

    de Melo Alves Paiva, Raquel; de Freitas Figueiredo, Raquel; Antonucci, Gilmara Ausech; Paiva, Helder Henrique; de Lourdes Pires Bianchi, Maria; Rodrigues, Kelly C; Lucarini, Rodrigo; Caetano, Renato Cesar; Linhari Rodrigues Pietro, Rosemeire Cristina; Gomes Martins, Carlos Henrique; de Albuquerque, Sérgio; Sampaio, Suely Vilela

    2011-05-01

    The present article describes an l-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host's immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 μg/mL and 50 μg/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents. PMID:21300133

  18. Chloroplastic oxidative burst induced by tenuazonic acid, a natural photosynthesis inhibitor, triggers cell necrosis in Eupatorium adenophorum Spreng.

    PubMed

    Chen, Shiguo; Yin, Chunyan; Qiang, Sheng; Zhou, Fenyan; Dai, Xinbin

    2010-03-01

    Tenuazonic acid (TeA), a nonhost-specific phytotoxin produced by Alternaria alternata, was determined to be a novel natural photosynthesis inhibitor owning several action sites in chloroplasts. To further elucidate the mode of its action, studies were conducted to assess the production and involvement of reactive oxygen species (ROS) in the toxic activity of TeA. A series of experiments indicated that TeA treatment can induce chloroplast-derived ROS generation including not only (1)O(2) but also superoxide radical, H(2)O(2) and hydroxyl radicals in Eupatorium adenophorum mesophyll cells, resulting from electron leakage and charge recombination in PSII as well as thylakoid overenergization due to inhibition of the PSII electron transport beyond Q(A) and the reduction of end acceptors on the PSI acceptor side and chloroplast ATPase activity. The initial production of TeA-induced ROS was restricted to chloroplasts and accompanied with a certain degree of chloroplast damage. Subsequently, abundant ROS were quickly dispersed throughout whole cell and cellular compartments, causing a series of irreversible cellular harm such as chlorophyll breakdown, lipid peroxidation, plasma membrane rupture, chromatin condensation, DNA cleavage, and organelle disintegration, and finally resulting in rapid cell destruction and leaf necrosis. These results show that TeA causing cell necrosis of host-plants is a result of direct oxidative damage from chloroplast-mediated ROS eruption.

  19. Abietic acid inhibits UVB-induced MMP-1 expression in human dermal fibroblast cells through PPARα/γ dual activation.

    PubMed

    Jeon, Youngsic; Jung, Yujung; Youm, Jong-Kyung; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2015-02-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and consist of three isotypes: PPARα, PPARβ/δ and PPARγ. PPARs are expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, these receptors are highly studied in dermato-endocrine research, and their ligands are targets for the treatment of various skin disorders, such as photoageing and chronological ageing of skin. Intensive studies have revealed that PPARα/γ functions in photoageing and age-related inflammation by regulating matrix metalloproteinases (MMPs) via nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). However, the detailed mechanism of PPARα/γ's role in photoageing has not yet been elucidated. In this study, we confirmed that abietic acid (AA) is a PPARα/γ dual ligand and significantly decreased UVB-induced MMP-1 expression by downregulating UVB-induced MAPK signalling and downstream transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in Hs68 human dermal fibroblast cells. Treatment of cells with AA and GW6471 or bisphenol A diglycidyl ether (BADGE), PPARα or PPARγ antagonists, respectively, reversed the effect on UVB-induced MMP-1 expression and inflammatory signalling pathway activation. Taken together, our data suggest that AA acts as a PPARα/γ dual activator to inhibit UVB-induced MMP-1 expression and age-related inflammation by suppressing NF-κB and the MAPK/AP-1 pathway and can be a useful agent for improving skin photoageing. PMID:25496486

  20. Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways.

    PubMed

    Guaragnella, Nicoletta; Antonacci, Lucia; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2011-10-01

    The use of non-mammalian model organisms, including yeast Saccharomyces cerevisiae, can provide new insights into eukaryotic PCD (programmed cell death) pathways. In the present paper, we report recent achievements in the elucidation of the events leading to PCD that occur as a response to yeast treatment with AA (acetic acid). In particular, ROS (reactive oxygen species) generation, cyt c (cytochrome c) release and mitochondrial function and proteolytic activity will be dealt with as they vary along the AA-PCD time course by using both wild-type and mutant yeast cells. Two AA-PCD pathways are described sharing common features, but distinct from one another with respect to the role of ROS and mitochondria, the former in which YCA1 acts upstream of cyt c release and caspase-like activation in a ROS-dependent manner and the latter in which cyt c release does not occur, but caspase-like activity increases, in a ROS-independent manner. PMID:21936848

  1. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells.

    PubMed

    Im, Jintaek; Baik, Jung Eun; Kim, Kyoung Whun; Kang, Seok-Seong; Jeon, Jun Ho; Park, Ok-Jin; Kim, Hyun Young; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2015-08-01

    Periodontitis is caused by multi-bacterial infection and Aggregatibacter actinomycetemcomitans and Enterococcus faecalis are closely associated with inflammatory periodontal diseases. Although lipopolysaccharide (LPS) of A. actinomycetemcomitans (Aa.LPS) and lipoteichoic acid of E. faecalis (Ef.LTA) are considered to be major virulence factors evoking inflammatory responses, their combinatorial effect on the induction of chemokines has not been investigated. In this study, we investigated the interaction between Aa.LPS and Ef.LTA on IL-8 expression in human periodontal ligament (PDL) cells. Aa.LPS, but not Ef.LTA, substantially induced IL-8 expression at the protein and mRNA levels. Interestingly, Ef.LTA suppressed Aa.LPS-induced IL-8 expression without affecting the binding of Aa.LPS to Toll-like receptor (TLR) 4. Ef.LTA reduced Aa.LPS-induced phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38 kinase. Furthermore, Ef.LTA inhibited the Aa.LPS-induced transcriptional activities of the activating protein 1, CCAAT/enhancer-binding protein and nuclear factor-kappa B transcription factors, all of which are known to regulate IL-8 gene expression. Ef.LTA augmented the expression of IL-1 receptor-associated kinase-M (IRAK-M), a negative regulator of TLR intracellular signaling pathways, in the presence of Aa.LPS at both the mRNA and protein levels. Small interfering RNA silencing IRAK-M reversed the attenuation of Aa.LPS-induced IL-8 expression by Ef.LTA. Collectively, these results suggest that Ef.LTA down-regulates Aa.LPS-induced IL-8 expression in human PDL cells through up-regulation of the negative regulator IRAK-M.

  2. New betulinic acid derivatives induce potent and selective antiproliferative activity through cell cycle arrest at the S phase and caspase dependent apoptosis in human cancer cells.

    PubMed

    Santos, Rita C; Salvador, Jorge A R; Cortés, Roldán; Pachón, Gisela; Marín, Silvia; Cascante, Marta

    2011-06-01

    New semisynthetic derivatives of betulinic acid (BA) RS01, RS02 and RS03 with 18-45 times improved cytotoxic activity against HepG2 cells, were tested for their ability to induce apoptosis and cell cycle arrest in HepG2, HeLa and Jurkat cells. All the compounds induced significant increase in the population at the S phase more effectively than BA. RS01, RS02 and RS03 were also found to be potent inducers of apoptosis with RS01 being markedly more potent than BA, suggesting that the introduction of the imidazolyl moiety is crucial for enhancing the induction of apoptosis and the cell cycle arrest. The mechanism of apoptosis induction has been studied in HepG2 cells and found to be mediated by activation of the postmitochondrial caspases-9 and -3 cascade and possibly by mitochondrial amplification loop involving caspase-8. These facts were corroborated by detection of mitochondrial cytochrome c release and DNA fragmentation. Because RS01, RS02 and RS03 exhibited significant improved antitumor activity with respect to BA, they may be promising new agents for the treatment of cancer. In particular, RS01 is the most promising compound with an IC(50) value 45 times lower than BA on HepG2 cells and 61 times lower than the one found for the non-tumoral Chang liver cells.

  3. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition.

    PubMed

    Al-Sabahi, Bushra N; Fatope, Majek O; Essa, Musthafa Mohamed; Subash, Selvaraju; Al-Busafi, Saleh N; Al-Kusaibi, Fatma S N; Manivasagam, Thamilarasan

    2014-09-19

    Background Seed oils are used as cosmetics or topical treatment for wounds, allergy, dandruff, and other purposes. Natural antioxidants from plants were recently reported to delay the onset or progress of various neurodegenerative conditions. Over one thousand cultivars of Punica granatum (Punicaceae) are known and some are traditionally used to treat various ailments. Aim The effect of pomegranate oil on 3-nitropropionic acid- (3-NP) induced cytotoxicity in rat pheochromocytoma (PC12) neuronal cells was analyzed in this study. Furthermore, the analysis of unsaturated fatty acid composition of the seed oil of pomegranate by gas chromatography-electron impact mass spectrometry (GC-MS) was done. Results GC-MS study showed the presence of 6,9-octadecadiynoic acid (C18:2(6,9)) as a major component (60%) as 4,4-dimethyloxazoline derivative. The total extractable oil with light petroleum ether by Soxhlet from the dry seed of P. granatum was 4-6%. The oil analyzed for 48.90 ± 1.50 mg gallic acid equivalents/g of oil, and demonstrated radical-scavenging-linked antioxidant activities in various in vitro assays like the DPPH (2,2-diphenyl-l-picrylhydrazyl, % IP = 35.2 ± 0.9%), ABTS (2,2'-azino-bis-3-ethylene benzothiozoline-6-sulfonic acid, % IP 2.2 ± 0.1%), and β-carotene bleaching assay (% IP = 26 ± 3%), respectively, which could be due the possible role of one methylene interrupted diynoic acid system for its radical-scavenging/antioxidant properties of oil. The oil also reduced lipid peroxidation, suppressed reactive oxygen species, extracellular nitric oxide, lactate/pyruvate ratio, and lactase dehydrogenase generated by 3-NP- (100 mM) induced neurotoxicity in PC12 cells, and enhanced the levels of enzymatic and non-enzymatic antioxidants at 40 μg of gallic acid equivalents. Conclusion The protective effect of pomegranate seed oil might be due to the ability of an oil to neutralize ROS or enhance the expression of antioxidant gene.

  4. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition.

    PubMed

    Al-Sabahi, Bushra N; Fatope, Majek O; Essa, Musthafa Mohamed; Subash, Selvaraju; Al-Busafi, Saleh N; Al-Kusaibi, Fatma S N; Manivasagam, Thamilarasan

    2014-09-19

    Background Seed oils are used as cosmetics or topical treatment for wounds, allergy, dandruff, and other purposes. Natural antioxidants from plants were recently reported to delay the onset or progress of various neurodegenerative conditions. Over one thousand cultivars of Punica granatum (Punicaceae) are known and some are traditionally used to treat various ailments. Aim The effect of pomegranate oil on 3-nitropropionic acid- (3-NP) induced cytotoxicity in rat pheochromocytoma (PC12) neuronal cells was analyzed in this study. Furthermore, the analysis of unsaturated fatty acid composition of the seed oil of pomegranate by gas chromatography-electron impact mass spectrometry (GC-MS) was done. Results GC-MS study showed the presence of 6,9-octadecadiynoic acid (C18:2(6,9)) as a major component (60%) as 4,4-dimethyloxazoline derivative. The total extractable oil with light petroleum ether by Soxhlet from the dry seed of P. granatum was 4-6%. The oil analyzed for 48.90 ± 1.50 mg gallic acid equivalents/g of oil, and demonstrated radical-scavenging-linked antioxidant activities in various in vitro assays like the DPPH (2,2-diphenyl-l-picrylhydrazyl, % IP = 35.2 ± 0.9%), ABTS (2,2'-azino-bis-3-ethylene benzothiozoline-6-sulfonic acid, % IP 2.2 ± 0.1%), and β-carotene bleaching assay (% IP = 26 ± 3%), respectively, which could be due the possible role of one methylene interrupted diynoic acid system for its radical-scavenging/antioxidant properties of oil. The oil also reduced lipid peroxidation, suppressed reactive oxygen species, extracellular nitric oxide, lactate/pyruvate ratio, and lactase dehydrogenase generated by 3-NP- (100 mM) induced neurotoxicity in PC12 cells, and enhanced the levels of enzymatic and non-enzymatic antioxidants at 40 μg of gallic acid equivalents. Conclusion The protective effect of pomegranate seed oil might be due to the ability of an oil to neutralize ROS or enhance the expression of antioxidant gene. PMID:25238165

  5. Perfluorooctanoic acid induces apoptosis through the p53-dependent mitochondrial pathway in human hepatic cells: a proteomic study.

    PubMed

    Huang, Qingyu; Zhang, Jie; Martin, Francis L; Peng, Siyuan; Tian, Meiping; Mu, Xiaoli; Shen, Heqing

    2013-11-25

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds, and exposure to it has been associated with a number of adverse health effects. However, the molecular mechanisms involved in PFOA toxicity are still not well characterized. In the present study, flow cytometry analysis revealed that PFOA induced oxidative stress, cell cycle arrest and apoptosis in human non-tumor hepatic cells (L-02). Furthermore, we investigated the alterations in protein profile within L-02 cells exposed to PFOA, aiming to explore the mechanisms underlying PFOA hepatotoxicity on the proteome level. Of the 28 proteins showing significant differential expression in response to PFOA, 24 were down-regulated and 4 were up-regulated. This proteomic study proposed that the inhibition of some proteins, including GRP78, HSP27, CTSD and hnRNPC may be involved in the activation of p53, which consequently triggered the apoptotic process in L-02 cells. Induction of apoptosis via the p53-dependent mitochondrial pathway is further suggested as one of the key toxicological events occurring in L-02 cells under PFOA stress. We hope these data will shed new light on the molecular mechanisms responsible for PFOA-mediated toxicity in human liver cells, and from such studies useful biomarkers indicative of PFOA exposure could be developed.

  6. The Na+/H+ Exchanger Controls Deoxycholic Acid-Induced Apoptosis by a H+-Activated, Na+-Dependent Ionic Shift in Esophageal Cells

    PubMed Central

    Goldman, Aaron; Chen, HwuDauRw; Khan, Mohammad R.; Roesly, Heather; Hill, Kimberly A.; Shahidullah, Mohammad; Mandal, Amritlal; Delamere, Nicholas A.; Dvorak, Katerina

    2011-01-01

    Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI) tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA)-induced apoptosis, specifically the role of Na+/H+ exchanger (NHE) and Na+ influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A) to DCA (0.2 mM -0.5 mM) caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na+, subsequent loss of intracellular K+, an increase of Ca2+ and apoptosis. However, ethylisopropyl-amiloride (EIPA), a selective inhibitor of NHE, prevented Na+, K+ and Ca2+ changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na+ levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation). On the contrary, DCA-induced cell death was inhibited by medium with low a Na+ concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na+ influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis. PMID:21887327

  7. Glycyrrhizin attenuates kainic Acid-induced neuronal cell death in the mouse hippocampus.

    PubMed

    Luo, Lidan; Jin, Yinchuan; Kim, Il-Doo; Lee, Ja-Kyeong

    2013-06-01

    Glycyrrhizin (GL), a triterpene that is present in the roots and rhizomes of licorice (Glycyrrhiza glabra), has been reported to have anti-inflammatory and anti-viral effects. Recently, we demonstrated that GL produced the neuroprotective effects with the suppression of microglia activation and proinflammatory cytokine induction in the postischemic brain with middle cerebral artery occlusion (MCAO) in rats and improved motor impairment and neurological deficits. In the present study, we investigated whether GL has a beneficial effect in kainic acid (KA)-induced neuronal death model. Intracerebroventricular (i.c.v.) injection of 0.94 nmole (0.2 µg) of KA produced typical neuronal death in both CA1 and CA3 regions of the hippocampus. In contrast, administration of GL (10 mg/kg, i.p.) 30 min before KA administration significantly suppressed the neuronal death, and this protective effect was more stronger at 50 mg/kg. Moreover, the GL-mediated neuroprotection was accompanied with the suppression of gliosis and induction of proinflammatory markers (COX-2, iNOS, and TNF-α). The anti-inflammatory and anti-excitotoxic effects of GL were verified in LPS-treated primary microglial cultures and in NMDA- or KA-treated primary cortical cultures. Together these results suggest that GL confers the neuroprotection through the mechanism of anti-inflammatory and anti-excitotoxic effects in KA-treated brain. PMID:23833559

  8. Resistance to butyrate impairs bile acid-induced apoptosis in human colon adenocarcinoma cells via up-regulation of Bcl-2 and inactivation of Bax.

    PubMed

    Barrasa, Juan I; Santiago-Gómez, Angélica; Olmo, Nieves; Lizarbe, María Antonia; Turnay, Javier

    2012-12-01

    A critical risk factor in colorectal carcinogenesis and tumor therapy is the resistance to the apoptotic effects of different compounds from the intestinal lumen, among them butyrate (main regulator of colonic epithelium homeostasis). Insensitivity to butyrate-induced apoptosis yields resistance to other agents, as bile acids or chemotherapy drugs, allowing the selective growth of malignant cell subpopulations. Here we analyze bile acid-induced apoptosis in a butyrate-resistant human colon adenocarcinoma cell line (BCS-TC2.BR2) to determine the mechanisms that underlay the resistance to these agents in comparison with their parental butyrate-sensitive BCS-TC2 cells. This study demonstrates that DCA and CDCA still induce apoptosis in butyrate-resistant cells through increased ROS production by activation of membrane-associated enzymes and subsequent triggering of the intrinsic mitochondrial apoptotic pathway. Although this mechanism is similar to that described in butyrate-sensitive cells, cell viability is significantly higher in resistant cells. Moreover, butyrate-resistant cells show higher Bcl-2 levels that confer resistance to bile acid-induced apoptosis sequestering Bax and avoiding Bax-dependent pore formation in the mitochondria. We have confirmed that this resistance is reverted using the Bcl-2 inhibitor ABT-263, thus demonstrating that the lower sensitivity of butyrate-resistant cells to the apoptotic effects of bile acids is mainly due to increased Bcl-2 levels.

  9. Carnosic acid protects SH-SY5Y cells against 6-hydroxydopamine-induced cell death through upregulation of parkin pathway.

    PubMed

    Lin, Chia-Yuan; Tsai, Chia-Wen; Tsai, Chia-Wen

    2016-11-01

    Parkin is a Parkinson's disease (PD)-linked gene that plays an important role in the ubiquitin-proteasome system (UPS). This study explored whether carnosic acid (CA) from rosemary protects against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity via upregulation of parkin in vivo and in vitro. We found that the reduction in proteasomal activity by 6-OHDA was attenuated in SH-SY5Y cells pretreated with 1 μM CA. Immunoblots showed that CA reversed the induction of ubiquitinated protein and the reduction of PTEN-induced putative kinase 1 (PINK1) and parkin protein in 6-OHDA-treated SH-SY5Y cells and rats. Moreover, in a transgenic OW13 Caenorhabditis elegans model of PD that expresses human α-synuclein in muscle cells, CA reduced α-synuclein accumulation in a dose-dependent manner. In cells pretreated with the proteasome inhibitor MG132, CA no longer reversed the 6-OHDA-mediated induction of cleavage of caspase 3 and poly(ADP)-ribose polymerase and no longer reversed the suppression of proteasome activity. When parkin expression was silenced by use of small interfering RNA, the ability of CA to inhibit apoptosis and induce proteasomal activity was significantly reduced. The reduction in 6-OHDA-induced neurotoxicity by CA was associated with the induction of parkin, which in turn upregulated the UPS and then decreased cell death. PMID:27091487

  10. Folic Acid Represses Hypoxia-Induced Inflammation in THP-1 Cells through Inhibition of the PI3K/Akt/HIF-1α Pathway.

    PubMed

    Huang, Xiaoyan; He, Zhiying; Jiang, Xinwei; Hou, Mengjun; Tang, Zhihong; Zhen, Xiaozhou; Liang, Yuming; Ma, Jing

    2016-01-01

    Though hypoxia has been implicated as a cause of inflammation, the underlying mechanism is not well understood. Folic acid has been shown to provide protection against oxidative stress and inflammation in patients with cardiovascular disease and various models approximating insult to tissue via inflammation. It has been reported that hypoxia-induced inflammation is associated with oxidative stress, upregulation of hypoxia-inducible factor 1-alpha (HIF-1α), and production of pro-inflammatory molecules. Whether folic acid protects human monocytic cells (THP-1 cells) against hypoxia-induced damage, however, remains unknown. We used THP-1 cells to establish a hypoxia-induced cellular injury model. Pretreating THP-1 cells with folic acid attenuated hypoxia-induced inflammatory responses, including a decrease in protein and mRNA levels of interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α), coupled with increased levels of IL-10. Folic acid also reduced hypoxia-induced Akt phosphorylation and decreased nuclear accumulation of HIF-1α protein. Both LY294002 (a selective inhibitor of phosphatidyl inositol-3 kinase, PI3K) and KC7F2 (a HIF-1α inhibitor) reduced levels of hypoxia-induced inflammatory cytokines. We also found that insulin (an Akt activator) and dimethyloxallyl glycine (DMOG, a HIF-1α activator) induced over-expression of inflammatory cytokines, which could be blocked by folic acid. Taken together, these findings demonstrate how folic acid attenuates the hypoxia-induced inflammatory responses of THP-1 cells through inhibition of the PI3K/Akt/HIF-1α pathway.

  11. Farnesoid X receptor signal is involved in deoxycholic acid-induced intestinal metaplasia of normal human gastric epithelial cells.

    PubMed

    Li, Shu; Chen, Xin; Zhou, Lu; Wang, Bang-Mao

    2015-11-01

    The farnesoid X receptor (FXR) signaling pathway is known to be involved in the metabolism of bile acid, glucose and lipid. In the present study, we demonstrated that 400 µmol/l deoxycholic acid (DCA) stimulation promotes the proliferation of normal human gastric epithelial cells (GES-1). In addition, DCA activated FXR and increased the expression of intestinal metaplasia genes, including caudal-related homeobox transcription factor 2 (Cdx2) and mucin 2 (MUC2). The treatment of FXR agonist GW4064/antagonist guggulsterone (Gug.) significantly increased/decreased the expression levels of FXR, Cdx2 and MUC2 protein in DCA-induced GES-1 cells. GW4064/Gug. also enhanced/reduced the nuclear factor-κB (NF-κB) activity and binding of the Cdx2 promoter region and NF-κB, the most common subunit p50 protein. Taken together, the results indicated that DCA is capable of modulating the expression of Cdx2 and the downstream MUC2 via the nuclear receptor FXR-NF-κB activity in normal gastric epithelial cells. FXR signaling pathway may therefore be involved in the intestinal metaplasia of human gastric mucosa.

  12. Chebulic acid prevents hepatic fibrosis induced by advanced glycation end-products in LX-2 cell by modulating Nrf2 translocation via ERK pathway.

    PubMed

    Koo, Yun-Chang; Pyo, Min Cheol; Nam, Mi-Hyun; Hong, Chung-Oui; Yang, Sung-Yong; Lee, Kwang-Won

    2016-08-01

    Advanced glycation end-products (AGEs) are formed during normal aging, and at an accelerated rate in metabolic syndrome patients. Nonalcoholic steatohepatitis (NASH) can be caused by the AGEs in plasma, while glyceraldehyde-derived AGEs (glycer-AGEs) are significantly higher in the serum of NASH patients. In this study, we investigated the molecular mechanisms of chebulic acid, isolated from Terminalia chebula Retz., in the inhibition of glycer-AGEs induced production of reactive oxygen species (ROS) and collagen accumulation using the LX-2 cell line. Chebulic acid significantly inhibited the induction of ROS and accumulation of collagen proteins by glycer-AGEs. ERK phosphorylation and total nuclear factor E2-related factor 2 (Nrf2) protein expression were induced by chebulic acid in a dose-dependent manner. Chebulic acid was also found to induce translocation of Nrf2 into the nucleus, which was attenuated by inhibition of ERK phosphorylation through treatment with PD98059. Following translocation of Nrf2, chebulic acid induced the protein expressions of catalytic subunit of γ-glutamylcysteine synthetase and glutathione synthesis. Collagen accumulation was also significantly reduced by chebulic acid treatment. The observed effects of chebulic acid were all inhibited by PD98059 treatment. Taken together, these results suggest that chebulic acid prevents the glycer-AGEs-induced ROS formation of LX-2 cells and collagen accumulation by ERK-phosphorylation-mediated Nrf2 nuclear translocation, which causes upregulation of antioxidant protein production. PMID:27021876

  13. Changes in chromatin structure in NIH 3T3 cells induced by valproic acid and trichostatin A.

    PubMed

    Felisbino, Marina Barreto; Gatti, Maria Silvia Viccari; Mello, Maria Luiza S

    2014-11-01

    Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.

  14. Quinovic acid glycosides purified fraction from Uncaria tomentosa induces cell death by apoptosis in the T24 human bladder cancer cell line.

    PubMed

    Dietrich, Fabrícia; Kaiser, Samuel; Rockenbach, Liliana; Figueiró, Fabrício; Bergamin, Letícia Scussel; da Cunha, Fernanda Monte; Morrone, Fernanda Bueno; Ortega, George González; Battastini, Ana Maria Oliveira

    2014-05-01

    Bladder cancer is the second most prevalent malignancy in the genitourinary tract and remains a therapeutic challenge. In the search for new treatments, researchers have attempted to find compounds with low toxicity. With this goal in mind, Uncaria tomentosa is noteworthy because the bark and root of this species are widely used in traditional medicine and in adjuvant therapy for the treatment of numerous diseases. The objective of this study was to investigate the antitumor effect of one purified bioactive fraction of U.tomentosa bark on cell proliferation in two human bladder cancer cell lines, T24 and RT4. Quinovic acid glycosides purified fraction (QAPF) of U.tomentosa decreased the growth and viability of both T24 and RT4 cell lines. In T24 cells, QAPF induced apoptosis by activating caspase-3 and NF-κB. Further study showed that this fraction does not induce cell cycle arrest and does not alter PTEN and ERK levels. In conclusion, we demonstrated that QAPF of U.tomentosa has a potent inhibitory effect on the growth of human bladder cancer cell lines by inducing apoptosis through modulation of NF-κB, and we suggest that QAPF may become a potential therapeutic agent for the prevention and/or treatment of this cancer.

  15. Inhibitory effect of fangchinoline on excitatory amino acids-induced neurotoxicity in cultured rat cerebellar granule cells.

    PubMed

    Kim, S D; Oh, S K; Kim, H S; Seong, Y H

    2001-04-01

    Glutamate receptors-mediated excitotoxicity is believed to play a role in the pathophysiology of neurodegenerative diseases. The present study was performed to evaluate the inhibitory effect of fangchinoline, a bis-benzylisoquinoline alkaloid, which has a characteristic as a Ca2+ channel blocker, on excitatory amino acids (EAAs)-induced neurotoxicity in cultured rat cerebellar granule neuron. Fangchinoline (1 and 5 microM) inhibited glutamate (1 mM), N-methyl-D-aspartate (NMDA; 1 mM) and kainate (100 microM)-induced neuronal cell death which was measured by trypan blue exclusion test. Fangchinoline (1 and 5 microM) inhibited glutamate release into medium induced by NMDA (1 mM) and kainate (100 microM), which was measured by HPLC. And fangchinoline (5 microM) inhibited glutamate (1 mM)-induced elevation of intracellular calcium concentration. These results suggest that inhibition of Ca2+ influx by fangchinoline may contribute to the beneficial effects on neurodegenerative effect of glutamate in pathophysiological conditions. PMID:11339637

  16. Prostanoid-induced expression of matrix metalloproteinase-1 messenger ribonucleic acid in rat osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Clohisy, J. C.; Connolly, T. J.; Bergman, K. D.; Quinn, C. O.; Partridge, N. C.

    1994-01-01

    Individual prostanoids have distinct potencies in activating intracellular signaling pathways and regulating gene expression in osteoblastic cells. The E-series prostaglandins (PGs) are known to stimulate matrix metalloproteinase-1 (MMP-1) synthesis and secretion in certain rodent and human osteoblastic cells, yet the intracellular events involved remain unclear. To further characterize this response and its signal transduction pathway(s), we examined prostanoid-induced expression of the MMP-1 gene in the rat osteoblastic osteosarcoma cell line UMR 106-01. Northern blot analysis demonstrated that prostaglandin E2 (PGE2) and PGE1 were very potent stimulators (40-fold) of MMP-1 transcript abundance, PGF2 alpha and prostacyclin were weak stimulators (4-fold), and thromboxane-B2 had no effect. The marked increase in MMP-1 transcript abundance after PGE2 treatment was first detected at 2 h, became maximal at 4 h, and persisted beyond 24 h. This response was dose dependent and elicited maximal and half-maximal effects with concentrations of 10(-6) and 0.6 x 10(-7) M, respectively. Cycloheximide, a protein synthesis inhibitor, completely blocked this effect of PGE2, suggesting that the expression of other genes is required. Nuclear run-on experiments demonstrated that PGE2 rapidly activates MMP-1 gene transcription, with a maximal increase at 2-4 h. The second messenger analog, 8-bromo-cAMP, mimicked the effects of PGE2 by stimulating a dose-dependent increase in MMP-1 messenger RNA (mRNA) levels, with a maximal effect quantitatively similar to that observed with PGE2. Thus, in UMR 106-01 cells, different prostanoids have distinct potencies in stimulating MMP-1 mRNA abundance. Our data suggest that PGE2 stimulation of MMP-1 synthesis is due to activation of MMP-1 gene transcription and a subsequent marked increase in MMP-1 mRNA abundance. This effect is dependent on de novo protein synthesis and is mimicked by protein kinase-A activation.

  17. Pancreatic cancer-specific cell death induced in vivo by cytoplasmic-delivered polyinosine-polycytidylic acid

    PubMed Central

    Bhoopathi, Praveen; Quinn, Bridget A.; Gui, Qin; Shen, Xue-Ning; Grossman, Steven R.; Das, Swadesh K.; Sarkar, Devanand; Fisher, Paul B.; Emdad, Luni

    2014-01-01

    Polyinosine-polycytidylic acid (pIC) is a synthetic dsRNA that acts as an immune agonist of TLR3 and RLR to activate dendritic and NK cells that can kill tumor cells. pIC can also trigger apoptosis in pancreatic ductal adenocarcinoma cells but its mechanism of action is obscure. In this study, we investigated the potential therapeutic activity of a formulation of pIC with polyethylenimine ([pIC]PEI) in PDAC and investigated its mechanism of action. [pIC]PEI stimulated apoptosis in PDAC cells without affecting normal pancreatic epithelial cells. Mechanistically, [pIC]PEI repressed XIAP and survivin expression and activated an immune response by inducing MDA-5, RIG-I and NOXA. Phosphorylation of AKT was inhibited by [pIC]PEI in PDAC and this event was critical for stimulating apoptosis through XIAP and survivin degradation. In vivo administration of [pIC]PEI inhibited tumor growth via AKT-mediated XIAP degradation in both subcutaneous and quasi-orthotopic-models of PDAC. Taken together, these results offer a preclinical proof-of-concept for the evaluation of [pIC]PEI as an immunochemotherapy to treat pancreatic cancer. PMID:25205107

  18. Lipoapoptosis induced by saturated free fatty acids stimulates monocyte migration: a novel role for Pannexin1 in liver cells.

    PubMed

    Xiao, Feng; Waldrop, Shar L; Bronk, Steve F; Gores, Gregory J; Davis, Laurie S; Kilic, Gordan

    2015-09-01

    Recruitment of monocytes in the liver is a key pathogenic feature of hepatic inflammation in nonalcoholic steatohepatitis (NASH), but the mechanisms involved are poorly understood. Here, we studied migration of human monocytes in response to supernatants obtained from liver cells after inducing lipoapoptosis with saturated free fatty acids (FFA). Lipoapoptotic supernatants stimulated monocyte migration with the magnitude similar to a monocyte chemoattractant protein, CCL2 (MCP-1). Inhibition of c-Jun NH2-terminal kinase (JNK) in liver cells with SP600125 blocked migration of monocytes in a dose-dependent manner, indicating that JNK stimulates release of chemoattractants in lipoapoptosis. Notably, treatment of supernatants with Apyrase to remove ATP potently inhibited migration of THP-1 monocytes and partially blocked migration of primary human monocytes. Inhibition of the CCL2 receptor (CCR2) on THP-1 monocytes with RS102895, a specific CCR2 inhibitor, did not block migration induced by lipoapoptotic supernatants. Consistent with these findings, lipoapoptosis stimulated pathophysiological extracellular ATP (eATP) release that increased supernatant eATP concentration from 5 to ~60 nM. Importantly, inhibition of Panx1 expression in liver cells with short hairpin RNA (shRNA) decreased supernatant eATP concentration and inhibited monocyte migration, indicating that monocyte migration is mediated in part by Panx1-dependent eATP release. Moreover, JNK inhibition decreased supernatant eATP concentration and inhibited Pannexin1 activation, as determined by YoPro-1 uptake in liver cells in a dose-dependent manner. These results suggest that JNK regulates activation of Panx1 channels, and provide evidence that Pannexin1-dependent pathophysiological eATP release in lipoapoptosis is capable of stimulating migration of human monocytes, and may participate in the recruitment of monocytes in chronic liver injury induced by saturated FFA.

  19. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age.

    PubMed

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Tran, Alexander; Sundaram, Padmaja; Agrawal, Anshu

    2016-06-01

    Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141(hi), GARP(+) DCs displayed enhanced capacity to induce T regulatory cells compared to CD141(lo) and GARP(-) DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141(hi), GARP(+) DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases. PMID:27244900

  20. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age

    PubMed Central

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Tran, Alexander; Sundaram, Padmaja; Agrawal, Anshu

    2016-01-01

    Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141hi, GARP+ DCs displayed enhanced capacity to induce T regulatory cells compared to CD141lo and GARP− DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141hi, GARP+ DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases. PMID:27244900

  1. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age.

    PubMed

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Tran, Alexander; Sundaram, Padmaja; Agrawal, Anshu

    2016-06-01

    Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141(hi), GARP(+) DCs displayed enhanced capacity to induce T regulatory cells compared to CD141(lo) and GARP(-) DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141(hi), GARP(+) DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases.

  2. Protective effects of Semen Crotonis Pulveratum on trinitrobenzene sulphonic acid-induced colitis in rats and H₂O₂-induced intestinal cell apoptosis in vitro.

    PubMed

    Wang, Xiaohong; Zhao, Jie; Han, Zhe; Tang, Fang

    2015-06-01

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease. Semen Crotonis Pulveratum (SCP) has been used as a traditional medicine for the treatment of UC. However, its molecular mechanisms of action have not yet been elucidated. In the present study, we aimed to investigate the preliminary mechanisms of the role of SCP on trinitrobenzene sulphonic acid (TNBS)-induced UC in rats and hydrogen peroxide (H2O2)-induced intestinal cell apoptosis in vitro. Wistar rats (n=9 per group) were randomly divided into 4 groups: the normal control group, the UC group, the UC + SCP group and the UC + sulfasalazine group as a positive control. The proportion of CD4+CD25+ T cells and CD4+CD25+Foxp3+ Tregs, and the expression levels of interleukin (IL)-6 and IL-10 in the peripheral blood, as well as the expression levels of cyclooxygenase-2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1) in the colon tissues were determined by flow cytometry, ELISA and immunohistochemical staining, respectively. Rat intestinal epithelial (IEC-6) cell apoptosis induced by H2O2 was determined by TUNEL assay, flow cytometry using Annexin V/propidium iodide (PI) staining and western blot analysis of caspase-3 activation, respectively. Significantly higher proportions of circulating CD4+CD25+ T cells and CD4+CD25+Foxp3+ Tregs were present in the UC + SCP group compared with the UC group. A significantly decreased expression of IL-6 and an increased expression of IL-10 were also observed in the UC + SCP group compared with UC group. SCP significantly reduced the UC-induced increase in the expression of COX-2 and ICAM-1 in the colon tissues. SCP inhibited cell apoptosis and caspase-3 activation induced by H2O2 in the ICE-6 cells. Our data thus indicate that SCP inhibits inflammation in UC by increasing the proportion of circulating Tregs, altering cytokine production and decreasing COX-2 and ICAM-1 expression. In addition it protects against H2O2-induced intestinal cell apoptosis in vitro.

  3. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity. PMID:26096890

  4. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity.

  5. Selective repression of retinoic acid target genes by RIP140 during induced tumor cell differentiation of pluripotent human embryonal carcinoma cells

    PubMed Central

    Heim, Kelly C; White, Kristina A; Deng, Dexin; Tomlinson, Craig R; Moore, Jason H; Freemantle, Sarah J; Spinella, Michael J

    2007-01-01

    Background The use of retinoids as anti-cancer agents has been limited due to resistance and low efficacy. The dynamics of nuclear receptor coregulation are incompletely understood. Cell-and context-specific activities of nuclear receptors may be in part due to distinct coregulator complexes recruited to distinct subsets of target genes. RIP140 (also called NRIP1) is a ligand-dependent corepressor that is inducible with retinoic acid (RA). We had previously shown that RIP140 limits RA induced tumor cell differentiation of embryonal carcinoma; the pluriopotent stem cells of testicular germ cell tumors. This implies that RIP140 represses key genes required for RA-mediated tumor cell differentiation. Identification of these genes would be of considerable interest. Results To begin to address this issue, microarray technology was employed to elucidate in a de novo fashion the global role of RIP140 in RA target gene regulation of embryonal carcinoma. Subclasses of genes were affected by RIP140 in distinct manners. Interestingly, approximately half of the RA-dependent genes were unaffected by RIP140. Hence, RIP140 appears to discriminate between different classes of RA target genes. In general, RIP140-dependent gene expression was consistent with RIP140 functioning to limit RA signaling and tumor cell differentiation. Few if any genes were regulated in a manner to support a role for RIP140 in "active repression". We also demonstrated that RIP140 silencing sensitizes embryonal carcinoma cells to low doses of RA. Conclusion Together the data demonstrates that RIP140 has profound effects on RA-mediated gene expression in this cancer stem cell model. The RIP140-dependent RA target genes identified here may be particularly important in mediating RA-induced tumor cell differentiation and the findings suggest that RIP140 may be an attractive target to sensitize tumor cells to retinoid-based differentiation therapy. We discuss these data in the context of proposed models of RIP

  6. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells.

    PubMed

    Kim, Mina; Choi, Sang-Yoon; Lee, Pyeongjae; Hur, Jinyoung

    2015-09-01

    Microglia is the resident innate immune cells that sense pathogens and tissue injury in the central nervous system. Microglia becomes activated in response to injury, infection, and other stimuli that threaten neuronal survival. Microglia activation plays an important role in neurodegenerative diseases. Neochlorogenic acid (NCA) is a natural polyphenolic compound found in dried fruits and other plants. Although previous studies have shown that phenolic acids including NCA have outstanding antioxidant, antibacterial, antiviral, and antipyretic activities, there has not yet been investigated for anti-inflammatory effects. Therefore, for the first time we have examined the potential of NCA to inhibit microglial activation and pro-inflammatory responses in the brain. We found that lipopolysaccharide-induced inducible nitric oxide synthase, and cyclooxygenase-2 expression, and nitric oxide formation was suppressed by NCA in a dose-dependent manner in BV2 microglia. NCA also inhibited the production of pro-inflammatory mediators, tumor necrosis factor-α and interleukin-1 beta. Furthermore, phosphorylated nuclear factor-kappa B p65 and p38 mitogen-activated protein kinase activation were blocked by NCA. Taken together, these results suggest that NCA exerts neuroprotective effects through the inhibition of pro-inflammatory pathways in activated microglia.

  7. Photodynamic therapy with 5-aminoolevulinic acid-induced porphyrins and DMSO/EDTA for basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Warloe, Trond; Peng, Qian; Heyerdahl, Helen; Moan, Johan; Steen, Harald B.; Giercksky, Karl-Erik

    1995-03-01

    Seven hundred sixty three basal cell carcinomas (BCCs) in 122 patients were treated by photodynamic therapy by 5-aminolevulinic acid (ALA) in cream topically applied, either alone, in combination with dimethyl sulphoxide (DMSO) and ethylenediaminetetraacetic acid disodium salt (EDTA), or with DMSO as a pretreatment. After 3 hours cream exposure 40 - 200 Joules/cm2 of 630 nm laser light was given. Fluorescence imaging of biopsies showed highly improved ALA penetration depth and doubled ALA-induced porphyrin production using DMSO/EDTA. Treatment response was recorded after 3 months. After a single treatment 90% of 393 superficial lesions responded completely, independent of using DMSO/EDTA. In 363 nodulo-ulcerative lesions the complete response rate increased from 67% to above 90% with DMSO/EDTA for lesions less than 2 mm thickness and from 34% to about 50% for lesions thicker than 2 mm. Recurrence rate observed during a follow-up period longer than 12 months was 2 - 5%. PDT of superficial thin BCCs with ALA-induced porphyrins and DMSO/EDTA equals surgery and radiotherapy with respect to cure rate and recurrence. Cosmetic results of ALA-based PDT seemed to be better than those after other therapies. In patients with the nevoid BCC syndrome the complete response rate after PDT was far lower.

  8. Lactic acid fermentation of germinated barley fiber and proliferative function of colonic epithelial cells in loperamide-induced rats.

    PubMed

    Jeon, Jeong Ryae; Choi, Joon Hyuk

    2010-08-01

    To develop a functional food from the dietary fiber fraction of germinated barley (Hordeum vulgare L.) (GBF), lactic acid fermentation was attempted using Lactobacillus acidophilus, Streptococcus thermophilus, and Bifidobacterium bifidus. The quality characteristics of the lactic acid-fermented product and its effect on gastrointestinal function in an animal model were examined. The anaerobic fermentation of 1% and 2% GBF yielded lactic acid bacteria at 8.9 +/- 1.0 x 10(8) and 1.6 +/- 0.2 x 10(9) colony-forming units/mL, and it was considered acceptable for consumption by sensory assessment. To determine the effect on gastrointestinal function, Sprague-Dawley rats were fed with three types of diets: a normal chow diet and chow diets supplemented with 10% lactic acid bacteria or a yogurt fermented with 2% GBF (GBFY). The rats fed GBFY for 6 weeks gained less body weight, excreted more fecal mass, and had improved gastrointestinal transit as examined with barium sulfate. The effect of GBFY on colonic epithelial proliferation was investigated through loperamide (LPM)-induced constipation in rats. The rats fed with GBFY for 6 weeks were intraperitoneally administered LPM twice daily for 7 days. GBFY supplementation decreased fecal excretion and moisture content in feces and depleted goblet cells as observed by hematoxylin and eosin stain. However, the rats supplemented with GBFY prior to the LPM administration had enhanced bowel movement, mucin secretion, and production of short-chain fatty acids compared with values for the LPM-alone group. Immunohistochemistry revealed that the GBFY supplement increased the numbers of nuclei stained positively for Ki-67 and extended from the base to the middle zone of crypts. These results indicate that GBFY alleviates constipation via the proliferation of the colonic crypts in LPM-administered rats.

  9. Evidence for messenger ribonucleic acid of an ammonium-inducible glutamate dehydrogenase and synthesis, covalent modification, and degradation of enzyme subunits in uninduced Chlorella sorokiniana cells.

    PubMed Central

    Turner, K J; Bascomb, N F; Lynch, J J; Molin, W T; Thurston, C F; Schmidt, R R

    1981-01-01

    The cells of Chlorella sorokiniana cultured in nitrate medium contain no detectable catalytic activity of an ammonium-inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH). However, several lines of experimental evidence indicated that the NADP-GDH messenger ribonucleic acid was present at high levels and was being translated in uninduced cells. First, binding studies with 125I-labeled anti-NADP-GDH immunoglobulin G and total polysomes isolated from uninduced and induced cells showed that NADP-GDH subunits were being synthesized on polysomes from both types of cells. Second, when polyadenylic acid-containing ribonucleic acid was extracted from polysomes from uninduced and induced cells and placed into a messenger ribonucleic acid-dependent in vitro translation system, NADP-GDH subunits were synthesized from the ribonucleic acid from both sources. Third, when ammonia was added to uninduced cells, NADP-GDH antigen accumulated without an apparent induction lag. Fourth, by use of a specific immunoprecipitation procedure coupled to pulse-chase studies with [35S]sulfate, it was shown that the NADP-GDH subunits are rapidly synthesized, covalently modified, and then degraded in uninduced cells. PMID:7217012

  10. Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction.

    PubMed

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Sarma, Birinchi Kumar; Singh, Harikesh Bahadur

    2015-05-01

    Oxalic acid (OA) is an important pathogenic factor during early Sclerotinia sclerotiorum-host interaction and might work by reducing hydrogen peroxide production (H2 O2 ). In the present investigation, oxalic acid-induced cell death in pea was studied. Pea plants treated with biocontrol agents (BCAs) viz., Pseudomonas aeruginosa PJHU15, Bacillus subtilis BHHU100, and Trichoderma harzianum TNHU27 either singly and/or in consortium acted on S. sclerotiorum indirectly by enabling plants to inhibit the OA-mediated suppression of oxidative burst via induction of H2 O2 . Our results showed that BCA treated plants upon treatment with culture filtrate of the pathogen, conferred the resistance via. significantly decreasing relative cell death of pea against S. sclerotiorum compared to control plants without BCA treatment but treated with the culture filtrate of the pathogen. The results obtained from the present study indicate that the microbes especially in consortia play significant role in protection against S. sclerotiorum by modulating oxidative burst and partially enhancing tolerance by increasing the H2 O2 generation, which is otherwise suppressed by OA produced by the pathogen.

  11. Cichoric Acid Reverses Insulin Resistance and Suppresses Inflammatory Responses in the Glucosamine-Induced HepG2 Cells.

    PubMed

    Zhu, Di; Wang, Yutang; Du, Qingwei; Liu, Zhigang; Liu, Xuebo

    2015-12-30

    Cichoric acid, a caffeic acid derivative found in Echinacea purpurea, basil, and chicory, has been reported to have bioactive effects, such as anti-inflammatory, antioxidant, and preventing insulin resistance. In this study, to explore the effects of CA on regulating insulin resistance and chronic inflammatory responses, the insulin resistance model was constructed by glucosamine in HepG2 cells. CA stimulated glucosamine-mediated glucose uptake by stimulating translocation of the glucose transporter 2. Moreover, the production of reactive oxygen, the expression of COX-2 and iNOS, and the mRNA levels of TNF-α and IL-6 were attenuated. Furthermore, CA was verified to promote glucosamine-mediated glucose uptake and inhibited inflammation through PI3K/Akt, NF-κB, and MAPK signaling pathways in HepG2 cells. These results implied that CA could increase glucose uptake, improve insulin resistance, and attenuate glucosamine-induced inflammation, suggesting that CA is a potential natural nutraceutical with antidiabetic properties and anti-inflammatory effects. PMID:26592089

  12. Cytochrome c Trp65Ser substitution results in inhibition of acetic acid-induced programmed cell death in Saccharomyces cerevisiae.

    PubMed

    Guaragnella, Nicoletta; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2011-11-01

    To gain further insight into the role of cytochrome c (cyt c) in yeast programmed cell death induced by acetic acid (AA-PCD), comparison was made between wild type and two mutant cells, one lacking cyt c and the other (W65Scyc1) expressing a mutant iso-1-cyt c in a form unable to reduce cyt c oxidase, with respect to occurrence of AA-PCD, cyt c release, ROS production and caspase-like activity. We show that in W65Scyc1 cells: i. no release of mutant cyt c occurs with inhibition of W65Scyc1 cell AA-PCD shown to be independent on impairment of electron flow, ii. there is a decrease in ROS production and an increase in caspase-like activity. We conclude that cyt c release does not depend on cyt c function as an electron carrier and that when still associated to the mitochondrial membrane, cyt c in its reduced form has a role in AA-PCD, by regulating ROS production and caspase-like activity. PMID:21907312

  13. Oleanolic Acid Induces Differentiation of Neural Stem Cells to Neurons: An Involvement of Transcription Factor Nkx-2.5

    PubMed Central

    Ning, You; Huang, Jianhua; Kalionis, Bill; Bian, Qin; Dong, Jingcheng; Wu, Junzhen; Tai, Xiantao; Xia, Shijin; Shen, Ziyin

    2015-01-01

    Neural stem cells (NSCs) harbor the potential to differentiate into neurons, astrocytes, and oligodendrocytes under normal conditions and/or in response to tissue damage. NSCs open a new way of treatment of the injured central nervous system and neurodegenerative disorders. Thus far, few drugs have been developed for controlling NSC functions. Here, the effect as well as mechanism of oleanolic acid (OA), a pentacyclic triterpenoid, on NSC function was investigated. We found OA significantly inhibited neurosphere formation in a dose-dependent manner and achieved a maximum effect at 10 nM. OA also reduced 5-ethynyl-2′-deoxyuridine (EdU) incorporation into NSCs, which was indicative of inhibited NSC proliferation. Western blotting analysis revealed the protein levels of neuron-specific marker tubulin-βIII (TuJ1) and Mash1 were increased whilst the astrocyte-specific marker glial fibrillary acidic protein (GFAP) decreased. Immunofluorescence analysis showed OA significantly elevated the percentage of TuJ1-positive cells and reduced GFAP-positive cells. Using DNA microarray analysis, 183 genes were differentially regulated by OA. Through transcription factor binding site analyses of the upstream regulatory sequences of these genes, 87 genes were predicted to share a common motif for Nkx-2.5 binding. Finally, small interfering RNA (siRNA) methodology was used to silence Nkx-2.5 expression and found silence of Nkx-2.5 alone did not change the expression of TuJ-1 and the percentage of TuJ-1-positive cells. But in combination of OA treatment and silence of Nkx-2.5, most effects of OA on NSCs were abolished. These results indicated that OA is an effective inducer for NSCs differentiation into neurons at least partially by Nkx-2.5-dependent mechanism. PMID:26240574

  14. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    PubMed

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury.

  15. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression.

    PubMed

    Wu, Di; Xu, Jiao; Song, Erbao; Tang, Shu; Zhang, Xiaohui; Kemper, N; Hartung, J; Bao, Endong

    2015-07-01

    We investigated whether acetyl salicylic acid (ASA) protects chicken myocardial cells from heat stress-mediated damage in vivo and whether the induction of Hsp27 expression is connected with this function. Pathological changes, damage-related enzyme levels, and Hsp27 expression were studied in chickens following heat stress (40 ± 1 °C for 0, 1, 2, 3, 5, 7, 10, 15, or 24 h, respectively) with or without ASA administration (1 mg/kg BW, 2 h prior). Appearance of pathological lesions such as degenerations and karyopyknosis as well as the myocardial damage-related enzyme activation indicated that heat stress causes considerable injury to the myocardial cells in vivo. Myocardial cell injury was most serious in chickens exposed to heat stress without prior ASA administration; meanwhile, ASA pretreatment acted protective function against high temperature-induced injury. Hsp27 expression was induced under all experimental conditions but was one-fold higher in the ASA-pretreated animals (0.3138 ± 0.0340 ng/mL) than in untreated animals (0.1437 ± 0.0476 ng/mL) 1 h after heat stress exposure, and such an increase was sustained over the length of the experiment. Our findings indicate that pretreatment with ASA protects chicken myocardial cells from acute heat stress in vivo with almost no obvious side effects, and this protection may involve an enhancement of Hsp27 expression. However, the detailed mechanisms underlying this effect require further investigation.

  16. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression.

    PubMed

    Zhang, Jingcheng; Gao, Yang; Yu, Mengying; Wu, Haibo; Ai, Zhiying; Wu, Yongyan; Liu, Hongliang; Du, Juan; Guo, Zekun; Zhang, Yong

    2015-01-01

    Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.

  17. Nonesterified Fatty Acid-Induced Endoplasmic Reticulum Stress in Cattle Cumulus Oocyte Complexes Alters Cell Metabolism and Developmental Competence.

    PubMed

    Sutton-McDowall, Melanie L; Wu, Linda L Y; Purdey, Malcolm; Abell, Andrew D; Goldys, Ewa M; MacMillan, Keith L; Thompson, Jeremy G; Robker, Rebecca L

    2016-01-01

    Reduced oocyte quality has been associated with poor fertility of high-performance dairy cows during peak lactation, due to negative energy balance. We examined the role of nonesterified fatty acids (NEFAs), known to accumulate within follicular fluid during under- and overnutrition scenarios, in causing endoplasmic reticulum (ER) stress of in vitro maturated cattle cumulus-oocyte complexes (COCs). NEFA concentrations were: palmitic acid (150 μM), oleic acid (200 μM), and steric acid (75 μM). Abattoir-derived COCs were randomly matured for 24 h in the presence of NEFAs and/or an ER stress inhibitor, salubrinal. Total and hatched blastocyst yields were negatively impacted by NEFA treatment compared with controls, but this was reversed by salubrinal. ER stress markers, activating transcription factor 4 (Atf4) and heat shock protein 5 (Hspa5), but not Atf6, were significantly up-regulated by NEFA treatment within whole COCs but reversed by coincubation with salubrinal. Likewise, glucose uptake and lactate production, measured in spent medium samples, showed a similar pattern, suggesting that cumulus cell metabolism is sensitive to NEFAs via an ER stress-mediated process. In contrast, while mitochondrial DNA copy number was recovered in NEFA-treated oocytes, oocyte autofluorescence of the respiratory chain cofactor, FAD, was lower following NEFA treatment of COCs, and this was not reversed by salubrinal, suggesting the negative impact was via reduced mitochondrial function. These results reveal the significance of NEFA-induced ER stress on bovine COC developmental competence, revealing a potential therapeutic target for improving oocyte quality during peak lactation. PMID:26658709

  18. Trivalent chromium alleviates oleic acid induced steatosis in SMMC-7721 cells by decreasing fatty acid uptake and triglyceride synthesis.

    PubMed

    Wang, Song; Wang, Jian; Zhang, Xiaonan; Hu, Linlin; Fang, Zhijia; Huang, Zhiwei; Shi, Ping

    2016-10-01

    Trivalent chromium [Cr(III)] has been shown as an essential trace element for human health. Previous studies depict that Cr(III) plays important roles in maintaining normal glucose and lipid metabolism, whereas its effect on the hepatic lipid metabolism is still unknown. In the present study, we investigated the effects and underlying mechanisms of Cr on hepatic steatosis induced by oleic acid (OA) in human hepatoma SMMC-7721 cells. Hepatic steatosis model was co-administered with Cr. Indexes of lipid accumulation were determined and associated genes expression were analyzed. The data showed that OA could induce lipid accumulation and triglyceride (TG) content in SMMC-7721 cells, and significantly increase the expression of cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase 2 (DGAT2). This steatosis effect of OA was ameliorated by Cr. The TG accumulation and up-regulation of CD36 and DGAT2 genes followed steatosis induction were inhibited by Cr. After the treatment of Cr, excessive intracellular OA content was also attenuated. Furthermore, Cr still performed inhibitory effect of DGAT2 expression at the presence of DGAT2 agonist or inhibitor, which indicated that the inhibitory effect of Cr on lipogenesis is associated with the downregulation of DGAT2 expression. These findings demonstrate that Cr alleviates hepatic steatosis via suppressing CD36 expression to prevent fatty acid uptake, as well as suppressing DGAT2 expression to inhibit TG synthesis. It suggests that CD36 and DGAT2 might become the novel drug targets for their properties in hepatic steatosis. Most importantly, Cr may be a potential anti-steatosis candidate to offer protective effects against liver damage. PMID:27497686

  19. Akt-dependent NF-kappaB activation is required for bile acids to rescue colon cancer cells from stress-induced apoptosis.

    PubMed

    Shant, Jasleen; Cheng, Kunrong; Marasa, Bernard S; Wang, Jian-Ying; Raufman, Jean-Pierre

    2009-02-01

    Conjugated secondary bile acids promote human colon cancer cell proliferation by activating EGF receptors (EGFR). We hypothesized that bile acid-induced EGFR activation also mediates cell survival by downstream Akt-regulated activation of NF-kappaB. Deoxycholyltaurine (DCT) treatment attenuated TNF-alpha-induced colon cancer cell apoptosis, and stimulated rapid and sustained NF-kappaB nuclear translocation and transcriptional activity (detected by NF-kappaB binding to an oligonucleotide consensus sequence and by activation of luciferase reporter gene constructs). Both DCT-induced NF-kappaB nuclear translocation and attenuation of TNF-alpha-stimulated apoptosis were dependent on EGFR activation. Inhibitors of nuclear translocation, proteosome activity, and IkappaBalpha kinase attenuated NF-kappaB transcriptional activity. Cell transfection with adenoviral vectors encoding a non-degradable IkappaBalpha 'super-repressor' blocked the actions of DCT on both NF-kappaB activation and TNF-alpha-induced apoptosis. Likewise, transfection with mutant akt and treatment with a chemical inhibitor of Akt attenuated effects of DCT on NF-kappaB transcriptional activity and TNF-alpha-induced apoptosis. Chemical inhibitors of Akt and NF-kappaB activation also attenuated DCT-induced rescue of H508 cells from ultraviolet radiation-induced apoptosis. Collectively, these observations indicate that, downstream of EGFR, bile acid-induced colon cancer cell survival is mediated by Akt-dependent NF-kappaB activation. These findings provide a mechanism whereby bile acids increase resistance of colon cancer to chemotherapy and radiation.

  20. Prophylactic role of D-Saccharic acid-1,4-lactone in tertiary butyl hydroperoxide induced cytotoxicity and cell death of murine hepatocytes via mitochondria-dependent pathways.

    PubMed

    Bhattacharya, Semantee; Chatterjee, Srabasti; Manna, Prasenjit; Das, Joydeep; Ghosh, Jyotirmoy; Gachhui, Ratan; Sil, Parames C

    2011-01-01

    D-Saccharic acid 1,4-lactone (DSL) is a derivative of D-glucaric acid. It is a beta-glucuronidase inhibitor and possesses anticarcinogenic, detoxifying, and antioxidant properties. In the present study, the protective effects of DSL were investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death in vitro using murine hepatocytes. Exposure of TBHP caused a reduction in cell viability, enhanced the membrane leakage, and disturbed the intracellular antioxidant machineries in murine hepatocytes. Investigating the signaling mechanism of TBHP-induced cellular pathophysiology and protective action of DSL, we found that TBHP exposure disrupted mitochondrial membrane potential, facilitated cytochrome c release in the cytosol, and led to apoptotic cell death via mitochondria-dependent pathways. DSL counteracted these changes and maintained normalcy in hepatocytes. Combining, results suggest that DSL possesses the ability to ameliorate TBHP-induced oxidative insult, cytotoxicity, and apoptotic cell death probably due to its antioxidant activity and functioning via mitochondria-dependent pathways.

  1. Gambogic acid induces apoptosis and sensitizes TRAIL-mediated apoptosis through downregulation of cFLIPL in renal carcinoma Caki cells.

    PubMed

    Jang, Ji Hoon; Kim, Joo-Young; Sung, Eon-Gi; Kim, Eun-Ae; Lee, Tae-Jin

    2016-01-01

    Gambogic acid (GA) is a natural compound derived from brownish gamboge resin that shows a range of bioactivity, such as antitumor and antimicrobial properties. Although, GA is already known to induce cell death in a variety of cancer cells, the molecular basis for GA-induced cell death in renal cancer cells is unclear. In this study, a treatment with GA induced cell death in human renal carcinoma Caki cells in a dose-dependent manner. Treatment of Caki cells with GA decreased the levels of antiapoptotic proteins, such as Bcl-2 and XIAP in a dose-dependent manner. In addition, GA decreased the expression of the cFLIPL protein, which was downregulated at the transcriptional level without any change in the levels of cFLIPs expression. z-VAD (pan-caspase inhibitor) partially blocked GA-mediated cell death. GA-induced apoptotic cell death in Caki cells is mediated partly by the AIF translocation from the mitochondria into the nucleus via a caspase-independent pathway. In contrast, N-acetylcysteine (NAC), a ROS scavenger, had no effect on GA-induced cell death. The restoration of cFLIPL attenuated GA-induced cell death in Caki cells. Furthermore, a sub-toxic dose of GA sensitized TRAIL-mediated apoptosis in Caki cells. Pretreatment with z-VAD completely blocked GA plus TRAIL-mediated apoptosis. On the contrary, pretreatment with NAC partially inhibited GA plus TRAIL-induced apoptosis. Our findings suggested that GA induces apoptosis via the downregulation of cFLIPL and sensitized TRAIL-mediated apoptosis in Caki cells. PMID:26648023

  2. Bile acids but not acidic acids induce Barrett's esophagus.

    PubMed

    Sun, Dongfeng; Wang, Xiao; Gai, Zhibo; Song, Xiaoming; Jia, Xinyong; Tian, Hui

    2015-01-01

    Barrett's esophagus (BE) is associated with the development of esophageal adenocarcinoma (EAC). Bile acids (BAs) refluxing into the esophagus contribute to esophageal injury, which results in BE and subsequent EAC. We developed two animal models to test the role of BAs in the pathogenesis of BE. We surgically generated BA reflux, with or without gastric acid, in rats. In a second experiment, we fed animals separately with BAs and gastric acid. Pathologic changes were examined and the expression of Muc2 and Cdx2 in BE tissue was tested by immunostaining. Inflammatory factors in the plasma, as well as differentiation genes in BE were examined through highly sensitive ELISA and semi-quantitative RT-PCR techniques. We found that BAs are sufficient for the induction of esophagitis and Barrett's-like metaplasia in the esophagus. Overexpression of inflammatory cells, IL-6, and TNF-α was observed both in animals fed with BAs and surgically generated BA reflux. Furthermore, elevated levels of Cdx2, Muc2, Bmp4, Kit19, and Tff2 (differentiation genes in BE) were found in BA-treated rats. In conclusion, BAs, but not gastric acid, are a major causative factor for BE. We confirmed that BAs contribute to the development of BE by inducing the inflammatory response in the esophagus. Inhibiting BAs may be a promising therapy for BE.

  3. Normalizing Microbiota-Induced Retinoic Acid Deficiency Stimulates Protective CD8(+) T Cell-Mediated Immunity in Colorectal Cancer.

    PubMed

    Bhattacharya, Nupur; Yuan, Robert; Prestwood, Tyler R; Penny, Hweixian Leong; DiMaio, Michael A; Reticker-Flynn, Nathan E; Krois, Charles R; Kenkel, Justin A; Pham, Tho D; Carmi, Yaron; Tolentino, Lorna; Choi, Okmi; Hulett, Reyna; Wang, Jinshan; Winer, Daniel A; Napoli, Joseph L; Engleman, Edgar G

    2016-09-20

    Although all-trans-retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA. Inhibition of atRA signaling promoted tumorigenesis, whereas atRA supplementation reduced tumor burden. The benefit of atRA treatment was mediated by cytotoxic CD8(+) T cells, which were activated due to MHCI upregulation on tumor cells. Consistent with these findings, increased colonic expression of the atRA-catabolizing enzyme, CYP26A1, correlated with reduced frequencies of tumoral cytotoxic CD8(+) T cells and with worse disease prognosis in human CRC. These results reveal a mechanism by which microbiota drive colon carcinogenesis and highlight atRA metabolism as a therapeutic target for CRC.

  4. Normalizing Microbiota-Induced Retinoic Acid Deficiency Stimulates Protective CD8(+) T Cell-Mediated Immunity in Colorectal Cancer.

    PubMed

    Bhattacharya, Nupur; Yuan, Robert; Prestwood, Tyler R; Penny, Hweixian Leong; DiMaio, Michael A; Reticker-Flynn, Nathan E; Krois, Charles R; Kenkel, Justin A; Pham, Tho D; Carmi, Yaron; Tolentino, Lorna; Choi, Okmi; Hulett, Reyna; Wang, Jinshan; Winer, Daniel A; Napoli, Joseph L; Engleman, Edgar G

    2016-09-20

    Although all-trans-retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA. Inhibition of atRA signaling promoted tumorigenesis, whereas atRA supplementation reduced tumor burden. The benefit of atRA treatment was mediated by cytotoxic CD8(+) T cells, which were activated due to MHCI upregulation on tumor cells. Consistent with these findings, increased colonic expression of the atRA-catabolizing enzyme, CYP26A1, correlated with reduced frequencies of tumoral cytotoxic CD8(+) T cells and with worse disease prognosis in human CRC. These results reveal a mechanism by which microbiota drive colon carcinogenesis and highlight atRA metabolism as a therapeutic target for CRC. PMID:27590114

  5. Glycolic Acid Silences Inflammasome Complex Genes, NLRC4 and ASC, by Inducing DNA Methylation in HaCaT Cells.

    PubMed

    Tang, Sheau-Chung; Yeh, Jih-I; Hung, Sung-Jen; Hsiao, Yu-Ping; Liu, Fu-Tong; Yang, Jen-Hung

    2016-03-01

    AHAs (α-hydroxy acids), including glycolic acid (GA), have been widely used in cosmetic products and superficial chemical peels. Inflammasome complex has been shown to play critical roles in inflammatory pathways in human keratinocytes. However, the anti-inflammatory mechanism of GA is still unknown. The aim of this study is to investigate the relationship between the expression of the inflammasome complex and epigenetic modification to elucidate the molecular mechanism of the anti-inflammatory effect of GA in HaCaT cells. We evaluated NLRP3, NLRC4, AIM2, and ASC inflammasome complex gene expression on real-time polymerase chain reaction (PCR). Methylation changes were detected in these genes following treatment with DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza) with or without the addition of GA using methylation-specific PCR (MSP). GA inhibited the expressions of these inflammasome complex genes, and the decreases in the expressions of mRNA were reversed by 5-Aza treatment. Methylation was detected in NLRC4 and ASC on MSP, but not in NLRP3 or AIM2. GA decreased NLRC4 and ASC gene expression by increasing not only DNA methyltransferase 3B (DNMT-3B) protein level, but also total DNMT activity. Furthermore, silencing of DNMT-3B (shDNMT-3B) increased the expressions of NLRC4 and ASC. Our data demonstrated that GA treatment induces hypermethylation of promoters of NLRC4 and ASC genes, which may subsequently lead to the hindering of the assembly of the inflammasome complex in HaCaT cells. These results highlight the anti-inflammatory potential of GA-containing cosmetic agents in human skin cells and demonstrate for the first time the role of aberrant hypermethylation in this process.

  6. Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells.

    PubMed Central

    Kuo, A; Cappelluti, S; Cervantes-Cervantes, M; Rodriguez, M; Bush, D S

    1996-01-01

    The cereal aleurone functions during germination by secreting hydrolases, mainly alpha-amylase, into the starchy endosperm. Multiple signal transduction pathways exist in cereal aleurone cells that enable them to modulate hydrolase production in response to both hormonal and environmental stimuli. Gibberellic acid (GA) promotes hydrolase production, whereas abscisic acid (ABA), hypoxia, and osmotic stress reduce amylase production. In an effort to identify the components of transduction pathways in aleurone cells, we have investigated the effect of okadaic acid (OA), a protein phosphatase inhibitor, on stimulus-response coupling for GA, ABA, and hypoxia. We found that OA (100 nM) completely inhibited all the GA responses that we measured, from rapid changes in cytosolic Ca2+ through changes in gene expression and accelerated cell death. OA (100 nM) partially inhibited ABA responses, as measured by changes in the level of PHAV1, a cDNA for an ABA-induced mRNA in barley. In contrast, OA had no effect on the response to hypoxia, as measured by changes in cytosolic Ca2+ and by changes in enzyme activity and RNA levels of alcohol dehydrogenase. Our data indicate that OA-sensitive protein phosphatases act early in the transduction pathway of GA but are not involved in the response to hypoxia. These data provide a basis for a model of multiple transduction pathways in which the level of cytosolic Ca2+ is a key point of convergence controlling changes in stimulus-response coupling. PMID:8742711

  7. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis, down-regulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells

    PubMed Central

    Stamatopoulos, Basile; Meuleman, Nathalie; De Bruyn, Cécile; Delforge, Alain; Bron, Dominique; Lagneaux, Laurence

    2010-01-01

    Background Chronic lymphocytic leukemia is a neoplastic disorder that arises largely as a result of defective apoptosis leading to chemoresistance. Stromal cell-derived factor-1 and its receptor, CXCR4, have been shown to play an important role in chronic lymphocytic leukemia cell trafficking and survival. Design and Methods Since histone acetylation is involved in the modulation of gene expression, we evaluated the effects of suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, on chronic lymphocytic leukemia cells and in particular on cell survival, CXCR4 expression, migration, and drug sensitization. Results Here, we showed that treatment with suberoylanilide hydroxamic acid (20 μM) for 48 hours induced a decrease in chronic lymphocytic leukemia cell viability via apoptosis (n=20, P=0.0032). Using specific caspase inhibitors, we demonstrated the participation of caspases-3, -6 and -8, suggesting an activation of the extrinsic pathway. Additionally, suberoylanilide hydroxamic acid significantly decreased CXCR4 mRNA (n=10, P=0.0010) and protein expression (n=40, P<0.0001). As a result, chronic lymphocytic leukemia cell migration in response to stromal cell-derived factor-1 (n=23, P<0.0001) or through bone marrow stromal cells was dramatically impaired. Consequently, suberoylanilide hydroxamic acid reduced the protective effect of the microenvironment and thus sensitized chronic lymphocytic leukemia cells to chemotherapy such as fludarabine. Conclusions In conclusion, suberoylanilide hydroxamic acid induces apoptosis in chronic lymphocytic leukemia cells via the extrinsic pathway and down-regulates CXCR4 expression leading to decreased cell migration. Suberoylanilide hydroxamic acid in combination with other drugs represents a promising therapeutic approach to inhibiting migration, chronic lymphocytic leukemia cell survival and potentially overcoming drug resistance. PMID:20145270

  8. Neuroprotection comparison of chlorogenic acid and its metabolites against mechanistically distinct cell death-inducing agents in cultured cerebellar granule neurons.

    PubMed

    Taram, Faten; Winter, Aimee N; Linseman, Daniel A

    2016-10-01

    While the number of patients diagnosed with neurodegenerative disorders like Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease is increasing, there are currently no effective treatments that significantly limit the neuronal cell death underlying these diseases. Chlorogenic acid (CGA), a polyphenolic compound found in high concentration in coffee, is known to possess antioxidant and free radical scavenging activity. In this study, we investigated the neuroprotective effects of CGA and its major metabolites in primary cultures of rat cerebellar granule neurons. We show that CGA and caffeic acid displayed a dramatic protective effect against the nitric oxide donor, sodium nitroprusside. In marked contrast, ferulic acid and quinic acid had no protective effect against this nitrosative stress. While CGA and quinic acid had no protective effect against glutamate-induced cell death, caffeic acid and ferulic acid significantly protected neurons from excitotoxicity. Finally, caffeic acid was the only compound to display significant protective activity against hydrogen peroxide, proteasome inhibition, caspase-dependent intrinsic apoptosis, and endoplasmic reticulum stress. These results indicate that caffeic acid displays a much broader profile of neuroprotection against a diverse range of stressors than its parent polyphenol, CGA, or the other major metabolites, ferulic acid and quinic acid. We conclude that caffeic acid is a promising candidate for testing in pre-clinical models of neurodegeneration. PMID:27444557

  9. TGF-β and retinoic acid induce miR-10a, which targets Bcl-6 and constrains helper T cell plasticity

    PubMed Central

    Takahashi, Hayato; Kanno, Tomohiko; Nakayamada, Shingo; Hirahara, Kiyoshi; Sciumè, Giuseppe; Muljo, Stefan A.; Kuchen, Stefan; Casellas, Rafael; Wei, Lai; Kanno, Yuka; O'Shea, John J.

    2012-01-01

    Distinct CD4+ T cell subsets are critical for host defense and immunoregulation. While these subsets can behave as terminally differentiated lineages, elements of plasticity are increasingly recognized. MicroRNAs are one factor that controls stability and plasticity. Herein, we report that miR-10a was highly expressed in naturally-occurring regulatory T (Treg) cells and induced by retinoic acid and TGF-β in inducible Treg cells. By simultaneously targeting Bcl-6 and a co-repressor, Ncor2, miR-10a attenuated phenotypic conversion of inducible Treg cells to follicular helper T cells. miR-10a also limited TH17 differentiation and therefore represents a new factor that can fine tune plasticity and fate decision of helper T cells. PMID:22544395

  10. Attenuation of niacin-induced prostaglandin D2 generation by omega-3 fatty acids in THP-1 macrophages and Langerhans dendritic cells

    PubMed Central

    VanHorn, Justin; Altenburg, Jeffrey D; Harvey, Kevin A; Xu, Zhidong; Kovacs, Richard J; Siddiqui, Rafat A

    2012-01-01

    Niacin, also known as nicotinic acid, is an organic compound that has several cardio-beneficial effects. However, its use is limited due to the induction of a variable flushing response in most individuals. Flushing occurs from a niacin receptor mediated generation of prostaglandins from arachidonic acid metabolism. This study examined the ability of docosahexaenoic acid, eicosapentaenoic acid, and omega-3 polyunsaturated fatty acids (PUFAs), to attenuate niacin-induced prostaglandins in THP-1 macrophages. Niacin induced both PGD2 and PGE2 generation in a dose-dependent manner. Niacin also caused an increase in cytosolic calcium and activation of cytosolic phospholipase A2. The increase in PGD2 and PGE2 was reduced by both docosahexaenoic acid and eicosapentaenoic acid, but not by oleic acid. Omega-3 PUFAs efficiently incorporated into cellular phospholipids at the expense of arachidonic acid, whereas oleic acid incorporated to a higher extent but had no effect on arachidonic acid levels. Omega-3 PUFAs also reduced surface expression of GPR109A, a human niacin receptor. Furthermore, omega-3 PUFAs also inhibited the niacin-induced increase in cytosolic calcium. Niacin and/or omega-3 PUFAs minimally affected cyclooxygenase-1 activity and had no effect on cyclooxygenase -2 activity. The effects of niacin on PGD2 generation were further confirmed using Langerhans dendritic cells. Results of the present study indicate that omega-3 PUFAs reduced niacin-induced prostaglandins formation by diminishing the availability of their substrate, as well as reducing the surface expression of niacin receptors. In conclusion, this study suggests that the regular use of omega-3 PUFAs along with niacin can potentially reduce the niacin-induced flushing response in sensitive patients. PMID:22442634

  11. Myeloid differentiation and retinoblastoma phosphorylation changes in HL-60 cells induced by retinoic acid receptor- and retinoid X receptor-selective retinoic acid analogs.

    PubMed

    Brooks, S C; Kazmer, S; Levin, A A; Yen, A

    1996-01-01

    The ability of subtypes of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) singly and in combination to elicit myeloid differentiation, G1/0-specific growth arrest, and retinoblastoma (RB) tumor suppressor protein dephosphorylation was determined in the human myeloblastic leukemia cell line HL-60 using subtype-selective retinoic acid (RA) analogs. RA analogs that selectively bind only to RARs (Am580 and/or TTNPB) or to RXRs (Ro 25-6603, SR11237, and/or SR11234) did not elicit the above-mentioned three cellular responses. In contrast, simultaneous treatment with both an RAR-selective ligand (Am580 or TTNPB) and an RXR-selective ligand (Ro 25-6603, SR11237, or SR11234) induced all three cellular processes. An RAR alpha-selective ligand used with an RXR-selective ligand generated the same responses as did all-trans RA or 9-cis RA, which affect both families of receptors, suggesting an important role for RAR alpha among RAR subtypes in eliciting cellular response. Consistent with this finding, the RAR alpha antagonist, Ro 41-5253, reduced the level of the cellular responses elicited by treatment with an RAR alpha-selective ligand plus RXR-selective ligand. The coupling of the shift of RB to its hypophosphorylated form with G1/0 arrest and differentiation in response to ligands is consistent with a possible role of RB as a downstream target or effector of RAR alpha and RXR in combination.

  12. Folic acid induces cell type-specific changes in the transcriptome of breast cancer cell lines: a proof-of-concept study.

    PubMed

    Price, R Jordan; Lillycrop, Karen A; Burdge, Graham C

    2016-01-01

    The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of unmetabolised FA reported in humans on the expression of the transcriptome of non-transformed (MCF10A) and cancerous (MCF7 and Hs578T) BC cells. The total number of transcripts altered was: MCF10A, seventy-five (seventy up-regulated); MCF7, twenty-four (fourteen up-regulated); and Hs578T, 328 (156 up-regulated). Only the cancer-associated gene TAGLN was altered by FA in all three cell lines. In MCF10A and Hs578T cells, FA treatment decreased pathways associated with apoptosis, cell death and senescence, but increased those associated with cell proliferation. The folate transporters SLC19A1, SLC46A1 and FOLR1 were differentially expressed between cell lines tested. However, the level of expression was not altered by FA treatment. These findings suggest that physiological concentrations of FA can induce cell type-specific changes in gene regulation in a manner that is consistent with proliferative phenotype. This has implications for understanding the role of FA in BC risk. In addition, these findings support the suggestion that differences in gene expression induced by FA may involve differential activities of folate transporters. Together these findings indicate the need for further studies of the effect of FA on BC.

  13. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells.

    PubMed

    Raza, Haider; John, Annie; Benedict, Sheela

    2011-10-01

    It is widely accepted that non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, reduce the risk of cancer. The anti-cancer and anti-inflammatory effects of NSAIDs are associated with the inhibition of prostaglandin synthesis and cyclooxygenase-2 activity. Several other mechanisms which contribute to the anti-cancer effect of these drugs in different cancer models both in vivo and in vitro are also presumed to be involved. The precise molecular mechanism, however, is still not clear. We investigated, therefore, the effects of acetylsalicylic acid (ASA, aspirin) on multiple cellular and functional targets, including mitochondrial bioenergetics, using human hepatoma HepG2 cancer cells in culture. Our results demonstrate that ASA induced G0/G1 cell cycle arrest and apoptosis in HepG2 cells. ASA increased the production of reactive oxygen species, reduced the cellular glutathione (GSH) pool and inhibited the activities of the mitochondrial respiratory enzyme complexes, NADH-ubiquinone oxidoreductase (complex I), cytochrome c oxidase (complex IV) and the mitochondrial matrix enzyme, aconitase. Apoptosis was triggered by alteration in mitochondrial permeability transition, inhibition of ATP synthesis, decreased expression of the anti-apoptotic protein Bcl-2, release of cytochrome c and activation of pro-apoptotic caspase-3 and the DNA repairing enzyme, poly (-ADP-ribose) polymerase (PARP). These findings strongly suggest that ASA-induced toxicity in human hepatoma HepG2 cells is mediated by increased metabolic and oxidative stress, accompanied by mitochondrial dysfunction which result in apoptosis.

  14. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells.

    PubMed

    Raza, Haider; John, Annie; Benedict, Sheela

    2011-10-01

    It is widely accepted that non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, reduce the risk of cancer. The anti-cancer and anti-inflammatory effects of NSAIDs are associated with the inhibition of prostaglandin synthesis and cyclooxygenase-2 activity. Several other mechanisms which contribute to the anti-cancer effect of these drugs in different cancer models both in vivo and in vitro are also presumed to be involved. The precise molecular mechanism, however, is still not clear. We investigated, therefore, the effects of acetylsalicylic acid (ASA, aspirin) on multiple cellular and functional targets, including mitochondrial bioenergetics, using human hepatoma HepG2 cancer cells in culture. Our results demonstrate that ASA induced G0/G1 cell cycle arrest and apoptosis in HepG2 cells. ASA increased the production of reactive oxygen species, reduced the cellular glutathione (GSH) pool and inhibited the activities of the mitochondrial respiratory enzyme complexes, NADH-ubiquinone oxidoreductase (complex I), cytochrome c oxidase (complex IV) and the mitochondrial matrix enzyme, aconitase. Apoptosis was triggered by alteration in mitochondrial permeability transition, inhibition of ATP synthesis, decreased expression of the anti-apoptotic protein Bcl-2, release of cytochrome c and activation of pro-apoptotic caspase-3 and the DNA repairing enzyme, poly (-ADP-ribose) polymerase (PARP). These findings strongly suggest that ASA-induced toxicity in human hepatoma HepG2 cells is mediated by increased metabolic and oxidative stress, accompanied by mitochondrial dysfunction which result in apoptosis. PMID:21722632

  15. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  16. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats.

    PubMed

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-08-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  17. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway

    PubMed Central

    Ichikawa, Riko; Takayama, Tetsuro; Yoneno, Kazuaki; Kamada, Nobuhiko; Kitazume, Mina T; Higuchi, Hajime; Matsuoka, Katsuyoshi; Watanabe, Mitsuhiro; Itoh, Hiroshi; Kanai, Takanori; Hisamatsu, Tadakazu; Hibi, Toshifumi

    2012-01-01

    Dendritic cells (DCs) are known as antigen-presenting cells and play a central role in both innate and acquired immunity. Peripheral blood monocytes give rise to resident and recruited DCs in lymph nodes and non-lymphoid tissues. The ligands of nuclear hormone receptors can modulate DC differentiation and so influence various biological functions of DCs. The role of bile acids (BAs) as signalling molecules has recently become apparent, but the functional role of BAs in DC differentiation has not yet been elucidated. We show that DCs derived from human peripheral blood monocytes cultured with a BA produce lower levels of interleukin-12 (IL-12) and tumour necrosis factor-α in response to stimulation with commensal bacterial antigens. Stimulation through the nuclear receptor farnesoid X (FXR) did not affect the differentiation of DCs. However, DCs differentiated with the specific agonist for TGR5, a transmembrane BA receptor, showed an IL-12 hypo-producing phenotype. Expression of TGR5 could only be identified in monocytes and was rapidly down-regulated during monocyte differentiation to DCs. Stimulation with 8-bromoadenosine-cyclic AMP (8-Br-cAMP), which acts downstream of TGR5 signalling, also promoted differentiation into IL-12 hypo-producing DCs. These results indicate that BAs induce the differentiation of IL-12 hypo-producing DCs from monocytes via the TGR5-cAMP pathway. PMID:22236403

  18. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients.

  19. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    PubMed

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells. PMID:27261574

  20. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    PubMed

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells.

  1. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  2. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    SciTech Connect

    Wang, Huiling; Li, Ridong; Li, Li; Ge, Zemei; Zhou, Rouli; Li, Runtao

    2015-02-27

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{sub 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.

  3. Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway

    SciTech Connect

    Ou, Hsiu-Chung; Lee, Wen-Jane; Lee, Shin-Da; Huang, Chih-Yang; Chiu, Tsan-Hung; Tsai, Kun-Ling; Hsu, Wen-Cheng; Sheu, Wayne Huey-Herng

    2010-10-15

    Endothelial apoptosis is a driving force in atherosclerosis development. Oxidized low-density lipoprotein (oxLDL) promotes inflammatory and thrombotic processes and is highly atherogenic, as it stimulates macrophage cholesterol accumulation and foam cell formation. Previous studies have shown that the phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase/nitric oxide (PI3K/Akt/eNOS/NO) pathway is involved in oxLDL-induced endothelial apoptosis. Ellagic acid, a natural polyphenol found in berries and nuts, has in recent years been the subject of intense research within the fields of cancer and inflammation. However, its protective effects against oxLDL-induced injury in vascular endothelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effect of ellagic acid in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. Our results showed that pretreatment with ellagic acid (5-20 {mu}M) significantly attenuated oxLDL-induced cytotoxicity, apoptotic features, and generation of reactive oxygen species (ROS). In addition, the anti-apoptotic effect of ellagic acid was partially inhibited by a PI3K inhibitor (wortmannin) and a specific eNOS inhibitor (cavtratin) but not by an ERK inhibitor (PD98059). In exploring the underlying mechanisms of ellagic acid action, we found that oxLDL decreased Akt and eNOS phosphorylation, which in turn activated NF-{kappa}B and downstream pro-apoptotic signaling events including calcium accumulation, destabilization of mitochondrial permeability, and disruption of the balance between pro- and anti-apoptotic Bcl-2 proteins. Those alterations induced by oxLDL, however, were attenuated by pretreatment with ellagic acid. The inhibition of oxLDL-induced endothelial apoptosis by ellagic acid is due at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.

  4. Calcium-dependent nitric oxide production is involved in the cytoprotective properties of n-acetylcysteine in glycochenodeoxycholic acid-induced cell death in hepatocytes

    SciTech Connect

    Gonzalez-Rubio, Sandra; Linares, Clara I.; Bello, Rosario I.; Gonzalez, Raul; Ferrin, Gustavo; Hidalgo, Ana B.; Munoz-Gomariz, Elisa; Rodriguez, Blanca A.; Barrera, Pilar; Ranchal, Isidora; Duran-Prado, Mario; De la Mata, Manuel; Muntane, Jordi

    2010-01-15

    The intracellular oxidative stress has been involved in bile acid-induced cell death in hepatocytes. Nitric oxide (NO) exerts cytoprotective properties in glycochenodeoxycholic acid (GCDCA)-treated hepatocytes. The study evaluated the involvement of Ca{sup 2+} on the regulation of NO synthase (NOS)-3 expression during N-acetylcysteine (NAC) cytoprotection against GCDCA-induced cell death in hepatocytes. The regulation of Ca{sup 2+} pools (EGTA or BAPTA-AM) and NO (L-NAME or NO donor) production was assessed during NAC cytoprotection in GCDCA-treated HepG2 cells. The stimulation of Ca{sup 2+} entrance was induced by A23187 in HepG2. Cell death, Ca{sup 2+} mobilization, NOS-1, -2 and -3 expression, AP-1 activation, and NO production were evaluated. GCDCA reduced intracellular Ca{sup 2+} concentration and NOS-3 expression, and enhanced cell death in HepG2. NO donor prevented, and L-NAME enhanced, GCDCA-induced cell death. The reduction of Ca{sup 2+} entry by EGTA, but not its release from intracellular stores by BAPTA-AM, enhanced cell death in GCDCA-treated cells. The stimulation of Ca{sup 2+} entrance by A23187 reduced cell death and enhanced NOS-3 expression in GCDCA-treated HepG2 cells. The cytoprotective properties of NAC were related to the recovery of intracellular Ca{sup 2+} concentration, NOS-3 expression and NO production induced by GCDCA-treated HepG2 cells. The increase of NO production by Ca{sup 2+}-dependent NOS-3 expression during NAC administration reduces cell death in GCDCA-treated hepatocytes.

  5. c-Jun N-terminal Kinase-Dependent Endoplasmic Reticulum Stress Pathway is Critically Involved in Arjunic Acid Induced Apoptosis in Non-Small Cell Lung Cancer Cells.

    PubMed

    Joo, HyeEun; Lee, Hyun Joo; Shin, Eun Ah; Kim, Hangil; Seo, Kyeong-Hwa; Baek, Nam-In; Kim, Bonglee; Kim, Sung-Hoon

    2016-04-01

    Though arjunic acid, a triterpene isolated from Terminalia arjuna, was known to have antioxidant, antiinflammatory, and cytotoxic effects, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the molecular antitumor mechanism of arjunic acid was examined in A549 and H460 non-small cell lung cancer (NSCLC) cells. Arjunic acid exerted cytotoxicity by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and significantly increased sub-G1 population in A549 and H460 cells by cell cycle analysis. Consistently, arjunic acid cleaved poly (ADP-ribose) polymerase (PARP), activated Bax, and phosphorylation of c-Jun N-terminal kinases (JNK), and also attenuated the expression of pro-caspase-3 and Bcl-2 in A549 and H460 cells. Furthermore, arjunic acid upregulated the expression of endoplasmic reticulum (ER) stress proteins such as IRE1 α, ATF4, p-eIF2α, and C/EBP homologous protein (CHOP) in A549 and H460 cells. Conversely, CHOP depletion attenuated the increase of sub-G1 population by arjunic acid, and also JNK inhibitor SP600125 blocked the cytotoxicity and upregulation of IRE1 α and CHOP induced by arjunic acid in A549 and H460 cells. Overall, our findings suggest that arjunic acid induces apoptosis in NSCLC cells via JNK mediated ER stress pathway as a potent chemotherapeutic agent for NSCLC. PMID:26787261

  6. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells.

    PubMed

    Tian, Meiping; Peng, Siyuan; Martin, Francis L; Zhang, Jie; Liu, Liangpo; Wang, Zhanlin; Dong, Sijun; Shen, Heqing

    2012-06-14

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter. PMID:22425687

  7. Hypoxia-induced resistance to cisplatin-mediated apoptosis in osteosarcoma cells is reversed by gambogic acid independently of HIF-1α.

    PubMed

    Zhao, Wei; Xia, Shi-Qi; Zhuang, Jin-Peng; Zhang, Zhi-Peng; You, Chang-Cheng; Yan, Jing-Long; Xu, Gong-Ping

    2016-09-01

    In vitro evidence of hypoxia-induced resistance to cisplatin (CDDP)-mediated apoptosis exists in human osteosarcoma (OS). Gambogic acid (GA) is a promising chemotherapeutic compound that could increase the chemotherapeutic effectiveness of CDDP in human OS cells by inducing cell cycle arrest and promoting apoptosis. This study examined whether GA could overcome OS cell resistance to CDDP. Hypoxia significantly reduced levels of CDDP-induced apoptosis in the OS cell lines MG63 and HOS. However, combined treatment with GA and CDDP revealed a strong synergistic action between these drugs, and higher protein levels of the apoptosis-related factor Fas, cleaved caspase-8 and cleaved caspase-3 and lower expression of hypoxia-inducible factor (HIF)-1α are detected in both cell lines. Meanwhile, drug resistance was not reversed by exposure to the HIF-1α inhibitor 2-methoxyestradiol. These findings strongly suggest that hypoxia-induced resistance to CDDP is reversed by GA in OS cells independently of HIF-1α. Furthermore, in vivo studies using xenograft mouse models revealed that combination therapy with CDDP and GA exerted increased antitumor effects by inducing apoptosis. Taken together, our results demonstrate that GA may be a new potent therapeutic agent useful for targeting human OS cells. PMID:27473145

  8. Impact of preconditioning with retinoic acid during early development on morphological and functional characteristics of human induced pluripotent stem cell-derived neurons.

    PubMed

    Horschitz, Sandra; Matthäus, Friederike; Groß, Anja; Rosner, Jan; Galach, Marta; Greffrath, Wolfgang; Treede, Rolf-Detlef; Utikal, Jochen; Schloss, Patrick; Meyer-Lindenberg, Andreas

    2015-07-01

    Human induced pluripotent stem cells (hiPSCs) are a suitable tool to study basic molecular and cellular mechanisms of neurodevelopment. The directed differentiation of hiPSCs via the generation of a self-renewable neuronal precursor cell line allows the standardization of defined differentiation protocols. Here, we have investigated whether preconditioning with retinoic acid during early neural induction impacts on morphological and functional characteristics of the neuronal culture after terminal differentiation. For this purpose we have analyzed neuronal and glial cell markers, neuronal outgrowth, soma size, depolarization-induced distal shifts of the axon initial segment as well as glutamate-evoked calcium influx. Retinoic acid preconditioning led to a higher yield of neurons vs. glia cells and longer axons than unconditioned controls. In contrast, glutamatergic activation and depolarization induced structural plasticity were unchanged. Our results show that the treatment of neuroectodermal cells with retinoic acid during early development, i.e. during the neurulation phase, increases the yield of neuronal phenotypes, but does not impact on the functionality of terminally differentiated neuronal cells. PMID:26001168

  9. An α-acetoxy-tirucallic acid isomer inhibits Akt/mTOR signaling and induces oxidative stress in prostate cancer cells.

    PubMed

    El Gaafary, Menna; Büchele, Berthold; Syrovets, Tatiana; Agnolet, Sara; Schneider, Bernd; Schmidt, Christoph Q; Simmet, Thomas

    2015-01-01

    Here we provide evidence that αATA(8,24) (3α-acetyloxy-tir-8,24-dien-21-oic acid) inhibits Akt/mammalian target of rapamycin (mTOR) signaling. αATA(8,24) and other tirucallic acids were isolated from the acetylated extract of the oleo gum resin of Boswellia serrata to chemical homogeneity. Compared with related tirucallic acids, αATA(8,24) was the most potent inhibitor of the proliferation of androgen-insensitive prostate cancer cells in vitro and in vivo, in prostate cancer xenografted onto chick chorioallantoic membranes. αATA(8,24) induced loss of cell membrane asymmetry, caspase-3 activation, and DNA fragmentation in vitro and in vivo. These effects were selective for cancer cells, because αATA(8,24) exerted no overt toxic effects on peripheral blood mononuclear cells or the chick embryo. At the molecular level, αATA(8,24) inhibited the Akt1 kinase activity. Prior to all biochemical signs of cellular dysfunction, αATA(8,24) induced inhibition of the Akt downstream target mTOR as indicated by dephosphorylation of S6K1. This event was followed by decreased expression of cell cycle regulators, such as cyclin D1, cyclin E, and cyclin B1, as well as cyclin-dependent kinases CDK4 and CDK2 and phosphoretinoblastoma protein, which led to inhibition of the cell-cycle progression. In agreement with the mTOR inhibition, αATA(8,24) and rapamycin increased the volume of acidic vesicular organelles. In contrast to rapamycin, αATA(8,24) destabilized lysosomal and mitochondrial membranes and induced reactive oxygen species production in cancer cells. The ability of αATA(8,24) to inhibit Akt/mTOR signaling and to induce simultaneously oxidative stress could be exploited for the development of novel antitumor therapeutics with a lower profile of toxic side effects.

  10. Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells.

    PubMed

    Ye, Wenxiu; Hossain, Mohammad Anowar; Munemasa, Shintaro; Nakamura, Yoshimasa; Mori, Izumi C; Murata, Yoshiyuki

    2013-09-01

    We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.

  11. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli.

    PubMed

    Cerboneschi, Matteo; Corsi, Massimo; Bianchini, Roberto; Bonanni, Marco; Tegli, Stefania

    2015-10-01

    Escherichia coli strain DH5α was successfully employed in the decolorization of commercial anthraquinone and azo dyes, belonging to the general classes of acid or basic dyes. The bacteria showed an aptitude to survive at different pH values on any dye solution tested, and a rapid decolorization was obtained under aerobic conditions for the whole collection of dyes. A deep investigation about the mode of action of E. coli was carried out to demonstrate that dye decolorization mainly occurred via three different pathways, specifically bacterial induced precipitation, cell wall adsorption, and metabolism, whose weight was correlated with the chemical nature of the dye. In the case of basic azo dyes, an unexpected fast decolorization was observed after just 2-h postinoculation under aerobic conditions, suggesting that metabolism was the main mechanism involved in basic azo dye degradation, as unequivocally demonstrated by mass spectrometric analysis. The reductive cleavage of the azo group by E. coli on basic azo dyes was also further demonstrated by the inhibition of decolorization occurring when glucose was added to the dye solution. Moreover, no residual toxicity was found in the E. coli-treated basic azo dye solutions by performing Daphnia magna acute toxicity assays. The results of the present study demonstrated that E. coli can be simply exploited for its natural metabolic pathways, without applying any recombinant technology. The high versatility and adaptability of this bacterium could encourage its involvement in industrial bioremediation of textile and leather dyeing wastewaters.

  12. Protective effects of bupivacaine against kainic acid-induced seizure and neuronal cell death in the rat hippocampus.

    PubMed

    Chiu, Kuan Ming; Wu, Chia Chan; Wang, Ming Jiuh; Lee, Ming Yi; Wang, Su Jane

    2015-01-01

    The excessive release of glutamate is a critical element in the neuropathology of epilepsy, and bupivacaine, a local anesthetic agent, has been shown to inhibit the release of glutamate in rat cerebrocortical nerve terminals. This study investigated whether bupivacaine produces antiseizure and antiexcitotoxic effects using a kainic acid (KA) rat model, an animal model used for temporal lobe epilepsy, and excitotoxic neurodegeneration experiments. The results showed that administering bupivacaine (0.4 mg/kg or 2 mg/kg) intraperitoneally to rats 30 min before intraperitoneal injection of KA (15 mg/kg) increased seizure latency and reduced the seizure score. In addition, bupivacaine attenuated KA-induced hippocampal neuronal cell death, and this protective effect was accompanied by the inhibition of microglial activation and production of proinflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the hippocampus. Moreover, bupivacaine shortened the latency of escaping onto the platform in the Morris water maze learning performance test. Collectively, these data suggest that bupivacaine has therapeutic potential for treating epilepsy.

  13. Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats.

    PubMed

    Laurén, Hanna B; Lopez-Picon, Francisco R; Brandt, Annika M; Rios-Rojas, Clarissa J; Holopainen, Irma E

    2010-01-01

    Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA)-induced status epilepticus (SE) in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed), and long-term potentiation (LTP; 18 genes changed). Also genes involved in Ca(2+) homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP), apolipoprotein E (apo E), cannabinoid type 1 receptor (CB1), Purkinje cell protein 4 (PEP-19), and interleukin 8 receptor (CXCR1), with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE). However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the juvenile age

  14. Okadaic acid induces DNA fragmentation via caspase-3-dependent and caspase-3-independent pathways in Chinese hamster ovary (CHO)-K1 cells.

    PubMed

    Kitazumi, Ikuko; Maseki, Yoko; Nomura, Yoshiko; Shimanuki, Akiko; Sugita, Yumi; Tsukahara, Masayoshi

    2010-01-01

    DNA fragmentation is a hallmark of apoptosis that occurs in a variety of cell types; however, it remains unclear whether caspase-3 is required for its induction. To investigate this, we produced caspase-3 knockout Chinese hamster ovary (CHO)-K1 cells and examined the effects of gene knockout and treatment with caspase-3 inhibitors. Okadaic acid (OA) is a potent inhibitor of the serine/threonine protein phosphatases (PPs) PP1 and PP2A, which induce apoptotic cellular reactions. Treatment of caspase-3(-/-) cells with OA induced DNA fragmentation, indicating that caspase-3 is not an essential requirement. However, in the presence of benzyloxycarbonyl-Asp-Glu-Val-Asp (OMe) fluoromethylketone (z-DEVD-fmk), DNA fragmentation occurred in CHO-K1 cells but not in caspase-3(-/-) cells, suggesting that caspase-3 is involved in OA-induced DNA fragmentation that does not utilize DEVDase activity. In the absence of caspase-3, DEVDase activity may play an important role. In addition, OA-induced DNA fragmentation was reduced but not blocked in CHO-K1 cells, suggesting that caspase-3 is involved in caspase-independent OA-induced DNA fragmentation. Furthermore, OA-induced cleavage of caspase-3 and DNA fragmentation were blocked by pretreatment with the wide-ranging serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride. These results suggest that serine proteases regulate DNA fragmentation upstream of caspase-3.

  15. Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells

    SciTech Connect

    Escudero-Lourdes, C.; Wu, T.; Camarillo, J.M.; Gandolfi, A.J.

    2012-01-01

    The association between chronic human exposure to arsenicals and bladder cancer development is well recognized; however, the underlying molecular mechanisms have not been fully determined. We propose that inflammatory responses can play a pathogenic role in arsenic-related bladder carcinogenesis. In previous studies, it was demonstrated that chronic exposure to 50 nM monomethylarsenous acid [MMA(III)] leads to malignant transformation of an immortalized model of urothelial cells (UROtsa), with only 3 mo of exposure necessary to trigger the transformation-related changes. In the three-month window of exposure, the cells over-expressed pro-inflammatory cytokines (IL-1β, IL-6 and IL-8), consistent with the sustained activation of NFKβ and AP1/c-jun, ERK2, and STAT3. IL-8 was over-expressed within hours after exposure to MMA(III), and sustained over-expression was observed during chronic exposure. In this study, we profiled IL-8 expression in UROtsa cells exposed to 50 nM MMA(III) for 1 to 5 mo. IL-8 expression was increased mainly in cells after 3 mo MMA(III) exposure, and its production was also found increased in tumors derived from these cells after heterotransplantation in SCID mice. UROtsa cells do express both receptors, CXCR1 and CXCR2, suggesting that autocrine cell activation could be important in cell transformation. Supporting this observation and consistent with IL-8 over-expression, CXCR1 internalization was significantly increased after three months of exposure to MMA(III). The expression of MMP-9, cyclin D1, bcl-2, and VGEF was significantly increased in cells exposed to MMA(III) for 3 mo, but these mitogen-activated kinases were significantly decreased after IL-8 gene silencing, together with a decrease in cell proliferation rate and in anchorage-independent colony formation. These results suggest a relevant role of IL-8 in MMA(III)-induced UROtsa cell transformation. -- Highlights: ► IL-8 is over-expressed in human MMA(III)-exposed urothelial

  16. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition

    SciTech Connect

    Guckert, J.B.; Cooksey, K.E. )

    1990-03-01

    Alkaline pH stress resulted in triglyceride (TG) accumulation in Chlorella CHLOR1 and was independent of medium nitrogen or carbon levels. Based on morphological observations, alkaline pH inhibited autospore release, thus increasing the time for cell cycle completion. Autospore release has been postulated to coincide with TG utilization within the microalgal cell division cycle. The alkaline pH stress affected lipid accumulation by inhibiting the cell division cycle prior to autospore release and, therefore, prior to TG utilization. Cells inhibited in this manner showed an increase in TG accumulation but a decrease in both membrane lipid classes (glycolipid and polar lipid). Unlike TG fatty acid profiles, membrane lipid fatty acid profiles were not stable during TG accumulation. The membrane profiles became similar to the TG, i.e. less unsaturated than in the membrane lipids of unstressed control cells.

  17. Arachidonic acid-induced expression of the organic solute and steroid transporter-beta (Ost-beta) in a cartilaginous fish cell line.

    PubMed

    Hwang, Jae-Ho; Parton, Angela; Czechanski, Anne; Ballatori, Nazzareno; Barnes, David

    2008-07-01

    The organic solute and steroid transporter (OST/Ost) is a unique membrane transport protein heterodimer composed of subunits designated alpha and beta, that transports conjugated steroids and prostaglandin E(2) across the plasma membrane. Ost was first identified in the liver of the cartilaginous fish Leucoraja erinacea, the little skate, and subsequently was found in many other species, including humans and rodents. The present study describes the isolation of a new cell line, LEE-1, derived from an early embryo of L. erinacea, and characterizes the expression of Ost in these cells. The mRNA size and amino acid sequence of Ost-beta in LEE-1 were identical to that previously reported for Ost-beta from skate liver, and the primary structure was identical to that of the spiny dogfish shark (Squalus acanthias) with the exception of a single amino acid. Ost-beta was found both on the plasma membrane and intracellularly in LEE-1 cells, consistent with its localization in other cell types. Interestingly, arachidonic acid, the precursor to eicosanoids, strongly induced Ost-beta expression in LEE-1 cells and a lipid mixture containing arachidonic acid also induced Ost-alpha. Overall, the present study describes the isolation of a novel marine cell line, and shows that this cell line expresses relatively high levels of Ost when cultured in the presence of arachidonic acid. Although the function of this transport protein in embryo-derived cells is unknown, it may play a role in the disposition of eicosanoids or steroid-derived molecules.

  18. 5,8,11,14-Eicosatetraynoic acid-induced destruction of mitochondria in human prostate cells (PC-3).

    SciTech Connect

    Anderson, K. M.; Seed, T. M.; Wilson, D. E.; Harris, J. E.; Biological and Medical Research; Rush Medical Coll.

    1992-01-01

    Culturing human prostate PC-3 cells for 4, 24, or 72 h in the presence of 5,8,11,14-eicosatetraynoic acid (ETYA), an inhibitor of arachidonic acid metabolism and cholesterol biosynthesis, markedly altered the morphology and reduced the number of mitochondria in the treated cells. Using quantitative electron microscopic morphometry, we documented changes in the number, form, area, matrix density, and integrity of the cristae and limiting membranes of mitochondria in cells cultured with ETYA. The inhibition of cholesterol synthesis or the substitution of ETYA for polyunsaturated fatty acids in the inner membrane may participate in the disruption of the mitochondria, which resembles the morphologic sequelae of oxidative stress. If sufficiently extensive, these changes could contribute to the inhibition of cellular proliferation by ETYA.

  19. HSP-72 Accelerated Expression in Mononuclear Cells Induced In Vivo by Acetyl Salicylic Acid Can Be Reproduced In Vitro when Combined with H2O2

    PubMed Central

    Sandoval-Montiel, Alvaro A.; Zentella-de-Piña, Martha; Ventura-Gallegos, José L.; Frías-González, Susana; López-Macay, Ambar; Zentella-Dehesa, Alejandro

    2013-01-01

    Background Among NSAIDs acetyl salicylic acid remains as a valuable tool because of the variety of benefic prophylactic and therapeutic effects. Nevertheless, the molecular bases for these responses have not been complete understood. We explored the effect of acetyl salicylic acid on the heat shock response. Results Peripheral blood mononuclear cells from rats challenged with acetyl salicylic acid presented a faster kinetics of expression of HSP-72 messenger RNA and protein in response to in vitro heat shock. This effect reaches its maximum 2 h after treatment and disappeared after 5 h. On isolated peripheral blood mononuclear cells from untreated rats, incubation with acetyl salicylic acid was ineffective to produce priming, but this effect was mimicked when the cells were incubated with the combination of H2O2+ ASA. Conclusions Administration of acetyl salicylic acid to rats alters HSP-72 expression mechanism in a way that it becomes more efficient in response to in vitro heat shock. The fact that in vitro acetyl salicylic acid alone did not induce this priming effect implies that in vivo other signals are required. Priming could be reproduces in vitro with the combination of acetyl salicylic acid+H2O2. PMID:23762376

  20. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    PubMed

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects. PMID:27392152

  1. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    PubMed

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects.

  2. Protective role of L-ascorbic acid, N-acetylcysteine and apocynin on neomycin-induced hair cell loss in zebrafish.

    PubMed

    Wu, Chia-Yen; Lee, Han-Jung; Liu, Chi-Fang; Korivi, Mallikarjuna; Chen, Hwei-Hsien; Chan, Ming-Huan

    2015-03-01

    Hair cells are highly sensitive to environmental insults and other therapeutic drugs. The adverse effects of drugs such as aminoglycosides can cause hair cell death and lead to hearing loss and imbalance. The objective of the present study was to evaluate the protective activity of L-ascorbic acid, N-acetylcysteine (NAC) and apocynin on neomycin-induced hair cell damage in zebrafish (Danio rerio) larvae at 5 days post fertilization (dpf). Results showed that the loss of hair cells within the neuromasts of the lateral lines after neomycin exposure was evidenced by a significantly lower number of neuromasts labeled with fluorescent dye FM1-43FX observed under a microscope. Co-administration with L-ascorbic acid, NAC and apocynin protected neomycin-induced hair cell loss within the neuromasts. Moreover, these three compounds reduced the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin, indicating that their antioxidant action is involved. In contrast, the neuromasts were labeled with specific fluorescent dye Texas-red conjugated with neomycin to detect neomycin uptake. Interestingly, the uptake of neomycin into hair cells was not influenced by these three antioxidant compounds. These data imply that prevention of hair cell damage against neomycin by L-ascorbic acid, NAC and apocynin might be associated with inhibition of excessive ROS production, but not related to modulating neomycin uptake. Our findings conclude that L-ascorbic acid, NAC and apocynin could be used as therapeutic drugs to protect aminoglycoside-induced listening impairment after further confirmatory studies.

  3. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    SciTech Connect

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan; Huang, Yuan-Li; Lee, Hsinyu

    2013-08-02

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis.

  4. Organochlorine insecticides induce NADPH oxidase-dependent reactive oxygen species in human monocytic cells via phospholipase A2/arachidonic acid.

    PubMed

    Mangum, Lee C; Borazjani, Abdolsamad; Stokes, John V; Matthews, Anberitha T; Lee, Jung Hwa; Chambers, Janice E; Ross, Matthew K

    2015-04-20

    ) levels and enhanced p47(phox) membrane localization compared to that in vehicle-treated cells. p47(phox) is a cytosolic regulatory subunit of Nox, and its phosphorylation and translocation to the NOX2 catalytic subunit in membranes is a requisite step for Nox assembly and activation. Dieldrin and trans-nonachlor treatments of monocytes also resulted in marked increases in arachidonic acid (AA) and eicosanoid production, which could be abrogated by the phospholipase A2 (PLA2) inhibitor arachidonoyltrifluoromethyl ketone (ATK) but not by calcium-independent PLA2 inhibitor bromoenol lactone. This suggested that cytosolic PLA2 plays a crucial role in the induction of Nox activity by increasing the intracellular pool of AA that activates protein kinase C, which phosphorylates p47(phox). In addition, ATK also blocked OC-induced p47(phox) serine phosphorylation and attenuated ROS levels, which further supports the notion that the AA pool liberated by cytosolic PLA2 is responsible for Nox activation. Together, the results suggest that trans-nonachlor and dieldrin are capable of increasing intracellular superoxide levels via a Nox-dependent mechanism that relies on elevated intracellular AA levels. These findings are significant because chronic activation of monocytes by environmental toxicants might contribute to pathogenic oxidative stress and inflammation. PMID:25633958

  5. The Effects of Topically Applied Glycolic Acid and Salicylic Acid on Ultraviolet Radiation-Induced Erythema, DNA Damage and Sunburn Cell Formation in Human Skin

    PubMed Central

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G.; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z.; Miller, Sharon A.; Hearing, Vincent J.

    2009-01-01

    Background α-Hydroxy acids (αHA) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that αHA can increase the sensitivity of skin to ultraviolet radiation. More recently, β-hydroxy acids (βHA), or combinations of αHA and βHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing β-HA. Objective To determine whether topical treatment with glycolic acid, a representative αHA, or with salicylic acid, a βHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Methods Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday - Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all 4 sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Results Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Conclusions Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not. PMID:19411163

  6. Metformin-Induced Killing of Triple Negative Breast Cancer Cells is Mediated by Reduction in Fatty Acid Synthase via miRNA-193b

    PubMed Central

    Wahdan-Alaswad, Reema S.; Cochrane, Dawn R.; Spoelstra, Nicole S.; Howe, Erin N.; Edgerton, Susan M.; Anderson, Steven M.; Thor, Ann D.; Richer, Jennifer K.

    2015-01-01

    The anti-diabetic drug metformin (1,1-dimethylbiguanide hydrochloride) reduces both the incidence and mortality of several types of cancer. Metformin has been shown to selectively kill cancer stem cells and triple negative breast cancer (TNBC) cell lines are more sensitive to the effects of metformin. However, the mechanism underlying the enhanced susceptibility of TNBC to metformin had not been elucidated. Expression profiling of metformin-treated TNBC lines revealed fatty acid synthase (FASN) as one of the genes most significantly downregulated following 24 hours of treatment and a decrease in FASN protein was also observed. Since FASN is critical for de novo fatty acid synthesis, and is important for survival of TNBC, we hypothesized that FASN downregulation facilitates metformin-induced apoptosis. Profiling studies also exposed a rapid metformin-induced increase in miR-193 family members, and miR-193b was found to directly target the FASN 3′UTR. Addition of exogenous miR-193b mimic to untreated TNBC cells resulted in decreased FASN protein expression and increased apoptosis of TNBC cells, while spontaneously immortalized, non-transformed breast epithelial cells remained unaffected. Conversely, antagonizing miR-193 activity impaired the ability of metformin to decrease FASN and cause cell death. Further, the metformin-stimulated increase in miR-193 resulted in reduced mammosphere formation by TNBC lines. These studies provide mechanistic insight into the metformin-induced killing of TNBC. PMID:25213330

  7. Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy.

    PubMed

    Eriksen, Agnete Bratsberg; Torgersen, Maria Lyngaas; Holm, Kristine Lillebø; Abrahamsen, Greger; Spurkland, Anne; Moskaug, Jan Øivind; Simonsen, Anne; Blomhoff, Heidi Kiil

    2015-01-01

    In the present study we have established a vital role of autophagy in retinoic acid (RA)-induced differentiation of toll-like receptor (TLR)-stimulated human B cells into Ig-secreting cells. Thus, RA enhanced autophagy in TLR9- and CD180-stimulated peripheral blood B cells, as revealed by increased levels of the autophagosomal marker LC3B-II, enhanced colocalization between LC3B and the lysosomal marker Lyso-ID, by a larger percentage of cells with more than 5 characteristic LC3B puncta, and by the concomitant reduction in the level of SQSTM1/p62. Furthermore, RA induced expression of the autophagy-inducing protein ULK1 at the transcriptional level, in a process that required the retinoic acid receptor RAR. By inhibiting autophagy with specific inhibitors or by knocking down ULK1 by siRNA, the RA-stimulated IgG production in TLR9- and CD180-mediated cells was markedly reduced. We propose that the identified prominent role of autophagy in RA-mediated IgG-production in normal human B cells provides a novel mechanism whereby vitamin A exerts its important functions in the immune system.

  8. Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion.

    PubMed

    Shibue, Kimitaka; Yamane, Shunsuke; Harada, Norio; Hamasaki, Akihiro; Suzuki, Kazuyo; Joo, Erina; Iwasaki, Kanako; Nasteska, Daniela; Harada, Takanari; Hayashi, Yoshitaka; Adachi, Yasuhiro; Owada, Yuji; Takayanagi, Ryoichi; Inagaki, Nobuya

    2015-04-01

    Gastric inhibitory polypeptide (GIP) is an incretin released from enteroendocrine K cells in response to nutrient intake, especially fat. GIP is one of the contributing factors inducing fat accumulation that results in obesity. A recent study shows that fatty acid-binding protein 5 (FABP5) is expressed in murine K cells and is involved in fat-induced GIP secretion. We investigated the mechanism of fat-induced GIP secretion and the impact of FABP5-related GIP response on diet-induced obesity (DIO). Single oral administration of glucose and fat resulted in a 40% reduction of GIP response to fat but not to glucose in whole body FABP5-knockout (FABP5(-/-)) mice, with no change in K cell count or GIP content in K cells. In an ex vivo experiment using isolated upper small intestine, oleic acid induced only a slight increase in GIP release, which was markedly enhanced by coadministration of bile and oleic acid together with attenuated GIP response in the FABP5(-/-) sample. FABP5(-/-) mice exhibited a 24% reduction in body weight gain and body fat mass under a high-fat diet compared with wild-type (FABP5(+/+)) mice; the difference was not observed between GIP-GFP homozygous knock-in (GIP(gfp/gfp))-FABP5(+/+) mice and GIP(gfp/gfp)-FABP5(-/-) mice, in which GIP is genetically deleted. These results demonstrate that bile efficiently amplifies fat-induced GIP secretion and that FABP5 contributes to the development of DIO in a GIP-dependent manner.

  9. Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging.

    PubMed

    Acerbo, Alvin S; Miller, Lisa M

    2009-08-01

    Boron is found in everyday foods and drinking water in trace quantities. Boron exists as boric acid (BA) within plants and animals, where low levels have been linked to cancer incidence. However, this correlation is not well characterized. In this study, we examined the chemical and morphological effects of BA on human skin melanoma cells (SK-MEL28) using Fourier Transform InfraRed Imaging (FTIRI) with a Focal Plane Array (FPA) detector. Cells were grown under concentrations of BA ranging from 0 to 50 mM. Cell viability was determined after 1, 2, 3, 5, 7 and 10 days using trypan blue staining. With FTIRI, images of approximately twenty cells per time point per condition were collected. Principal components analysis (PCA) was used to evaluate changes in cell composition, with particular focus on the lipid, protein, and nucleic acid spectral components. Results from trypan blue staining revealed decreased cell viability as BA concentration increased. FTIRI data indicated that the protein and lipid contents (as indicated by the lipid/protein ratio) did not undergo substantial changes due to BA treatment. In contrast, the nucleic acid/protein ratio significantly decreased with BA treatment. PCA results showed an increase in beta-sheet protein at higher concentrations of BA (12.5, 25, and 50 mM). Together, these results suggest that high concentrations of BA have an anti-proliferative effect and show signs consistent with apoptosis.

  10. Assessment of the chemical changes induced in human melanoma cells by boric acid treatment using infrared imaging

    SciTech Connect

    Acerbo, A.; Miller, L.

    2009-07-01

    Boron is found in everyday foods and drinking water in trace quantities. Boron exists as boric acid (BA) within plants and animals, where low levels have been linked to cancer incidence. However, this correlation is not well characterized. In this study, we examined the chemical and morphological effects of BA on human skin melanoma cells (SK-MEL28) using Fourier Transform InfraRed Imaging (FTIRI) with a Focal Plane Array (FPA) detector. Cells were grown under concentrations of BA ranging from 0 to 50 mM. Cell viability was determined after 1, 2, 3, 5, 7 and 10 days using trypan blue staining. With FTIRI, images of approximately twenty cells per time point per condition were collected. Principal components analysis (PCA) was used to evaluate changes in cell composition, with particular focus on the lipid, protein, and nucleic acid spectral components. Results from trypan blue staining revealed decreased cell viability as BA concentration increased. FTIRI data indicated that the protein and lipid contents (as indicated by the lipid/protein ratio) did not undergo substantial changes due to BA treatment. In contrast, the nucleic acid/protein ratio significantly decreased with BA treatment. PCA results showed an increase in {beta}-sheet protein at higher concentrations of BA (12.5, 25, and 50 mM). Together, these results suggest that high concentrations of BA have an anti-proliferative effect and show signs consistent with apoptosis.

  11. Mulberry leaf polyphenol extract induced apoptosis involving regulation of adenosine monophosphate-activated protein kinase/fatty acid synthase in a p53-negative hepatocellular carcinoma cell.

    PubMed

    Yang, Tzi-Peng; Lee, Huei-Jane; Ou, Ting-Tsz; Chang, Ya-Ju; Wang, Chau-Jong

    2012-07-11

    The polyphenols in mulberry leaf possess the ability to inhibit cell proliferation, invasion, and metastasis of tumors. It was reported that the p53 status plays an important role in switching apoptosis and the cell cycle following adenosine monophosphate-activated protein kinase (AMPK) activation. In this study, we aimed to detect the effect of the mulberry leaf polyphenol extract (MLPE) on inducing cell death in p53-negative (Hep3B) and p53-positive (Hep3B with transfected p53) hepatocellular carcinoma cells and also to clarify the role of p53 in MLPE-treated cells. After treatment of the Hep3B cells with MLPE, apoptosis was induced via the AMPK/PI3K/Akt and Bcl-2 family pathways. Transient transfection of p53 into Hep3B cells led to switching autophagy instead of apoptosis by MLPE treatment. We demonstrated that acridine orange staining and protein expressions of LC-3 and beclin-1 were increased in p53-transfected cells. These results implied induction of apoptosis or autophagy in MLPE-treated hepatocellular carcinoma cells can be due to the p53 status. We also found MLPE can not only activate AMPK but also diminish fatty acid synthase, a molecular target for cancer inhibition. At present, our results indicate MLPE can play an active role in mediating the cell death of hepatocellular carcinoma cells and the p53 might play an important role in regulating the death mechanisms.

  12. Morphologic Damage of Rat Alveolar Epithelial Type II Cells Induced by Bile Acids Could Be Ameliorated by Farnesoid X Receptor Inhibitor Z-Guggulsterone In Vitro

    PubMed Central

    Huang, Yaowei; Hou, Xusheng; Wu, Wenyu; Nie, Lei; Tian, Yinghong; Lu, Yanmeng

    2016-01-01

    Objective. To determine whether bile acids (BAs) affect respiratory functions through the farnesoid X receptor (FXR) expressed in the lungs and to explore the possible mechanisms of BAs-induced respiratory disorder. Methods. Primary cultured alveolar epithelial type II cells (AECIIs) of rat were treated with different concentrations of chenodeoxycholic acid (CDCA) in the presence or absence of FXR inhibitor Z-guggulsterone (GS). Then, expression of FXR in nuclei of AECIIs was assessed by immunofluorescence microscopy. And ultrastructural changes of the cells were observed under transmission electron microscope and analyzed by Image-Pro Plus software. Results. Morphologic damage of AECIIs was exhibited in high BAs group in vitro, with high-level expression of FXR, while FXR inhibitor GS could attenuate the cytotoxicity of BAs to AECIIs. Conclusions. FXR expression was related to the morphologic damage of AECIIs induced by BAs, thus influencing respiratory functions. PMID:27340672

  13. The Cytolytic Amphipathic β(2,2)-Amino Acid LTX-401 Induces DAMP Release in Melanoma Cells and Causes Complete Regression of B16 Melanoma

    PubMed Central

    Eike, Liv-Marie; Mauseth, Brynjar; Camilio, Ketil André; Rekdal, Øystein; Sveinbjørnsson, Baldur

    2016-01-01

    In the present study we examined the ability of the amino acid derivative LTX-401 to induce cell death in cancer cell lines, as well as the capacity to induce regression in a murine melanoma model. Mode of action studies in vitro revealed lytic cell death and release of danger-associated molecular pattern molecules, preceded by massive cytoplasmic vacuolization and compromised lysosomes in treated cells. The use of a murine melanoma model demonstrated that the majority of animals treated with intratumoural injections of LTX-401 showed complete and long-lasting remission. Taken together, these results demonstrate the potential of LTX-401 as an immunotherapeutic agent for the treatment of solid tumors. PMID:26881822

  14. Chlorogenic acid inhibits hypoxia-induced pulmonary artery smooth muscle cells proliferation via c-Src and Shc/Grb2/ERK2 signaling pathway.

    PubMed

    Li, Qun-Yi; Zhu, Ying-Feng; Zhang, Meng; Chen, Li; Zhang, Zhen; Du, Yong-Li; Ren, Guo-Qiang; Tang, Jian-Min; Zhong, Ming-Kang; Shi, Xiao-Jin

    2015-03-15

    Chlorogenic acid (CGA), abundant in coffee and particular fruits, can modulate hypertension and vascular dysfunction. Hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation has been tightly linked to vascular remodeling in pulmonary arterial hypertension (PAH). Thus, the present study was designed to investigate the effect of CGA on hypoxia-induced proliferation in cultured rat PASMCs. The data showed that CGA potently inhibited PASMCs proliferation and DNA synthesis induced by hypoxia. These inhibitory effects were associated with G1 cell cycle arrest and down-regulation of cell cycle proteins. Treatment with CGA reduced hypoxia-induced hypoxia inducible factor 1α (HIF-1α) expression and trans-activation. Furthermore, hypoxia-evoked c-Src phosphorylation was inhibited by CGA. In vitro ELISA-based tyrosine kinase assay indicated that CGA was a direct inhibitor of c-Src. Moreover, CGA attenuated physical co-association of c-Src/Shc/Grb2 and ERK2 phosphorylation in PASMCs. These results suggest that CGA inhibits hypoxia-induced proliferation in PASMCs via regulating c-Src-mediated signaling pathway. In vivo investigation showed that chronic CGA treatment inhibits monocrotaline-induced PAH in rats. These findings presented here highlight the possible therapeutic use of CGA in hypoxia-related PAH. PMID:25666384

  15. Inhibition of phosphotidylinositol-3 kinase pathway by a novel naphthol derivative of betulinic acid induces cell cycle arrest and apoptosis in cancer cells of different origin

    PubMed Central

    Majeed, R; Hamid, A; Sangwan, P L; Chinthakindi, P K; Koul, S; Rayees, S; Singh, G; Mondhe, D M; Mintoo, M J; Singh, S K; Rath, S K; Saxena, A K

    2014-01-01

    Betulinic acid (BA) is a pentacyclic triterpenoid natural product reported to inhibit cell growth in a variety of cancers. However, the further clinical development of BA got hampered because of poor solubility and pharmacological properties. Interestingly, this molecule offer several hotspots for structural modifications in order to address its associated issues. In our endeavor, we selected C-3 position for the desirable chemical modification in order to improve its cytotoxic and pharmacological potential and prepared a library of different triazoline derivatives of BA. Among them, we previously reported the identification of a potential molecule, that is, 3{1N(5-hydroxy-naphth-1yl)-1H-1,2,3-triazol-4yl}methyloxy betulinic acid (HBA) with significant inhibition of cancer cell growth and their properties. In the present study, we have shown for the first time that HBA decreased the expression of phosphotidylinositol-3 kinase (PI3K) p110α and p85α and caused significant downregulation of pAKT and of NFκB using human leukemia and breast cancer cells as in vitro models. Further it was revealed that PI3K inhibition by HBA induced cell cycle arrest via effects on different cell cycle regulatory proteins that include CDKis cyclins and pGSK3β. Also, this target-specific inhibition was associated with mitochondrial apoptosis as was reflected by the increased expression of mitochondrial bax, downregulated bcl2 and decreased mitochondrial levels of cytochrome c, together with reactive oxygen species generation and decline in mitochondrial membrane potential. The apoptotic effectors such as caspase 8, caspase 9 and caspase 3 were found to be upregulated besides DNA repair-associated enzyme, that is, PARP cleavage caused cancer cell death. Pharmacodynamic evaluation revealed that both HBA and BA were safe upto the dose of 2000 mg/kg body weight and with acceptable pharmacodynamic parameters. The in vitro data corroborated with in vivo anticancer activity wherein Ehrlich

  16. Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells.

    PubMed

    Meng, Pengfei; Yoshida, Hidemi; Tanji, Kunikazu; Matsumiya, Tomoh; Xing, Fei; Hayakari, Ryo; Wang, Liang; Tsuruga, Kazushi; Tanaka, Hiroshi; Mimura, Junsei; Kosaka, Kunio; Itoh, Ken; Takahashi, Ippei; Kawaguchi, Shogo; Imaizumi, Tadaatsu

    2015-05-01

    Amyloid-beta (Aβ) peptides, Aβ 1-42 (Aβ42) and Aβ43 in particular, cause neurotoxicity and cell death in the brain of Alzheimer's disease (AD) at higher concentrations. Carnosic acid (CA), a phenolic diterpene compound in the labiate herbs rosemary and sage, serves as an activator for neuroprotective and neurotrophic functions in brain cells. We investigated the effect of CA on apoptosis induced by Aβ42 or Aβ43 in cultured SH-SY5Y human neuroblastoma cells. Treatment of the cells with Aβ42 or Aβ43 (monomer, 10 μM each) induced apoptosis, which was confirmed by the cleavage of poly-(ADP-ribose) polymerase (PARP) and apoptosis-inducing factor (AIF). Concurrently, the Aβ treatment induced the activation of caspase (Casp) cascades including an effector Casp (Casp3) and initiator Casps (Casp4, Casp8 and Casp9). Pretreatment of the cells with CA (10 μM) partially attenuated the apoptosis induced by Aβ42 or Aβ43. CA pretreatment also reduced the cellular oligomers of Aβ42 and Aβ43. These results suggest that CA suppressed the activation of Casp cascades by reducing the intracellular oligomerization of exogenous Aβ42/43 monomer. The ingestion of an adequate amount of CA may have a potential in the prevention of Aβ-mediated diseases, particularly AD. PMID:25510380

  17. Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells.

    PubMed

    Meng, Pengfei; Yoshida, Hidemi; Tanji, Kunikazu; Matsumiya, Tomoh; Xing, Fei; Hayakari, Ryo; Wang, Liang; Tsuruga, Kazushi; Tanaka, Hiroshi; Mimura, Junsei; Kosaka, Kunio; Itoh, Ken; Takahashi, Ippei; Kawaguchi, Shogo; Imaizumi, Tadaatsu

    2015-05-01

    Amyloid-beta (Aβ) peptides, Aβ 1-42 (Aβ42) and Aβ43 in particular, cause neurotoxicity and cell death in the brain of Alzheimer's disease (AD) at higher concentrations. Carnosic acid (CA), a phenolic diterpene compound in the labiate herbs rosemary and sage, serves as an activator for neuroprotective and neurotrophic functions in brain cells. We investigated the effect of CA on apoptosis induced by Aβ42 or Aβ43 in cultured SH-SY5Y human neuroblastoma cells. Treatment of the cells with Aβ42 or Aβ43 (monomer, 10 μM each) induced apoptosis, which was confirmed by the cleavage of poly-(ADP-ribose) polymerase (PARP) and apoptosis-inducing factor (AIF). Concurrently, the Aβ treatment induced the activation of caspase (Casp) cascades including an effector Casp (Casp3) and initiator Casps (Casp4, Casp8 and Casp9). Pretreatment of the cells with CA (10 μM) partially attenuated the apoptosis induced by Aβ42 or Aβ43. CA pretreatment also reduced the cellular oligomers of Aβ42 and Aβ43. These results suggest that CA suppressed the activation of Casp cascades by reducing the intracellular oligomerization of exogenous Aβ42/43 monomer. The ingestion of an adequate amount of CA may have a potential in the prevention of Aβ-mediated diseases, particularly AD.

  18. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    SciTech Connect

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao; Cheng, Dai; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-01-24

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP

  19. Caffeic acid regulates LPS-induced NF-κB activation through NIK/IKK and c-Src/ERK signaling pathways in endothelial cells.

    PubMed

    Kim, So Ra; Jung, Yu Ri; Kim, Dae Hyun; An, Hye Jin; Kim, Mi Kyung; Kim, Nam Deuk; Chung, Hae Young

    2014-04-01

    The redox sensitive, proinflammatory nuclear transcription factor NF-κB plays a key role in inflammation. In a redox state disrupted by oxidative stress, pro-inflammatory genes are upregulated by the activation of NF-κB via diverse kinases. Thus, the search and characterization of new substances that modulate NF-κB are topics of considerable research interest. Caffeic acid is a component of garlic, some fruits, and coffee, and is widely used as a phenolic agent in beverages. In the present study, caffeic acid was examined with respect to the modulation of inflammatory NF-κB activation via the redox-related c-Src/ERK and NIK/IKK pathways via the reduction of oxidative stress. YPEN-1 cells (an endothelial cell line) were used to explore the molecular mechanism underlying the anti-inflammatory effect of caffeic acid by examining its modulation of NF-κB signaling pathway by LPS. Our results show that LPS-induced oxidative stress-related NF-κB activation upregulated pro-inflammatory COX-2, NF-κB targeting gene which were all inhibited effectively by caffeic acid. Our study shows that caffeic acid inhibits the activation of NF-κB via the c-Src/ERK and NIK/IKK signal transduction pathways. Our results indicate that antioxidative effect of caffeic acid and its restoration of redox balance are responsible for its anti-inflammatory action. Thus, the study provides new information regarding the anti-inflammatory properties of caffeic acid and the roles in the regulation of LPS-induced oxidative stress induces alterations in signal transduction pathways.

  20. Baicalein, a Constituent of Scutellaria baicalensis, Reduces Glutamate Release and Protects Neuronal Cell Against Kainic Acid-Induced Excitotoxicity in Rats.

    PubMed

    Chang, Yi; Lu, Cheng Wei; Lin, Tzu Yu; Huang, Shu Kuei; Wang, Su Jane

    2016-01-01

    Interest in the health benefits of flavonoids, particularly their effects on neurodegenerative disease, is increasing. This study evaluated the role of baicalein, a flavonoid compound isolated from the traditional Chinese medicine Scutellaria baicalensis, in glutamate release and glutamate neurotoxicity in the rat hippocampus. In the rat hippocampal nerve terminals (synaptosomes), baicalein inhibits depolarization-induced glutamate release, and this phenomenon is prevented by chelating the extracellular Ca[Formula: see text] ions and blocking presynaptic Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel activity. In slice preparations, whole cell patch-clamp experiments revealed that baicalein reduced the frequency of miniature excitatory postsynaptic currents, without affecting their amplitude. In a kainic acid rat model, intraperitoneally administering baicalein to rats before the kainic acid intraperitoneal injection substantially attenuated kainic acid-induced neuronal cell death, c-Fos expression, and the activation of the mammalian target of rapamycin in the hippocampus. This study is the first to demonstrate that the natural compound baicalein inhibits glutamate release from hippocampal nerve terminals, and executes a protective action against kainic acid-induced excitotoxicity in vivo. The findings enhance the understanding of baicalein's action in the brain, and suggest that this natural compound is valuable for treating brain disorders related to glutamate excitotoxicity. PMID:27430911

  1. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress.

    PubMed

    Kharroubi, Ilham; Ladrière, Laurence; Cardozo, Alessandra K; Dogusan, Zeynep; Cnop, Miriam; Eizirik, Décio L

    2004-11-01

    Apoptosis is probably the main form of beta-cell death in both type 1 diabetes mellitus (T1DM) and T2DM. In T1DM, cytokines contribute to beta-cell destruction through nuclear factor-kappaB (NF-kappaB) activation. Previous studies suggested that in T2DM high glucose and free fatty acids (FFAs) are beta-cell toxic also via NF-kappaB activation. The aims of this study were to clarify whether common mechanisms are involved in FFA- and cytokine-induced beta-cell apoptosis and determine whether TNFalpha, an adipocyte-derived cytokine, potentiates FFA toxicity through enhanced NF-kappaB activation. Apoptosis was induced in insulinoma (INS)-1E cells, rat islets, and fluorescence-activated cell sorting-purified beta-cells by oleate, palmitate, and/or cytokines (IL-1beta, interferon-gamma, TNFalpha). Palmitate and IL-1beta induced a similar percentage of apoptosis in INS-1E cells, whereas oleate was less toxic. TNFalpha did not potentiate FFA toxicity in primary beta-cells. The NF-kappaB-dependent genes inducible nitric oxide synthase and monocyte chemoattractant protein-1 were induced by IL-1beta but not by FFAs. Cytokines activated NF-kappaB in INS-1E and beta-cells, but FFAs did not. Moreover, FFAs did not enhance NF-kappaB activation by TNFalpha. Palmitate and oleate induced C/EBP homologous protein, activating transcription factor-4, and immunoglobulin heavy chain binding protein mRNAs, X-box binding protein-1 alternative splicing, and activation of the activating transcription factor-6 promoter in INS-1E cells, suggesting that FFAs trigger an endoplasmic reticulum (ER) stress response. We conclude that apoptosis is the main mode of FFA- and cytokine-induced beta-cell death but the mechanisms involved are different. Whereas cytokines induce NF-kappaB activation and ER stress (secondary to nitric oxide formation), FFAs activate an ER stress response via an NF-kappaB- and nitric oxide-independent mechanism. Our results argue against a unifying hypothesis for the

  2. A putative G-protein-coupled receptor, H218, is down-regulated during the retinoic acid-induced differentiation of F9 embryonal carcinoma cells.

    PubMed

    Li, Y; MacLennan, A J; Rogers, M B

    1998-03-15

    We have previously cloned a novel guanine nucleotide-binding protein (G-protein)-coupled receptor, H218, that has sequence similarity to a lysophosphatidic acid receptor, edg2. We present here Northern analysis indicating that the H218 mRNA is expressed in undifferentiated F9 embryonal carcinoma cells. The H218 message is down-regulated and its stability is decreased during retinoic acid- and dibutyryl cAMP-induced differentiation. Treatment by various receptor-selective retinoids indicated that retinoic acid receptor beta or gamma signaling, but not retinoid X receptor activation, is required for the down-regulation of H218 mRNA. Activation of the H218 receptor may contribute to the phenotype of undifferentiated F9 embryonal carcinoma cells.

  3. Gambogic acid induces growth inhibition and differentiation via upregulation of p21waf1/cip1 expression in acute myeloid leukemia cells.

    PubMed

    Chen, Yan; Hui, Hui; Li, Zheng; Wang, Hong-Mei; You, Qi-Dong; Lu, Na

    2014-10-01

    Gambogic acid (GA) is the major active ingredient of gamboges, a brownish to orange resin product from Garcinia hanburyi tree in Southeast Asia. This compound exhibits anti-cancer effect on solid tumors. In this study, we investigated the effects of GA on the growth and differentiation of acute myeloid leukemia cells by growth-inhibition detection, morphological changes observation, nitroblue tetrazolium reduction, and the expression of the relative cell-surface differentiation markers. The results showed that GA could inhibit cell growth and promote differentiation in U937 and HL-60 cells. In addition, GA upregulated the expression of p21waf1/cip1 in the two cell lines. Finally, downregulating the p21waf1/cip1 expression with small interfering RNA partially blocked GA-induced cell growth inhibition and differentiation. These results of this study revealed that GA may be used as one of the investigational drugs for acute myeloid leukemia.

  4. The protective effect of myo-inositol on hippocamal cell loss and structural alterations in neurons and synapses triggered by kainic acid-induced status epilepticus.

    PubMed

    Kotaria, Nato; Kiladze, Maia; Zhvania, Mzia G; Japaridze, Nadezhda J; Bikashvili, Tamar; Solomonia, Revaz O; Bolkvadze, Tamar

    2013-07-01

    It is known that myo-inositol pretreatment attenuates the seizure severity and several biochemical changes provoked by experimentally induced status epilepticus. However, it remains unidentified whether such properties of myo-inositol influence the structure of epileptic brain. In the present light and electron microscopic research we elucidate if pretreatment with myo-inositol has positive effect on hippocampal cell loss, and cell and synapses damage provoked by kainic acid-induced status epilepticus. Adult male Wistar rats were treated with (i) saline, (ii) saline + kainic acid, (iii) myo-inositol + kainic acid. Assessment of cell loss at 2, 14, and 30 days after treatment demonstrate cytoprotective effect of myo-inositol in CA1 and CA3 areas. It was strongly expressed in pyramidal layer of CA1, radial and oriental layers of CA3 and in less degree-in other layers of both fields. Ultrastructural alterations were described in CA1, 14 days after treatment. The structure of neurons, synapses, and porosomes are well preserved in the rats pretreated with myo-inositol in comparing with rats treated with only kainic acid.

  5. 18α-Glycyrrhetinic Acid Induces Apoptosis of HL-60 Human Leukemia Cells through Caspases- and Mitochondria-Dependent Signaling Pathways.

    PubMed

    Huang, Yi-Chang; Kuo, Chao-Lin; Lu, Kung-Wen; Lin, Jen-Jyh; Yang, Jiun-Long; Wu, Rick Sai-Chuen; Wu, Ping-Ping; Chung, Jing-Gung

    2016-01-01

    In this study we investigate the molecular mechanisms of caspases and mitochondria in the extrinsic and intrinsic signal apoptosis pathways in human leukemia HL-60 cells after in vitro exposure to 18α-glycyrrhetinic acid (18α-GA). Cells were exposed to 18α-GA at various concentrations for various time periods and were harvested for flow cytometry total viable cell and apoptotic cell death measurements. Cells treated with 18α-GA significantly inhibited cell proliferation and induced cell apoptosis in a dose-dependent manner, with an IC50 value of 100 μM at 48 h. The cell growth inhibition resulted in induction of apoptosis and decreased the mitochondria membrane potential (ΔΨm) and increased caspase-8, -9 and -3 activities. Furthermore, cytochrome c and AIF were released from mitochondria, as shown by western blotting and confirmed by confocal laser microscopy. Western blotting showed that 18α-GA increased the levels of pro-apoptotic proteins such as Bax and Bid and decreased the anti-apoptotic proteins such as Bcl-2 and Bcl-xl, furthermore, results also showed that 18α-GA increased Fas and Fas-L which are associated with surface death receptor in HL-60 cells. Based on those observations, the present study supports the hypothesis that 18α-GA-induced apoptosis in HL-60 cells involves the activation of the both extrinsic and intrinsic apoptotic pathways. PMID:27376261

  6. Analysis of DNA strand breaks induced in rodent liver in vivo, hepatocytes in primary culture, and a human cell line by chlorinated acetic acids and chlorinated acetaldehydes

    SciTech Connect

    Chang, L.W.; Daniel, F.B. ); DeAngelo, A.B. )

    1992-01-01

    An alkaline unwinding assay was used to quantitate the induction of DNA strand breaks (DNA SB) in the livers of rats and mice treated in vivo, in rodent hepatocytes in primary culture, and in CCRF-CEM cells, a human lymphoblastic leukemia cell line, following treatment with tri-(TCA), di-(CA), and mono-(MCA) chloroacetic acid and their corresponding aldehydes, tri-(chloralhydrate, CH), di(DCAA) and mono-(CAA) chloroacetaldehyde. None of the chloracetic acids induced DNA SB in the livers of rats at 4 hr following a single administration of 1-10 mmole/kg. TCA (10 mmole/kg) and DCA (5 and 10 mmole/kg) did produce a small amount of strand breakage in mice (7% at 4hr) but not at 1 hr. N-nitrosodiethylamine (DENA), an established alkylating agent and a rodent hepatocarcinogen, produced DNA SB in the livers of both species. TCA, DCA, and MCA also failed to induce DNA strand breaks in splenocytes and epithelial cells derived from the stomach and duodenum of mice treated in vivo. None of the three chloroacetaldehydes induced DNA SB in either mouse or rat liver. These studies provide further evidence that the chloroacetic acids lack genotoxic activity not only in rodent liver, a tissue in that they induce tumors, but in a variety of other rodent tissues and cultured cell types. Two of the chloroacetaldehydes, DCAA and CAA, are direct acting DNA damaging agents in CCRF-CEM cells, but not in liver or splenocytes in vivo or in cultured hepatocytes. CH showed no activity in any system investigated. 58 refs., 6 figs., 2 tabs.

  7. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    PubMed Central

    Ventura, Richard; Mordec, Kasia; Waszczuk, Joanna; Wang, Zhaoti; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George; Heuer, Timothy S.

    2015-01-01

    Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20–200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K–AKT–mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. Research in context Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for

  8. Dietary omega-3 fatty acids enhance the B1 but not the B2 cell immune response in mice with antigen-induced peritonitis.

    PubMed

    Tomasdottir, Valgerdur; Thorleifsdottir, Sigrun; Vikingsson, Arnor; Hardardottir, Ingibjorg; Freysdottir, Jona

    2014-02-01

    The effects of omega-3 fatty acids on the adaptive immune response have mainly been analysed in vitro with varying results. How omega-3 fatty acids affect the adaptive immune response in vivo is largely unknown. This study examined the effects of dietary fish oil on the adaptive immune response in antigen-induced inflammation in mice, focusing on its effects on B cells and B cell subsets. Mice were fed a control diet with or without 2.8% fish oil, immunized twice with methylated BSA (mBSA) and peritonitis induced by intraperitoneal injection of mBSA. Serum, spleen and peritoneal exudate were collected prior to and at different time points after induction of peritonitis. Serum levels of mBSA-specific antibodies were determined by ELISA and the number of peritoneal and splenic lymphocytes by flow cytometry. The levels of germinal center B cells and IgM(+), IgG(+) and CD138(+) cells in spleen were evaluated by immunoenzyme staining. Mice fed the fish oil diet had more peritoneal B1 cells, more IgM(+) cells in spleen and higher levels of serum mBSA-specific IgM antibodies compared with that in mice fed the control diet. However, dietary fish oil did not affect the number of peritoneal B2 cells, splenic IgG(+) or CD138(+) cells or serum levels of mBSA-specific IgG antibodies in mice with mBSA-induced peritonitis. These results indicate that dietary fish oil can enhance the adaptive immune response, specifically the B1 cell response, which may lead to better protection against secondary infection as well as improvement in reaching homeostasis following antigenic challenge.

  9. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture.

    PubMed

    Park, Woo Tae; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Yeo, Sun Kyung; Jeon, Jin; Park, Jong Seok; Lee, Sook Young; Park, Sang Un

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa.

  10. Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells

    PubMed Central

    Reyes-Zurita, Fernando J.; Rufino-Palomares, Eva E.; García-Salguero, Leticia; Peragón, Juan; Medina, Pedro P.; Parra, Andrés; Cascante, Marta; Lupiáñez, José A.

    2016-01-01

    Maslinic acid (MA) is a natural triterpene present in high concentrations in the waxy skin of olives. We have previously reported that MA induces apoptotic cell death via the mitochondrial apoptotic pathway in HT29 colon cancer cells. Here, we show that MA induces apoptosis in Caco-2 colon cancer cells via the extrinsic apoptotic pathway in a dose-dependent manner. MA triggered a series of effects associated with apoptosis, including the cleavage of caspases -8 and -3, and increased the levels of t-Bid within a few hours of its addition to the culture medium. MA had no effect on the expression of the Bax protein, release of cytochrome-c or on the mitochondrial membrane potential. This suggests that MA triggered the extrinsic apoptotic pathway in this cell type, as opposed to the intrinsic pathway found in the HT29 colon-cancer cell line. Our results suggest that the apoptotic mechanism induced in Caco-2 may be different from that found in HT29 colon-cancer cells, and that in Caco-2 cells MA seems to work independently of p53. Natural antitumoral agents capable of activating both the extrinsic and intrinsic apoptotic pathways could be of great use in treating colon-cancer of whatever origin. PMID:26751572

  11. Carnosic Acid Prevents Beta-Amyloid-Induced Injury in Human Neuroblastoma SH-SY5Y Cells via the Induction of Autophagy.

    PubMed

    Liu, Jie; Su, Hua; Qu, Qiu-Min

    2016-09-01

    Beta-amyloid (Aβ), the hallmark protein in Alzheimer's disease (AD), induces neurotoxicity that involves oxidative stress and mitochondrial dysfunction, leading to cell death. Carnosic acid (CA), a polyphenolic diterpene isolated from the herb rosemary (Rosemarinus officinalis), was investigated in our study to assess its neuroprotective effect and underlying mechanism against Aβ-induced injury in human neuroblastoma SH-SY5Y cells. We found that CA pretreatment alleviated the Aβ25-35-induced loss of cell viability, inhibited both Aβ1-42 accumulation and tau hyperphosphorylation, reduced reactive oxygen species generation, and maintained the mitochondrial membrane potential. Moreover, CA increased the microtubule-associated protein light chain 3 (LC3)-II/I ratio and decreased SQSTM1(p62), indicating that CA could induce autophagy. Autophagy inhibitor 3-methyladenine (3-MA) attenuated the neuroprotective effect of CA, suggesting that autophagy was involved in the neuroprotection of CA. It was also observed that CA activated AMP-activated protein kinase (AMPK) but inhibited mammalian target of rapamycin (mTOR). Furthermore, blocking AMPK with si-AMPKα successfully inhibited the upregulation of LC3-II/I, prevented the downregulation of phosphorylation of mTOR and SQSTM1(p62), indicating that CA induced autophagy in SH-SY5Y cells via the activation of AMPK. These results suggested that CA might be a potential agent for preventing AD. PMID:27168327

  12. Cytotoxic effect of p-Coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy.

    PubMed

    Shailasree, S; Venkataramana, M; Niranjana, S R; Prakash, H S

    2015-02-01

    p-Coumaric acid (p-CA), an ubiquitous plant phenolic acid, has been proven to render protection against pathological conditions. In the present study, p-CA was evaluated for its capacity to induce cytotoxic effect to neuroblastoma N2a cells and we report here the possible mechanism of its action. p-CA at a concentration of 150 μmol/L, upon exposure for 72 h, stimulated 81.23 % of cells to apoptosis, as evidenced by flow cytometer studies mediated through elevated levels of ROS (7.5-fold over control). Excess ROS production activated structural injury to mitochondrial membrane, observed as dissipation of its membrane potential and followed by the release of cytochrome c (8.73-fold). Enhanced generation of intracellular ROS correlated well with the decreased levels (~60 %) of intracellular GSH. Sensitizing neuroblastoma cells for induction of apoptosis by p-CA identified p53-mediated upregulated accumulation of caspase-8 messenger RNA (2.8-fold). Our data report on autophagy, representing an additional mechanism of p-CA to induce growth arrest, detected by immunoblotting and fluorescence, correlated with accumulation of elevated levels (1.2-fold) of the LC3-II protein and acridine orange-stained autophagosomes, both autophagy markers. The present study indicates p-CA was effective in production of ROS-dependent mitochondrial damage-induced cytotoxicity in N2a cells.

  13. Protective Effects of Gallic Acid Against NiSO4-Induced Toxicity Through Down-Regulation of the Ras/ERK Signaling Pathway in Beas-2B Cells

    PubMed Central

    An, Xuejun; Zhou, Aijia; Yang, Yue; Wang, Yue; Xin, Rui; Tian, Chao; Wu, Yonghui

    2016-01-01

    Background This study aimed to explore the preventive effects of gallic acid (GA) on the toxicity induced by NiSO4 in Beas-2B cells. Material/Methods Beas-2B cell viability was measured by MTT assay. The degree of oxidative stress was detected by measuring the levels of reactive oxygen species (ROS) and lipid peroxide (LPO). The rate of apoptosis was measured by flow cytometry. Ras/ERK-related protein levels were analyzed by Western blot analysis, which including Ras, ERK, c-Myc, PARP, and PARP cleavage. Results MTT assay showed that NiSO4 induced cytotoxicity, while GA had a protective role against toxicity. Additionally, GA could reduce the apoptotic cell number and the level of ROS in Beas-2B cells induced by NiSO4. Western blot analysis demonstrated that NiSO4 could up-regulate the related protein in the Ras/ERK signaling pathway. Furthermore, we observed that GA could alleviate the toxicity of NiSO4 through regulating protein changes in the Ras/ERK signaling pathway. Conclusions Preventive effects of GA on NiSO4-induced cytotoxicity in Beas-2B cells may be through the Ras/ERK signaling pathways. PMID:27676106

  14. Retinoic acid induced differentiated neuroblastoma cells show increased expression of the beta A4 amyloid gene of Alzheimer's disease and an altered splicing pattern.

    PubMed

    König, G; Masters, C L; Beyreuther, K

    1990-09-01

    Retinoic acid (RA) induced differentiation of SH-SY5Y neuroblastoma cells is associated with more than a tenfold induction of total Alzheimer's disease beta A4 amyloid protein precursor (APP) mRNA as analyzed by Northern blot hybridisation. S1 nuclease protection experiments reveal that the splicing pattern of these differentiated cells is altered in favor of APP695 mRNA, coding for the shortest amyloidogenic beta A4 amyloid precursor protein. Induction of differentiation of SH-SY5Y cells with NGF leads to a fivefold increase of total APP mRNA without change in the splicing pattern. This suggests that RA but not NGF induces factor(s) which are responsible for an APP hnRNA splicing favoring APP695 mRNA.

  15. Atomic evidence that modification of H-bonds established with amino acids critical for host-cell binding induces sterile immunity against malaria

    SciTech Connect

    Patarroyo, Manuel E.; Cifuentes, Gladys; Pirajan, Camilo; Moreno-Vranich, Armando; Vanegas, Magnolia

    2010-04-09

    Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.

  16. Combination of 13 cis-retinoic acid and tolfenamic acid induces apoptosis and effectively inhibits high-risk neuroblastoma cell proliferation.

    PubMed

    Shelake, Sagar; Eslin, Don; Sutphin, Robert M; Sankpal, Umesh T; Wadwani, Anmol; Kenyon, Laura E; Tabor-Simecka, Leslie; Bowman, W Paul; Vishwanatha, Jamboor K; Basha, Riyaz

    2015-11-01

    Chemotherapeutic regimens used for the treatment of Neuroblastoma (NB) cause long-term side effects in pediatric patients. NB arises in immature sympathetic nerve cells and primarily affects infants and children. A high rate of relapse in high-risk neuroblastoma (HRNB) necessitates the development of alternative strategies for effective treatment. This study investigated the efficacy of a small molecule, tolfenamic acid (TA), for enhancing the anti-proliferative effect of 13 cis-retinoic acid (RA) in HRNB cell lines. LA1-55n and SH-SY5Y cells were treated with TA (30μM) or RA (20μM) or both (optimized doses, derived from dose curves) for 48h and tested the effect on cell viability, apoptosis and selected molecular markers (Sp1, survivin, AKT and ERK1/2). Cell viability and caspase activity were measured using the CellTiter-Glo and Caspase-Glo kits. The apoptotic cell population was determined by flow cytometry with Annexin-V staining. The expression of Sp1, survivin, AKT, ERK1/2 and c-PARP was evaluated by Western blots. The combination therapy of TA and RA resulted in significant inhibition of cell viability (p<0.0001) when compared to individual agents. The anti-proliferative effect is accompanied by a decrease in Sp1 and survivin expression and an increase in apoptotic markers, Annexin-V positive cells, caspase 3/7 activity and c-PARP levels. Notably, TA+RA combination also caused down regulation of AKT and ERK1/2 suggesting a distinct impact on survival and proliferation pathways via signaling cascades. This study demonstrates that the TA mediated inhibition of Sp1 in combination with RA provides a novel therapeutic strategy for the effective treatment of HRNB in children.

  17. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development.

    PubMed

    Park, Jung-Hyun; Jin, Yoon Mi; Hwang, Soojin; Cho, Du-Hyong; Kang, Duk-Hee; Jo, Inho

    2013-08-01

    The elevated level of uric acid in the body is associated with increased risk of cardiovascular diseases, which is mediated by endothelial dysfunction. However, its underlying mechanism is not fully understood, although dysregulation of endothelial nitric oxide (NO) production is likely to be involved. Using human umbilical vascular endothelial cells (HUVEC), we explored the molecular mechanism of uric acid on endothelial NO synthase (eNOS) activity and NO production. Although high dose of uric acid (12mg/dl for 24h treatment) significantly decreased eNOS activity and NO production, it did not alter eNOS expression and phosphorylations at eNOS-Ser(1177), eNOS-Thr(495) and eNOS-Ser(114). Under this condition, we also found no alterations in the dimerization and acetylation of eNOS, compared with the control. Furthermore, uric acid did not change the activity of arginase II, an enzyme degrading l-arginine, a substrate of eNOS, and intracellular level of calcium, a cofactor for eNOS activation. We also found that uric acid did not alter xanthine oxidase activity, suggesting no involvement of xanthine oxidase-derived O2(-) production in the observed inhibitory effects. In vitro and in cell coimmunoprecipitation studies, however, revealed that uric acid significantly decreased the interaction between eNOS and calmodulin (CaM), an eNOS activator, although it did not change the intracellular CaM level. Like in HUVEC, uric acid also decreased eNOS-CaM interaction in bovine aortic EC. Finally, uric acid attenuated ionomycin-induced increase in the interaction between eNOS and CaM. This study suggests firstly that uric acid decreased eNOS activity and NO production through reducing the binding between eNOS and CaM in EC. Our result may provide molecular mechanism by which uric acid induces endothelial dysfunction.

  18. Inducing cell cycle arrest and apoptosis by dimercaptosuccinic acid modified Fe3O4 magnetic nanoparticles combined with nontoxic concentration of bortezomib and gambogic acid in RPMI-8226 cells

    PubMed Central

    Zhang, Wei; Qiao, Lixing; Wang, Xinchao; Senthilkumar, Ravichandran; Wang, Fei; Chen, Baoan

    2015-01-01

    The purpose of this study was to determine the potential benefits of combination therapy using dimercaptosuccinic acid modified iron oxide (DMSA-Fe3O4) magnetic nanoparticles (MNPs) combined with nontoxic concentration of bortezomib (BTZ) and gambogic acid (GA) on multiple myeloma (MM) RPMI-8226 cells and possible underlying mechanisms. The effects of BTZ-GA-loaded MNP-Fe3O4 (BTZ-GA/MNPs) on cell proliferation were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,4,-diphenyltetrazolium bromide (MTT) method. Cell cycle and apoptosis were detected using the terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay and flow cytometry (FCM). Furthermore, DMSA-Fe3O4 MNPs were characterized in terms of distribution, apoptotic morphology, and cellular uptake by transmission electron microscopy (TEM) and 4,6-diamidino-2-phenylindole (DAPI) staining. Subsequently, the effect of BTZ-GA/MNPs combination on PI3K/Akt activation and apoptotic-related protein were appraised by Western blotting. MTT assay and hematoxylin and eosin (HE) staining were applied to elevate the functions of BTZ-GA/MNPs combination on the tumor xenograft model and tumor necrosis. The results of this study revealed that the majority of MNPs were quasi-spherical and the MNPs taken up by cells were located in the endosome vesicles of cytoplasm. Nontoxic concentration of BTZ-GA/MNPs increased G2/M phase cell cycle arrest and induced apoptosis in RPMI-8226 cells. Furthermore, the combination of BTZ-GA/MNPs activated phosphorylated Akt levels, Caspase-3, and Bax expression, and down-regulated the PI3K and Bcl-2 levels significantly. Meanwhile, the in vivo tumor xenograft model indicated that the treatment of BTZ-GA/MNPs decreased the tumor growth and volume and induced cell apoptosis and necrosis. These findings suggest that chemotherapeutic agents polymerized MNPs-Fe3O4 with GA could serve as a better alternative for targeted therapeutic approaches to treat multiple

  19. An α-acetoxy-tirucallic acid isomer inhibits Akt/mTOR signaling and induces oxidative stress in prostate cancer cells.

    PubMed

    El Gaafary, Menna; Büchele, Berthold; Syrovets, Tatiana; Agnolet, Sara; Schneider, Bernd; Schmidt, Christoph Q; Simmet, Thomas

    2015-01-01

    Here we provide evidence that αATA(8,24) (3α-acetyloxy-tir-8,24-dien-21-oic acid) inhibits Akt/mammalian target of rapamycin (mTOR) signaling. αATA(8,24) and other tirucallic acids were isolated from the acetylated extract of the oleo gum resin of Boswellia serrata to chemical homogeneity. Compared with related tirucallic acids, αATA(8,24) was the most potent inhibitor of the proliferation of androgen-insensitive prostate cancer cells in vitro and in vivo, in prostate cancer xenografted onto chick chorioallantoic membranes. αATA(8,24) induced loss of cell membrane asymmetry, caspase-3 activation, and DNA fragmentation in vitro and in vivo. These effects were selective for cancer cells, because αATA(8,24) exerted no overt toxic effects on peripheral blood mononuclear cells or the chick embryo. At the molecular level, αATA(8,24) inhibited the Akt1 kinase activity. Prior to all biochemical signs of cellular dysfunction, αATA(8,24) induced inhibition of the Akt downstream target mTOR as indicated by dephosphorylation of S6K1. This event was followed by decreased expression of cell cycle regulators, such as cyclin D1, cyclin E, and cyclin B1, as well as cyclin-dependent kinases CDK4 and CDK2 and phosphoretinoblastoma protein, which led to inhibition of the cell-cycle progression. In agreement with the mTOR inhibition, αATA(8,24) and rapamycin increased the volume of acidic vesicular organelles. In contrast to rapamycin, αATA(8,24) destabilized lysosomal and mitochondrial membranes and induced reactive oxygen species production in cancer cells. The ability of αATA(8,24) to inhibit Akt/mTOR signaling and to induce simultaneously oxidative stress could be exploited for the development of novel antitumor therapeutics with a lower profile of toxic side effects. PMID:25316122

  20. Neuroprotective effect of caffeoylquinic acids from Artemisia princeps Pampanini against oxidative stress-induced toxicity in PC-12 cells.

    PubMed

    Lee, Sang Gil; Lee, Hyungjae; Nam, Tae Gyu; Eom, Seok Hyun; Heo, Ho Jin; Lee, Chang Yong; Kim, Dae-Ok

    2011-03-01

    Phenolics in dry Artemisia princeps Pampanini, an herbal plant traditionally consumed as food ingredients in Korea was extracted, fractionated, and quantified as well as evaluated for its neuroprotection for PC-12 cells. Whole extract had 5,852 mg gallic acid equivalents/100 g of total phenolics and 6,274 mg and 9,698 mg vitamin C equivalents/100 g of antioxidant capacities assayed by DPPH and ABTS radicals, respectively. The fraction extracted with n-butanol had the highest levels of total phenolics and antioxidant capacity than the other fractions (n-hexane, chloroform, ethyl acetate, and water). Using a reversed-phase HPLC system, caffeoylquinic acid (CQA) and its derivatives such as 3-CQA, 4-CQA, 5-CQA, 1,5-diCQA, 3,4-diCQA, 3,5-diCQA, and 4,5-diCQA were isolated and quantified. The whole extract and its n-butanol fraction yielded 3,5-diCQA with the highest amount, which consisted of approximately 36.8% and 33.5%, respectively. The whole extract, the n-butanol fraction, and 3,5-diCQA showed neuroprotective effect on PC-12 cells under the insult of amyloid ß peptide in a dose-dependent manner. Treatments of the whole extract and the n-butanol fraction for PC-12 cells under oxidative stress increased approximately 1.6 and 2.4 times higher cell viability, compared with the control without treatments. For PC-12 cells treated with 3,5-diCQA, intracellular oxidative stress decreased by 51.3% and cell viability increased up to 2.8 times compared to the control with oxidative insult of amyloid ß peptide only. These results indicate that phenolics from A. princeps Pampanini alleviated the oxidative stress and enhanced the viability of PC-12 cells, suggesting that it may be applied as a dietary antineurodegenerative agent in functional foods.

  1. Conjugated linoleic acids modulate UVR-induced IL-8 and PGE2 in human skin cells: potential of CLA isomers in nutritional photoprotection.

    PubMed

    Storey, Amy; Rogers, Julia S; McArdle, Francis; Jackson, Malcolm J; Rhodes, Lesley E

    2007-06-01

    Conjugated linoleic acids (CLA), derivatives of linoleic acid found in food products, inhibit chemically induced skin cancers in mice. However, their potential photoprotective properties remain unexplored. We examined whether CLA may modulate ultraviolet radiation (UVR)-induced secretion of interleukin (IL)-8 and prostaglandin E2 (PGE(2)), mediators implicated in UVR-induced inflammation and carcinogenesis, in human skin cells. Since tumour necrosis factor (TNF)-alpha is an early mediator of UVR effects, we also examined influence of CLA on TNF-alpha-induced mediator release. HaCaT keratinocytes were supplemented with CLA isomers cis-9-trans-11 (c9,t11-CLA; > or =90%), trans-10-cis-12 (t10,c12-CLA; > or =90%) or all trans-trans isomers (tt-CLA; 23.7%) in tetrahydrofuran/fetal calf serum (THF/FCS) or THF/FCS control. Supplementation of keratinocytes with c9,t11-CLA reduced Ultraviolet B(UVB)-induced IL-8 from 37 113 +/- 2903 pg/ng protein in control cells to 14 167 +/- 2063 pg/ng protein (P < 0.001). Similarly, t10,c12-CLA reduced UVB-induced IL-8 to 9786 +/- 1291.5 pg/ng protein (P < 0.001). Additionally, t10,c12-CLA and tt-CLA inhibited TNF-alpha-induced IL-8 from 11 669 +/- 1692 pg/ng protein in control cells to 5540 +/- 191 (P < 0.001) and 8082 +/- 1298 pg/ng (P < 0.01) protein, respectively. UVB-induced PGE(2) release was reduced by tt-CLA supplementation, from 4.8 +/- 1.2 to 1.6 +/- 0.8 pg/mg protein (P < 0.01), but increased by t10,c12-CLA to 8.8 +/- 1 pg/mg protein (P < 0.001). Influence of CLA on UVB-induced PGE(2) release was further explored in CCD922SK dermal fibroblasts. CLA isomers reduced UVB-induced PGE(2) in fibroblasts, reaching significance with c9,t11-CLA (98 +/- 5 falling to 0 pg/mg protein, P < 0.05). Hence, CLA isomers differentially modulate UVB effects on skin cells in vitro. CLA-containing foods have potential in photoprotection; the cutaneous effects of individual isomers warrant clinical study.

  2. Immunohistochemical characterization of glial fibrillary acidic protein (GFAP)-expressing cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA).

    PubMed

    Tennakoon, Anusha Hemamali; Izawa, Takeshi; Wijesundera, Kavindra Kumara; Murakami, Hiroshi; Katou-Ichikawa, Chisa; Tanaka, Miyuu; Golbar, Hossain M; Kuwamura, Mitsuru; Yamate, Jyoji

    2015-01-01

    Hepatic stellate cells, the principal fibrogenic cell type in the liver, are known to express the astrocyte marker glial fibrillary acidic protein (GFAP). However, the exact role of GFAP-expressing cells in liver fibrosis remains to be elucidated. In this study, cellular properties of GFAP-expressing cells were investigated in a rat model of liver cirrhosis. Six-week-old male F344 rats were injected intraperitoneally with thioacetamide (100 mg/kg BW, twice a week) and examined at post first injection weeks 5, 10, 15, 20 and 25. Appearance of GFAP-expressing myofibroblasts peaked at week 15, associated with fibrosis progression. The majority of GFAP-expressing myofibroblasts co-expressed vimentin, desmin and alpha-smooth muscle actin. Some GFAP-positive myofibroblasts co-expressed nestin (neural stem cell marker), while a few co-expressed A3 (mesenchymal stem cell marker) and Thy-1 (immature mesenchymal cell marker). A few GFAP expressing cells underwent both mitosis and apoptosis. These results indicate that there is a dynamic participation of GFAP-expressing myofibroblasts in rat liver cirrhosis, and that they are mainly derived from hepatic stellate cells, and partly from cells in the stem cell lineage. These findings, which were shown for the first time in detail, would be useful to understand the role of GFAP-expressing myofibroblasts in the pathogenesis of chemically induced liver cirrhosis.

  3. Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines.

    PubMed

    Sommerwerk, Sven; Heller, Lucie; Kuhfs, Julia; Csuk, René

    2016-08-25

    2,3-Di-O-acetyl-maslinic acid benzylamide (5) has previously been shown to possess high cytotoxicity for a variety of human tumor cell lines while being of low cytotoxicity to non-malignant cells. Structural modifications performed on 5 revealed that the presence of these acetyl groups in 5 and the presence of (2β,3β)-configurated centers seems necessary for obtaining high cytotoxicity combined with best selectivity between malignant cells and non-malignant mouse fibroblasts. Compounds carrying an ursane skeleton showed weaker cytotoxicity than their oleanane derived analogs. In addition, the benzylamide function in compound 5 should be replaced by a phenylurea moiety to gain better cytotoxicity while retaining and improving the selectivity. Thus, maslinic acid derived N-[2β,3β-di-O-acetyl-17β-amino-28-norolean-12-en-17-yl]phenylurea (45) gave best results showing EC50 = 0.9 μM (for A2780 ovarian cancer cells) with EC50 > 120 μM for fibroblasts (NIH 3T3) and triggered apoptosis while caspase-3 was not activated by this compound. PMID:27149037

  4. Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines.

    PubMed

    Sommerwerk, Sven; Heller, Lucie; Kuhfs, Julia; Csuk, René

    2016-08-25

    2,3-Di-O-acetyl-maslinic acid benzylamide (5) has previously been shown to possess high cytotoxicity for a variety of human tumor cell lines while being of low cytotoxicity to non-malignant cells. Structural modifications performed on 5 revealed that the presence of these acetyl groups in 5 and the presence of (2β,3β)-configurated centers seems necessary for obtaining high cytotoxicity combined with best selectivity between malignant cells and non-malignant mouse fibroblasts. Compounds carrying an ursane skeleton showed weaker cytotoxicity than their oleanane derived analogs. In addition, the benzylamide function in compound 5 should be replaced by a phenylurea moiety to gain better cytotoxicity while retaining and improving the selectivity. Thus, maslinic acid derived N-[2β,3β-di-O-acetyl-17β-amino-28-norolean-12-en-17-yl]phenylurea (45) gave best results showing EC50 = 0.9 μM (for A2780 ovarian cancer cells) with EC50 > 120 μM for fibroblasts (NIH 3T3) and triggered apoptosis while caspase-3 was not activated by this compound.

  5. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    SciTech Connect

    Kishi, Minoru; Yasuda, Hisafumi; Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao

    2010-03-26

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cells induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  6. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells

    PubMed Central

    Ravacci, Graziela Rosa; Brentani, Maria Mitzi; Tortelli, Tharcisio Citrângulo; Torrinhas, Raquel Suzana M. M.; Santos, Jéssica Reis; Logullo, Angela Flávia; Waitzberg, Dan Linetzky

    2015-01-01

    In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36), transport (FABP4), and storage (DGAT) of exogenous fatty acids (FA), as well as increased activation of “de novo” FA synthesis (FASN). We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR) was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4) in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA. PMID:26640797

  7. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation.

    PubMed

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2014-08-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ's role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα. PMID:25019995

  8. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function.

  9. Gardenia jasminoides extracts and gallic acid inhibit lipopolysaccharide-induced inflammation by suppression of JNK2/1 signaling pathways in BV-2 cells

    PubMed Central

    Lin, Wen-Hung; Kuo, Heng-Hung; Ho, Li-Hsing; Tseng, Ming-Lang; Siao, An-Ci; Hung, Chang-Tsen; Jeng, Kee-Ching; Hou, Chien-Wei

    2015-01-01

    Objective(s): Gardenia jasminoides Ellis (GJ, Cape Jasmine Fruit, Zhi Zi) has been traditionally used for the treatment of infectious hepatitis, aphthous ulcer, and trauma; however, the direct evidence is lacking. Materials and Methods: We investigated the effect of the GJ extract (GJ) and gallic acid (GA) on lipopolysaccharide (LPS) induced inflammation of BV-2 microglial cells and acute liver injury in Sprague-Dawley (SD) rats. Results: Our results showed that the GJ extract and GA reduced LPS-induced nitric oxide (NO), interleukin (IL)-1, IL-6, reactive oxygen species (ROS), and prostaglandin (PGE2) production in BV-2 cells. The GJ extract and GA significantly decreased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in LPS-treated rats. Furthermore, the water extract, but not the ethanol extract, of the GJ dose-dependently inhibited LPS-induced JNK2/1 and slightly p38 mitogen-activated protein kinases (MAPK), and cyclooxygenase-2 (COX-2) expression in BV-2 cells. Conclusion: Taken together, these results indicate that the protective mechanism of the GJ extract involves an antioxidant effect and inhibition of JNK2/1 MAP kinase and COX-2 expressions in LPS-induced inflammation of BV-2 cells. PMID:26221479

  10. Caffeic acid phenethyl ester enhances TRAIL-mediated apoptosis via CHOP-induced death receptor 5 upregulation in hepatocarcinoma Hep3B cells.

    PubMed

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Park, Sang Rul; Choi, Yung-Hyun; Choi, Il-Whan; Kim, Gi-Young

    2016-07-01

    Caffeic acid phenethyl ester (CAPE) exhibits various pharmaceutical properties, including anti-bacterial, anti-inflammatory, anti-viral, anti-cancer, and anti-oxidative activity. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been a promising anti-cancer agent that preferentially induces cancer cell apoptosis with negligible cytotoxicity toward normal cells. Therefore, the present study investigated whether CAPE promotes TRAIL-mediated cytotoxicity in hepatocarcinoma Hep3B cells. The present study demonstrated that CAPE sensitized TRAIL-mediated cell death in Hep3B carcinoma cells. The percentages of the apoptotic cells and annexin-V(+) cells significantly increased in combined treatment with CAPE and TRAIL (CAPE/TRAIL). Treatment with pancaspase inhibitor, z-VAD-fmk, attenuated CAPE/TRAIL-induced apoptosis, suggesting that the combined treatment triggers caspase-dependent apoptosis. Additionally, we found that CAPE stimulated the expression of death receptor 5 (DR5) and treatment with DR5/Fc chimera protein significantly blocked CAPE/TRAIL-induced apoptosis, which indicates that CAPE/TRAIL stimulated apoptosis through the binding of TRAIL to DR5. Moreover, expression of transcription factor C/EBP homologous protein (CHOP) markedly increased in response to CAPE and transient knockdown of CHOP abolished CAPE/TRAIL-mediated apoptosis. These results suggest that CHOP is a key regulator in CAPE/TRAIL-mediated apoptosis. Taken together, the present study found that CAPE significantly enhanced TRAIL-mediated apoptosis in Hep3B carcinoma cells and suggested that CAPE has promising potential in chemoprevention of hepatocellular carcinomas. PMID:27260301

  11. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    SciTech Connect

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2014-08-08

    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.

  12. Retinoic Acid and GM-CSF Coordinately Induce Retinal Dehydrogenase 2 (RALDH2) Expression through Cooperation between the RAR/RXR Complex and Sp1 in Dendritic Cells

    PubMed Central

    Ohoka, Yoshiharu; Yokota-Nakatsuma, Aya; Maeda, Naoko; Takeuchi, Hajime; Iwata, Makoto

    2014-01-01

    Retinoic acid (RA)-producing dendritic cells (DCs) play critical roles in gut immunity. Retinal dehydrogenase 2 (RALDH2) encoded by Aldh1a2 is a key enzyme for generating RA in DCs. Granulocyte–macrophage colony-stimulating factor (GM-CSF) potently induces RALDH2 expression in DCs in an RA-dependent manner, and RA alone weakly induces the expression. However, how GM-CSF and RA induce RALDH2 expression remains unclear. Here, we show that GM-CSF-induced activation of the transcription factor Sp1 and RA-dependent signaling via the RA receptor (RAR)/retinoid X receptor (RXR) complex contribute to Aldh1a2 expression. The RAR antagonist LE540 and the Sp1 inhibitor mithramycin A inhibited GM-CSF-induced Aldh1a2 expression in fms-related tyrosine kinase 3 ligand-generated bone marrow-derived DCs (BM-DCs). ERK and p38 MAPK inhibitors suppressed GM-CSF-induced nuclear translocation of Sp1 and Aldh1a2 expression. Sp1 and the RARα/RXRα complex bound to GC-rich Sp1-binding sites and an RA response element (RARE) half-site, respectively, near the TATA box in the mouse Aldh1a2 promoter. The DNA sequences around these sites were highly conserved among different species. In the presence of RA, ectopic expression of RARα/RXRα and Sp1 synergistically enhanced Aldh1a2 promoter-reporter activity. GM-CSF did not significantly induce Aldh1a2 expression in plasmacytoid DCs, peritoneal macrophages, or T cells, and the Aldh1a2 promoter in these cells was mostly unmethylated. These results suggest that GM-CSF/RA-induced RALDH2 expression in DCs requires cooperative binding of Sp1 and the RAR/RXR complex to the Aldh1a2 promoter, and can be regulated by a DNA methylation-independent mechanism. PMID:24788806

  13. Oleanolic acid induces mitochondrial-dependent apoptosis and G0/G1 phase arrest in gallbladder cancer cells

    PubMed Central

    Li, Huai-Feng; Wang, Xu-An; Xiang, Shan-Shan; Hu, Yun-Ping; Jiang, Lin; Shu, Yi-Jun; Li, Mao-Lan; Wu, Xiang-Song; Zhang, Fei; Ye, Yuan-Yuan; Weng, Hao; Bao, Run-Fa; Cao, Yang; Lu, Wei; Dong, Qian; Liu, Ying-Bin

    2015-01-01

    Oleanolic acid (OA), a naturally occurring triterpenoid, exhibits potential antitumor activity in many tumor cell lines. Gallbladder carcinoma is the most common malignancy of the biliary tract, and is a highly aggressive tumor with an extremely poor prognosis. Unfortunately, the effects of OA on gallbladder carcinoma are unknown. In this study, we investigated the effects of OA on gallbladder cancer cells and the underlying mechanism. The results showed that OA inhibits proliferation of gallbladder cancer cells in a dose-dependent and time-dependent manner on MTT and colony formation assay. A flow cytometry assay revealed apoptosis and G0/G1 phase arrest in GBC-SD and NOZ cells. Western blot analysis and a mitochondrial membrane potential assay demonstrated that OA functions through the mitochondrial apoptosis pathway. Moreover, this drug inhibited tumor growth in nude mice carrying subcutaneous NOZ tumor xenografts. These data suggest that OA inhibits proliferation of gallbladder cancer cells by regulating apoptosis and the cell cycle process. Thus, OA may be a promising drug for adjuvant chemotherapy in gallbladder carcinoma. PMID:26109845

  14. The effects of lowered extracellular sodium on gamma-aminobutyric acid (GABA)-induced currents of Muller (glial) cells of the skate retina.

    PubMed

    Qian, H; Malchow, R P; Ripps, H

    1993-04-01

    1. The effects of external sodium on GABA-induced chloride currents were examined with whole-cell voltage-clamp recordings obtained from enzymatically dissociated solitary Muller cells in culture. Our goal was to determine whether a sodium-dependent GABA uptake mechanism influences the GABAa-mediated responses of skate Muller cells. 2. At low concentrations of GABA (0.01 to 0.5 microM), removal of sodium from the external solution resulted in a marked increase in the ligand-gated currents mediated by activation of GABAa receptors. The enhancement by lowered sodium was greatest at hyperpolarizing potentials and decreased progressively as the cell was depolarized. 3. The reversal potential for the GABA-induced response was not significantly altered by the removal of sodium, suggesting that sodium ions did not directly contribute to the GABAa-mediated current. 4. Lowering external sodium had no effect on the currents induced by the GABAa-agonist muscimol, consistent with its much lower affinity for the GABA transport carrier. 5. Application of the GABA uptake blocker nipecotic acid also abolished the effects of lowered sodium. 6. These findings suggest that the effects of lowered external sodium resulted from a decrease in the uptake of GABA into the Muller cells, thus raising the effective concentration of GABA acting upon the GABAa receptors. PMID:8394215

  15. JA, a new type of polyunsaturated fatty acid isolated from Juglans mandshurica Maxim, limits the survival and induces apoptosis of heptocarcinoma cells.

    PubMed

    Gao, Xiu-Li; Lin, Hua; Zhao, Wei; Hou, Ya-Qin; Bao, Yong-Li; Song, Zhen-Bo; Sun, Lu-Guo; Tian, Shang-Yi; Liu, Biao; Li, Yu-Xin

    2016-03-01

    Juglans mandshurica Maxim (Juglandaceae) is a famous folk medicine for cancer treatment and some natural compounds isolated from it have been studied extensively. Previously we isolated a type of ω-9 polyunsaturated fatty acid (JA) from the bark of J. mandshurica, however little is known about its activity and the underlying mechanisms. In this study, we studied anti-tumor activity of JA on several human cancer cell lines. Results showed that JA is cytotoxic to HepG2, MDA-MB-231, SGC-7901, A549 and Huh7 cells at a concentration exerting minimal toxic effects on L02 cells. The selective toxicity of JA was better than other classical anti-cancer drugs. Further investigation indicated that JA could induce cell apoptosis, characterized by chromatin condensation, DNA fragmentation and activation of the apoptosis-associated proteins such as Caspase-3 and PARP-1. Moreover, we investigated the cellular apoptosis pathway involved in the apoptosis process in HepG2 cells. We found that proteins involved in mitochondrion (cleaved-Caspase-9, Apaf-1, HtrA2/Omi, Bax, and Mitochondrial Bax) and endocytoplasmic reticulum (XBP-1s, GRP78, cleaved-Caspase-7 and cleaved-Caspase-12) apoptotic pathways were up-regulated when cells were treated by JA. In addition, a morphological change in the mitochondrion was detected. Furthermore, we found that JA could inhibit DNA synthesis and induce G2/M cell cycle arrest. The expression of G2-to-M transition related proteins, such as CyclinB1 and phosphorylated-CDK1, were reduced. In contrast, the G2-to-M inhibitor p21 was increased in JA-treated cells. Overall, our results suggest that JA can induce mitochondrion- and endocytoplasmic reticulum-mediated apoptosis, and G2/M phase arrest in HepG2 cells, making it a promising therapeutic agent against hepatoma.

  16. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway.

    PubMed

    Wang, Yu-Lun; Sun, Gen-Yi; Zhang, Ying; He, Jia-Jun; Zheng, Shen; Lin, Jing-Na

    2016-10-01

    Tormentic acid (TA) is a triterpene isolated from the stem bark of the plant Vochysia divergens and has been reported to exhibit anticancer, anti‑inflammatory and anti‑atherogenic properties. However, the functions of TA in hydrogen peroxide (H2O2)‑induced oxidative stress and inflammation in rat vascular smooth muscle cells (RVSMCs) remain unclear. Therefore, the present study aimed to investigate whether TA suppressed H2O2‑induced oxidative stress and inflammation in RVSMCs, and to determine its molecular mechanisms. The present study demonstrated that TA inhibited reactive oxygen species (ROS) generation, induced H2O2 in RVSMCs, and inhibited H2O2-induced expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX) in RVSMCs. In addition, TA significantly decreased the production of tumor necrosis factor‑α (TNF‑α), interleukin 6 (IL‑6) and IL‑1β. Furthermore, TA pretreatment prevented nuclear factor‑κB (NF‑κB) subunit p65 phosphorylation and NF‑κB inhibitor α (IκBα) degradation induced by H2O2 in RVSMCs. TA is, therefore, suggested to inhibit H2O2-induced oxidative stress and inflammation in RVSMCs via inhibition of the NF‑κB signaling pathway. TA may have potential as a pharmacological agent in the prevention or treatment of atherosclerosis. PMID:27572426

  17. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway

    PubMed Central

    Wang, Yu-Lun; Sun, Gen-Yi; Zhang, Ying; He, Jia-Jun; Zheng, Shen; Lin, Jing-Na

    2016-01-01

    Tormentic acid (TA) is a triterpene isolated from the stem bark of the plant Vochysia divergens and has been reported to exhibit anticancer, anti-inflammatory and anti-atherogenic properties. However, the functions of TA in hydrogen peroxide (H2O2)-induced oxidative stress and inflammation in rat vascular smooth muscle cells (RVSMCs) remain unclear. Therefore, the present study aimed to investigate whether TA suppressed H2O2-induced oxidative stress and inflammation in RVSMCs, and to determine its molecular mechanisms. The present study demonstrated that TA inhibited reactive oxygen species (ROS) generation, induced H2O2 in RVSMCs, and inhibited H2O2-induced expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX) in RVSMCs. In addition, TA significantly decreased the production of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and IL-1β. Furthermore, TA pretreatment prevented nuclear factor-κB (NF-κB) subunit p65 phosphorylation and NF-κB inhibitor α (IκBα) degradation induced by H2O2 in RVSMCs. TA is, therefore, suggested to inhibit H2O2-induced oxidative stress and inflammation in RVSMCs via inhibition of the NF-κB signaling pathway. TA may have potential as a pharmacological agent in the prevention or treatment of atherosclerosis. PMID:27572426

  18. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway.

    PubMed

    Wang, Yu-Lun; Sun, Gen-Yi; Zhang, Ying; He, Jia-Jun; Zheng, Shen; Lin, Jing-Na

    2016-10-01

    Tormentic acid (TA) is a triterpene isolated from the stem bark of the plant Vochysia divergens and has been reported to exhibit anticancer, anti‑inflammatory and anti‑atherogenic properties. However, the functions of TA in hydrogen peroxide (H2O2)‑induced oxidative stress and inflammation in rat vascular smooth muscle cells (RVSMCs) remain unclear. Therefore, the present study aimed to investigate whether TA suppressed H2O2‑induced oxidative stress and inflammation in RVSMCs, and to determine its molecular mechanisms. The present study demonstrated that TA inhibited reactive oxygen species (ROS) generation, induced H2O2 in RVSMCs, and inhibited H2O2-induced expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX) in RVSMCs. In addition, TA significantly decreased the production of tumor necrosis factor‑α (TNF‑α), interleukin 6 (IL‑6) and IL‑1β. Furthermore, TA pretreatment prevented nuclear factor‑κB (NF‑κB) subunit p65 phosphorylation and NF‑κB inhibitor α (IκBα) degradation induced by H2O2 in RVSMCs. TA is, therefore, suggested to inhibit H2O2-induced oxidative stress and inflammation in RVSMCs via inhibition of the NF‑κB signaling pathway. TA may have potential as a pharmacological agent in the prevention or treatment of atherosclerosis.

  19. Ultrasound-potentiated salicylic acid-induced physiological effects and production of taxol in hazelnut (Corylus avellana L.) cell culture.

    PubMed

    Rezaei, Ayatollah; Ghanati, Faezeh; Behmanesh, Mehrdad; Mokhtari-Dizaji, Manijhe

    2011-11-01

    Effects of ultrasound (US), salicylic acid (SA) and their combined use on the growth and secondary metabolite production of suspension-cultured Corylus avellana cells were investigated. The cultures were treated with US (40 kHz) for short periods of time (2, 3, 5 and 10 min) and SA (25 and 50 mg L(-1)). Results showed that although phenolic content of the cells was significantly increased under exposure to treatments, flavonoids content significantly decreased. Taxol biosynthesis was improved by all treatments. US exposure increased the extracellular, cell-associated and total taxol yield three-, 1.6-, and two-fold compared with that of the control, respectively. SA at all levels was more effective than US in stimulating cell-associated and total taxol production. Combined treatment of US and SA at 50 mg L(-1) resulted in the most improvement in total taxol production, which was about seven times higher than that of the US, three times higher than that of the SA and 14 times higher than that of the control. The results suggest a synergism between US and SA in enhancing taxol production by hazelnut cells.

  20. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation.

    PubMed

    Cho, Youngmi; Turner, Nancy D; Davidson, Laurie A; Chapkin, Robert S; Carroll, Raymond J; Lupton, Joanne R

    2014-03-01

    DNA methylation and histone acetylation contribute to the transcriptional regulation of genes involved in apoptosis. We have demonstrated that docosahexaenoic acid (DHA, 22:6 n-3) and butyrate enhance colonocyte apoptosis. To determine if DHA and/or butyrate elevate apoptosis through epigenetic mechanisms thereby restoring the transcription of apoptosis-related genes, we examined global methylation; gene-specific promoter methylation of 24 apoptosis-related genes; transcription levels of Cideb, Dapk1, and Tnfrsf25; and global histone acetylation in the HCT-116 colon cancer cell line. Cells were treated with combinations of (50 µM) DHA or linoleic acid (18:2 n-6), (5 mM) butyrate or an inhibitor of DNA methyltransferases, and 5-aza-2'-deoxycytidine (5-Aza-dC, 2 µM). Among highly methylated genes, the combination of DHA and butyrate significantly reduced methylation of the proapoptotic Bcl2l11, Cideb, Dapk1, Ltbr, and Tnfrsf25 genes compared to untreated control cells. DHA treatment reduced the methylation of Cideb, Dapk1, and Tnfrsf25. These data suggest that the induction of apoptosis by DHA and butyrate is mediated, in part, through changes in the methylation state of apoptosis-related genes.

  1. Ursolic acid induces apoptosis in human leukaemia cells and exhibits anti-leukaemic activity in nude mice through the PKB pathway

    PubMed Central

    Gao, Ning; Cheng, Senping; Budhraja, Amit; Gao, Ziyi; Chen, Jieping; Liu, E-Hu; Huang, Cheng; Chen, Deying; Yang, Zailin; Liu, Qun; Li, Ping; Shi, Xianglin; Zhang, Zhuo

    2012-01-01

    BACKGROUND AND PURPOSE Ursolic acid (UA) has been extensively used as an anti-leukaemic agent in traditional Chinese medicine. In the present study, we investigated the ability of UA to induce apoptosis in human leukaemia cells in relation to its effects on caspase activation, Mcl-1 down-regulation and perturbations in stress-induced signalling pathways such as PKB and JNK. EXPERIMENTAL APPROACH Leukaemia cells were treated with UA after which apoptosis, caspase activation, PKB and JNK signalling pathways were evaluated. The anti-tumour activity of UA was evaluated using xenograft mouse model. KEY RESULTS UA induced apoptosis in human leukaemia cells in a dose- and time-dependent manner; this was associated with caspase activation, down-regulation of Mcl-1 and inactivation of PKB accompanied by activation of JNK. Enforced activation of PKB by a constitutively active PKB construct prevented UA-mediated JNK activation, Mcl-1 down-regulation, caspase activation and apoptosis. Conversely, UA lethality was potentiated by the PI3-kinase inhibitor LY294002. Interruption of the JNK pathway by pharmacological or genetic (e.g. siRNA) attenuated UA-induced apoptosis. Furthermore, UA-mediated inhibition of tumour growth in vivo was associated with induction of apoptosis, inactivation of PKB as well as activation of JNK. CONCLUSIONS AND IMPLICATIONS Collectively, these findings suggest a hierarchical model of UA-induced apoptosis in human leukaemia cells in which UA induces PKB inactivation, leading to JNK activation and culminating in Mcl-1 down-regulation, caspase activation and apoptosis. These findings indicate that interruption of PKB/JNK pathways may represent a novel therapeutic strategy in haematological malignancies. PMID:21950524

  2. Effect of Vitamin E and Omega-3 Fatty Acids on Protecting Ambient PM2.5-Induced Inflammatory Response and Oxidative Stress in Vascular Endothelial Cells

    PubMed Central

    Bo, Liang; Jiang, Shuo; Xie, Yuquan; Kan, Haidong; Song, Weimin; Zhao, Jinzhuo

    2016-01-01

    Although the mechanisms linking cardiopulmonary diseases to ambient fine particles (PM2.5) are still unclear, inflammation and oxidative stress play important roles in PM2.5-induced injury. It is well known that inflammation and oxidative stress could be restricted by vitamin E (Ve) or omega-3 fatty acids (Ω-3 FA) consumption. This study investigated the effects of Ve and Ω-3 FA on PM2.5-induced inflammation and oxidative stress in vascular endothelial cells. The underlying mechanisms linking PM2.5 to vascular endothelial injury were also explored. Human umbilical vein endothelial cells (HUVECs) were treated with 50 μg/mL PM2.5 in the presence or absence of different concentrations of Ve and Ω-3 FA. The inflammatory cytokines and oxidative stress markers were determined. The results showed that Ve induced a significant decrease in PM2.5-induced inflammation and oxidative stress. Malondialdehyde (MDA) in supernatant and reactive oxygen species (ROS) in cytoplasm decreased by Ve, while the superoxide dismutase (SOD) activity elevated. The inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) also reduced by Ve. Moreover, Ω-3 FA played the same role on decreasing the inflammation and oxidative stress. IL-6 and TNF-α expressions were significantly lower in combined Ve with Ω-3 FA than treatment with Ve or Ω-3 FA alone. The Ve and Ω-3 FA intervention might abolish the PM2.5-induced oxidative stress and inflammation in vascular endothelial cells. There might be an additive effect of these two nutrients in mediating the PM2.5-induced injury in vascular endothelial cells. The results suggested that inflammation and oxidative stress might be parts of the mechanisms linking PM2.5 to vascular endothelial injury. PMID:27007186

  3. Humic Acid Increases Amyloid β-Induced Cytotoxicity by Induction of ER Stress in Human SK-N-MC Neuronal Cells

    PubMed Central

    Li, Hsin-Hua; Lu, Fung-Jou; Hung, Hui-Chih; Liu, Guang-Yaw; Lai, Te-Jen; Lin, Chih-Li

    2015-01-01

    Humic acid (HA) is a possible etiological factor associated with for several vascular diseases. It is known that vascular risk factors can directly increase the susceptibility to Alzheimer’s disease (AD), which is a neurodegenerative disorder due to accumulation of amyloid β (Aβ) peptide in the brain. However, the role that HA contributes to Aβ-induced cytotoxicity has not been demonstrated. In the present study, we demonstrate that HA exhibits a synergistic effect enhancing Aβ-induced cytotoxicity in cultured human SK-N-MC neuronal cells. Furthermore, this deterioration was mediated through the activation of endoplasmic reticulum (ER) stress by stimulating PERK and eIF2α phosphorylation. We also observed HA and Aβ-induced cytotoxicity is associated with mitochondrial dysfunction caused by down-regulation of the Sirt1/PGC1α pathway, while in contrast, treating the cells with the ER stress inhibitor Salubrinal, or over-expression of Sirt1 significantly reduced loss of cell viability by HA and Aβ. Our findings suggest a new mechanism by which HA can deteriorate Aβ-induced cytotoxicity through modulation of ER stress, which may provide significant insights into the pathogenesis of AD co-occurring with vascular injury. PMID:25961951

  4. Humic Acid Increases Amyloid β-Induced Cytotoxicity by Induction of ER Stress in Human SK-N-MC Neuronal Cells.

    PubMed

    Li, Hsin-Hua; Lu, Fung-Jou; Hung, Hui-Chih; Liu, Guang-Yaw; Lai, Te-Jen; Lin, Chih-Li

    2015-01-01

    Humic acid (HA) is a possible etiological factor associated with for several vascular diseases. It is known that vascular risk factors can directly increase the susceptibility to Alzheimer's disease (AD), which is a neurodegenerative disorder due to accumulation of amyloid β (Aβ) peptide in the brain. However, the role that HA contributes to Aβ-induced cytotoxicity has not been demonstrated. In the present study, we demonstrate that HA exhibits a synergistic effect enhancing Aβ-induced cytotoxicity in cultured human SK-N-MC neuronal cells. Furthermore, this deterioration was mediated through the activation of endoplasmic reticulum (ER) stress by stimulating PERK and eIF2α phosphorylation. We also observed HA and Aβ-induced cytotoxicity is associated with mitochondrial dysfunction caused by down-regulation of the Sirt1/PGC1α pathway, while in contrast, treating the cells with the ER stress inhibitor Salubrinal, or over-expression of Sirt1 significantly reduced loss of cell viability by HA and Aβ. Our findings suggest a new mechanism by which HA can deteriorate Aβ-induced cytotoxicity through modulation of ER stress, which may provide significant insights into the pathogenesis of AD co-occurring with vascular injury. PMID:25961951

  5. Docosahexaenoic Acid Inhibits Tumor Promoter-Induced Urokinase-Type Plasminogen Activator Receptor by Suppressing PKCδ- and MAPKs-Mediated Pathways in ECV304 Human Endothelial Cells

    PubMed Central

    Lian, Sen; Xia, Yong; Nguyen, Thi Thinh; Ung, Trong Thuan; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2016-01-01

    The overexpression of urokinase-type plasminogen activator receptor (uPAR) is associated with inflammation and virtually all human cancers. Despite the fact that docosahexaenoic acid (DHA) has been reported to possess anti-inflammatory and anti-tumor properties, the negative regulation of uPAR by DHA is still undefined. Here, we investigated the effect of DHA on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced uPAR expression and the underlying molecular mechanisms in ECV304 human endothelial cells. DHA concentration-dependently inhibited TPA-induced uPAR. Specific inhibitors and mutagenesis studies showed that PKCδ, JNK1/2, Erk1/2, NF-κB, and AP-1 were critical for TPA-induced uPAR expression. Application of DHA suppressed TPA-induced translocation of PKCδ, activation of the JNK1/2 and Erk1/2 signaling pathways, and subsequent AP-1 and NF-κB transactivation. In conclusion, these observations suggest a novel role for DHA in reducing uPAR expression and cell invasion by inhibition of PKCδ, JNK1/2, and Erk1/2, and the reduction of AP-1 and NF-κB activation in ECV304 human endothelial cells. PMID:27654969

  6. Sargaquinoic Acid Inhibits TNF-α-Induced NF-κB Signaling, Thereby Contributing to Decreased Monocyte Adhesion to Human Umbilical Vein Endothelial Cells (HUVECs).

    PubMed

    Gwon, Wi-Gyeong; Lee, Bonggi; Joung, Eun-Ji; Choi, Min-Woo; Yoon, Nayoung; Shin, Taisun; Oh, Chul-Woong; Kim, Hyeung-Rak

    2015-10-21

    Sargaquinoic acid (SQA) has been known for its antioxidant and anti-inflammatory properties. This study investigated the effects of SQA isolated from Sargassum serratifolium on the inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). SQA decreased the expression of cell adhesion molecules such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as chemotactic cytokines such as interleukin-8 and monocyte chemoattractant protein-1 in TNF-α-treated HUVECs. As a result, SQA prevented monocyte adhesion to TNF-α-induced adhesion. SQA also inhibited TNF-α-induced nuclear factor kappa B (NF-κB) translocation into the nucleus by preventing proteolytic degradation of inhibitor κB-α. Overall, SQA protects against TNF-α-induced vascular inflammation through inhibition of the NF-κB pathway in HUVECs. These data suggest that SQA may be used as a therapeutic agent for vascular inflammatory diseases such as atherosclerosis. PMID:26437568

  7. Inhibition of all-trans-retinoic acid-induced proteasome activation potentiates the differentiating effect of retinoid in acute myeloid leukemia cells.

    PubMed

    Fang, Yanfen; Zhou, Xinglu; Lin, Meihua; Ying, Meidan; Luo, Peihua; Zhu, Difeng; Lou, Jianshu; Yang, Bo; He, Qiaojun

    2011-01-01

    All-trans retinoic acid (ATRA) is nowadays considered to be the sole efficient agent for differentiation-based therapy in leukemia; however, the mechanisms of ATRA's biological effects remain largely unknown. Here we first reported that ATRA-induced myeloid leukemia differentiation was accompanied with the increased level of ubiquitin-protein conjugates and the upregulation of proteasome activity. To explore the functional role of the activated proteasome in retinoic acid (RA) signaling, the effects of proteasome inhibitors on RA-induced cell differentiation were determined. Our results demonstrated that inhibition of ATRA-elevated proteasome activity obviously promoted the myeloid maturation program triggered by ATRA, suggesting that the overactivated proteasome is not beneficial for ATRA's effects. Further studies demonstrated that the synergistic differentiating effects of ATRA and proteasome inhibitors might be associated with the protection of retinoic acid receptor alpha (RARα) from degradation by the ubiquitin-proteasome pathway (UPP). Moreover, the accumulated RARα was able to enhance the transcription of its target gene, which might also contribute to the enhanced differentiation of leukemia cells. Together, by linking the UPP to ATRA-dependent signaling, our data provide a novel insight into studying the mechanisms of ATRA-elicited cellular effects and imply the possibility of combination of ATRA and proteasome inhibitors in leukemia therapy.

  8. Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis.

    PubMed

    Liu, Yamin; Shen, Shengnan; Li, Zongyang; Jiang, Yumao; Si, Jianyong; Chang, Qi; Liu, Xinmin; Pan, Ruile

    2014-12-01

    It has been reported that high corticosterone level could damage the normal hippocampal neurons both in vitro and in vivo. Furthermore, high concentration of corticosterone induced impair in PC12 cells has been widely used as in vitro model to screen neuroprotective agents. Cajaninstilbene acid (CSA), a natural stilbene isolated from Cajanus cajan leaves, has various activities. In present study, we investigated the effect of CSA on corticosterone-induced cell apoptosis and explored its possible signaling pathways in PC12 cells. We demonstrated that pretreatment with CSA at the concentrations of 1-8 μmol/L remarkably reduced the cytotoxicity induced by 200 μmol/L of corticosterone in PC12 cells by MTT, and further confirmed the neuroprotection by Hoechst 33342 and PI double staining and lactate dehydrogenase release (LDH) assay at the concentration of 8 μmol/L. Moreover, the cytoprotection of CSA was proved to be associated with the homeostasis of intracellular Ca(2+), relieving corticosterone-induced oxidative stress by decreasing the contents of ROS and malondialdehyde (MDA), increasing the activities of superoxide dismutase (SOD) and catalase (CAT), and the stabilization of ER stress via down-regulating the expression of ER chaperone protein glucose-regulated protein 78 (GRP78), ER stress associated transcription factor C/EBP homologous protein (CHOP/GADD153), and the X box-binding protein-1 (XBP-1), as well as the expression of ER stress-specific protein caspase-12 and its downstream protein caspase-9. Considering all the findings, it is suggested that the neuroprotective activity of CSA against the impairment induced by corticosterone in PC12 cells was through the inhibition of oxidative stress and ER stress-mediated pathway. PMID:25193317

  9. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex

    PubMed Central

    Gruz-Gibelli, Emmanuelle; Chessel, Natacha; Allioux, Clélia; Marin, Pascale; Piotton, Françoise; Leuba, Geneviève; Herrmann, François R.; Savioz, Armand

    2016-01-01

    The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR) in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state. PMID:26881107

  10. Transforming growth factor-beta 1 stimulates vascular smooth muscle cell L-proline transport by inducing system A amino acid transporter 2 (SAT2) gene expression.

    PubMed Central

    Ensenat, D; Hassan, S; Reyna, S V; Schafer, A I; Durante, W

    2001-01-01

    Transforming growth factor-beta1 (TGF-beta 1) is a multifunctional cytokine that contributes to arterial remodelling by stimulating vascular smooth muscle cell (SMC) growth and collagen synthesis at sites of vascular injury. Since l-proline is essential for the synthesis of collagen, we examined whether TGF-beta 1 regulates the transcellular transport of l-proline by vascular SMCs. l-Proline uptake by vascular SMCs was primarily sodium-dependent, pH-sensitive, blocked by neutral amino acids and alpha-(methylamino)isobutyric acid, and exhibited trans-inhibition. Treatment of SMCs with TGF-beta 1 stimulated l-proline transport in a concentration- and time-dependent manner. The TGF-beta 1-mediated l-proline uptake was inhibited by cycloheximide or actinomycin D. Kinetic studies indicated that TGF-beta 1-induced l-proline transport was mediated by an increase in transport capacity independent of any changes in the affinity for l-proline. TGF-beta 1 stimulated the expression of system A amino acid transporter 2 (SAT2) mRNA in a time-dependent fashion that paralleled the increase in l-proline transport. Reverse transcriptase PCR failed to detect the presence of SAT1 or amino acid transporter 3 (ATA3) in either untreated or TGF-beta 1-treated SMCs. These results demonstrate that l-proline transport by vascular SMCs is mediated predominantly by the SAT and that TGF-beta 1 stimulates SMC l-proline uptake by inducing the expression of the SAT2 gene. The ability of TGF-beta 1 to induce SAT2 expression may function to provide SMCs with the necessary levels of l-proline required for collagen synthesis and cell growth. PMID:11716780

  11. Low simvastatin concentrations reduce oleic acid-induced steatosis in HepG2 cells: An in vitro model of non-alcoholic fatty liver disease

    PubMed Central

    ALKHATATBEH, MOHAMMAD J.; LINCZ, LISA F.; THORNE, RICK F.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is an inflammatory condition caused by hepatic lipid accumulation that is associated with insulin resistance, diabetes and metabolic syndrome. Although statins should be used with caution in liver diseases, they are increasingly investigated as a possible treatment for NAFLD. The present study recreated an in vitro model of NAFLD using HepG2 cells exposed to oleic acid (OA), which was used to quantify OA-induced lipid accumulation in HepG2 cells treated with various concentrations of simvastatin. In addition, the effect of simvastatin on HepG2 cell morphology and microparticle generation as a marker of cell apoptosis was assessed. OA-induced lipid accumulation was quantified by Oil Red O staining and extraction for optical density determination. Stained lipid droplets were visualized using phase contrast microscopy. Furthermore, HepG2 cell-derived microparticles were counted by flow cytometry subsequent to staining for Annexin V. HepG2 cells treated with 0–1 mM OA showed dose-dependent lipid accumulation. Treatment of HepG2 cells with increasing concentrations of simvastatin followed by treatment with 1 mM OA showed that low simvastatin concentrations (4–10 µM) were able to reduce lipid accumulation by ~40%, whereas high simvastatin concentrations (20 and 30 µM) induced apoptotic changes in cell morphology and increased the production of Annexin V+ microparticles. This suggests that low simvastatin doses may have a role in preventing NAFLD. However, further investigations are required to confirm this action in vivo and to determine the underlying mechanism by which simvastatin reduces hepatic steatosis. PMID:27073470

  12. Spergularia marina Induces Glucagon-Like Peptide-1 Secretion in NCI-H716 Cells Through Bile Acid Receptor Activation

    PubMed Central

    Kim, Kyong; Lee, Yu Mi; Rhyu, Mee-Ra

    2014-01-01

    Abstract Spergularia marina Griseb. (SM) is a halophyte that grows in mud flats. The aerial portions of SM have been eaten as vegetables and traditionally used to prevent chronic diseases in Korea. However, there has been no scientific report that demonstrates the pharmacological effects of SM. Glucagon-like peptide-1 (GLP-1) is important for the maintenance of glucose and energy homeostasis through acting as a signal in peripheral and neural systems. To discover a functional food for regulating glucose and energy homeostasis, we evaluated the effect of an aqueous ethanolic extract (AEE) of SM on GLP-1 release from enteroendocrine NCI-H716 cells. In addition, we explored the Takeda G-protein-coupled receptor 5 (TGR5) agonist activity of AEE-SM in Chinese hamster ovary (CHO)-K1 cells transiently transfected with human TGR5. As a result, treatment of NCI-H716 cells with AEE-SM increased GLP-1 secretion and intracellular Ca2+ and cyclic AMP (cAMP) levels in a dose-dependent manner. Transfection of NCI-H716 cells with TGR5-specific small interference RNA inhibited AEE-SM-induced GLP-1 secretion and the increase in Ca2+ and cAMP levels. Moreover, AEE-SM showed that the TGR5 agonist activity in CHO-K1 cells transiently transfected with TGR5. The results suggest that AEE-SM might be a candidate for a functional food to regulate glucose and energy homeostasis. PMID:25260089

  13. AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression

    PubMed Central

    González-Rubio, Sandra; Linares, Clara I.; Aguilar-Melero, Patricia; Rodríguez-Perálvarez, Manuel; Montero-Álvarez, José L.

    2016-01-01

    The harmful effects of bile acid accumulation occurring during cholestatic liver diseases have been associated with oxidative stress increase and endothelial nitric oxide synthase (NOS-3) expression decrease in liver cells. We have previously reported that glycochenodeoxycholic acid (GCDCA) down-regulates gene expression by increasing SP1 binding to the NOS-3 promoter in an oxidative stress dependent manner. In the present study, we aimed to investigate the role of transcription factor (TF) AP-1 on the NOS-3 deregulation during GCDCA-induced cholestasis. The cytotoxic response to GCDCA was characterized by 1) the increased expression and activation of TFs cJun and c-Fos; 2) a higher binding capability of these at position -666 of the NOS-3 promoter; 3) a decrease of the transcriptional activity of the promoter and the expression and activity of NOS-3; and 4) the expression increase of cyclin D1. Specific inhibition of AP-1 by the retinoid SR 11302 counteracted the cytotoxic effects induced by GCDCA while promoting NOS-3 expression recovery and cyclin D1 reduction. NOS activity inhibition by L-NAME inhibited the protective effect of SR 11302. Inducible NOS isoform was no detected in this experimental model of cholestasis. Our data provide direct evidence for the involvement of AP-1 in the NOS-3 expression regulation during cholestasis and define a critical role for NOS-3 in regulating the expression of cyclin D1 during the cell damage induced by bile acids. AP-1 appears as a potential therapeutic target in cholestatic liver diseases given its role as a transcriptional repressor of NOS-3. PMID:27490694

  14. Enterococcus faecalis inhibits superantigen toxic shock syndrome toxin-1-induced interleukin-8 from human vaginal epithelial cells through tetramic acids.

    PubMed

    Brosnahan, Amanda J; Merriman, Joseph A; Salgado-Pabón, Wilmara; Ford, Bradley; Schlievert, Patrick M

    2013-01-01

    The vaginal mucosa can be colonized by many bacteria including commensal organisms and potential pathogens, such as Staphylococcus aureus. Some strains of S. aureus produce the superantigen toxic shock syndrome toxin-1, which can penetrate the vaginal epithelium to cause toxic shock syndrome. We have observed that a female was mono-colonized with Enterococcus faecalis vaginally as tested in aerobic culture, even upon repeated culture for six months, suggesting this organism was negatively influencing colonization by other bacteria. In recent studies, we demonstrated an "outside-in" mechanism of cytokine signaling and consequent inflammation that facilitates the ability of potential pathogens to initiate infection from mucosal surfaces. Thus, we hypothesized that this strain of E. faecalis may make anti-inflammatory factors which block disease progression of more pathogenic organisms. E. faecalis MN1 inhibited interleukin-8 production from human vaginal epithelial cells in response to the vaginal pathogens Candida albicans, Gardnerella vaginalis, and Neisseria gonorrhoeae, as well as to toxic shock syndrome toxin-1. We further demonstrated that this organism secretes two tetramic acid compounds which appear responsible for inhibition of interleukin-8 production, as well as inhibition of T cell proliferation due to toxic shock syndrome toxin-1. Microbicides that include anti-inflammatory molecules, such as these tetramic acid compounds naturally produced by E. faecalis MN1, may be useful in prevention of diseases that develop from vaginal infections. PMID:23613823

  15. Omega-3 fatty acids attenuate constitutive and insulin-induced CD36 expression through a suppression of PPAR α/γ activity in microvascular endothelial cells.

    PubMed

    Madonna, Rosalinda; Salerni, Sara; Schiavone, Deborah; Glatz, Jan F; Geng, Yong-Jian; De Caterina, Raffaele

    2011-09-01

    Microvascular dysfunction occurs in insulin resistance and/or hyperinsulinaemia. Enhanced uptake of free fatty acids (FFA) and oxidised low-density lipoproteins (oxLDL) may lead to oxidative stress and microvascular dysfunction interacting with CD36, a PPARα/γ-regulated scavenger receptor and long-chain FFA transporter. We investigated CD36 expression and CD36-mediated oxLDL uptake before and after insulin treatment in human dermal microvascular endothelial cells (HMVECs), ± different types of fatty acids (FA), including palmitic, oleic, linoleic, arachidonic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. Insulin (10(-8) and 10(-7) M) time-dependently increased DiI-oxLDL uptake and CD36 surface expression (by 30 ± 13%, p<0.05 vs. untreated control after 24 hours incubation), as assessed by ELISA and flow cytometry, an effect that was potentiated by the PI3-kinase inhibitor wortmannin and reverted by the ERK1/2 inhibitor PD98059 and the PPARα/γ antagonist GW9662. A ≥ 24 hour exposure to 50 μM DHA or EPA, but not other FA, blunted both the constitutive (by 23 ± 3% and 29 ± 2%, respectively, p<0.05 for both) and insulin-induced CD36 expressions (by 45 ± 27 % and 12 ± 3 %, respectively, p<0.05 for both), along with insulin-induced uptake of DiI-oxLDL and the downregulation of phosphorylated endothelial nitric oxide synthase (P-eNOS). At gel shift assays, DHA reverted insulin-induced basal and oxLDL-stimulated transactivation of PPRE and DNA binding of PPARα/γ and NF-κB. In conclusion, omega-3 fatty acids blunt the increased CD36 expression and activity promoted by high concentrations of insulin. Such mechanisms may be the basis for the use of omega-3 fatty acids in diabetic microvasculopathy. PMID:21727988

  16. High butyric acid amounts induce oxidative stress, alter calcium homeostasis, and cause neurite retraction in nerve growth factor-treated PC12 cells.

    PubMed

    Cueno, Marni E; Kamio, Noriaki; Seki, Keisuke; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2015-07-01

    Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC1(2) cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H(2)O(2), catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.

  17. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid

    PubMed Central

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-01-01

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee. PMID:27399778

  18. Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells.

    PubMed

    Henderson, Kimberly A; Kobylewski, Sarah E; Yamada, Kristin E; Eckhert, Curtis D

    2015-02-01

    Dietary boron intake is associated with reduced prostate and lung cancer risk and increased bone mass. Boron is absorbed and circulated as boric acid (BA) and at physiological concentrations is a reversible competitive inhibitor of cyclic ADP ribose, the endogenous agonist of the ryanodine receptor calcium (Ca(+2)) channel, and lowers endoplasmic reticulum (ER) [Ca(2+)]. Low ER [Ca(2+)] has been reported to induce ER stress and activate the eIF2α/ATF4 pathway. Here we report that treatment of DU-145 prostate cells with physiological levels of BA induces ER stress with the formation of stress granules and mild activation of eIF2α, GRP78/BiP, and ATF4. Mild activation of eIF2α and its downstream transcription factor, ATF4, enables cells to reconfigure gene expression to manage stress conditions and mild activation of ATF4 is also required for the differentiation of osteoblast cells. Our results using physiological levels of boric acid identify the eIF2α/ATF pathway as a plausible mode of action that underpins the reported health effects of dietary boron.

  19. Desferrioxamine, an iron chelator, inhibits CXCL10 expression induced by polyinosinic-polycytidylic acid in U373MG human astrocytoma cells.

    PubMed

    Imaizumi, Tadaatsu; Sakashita, Nina; Mushiga, Yasuaki; Yoshida, Hidemi; Hayakari, Ryo; Xing, Fei; Wang, Liang; Matsumiya, Tomoh; Tanji, Kunikazu; Chiba, Yuki; Furudate, Ken; Kawaguchi, Shogo; Murakami, Manabu; Tanaka, Hiroshi

    2015-05-01

    Although iron is essential in physiological processes, accumulation of iron in central nervous system is associated with various neurological diseases including Alzheimer's disease and Parkinson's disease. Innate immune reactions are involved in the pathogenesis of those diseases, but roles of iron in innate immunity are not known well. In the present study, pretreatment of U373MG human astrocytoma cells with an iron chelator desferrioxamine (DFX) inhibited the expression of CXCL10 induced by a Toll-like receptor 3 (TLR3) agonist polyinosinic-polycytidylic acid (poly IC). Induction of interferon-β (IFN-β) was not affected, but phosphorylation of signal transducer and transcription 1 (STAT1) was decreased by DFX. We have previously reported that various IFN-stimulated genes (ISGs) are involved in CXCL10 induction by poly IC. Pretreatment with DFX also decreased the expression of these ISGs. Pretreatment of cells with FeSO4 counteracted inhibitory effects of DFX on ISG56, retinoic acid-inducible gene-I (RIG-I), CXCL10 and phosphorylation of STAT1. These results suggest that iron may positively regulate STAT1 phosphorylation and following signaling to express ISG56, RIG-I and CXCL10 in U373MG cells treated with poly IC. Iron may contribute to innate immune and inflammatory reactions elicited by the TLR3 signaling in astrocytes, and may play an important role in neuroinflammatory diseases.

  20. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid.

    PubMed

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-01-01

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee. PMID:27399778

  1. Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability

    PubMed Central

    2012-01-01

    Background Endothelial dysfunction is a well documented evidence for the onset of atherosclerosis and other cardiovascular diseases. Lipids disorder is among the main risk factors for endothelial dysfunction in these diseases. Steroidogenic acute regulatory protein (StAR), one of the cholesterol transporters, plays an important role in the maintenance of intracellular lipid homeostasis. However, the effect of StAR on endothelial dysfunction is not well understood. Palmitic acid (PA) has been shown to decrease eNOS activity and induce inflammation, both are the causes of endothelial dysfunction, in an endothelial cell culture model. Methods StAR gene was introduced into primary rat aortic endothelial cells by adenovirus infection. Real-time PCR and Western blotting were performed to determine the relative genes and proteins expression level to elucidate the underlying mechanism. The free fatty acid and cholesterol quantification kits were used to detect total cellular free fatty acid and cholesterol. The levels of inflammatory factors and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. Results We successfully overexpressed StAR in primary rat aortic endothelial cells. Following StAR overexpression, mRNA levels of IL-1β, TNFα, IL6 and VCAM-1 and protein levels of IL-1β, , TNFα and IL-6 in culture supernatant were significantly decreased, which duing to blocke NFκB nuclear translocation and activation. Moreover, StAR overexpression attenuated the PA-induced reduction of nitric oxide bioavailability by protecting the bioactivity of pAkt/peNOS/NO pathway. Furthermore, the key genes involved in lipid metabolism were greatly reduced following StAR overexpression. In order to investigate the underlying mechanism, cerulenin and lovastatin, the inhibitor of fatty acid and cholesterol synthase, were added prior to PA treatment. The results showed that both cerulenin and lovastatin had a similar effect as StAR overexpression. On the

  2. Receptor for advanced glycation end products plays a more important role in cellular survival than in neurite outgrowth during retinoic acid-induced differentiation of neuroblastoma cells.

    PubMed

    Sajithlal, Gangadharan; Huttunen, Henri; Rauvala, Heikki; Munch, Gerald

    2002-03-01

    The receptor for advanced glycation end products (RAGE), a member of the immunoglobulin superfamily, is known to interact with amphoterin. This interaction has been proposed to play a role in neurite outgrowth and process elongation during neurodifferentiation. However, there is as yet no direct evidence of the relevance of this pathway to neurodifferentiation under physiological conditions. In this study we have investigated a possible role of RAGE and amphoterin in the retinoic acid-induced differentiation of neuroblastoma cells. The functional inactivation of RAGE by dominant negative and antisense strategies showed that RAGE is not required for process outgrowth or differentiation, although overexpression of RAGE accelerates the elongation of neuritic processes. Using the antisense strategy, amphoterin was shown to be essential for process outgrowth and differentiation, suggesting that amphoterin may interact with other molecules to exert its effect in this context. Interestingly, the survival of the neuroblastoma cells treated with retinoic acid was partly dependent on the expression of RAGE, and inhibition of RAGE function partially blocked the increase in anti-apoptotic protein Bcl-2 following retinoic acid treatment. Based on these results we propose that a combination therapy using RAGE blockers and retinoic acid may prove as a useful approach for chemotherapy for the treatment of neuroblastoma.

  3. Long chain poly-unsaturated fatty acids attenuate the IL-1β-induced pro-inflammatory response in human fetal intestinal epithelial cells

    PubMed Central

    Wijendran, Vasuki; Brenna, JT; Wang, Dong Hao; Zhu, Weishu; Meng, Di; Ganguli, Kriston; Kothapalli, Kumar SD; Requena, Pilar; Innis, Sheila; Walker, WA

    2016-01-01

    Background Evidence suggests that excessive inflammation of the immature intestine may predispose premature infants to necrotizing enterocolitis (NEC). We investigated the anti-inflammatory effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA) in human fetal and adult intestinal epithelial cells (IEC) in primary culture. Methods Human fetal IEC in culture were derived from a healthy fetal small intestine (H4) or resected small intestine of a neonate with NEC (NEC-IEC). Intestinal cell lines Caco2 and NCM460 in culture were used as models for mature IEC. IEC in culture were pre-treated with 100µM palmitic acid (PAL), DHA, EPA, ARA or ARA+DHA for 48 hrs and then stimulated with pro-inflammatory IL-1β. Results DHA significantly attenuated IL-1β induced pro-inflammatory IL-8 and IL-6 protein and mRNA in fetal H4, NEC-IEC and mature Caco2, NCM460 IEC, compared to control and PAL treatment. DHA down regulated IL-1R1 (IL-1β receptor) and NFk β1 mRNA expression in fetal and adult IEC. ARA had potent anti-inflammatory effects with lower IL-8 and IL-6 (protein and mRNA) in fetal H4 but not in NEC-IEC or adult IEC. Conclusion The present study provides evidence that DHA and ARA may have important anti-inflammatory functions for prevention of NEC in premature infants. PMID:26270575

  4. Synergism of ursolic acid derivative US597 with 2-deoxy-D-glucose to preferentially induce tumor cell death by dual-targeting of apoptosis and glycolysis

    PubMed Central

    Wang, Jichuang; Jiang, Zhou; Xiang, Liping; Li, Yuanfang; Ou, Minrui; Yang, Xiang; Shao, Jingwei; Lu, Yusheng; Lin, Lifeng; Chen, Jianzhong; Dai, Yun; Jia, Lee

    2014-01-01

    Ursolic acid (UA) is a naturally bioactive product that exhibits potential anticancer effects. The relatively safe and effective molecule intrigued us to explore a way to further improve its anti-cancer activity and tumor-targeting specificity. In the present study, a series of structural modifications of UA was achieved, which resulted in significant increase in growth inhibition on various cancer cell lines with minimal effects on normal cells. The leading molecule US597 (UA-4) caused depolarization of mitochondrial membrane potential, cell arrest in G0/G1 phase and apoptosis/necrosis in a dose-dependent manner. Structural docking suggested that the carbon chains of the modified UA derivatives compete strongly with glucose for binding to glucokinase, the key glycolysis enzyme presumably active in cancer cells. The combination of 2-deoxy-D-glucose (2-DG) and UA-4 induced cell cycle arrest in G2/M phase, promoted caspase-dependent cell death, reduced hexokinase activity, aggravated depletion of intracellular ATP, decreased lactate production and synergistically inhibited cancer cell growth in vitro (HepG2) and in vivo (H22). Collectively, our findings suggest that the structural modification enhances efficacy and selectivity of UA, and the combination of UA-4 with 2-DG produces synergistic inhibition on hepatoma cell proliferation by dual targeting of apoptosis and glycolysis. PMID:25833312

  5. Schwann cell proliferation and differentiation that is induced by ferulic acid through MEK1/ERK1/2 signalling promotes peripheral nerve remyelination following crush injury in rats

    PubMed Central

    Zhu, Xiaoyan; Li, Kun; Guo, Xin; Wang, Jian; Xiang, Yang

    2016-01-01

    Schwann cell proliferation and differentiation is critical for the remyelination of injured peripheral nerves. Ferulic acid (FA) is a widely used antioxidant agent with neuroprotective properties. However, the potentially beneficial effects of FA on Schwann cells are unknown. Therefore, the present study was designed to examine the effects of FA on Schwann cell proliferation and differentiation. By using the cultured primary Schwann cells and proliferation assay, the results identified that FA was capable of increasing Schwann cell proliferation and expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) in vitro. It was also observed that the beneficial effect of FA treatment on Schwann cells was mainly dependent on the activation of MEK1/ERK1/2 signalling. Furthermore, FA was intraperitoneally administered to rats with sciatic nerve crush injury, and the results revealed an increase in Schwann cell proliferation and differentiation, while the MAG and MBP expression levels in sciatic nerves were markedly upregulated following FA administration. In conclusion, the current results demonstrate that Schwann cell proliferation and differentiation is induced by FA through MEK1/ERK1/2 signalling and that FA may accelerate injured peripheral nerve remyelination. PMID:27588110

  6. Lactic Acid Suppresses IL-33-Mediated Mast Cell Inflammatory Responses via Hypoxia-Inducible Factor-1α-Dependent miR-155 Suppression.

    PubMed

    Abebayehu, Daniel; Spence, Andrew J; Qayum, Amina Abdul; Taruselli, Marcela T; McLeod, Jamie J A; Caslin, Heather L; Chumanevich, Alena P; Kolawole, Elizabeth Motunrayo; Paranjape, Anuya; Baker, Bianca; Ndaw, Victor S; Barnstein, Brian O; Oskeritzian, Carole A; Sell, Scott A; Ryan, John J

    2016-10-01

    Lactic acid (LA) is present in tumors, asthma, and wound healing, environments with elevated IL-33 and mast cell infiltration. Although IL-33 is a potent mast cell activator, how LA affects IL-33-mediated mast cell function is unknown. To investigate this, mouse bone marrow-derived mast cells were cultured with or without LA and activated with IL-33. LA reduced IL-33-mediated cytokine and chemokine production. Using inhibitors for monocarboxylate transporters (MCT) or replacing LA with sodium lactate revealed that LA effects are MCT-1- and pH-dependent. LA selectively altered IL-33 signaling, suppressing TGF-β-activated kinase-1, JNK, ERK, and NF-κB phosphorylation, but not p38 phosphorylation. LA effects in other contexts have been linked to hypoxia-inducible factor (HIF)-1α, which was enhanced in bone marrow-derived mast cells treated with LA. Because HIF-1α has been shown to regulate the microRNA miR-155 in other systems, LA effects on miR-155-5p and miR-155-3p species were measured. In fact, LA selectively suppressed miR-155-5p in an HIF-1α-dependent manner. Moreover, overexpressing miR-155-5p, but not miR-155-3p, abolished LA effects on IL-33-induced cytokine production. These in vitro effects of reducing cytokines were consistent in vivo, because LA injected i.p. into C57BL/6 mice suppressed IL-33-induced plasma cytokine levels. Lastly, IL-33 effects on primary human mast cells were suppressed by LA in an MCT-dependent manner. Our data demonstrate that LA, present in inflammatory and malignant microenvironments, can alter mast cell behavior to suppress inflammation. PMID:27559047

  7. c-myc regulation during retinoic acid-induced differentiation of F9 cells is posttranscriptional and associated with growth arrest.

    PubMed Central

    Dean, M; Levine, R A; Campisi, J

    1986-01-01

    We have shown that c-myc mRNA levels decrease more than 20-fold when F9 teratocarcinoma stem cells are induced to arrest growth and terminally differentiate to parietal endoderm after exposure to retinoic acid and cyclic AMP (Campisi et al., Cell 36:241-247, 1984). Here, we demonstrate that although growth arrest and full expression of the differentiated phenotype required about 3 days, c-myc mRNA declined abruptly between 8 and 16 h after the addition of retinoic acid and cyclic AMP. The decline was independent of cyclic AMP. We found little or no change in the level of c-myc transcription during differentiation, although two other genes showed marked transcriptional regulation. Thus, decreased c-myc mRNA is a consequence of very early posttranscriptional regulation directed by retinoic acid. Differentiation was not fundamental to this regulation. We have shown that sodium butyrate blocks expression of the differentiated phenotype if added within 8 h of retinoic acid and cyclic AMP (Levine et al., Dev. Biol. 105:443-450, 1984). However, butyrate did not inhibit the decrease in c-myc mRNA. Furthermore, F9 cells partially arrested growth without differentiating when grown in isoleucine-deficient medium. Under these conditions, c-myc mRNA levels also declined. Our results suggest that induction of differentiation-specific genes may be under retinoic acid-mediated control dissimilar from that responsible for the decay of c-myc mRNA. In addition, they raise the possibility that growth arrest may be initiated by reduced c-myc expression. Images PMID:3785153

  8. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor

    PubMed Central

    Gely-Pernot, Aurore; Raverdeau, Mathilde; Teletin, Marius; Vernet, Nadège; Féret, Betty; Klopfenstein, Muriel; Dennefeld, Christine; Davidson, Irwin; Benoit, Gérard; Mark, Manuel; Ghyselinck, Norbert B.

    2015-01-01

    All-trans retinoic acid (ATRA) is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG) or all ATRA receptors (RARA, RARB and RARG). We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells. PMID:26427057

  9. Retinoic acid-induced expression of apolipoprotein D and concomitant growth arrest in human breast cancer cells are mediated through a retinoic acid receptor RARalpha-dependent signaling pathway.

    PubMed

    López-Boado, Y S; Klaus, M; Dawson, M I; López-Otín, C

    1996-12-13

    Apolipoprotein D (apoD) is a human plasma protein, belonging to the lipocalin superfamily, that is produced by a specific subtype of highly differentiated breast carcinomas and that is strongly up-regulated by retinoic acid (RA) in breast cancer cells. In this work, we have examined the molecular mechanisms mediating the induction of apoD gene expression by retinoids in T-47D human breast cancer cells. Northern blot analysis revealed that Ro40-6055, a synthetic retinoid that selectively binds and activates the retinoic acid receptor RARalpha, induced the accumulation of apoD mRNA in breast cancer cells in a time- and dose-dependent manner. The time course analysis demonstrated that apoD mRNA was induced 14-fold over control cells after 48 h of incubation with 10(-8) M Ro40-6055. As little as 10(-11) M of this retinoid induced apoD mRNA 5-fold over the control, whereas incubation with 10(-7) M Ro40-6055 induced maximally 15-fold over control cells. RARalpha-selective antagonists counteracted the inductive effects of all-trans-RA, 9-cis-RA, and Ro40-6055 on the expression of apoD, when present at the same concentration as the retinoid agonists. By contrast, RARbeta-, RARgamma-, and RXR-selective retinoids did not affect apoD gene expression. The retinoid agonist Ro40-6055 had an antiproliferative effect on T-47D cells, with maximal growth inhibition of approximately 60% obtained after 7 days of incubation with 10(-7) M. This antiproliferative effect could be counteracted by a 100-fold excess of the antagonist Ro41-5253. Treatment of the cells with retinoids that do not bind the nuclear retinoic acid receptors did not affect apoD expression, despite the fact that they did have a strong antiproliferative effect on T-47D cells. On the basis of these results, a role for RARalpha on apoD gene expression induction by retinoids in breast cancer cells is proposed.

  10. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death

    PubMed Central

    Zhou, Shengtao; Zhao, Linjie; Yi, Tao; Wei, Yuquan; Zhao, Xia

    2016-01-01

    Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic state of genital organs. However, the molecular mechanisms for this process are not fully understood. In this study, we aimed to investigate the potential molecular mechanisms that underlie menopause-induced uterine endometrial atrophy. Our data showed that autophagy was activated in the uterine epithelial cells of both ovariectomized rats and peri-menopausal females. Endoplasmic reticulum (ER) stress occurred even prior to autophagy induction. Integrated bioinformatics analysis revealed that ER stress induced downstream decreased release of arachidonic acid (AA) and downregulation of AA/prostaglandin E2 (PGE2) axis, which led to Akt/mTOR signaling pathway inactivation. Consequently, autophagosomes were recruited and LC3-dependent autophagy was induced in uterine epithelial cells. Treatment with exogenous E2, PGE2, salubrinal or RNAi-mediated silencing of key autophagy genes could effectively counteract estrogen depletion-induced autophagy. Collectively, autophagy is a critical regulator of the uterine epithelium that accounts for endometrial atrophy after menopause. PMID:27506466

  11. ROS-Mediated Autophagy Induced by Dysregulation of Lipid Metabolism Plays a Protective Role in Colorectal Cancer Cells Treated with Gambogic Acid

    PubMed Central

    Zhang, Haiyuan; Lei, Yunlong; Yuan, Ping; Li, Lingjun; Luo, Chao; Gao, Rui; Tian, Jun; Feng, Zuohua; Nice, Edouard C.; Sun, Jun

    2014-01-01

    Gambogic acid (GA), the main active component of gamboge resin, has potent antitumor activity both in vivo and in vitro. However, the underlying molecular mechanisms remain unclear. In this study, we found that GA could initiate autophagy in colorectal cancer cells, and inhibition of the autophagy process accelerated the effect of proliferative inhibition and apoptotic cell death induced by GA, implying a protective role of autophagy. Two-dimensional electrophoresis-based proteomics showed that GA treatment altered the expression of multiple proteins involved in redox signaling and lipid metabolism. Functional studies revealed that GA-induced dysregulation of lipid metabolism could activate 5-lipoxygenase (5-LOX), resulting in intracellular ROS accumulation, followed by inhibition of Akt-mTOR signaling and autophagy initiation. Finally, results using a xenograft model suggested ROS-induced autophagy protect against the antitumor effect of GA. Taken together, these data showed new biological activities of GA against colorectal cancer underlying the protective role of ROS-induced autophagy. This study will provide valuable insights for future studies regarding the anticancer mechanisms of GA. PMID:24810758

  12. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death.

    PubMed

    Zhou, Shengtao; Zhao, Linjie; Yi, Tao; Wei, Yuquan; Zhao, Xia

    2016-01-01

    Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic st