Science.gov

Sample records for acid induced chronic

  1. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  2. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  3. Heme biosynthesis modulation via δ-aminolevulinic acid administration attenuates chronic hypoxia-induced pulmonary hypertension

    PubMed Central

    Alhawaj, Raed; Patel, Dhara; Kelly, Melissa R.; Sun, Dong

    2015-01-01

    This study examines how heme biosynthesis modulation with δ-aminolevulinic acid (ALA) potentially functions to prevent 21-day hypoxia (10% oxygen)-induced pulmonary hypertension in mice and the effects of 24-h organoid culture with bovine pulmonary arteries (BPA) with the hypoxia and pulmonary hypertension mediator endothelin-1 (ET-1), with a focus on changes in superoxide and regulation of micro-RNA 204 (miR204) expression by src kinase phosphorylation of signal transducer and activator of transcription-3 (STAT3). The treatment of mice with ALA attenuated pulmonary hypertension (assessed through echo Doppler flow of the pulmonary valve, and direct measurements of right ventricular systolic pressure and right ventricular hypertrophy), increases in pulmonary arterial superoxide (detected by lucigenin), and decreases in lung miR204 and mitochondrial superoxide dismutase (SOD2) expression. ALA treatment of BPA attenuated ET-1-induced increases in mitochondrial superoxide (detected by MitoSox), STAT3 phosphorylation, and decreases in miR204 and SOD2 expression. Because ALA increases BPA protoporphyrin IX (a stimulator of guanylate cyclase) and cGMP-mediated protein kinase G (PKG) activity, the effects of the PKG activator 8-bromo-cGMP were examined and found to also attenuate the ET-1-induced increase in superoxide. ET-1 increased superoxide production and the detection of protoporphyrin IX fluorescence, suggesting oxidant conditions might impair heme biosynthesis by ferrochelatase. However, chronic hypoxia actually increased ferrochelatase activity in mouse pulmonary arteries. Thus, a reversal of factors increasing mitochondrial superoxide and oxidant effects that potentially influence remodeling signaling related to miR204 expression and perhaps iron availability needed for the biosynthesis of heme by the ferrochelatase reaction could be factors in the beneficial actions of ALA in pulmonary hypertension. PMID:25659899

  4. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia

    PubMed Central

    Yin, Xue; Zhang, Xiuli; Lv, Changjun; Li, Chunli; Yu, Yan; Wang, Xiaozhi; Han, Fang

    2015-01-01

    Chronic intermittent hypoxia (CIH) is a serious consequence of obstructive sleep apnoea (OSA) and has deleterious effects on central neurons and neurocognitive functions. This study examined if protocatechuic acid (PCA) could improve learning and memory functions of rats exposed to CIH conditions and explore potential mechanisms. Neurocognitive functions were evaluated in male SD rats by step-through passive avoidance test and Morris water maze assay following exposure to CIH or room air conditions. Ultrastructure changes were investigated with transmission electron microscopy, and neuron apoptosis was confirmed by TUNEL assays. Ultrastructure changes were investigated with transmission electron microscope and neuron apoptosis was confirmed by TUNEL assays. The effects of PCA on oxidative stress, apoptosis, and brain IL-1β levels were investigated. Expression of Bcl-2, Bax, Cleaved Caspase-3, c-fos, SYN, BDNF and pro-BDNF were also studied along with JNK, P38 and ERK phosphorylation to elucidate the molecular mechanisms of PCA action. PCA was seen to enhance learning and memory ability, and alleviate oxidative stress, apoptosis and glial proliferation following CIH exposure in rats. In addition, PCA administration also decreased the level of IL-1β in brain and increased the expression of BDNF and SYN. We conclude that PCA administration will ameliorate CIH-induced cognitive dysfunctions. PMID:26419512

  5. Caffeic Acid Inhibits Chronic UVB-Induced Cellular Proliferation Through JAK-STAT3 Signaling in Mouse Skin.

    PubMed

    Agilan, Balupillai; Rajendra Prasad, N; Kanimozhi, Govindasamy; Karthikeyan, Ramasamy; Ganesan, Muthusamy; Mohana, Shanmugam; Velmurugan, Devadasan; Ananthakrishnan, Dhanapalan

    2016-05-01

    Signal transducers and activators of transcription 3 (STAT3) play a critical role in inflammation, proliferation and carcinogenesis. Inhibition of JAK-STAT3 signaling is proved to be a novel target for prevention of UVB-induced skin carcinogenesis. In this study, chronic UVB irradiation (180 mJ cm(-2) ; weekly thrice for 30 weeks) induces the expression of IL-10 and JAK1 that eventually activates the STAT3 which leads to the transcription of proliferative and antiapoptotic markers such as PCNA, Cyclin-D1, Bcl2 and Bcl-xl, respectively. Caffeic acid (CA) inhibits JAK-STAT3 signaling, thereby induces apoptotic cell death by upregulating Bax, Cytochrome-C, Caspase-9 and Caspase-3 expression in mouse skin. Furthermore, TSP-1 is an antiangiogeneic protein, which is involved in the inhibition of angiogenesis and proliferation. Chronic UVB exposure decreased the expression of TSP-1 and pretreatment with CA prevented the UVB-induced loss of TSP-1 in UVB-irradiated mouse skin. Thus, CA offers protection against UVB-induced photocarcinogenesis probably through modulating the JAK-STAT3 in the mouse skin. PMID:27029485

  6. Chronic inflammation aggravates metabolic disorders of hepatic fatty acids in high-fat diet-induced obese mice

    PubMed Central

    Zhao, Lei; Zhong, Shan; Qu, Haiyang; Xie, Yunxia; Cao, Zhennan; Li, Qing; Yang, Ping; Varghese, Zac; Moorhead, John F.; Chen, Yaxi; Ruan, Xiong Z.

    2015-01-01

    The prevalence of nonalcoholic fatty liver disease (NAFLD) increases with increasing body mass index (BMI). However, approximately 40–50% of obese adults do not develop hepatic steatosis. The level of inflammatory biomarkers is higher in obese subjects with NAFLD compared to BMI-matched subjects without hepatic steatosis. We used a casein injection in high-fat diet (HFD)-fed C57BL/6J mice to induce inflammatory stress. Although mice on a HFD exhibited apparent phenotypes of obesity and hyperlipidemia regardless of exposure to casein injection, only the HFD+Casein mice showed increased hepatic vacuolar degeneration accompanied with elevated inflammatory cytokines in the liver and serum, compared to mice on a normal chow diet. The expression of genes related to hepatic fatty acid synthesis and oxidation were upregulated in the HFD-only mice. The casein injection further increased baseline levels of lipogenic genes and decreased the levels of oxidative genes in HFD-only mice. Inflammatory stress induced both oxidative stress and endoplasmic reticulum stress in HFD-fed mice livers. We conclude that chronic inflammation precedes hepatic steatosis by disrupting the balance between fatty acid synthesis and oxidation in the livers of HFD-fed obese mice. This mechanism may operate in obese individuals with chronic inflammation, thus making them more prone to NAFLD. PMID:25974206

  7. Effects of Omega-3 Fatty Acids on Erectile Dysfunction in a Rat Model of Atherosclerosis-induced Chronic Pelvic Ischemia

    PubMed Central

    Kim, Dae Hee; Bae, Jae Hyun

    2016-01-01

    The aim of this study was to investigate whether the omega-3 fatty acids help to improve erectile function in an atherosclerosis-induced erectile dysfunction rat model. A total of 20 male Sprague-Dawley rats at age 8 weeks were divided into three groups: Control group (n = 6, untreated sham operated rats), Pathologic group (n = 7, untreated rats with chronic pelvic ischemia [CPI]), and Treatment group (n = 7, CPI rats treated with omega-3 fatty acids). For the in vivo study, electrical stimulation of the cavernosal nerve was performed and erectile function was measured in all groups. Immunohistochemical antibody staining was performed for transforming growth factor beta-1 (TGF-β1), endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor 1-alpha (HIF-1α). In vivo measurement of erectile function in the Pathologic group showed significantly lower values than those in the Control group, whereas the Treatment group showed significantly improved values in comparison with those in the Pathologic group. The results of western blot analysis revealed that systemically administered omega-3 fatty acids ameliorated the cavernosal molecular environment. Our study suggests that omega-3 fatty acids improve intracavernosal pressure and have a beneficial role against pathophysiological consequences such as fibrosis or hypoxic damage on a CPI rat model, which represents a structural erectile dysfunction model. PMID:27051243

  8. Green tea polyphenol epigallocatechin-O-gallate induces cell death by acid sphingomyelinase activation in chronic myeloid leukemia cells.

    PubMed

    Huang, Yuhui; Kumazoe, Motofumi; Bae, Jaehoon; Yamada, Shuhei; Takai, Mika; Hidaka, Shiori; Yamashita, Shuya; Kim, Yoonhee; Won, Yeongseon; Murata, Motoki; Tsukamoto, Shuntaro; Tachibana, Hirofumi

    2015-09-01

    An epidemiological study showed that green tea consumption is associated with a reduced risk of hematopoietic malignancy. The major green tea polyphenol epigallocatechin‑3-O-gallate (EGCG) is reported to have anticancer effects. Chronic myeloid leukemia (CML) is a major hematopoietic malignancy characterized by expansion of myeloid cells. In the present study, we showed EGCG-induced acid sphingomyelinase (ASM) activation and lipid raft clustering in CML cells. The ASM inhibitor desipramine significantly reduced EGCG-induced cell death. Protein kinase Cδ is a well‑known kinase that plays an important role in ASM activation. We observed EGCG-induced phosphorylation of protein kinase Cδ at Ser664. Importantly, EGCG-induced ASM activation was significantly reduced by pretreatment of CML cells with the soluble guanylate cyclase inhibitor NS2028, suggesting that EGCG induced ASM activation through the cyclic guanosine monophosphate (cGMP)-dependent pathway. Indeed, pharmacological inhibition of a cGMP-negative regulator enhanced the anti-CML effect of EGCG. These results indicate that EGCG-induced cell death via the cGMP/ASM pathway in CML cells. PMID:26135316

  9. Green tea polyphenol epigallocatechin-O-gallate induces cell death by acid sphingomyelinase activation in chronic myeloid leukemia cells

    PubMed Central

    HUANG, YUHUI; KUMAZOE, MOTOFUMI; BAE, JAEHOON; YAMADA, SHUHEI; TAKAI, MIKA; HIDAKA, SHIORI; YAMASHITA, SHUYA; KIM, YOONHEE; WON, YEONGSEON; MURATA, MOTOKI; TSUKAMOTO, SHUNTARO; TACHIBANA, HIROFUMI

    2015-01-01

    An epidemiological study showed that green tea consumption is associated with a reduced risk of hematopoietic malignancy. The major green tea polyphenol epigallocatechin-3-O-gallate (EGCG) is reported to have anticancer effects. Chronic myeloid leukemia (CML) is a major hematopoietic malignancy characterized by expansion of myeloid cells. In the present study, we showed EGCG-induced acid sphingomyelinase (ASM) activation and lipid raft clustering in CML cells. The ASM inhibitor desipramine significantly reduced EGCG-induced cell death. Protein kinase Cδ is a well-known kinase that plays an important role in ASM activation. We observed EGCG-induced phos-phorylation of protein kinase Cδ at Ser664. Importantly, EGCG-induced ASM activation was significantly reduced by pretreatment of CML cells with the soluble guanylate cyclase inhibitor NS2028, suggesting that EGCG induced ASM activation through the cyclic guanosine monophosphate (cGMP)-dependent pathway. Indeed, pharmacological inhibition of a cGMP-negative regulator enhanced the anti-CML effect of EGCG. These results indicate that EGCG-induced cell death via the cGMP/ASM pathway in CML cells. PMID:26135316

  10. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    PubMed

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. PMID:26819206

  11. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis, down-regulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells

    PubMed Central

    Stamatopoulos, Basile; Meuleman, Nathalie; De Bruyn, Cécile; Delforge, Alain; Bron, Dominique; Lagneaux, Laurence

    2010-01-01

    Background Chronic lymphocytic leukemia is a neoplastic disorder that arises largely as a result of defective apoptosis leading to chemoresistance. Stromal cell-derived factor-1 and its receptor, CXCR4, have been shown to play an important role in chronic lymphocytic leukemia cell trafficking and survival. Design and Methods Since histone acetylation is involved in the modulation of gene expression, we evaluated the effects of suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, on chronic lymphocytic leukemia cells and in particular on cell survival, CXCR4 expression, migration, and drug sensitization. Results Here, we showed that treatment with suberoylanilide hydroxamic acid (20 μM) for 48 hours induced a decrease in chronic lymphocytic leukemia cell viability via apoptosis (n=20, P=0.0032). Using specific caspase inhibitors, we demonstrated the participation of caspases-3, -6 and -8, suggesting an activation of the extrinsic pathway. Additionally, suberoylanilide hydroxamic acid significantly decreased CXCR4 mRNA (n=10, P=0.0010) and protein expression (n=40, P<0.0001). As a result, chronic lymphocytic leukemia cell migration in response to stromal cell-derived factor-1 (n=23, P<0.0001) or through bone marrow stromal cells was dramatically impaired. Consequently, suberoylanilide hydroxamic acid reduced the protective effect of the microenvironment and thus sensitized chronic lymphocytic leukemia cells to chemotherapy such as fludarabine. Conclusions In conclusion, suberoylanilide hydroxamic acid induces apoptosis in chronic lymphocytic leukemia cells via the extrinsic pathway and down-regulates CXCR4 expression leading to decreased cell migration. Suberoylanilide hydroxamic acid in combination with other drugs represents a promising therapeutic approach to inhibiting migration, chronic lymphocytic leukemia cell survival and potentially overcoming drug resistance. PMID:20145270

  12. Protocatechuic Acid Restores Vascular Responses in Rats With Chronic Diabetes Induced by Streptozotocin.

    PubMed

    Semaming, Yoswaris; Kukongviriyapan, Upa; Kongyingyoes, Bunkerd; Thukhammee, Wipawee; Pannangpetch, Patchareewan

    2016-02-01

    Oxidative stress has been shown to play an important role in development of vascular dysfunction in diabetes. Protocatechuic acid (PCA) has been reported to exert antioxidant and anti-hyperglycemic activities. Diabetes was induced in male Sprague-Dawley rats by a single intraperitoneal injection of 50 mg/kg streptozotocin (STZ). The rats were maintained in a state of hyperglycemia for 12 weeks. Then, PCA (50 or 100 mg/kg/day) was administered orally or insulin (4 U/kg/day) was subcutaneous injected to the rats for 6 weeks. Blood pressure, vascular responses to vasoactive agents, vascular superoxide production, blood glucose, insulin, malondialdehyde, nitric oxide and antioxidant enzymes were examined. The diabetic rats showed weight loss, insulin deficiency, hyperglycemia, increased oxidative stress, decreased plasma nitric oxide, elevated blood pressure, increased vascular response to phenylephrine and decreased vascular responses to acetylcholine and sodium nitroprusside. PCA significantly decreased blood glucose and oxidative stress, and increased plasma nitric oxide in diabetic rats. Interestingly, PCA treatment restored blood pressure and vascular reactivity, and antioxidant enzyme activity diabetic rats. This study provides the first evidence of the efficacy of PCA in restoring the vascular reactivity of diabetic rats. The mechanism of action may be associated with an alleviation of oxidative stress. PMID:26575211

  13. Chronic α-hydroxyisocaproic acid treatment improves muscle recovery after immobilization-induced atrophy.

    PubMed

    Lang, Charles H; Pruznak, Anne; Navaratnarajah, Maithili; Rankine, Kristina A; Deiter, Gina; Magne, Hugues; Offord, Elizabeth A; Breuillé, Denis

    2013-08-01

    Muscle disuse atrophy is observed routinely in patients recovering from traumatic injury and can be either generalized resulting from extended bed rest or localized resulting from single-limb immobilization. The present study addressed the hypothesis that a diet containing 5% α-hydroxyisocaproic acid (α-HICA), a leucine (Leu) metabolite, will slow the loss and/or improve recovery of muscle mass in response to disuse. Adult 14-wk-old male Wistar rats were provided a control diet or an isonitrogenous isocaloric diet containing either 5% α-HICA or Leu. Disuse atrophy was produced by unilateral hindlimb immobilization ("casting") for 7 days and the contralateral muscle used as control. Rats were also casted for 7 days and permitted to recover for 7 or 14 days. Casting decreased gastrocnemius mass, which was associated with both a reduction in protein synthesis and S6K1 phosphorylation as well as enhanced proteasome activity and increased atrogin-1 and MuRF1 mRNA. Although neither α-HICA nor Leu prevented the casting-induced muscle atrophy, the decreased muscle protein synthesis was not observed in α-HICA-treated rats. Neither α-HICA nor Leu altered the increased proteasome activity and atrogene expression observed with immobilization. After 14 days of recovery, muscle mass had returned to control values only in the rats fed α-HICA, and this was associated with a sustained increase in protein synthesis and phosphorylation of S6K1 and 4E-BP1 of previously immobilized muscle. Proteasome activity and atrogene mRNA content were at control levels after 14 days and not affected by either treatment. These data suggest that whereas α-HICA does not slow the loss of muscle produced by disuse, it does speed recovery at least in part by maintaining an increased rate of protein synthesis. PMID:23757407

  14. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    PubMed

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats. PMID:27418998

  15. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats

    PubMed Central

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200–250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats. PMID:27418998

  16. Hydroethanolic extract of Baccharis trimera promotes gastroprotection and healing of acute and chronic gastric ulcers induced by ethanol and acetic acid.

    PubMed

    Dos Reis Lívero, Francislaine Aparecida; da Silva, Luisa Mota; Ferreira, Daniele Maria; Galuppo, Larissa Favaretto; Borato, Debora Gasparin; Prando, Thiago Bruno Lima; Lourenço, Emerson Luiz Botelho; Strapasson, Regiane Lauriano Batista; Stefanello, Maria Élida Alves; Werner, Maria Fernanda de Paula; Acco, Alexandra

    2016-09-01

    Ethanol is a psychoactive substance highly consumed around the world whose health problems include gastric lesions. Baccharis trimera is used in folk medicine for the treatment of gastrointestinal disorders. However, few studies have evaluated its biological and toxic effects. To validate the popular use of B. trimera and elucidate its possible antiulcerogenic and cytotoxic mechanisms, a hydroethanolic extract of B. trimera (HEBT) was evaluated in models of gastric lesions. Rats and mice were used to evaluate the protective and antiulcerogenic effects of HEBT on gastric lesions induced by ethanol, acetic acid, and chronic ethanol consumption. The effects of HEBT were also evaluated in a pylorus ligature model and on gastrointestinal motility. The LD50 of HEBT in mice was additionally estimated. HEBT was analyzed by nuclear magnetic resonance, and a high-performance liquid chromatography fingerprint analysis was performed. Oral HEBT administration significantly reduced the lesion area and the oxidative stress induced by acute and chronic ethanol consumption. However, HEBT did not protect against gastric wall mucus depletion and did not alter gastric secretory volume, pH, or total acidity in the pylorus ligature model. Histologically, HEBT accelerated the healing of chronic gastric ulcers in rats, reflected by contractions of the ulcer base. Flavonoids and caffeoylquinic acids were detected in HEBT, which likely contributed to the therapeutic efficacy of HEBT, preventing or reversing ethanol- and acetic acid-induced ulcers, respectively. HEBT antiulcerogenic activity may be partially attributable to the inhibition of free radical generation and subsequent prevention of lipid peroxidation. Our results indicate that HEBT has both gastroprotective and curative activity in animal models, with no toxicity. PMID:27314669

  17. Treatment of Staphylococcus aureus-induced chronic osteomyelitis with bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres

    PubMed Central

    Yan, Ling; Jiang, Dian-Ming; Cao, Zhi-Dong; Wu, Jun; Wang, Xin; Wang, Zheng-Long; Li, Ya-Jun; Yi, Yong-Fen

    2015-01-01

    Purpose The purpose of this study was to investigate the curative effect of bone-like hydroxyapatite/poly amino acid (BHA/PAA) as a carrier for poly(lactic-co-glycolic acid)-coated rifapentine microsphere (RPM) in the treatment of rabbit chronic osteomyelitis induced by Staphylococcus aureus. Methods RPM was prepared through an oil-in-water emulsion solvent evaporation method, and RPM was combined with BHA/PAA to obtain drug-loaded, slow-releasing materials. Twenty-six New Zealand white rabbits were induced to establish the animal model of chronic osteomyelitis. After debridement, the animals were randomly divided into three groups (n=8): the experimental group (with RPM-loaded BHA/PAA), the control group (with BHA/PAA), and the blank group. The RPM-loaded BHA/PAA was evaluated for antibacterial activity, dynamics of drug release, and osteogenic ability through in vitro and in vivo experiments. Results In vitro, RPM-loaded BHA/PAA released the antibiotics slowly, inhibiting the bacterial growth of S. aureus for up to 5 weeks. In vivo, at week 4, the bacterial colony count was significantly lower in the experimental group than in the control and blank groups (P<0.01). At week 12, the chronic osteomyelitis was cured and the bone defect was repaired in the experimental group, whereas the infection and bone defect persisted in the control and blank groups. Conclusion In vitro and in vivo experiments demonstrated that RPM-loaded BHA/PAA effectively cured S. aureus-induced chronic osteomyelitis. Therefore, BHA/PAA has potential value as a slow-releasing material in clinical setting. Further investigation is needed to determine the optimal dosage for loading rifapentine. PMID:26213463

  18. The acute and sub-chronic exposures of goldfish to naphthenic acids induce different host defense responses.

    PubMed

    Hagen, Mariel O; Garcia-Garcia, Erick; Oladiran, Ayoola; Karpman, Matthew; Mitchell, Scott; El-Din, Mohamed Gamal; Martin, Jonathan W; Belosevic, Miodrag

    2012-03-01

    Naphthenic acids (NAs) are believed to be the major toxic component in oil sands process-affected water (OSPW) produced by the oil sands mining industry in Northern Alberta, Canada. We recently reported that oral exposure to NAs alters mammalian immune responses, but the effect of OSPW or NAs on the immune mechanisms of aquatic organisms has not been fully elucidated. We analyzed the effects of acute and sub-chronic NAs exposures on goldfish immune responses by measuring the expression of three pro-inflammatory cytokine genes, antimicrobial functions of macrophages, and host defense after challenge with a protozoan pathogen (Trypanosoma carassii). One week after NAs exposure, fish exhibited increased expression of pro-inflammatory cytokines (IFNγ, IL-1β1, TNF-α2) in the gills, kidney and spleen. Primary macrophages from fish exposed to NAs for one week, exhibited increased production of nitric oxide and reactive oxygen intermediates. Goldfish exposed for one week to 20 mg/L NAs were more resistant to infection by T. carassii. In contrast, sub-chronic exposure of goldfish (12 weeks) to NAs resulted in decreased expression of pro-inflammatory cytokines in the gills, kidney and spleen. The sub-chronic exposure to NAs reduced the ability of goldfish to control the T. carassii infection, exemplified by a drastic increase in fish mortality and increased blood parasite loads. This is the first report analyzing the effects of OSPW contaminants on the immune system of aquatic vertebrates. We believe that the bioassays depicted in this work will be valuable tools for analyzing the efficacy of OSPW remediation techniques and assessment of diverse environmental pollutants. PMID:22227375

  19. Anti-cancer fatty-acid derivative induces autophagic cell death through modulation of PKM isoform expression profile mediated by bcr-abl in chronic myeloid leukemia.

    PubMed

    Shinohara, Haruka; Taniguchi, Kohei; Kumazaki, Minami; Yamada, Nami; Ito, Yuko; Otsuki, Yoshinori; Uno, Bunji; Hayakawa, Fumihiko; Minami, Yosuke; Naoe, Tomoki; Akao, Yukihiro

    2015-04-28

    The fusion gene bcr-abl develops chronic myeloid leukemia (CML), and stimulates PI3K/Akt/mTOR signaling, leading to impaired autophagy. PI3K/Akt/mTOR signaling also plays an important role in cell metabolism. The Warburg effect is a well-recognized hallmark of cancer energy metabolism, and is regulated by the mTOR/c-Myc/hnRNP/PKM signaling cascade. To develop a new strategy for the treatment of CML, we investigated the associations among bcr-abl, the cascade related to cancer energy metabolism, and autophagy induced by a fatty-acid derivative that we had previously reported as being an autophagy inducer. Here we report that a fatty-acid derivative, AIC-47, induced transcriptional repression of the bcr-abl gene and modulated the expression profile of PKM isoforms, resulting in autophagic cell death. We show that c-Myc functioned as a transcriptional activator of bcr-abl, and regulated the hnRNP/PKM cascade. AIC-47, acting through the PPARγ/β-catenin pathway, induced down-regulation of c-Myc, leading to the disruption of the bcr-abl/mTOR/hnRNP signaling pathway, and switching of the expression of PKM2 to PKM1. This switching caused autophagic cell death through an increase in the ROS level. Our findings suggest that AIC-47 induced autophagic cell death through the PPARγ/β-catenin/bcr-abl/mTOR/hnRNP/PKM cascade. PMID:25644089

  20. Salicylic acid protects against chronic L-DOPA-induced 6-OHDA generation in experimental model of parkinsonism.

    PubMed

    Borah, Anupom; Mohanakumar, Kochupurackal P

    2010-07-16

    The present study evaluated the ability of salicylic acid (SA) to attenuate long-term L-DOPA-induced 6-hydroxydopamine (6-OHDA) formation in the striatum of mice, and to protect against the resulting dopaminergic neurotoxicity. The production of 6-OHDA from dopamine in vitro from ferrous-ascorbate-dopamine (FAD) hydroxyl radical ((*)OH) generating system or in vivo in the striatum following prolonged administration of L-DOPA in mice were found to be significantly attenuated by SA. Intra-median forebrain bundle infusion of FAD, but not equivalent dose of ferrous ion or dopamine individually, caused significant striatal dopamine depletion, which was blocked by SA administration. The dose- and time-dependent increase in the formation of 6-OHDA following L-DOPA treatment in the mouse striatum was synergistically enhanced to the systemic administration of the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. SA treatment significantly attenuated the L-DOPA plus the parkinsonian neurotoxin-induced striatal 6-OHDA generation, and protected against striatal dopamine loss. The present study demonstrated a novel mode of dopaminergic neuroprotection by SA and its possible therapeutic implication in the treatment of Parkinson's disease. PMID:20470760

  1. N-Acetylcysteine Prevents Spatial Memory Impairment Induced by Chronic Early Postnatal Glutaric Acid and Lipopolysaccharide in Rat Pups

    PubMed Central

    Rodrigues, Fernanda S.; Souza, Mauren A.; Magni, Danieli V.; Ferreira, Ana Paula O.; Mota, Bibiana C.; Cardoso, Andreia M.; Paim, Mariana; Xavier, Léder L.; Ferreira, Juliano; Schetinger, Maria Rosa C.; Da Costa, Jaderson C.; Royes, Luiz Fernando F.; Fighera, Michele R.

    2013-01-01

    Background and Aims Glutaric aciduria type I (GA-I) is characterized by accumulation of glutaric acid (GA) and neurological symptoms, such as cognitive impairment. Although this disease is related to oxidative stress and inflammation, it is not known whether these processes facilitate the memory impairment. Our objective was to investigate the performance of rat pups chronically injected with GA and lipopolysaccharide (LPS) in spatial memory test, antioxidant defenses, cytokines levels, Na+, K+-ATPase activity, and hippocampal volume. We also evaluated the effect of N-acetylcysteine (NAC) on theses markers. Methods Rat pups were injected with GA (5umol g of body weight-1, subcutaneously; twice per day; from 5th to 28th day of life), and were supplemented with NAC (150mg/kg/day; intragastric gavage; for the same period). LPS (2mg/kg; E.coli 055 B5) or vehicle (saline 0.9%) was injected intraperitoneally, once per day, from 25th to 28th day of life. Oxidative stress and inflammatory biomarkers as well as hippocampal volume were assessed. Results GA caused spatial learning deficit in the Barnes maze and LPS potentiated this effect. GA and LPS increased TNF-α and IL-1β levels. The co-administration of these compounds potentiated the increase of IL-1β levels but not TNF-α levels in the hippocampus. GA and LPS increased TBARS (thiobarbituric acid-reactive substance) content, reduced antioxidant defenses and inhibited Na+, K+-ATPase activity. GA and LPS co-administration did not have additive effect on oxidative stress markers and Na+, K+ pump. The hippocampal volume did not change after GA or LPS administration. NAC protected against impairment of spatial learning and increase of cytokines levels. NAC Also protected against inhibition of Na+,K+-ATPase activity and oxidative markers. Conclusions These results suggest that inflammatory and oxidative markers may underlie at least in part of the neuropathology of GA-I in this model. Thus, NAC could represent a possible

  2. Amelioration of ER stress by 4-phenylbutyric acid reduces chronic hypoxia induced cardiac damage and improves hypoxic tolerance through upregulation of HIF-1α.

    PubMed

    Jain, Kanika; Suryakumar, Geetha; Ganju, Lilly; Singh, Shashi Bala

    2016-08-01

    While endoplasmic reticulum (ER) stress has been observed in several human diseases, few studies have reported the involvement of ER stress in chronic hypoxia (CH) induced cardiac damage. Hypoxia, such as that prevalent at high altitude (HA), forms the underlying cause of several maladies including cardiovascular diseases. While the role of hypoxia inducible factor-1 (HIF-1α) in the adaptive responses to hypoxia is known, the role of the unfolded protein response (UPR) is only recently being explored in the HA pathophysiologies. The present study investigates the effect of ER stress modulation on CH mediated injury and the cardioprotective action of 4-phenylbutyric acid (PBA) in enhancing survival response under hypoxia. Here, we observed that exposure of rats, for 1, 7 and 14days CH to a simulated altitude of 7620m, led to cardiac hypertrophy and significant protein oxidation. This induced the activation of UPR signaling mechanisms, mediated by PERK, IRE1α and ATF6. By 14days, there was a marked upregulation of apoptosis, evident in increased CHOP and caspase-3/9 activity. PBA reduced CH induced right ventricular enlargement and apoptosis. Further, in contrast to tunicamycin, PBA considerably enhanced hypoxic tolerance. An elevation in the level of antioxidant enzymes, HIF-1α and its regulated proteins (HO-1, GLUT-1) was observed in the PBA administered animals, along with a concomitant suppression of UPR markers. Our study thus emphasizes upon the attenuation of ER stress by PBA as a mechanism to diminish CH induced cardiac injury and boost hypoxic survival, providing an insight into the novel relationship between the HIF-1α and UPR under hypoxia. PMID:27058435

  3. Addition of Berberine to 5-Aminosalicylic Acid for Treatment of Dextran Sulfate Sodium-Induced Chronic Colitis in C57BL/6 Mice.

    PubMed

    Li, Yan-hong; Zhang, Man; Xiao, Hai-tao; Fu, Hai-bo; Ho, Alan; Lin, Cheng-yuan; Huang, Yu; Lin, Ge; Bian, Zhao-xiang

    2015-01-01

    Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy. PMID:26642326

  4. Addition of Berberine to 5-Aminosalicylic Acid for Treatment of Dextran Sulfate Sodium-Induced Chronic Colitis in C57BL/6 Mice

    PubMed Central

    Li, Yan-hong; Zhang, Man; Xiao, Hai-tao; Fu, Hai-bo; Ho, Alan; Lin, Cheng-yuan; Huang, Yu; Lin, Ge; Bian, Zhao-xiang

    2015-01-01

    Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy. PMID:26642326

  5. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish.

    PubMed

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang; Huang, Changjiang; Yang, Dongren

    2016-07-01

    Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening. PMID:27108203

  6. Quinolinic Acid Responses during Interferon-α-Induced Depressive Symptomatology in Patients with Chronic Hepatitis C Infection - A Novel Aspect for Depression and Inflammatory Hypothesis

    PubMed Central

    Baranyi, Andreas; Meinitzer, Andreas; Breitenecker, Robert J.; Amouzadeh-Ghadikolai, Omid; Stauber, Rudolf; Rothenhäusler, Hans-Bernd

    2015-01-01

    Background The aim of this exploratory study is to gain for the first time a more comprehensive picture of the impact of changes of quinolinic acid concentrations on depressive symptomatology during and after IFN-α therapy. Methods The quinolinic acid concentrations of 35 HCV patients are examined in a prospective survey over the entire period of IFN-α treatment as well as three months later at six different times (baseline, one, three, six and nine months after the beginning of IFN-α treatment, and after the end of treatment). Results During IFN-α treatment Hamilton Depression Rating Scale scores rise significantly. At the same time there is greater activity of indoleamine 2,3-dioxygenase, with a resulting increase in plasma kynurenine concentrations. Compared to baseline values quinolinic acid concentrations increase significantly during therapy, reflecting an increased neurotoxic challenge. In addition, patients with higher scores in the Hamilton Depression Rating Scale at six and nine months after starting therapy show significantly higher levels of quinolinic acid concentration. Conclusions The increase of quinolinic acid during IFN-α therapy might contribute to depressive symptomatology through the neurotoxic challenge caused by quinolinic acid. Subsequently, our exploratory study results support the inflammatory hypothesis of depression. The awareness of relevant risk factors of IFN-α treatment-induced depression is essential to develop preventative treatment strategies. PMID:26368809

  7. Polyglycolic acid induced inflammation

    PubMed Central

    Ceonzo, Kathleen; Gaynor, Anne; Shaffer, Lisa; Kojima, Koji; Vacanti, Charles A.; Stahl, Gregory L.

    2005-01-01

    Tissue and organ replacement have quickly outpaced available supply. Tissue bioengineering holds the promise for additional tissue availability. Various scaffolds are currently used, whereas polyglycolic acid (PGA), which is currently used in absorbable sutures and orthopedic pins, provides an excellent support for tissue development. Unfortunately, PGA can induce a local inflammatory response following implantation, so we investigated the molecular mechanism of inflammation in vitro and in vivo. Degraded PGA induced an acute peritonitis, characterized by neutrophil (PMN) infiltration following intraperitoneal injection in mice. Similar observations were observed using the metabolite of PGA, glycolide. Dissolved PGA or glycolide, but not native PGA, activated the classical complement pathway in human sera, as determined by classical complement pathway hemolytic assays, C3a and C5a production, C3 and immunoglobulin deposition. To investigate whether these in vitro observations translated to in vivo findings, we used genetically engineered mice. Intraperitoneal administration of glycolide or dissolved PGA in mice deficient in C1q, factor D, C1q and factor D or C2 and factor B demonstrated significantly reduced PMN infiltration compared to congenic controls (WT). Mice deficient in C6 also demonstrated acute peritonitis. However, treatment of WT or C6 deficient mice with a monoclonal antibody against C5 prevented the inflammatory response. These data suggest that the hydrolysis of PGA to glycolide activates the classical complement pathway. Further, complement is amplified via the alternative pathway and inflammation is induced by C5a generation. Inhibition of C5a may provide a potential therapeutic approach to limit the inflammation associated with PGA derived materials following implantation. PMID:16548688

  8. Acute and chronic drug-induced hepatitis.

    PubMed

    Pessayre, D; Larrey, D

    1988-04-01

    Adverse drug reactions may mimic almost any kind of liver disease. Acute hepatitis is often due to the formation of reactive metabolites in the liver. Despite several protective mechanisms (epoxide hydrolases, conjugation with glutathione), this formation may lead to predictable toxic hepatitis after hugh overdoses (e.g. paracetamol), or to idiosyncratic toxic hepatitis after therapeutic doses (e.g. isoniazid). Both genetic factors (e.g. constitutive levels of cytochrome P-450 isoenzymes, or defects in protective mechanisms) and acquired factors (e.g. malnutrition, or chronic intake of alcohol or other microsomal enzyme inducers) may explain the unique susceptibility of some patients. Formation of chemically reactive metabolites may also lead to allergic hepatitis, probably through immunization against plasma membrane protein epitopes modified by the covalent binding of the reactive metabolites. This may be the mechanism for acute hepatitis produced by many drugs (e.g. amineptine, erythromycin derivatives, halothane, imipramine, isaxonine, alpha-methyldopa, tienilic acid, etc.). Genetic defects in several protective mechanisms (e.g. epoxide hydrolase, acetylation) may explain the unique susceptibility of some patients, possibly by increasing exposure to allergenic, metabolite-altered plasma membrane protein epitopes. Like toxic idiosyncratic hepatitis, allergic hepatitis occurs in a few patients only. Unlike toxic hepatitis, allergic hepatitis is frequently associated with fever, rash or other hypersensitivity manifestations; it may be hepatocellular, mixed or cholestatic; it promptly recurs after inadvertent drug rechallenge. Lysosomal phospholipidosis occurs frequently with three antianginal drugs (diethylaminoethoxyhexestrol, amiodarone and perhexiline). These cationic, amphiphilic drugs may form phospholipid-drug complexes within lysosomes. Such complexes resist phospholipases and accumulate within enlarged lysosomes, forming myeloid figures. This

  9. Comparison of endogenous and radiolabeled bile acid excretion in patients with idiopathic chronic diarrhea

    SciTech Connect

    Schiller, L.R.; Bilhartz, L.E.; Santa Ana, C.A. )

    1990-04-01

    Fecal recovery of radioactivity after ingestion of a bolus of radiolabeled bile acid is abnormally high in most patients with idiopathic chronic diarrhea. To evaluate the significance of this malabsorption, concurrent fecal excretion of both exogenous radiolabeled bile acid and endogenous (unlabeled) bile acid were measured in patients with idiopathic chronic diarrhea. Subjects received a 2.5-microCi oral dose of taurocholic acid labeled with 14C in the 24th position of the steroid moiety. Endogenous bile acid excretion was measured by a hydroxysteroid dehydrogenase assay on a concurrent 72-h stool collection. Both radiolabeled and endogenous bile acid excretion were abnormally high in most patients with chronic diarrhea compared with normal subjects, even when equivoluminous diarrhea was induced in normal subjects by ingestion of osmotically active solutions. The correlation between radiolabeled and endogenous bile acid excretion was good. However, neither radiolabeled nor endogenous bile acid excretion was as abnormal as is typically seen in patients with ileal resection, and none of these diarrhea patients responded to treatment with cholestyramine with stool weights less than 200 g. These results suggest (a) that this radiolabeled bile acid excretion test accurately reflects excess endogenous bile acid excretion; (b) that excess endogenous bile acid excretion is not caused by diarrhea per se; (c) that spontaneously occurring idiopathic chronic diarrhea is often associated with increased endogenous bile acid excretion; and (d) that bile acid malabsorption is not likely to be the primary cause of diarrhea in most of these patients.

  10. Chronic oral or intraarticular administration of docosahexaenoic acid reduces nociception and knee edema and improves functional outcomes in a mouse model of Complete Freund’s Adjuvant–induced knee arthritis

    PubMed Central

    2014-01-01

    Introduction Clinical and preclinical studies have shown that supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs) reduce joint destruction and inflammation present in rheumatoid arthritis (RA). However, the effects of individual ω-3 PUFAs on chronic arthritic pain have not been evaluated to date. Thus, our aim in this study was to examine whether purified docosahexaenoic acid (DHA, an ω-3 PUFA) reduces spontaneous pain-related behavior and knee edema and improves functional outcomes in a mouse model of knee arthritis. Methods Unilateral arthritis was induced by multiple injections of Complete Freund’s Adjuvant (CFA) into the right knee joints of male ICR adult mice. Mice that received CFA injections were then chronically treated from day 15 until day 25 post–initial CFA injection with oral DHA (10, 30 and 100 mg/kg daily) or intraarticular DHA (25 and 50 μg/joint twice weekly). Spontaneous flinching of the injected extremity (considered as spontaneous pain-related behavior), vertical rearing and horizontal exploratory activity (considered as functional outcomes) and knee edema were assessed. To determine whether an endogenous opioid mechanism was involved in the therapeutic effect of DHA, naloxone (NLX, an opioid receptor antagonist, 3 mg/kg subcutaneously) was administered in arthritic mice chronically treated with DHA (30 mg/kg by mouth) at day 25 post–CFA injection. Results The intraarticular CFA injections resulted in increasing spontaneous flinching and knee edema of the ipsilateral extremity as well as worsening functional outcomes as time progressed. Chronic administration of DHA, given either orally or intraarticularly, significantly improved horizontal exploratory activity and reduced flinching behavior and knee edema in a dose-dependent manner. Administration of NLX did not reverse the antinociceptive effect of DHA. Conclusions To the best of our knowledge, this report is the first to demonstrate DHA’s antinociceptive and

  11. Smad7 protects against chronic aristolochic acid nephropathy in mice

    PubMed Central

    Huang, Xiao-Ru; Fu, Ping; Lan, Hui-Yao

    2015-01-01

    Chronic Aristolochic Acid Nephropathy (AAN) is a progressive chronic kidney disease related to herb medicine. However, treatment for chronic AAN remains ineffective. We report here that Smad7 is protective and has therapeutic potential for chronic AAN. In a mouse model of chronic AAN, progressive renal injury was associated with a loss of renal Smad7 and disruption of Smad7 largely aggravated the severity of chronic AAN as demonstrated by a significant increase in levels of 24-hour urinary protein excretion, serum creatinine, and progressive renal fibrosis and inflammation. In contrast, restored Smad7 locally in the kidneys of Smad7 knockout mice prevented the progression of chronic AAN. Further studies revealed that worsen chronic AAN in Smad7 knockout mice was associated with enhanced activation of TGF-β/Smad3 and NF-κB signaling pathways, which was reversed when renal Smad7 was restored. Importantly, we also found that overexpression of Smad7 locally in the kidneys with established chronic AAN was capable of attenuating progressive chronic AAN by inactivating TGF-β/Smad3-medated renal fibrosis and NF-κB-driven renal inflammation. In conclusion, Smad7 plays a protective role in the pathogenesis of chronic AAN and overexpression of Smad7 may represent a novel therapeutic potential for chronic AAN. PMID:25883225

  12. Apoptosis inducers in chronic lymphocytic leukemia

    PubMed Central

    Billard, Christian

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by a typical defect in apoptosis and is still an incurable disease. Numerous apoptosis inducers have been described. These synthetic compounds and natural products (mainly derived from plants) display antileukemic properties in vitro and in vivo and some have even been tested in the clinic in CLL. They act through several different mechanisms. Most of them involve proteins of the Bcl-2 family, which are the key regulators in triggering the mitochondrial pathway of caspase-dependent apoptosis. Thus, the Mcl-1/Noxa axis appeared as a target. Here I overview natural and synthetic apoptosis inducers and their mechanisms of action in CLL cells. Opportunities for developing novel, apoptosis-based therapeutics are presented. PMID:24525395

  13. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion

    PubMed Central

    Zhou, Yan; Ruan, Zheng; Wen, Yanmei; Yang, Yuhui; Mi, Shumei; Zhou, Lili; Wu, Xin; Ding, Sheng; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2016-01-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids. PMID:27013782

  14. The effects of acute and chronic administration of n-6 and n-3 polyunsaturated fatty acids on ethanol-induced gastric haemorrhage in rats.

    PubMed

    Hunter, B; McDonald, G S; Gibney, M J

    1992-05-01

    Female weanling rats in three equal groups (n 12) were given orally by intubation 1 ml micellar solution of taurocholic acid (10 mM) and either arachidonic acid (20:4 n-6), linoleic acid (18:2 n-6) or eicosapentaenoic acid (20:5 n-3) at a concentration of 120 mM. After 1 h the rats were given intragastrically 2 ml absolute ethanol and were killed 1 h later. Rats given oral 20:4 n-6 showed a significant reduction (P less than 0.05) in the extent (%) of gastric mucosal haemorrhage compared with either the rats given 20:5 n-3 or 18:2 n-6 (8.3 (SD 7.3), 23.2 (SD 10.4) and 21.4 (SD 10.4) respectively. In a second experiment, four equal groups (n 12) of female Wistar rats were fed for 5 weeks on either a control diet of standard laboratory rat food, or the same diet enriched with either maize oil or fish oil or butterfat at a level of 100 g/kg. Following a 24 h fast the rats received an intragastric dose of 2 ml ethanol and were killed 1 h later. Examination of the extent (%) of gastric lesion showed a significant reduction (P less than 0.05) with the feeding of either maize oil or fish oil compared with the controls (12.2 (SD 8.2), 15.3 (SD 13.2) and 29.3 (SD 14.0) respectively). The butterfat diet was not significantly different from the control diet (23.8 (SD 8.1)). PMID:1622986

  15. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    PubMed

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. PMID:21517848

  16. Immunopathology of chronic lentivirus-induced arthritis.

    PubMed Central

    Wilkerson, M. J.; Davis, W. C.; Baszler, T. V.; Cheevers, W. P.

    1995-01-01

    This study evaluated histopathology and mononuclear cell phenotypes in synovial lesions of chronic arthritis induced by experimental infection of Saanen goats with caprine arthritis-encephalitis lentivirus. Histological examination of carpal joint synovium of three infected goats with clinical arthritis revealed progressive lesions consisting of membrane villus hypertrophy with extensive angiogenesis and mononuclear cell infiltration and degenerative changes of membrane villus necrosis associated with loss of vasculature and infiltrates. Changes in synovial tissue of five age-matched infected goats without clinical arthritis were limited to moderate synovial membrane hyperplasia also noted in an age-matched uninfected goat. Immunohistochemistry identified CD45R+ CD5- B lymphocytes as the principal component of most perivascular infiltrates in arthritic synovium. Other mononuclear cells included perivascular CD4+ and CD8+ T lymphocytes and macrophages with a prominent accumulation of CD8+ T lymphocytes at the lining surface of inflamed villi. T lymphocytes and macrophages as well as synovial lining cells were activated with respect to MHC class II but not for interleukin-2 receptors. Inflamed villi also contained lymphoid aggregates comprised of B cell germinal centers and activated T-cell mantles. B cells expressing immunoglobulin occurred around follicles and throughout inflamed villi. These findings indicate that memory immune responses that favor expansion and maturation of B cells and immunoglobulin production contribute to the immunopathology of chronic arthritis. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 PMID:7778682

  17. Neuraminic acid content of sputum in chronic bronchitis

    PubMed Central

    Keal, E. E.; Reid, Lynne

    1972-01-01

    The neuraminic acid content of sputum from 48 men with early chronic bronchitis has been estimated in samples collected over a period of three years. The results are compared with those from 29 advanced bronchitic patients and are related to the clinical features of both groups and to the physical and biological properties of the sputum. A seasonal variation in neuraminic acid content has been noted for the first time with higher levels during the winter months. Clinical assessment of sputum pourability correlated well with measured viscosity. The viscosity of mucoid sputum was related to its neuraminic acid content but also to the yield of dry macromolecular material. In the early bronchitic group whose sputum was assessed for purulence at monthly intervals pus was more often present in those men whose mucoid sputum contained higher levels of neuraminic acid. These findings are discussed in relation to the cause of exacerbations of chronic bronchitis. PMID:4647626

  18. Enhancement of fludarabine sensitivity by all-trans-retinoic acid in chronic lymphocytic leukemia cells

    PubMed Central

    Fernández-Calotti, Paula X.; Lopez-Guerra, Mónica; Colomer, Dolors; Pastor-Anglada, Marçal

    2012-01-01

    Background A subset of patients with fludarabine-resistant chronic lymphocytic leukemia has previously been shown to express elevated intracellular levels of the concentrative high-affinity fludarabine transporter hCNT3, without any detectable related activity. We have recently shown that all-trans-retinoic acid is capable of inducing hCNT3 trafficking to plasma membrane in the MEC1 cell line. We, therefore, evaluated the effect of all-trans-retinoic acid on hCNT3 in primary chronic lymphocytic leukemia cells as a suitable mechanism to improve fludarabine-based therapy of chronic lymphocytic leukemia. Design and Methods Cells from 23 chronic lymphocytic leukemia patients wild-type for P53 were analyzed for ex vivo sensitivity to fludarabine. hCNT3 activity in chronic lymphocytic leukemia cell samples was evaluated by measuring the uptake of [8-3H]-fludarabine. The amounts of transforming growth factor-β1 and hCNT3 messenger RNA were analyzed by real-time polymerase chain reaction. The effect of all-trans-retinoic acid on hCNT3 subcellular localization was analyzed by confocal microscopy and its effect on fludarabine-induced apoptosis was evaluated by flow cytometry analysis using annexin V staining. Results Chronic lymphocytic leukemia cases showing higher ex vivo basal sensitivity to fludarabine also had a greater basal hCNT3-associated fludarabine uptake capacity compared to the subset of patients showing ex vivo resistance to the drug. hCNT3 transporter activity in chronic lymphocytic leukemia cells from the latter patients was either negligible or absent. Treatment of the fludarabine-resistant subset of chronic lymphocytic leukemia cells with all-trans-retinoic acid induced increased fludarabine transport via hCNT3 which was associated with a significant increase in fludarabine sensitivity. Conclusions Improvement of ex vivo fludarabine sensitivity in chronic lymphocytic leukemia cells is associated with increased hCNT3 activity after all-trans-retinoic acid

  19. Unpredictable chronic mild stress not chronic restraint stress induces depressive behaviours in mice.

    PubMed

    Zhu, Shenghua; Shi, Ruoyang; Wang, Junhui; Wang, Jun-Feng; Li, Xin-Min

    2014-10-01

    The chronic stress model was developed on the basis of the stress-diathesis hypothesis of depression. However, these behavioural responses associated with different stress paradigms are quite complex. This study examined the effects of two chronic stress regimens on anxiety-like and depressive behaviours. C57BL/6 mice were subjected to unpredictable chronic mild stress or to chronic restraint stress for 4 weeks. Subsequently, both anxiety-like behaviours (open field, elevated plus maze and novelty suppressed feeding) and depression-like behaviours (tail suspension, forced swim and sucrose preference) were evaluated. Both chronic stress models generated anxiety-like behaviours, whereas only unpredictable chronic mild stress could induce depressive behaviours such as increased immobility and decreased sucrose consumption. These results of the present study provide additional evidence on how chronic stress affects behavioural responses and point to the importance of the validity of animal models of chronic stress in studying depression. PMID:25089805

  20. Chronic Melatonin Treatment Prevents Memory Impairment Induced by Chronic Sleep Deprivation.

    PubMed

    Alzoubi, Karem H; Mayyas, Fadia A; Khabour, Omar F; Bani Salama, Fatima M; Alhashimi, Farah H; Mhaidat, Nizar M

    2016-07-01

    Sleep deprivation (SD) has been associated with memory impairment through induction of oxidative stress. Melatonin, which promotes the metabolism of many reactive oxygen species (ROS), has antioxidant and neuroprotective properties. In this study, the effect of melatonin on memory impairment induced by 4 weeks of SD was investigated using rat animal model. Animals were sleep deprived using modified multiple platform model. Melatonin was administered via oral gavage (100 mg/kg/day). Spatial learning and memory were assessed using the radial arm water maze (RAWM). Changes in oxidative stress biomarkers in the hippocampus following treatments were measured using ELISA procedure. The result revealed that SD impaired both short- and long-term memory (P < 0.05). Use of melatonin prevented memory impairment induced by SD. Furthermore, melatonin normalized SD-induced reduction in the hippocampus activity of catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). In addition, melatonin enhanced the ratio of reduced to oxidized glutathione GSH/GSSG in sleep-deprived rats (P < 0.05) without affecting thiobarbituric acid reactive substance (TBARS) levels (P > 0.05). In conclusion, SD induced memory impairment, which was prevented by melatonin. This was correlated with normalizing hippocampus antioxidant mechanisms during chronic SD. PMID:26084441

  1. Mechanisms of epoxyeicosatrienoic acids to improve cardiac remodeling in chronic renal failure disease.

    PubMed

    Zhang, Kun; Wang, Ju; Zhang, Huanji; Chen, Jie; Zuo, Zhiyi; Wang, Jingfeng; Huang, Hui

    2013-02-15

    Both clinical and basic science studies have demonstrated that cardiac remodeling in patients with chronic renal failure (CRF) is very common. It is a key feature during the course of heart failure and an important risk factor for subsequent cardiac mortality. Traditional drugs or therapies rarely have effects on cardiac regression of CRF and cardiovascular events are still the first cause of death. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acids metabolized by cytochrome P450 epoxygenases. It has been found that EETs have important biological effects including anti-hypertension and anti-inflammation. Recent data suggest that EETs are involved in regulating cardiomyocyte injury, renal dysfunction, chronic kidney disease (CKD)-related risk factors and signaling pathways, all of which play key roles in cardiac remodeling induced by CRF. This review analyzes the literature to identify the possible mechanisms for EETs to improve cardiac remodeling induced by CRF and indicates the therapeutic potential of EETs in it. PMID:23313758

  2. Possible Biomarkers of Chronic Stress Induced Exhaustion - A Longitudinal Study

    PubMed Central

    Wallensten, Johanna; Åsberg, Marie; Nygren, Åke; Szulkin, Robert; Wallén, Håkan; Mobarrez, Fariborz; Nager, Anna

    2016-01-01

    Background Vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and monocyte chemotactic protein-1 (MCP-1) have previously been suggested to be potential biomarkers for chronic stress induced exhaustion. The knowledge about VEGF has increased during the last decades and supports the contention that VEGF plays an important role in stress and depression. There is scarce knowledge on the possible relationship of EGF and MCP-1 in chronic stress and depression. This study further examines the role of VEGF, EGF and MCP-1 in women with chronic stress induced exhaustion and healthy women during a follow-up period of two years. Methods and Findings Blood samples were collected from 105 women with chronic stress induced exhaustion on at least 50% sick leave for at least three months, at inclusion (T0), after 12 months (T12) and after 24 months (T24). Blood samples were collected at inclusion (T0) in 116 physically and psychiatrically healthy women. The plasma levels of VEGF, EGF and MCP-1 were analyzed using Biochip Array Technology. Women with chronic stress induced exhaustion had significantly higher plasma levels of VEGF and EGF compared to healthy women at baseline, T12 and at T24. There was no significant difference in plasma levels of MCP-1. Plasma levels of VEGF and EGF decreased significantly in women with chronic stress induced exhaustion during the two years follow-up. Conclusions The replicated findings of elevated levels of VEGF and EGF in women with chronic stress induced exhaustion and decreasing plasma levels of VEGF and EGF during the two years follow-up add important knowledge to the pathophysiology of chronic stress induced exhaustion. PMID:27145079

  3. Posing the Question Again: Does Chronic Uric Acid Nephropathy Exist?

    PubMed Central

    2010-01-01

    The question of whether hyperuricemia can induce chronic direct renal injury has been argued for many decades. Despite continued efforts and strong motivations to seek an answer, the current evidence still cannot definitively prove or refute the hypothesis. Recent data in rodents do favor causality between hyperuricemia and renal disease. Human epidemiologic data are quite varied, but positive studies do exist. Pathophysiologic models of biology for this entity are sparse in animals and nonexistent in humans. PMID:19729442

  4. Negative Pressure Wound Therapy of Chronically Infected Wounds Using 1% Acetic Acid Irrigation

    PubMed Central

    Lee, Byeong Ho; Lee, Hye Kyung; Kim, Hyoung Suk; Moon, Min Seon; Suh, In Suck

    2015-01-01

    Background Negative-pressure wound therapy (NPWT) induces angiogenesis and collagen synthesis to promote tissue healing. Although acetic acid soaks normalize alkali wound conditions to raise tissue oxygen saturation and deconstruct the biofilms of chronic wounds, frequent dressing changes are required. Methods Combined use of NPWT and acetic acid irrigation was assessed in the treatment of chronic wounds, instilling acetic acid solution (1%) beneath polyurethane membranes twice daily for three weeks under continuous pressure (125 mm Hg). Clinical photographs, pH levels, cultures, and debrided fragments of wounds were obtained pre- and posttreatment. Tissue immunostaining (CD31, Ki-67, and CD45) and reverse transcription-polymerase chain reaction (vascular endothelial growth factor [VEGF], vascular endothelial growth factor receptor [VEGFR]; procollagen; hypoxia-inducible factor 1 alpha [HIF-1-alpha]; matrix metalloproteinase [MMP]-1,-3,-9; and tissue inhibitor of metalloproteinase [TIMP]) were also performed. Results Wound sizes tended to diminish with the combined therapy, accompanied by drops in wound pH (weakly acidic or neutral) and less evidence of infection. CD31 and Ki-67 immunostaining increased (P<0.05) post-treatment, as did the levels of VEGFR, procollagen, and MMP-1 (P<0.05), whereas the VEGF, HIF-1-alpha, and MMP-9/TIMP levels declined (P<0.05). Conclusions By combining acetic acid irrigation with negative-pressure dressings, both the pH and the size of chronic wounds can be reduced and infections be controlled. This approach may enhance angiogenesis and collagen synthesis in wounds, restoring the extracellular matrix. PMID:25606491

  5. Tempol prevents chronic sleep-deprivation induced memory impairment.

    PubMed

    Alzoubi, Karem H; Khabour, Omar F; Albawaana, Amal S; Alhashimi, Farah H; Athamneh, Rabaa Y

    2016-01-01

    Sleep deprivation is associated with oxidative stress that causes learning and memory impairment. Tempol is a nitroxide compound that promotes the metabolism of many reactive oxygen species (ROS) and has antioxidant and neuroprotective effect. The current study investigated whether chronic administration of tempol can overcome oxidative stress and prevent learning and memory impairment induced by sleep deprivation. Sleep deprivation was induced in rats using multiple platform model. Tempol was administered to rats via oral gavages. Behavioral studies were conducted to test the spatial learning and memory using radial arm water maze. The hippocampus was dissected; antioxidant biomarkers (GSH, GSSG, GSH/GSSG ratio, GPx, SOD, and catalase) were assessed. The result of this project revealed that chronic sleep deprivation impaired both short and long term memory (P<0.05), while tempol treatment prevented such effect. Furthermore, tempol normalized chronic sleep deprivation induced reduction in the hippocampus activity of catalase, GPx, and SOD (P<0.05). Tempol also enhanced the ratio of GSH/GSSG in chronically sleep deprived rats treated with tempol as compared with only sleep deprived rats (P<0.05). In conclusion chronic sleep deprivation induced memory impairment, and treatment with tempol prevented this impairment probably through normalizing antioxidant mechanisms in the hippocampus. PMID:26616531

  6. Bile acids in radiation-induced diarrhea

    SciTech Connect

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-10-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style.

  7. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.

    PubMed

    Fukawa, Tomoya; Yan-Jiang, Benjamin Chua; Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Huang, Dan; Qian, Chao-Nan; Ong, Pauline; Li, Zhimei; Chen, Shuwen; Mak, Shi Ya; Lim, Wan Jun; Kanayama, Hiro-Omi; Mohan, Rosmin Elsa; Wang, Ruiqi Rachel; Lai, Jiunn Herng; Chua, Clarinda; Ong, Hock Soo; Tan, Ker-Kan; Ho, Ying Swan; Tan, Iain Beehuat; Teh, Bin Tean; Shyh-Chang, Ng

    2016-06-01

    Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia. PMID:27135739

  8. Zebrafish reproductive toxicity induced by chronic perfluorononanoate exposure.

    PubMed

    Zhang, Wei; Sheng, Nan; Wang, Minhui; Zhang, Hongxia; Dai, Jiayin

    2016-06-01

    Perfluoroalkyl acids (PFAAs) are a group of anthropogenic compounds that have been widely used in consumer products for over 50 years. One of the most dominant PFAAs is perfluorononanoate (PFNA), a compound detected ubiquitously in aquatic ecosystems. While PFNA is suspected of being an endocrine disruptor, the mechanisms behind PFNA-induced reproductive disorders are poorly understood. The aim of this study was to investigate the reproduction-related effects and possible mechanisms of PFNA on adult zebrafish (Danio rerio) following 180 days of exposure at different concentrations (0.01, 0.1, 1mg/L). PFNA concentration in the gonads of zebrafish was tested by HPLC-MS/MS after chronic exposure to study possible inconsistent accumulation between the genders. The results showed that the accumulation of PFNA in the male gonads was almost one-fold higher than that in the female gonads, indicating a possible higher PFAA gonad burden for male zebrafish. Significant reductions in the male gonadosomatic index (GSI) and female egg production were observed. In addition, the decreased 72h hatching rate displayed an evident dosage effect, indicating that maternal exposure to PFNA might impair offspring developmental success. To investigate how PFNA exposure affects the hypothalamic-pituitary-gonadal-liver axis (HPGL axis), the transcriptional levels of genes were measured by real-time PCR. The disrupted expression of genes, such as ERα, ERβ, FSHR, LHR, StAR, and 17βHSD, indicated the possible interference of PFNA on the HPGL axis function and sex hormone synthesis. Furthermore, testosterone (T) and estradiol (E2) levels in serum and VTG content in the liver were detected to clarify the influences of PFNA on sex hormone levels. Except for the increase in serum estrogen levels, as an estrogen analogue, PFNA also induced the synthesis of biomarker protein vitellogenin (VTG) in the adult male liver. The results of this study indicate that chronic exposure to PFNA can lead to

  9. Polyethylene glycol plus ascorbic acid for bowel preparation in chronic kidney disease.

    PubMed

    Lee, Jae Min; Keum, Bora; Yoo, In Kyung; Kim, Seung Han; Choi, Hyuk Soon; Kim, Eun Sun; Seo, Yeon Seok; Jeen, Yoon Tae; Chun, Hoon Jai; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Kim, Myung Gyu; Jo, Sang Kyung

    2016-09-01

    The safety of polyethylene glycol plus ascorbic acid has not been fully investigated in patients with renal insufficiency. High-dose ascorbic acid could induce hyperoxaluria, thereby causing tubule-interstitial nephritis and renal failure. This study aims to evaluate the safety and efficacy of polyethylene glycol plus ascorbic acid in patients with chronic kidney disease.We retrospectively reviewed prospectively collected data on colonoscopy in patients with impaired renal function. Patients were divided into 2 groups: 2 L polyethylene glycol plus ascorbic acid (n = 61) and 4 L polyethylene glycol (n = 80). The safety of the 2 groups was compared by assessing the differences in laboratory findings before and after bowel cleansing.The laboratory findings were not significantly different before and after the administration of 2 L polyethylene glycol plus ascorbic acid or 4 L polyethylene glycol. In both groups, the estimated glomerular filtration rate was not influenced by the administration of the bowel-cleansing agent. Patients' reports on tolerance and acceptability were better in the 2 L polyethylene glycol plus ascorbic acid group than in the 4 L polyethylene glycol group.The 2 L polyethylene glycol plus ascorbic acid solution is a safe choice for bowel preparation before colonoscopy in patients with impaired renal function. PMID:27603372

  10. Chronic caffeine or theophylline exposure reduces gamma-aminobutyric acid/benzodiazepine receptor site interactions.

    PubMed

    Roca, D J; Schiller, G D; Farb, D H

    1988-05-01

    Methylxanthines, such as caffeine and theophylline, are adenosine receptor antagonists that exert dramatic effects upon the behavior of vertebrate animals by increasing attentiveness, anxiety, and convulsive activity. Benzodiazepines, such as flunitrazepam, generally exert behavioral effects that are opposite to those of methylxanthines. We report the finding that chronic exposure of embryonic brain neurons to caffeine or theophylline reduces the ability of gamma-aminobutyric acid (GABA) to potentiate the binding of [3H]flunitrazepam to the GABA/benzodiazepine receptor. This theophylline-induced "uncoupling" of GABA- and benzodiazepine-binding site allosteric interactions is blocked by chloroadenosine, an adenosine receptor agonist, indicating that the chronic effects of theophylline are mediated by a site that resembles an adenosine receptor. We speculate that adverse central nervous system effects of long-term exposure to methylxanthines such as in caffeine-containing beverages or theophylline-containing medications may be exerted by a cell-mediated modification of the GABAA receptor. PMID:2835648

  11. The Omega-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid (DHA) Reverses Corticosterone-Induced Changes in Cortical Neurons

    PubMed Central

    Pusceddu, Matteo M.; Nolan, Yvonne M.; Green, Holly F.; Robertson, Ruairi C.; Stanton, Catherine; Kelly, Philip; Dinan, Timothy G.

    2016-01-01

    Background: Chronic exposure to the glucocorticoid hormone corticosterone exerts cellular stress-induced toxic effects that have been associated with neurodegenerative and psychiatric disorders. Docosahexaenoic acid is a polyunsaturated fatty acid that has been shown to be of benefit in stress-related disorders, putatively through protective action in neurons. Methods: We investigated the protective effect of docosahexaenoic acid against glucocorticoid hormone corticosterone-induced cellular changes in cortical cell cultures containing both astrocytes and neurons. Results: We found that glucocorticoid hormone corticosterone (100, 150, 200 μM) at different time points (48 and 72 hours) induced a dose- and time-dependent reduction in cellular viability as assessed by methyl thiazolyl tetrazolium. Moreover, glucocorticoid hormone corticosterone (200 μM, 72 hours) decreased the percentage composition of neurons while increasing the percentage of astrocytes as assessed by βIII-tubulin and glial fibrillary acidic protein immunostaining, respectively. In contrast, docosahexaenoic acid treatment (6 μM) increased docosahexaenoic acid content and attenuated glucocorticoid hormone corticosterone (200 μM)-induced cell death (72 hours) in cortical cultures. This translates into a capacity for docosahexaenoic acid to prevent neuronal death as well as astrocyte overgrowth following chronic exposure to glucocorticoid hormone corticosterone. Furthermore, docosahexaenoic acid (6 μM) reversed glucocorticoid hormone corticosterone-induced neuronal apoptosis as assessed by terminal deoxynucleotidyl transferase–mediated nick-end labeling and attenuated glucocorticoid hormone corticosterone-induced reductions in brain derived neurotrophic factor mRNA expression in these cultures. Finally, docosahexaenoic acid inhibited glucocorticoid hormone corticosterone-induced downregulation of glucocorticoid receptor expression on βIII- tubulin-positive neurons. Conclusions: This work

  12. Studies of the prevalence and significance of radiolabeled bile acid malabsorption in a group of patients with idiopathic chronic diarrhea

    SciTech Connect

    Schiller, L.R.; Hogan, R.B.; Morawski, S.G.; Santa Ana, C.A.; Bern, M.J.; Norgaard, R.P.; Bo-Linn, G.W.; Fordtran, J.S.

    1987-01-01

    We studied radiolabeled fecal bile acid excretion in 11 normal subjects and 17 patients with idiopathic chronic diarrhea for three major purposes: to establish normal values for this test in the presence of increased stool volumes (induced in normal subjects by ingestion of poorly absorbable solutions); to test for bile acid malabsorption in the patients and to correlate this with an independent test of ileal function, the Schilling test; and to compare the results of the bile acid excretion test with the subsequent effect of a bile acid binding agent (cholestyramine) on stool weight. In normal subjects fecal excretion of the radiolabel was increased with increasing stool volumes. As a group, patients with idiopathic chronic diarrhea excreted radiolabeled bile acid more rapidly than normal subjects with induced diarrhea (t1/2 56 +/- 8 vs. 236 +/- 60 h, respectively, p less than 0.005). There was a statistically significant positive correlation between t1/2 of radiolabeled bile acid and Schilling test results in these patients. Although 14 of 17 patients absorbed labeled taurocholic acid less well than any of the normal subjects with comparable volumes of induced diarrhea, cholestyramine had no statistically significant effect on stool weight in the patient group, and in none of the patients was stool weight reduced to within the normal range. In summary, most patients with idiopathic chronic diarrhea have bile acid malabsorption (as measured by fecal excretion of labeled bile acid), but they do not respond to cholestyramine therapy with a significant reduction in stool weight. Although the significance of these findings was not clearly established, the most likely interpretation is that bile acid malabsorption is a manifestation of an underlying intestinal motility or absorptive defect rather than the primary cause of diarrhea.

  13. Acid-induced secretory cell metaplasia in hamster bronchi

    SciTech Connect

    Christensen, T.G.; Lucey, E.C.; Breuer, R.; Snider, G.L.

    1988-02-01

    Hamsters were exposed to an intratracheal instillation of 0.5 ml of 0.08 N nitric, hydrochloric, or sulfuric acid to determine their airway epithelial response. Three weeks after exposure, the left intrapulmonary bronchi in Alcian blue/PAS-strained paraffin sections were evaluated for the amount of secretory product in the airway epithelium as a measure of secretory cell metaplasia (SCM). Compared to saline-treated control animals, all three acids caused statistically significant SCM. In addition to the bronchial lesion, all three acids caused similar interstitial fibrosis, bronchiolectasis, and bronchiolization of alveoli that varied in individual animals from mild to severe. In a separate experiment to study the persistence of the SCM, hamsters treated with a single instillation of 0.1 N nitric acid showed significant SCM 3, 7, and 17 weeks after exposure. There was a high correlation (r = 0.96) between a subjective assessment of SCM and objective assessment using a digital image-analysis system. We conclude that protons induce SCM independently of the associated anion; the SCM persists at least 17 weeks. Sulfuric acid is an atmospheric pollutant and nitric acid may form locally on the mucosa of lungs exposed to nitrogen dioxide. These acids may contribute to the development of maintenance of the SCM seen in the conducting airways of humans with chronic obstructive pulmonary disease.

  14. Genetic susceptibility factors for alcohol-induced chronic pancreatitis.

    PubMed

    Aghdassi, Ali A; Weiss, F Ulrich; Mayerle, Julia; Lerch, Markus M; Simon, Peter

    2015-07-01

    Chronic pancreatitis is a progressive inflammatory disease of the pancreas and frequently associated with immoderate alcohol consumption. Since only a small proportion of alcoholics eventually develop chronic pancreatitis genetic susceptibility factors have long been suspected to contribute to the pathogenesis of the disease. Smaller studies in ethnically defined populations have found that not only polymorphism in proteins involved in the metabolism of ethanol, such as Alcohol Dehydrogenase and Aldehyde Dehydrogenase, can confer a risk for developing chronic pancreatitis but also mutations that had previously been reported in association with idiopathic pancreatitis, such as SPINK1 mutations. In a much broader approach employing genome wide search strategies the NAPS study found that polymorphisms in the Trypsin locus (PRSS1 rs10273639), and the Claudin 2 locus (CLDN2-RIPPLY1-MORC4 locus rs7057398 and rs12688220) confer an increased risk of developing alcohol-induced pancreatitis. These results from North America have now been confirmed by a European consortium. In another genome wide approach polymorphisms in the genes encoding Fucosyltransferase 2 (FUT2) non-secretor status and blood group B were not only found in association with higher serum lipase levels in healthy volunteers but also to more than double the risk for developing alcohol-associated chronic pancreatitis. These novel genetic associations will allow to investigate the pathophysiological and biochemical basis of alcohol-induced chronic pancreatitis on a cellular level and in much more detail than previously possible. PMID:26149858

  15. The nitroxyl donor, Angeli's salt, reduces chronic constriction injury-induced neuropathic pain.

    PubMed

    Longhi-Balbinot, Daniela T; Rossaneis, Ana C; Pinho-Ribeiro, Felipe A; Bertozzi, Mariana M; Cunha, Fernando Q; Alves-Filho, José C; Cunha, Thiago M; Peron, Jean P S; Miranda, Katrina M; Casagrande, Rubia; Verri, Waldiceu A

    2016-08-25

    Chronic pain is a major health problem worldwide. We have recently demonstrated the analgesic effect of the nitroxyl donor, Angeli's salt (AS) in models of inflammatory pain. In the present study, the acute and chronic analgesic effects of AS was investigated in chronic constriction injury of the sciatic nerve (CCI)-induced neuropathic pain in mice. Acute (7th day after CCI) AS treatment (1 and 3 mg/kg; s.c.) reduced CCI-induced mechanical, but not thermal hyperalgesia. The acute analgesic effect of AS was prevented by treatment with 1H-[1,2, 4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor), KT5823 (an inhibitor of protein kinase G [PKG]) or glibenclamide (GLB, an ATP-sensitive potassium channel blocker). Chronic (7-14 days after CCI) treatment with AS (3 mg/kg, s.c.) promoted a sustained reduction of CCI-induced mechanical and thermal hyperalgesia. Acute AS treatment reduced CCI-induced spinal cord allograft inflammatory factor 1 (known as Iba-1), interleukin-1β (IL-1β), and ST2 receptor mRNA expression. Chronic AS treatment reduced CCI-induced spinal cord glial fibrillary acidic protein (GFAP), Iba-1, IL-1β, tumor necrosis factor-α (TNF-α), interleukin-33 (IL-33) and ST2 mRNA expression. Chronic treatment with AS (3 mg/kg, s.c.) did not alter aspartate aminotransferase, alanine aminotransferase, urea or creatinine plasma levels. Together, these results suggest that the acute analgesic effect of AS depends on activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. Moreover, chronic AS diminishes CCI-induced mechanical and thermal hyperalgesia by reducing the activation of spinal cord microglia and astrocytes, decreasing TNF-α, IL-1β and IL-33 cytokines expression. This spinal cord immune modulation was more prominent in the chronic treatment with AS. Thus, nitroxyl limits CCI-induced neuropathic pain by reducing spinal cord glial cells activation. PMID:27287419

  16. Plasma amino and keto acids in chronic renal failure.

    PubMed

    Langer, K; Fröhling, P T; Diederich, J; Brandl, M; Lindenau, K; Fekl, W

    1988-01-01

    During both early and late stages of chronic renal insufficiency the response of BCKA to the disease state, as indicated by plasma levels, differs from that of BCAA. Val is the only BCAA whose concentration changes under the conditions of our study, and this only during the more advanced stages of disease. In contrast, all three BCKA declined, KIVA and KICA even in mild renal failure, showing that already during the early stages of the disease these BCKA levels are decreased. BCKA are more sensitive parameters than the corresponding amino acids with regard to the metabolic dysfunctions characteristic of this disease. Modern analytical methods allow more exact and reliable knowledge of these indicators and thus a better understanding of biochemical mechanisms, possibly resulting in better therapy. PMID:3168462

  17. Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats.

    PubMed

    Kaur, Gurpreet; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar S

    2015-03-01

    The present study was designed to investigate the ameliorative potential of Ocimum sanctum and its saponin rich fraction in chronic constriction injury-induced neuropathic pain in rats. The chronic constriction injury was induced by placing four loose ligatures around the sciatic nerve, proximal to its trifurcation. The mechanical hyperalgesia, cold allodynia, paw heat hyperalgesia and cold tail hyperalgesia were assessed by performing the pinprick, acetone, hot plate and cold tail immersion tests, respectively. Biochemically, the tissue thio-barbituric acid reactive species, super-oxide anion content (markers of oxidative stress) and total calcium levels were measured. Chronic constriction injury was associated with the development of mechanical hyperalgesia, cold allodynia, heat and cold hyperalgesia along with an increase in oxidative stress and calcium levels. However, administration of Ocimum sanctum (100 and 200 mg/kg p.o.) and its saponin rich fraction (100 and 200 mg/kg p.o.) for 14 days significantly attenuated chronic constriction injury-induced neuropathic pain as well as decrease the oxidative stress and calcium levels. It may be concluded that saponin rich fraction of Ocimum sanctum has ameliorative potential in attenuating painful neuropathic state, which may be attributed to a decrease in oxidative stress and calcium levels. PMID:25673470

  18. Strategies for testing the irritation-signaling model for chronic lung effects of fine acid particles

    SciTech Connect

    Hattis, D.; Abdollahzadeh, S.; Franklin, C.A. )

    1990-03-01

    The irritation signaling model proposed that a long term contribution to chronic bronchitis might result from the repeated delivery of signals resulting from temporary localized acidification of the bronchial epithelium by the action of individual particles. This led to a prediction that the effectiveness of particles in inducing changes in mucus secreting cell numbers/types should depend on the number of particles deposited that contained a particular amount of acid--implying that particles below a certain size cutoff (and therefore lacking a minimum amount of acid) should be ineffective; and that particle potency per unit weight should be greatest at the cutoff and decline strongly above the cutoff. Since the development of this hypothesis both epidemiological observations and some experimental studies have tended to reinforce the notion that acid particles can make a contribution to relatively long lasting bronchitic-like changes, and enhance the desirability of more direct testing of the model. In this paper we develop a general theoretical framework for the contributions of environmental agents to chronic obstructive lung disease, and a series of alternative hypotheses against which the predictions of the irritant signaling model can be compared. Based on this, we suggest a research program that could be used to further develop and test the model and reasonable alternatives. 82 references.

  19. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments.

    PubMed

    Wojtkowiak, Jonathan W; Rothberg, Jennifer M; Kumar, Virendra; Schramm, Karla J; Haller, Edward; Proemsey, Joshua B; Lloyd, Mark C; Sloane, Bonnie F; Gillies, Robert J

    2012-08-15

    Tumor cell survival relies upon adaptation to the acidic conditions of the tumor microenvironment. To investigate potential acidosis survival mechanisms, we examined the effect of low pH (6.7) on human breast carcinoma cells. Acute low pH exposure reduced proliferation rate, induced a G1 cell cycle arrest, and increased cytoplasmic vacuolization. Gene expression analysis revealed elevated levels of ATG5 and BNIP3 in acid-conditioned cells, suggesting cells exposed to low pH may utilize autophagy as a survival mechanism. In support of this hypothesis, we found that acute low pH stimulated autophagy as defined by an increase in LC3-positive punctate vesicles, double-membrane vacuoles, and decreased phosphorylation of AKT and ribosomal protein S6. Notably, cells exposed to low pH for approximately 3 months restored their proliferative capacity while maintaining the cytoplasmic vacuolated phenotype. Although autophagy is typically transient, elevated autophagy markers were maintained chronically in low pH conditioned cells as visualized by increased protein expression of LC3-II and double-membrane vacuoles. Furthermore, these cells exhibited elevated sensitivity to PI3K-class III inhibition by 3-methyladenine. In mouse tumors, LC3 expression was reduced by systemic treatment with sodium bicarbonate, which raises intratumoral pH. Taken together, these results argue that acidic conditions in the tumor microenvironment promote autophagy, and that chronic autophagy occurs as a survival adaptation in this setting. PMID:22719070

  20. Airway Inflammation and Hypersensitivity Induced by Chronic Smoking

    PubMed Central

    Kou, Yu Ru; Kwong, Kevin; Lee, Lu-Yuan

    2011-01-01

    Airway hypersensitivity, characterized by enhanced excitability of airway sensory nerves, is a prominent pathophysiological feature in patients with airway inflammatory diseases. Although the underlying pathogenic mechanism is not fully understood, chronic airway inflammation is believed to be primarily responsible. Cigarette smoking is known to cause chronic airway inflammation, accompanied by airway hyperresponsiveness. Experimental evidence indicates that enhanced excitability of vagal bronchopulmonary sensory nerves and increased tachykinin synthesis in these nerves resulting from chronic inflammation are important contributing factors to the airway hyperresponsiveness. Multiple inflammatory mediators released from various types of structural and inflammatory cells are involved in the smoking-induced airway inflammation, which is mainly regulated by redox-sensitive signaling pathways and transcription factors. Furthermore, recent studies have reported potent sensitizing and stimulatory effects of these inflammatory mediators such as prostanoids and reactive oxygen species on these sensory nerves. In summary, these studies using cigarette smoking as an experimental approach have identified certain potentially important cell signaling pathways and underlying mechanisms of the airway hypersensitivity induced by chronic airway inflammation. PMID:21397052

  1. Amoxicillin/Clavulanic Acid-Induced Thrombocytopenia

    PubMed Central

    Saad, Aline; Azar, Marina; Khoueiry, Paul

    2014-01-01

    Introduction and Objective: Drug-induced thrombocytopenia is a common adverse effect reported in the literature. Typically patients present with a low platelet count with signs and symptoms ranging from bruising to bleeding, and major organ damage. Penicillin-induced thrombocytopenia previously reported in the literature is explained primarily through the hapten-dependent antibody process. The goal of this report is to present a case of an amoxicillin/clavulanic acid-induced thrombocytopenia. Case Presentation: A 23-year-old male presented to the emergency department with bruises on his arms and legs after completing a full course of amoxicillin/clavulanic acid of 625 mg twice a day for 5 days for tonsillitis. After several tests, the patient was diagnosed with thrombocytopenia induced by amoxicillin/clavulanic acid. The patient was treated with a corticosteroids taper regimen for 3 weeks. He was discharged after 3 days of inpatient treatment with instructions to avoid physical activity for 2 weeks. Two weeks post discharge, the follow-up showed that the platelet count had increased. Discussion: Penicillin-induced thrombocytopenia has been previously reported in the inpatient setting where bleeding was observed. However, the patient in this case report presented with bruises on his arms and legs. The diagnosis was made by the process of elimination; not all possible tests were conducted. The patient was prescribed corticosteroids that are not indicated for drug-induced thrombocytopenia. The Naranjo scale showed that this is a probable adverse event of amoxicillin/clavulanic acid. Conclusion: This is a unique case where amoxicillin/clavulanic acid was reported to be a probable cause of thrombocytopenia in an outpatient setting without signs of bleeding and without concomitant medications. PMID:25477568

  2. Combined Application of Gadoxetic Acid Disodium-Enhanced Magnetic Resonance Imaging (MRI) and Diffusion-Weighted Imaging (DWI) in the Diagnosis of Chronic Liver Disease-Induced Hepatocellular Carcinoma: A Meta-Analysis

    PubMed Central

    Li, Xiang; Li, Chenxia; Wang, Rong; Ren, Juan

    2015-01-01

    Objective Gadoxetic acid disodium (Gd-EOB-DTPA) is a magnetic resonance imaging (MRI) contrast agent to target the liver cells with normal function. In clinical practice, the Gd-EOB-DTPA produces high quality hepatocyte specific image 20 minutes after intravenous injection, so DWI sequence is often performed after the conventional dynamic scanning. However, there are still some disputes about whether DWI sequence will provide more effective diagnostic information in clinical practice. This study aimed to explore the diagnostic value of combining Gd-EOB-DTPA-enhanced MRI and DWI in the detection of hepatocellular carcinoma (HCC) in patients with chronic liver disease. Methods A systematic literature search was performed in the PubMed and Cochrane library database up to March 2015. The quality assessment of diagnostic accuracy studies (QUADAS) was used to evaluate the quality of studies. Heterogeneous test on the included literature was performed by using the software Review Manager 5.3. The MetaDiSc 1.4 software was used to calculate the pooled sensitivity, specificity, positive likelihood ratio and negative likelihood ratio; meanwhile the summary receiver operating characteristics (SROC) curve was drawn to compare the diagnostic performance. Results A total of 13 literatures were included in this study. In 8 literatures regarding HCC diagnosis based on Gd-EOB-DTPA-enhanced MRI, the pooled sensitivity: 0.90 (95% confidence interval (CI): 0.88–0.93); specificity: 0.89 (95% CI: 0.85–0.92); positive likelihood ratio: 8.60 (95% CI: 6.20–11.92); negative likelihood ratio: 0.10 (95% CI: 0.08–0.14) were obtained. The area under curve (AUC) and Q values were 0.96 and 0.90, respectively. In 5 literatures relating to HCC diagnosis by combination of Gd-EOB-DTPA-enhanced MRI and DWI sequence, the pooled sensitivity: 0.88 (95% CI: 0.85–0.91), specificity: 0.96 (0.94–0.97), positive likelihood ratio: 19.63 (12.77–30.16), negative likelihood ratio: 0.10 (0.07–0

  3. Myocardial metabolism of pantothenic acid in chronically diabetic rats.

    PubMed

    Beinlich, C J; Naumovitz, R D; Song, W O; Neely, J R

    1990-03-01

    Transport and metabolism of [3H]pantothenic acid ([3H]Pa) was investigated in hearts from control and streptozotocin-induced diabetic rats. In isolated perfused hearts from control animals, the transport of [3H]Pa was linear over 3 h of perfusion when 11 mM glucose was the only exogenous substrate. The in vitro transport of [3H]Pa by hearts from 48-h diabetic rats was reduced by 65% compared to controls and was linear over 2 h of perfusion with no further accumulation of Pa during the third hour. The defect in transport observed in vitro could be corrected by in vivo treatment with 4 U Lente insulin/day for 2 days. In vitro addition of insulin in the presence of 11 mM glucose or 11 mM glucose plus 1.2 mM palmitate had no effect on [3H]Pa transport in hearts from 48-h diabetic rats during 3 h of perfusion. Accumulation of [3H]Pa was not inhibited by inclusion of 0.7 mM amino acids, 1 mM carnitine, 50 microM mersalic acid or 1 mM panthenol, pantoyllactone or pantoyltaurine. Uptake was inhibited by 1 mM nonanoic, octanoic or heptanoic acid, 0.1 mM biotin or 0.25 mM probenecid, suggesting a requirement for the terminal carboxyl group for transport. Transport of pantothenic acid was reduced in hearts from diabetic rats within 24 h of injection of streptozotocin. In vitro accumulation of [3H]Pa decreased to 10% of control 1 week after streptozotocin injection and then remained at 30% of the control value over 10 weeks.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2141362

  4. Chronic hyperuricemia, uric acid deposit and cardiovascular risk.

    PubMed

    Grassi, Davide; Ferri, Livia; Desideri, Giovambattista; Di Giosia, Paolo; Cheli, Paola; Del Pinto, Rita; Properzi, Giuliana; Ferri, Claudio

    2013-01-01

    Hyperuricemia is commonly associated with traditional risk factors such as dysglicemia, dyslipidemia, central obesity and abnormal blood pressure, i.e. the metabolic syndrome. Concordantly, recent studies have revived the controversy over the role of circulating uric acid, hyperuricemia, and gout as an independent prognostic factor for cardiovascular morbidity and mortality. In this regard, different studies also evaluated the possible role of xanthine inhibitors in inducing blood pressure reduction, increment in flow-mediated dilation, and improved cardiovascular prognosis in various patient settings. The vast majority of these studies have been conducted with either allopurinol or its active metabolite oxypurinol, i.e. two purine-like non-selective inhibitors of xanthine oxidase. More recently, the role of uric acid as a risk factor for cardiovascular disease and the possible protective role exerted by reduction of hyperuricemia to normal level have been evaluated by the use of febuxostat, a selective, non purine-like xanthine oxidase inhibitor. In this review, we will report current evidence on hyperuricemia in cardiovascular disease. The value of uric acid as a biomarker and as a potential therapeutic target for tailored old and novel "cardiometabolic" treatments will be also discussed. PMID:23173592

  5. Chronic Hyperuricemia, Uric Acid Deposit and Cardiovascular Risk

    PubMed Central

    Grassi, Davide; Ferri, Livia; Desideri, Giovambattista; Giosia, Paolo Di; Cheli, Paola; Pinto, Rita Del; Properzi, Giuliana; Ferri, Claudio

    2013-01-01

    Hyperuricemia is commonly associated with traditional risk factors such as dysglicemia, dyslipidemia, central obesity and abnormal blood pressure, i.e. the metabolic syndrome. Concordantly, recent studies have revived the controversy over the role of circulating uric acid, hyperuricemia, and gout as an independent prognostic factor for cardiovascular morbidity and mortality. In this regard, different studies also evaluated the possible role of xanthine inhibitors in inducing blood pressure reduction, increment in flow-mediated dilation, and improved cardiovascular prognosis in various patient settings. The vast majority of these studies have been conducted with either allopurinol or its active metabolite oxypurinol, i.e. two purine-like non-selective inhibitors of xanthine oxidase. More recently, the role of uric acid as a risk factor for cardiovascular disease and the possible protective role exerted by reduction of hyperuricemia to normal level have been evaluated by the use of febuxostat, a selective, non purine-like xanthine oxidase inhibitor. In this review, we will report current evidence on hyperuricemia in cardiovascular disease. The value of uric acid as a biomarker and as a potential therapeutic target for tailored old and novel “cardiometabolic” treatments will be also discussed. PMID:23173592

  6. Chronic excitotoxicity in the guinea pig cochlea induces temporary functional deficits without disrupting otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Le Prell, Colleen G.; Yagi, Masao; Kawamoto, Kohei; Beyer, Lisa A.; Atkin, Graham; Raphael, Yehoash; Dolan, David F.; Bledsoe, Sanford C.; Moody, David B.

    2004-08-01

    Brief cochlear excitotoxicity produces temporary neural swelling and transient deficits in auditory sensitivity; however, the consequences of long-lasting excitotoxic insult have not been tested. Chronic intra-cochlear infusion of the glutamate agonist AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) resulted in functional deficits in the sound-evoked auditory brainstem response, as well as in behavioral measures of hearing. The electrophysiological deficits were similar to those observed following acute infusion of AMPA into the cochlea; however, the concentration-response curve was significantly shifted as a consequence of the slower infusion rate used with chronic cochlear administration. As observed following acute excitotoxic insult, complete functional recovery was evident within 7 days of discontinuing the AMPA infusion. Distortion product otoacoustic emissions were not affected by chronic AMPA infusion, suggesting that trauma to outer hair cells did not contribute to AMPA-induced deficits in acoustic sensitivity. Results from the current experiment address the permanence of deficits induced by chronic (14 day) excitotoxic insult as well as deficits in psychophysical detection of longer duration acoustic signals.

  7. LC-MS based metabolomics identification of novel biomarkers of tobacco smoke-induced chronic bronchitis.

    PubMed

    Ren, Xiaolei; Zhang, Jiayu; Fu, Xiaorui; Ma, Shuangshuang; Wang, Chunguo; Wang, Juan; Tian, Simin; Liu, Siqi; Zhao, Baosheng; Wang, Xueyong

    2016-01-01

    Tobacco smoke (TS) is a major causative agent to lead to chronic bronchitis (CB). However the mechanisms of CB induced by TS are unclear. In this report, rats were exposed to different concentrations of TS and the metabolic features of CB were characterized by using a nontargeted metabolic profiling method based on liquid chromatography-mass spectrometry (LC-MS) to detect the altered metabolic patterns in serum from CB rats and investigate the mechanisms of CB. 11 potential biomarkers were identified in serum of rats. Among them, the levels of lysophosphatidylethanolamine (18:1), lysophosphatidic acid (18:1), lysophosphatidylethanolamine (18:0), lysophosphatidylethanolamine (16:0), lysophosphatidylethanolamine (20:4), docosahexaenoic acid, 5-hydroxyindoleacetic acid and 5'-carboxy-γ-tocopherol were higher in TS group compared to control group. Conversely, the levels of 4-imidazolone-5-propionic acid, 12-hydroxyeicosatetraenoic acid and uridine were lower in TS group. The results indicated that the mechanism of CB was related to amino acid metabolism and lipid metabolism, particularly lipid metabolism. In addition, lysophosphatidylethanolamines were proved to be important mediators, which could be used as biomarkers to diagnose CB. These results also suggested that metabolomics was suitable for diagnosing CB and elucidating the possible metabolic pathways of TS-induced CB. PMID:26390017

  8. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior.

    PubMed

    Hu, Pu; Wang, Yu; Liu, Ji; Meng, Fan-Tao; Qi, Xin-Rui; Chen, Lin; van Dam, Anne-Marie; Joëls, Marian; Lucassen, Paul J; Zhou, Jiang-Ning

    2016-07-01

    Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all-trans retinoic acid (RA) potently activated the hypothalamus-pituitary-adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive-like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor-α (RAR-α) protein expression in the hippocampus, suggesting an activation of RA-induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA-induced impairments in hippocampal neurogenesis correlate with depression-like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA-associated mood disorders. © 2016 Wiley Periodicals, Inc. PMID:26860546

  9. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice

    PubMed Central

    Jurk, Diana; Wilson, Caroline; Passos, João F.; Oakley, Fiona; Correia-Melo, Clara; Greaves, Laura; Saretzki, Gabriele; Fox, Chris; Lawless, Conor; Anderson, Rhys; Hewitt, Graeme; Pender, Sylvia LF; Fullard, Nicola; Nelson, Glyn; Mann, Jelena; van de Sluis, Bart; Mann, Derek A.; von Zglinicki, Thomas

    2014-01-01

    Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-κB induces premature ageing in mice. We also show that these mice have reduced regeneration in liver and gut. nfkb1−/− fibroblasts exhibit aggravated cell senescence because of an enhanced autocrine and paracrine feedback through NF-κB, COX-2 and ROS, which stabilizes DNA damage. Preferential accumulation of telomere-dysfunctional senescent cells in nfkb1−/− tissues is blocked by anti-inflammatory or antioxidant treatment of mice, and this rescues tissue regenerative potential. Frequencies of senescent cells in liver and intestinal crypts quantitatively predict mean and maximum lifespan in both short- and long-lived mice cohorts. These data indicate that systemic chronic inflammation can accelerate ageing via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any other genetic or environmental factor. PMID:24960204

  10. Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review.

    PubMed

    Song, Dongmei; Fang, Guoqiang; Greenberg, Harly; Liu, Shu Fang

    2015-12-01

    Obstructive sleep apnea (OSA) is highly prevalent in the USA and is recognized as an independent risk factor for atherosclerotic cardiovascular disease. Identification of atherosclerosis risk factor attributable to OSA may provide opportunity to develop preventive measures for cardiovascular risk reduction. Chronic intermittent hypoxia (CIH) is a prominent feature of OSA pathophysiology and may be a major mechanism linking OSA to arteriosclerosis. Animal studies demonstrated that CIH exposure facilitated high-cholesterol diet (HCD)-induced atherosclerosis, accelerated the progression of existing atherosclerosis, and induced atherosclerotic lesions in the absence of other atherosclerosis risk factors, demonstrating that CIH is an independent causal factor of atherosclerosis. Comparative studies revealed major differences between CIH-induced and the classic HCD-induced atherosclerosis. Systemically, CIH was a much weaker inducer of atherosclerosis. CIH and HCD differentially activated inflammatory pathways. Histologically, CIH-induced atherosclerotic plaques had no clear necrotic core, contained a large number of CD31+ endothelial cells, and had mainly elastin deposition, whereas HCD-induced plaques had typical necrotic cores and fibrous caps, contained few endothelial cells, and had mainly collagen deposition. Metabolically, CIH caused mild, but HCD caused more severe dyslipidemia. Mechanistically, CIH did not, but HCD did, cause macrophage foam cell formation. NF-κB p50 gene deletion augmented CIH-induced, but not HCD-induced atherosclerosis. These differences reflect the intrinsic differences between the two types of atherosclerosis in terms of pathological nature and underlying mechanisms and support the notion that CIH-induced atherosclerosis is a new paradigm that differs from the classic HCD-induced atherosclerosis. PMID:26407987

  11. Alcohol and high fat induced chronic pancreatitis: TRPV4 antagonist reduces hypersensitivity.

    PubMed

    Zhang, L P; Kline, R H; Deevska, G; Ma, F; Nikolova-Karakashian, M; Westlund, K N

    2015-12-17

    The pathogenesis of pain in chronic pancreatitis is poorly understood, and its treatment can be a major clinical challenge. Surgical and other invasive methods have variable outcomes that can be unsatisfactory. Therefore, there is a great need for further discovery of the pathogenesis of pancreatitis pain and new therapeutic targets. Human and animal studies indicate a critical role for oxidative stress and activation of transient receptor potential (TRP) cation channel subfamily members TRPV1 and TRPA1 on pancreatic nociceptors in sensitization mechanisms that result in pain. However, the in vivo role of transient receptor potential cation channel subfamily V member 4 (TRPV4) in chronic pancreatitis needs further evaluation. The present study characterized a rat alcohol/high fat diet (AHF)-induced chronic pancreatitis model with hypersensitivity, fibrotic pathology, and fat vacuolization consistent with the clinical syndrome. The rats with AHF-induced pancreatitis develop referred visceral pain-like behaviors, i.e. decreased hindpaw mechanical thresholds and shortened abdominal and hindpaw withdrawal latency to heat. In this study, oxidative stress was characterized as well as the role of TRPV4 in chronic visceral hypersensitivity. Lipid peroxidase and oxidative stress were indicated by increased plasma thiobarbituric acid reactive substances (TBARS) and diminished pancreatic manganese superoxide dismutase (MnSOD). The secondary sensitization associated with AHF-induced pancreatitis was effectively alleviated by the TRPV4 antagonist, HC 067047. Similarity of the results to those with the peripherally restricted μ-opiate receptor agonist, loperamide, suggested TRPV4 channel activated peripheral sensitization. This study using a reliable model that provides pre-clinical correlates of human chronic pancreatitis provides further evidence that TRPV4 channel is a potential therapeutic target for treatment of pancreatitis pain. PMID:26480812

  12. Metformin Eased Cognitive Impairment Induced by Chronic L-methionine Administration: Potential Role of Oxidative Stress

    PubMed Central

    Alzoubi, Karem. H; Khabour, Omar. F; Al-azzam, Sayer I; Tashtoush, Murad H; Mhaidat, Nizar M

    2014-01-01

    Chronic administration of L-methionine leads to memory impairment, which is attributed to increase in the level of oxidative stress in the brain. On the other hand, metformin is a commonly used antidiabetic drug with strong antioxidant properties. In the current study, we tested if chronic metformin administration prevents memory impairment induced by administration of L-methionine. In addition, a number of molecules related to the action of metformin on cognitive functions were examined. Both metformin and L-methionine were administered to animals by oral gavage. Testing of spatial learning and memory was carried out using radial arm water maze (RAWM). Additionally, hippocampal levels or activities of catalase, thiobarbituric acid reactive substances (TBARs), glutathione peroxidase (GPx), glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were determined. Results showed that chronic L-methionine administration resulted in both short- and long- term memory impairment, whereas metformin treatment prevented such effect. Additionally, L-methionine treatment induced significant elevation in GSSG and TBARs, along with reduction in GSH/GSSG ratio and activities of catalase, and GPx. These effects were shown to be restored by metformin treatment. In conclusion, L-methionine induced memory impairment, and treatment with metformin prevented this impairment probably by normalizing oxidative stress in the hippocampus. PMID:24669211

  13. Tranexamic Acid Diminishes Laser-Induced Melanogenesis

    PubMed Central

    Kim, Myoung Shin; Bang, Seung Hyun; Kim, Jeong-Hwan; Shin, Hong-Ju; Choi, Jee-Ho

    2015-01-01

    Background The treatment of post-inflammatory hyperpigmentation (PIH) remains challenging. Tranexamic acid, a well-known anti-fibrinolytic drug, has recently demonstrated a curative effect towards melasma and ultraviolet-induced PIH in Asian countries. However, the precise mechanism of its inhibitory effect on melanogenesis is not fully understood. Objective In order to clarify the inhibitory effect of tranexamic acid on PIH, we investigated its effects on mouse melanocytes (i.e., melan-a cells) and human melanocytes. Methods Melan-a cells and human melanocytes were cultured with fractional CO2 laser-treated keratinocyte-conditioned media. Melanin content and tyrosinase activity were evaluated in cells treated with or without tranexamic acid. Protein levels of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 were evaluated in melan-a cells. Signaling pathway molecules involved in melanogenesis in melanoma cells were also investigated. Results Tranexamic acid-treated melanocytes exhibited reduced melanin content and tyrosinase activity. Tranexamic acid also decreased tyrosinase, TRP-1, and TRP-2 protein levels. This inhibitory effect on melanogenesis was considered to be involved in extracellular signal-regulated kinase signaling pathways and subsequently microphthalmia-associated transcription factor degradation. Conclusion Tranexamic acid may be an attractive candidate for the treatment of PIH. PMID:26082580

  14. Chronic helminth infections induce immunomodulation: consequences and mechanisms.

    PubMed

    van Riet, Elly; Hartgers, Franca C; Yazdanbakhsh, Maria

    2007-01-01

    Worldwide, more than a billion people are infected with helminths. These worm infections generally do not lead to mortality, however, they are chronic in nature and can lead to considerable morbidity. Immunologically these infections are interesting; chronic helminth infections are characterized by skewing towards a T helper 2 type response as well as regulatory responses. The regulatory network is associated with chronic helminth infections and is thought to prevent strong immune responses against parasitic worms, allowing their long-term survival and restricting pathology. This regulatory network is thought to also temper responses to non-helminth antigens, like allergens or self-antigens, possibly leading to lower prevalence of allergies and autoimmune diseases in subjects that are chronically infected with helminths. This raises the interesting idea that helminths may bear molecules that have potential therapeutic action against allergies and possibly other inflammatory diseases. However, on the other side of the coin, this would predict that helminth infected subjects might not respond strongly to third party antigens like vaccines. This is an important issue, since most vaccines that are being developed against diseases such as HIV, tuberculosis or malaria will be introduced in areas where helminth infections are highly prevalent. Moreover, these vaccines are proving difficult to develop and are often weak, thus any confounder that would affect their efficacy needs to be taken into consideration. Helminth derived molecules have been identified that induce T helper 2 and regulatory responses via modulation of dendritic cells and some appear to do so via Toll like receptor (TLR) signaling. New insights into these pathways could be useful to antagonize suppression and hence boost vaccine efficacy or to optimize suppression induced by helminth derived molecules and control inflammatory diseases. PMID:17544832

  15. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids

    PubMed Central

    Ringel, Amit; Majchrzak-Hong, Sharon F; Yang, Jun; Blanchard, Helene; Zamora, Daisy; Loewke, James D; Rapoport, Stanley I; Hibbeln, Joseph R; Davis, John M; Hammock, Bruce D; Taha, Ameer Y

    2016-01-01

    Background Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. Results Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. Conclusions The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes. PMID:27030719

  16. Opioid-induced hyperalgesia in chronic pain patients and the mitigating effects of gabapentin

    PubMed Central

    Stoicea, Nicoleta; Russell, Daric; Weidner, Greg; Durda, Michael; Joseph, Nicholas C.; Yu, Jeffrey; Bergese, Sergio D.

    2015-01-01

    Chronic pain patients receiving opioid drugs are at risk for opioid-induced hyperalgesia (OIH), wherein opioid pain medication leads to a paradoxical pain state. OIH involves central sensitization of primary and secondary afferent neurons in the dorsal horn and dorsal root ganglion, similar to neuropathic pain. Gabapentin, a gamma-aminobutyric acid (GABA) analog anticonvulsant used to treat neuropathic pain, has been shown in animal models to reduce fentanyl hyperalgesia without compromising analgesic effect. Chronic pain patients have also exhibited lower opioid consumption and improved pain response when given gabapentin. However, few human studies investigating gabapentin use in OIH have been performed in recent years. In this review, we discuss the potential mechanisms that underlie OIH and provide a critical overview of interventional therapeutic strategies, especially the clinically-successful drug gabapentin, which may reduce OIH. PMID:26074817

  17. Chronic restraint stress reduces carbon tetrachloride-induced liver fibrosis

    PubMed Central

    LI, MENG; SUN, QUAN; LI, SHENGLI; ZHAI, YANAN; WANG, JINGJING; CHEN, BAIAN; LU, JING

    2016-01-01

    Stress as a cofactor has been reported to affect the progression and severity of liver diseases. The present study investigated the effect of chronic restraint stress on carbon tetrachloride (CCl4)-induced liver fibrosis. A total of 30 male BALB/c mice were randomly divided into three groups: Oil-treated control group; CCl4-treated group; and CCl4 + restraint-treated group. CCl4 was administrated via intraperitoneal injection once every 3 days over a period of 42 days. In the CCl4 + restraint-treated group, mice were immobilized using 50 ml centrifuge tubes for 0.5 h to inflict chronic restraint stress immediately after the injection of CCl4. On day 42, blood and liver tissue samples were collected for analysis. The effect of restraint on CCl4-induced liver fibrosis in mice was evaluated by analyzing the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Histopathological examination of liver samples was performed using hematoxylin and eosin (HE), Masson's trichrome, 5-hydroxytryptamine 2B (5-HT2B) receptor and α-smooth muscle actin (α-SMA) immumohistochemical staining. ALT, AST, 5-HT2B receptor and α-SMA expression levels were significantly increased in mice exposed to CCl4 in comparison with those in the oil-treated control mice (P<0.01). However, these increases were significantly reduced by exposure to restraint (P<0.05). HE and Masson's trichrome staining revealed that restraint can alleviate CCl4-induced liver fibrosis. These results suggest that chronic restraint stress reduces the development of liver fibrosis by inhibiting the activation of hepatic stellate cells via 5-HT2B receptor. Therefore, restraint may be a useful therapeutic approach in the management of liver fibrosis. PMID:27284296

  18. Supplementation with Guanidinoacetic Acid in Women with Chronic Fatigue Syndrome

    PubMed Central

    Ostojic, Sergej M.; Stojanovic, Marko; Drid, Patrik; Hoffman, Jay R.; Sekulic, Damir; Zenic, Natasa

    2016-01-01

    A variety of dietary interventions has been used in the management of chronic fatigue syndrome (CFS), yet no therapeutic modality has demonstrated conclusive positive results in terms of effectiveness. The main aim of this study was to evaluate the effects of orally administered guanidinoacetic acid (GAA) on multidimensional fatigue inventory (MFI), musculoskeletal soreness, health-related quality of life, exercise performance, screening laboratory studies, and the occurrence of adverse events in women with CFS. Twenty-one women (age 39.3 ± 8.8 years, weight 62.8 ± 8.5 kg, height 169.5 ± 5.8 cm) who fulfilled the 1994 Centers for Disease Control and Prevention criteria for CFS were randomized in a double-blind, cross-over design, from 1 September 2014 through 31 May 2015, to receive either GAA (2.4 grams per day) or placebo (cellulose) by oral administration for three months, with a two-month wash-out period. No effects of intervention were found for the primary efficacy outcome (MFI score for general fatigue), and musculoskeletal pain at rest and during activity. After three months of intervention, participants receiving GAA significantly increased muscular creatine levels compared with the placebo group (36.3% vs. 2.4%; p < 0.01). Furthermore, changes from baseline in muscular strength and aerobic power were significantly greater in the GAA group compared with placebo (p < 0.05). Results from this study indicated that supplemental GAA can positively affect creatine metabolism and work capacity in women with CFS, yet GAA had no effect on main clinical outcomes, such as general fatigue and musculoskeletal soreness. PMID:26840330

  19. Supplementation with Guanidinoacetic Acid in Women with Chronic Fatigue Syndrome.

    PubMed

    Ostojic, Sergej M; Stojanovic, Marko; Drid, Patrik; Hoffman, Jay R; Sekulic, Damir; Zenic, Natasa

    2016-02-01

    A variety of dietary interventions has been used in the management of chronic fatigue syndrome (CFS), yet no therapeutic modality has demonstrated conclusive positive results in terms of effectiveness. The main aim of this study was to evaluate the effects of orally administered guanidinoacetic acid (GAA) on multidimensional fatigue inventory (MFI), musculoskeletal soreness, health-related quality of life, exercise performance, screening laboratory studies, and the occurrence of adverse events in women with CFS. Twenty-one women (age 39.3 ± 8.8 years, weight 62.8 ± 8.5 kg, height 169.5 ± 5.8 cm) who fulfilled the 1994 Centers for Disease Control and Prevention criteria for CFS were randomized in a double-blind, cross-over design, from 1 September 2014 through 31 May 2015, to receive either GAA (2.4 grams per day) or placebo (cellulose) by oral administration for three months, with a two-month wash-out period. No effects of intervention were found for the primary efficacy outcome (MFI score for general fatigue), and musculoskeletal pain at rest and during activity. After three months of intervention, participants receiving GAA significantly increased muscular creatine levels compared with the placebo group (36.3% vs. 2.4%; p < 0.01). Furthermore, changes from baseline in muscular strength and aerobic power were significantly greater in the GAA group compared with placebo (p < 0.05). Results from this study indicated that supplemental GAA can positively affect creatine metabolism and work capacity in women with CFS, yet GAA had no effect on main clinical outcomes, such as general fatigue and musculoskeletal soreness. PMID:26840330

  20. Chronic organophosphate-induced neuropsychiatric disorder: a case report

    PubMed Central

    Ghimire, Shree Ram; Parajuli, Sarita

    2016-01-01

    Chronic organophosphate (OP)-induced neuropsychiatric disorder is a rare condition following prolonged exposure to OP compounds. Due to the lack of valid diagnostic tools and criteria, very few cases are seen in clinical practice and are often misdiagnosed. Misdiagnosis can lead to inappropriate treatment that may increase the risk of morbidity or suicidality. In this paper, we present the case of a 35-year-old male who needed support in breathing from a mechanical ventilator and developed neuropsychiatric behavioral problems following ingestion of OP compounds, which lead to suicidality. The patient was treated by the psychiatric team with antipsychotic and antidepressants and improved following the regular use of medication. PMID:26893566

  1. Sleep disturbances in veterans with chronic war-induced PTSD

    PubMed Central

    Khazaie, Habibolah; Ghadami, Mohammad Rasoul; Masoudi, Maryam

    2016-01-01

    Abstract: Post-traumatic stress disorder is related to a wide range of medical problems, with a majority of neurological, psychological, cardiovascular, respiratory, gastrointestinal disorders, diabetes, as well as sleep disorders. Although the majority of studies reveal the association between PTSD and sleep disturbances, there are few studies on the assessment of sleep disruption among veterans with PTSD. In this review, we attempt to study the sleep disorders including insomnia, nightmare, sleep-related breathing disorders, sleep-related movement disorders and parasomnias among veterans with chronic war-induced PTSD. It is an important area for further research among veterans with PTSD. PMID:27093088

  2. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity

    PubMed Central

    Verhaag, Esther M.; Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico

    2016-01-01

    Introduction Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. Aim To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions. Methods HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1–50 μM) of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h), menadione (50 μM, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed. Results Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro)ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  3. Oxidative-stress-induced epigenetic changes in chronic diabetic complications.

    PubMed

    Feng, Biao; Ruiz, Michael Anthony; Chakrabarti, Subrata

    2013-03-01

    Oxidative stress plays an important role in the development and progression of chronic diabetic complications. Diabetes causes mitochondrial superoxide overproduction in the endothelial cells of both large and small vessels. This increased superoxide production causes the activation of several signal pathways involved in the pathogenesis of chronic complications. In particular, endothelial cells are major targets of glucose-induced oxidative damage in the target organs. Oxidative stress activates cellular signaling pathways and transcription factors in endothelial cells including protein kinase C (PKC), c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), forkhead box O (FOXO), and nuclear factor kappa-B (NF-κB). Oxidative stress also causes DNA damage and activates DNA nucleotide excision repair enzymes including the excision repair cross complimenting 1(ERCC1), ERCC4, and poly(ADP-ribose) polymerase (PARP). Augmented production of histone acetyltransferase p300, and alterations of histone deacetylases, including class III deacetylases sirtuins, are also involved in this process. Recent research has found that small noncoding RNAs, like microRNA, are a new kind of regulator associated with chronic diabetic complications. There are extensive and complicated interactions and among these molecules. The purpose of this review is to demonstrate the role of oxidative stress in the development of diabetic complications in relation to epigenetic changes such as acetylation and microRNA alterations. PMID:23537434

  4. Diagnosis and treatment of patients with nonacid gastroesophageal reflux-induced chronic cough

    PubMed Central

    Xu, Xianghuai; Yu, Li; Chen, Qiang; Lv, Hanjing; Qiu, Zhongmin

    2015-01-01

    Gastroesophageal reflux (GER) is one of the most common causes of chronic cough, and chronic cough due to GER represents a subtype of GER-related diseases. Gastroesophageal reflux-induced chronic cough (GERC) can be divided into two subgroups based on the pH of the GER. Nonacid GERC is less common than acid GERC, and its diagnosis and treatment strategy have not been standardized. However, nonacid GERC usually presents with its unique set of characteristics and features upon diagnosis and treatment in the clinic. Although the underlying molecular mechanism of nonacid GERC is not fully understood, it is considered to be associated with reflux theory, reflex theory and airway hypersensitivity. Multi-channel intraluminal impedance combined with pH monitoring is a promising new technique that can detect both acid and nonacid reflux, and our findings as well as those of others have shown its usefulness in diagnosing nonacid GERC. Development of new diagnostic techniques has led to an increased rate of nonacid GERC diagnosis. We summarize our experience in the diagnosis and treatment of nonacid GERC and provide a guide for future therapeutic approaches. PMID:26759577

  5. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia.

    PubMed

    Li, Qinwen; Chen, Jianghai; Chen, Yanhua; Cong, Xiaobin; Chen, Zhenbing

    2016-03-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription‑quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post‑compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR‑labeled DRG neurons were significantly higher, relative to the sham‑operated group, however, the numbers of FG‑labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor‑β1 (TGF‑β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)‑extracellular signal‑regulated kinase 1/2, and significantly lower levels of p‑c‑Jun N‑terminal kinase and p‑p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF‑β1, CTGF and collagen type I, with involvement of the mitogen‑activated protein kinase signaling pathway. PMID:26820076

  6. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia

    PubMed Central

    LI, QINWEN; CHEN, JIANGHAI; CHEN, YANHUA; CONG, XIAOBIN; CHEN, ZHENBING

    2016-01-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post-compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR-labeled DRG neurons were significantly higher, relative to the sham-operated group, however, the numbers of FG-labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)-extracellular signal-regulated kinase 1/2, and significantly lower levels of p-c-Jun N-terminal kinase and p-p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF-β1, CTGF and collagen type I, with involvement of the mitogen-activated protein kinase signaling pathway. PMID:26820076

  7. Effects of systemic indomethacin, meclizine, and BW755C on chronic ultraviolet B-induced effects in hairless mouse skin.

    PubMed

    Kochevar, I E; Moran, M; Lyon, N; Flotte, T; Siebert, E; Gange, R W

    1993-02-01

    Chronic exposure of hairless mice to ultraviolet B (UVB) radiation is associated with inflammation as well as an altered macromolecular composition of the dermis. This study was designed to determine whether or not various systemic anti-inflammatory agents inhibit chronic UVB-induced changes in the macromolecular content of the dermis and, if so, whether each agent had the same or different effects. The agents and doses were chosen for their ability to inhibit the changes induced by a single exposure to UVB radiation (increased vasopermeability, neutrophil accumulation, and skin-fold thickness). Indomethacin, a cyclooxygenase inhibitor, and meclizine, an H1 histamine receptor antagonist, were administered from slow-release pellets. BW755C, a combined cyclooxygenase and lipoxygenase inhibitor, was administered intraperitoneally 30 min prior to UVB exposure. Animals were exposed to UVB three times per week for 20-26 weeks or were unirradiated. The elastin, glycosaminoglycan and collagen content of the skin were determined by measuring the desmosine, uronic acid, and hydroxyproline levels, respectively. The amount of each macromolecule per area of skin increased after chronic UVB exposure. The increase in desmosine was inhibited by indomethacin; the increase in hydroxyproline was inhibited by meclizine and BW755C. None of the agents inhibited the uronic acid increase. These results suggest that chronic inflammation contributes to the dermal changes seen in chronically UVB-exposed skin and that different inflammatory mediators are involved in the increases observed in elastin, glycosaminoglycans, and collagen. PMID:8429241

  8. Renal regulation of acid-base equilibrium during chronic administration of mineral acid.

    PubMed

    De Sousa, R C; Harrington, J T; Ricanati, E S; Shelkrot, J W; Schwartz, W B

    1974-02-01

    Previous studies in metabolic alkalosis have demonstrated that two factors are the prime determinants of acid excretion and bicarbonate reabsorption; first, the diversion to distal exchange sites of sodium previously reabsorbed in the proximal tubule and loop of Henle; and, second, a stimulus to sodium-cation exchange greater than that produced by a low-salt diet alone. In the present study we have examined the hypothesis that these two factors are also the prime determinants of acid excretion during the administration of mineral acid loads. To test this hypothesis, we have administered to dogs ingesting a low NaCl diet a daily dose of 7 meq/kg of H+ with anions (chloride, sulfate, or nitrate) whose differing degrees of reabsorbability influence the speed and completeness with which each is delivered to the distal nephron with its accompanying Na+. After 2-3 wk of acid administration, and after an initial urinary loss of Na+ and K+, the steady-state value for plasma [HCO3-] was 8.6 meq/liter below control in the HCl group, 3.7 meq/liter below control in the H2SO4 group, and unchanged from control in the HNO3 group; all of these values were significantly different from each other. We would propose the following explanation for our findings: when HCl is administered chronically, marked acidosis occurs because distal delivery of Cl- is restricted by the ease with which the Cl- can be reabsorbed in the proximal portions of the nephron. Only when Cl- retention produces sufficient hyperchloremia to insure delivery of Na+ (previously reabsorbed in proximal tubule and loop of Henle) to the distal nephron in quantities equal to ingested Cl is this primary constraint removed. In the case of sulfuric and nitric acids, there is no constraint on distal delivery, the nonreabsorbability of the administered anion causing prompt, total delivery of Na+ to exchange sites in quantities equal to administered hydrogen. Thus, with H2SO4 and HNO3 the sole constraint on removal of the acid

  9. Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells

    PubMed Central

    Fan, Jiajun; Li, Yubin; Zeng, Xian; Wang, Ziyu; Wang, Shaofei; Zhang, Guoping; Yang, Ping; Cao, Zhonglian; Ju, Dianwen

    2015-01-01

    The antitumor enzyme asparaginase, which targets essential amino acid L-asparagine and catalyzes it to L-aspartic acid and ammonia, has been used for years in the treatment of acute lymphoblastic leukemia (ALL), subtypes of myeloid leukemia and T-cell lymphomas, whereas the anti-chronic myeloid leukemia (CML) effect of asparaginase and its underlying mechanism has not been completely elucidated. We have shown here that asparaginase induced significant growth inhibition and apoptosis in K562 and KU812 cells. Apart from induction of apoptosis, we reported for the first time that asparaginase induced autophagic response in K562 and KU812 cells as evidenced by the formation of autophagosome, microtubule-associated protein light chain 3 (LC3)-positive autophagy-like vacuoles, and the upregulation of LC3-II. Further study suggested that the Akt/mTOR (mammalian target of rapamycin) and Erk (extracellular signal-regulated kinase) signaling pathway were involved in asparaginase-induced autophagy in K562 cells. Moreover, blocking autophagy using pharmacological inhibitors LY294002, chloroquine (CQ) and quinacrine (QN) enhanced asparaginase-induced cell death and apoptosis, indicating the cytoprotective role of autophagy in asparaginase-treated K562 and KU812 cells. Together, these findings provide a rationale that combination of asparaginase anticancer activity and autophagic inhibition might be a promising new therapeutic strategy for CML. PMID:25738356

  10. Neuropathological characterization of spinal motor neuron degeneration processes induced by acute and chronic excitotoxic stimulus in vivo.

    PubMed

    Ramírez-Jarquín, Uri Nimrod; Tapia, Ricardo

    2016-09-01

    Motor neuron (MN) diseases are characterized by progressive cell degeneration, and excitotoxicity has been postulated as a causal factor. Using two experimental procedures for inducing excitotoxic spinal MN degeneration in vivo, by acute and chronic overactivation of α-amino-3-hydroxy-5-methyl-4-isoxazoleacetic acid (AMPA) receptors, we characterized the time course of the neuropathological changes. Electron transmission microscopy showed that acute AMPA perfusion by microdialysis caused MN swelling 1.5h after surgery and lysis with membrane rupture as early as 3h; no cleaved caspase 3 was detected by immunochemistry. Chronic AMPA infusion by osmotic minipumps induced a slow degeneration process along 5days, characterized by progressive changes: endoplasmic reticulum swelling, vacuolization of cytoplasm, vacuole fusion and cell membrane rupture. Quantification of these ultrastructural alterations showed that the increase of vacuolated area was at the expense of the nuclear area. Caspase 3 cleavage was observed since the first day of AMPA infusion. We conclude that acute AMPA-induced excitotoxicity induces MN loss by necrosis, while the progress of degeneration induced by chronic infusion is slow, starting with an early apoptotic process followed by necrosis. In both the acute and chronic procedures a correlation could be established between the loss of MN by necrosis, but not by caspase 3-linked apoptosis, and severe motor deficits and hindlimb paralysis. Our findings are relevant for understanding the mechanisms of neuron death in degenerative diseases and thus for the design of pharmacological therapeutic strategies. PMID:27320208

  11. Safety evaluation of pectin-derived acidic oligosaccharides (pAOS): genotoxicity and sub-chronic studies.

    PubMed

    Garthoff, Jossie A; Heemskerk, Suzanne; Hempenius, Rixta A; Lina, Ben A R; Krul, Cyrille A M; Koeman, Jan H; Speijers, Gerrit J A

    2010-06-01

    Pectin-derived acidic oligosaccharides (pAOS) are non-digestible carbohydrates to be used in infant formulae and medical nutrition. To support its safety, the genotoxic potential of pAOS was evaluated. pAOS was not mutagenic in the Ames test. Positive results were obtained in the chromosome aberration test only at highly cytotoxic concentrations. The effects obtained in the mouse lymphoma test were equivocal; pAOS was not mutagenic in vivo. A sub-chronic dietary study, preceded by 4-week parental and in utero exposure phase, investigated general safety. Administration of pAOS did not affect parental health nor pup characteristics. No effects specific for acidic oligosaccharides were observed in the subsequent sub-chronic study. Slight diffuse hyperplasia of epithelial layer of the urinary bladder was noted to result from concurrently elevated urinary sodium, due to high sodium in pAOS, and elevated urinary pH. This phenomenon was confirmed in a mechanistic (sub-chronic) study. In contrast, in rats fed pAOS in combination with NH(4)Cl, an acidifying agent, the induced low urinary pH completely prevented the development of urothelial hyperplasia. Hyperplasia induced by this mechanism in rats is considered not relevant to man. Based on the current knowledge we consider pAOS safe for human consumption under its intended use. PMID:20026148

  12. Ruxolitinib induces autophagy in chronic myeloid leukemia cells.

    PubMed

    Bagca, Bakiye Goker; Ozalp, Ozgun; Kurt, Cansu Caliskan; Mutlu, Zeynep; Saydam, Guray; Gunduz, Cumhur; Avci, Cigir Biray

    2016-02-01

    Ruxolitinib is the first agent used in myelofibrosis treatment with its potent JAK2 inhibitory effect. In this novel study, we aimed to discover the anti-leukemic effect of ruxolitinib in K-562 human chronic myeloid leukemia cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Cytotoxic effect of ruxolitinib was determined by using WST-1 assay. IC50 values for K-562 and NCI-BL 2171 cell lines were defined as 20 and 23.6 μM at the 48th hour, respectively. Autophagic effects of ruxolitinib were detected by measuring LC3B-II protein formation. Ruxolitinib induced autophagic cell death in K-562 and NCI-BL 2171 cell lines 2.11- and 1.79-fold compared to control groups, respectively. To determine the autophagy-related gene expression changes, total RNA was isolated from K-562 and NCI-BL 2171 cells treated with ruxolitinib and untreated cells as control group. Reverse transcription procedure was performed for cDNA synthesis, and gene expressions were shown by RT-qPCR. Ruxolitinib treatment caused a notable decrease in expression of AKT, mTOR, and STAT autophagy inhibitor genes in K-562 cells, contrariwise control cell line. Ruxolitinib is a promising agent in chronic myeloid leukemia treatment by blocking JAK/STAT pathway known as downstream of BCR-ABL and triggering autophagy. This is the first study that reveals the relationship between ruxolitinib and autophagy induction. PMID:26298727

  13. Saturated Free Fatty Acids Induce Cholangiocyte Lipoapoptosis

    PubMed Central

    Natarajan, Sathish Kumar; Ingham, Sally A.; Mohr, Ashley M.; Wehrkamp, Cody J.; Ray, Anuttoma; Roy, Sohini; Cazanave, Sophie C.; Phillippi, Mary Anne; Mott, Justin L.

    2015-01-01

    Recent studies have identified a cholestatic variant of nonalcoholic fatty liver disease (NAFLD) with portal inflammation and ductular reaction. Based on reports of biliary damage, as well as increased circulating free fatty acids (FFAs) in NAFLD, we hypothesized the involvement of cholangiocyte lipoapoptosis as a mechanism of cellular injury. Here, we demonstrate that the saturated FFAs palmitate and stearate induced robust and rapid cell death in cholangiocytes. Palmitate and stearate induced cholangiocyte lipoapoptosis in a concentration-dependent manner in multiple cholangiocyte-derived cell lines. The mechanism of lipoapoptosis relied on the activation of caspase 3/7 activity. There was also a significant up-regulation of the proapoptotic BH3-containing protein, PUMA. In addition, palmitate-induced cholangiocyte lipoapoptosis involved a time-dependent increase in the nuclear localization of forkhead family of transcription factor 3 (FoxO3). We show evidence for posttranslational modification of FoxO3, including early (6 hours) deacetylation and dephosphorylation that coincide with localization of FoxO3 in the nuclear compartment. By 16 hours, nuclear FoxO3 is both phosphorylated and acetylated. Knockdown studies confirmed that FoxO3 and its downstream target, PUMA, were critical for palmitate- and stearate-induced cholangiocyte lipoapoptosis. Interestingly, cultured cholangiocyte-derived cells did not accumulate appreciable amounts of neutral lipid upon FFA treatment. Conclusion Our data show that the saturated FFAs palmitate and stearate induced cholangiocyte lipoapoptosis by way of caspase activation, nuclear translocation of FoxO3, and increased proapoptotic PUMA expression. These results suggest that cholangiocyte injury may occur through lipoapoptosis in NAFLD and nonalcoholic steatohepatitis patients. PMID:24753158

  14. The influence of acute or chronic nicotine treatment on ethanol-induced gastric mucosal damage in rats.

    PubMed

    Cho, C H; Chen, B W; Hui, W M; Lam, S K

    1990-01-01

    The influences of acute or chronic nicotine pretreatment on ethanol-induced changes on gastric secretion, mucosal blood flow (GMBF), and glandular mucosal damage were studied in anesthetized rats. Ethanol administration decreased gastric acid secretion and GMBF, which were accompanied by a marked increase in gastric mucosal damage. Acute nicotine incubation 2 or 4 mg dose-dependently elevated both the titratable acid in the luminal solution and the gastric secretory volume; it also prevented the depressive action on GMBF and gastric mucosal damage in ethanol-treated animals. Chronic nicotine treatment for 10 days reduced the inhibitory action of ethanol on gastric acid secretion; the higher dose (25 micrograms/ml drinking water) potentiated the decrease of GMBF and the ulcerogenic property of ethanol. However, chronic treatment with the lower dose (5 micrograms/ml drinking water) had the opposite effects; it also markedly increased the gastric secretory volume. It is concluded that acute nicotine pretreatment elevates, whereas chronic nicotine pretreatment differentially affects GMBF. These effects could account for their protective or preventive actions on ethanol ulceration. The increase in nonacid gastric secretory volume by nicotine could partially explain its antiulcer effect. Furthermore, the acid secretory state of the stomach appears unrelated to the ulcerogenic property of ethanol. PMID:2295286

  15. [Autoimmunization induced by interferon alpha therapy in chronic hepatitis C].

    PubMed

    Rocca, Pierre; Codes, Liana; Chevallier, Michèle; Trépo, Christian; Zoulim, Fabien

    2004-11-01

    We report the case of a 56 year-old woman with post-transfusion chronic hepatitis C who presented with a severe ALT flare up associated with a rapid progression of liver fibrosis during interferon alpha 2b therapy. Several hypotheses were considered to explain the etiology of this ALT flare: there was no viral super infection by other hepatotropic viruses, no toxic hepatitis, no metabolic disease, and no other specific liver diseases could be identified. HLA typing showed a specific profile A1 B8 DR3 (risk factor of auto-immunization during interferon alpha therapy) with antinuclear antibodies and anti smooth muscle antibodies. This case suggests that auto-immunization induced by interferon alpha should be investigated in case of ALT flare that is not followed by an HCV breakthrough. PMID:15657545

  16. Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system.

    PubMed

    Lenzi, Juliana; Rodrigues, Andre Felipe; Rós, Adriana de Sousa; de Castro, Amanda Blanski; de Castro, Bianca Blanski; de Lima, Daniela Delwing; Magro, Débora Delwing Dal; Zeni, Ana Lúcia Bertarello

    2015-12-01

    Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation. PMID:26340979

  17. Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats.

    PubMed

    Rosillo, Maria Angeles; Sánchez-Hidalgo, Marina; Cárdeno, Ana; Aparicio-Soto, Marina; Sánchez-Fidalgo, Susana; Villegas, Isabel; de la Lastra, Catalina Alarcón

    2012-09-01

    Dietary polyphenols present in Punica granatum (pomegranate), such as ellagitannins and ellagic acid (EA) have shown to exert anti-inflammatory and antioxidant properties. This study was designed to evaluate the effects of a dietary EA-enriched pomegranate extract (PE) in a murine chronic model of Cronh's disease (CD). Colonic injury was induced by intracolonic instillation of trinitrobenzensulfonic acid (TNBS). Rats were fed with different diets during 30 days before TNBS instillation and 2 weeks before killing: (i) standard, (ii) PE 250 mg/kg/day, (iii) PE 500 mg/kg/day, (iv) EA 10 mg/kg/day and (v) EA 10 mg/kg/day enriched-PE 250 mg/kg/day. Inflammation response was assessed by histology and MPO activity and TNF-α production. Besides, colonic expressions of iNOS, COX-2, p38, JNK, pERK1/2 MAPKs, IKBα and nuclear p65 NF-κB were studied by western blotting. MPO activity and the TNF-α levels were significantly reduced in dietary fed rats when compared with TNBS group. Similarly, PE and an EA-enriched PE diets drastically decreased COX-2 and iNOS overexpression, reduced MAPKs phosporylation and prevented the nuclear NF-κB translocation. Dietary supplementation of EA contributes in the beneficial effect of PE in this experimental colitis model and may be a novel therapeutic strategy to manage inflammatory bowel disease (IBD). PMID:22677088

  18. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites.

    PubMed

    Aldayel, Abdulaziz M; Naguib, Youssef W; O'Mary, Hannah L; Li, Xu; Niu, Mengmeng; Ruwona, Tinashe B; Cui, Zhengrong

    2016-01-01

    There has been growing interest in utilizing small interfering RNA (siRNA) specific to pro-inflammatory cytokines, such as tumor necrosis factor-α ( TNF-α), in chronic inflammation therapy. However, delivery systems that can increase the distribution of the siRNA in chronic inflammation sites after intravenous administration are needed. Herein we report that innovative functionalization of the surface of siRNA-incorporated poly (lactic-co-glycolic) acid (PLGA) nanoparticles significantly increases the delivery of the siRNA in the chronic inflammation sites in a mouse model. The TNF-α siRNA incorporated PLGA nanoparticles were prepared by the standard double emulsion method, but using stearoyl-hydrazone-polyethylene glycol 2000, a unique acid-sensitive surface active agent, as the emulsifying agent, which renders (i) the nanoparticles PEGylated and (ii) the PEGylation sheddable in low pH environment such as that in chronic inflammation sites. In a mouse model of lipopolysaccharide-induced chronic inflammation, the acid-sensitive sheddable PEGylated PLGA nanoparticles showed significantly higher accumulation or distribution in chronic inflammation sites than PLGA nanoparticles prepared with an acid-insensitive emulsifying agent (i.e., stearoyl-amide-polyethylene glycol 2000) and significantly increased the distribution of the TNF-α siRNA incorporated into the nanoparticles in inflamed mouse foot. PMID:27434685

  19. Suppression of NADPH oxidases prevents chronic ethanol-induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the molecular mechanisms through which chronic excessive alcohol consumption induces osteopenia and osteoporosis are largely unknown, potential treatments for prevention of alcohol-induced bone loss remain unclear. We have previously demonstrated that, chronic ethanol (EtOH) treatment leads to...

  20. Chronic administration of isocarbophos induces vascular cognitive impairment in rats.

    PubMed

    Li, Peng; Yin, Ya-Ling; Zhu, Mo-Li; Pan, Guo-Pin; Zhao, Fan-Rong; Lu, Jun-Xiu; Liu, Zhan; Wang, Shuang-Xi; Hu, Chang-Ping

    2016-04-01

    Vascular dementia, being the most severe form of vascular cognitive impairment (VCI), is caused by cerebrovascular disease. Whether organophosphorus causes VCI remains unknown. Isocarbophos (0.5 mg/kg per 2 days) was intragastrically administrated to rats for 16 weeks. The structure and function of cerebral arteries were assayed. The learning and memory were evaluated by serial tests of step-down, step-through and morris water maze. Long-term administration of isocarbophos reduced the hippocampal acetylcholinesterase (AChE) activity and acetylcholine (ACh) content but did not alter the plasma AChE activity, and significantly damaged the functions of learning and memory. Moreover, isocarbophos remarkably induced endothelial dysfunction in the middle cerebral artery and the expressions of ICAM-1 and VCAM-1 in the posterior cerebral artery. Morphological analysis by light microscopy and electron microscopy indicated disruptions of the hippocampus and vascular wall in the cerebral arteries from isocarbophos-treated rats. Treatment of isocarbophos injured primary neuronal and astroglial cells isolated from rats. Correlation analysis demonstrated that there was a high correlation between vascular function of cerebral artery and hippocampal AChE activity or ACh content in rats. In conclusion, chronic administration of isocarbophos induces impairments of memory and learning, which is possibly related to cerebral vascular dysfunction. PMID:26818681

  1. Acute versus chronic exercise-induced left-ventricular remodeling.

    PubMed

    Weiner, Rory B; Baggish, Aaron L

    2014-11-01

    Exercise-induced cardiac remodeling (EICR) is the process by which the heart adapts to the physiologic stress of exercise. Non-invasive cardiovascular imaging has led to advances in the understanding of EICR, with sport-specific changes in left-ventricular (LV) structure and function being described; however, the majority of data stem from cross-sectional and short-duration longitudinal studies. Due to the paucity of long-term longitudinal EICR studies, the time course of this process and any distinct differentiation between acute and chronic adaptations remain largely unexplored. In order to clarify the natural history of EICR, longer duration longitudinal study is required. Such work will determine whether exercise-induced changes in myocardial structure and function occur in discrete stages. Examination of prolonged exposures to exercise training will also be necessary to determine normative values across the age and training spectrums of athletic patients. This information will help to distinguish the boundary between physiology and pathology in athletic patients. PMID:25300444

  2. Fibroblast growth factor 21 deficiency exacerbates chronic alcohol-induced hepatic steatosis and injury

    PubMed Central

    Liu, Yanlong; Zhao, Cuiqing; Xiao, Jian; Liu, Liming; Zhang, Min; Wang, Cuiling; Wu, Guicheng; Zheng, Ming-Hua; Xu, Lan-Man; Chen, Yong-Ping; Mohammadi, Moosa; Chen, Shao-Yu; Cave, Matthew; McClain, Craig; Li, Xiaokun; Feng, Wenke

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a hepatokine that regulates glucose and lipid metabolism in the liver. We sought to determine the role of FGF21 in hepatic steatosis in mice exposed to chronic alcohol treatment and to discern underlying mechanisms. Male FGF21 knockout (FGF21 KO) and control (WT) mice were divided into groups that were fed either the Lieber DeCarli diet containing 5% alcohol or an isocaloric (control) diet for 4 weeks. One group of WT mice exposed to alcohol received recombinant human FGF21 (rhFGF21) in the last 5 days. Liver steatosis and inflammation were assessed. Primary mouse hepatocytes and AML-12 cells were incubated with metformin or rhFGF21. Hepatic genes and the products involved in in situ lipogenesis and fatty acid β-oxidation were analyzed. Alcohol exposure increased circulating levels and hepatic expression of FGF21. FGF21 depletion exacerbated alcohol-induced hepatic steatosis and liver injury, which was associated with increased activation of genes involved in lipogenesis mediated by SREBP1c and decreased expression of genes involved in fatty acid β-oxidation mediated by PGC1α. rhFGF21 administration reduced alcohol-induced hepatic steatosis and inflammation in WT mice. These results reveal that alcohol-induced FGF21 expression is a hepatic adaptive response to lipid dysregulation. Targeting FGF21 signaling could be a novel treatment approach for alcoholic steatohepatitis. PMID:27498701

  3. Fibroblast growth factor 21 deficiency exacerbates chronic alcohol-induced hepatic steatosis and injury.

    PubMed

    Liu, Yanlong; Zhao, Cuiqing; Xiao, Jian; Liu, Liming; Zhang, Min; Wang, Cuiling; Wu, Guicheng; Zheng, Ming-Hua; Xu, Lan-Man; Chen, Yong-Ping; Mohammadi, Moosa; Chen, Shao-Yu; Cave, Matthew; McClain, Craig; Li, Xiaokun; Feng, Wenke

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a hepatokine that regulates glucose and lipid metabolism in the liver. We sought to determine the role of FGF21 in hepatic steatosis in mice exposed to chronic alcohol treatment and to discern underlying mechanisms. Male FGF21 knockout (FGF21 KO) and control (WT) mice were divided into groups that were fed either the Lieber DeCarli diet containing 5% alcohol or an isocaloric (control) diet for 4 weeks. One group of WT mice exposed to alcohol received recombinant human FGF21 (rhFGF21) in the last 5 days. Liver steatosis and inflammation were assessed. Primary mouse hepatocytes and AML-12 cells were incubated with metformin or rhFGF21. Hepatic genes and the products involved in in situ lipogenesis and fatty acid β-oxidation were analyzed. Alcohol exposure increased circulating levels and hepatic expression of FGF21. FGF21 depletion exacerbated alcohol-induced hepatic steatosis and liver injury, which was associated with increased activation of genes involved in lipogenesis mediated by SREBP1c and decreased expression of genes involved in fatty acid β-oxidation mediated by PGC1α. rhFGF21 administration reduced alcohol-induced hepatic steatosis and inflammation in WT mice. These results reveal that alcohol-induced FGF21 expression is a hepatic adaptive response to lipid dysregulation. Targeting FGF21 signaling could be a novel treatment approach for alcoholic steatohepatitis. PMID:27498701

  4. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation

    PubMed Central

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-01-01

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation. PMID:26139989

  5. Alterations induced by chronic lead exposure on the cells of circadian pacemaker of developing rats

    PubMed Central

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Rojas, Patricia; Chávez-Saldaña, Margarita; Pérez, Oscar Gutiérrez; Montes, Sergio; Ríos, Camilo

    2011-01-01

    Lead (Pb) exposure alters the temporal organization of several physiological and behavioural processes in which the suprachiasmatic nucleus (SCN) of the hypothalamus plays a fundamental role. In this study, we evaluated the effects of chronic early Pb exposure (CePbe) on the morphology, cellular density and relative optical density (OD) in the cells of the SCN of male rats. Female Wistar rats were exposed during gestation and lactation to a Pb solution containing 320 ppm of Pb acetate through drinking water. After weaning, the pups were maintained with the same drinking water until sacrificed at 90 days of age. Pb levels in the blood, hypothalamus, hippocampus and prefrontal cortex were significantly increased in the experimental group. Chronic early Pb exposure induced a significant increase in the minor and major axes and somatic area of vasoactive intestinal polypeptide (VIP)- and vasopressin (VP)-immunoreactive neurons. The density of VIP-, VP- and glial fibrillary acidic protein (GFAP)-immunoreactive cells showed a significant decrease in the experimental group. OD analysis showed a significant increase in VIP neurons of the experimental group. The results showed that CePbe induced alterations in the cells of the SCN, as evidenced by modifications in soma morphology, cellular density and OD in circadian pacemaker cells. These findings provide a morphological and cellular basis for deficits in circadian rhythms documented in Pb-exposed animals. PMID:21324006

  6. Long-chain polyunsaturated fatty acids and the pathophysiology of myalgic encephalomyelitis (chronic fatigue syndrome).

    PubMed

    Puri, B K

    2007-02-01

    Evidence is put forward to suggest that myalgic encephalomyelitis, also known as chronic fatigue syndrome, may be associated with persistent viral infection. In turn, such infections are likely to impair the ability of the body to biosynthesise n-3 and n-6 long-chain polyunsaturated fatty acids by inhibiting the delta-6 desaturation of the precursor essential fatty acids--namely, alpha-linolenic acid and linoleic acid. This would, in turn, impair the proper functioning of cell membranes, including cell signalling, and have an adverse effect on the biosynthesis of eicosanoids from the long-chain polyunsaturated fatty acids dihomo-gamma-linolenic acid, arachidonic acid and eicosapentaenoic acid. These actions might offer an explanation for some of the symptoms and signs of myalgic encephalomyelitis. A potential therapeutic avenue could be offered by bypassing the inhibition of the enzyme delta-6-desaturase by treatment with virgin cold-pressed non-raffinated evening primrose oil, which would supply gamma-linolenic acid and lipophilic pentacyclic triterpenes, and with eicosapentaenoic acid. The gamma-linolenic acid can readily be converted into dihomo-gamma-linolenic acid and thence arachidonic acid, while triterpenes have important free radical scavenging, cyclo-oxygenase and neutrophil elastase inhibitory activities. Furthermore, both arachidonic acid and eicosapentaenoic acid are, at relatively low concentrations, directly virucidal. PMID:16935966

  7. Hepatoprotective effect of vitamin C on lithocholic acid-induced cholestatic liver injury in Gulo(-/-) mice.

    PubMed

    Yu, Su Jong; Bae, Seyeon; Kang, Jae Seung; Yoon, Jung-Hwan; Cho, Eun Ju; Lee, Jeong-Hoon; Kim, Yoon Jun; Lee, Wang Jae; Kim, Chung Yong; Lee, Hyo-Suk

    2015-09-01

    Prevention and restoration of hepatic fibrosis from chronic liver injury is essential for the treatment of patients with chronic liver diseases. Vitamin C is known to have hepatoprotective effects, but their underlying mechanisms are unclear, especially those associated with hepatic fibrosis. Here, we analyzed the impact of vitamin C on bile acid induced hepatocyte apoptosis in vitro and lithocholic acid (LCA)-induced liver injury in vitamin C-insufficient Gulo(-/-) mice, which cannot synthesize vitamin C similarly to humans. When Huh-BAT cells were treated with bile acid, apoptosis was induced by endoplasmic reticulum stress-related JNK activation but vitamin C attenuated bile acid-induced hepatocyte apoptosis in vitro. In our in vivo experiments, LCA feeding increased plasma marker of cholestasis and resulted in more extensive liver damage and hepatic fibrosis by more prominent apoptotic cell death and recruiting more intrahepatic inflammatory CD11b(+) cells in the liver of vitamin C-insufficient Gulo(-/-) mice compared to wild type mice which have minimal hepatic fibrosis. However, when vitamin C was supplemented to vitamin C-insufficient Gulo(-/-) mice, hepatic fibrosis was significantly attenuated in the liver of vitamin C-sufficient Gulo(-/-) mice like in wild type mice and this hepatoprotective effect of vitamin C was thought to be associated with both decreased hepatic apoptosis and necrosis. These results suggested that vitamin C had hepatoprotective effect against cholestatic liver injury. PMID:26057690

  8. Treatment of chronically FIV-infected cats with suberoylanilide hydroxamic acid

    PubMed Central

    McDonnel, Samantha J; Liepnieks, Molly L.; Murphy, Brian G

    2014-01-01

    Feline immunodeficiency virus (FIV) is a naturally-occurring, large animal model of lentiviral-induced immunodeficiency syndrome, and has been used as a model of HIV pathogenesis and therapeutic interventions. HIV reservoirs in the form of latent virus remain the primary roadblock to viral eradication and cure, and FIV has been previously established an animal model of lentiviral latency. The goal of this study was to determine whether administration of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) to aviremic, chronically FIV-infected cats would induce latent viral reactivation in vivo. A proof-of-concept experiment in a Transwell co-culture system demonstrated the ability of SAHA to reactivate latent virus which was replication competent and able to infect naïve cells. Oral SAHA (250 mg/m2) was administered with food to four asymptomatic, experimentally FIV-infected cats and one uninfected control cat, and a limited pharmacokinetic and pharmacodynamic analysis was performed. A statistically significant increase in cell-associated FIV RNA was detected in the cat with the greatest serum SAHA exposure, and cell-free viral RNA was detected at one time point in the three cats that achieved the highest levels of SAHA in serum. Interestingly, there was a significant decrease in viral DNA burden at 2 hours post drug administration in the same three cats. Though the sample size is small and the drug response was modest, this study provides evidence that in vivo treatment of FIV-infected cats with the HDACi SAHA can induce viral transcriptional reactivation, which may be dependent upon the concentration of SAHA achieved in blood. Importantly, alternative putative antilatency therapy drugs, and multimodal drug combinations, could be studied in this in vivo system. The FIV/cat model provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus in vivo. PMID:24954265

  9. Bangpungtongseong-san, a traditional herbal medicine, attenuates chronic asthmatic effects induced by repeated ovalbumin challenge.

    PubMed

    Lee, Mee-Young; Shin, In-Sik; Jeon, Woo-Young; Shin, Nara; Shin, Hyeun-Kyoo

    2014-04-01

    Airway remodeling is characterized by airway wall thickening, subepithelial fibrosis, increased smooth muscle mass, angiogenesis and increased mucus secretion, which can lead to chronic and obstinate asthma and can obstruct pulmonary function. In this study, the effects of Bangpungtongseong-san water extract (BPTS) on airway remodeling were examined using a murine model of bronchial asthma induced by ovalbumin (OVA) challenge. We focused on the effects of BPTS on the regulation of chronic asthma. BALB/c mice were randomly assigned to 5 groups, some of which were sensitized and challenged with OVA for 4 weeks. After the final ovalbumin challenge, typical asthma-like morphological changes were observed in the lung tissue with hematoxylin and eosin staining, periodic acid-Schiff, as well as with Masson's trichrome staining. The levels of transforming growth factor-β1 (TGF-β1) and Smad3 were assessed by immunohistochemistry and western blot analysis. The expression levels of vascular endothelial growth factor (VEGF) and adhesion molecules, such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were also detected by western blot analysis. Our results revealed that BPTS reduced the OVA-induced increase in the infiltration of leukocytes, mucus hyperplasia and collagen deposition. Compared with the OVA-challenged group, the BPTS group had lower expression levels of adhesion molecules, TGF-β1, Smad3 and VEGF proteins in the lung tissues. The results of the current study suggest that BPTS prevents asthma airway remodeling in chronic asthma by inhibiting the activation of the TGF-β1-Smad3-signaling pathway, as well as the expression of VEGF and adhesion molecules. BPTS may thus be a potential drug for the treatment of patients with changes that occur in the airways due to severe asthma. PMID:24535550

  10. Chronic administration of galanin attenuates the TNBS-induced colitis in rats.

    PubMed

    Talero, E; Sánchez-Fidalgo, S; Calvo, J R; Motilva, V

    2007-06-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder considered as a consequence of an aberrant response of the immune system to luminal antigens. Numerous groups of agents are being evaluated as novel therapeutic approaches for its treatment; in this way, different peptides have emerged as potential candidates. Galanin is an active neuropeptide distributed in the central and periphery nervous systems although it has been also described having important autocrine and paracrine regulatory capacities with interesting inflammatory and immune properties. In this line, we have observed that galanin treatment has a significant preventive effect in the experimental trinitrobenzensulfonic acid (TNBS) acute model of inflammatory colitis. The aim of the present study was to investigate intensively the role played by the peptide in the evolution of the inflammatory pathology associated to IBD. Galanin (5 and 10 microg/kg/day) was administered i.p., daily, starting 24 h after TNBS instillation, and continuing for 14 and 21 days. The lesions were blindly scored according to macroscopic and histological analyses and quantified as ulcer index. The results demonstrated that chronic administration of galanin improved the colon injury than the TNBS induced. The study by Western-blotting of the expression of nitric oxide inducible enzyme (iNOS), as well as the total nitrite production (NO) assayed by Griess-reaction, showed significant reduction associated with peptide administration. The number of mast cells was also identified in histological preparations stained with toluidine blue and the results showed that samples from galanin treatment, mostly at 21 days, had increased the number of these cells and many of them had a degranulated feature. In conclusion, chronic administration of galanin is able to exert a beneficial effect in the animal model of IBD assayed improving the reparative process. Participation of nitric oxide pathways and mucosal mast cells

  11. PHARMACOKINETIC PROFILES OF PERFLUOROOCTANOIC ACID IN MICE AFTER CHRONIC EXPOSURE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is highly persistent in humans, with serum half-life estimates of 2.3 to 3.8 years. In the mouse, elimination of PFOA appears to be first-order after a single oral administration, with serum half-life estimates of 16 days for females and 22 days for ...

  12. Pharmacological attenuation of chronic alcoholic pancreatitis induced hypersensitivity in rats

    PubMed Central

    McIlwrath, Sabrina L; Westlund, Karin N

    2015-01-01

    AIM: To characterize an alcohol and high fat diet induced chronic pancreatitis rat model that mimics poor human dietary choices. METHODS: Experimental rats were fed a modified Lieber-DeCarli alcohol (6%) and high-fat (65%) diet (AHF) for 10 wk while control animals received a regular rodent chow diet. Weekly behavioral tests determined mechanical and heat sensitivity. In week 10 a fasting glucose tolerance test was performed, measuring blood glucose levels before and after a 2 g/kg bodyweight intraperitoneal (i.p.) injection of glucose. Post mortem histological analysis was performed by staining pancreas and liver tissue sections with hematoxylin and eosin. Pancreas sections were also stained with Sirius red and fast green to quantify collagen content. Insulin-expressing cells were identified immunohistochemically in separate sections. Tissue staining density was quantified using Image J software. After mechanical and heat sensitivity became stable (weeks 6-10) in the AHF-fed animals, three different drugs were tested for their efficacy in attenuating pancreatitis associated hypersensitivity: a Group II metabotropic glutamate receptor specific agonist (2R,4R)-4-Aminopyrrolidine-2,4-dicarboxylate (APDC, 3 mg/kg, ip; Tocris, Bristol, United Kingdom), nociceptin (20, 60, 200 nmol/kg, ip; Tocris), and morphine sulfate (3 mg/kg, μ-opioid receptor agonist; Baxter Healthcare, Deerfield, IL, United States). RESULTS: Histological analysis of pancreas and liver determined that unlike control rats, AHF fed animals had pancreatic fibrosis, acinar and beta cell atrophy, with steatosis in both organs. Fat vacuolization was significantly increased in AHF fed rats (6.4% ± 1.1% in controls vs 23.8% ± 4.2%, P < 0.05). Rats fed the AHF diet had reduced fasting glucose tolerance in week 10 when peak blood glucose levels reached significantly higher concentrations than controls (127.4 ± 9.2 mg/dL in controls vs 161.0 ± 8.6 mg/dL, P < 0.05). This concurred with a 3.5 fold higher

  13. Transport, metabolism, and effect of chronic feeding of lagodeoxycholic acid. A new, natural bile acid.

    PubMed

    Schmassmann, A; Angellotti, M A; Clerici, C; Hofmann, A F; Ton-Nu, H T; Schteingart, C D; Marcus, S N; Hagey, L R; Rossi, S S; Aigner, A

    1990-10-01

    Ursodeoxycholic acid, the 7 beta-hydroxy epimer of chenodeoxycholic acid, is more hydrophilic and less hepatotoxic than chenodeoxycholic acid. Because "lagodeoxycholic acid," the 12 beta-hydroxy epimer of deoxycholic acid, is also more hydrophilic than deoxycholic acid, it was hypothesized that it should also be less hepatotoxic than deoxycholic acid. To test this, lagodeoxycholic acid was synthesized, and its transport and metabolism were examined in the rat, rabbit, and hamster. The taurine conjugate of lagodeoxycholic acid was moderately well transported by the perfused rat ileum (Tmax = 2 mumol/min.kg). In rats and hamsters with biliary fistulas, the taurine conjugate of lagodeoxycholic acid was well transported by the liver with a Tmax greater than 20 mumol/min.kg; for the taurine conjugate of deoxycholic acid, doses infused at a rate greater than 2.5 mumol/min.kg are known to cause cholestasis and death. Hepatic biotransformation of lagodeoxycholic acid in the rabbit was limited to conjugation with glycine; in the hamster, lagodeoxycholic acid was conjugated with glycine or taurine; in addition, 7-hydroxylation occurred to a slight extent (approximately 10%). When lagodeoxycholic acid was instilled in the rabbit colon, it was absorbed as such although within hours it was progressively epimerized by bacteria to deoxycholic acid. When injected intravenously and allowed to circulate enterohepatically, lagodeoxycholic acid was largely epimerized to deoxycholic acid in 24 hours. Surgical creation of a distal ileostomy abolished epimerization in the rabbit, indicating that exposure to colonic bacterial enzymes was required for the epimerization. Lagodeoxycholic acid was administered for 3 weeks at a dose of 180 mumol/day (0.1% by weight of a chow diet; 2-4 times the endogenous bile acid synthesis rate); other groups received identical doses of deoxycholic acid (hamster) or cholyltaurine, a known precursor of deoxycholic acid (rabbit). After 3 weeks of

  14. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  15. Branched-chain amino acids in the treatment of chronic hepatic encephalopathy.

    PubMed Central

    Eriksson, L S; Persson, A; Wahren, J

    1982-01-01

    The therapeutic efficacy of orally administered branched-chain amino acids in patients with liver cirrhosis and chronic encephalopathy was examined in a double blind, randomised crossover study. Seven patients with manifest hepatic cirrhosis and encephalopathy of six months' duration or longer ingested 30 g branched-chain amino acids or placebo during two 14-day periods. Psychometric tests and electroencephalograms were used to evaluate cerebral function. Neither clinical observations nor psychometric testing or electroencephalogram indicated a significant difference in the patients' response to branched-chain amino acids as compared with placebo. In four patients given branched-chain amino acids for longer periods (five to 22 weeks), psychometric tests also remained unchanged. The plasma concentrations of these acids after oral intake increased significantly, demonstrating adequate absorption. Basal plasma amino acid concentrations were unchanged, however, after branched-chain amino acid therapy. No side-effects were seen, which indicates that these amino acids are well tolerated as an extra protein supply in patients with chronic hepatic encephalopathy. As compared with placebo, however, no effect of branched-chain amino acids on the encephalopathy could be detected. PMID:6749604

  16. Glycyrrhetinic acid-induced permeability transition in rat liver mitochondria.

    PubMed

    Salvi, Mauro; Fiore, Cristina; Armanini, Decio; Toninello, Antonio

    2003-12-15

    Glycyrrhetinic acid, a hydrolysis product of one of the main constituents of licorice, the triterpene glycoside of glycyrrhizic acid, when added to rat liver mitochondria at micromolar concentrations induces swelling, loss of membrane potential, pyridine nucleotide oxidation, and release of cytochrome c and apoptosis inducing factor. These changes are Ca(2+) dependent and are prevented by cyclosporin A, bongkrekic acid, and N-ethylmaleimide. All these observations indicate that glycyrrhetinic acid is a potent inducer of mitochondrial permeability transition and can trigger the pro-apoptotic pathway. PMID:14637195

  17. Pathophysiology of chronic pancreatitis induced by dibutyltin dichloride joint ethanol in mice

    PubMed Central

    Zhang, Hong; Liu, Bin; Xu, Xiao-Fan; Jiang, Ting-Ting; Zhang, Xiao-Qin; Shi, Ying-Li; Chen, Yu; Liu, Fang; Gu, Jie; Zhu, Lin-Jia; Wu, Nan

    2016-01-01

    AIM: To search for a new chronic pancreatitis model in mice suitable for investigating the pathophysiological processes leading to pancreatic fibrosis. METHODS: The mice were randomly divided into 2 groups (n = 50), control group and model group. The mice in model group were given ethanol (10%) in drinking water after injection of dibutyltin dichloride (DBTC) (8 mg/kg BW) in tail vein. The mice in control group were injected with only solvent into tail vein (60% ethanol, 20% glycerine and 20% normal saline) and drank common water. At days 1, 7, 14, 28, and 56 after application of DBTC or solvent, 10 mice in one group were killed at each time point respectively. Blood was obtained by inferior vena cava puncture. The activity of amylase, concentration of bilirubin and hyaluronic acid in serum were assayed. The pancreas was taken to observe the pancreatic morphology by HE staining, and to characterize the pancreatic fibrosis by Masson staining. The expression of F4/80, CD3 and fibronectin (FN) were assayed by immuno-histochemistry or Immunofluorescence technique. Collagen type I (COL1A1) in pancreas were detected by Western blot. The expression of matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA in the pancreas was assessed by real time PCR. RESULTS: DBTC induced an acute edematous pancreatitis within 1 d. The dilated acini, scattered acinar cell necrosis, and inflammatory cells were found at day 7. Extensive infiltration with inflammatory cells following deposition of connective tissue was observed at day 14. At day 28, level of pancreatic fibrosis was aggravated. The pancreatic tissue was replaced by an extended interstitial fibrosis at the end of 2 mo. There was significant difference in the level of amylase, bilirubin and hyaluronic acid in serum between control group and model group (P < 0.05). The level of COL1A1 and FN in pancreas increased. The expression of MMP-1 mRNA in pancreas decreased, but TIMP-1 m

  18. Zoledronic Acid-Induced Interface Dermatitis.

    PubMed

    Succaria, Farah; Collier, Mary; Mahalingam, Meera

    2015-12-01

    Zoledronic acid (ZA) is a bisphosphonate given intravenously, most commonly for the treatment of postmenopausal osteoporosis. Increase in usage of ZA because it was FDA-approved has resulted in increasing reports of side effects. For the most part, these are systemic. Cutaneous side effects associated with ZA are infrequent and limited to 2 reports of dermatomyositis to date. In both, patients presented with clinical and laboratory stigmata of dermatomyositis soon after initiation of therapy. In this report, we describe a 62-year-old woman who presented with diffuse, erythematous scaly plaques over the right thigh after 12 hours of infusion of ZA. Histopathologic examination of a skin biopsy from the right thigh revealed patchy scale crust containing neutrophils and inspissated serum, interface change with scattered individually necrotic keratinocytes, and a mild, superficial perivascular lymphocytic infiltrate with scattered eosinophils and pigment incontinence-findings consistent with an interface dermatitis. Given that the patient had no other systemic manifestations or laboratory abnormalities, to the best of our knowledge, ours is the first report of interface dermatitis secondary to ZA with the caveat that longer follow-up is required to definitively exclude the development of drug-induced connective tissue disease. PMID:26588338

  19. Chronic xerostomia increases esophageal acid exposure and is associated with esophageal injury

    SciTech Connect

    Korsten, M.A.; Rosman, A.S.; Fishbein, S.; Shlein, R.D.; Goldberg, H.E.; Biener, A. )

    1991-06-01

    OBJECTIVES: To assess the effects of chronic xerostomia on parameters of gastroesophageal reflux and esophagitis. DESIGN: Observational study of a cohort of male patients with xerostomia and age-matched control subjects. SETTING: Tertiary-care Veterans Affairs Medical Center. SUBJECTS: Sixteen male patients with chronic xerostomia secondary to radiation for head and neck cancers or medications. Nineteen age-matched male control subjects with comparable alcohol and smoking histories. MEASUREMENTS AND MAIN RESULTS: Esophageal motility was similar in patients with xerostomia and controls. Clearance of acid from the esophagus and 24-hour intraesophageal pH were markedly abnormal in patients with xerostomia. Symptoms and signs of esophagitis were significantly more frequent in subjects with xerostomia. CONCLUSIONS: Chronic xerostomia may predispose to esophageal injury, at least in part, by decreasing the clearance of acid from the esophagus and altering 24-hour intraesophageal pH. Esophageal injury is a previously unreported complication of long-term salivary deficiency.

  20. Hyaluronic acid as a biomarker of fibrosis in chronic liver diseases of different etiologies

    PubMed Central

    ORASAN, OLGA HILDA; CIULEI, GEORGE; COZMA, ANGELA; SAVA, MADALINA; DUMITRASCU, DAN LUCIAN

    2016-01-01

    Chronic liver diseases represent a significant public health problem worldwide. The degree of liver fibrosis secondary to these diseases is important, because it is the main predictor of their evolution and prognosis. Hyaluronic acid is studied as a non-invasive marker of liver fibrosis in chronic liver diseases, in an attempt to avoid the complications of liver puncture biopsy, considered the gold standard in the evaluation of fibrosis. We review the advantages and limitations of hyaluronc acid, a biomarker, used to manage patients with chronic viral hepatitis B or C infection, non-alcoholic fatty liver disease, HIV-HCV coinfection, alcoholic liver disease, primary biliary cirrhosis, biliary atresia, hereditary hemochromatosis and cystic fibrosis. PMID:27004022

  1. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were...

  2. Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes.

    PubMed

    Poudyal, Hemant; Panchal, Sunil K; Ward, Leigh C; Waanders, Jennifer; Brown, Lindsay

    2012-06-15

    Age-related physiological changes develop at the same time as the increase in metabolic syndrome in humans after young adulthood. There is a paucity of data in models mimicking chronic diet-induced changes in human middle age and interventions to reverse these changes. This study measured the changes during chronic consumption of a high-carbohydrate (as cornstarch), low-fat (C) diet and a high-carbohydrate (as fructose and sucrose), high-fat (H) diet in rats for 32 wk. C diet feeding induced changes without metabolic syndrome, such as disproportionate increases in total body lean and fat mass, reduced bone mineral content, cardiovascular remodeling with increased systolic blood pressure, left ventricular and arterial stiffness, and increased plasma markers of liver injury. H diet feeding induced visceral adiposity with reduced lean mass, increased lipid infiltration in the skeletal muscle, impaired glucose and insulin tolerance, cardiovascular remodeling, hepatic steatosis, and increased infiltration of inflammatory cells in the heart and the liver. Chia seed supplementation for 24 wk attenuated most structural and functional modifications induced by age or H diet, including increased whole body lean mass and lipid redistribution from the abdominal area, and normalized the chronic low-grade inflammation induced by H diet feeding; these effects may be mediated by increased metabolism of anti-inflammatory n-3 fatty acids from chia seed. These results suggest that chronic H diet feeding for 32 wk mimics the diet-induced cardiovascular and metabolic changes in middle age and that chia seed may serve as an alternative dietary strategy in the management of these changes. PMID:22436699

  3. The influence of chronic or acute nicotine pretreatment on ethanol-induced gastric ulceration in the rat.

    PubMed

    Wong, S H; Ogle, C W; Cho, C H

    1986-07-01

    The effects in rats of chronic or acute nicotine pretreatment were studied on three gastric parameters: ethanol-induced ulceration, gastric wall mucus content and gastric acid secretion, under basal or histamine-stimulated conditions. Oral administration of ethanol (40%, 10 ml kg-1) depleted gastric wall mucus and produced ulceration in the gastric glandular mucosa. Ten-day nicotine pretreatment (15 or 25 micrograms ml-1 drinking water) worsened the adverse effects of ethanol on mucosal ulceration and mucus content, potentiated the gastric secretory action of histamine, but did not affect basal acid secretion. Single oral doses of nicotine (2 or 4 mg kg-1, given 1 h beforehand) prevented ulceration and mucus depletion in ethanol-treated animals; however, they did not influence either basal or histamine-stimulated gastric acid output. It is concluded that chronic nicotine administration aggravates ethanol ulceration, possibly by decreasing gastric wall mucus content and sensitizing the stomach to the acid secretory action of histamine. On the other hand, an acute oral dose of nicotine preserves the mucus content and prevents ethanol-induced ulcer formation. PMID:2427681

  4. [Association of fatty acid metabolism with systemic inflammatory response in chronic respiratory diseases].

    PubMed

    Denisenko, Y K; Novgorodtseva, T P; Zhukova, N V; Antonuk, M V; Lobanova, E G; Kalinina, E P

    2016-03-01

    We examined composition of plasma non-esterified fatty acids (NFAs), erythrocyte fatty acids, levels of eicosanoids in patients with asthma and chronic obstructive pulmonary disease (COPD) with different type of the inflammatory response. The results of our study show that asthma and COPD in remission are associated with changes in the composition NFAs of plasma, FA of erythrocytes, level eicosanoid despite the difference in the regulation of immunological mechanisms of systemic inflammation. These changes are characterized by excessive production of arachidonic acid (20:4n-6) and cyclooxygenase and lipoxygenase metabolites (thromboxane B2, leukotriene B4) and deficiency of their functional antagonist, eicosapentaenoic acid (20:5n-3). The recognized association between altered fatty acid composition and disorders of the immune mechanisms of regulation of systemic inflammation in COPD and asthma demonstrated the important role of fatty acids and their metabolites in persistence of inflammatory processes in diseases of the respiratory system in the condition of remission. PMID:27420629

  5. Acanthoic acid ameliorates lipopolysaccharide-induced acute lung injury.

    PubMed

    Qiushi, Wang; Guanghua, Li; Guangquan, Xu

    2015-03-01

    Acanthoic acid, a pimaradiene diterpene isolated from Acanthopanax koreanum, has been reported to have anti-inflammatory activities. However, the effects of acanthoic acid on LPS-induced acute lung injury have not been reported. The purpose of this study was to investigate the protective effect of acanthoic acid on LPS-induced ALI and to clarify the possible anti-inflammatory mechanisms. In vivo, an LPS-induced ALI model in mice was used to assess the protective effects of acanthoic acid on ALI. Meanwhile, mouse alveolar macrophages MH-S were stimulated with LPS in the presence or absence of acanthoic acid. The expressions of TNF-α, IL-6 and IL-1β were measured by ELISA. LXRα and NF-κB expression were detected by Western blot analysis. The results showed that acanthoic acid downregulated LPS-induced TNF-α, IL-6 and IL-1β production in BALF. MPO activity and lung wet-to-dry ratio were also inhibited by acanthoic acid. In addition, acanthoic acid attenuated lung histopathologic changes. In vitro, acanthoic acid inhibited inflammatory cytokines TNF-α, IL-6 and IL-1β production and NF-κB activation in LPS-stimulated alveolar macrophages. Acanthoic acid was found to up-regulated the expression of LXRα. The inhibition of acanthoic acid on LPS-induced cytokines and NF-κB activation can be abolished by LXRα siRNA. In conclusion, our results suggested that the protective effect of acanthoic acid on LPS-induced ALI was due to its ability to activate LXRα, thereby inhibiting LPS-induced inflammatory response. PMID:25620130

  6. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice

    PubMed Central

    Silvennoinen, Reija; Quesada, Helena; Kareinen, Ilona; Julve, Josep; Kaipiainen, Leena; Gylling, Helena; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-01-01

    Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress. PMID:25969465

  7. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice.

    PubMed

    Silvennoinen, Reija; Quesada, Helena; Kareinen, Ilona; Julve, Josep; Kaipiainen, Leena; Gylling, Helena; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-05-11

    Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress. PMID:25969465

  8. Chronic bacterial infection activates autoreactive B cells and induces isotype switching and autoantigen-driven mutations.

    PubMed

    Jung, Sophie; Schickel, Jean-Nicolas; Kern, Aurélie; Knapp, Anne-Marie; Eftekhari, Pierre; Da Silva, Sylvia; Jaulhac, Benoît; Brink, Robert; Soulas-Sprauel, Pauline; Pasquali, Jean-Louis; Martin, Thierry; Korganow, Anne-Sophie

    2016-01-01

    The links between infections and the development of B-cell-mediated autoimmune diseases are still unclear. In particular, it has been suggested that infection-induced stimulation of innate immune sensors can engage low affinity autoreactive B lymphocytes to mature and produce mutated IgG pathogenic autoantibodies. To test this hypothesis, we established a new knock-in mouse model in which autoreactive B cells could be committed to an affinity maturation process. We show that a chronic bacterial infection allows the activation of such B cells and the production of nonmutated IgM autoantibodies. Moreover, in the constitutive presence of their soluble antigen, some autoreactive clones are able to acquire a germinal center phenotype, to induce Aicda gene expression and to introduce somatic mutations in the IgG heavy chain variable region on amino acids forming direct contacts with the autoantigen. Paradoxically, only lower affinity variants are detected, which strongly suggests that higher affinity autoantibodies secreting B cells are counterselected. For the first time, we demonstrate in vivo that a noncross-reactive infectious agent can activate and induce autoreactive B cells to isotype switching and autoantigen-driven mutations, but on a nonautoimmune background, tolerance mechanisms prevent the formation of consequently dangerous autoimmunity. PMID:26474536

  9. Green tea polyphenols avert chronic inflammation-induced myocardial fibrosis of female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Green tea proposes anti-inflammatory properties which may attenuate chronic inflammation-induced fibrosis of vessels. This study evaluated whether green tea polyphenols (GTP) can avert fibrosis or vascular disruption along with mechanisms in rats with chronic inflammation. Treatments: Fo...

  10. Chronic intermittent hypoxia induces lung growth in adult mice

    PubMed Central

    Bevans-Fonti, Shannon; Grigoryev, Dmitry N.; Drager, Luciano F.; Myers, Allen C.; Wise, Robert A.; Schwartz, Alan R.; Mitzner, Wayne; Polotsky, Vsevolod Y.

    2011-01-01

    Obstructive sleep apnea (OSA) increases cardiovascular morbidity and mortality, which have been attributed to intermittent hypoxia (IH). The effects of IH on lung structure and function are unknown. We used a mouse model of chronic IH, which mimics the O2 profile in patients with OSA. We exposed adult C57BL/6J mice to 3 mo of IH with a fraction of inspired oxygen (FiO2) nadir of 5% 60 times/h during the 12-h light phase. Control mice were exposed to room air. Lung volumes were measured by quasistatic pressure-volume (PV) curves under anesthesia and by water displacement postmortem. Lungs were processed for morphometry, and the mean airspace chord length (Lm) and alveolar surface area were determined. Lung tissue was stained for markers of proliferation (proliferating cell nuclear antigen), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling), and type II alveolar epithelial cells (surfactant protein C). Gene microarrays were performed, and results were validated by real-time PCR. IH increased lung volumes by both PV curves (air vs. IH, 1.16 vs. 1.44 ml, P < 0.0001) and water displacement (P < 0.01) without changes in Lm, suggesting that IH increased the alveolar surface area. IH induced a 60% increase in cellular proliferation, but the number of proliferating type II alveolocytes tripled. There was no increase in apoptosis. IH upregulated pathways of cellular movement and cellular growth and development, including key developmental genes vascular endothelial growth factor A and platelet-derived growth factor B. We conclude that IH increases alveolar surface area by stimulating lung growth in adult mice. PMID:21131398

  11. Chronic cola drinking induces metabolic and cardiac alterations in rats

    PubMed Central

    Milei, José; Losada, Matilde Otero; Llambí, Hernán Gómez; Grana, Daniel R; Suárez, Daniel; Azzato, Francisco; Ambrosio, Giuseppe

    2011-01-01

    AIM: To investigate the effects of chronic drinking of cola beverages on metabolic and echocardiographic parameters in rats. METHODS: Forty-eight male Wistar rats were divided in 3 groups and allowed to drink regular cola (C), diet cola (L), or tap water (W) ad libitum during 6 mo. After this period, 50% of the animals in each group were euthanized. The remaining rats drank tap water ad libitum for an additional 6 mo and were then sacrificed. Rat weight, food, and beverage consumption were measured regularly. Biochemical, echocardiographic and systolic blood pressure data were obtained at baseline, and at 6 mo (treatment) and 12 mo (washout). A complete histopathology study was performed after sacrifice. RESULTS: After 6 mo, C rats had increased body weight (+7%, P < 0.01), increased liquid consumption (+69%, P < 0.001), and decreased food intake (-31%, P < 0.001). C rats showed mild hyperglycemia and hypertriglyceridemia. Normoglycemia (+69%, P < 0.01) and sustained hypertriglyceridemia (+69%, P < 0.01) were observed in C after washout. Both cola beverages induced an increase in left ventricular diastolic diameter (C: +9%, L: +7%, P < 0.05 vs W) and volumes (diastolic C: +26%, L: +22%, P < 0.01 vs W; systolic C: +24%, L: +24%, P < 0.05 vs W) and reduction of relative posterior wall thickness (C: -8%, L: -10%, P < 0.05 vs W). Cardiac output tended to increase (C: +25%, P < 0.05 vs W; L: +17%, not significant vs W). Heart rate was not affected. Pathology findings were scarce, related to aging rather than treatment. CONCLUSION: This experimental model may prove useful to investigate the consequences of high consumption of soft drinks. PMID:21526048

  12. Acidic extracellular pH of tumors induces octamer-binding transcription factor 4 expression in murine fibroblasts in vitro and in vivo

    PubMed Central

    Som, Avik; Bloch, Sharon; Ippolito, Joseph E.; Achilefu, Samuel

    2016-01-01

    Octamer-binding transcription factor 4 (OCT-4) is an important marker of cellular de-differentiation that can be induced by environmental stressors, such as acidity. Here we demonstrate that chronic acidic stress in solid tumors induced OCT-4 expression in fibroblasts and other stromal cells in four tumor models. The results have implications for how tumors utilize pH modulation to recruit associated stromal cells, induce partial reprogramming of tumor-associated stromal cells, and respond to therapy. PMID:27302093

  13. The requirements of protein & amino acid during acute & chronic infections.

    PubMed

    Kurpad, Anura V

    2006-08-01

    Nutrition and infection interact with each other in a synergistic vicious cycle, leading to an adverse nutritional status and increased susceptibility to infection. Infectious episodes result in hypermetabolism and a negative nitrogen balance which is modulated by hormones, cytokines and other pro-inflammatory mediators, and is compounded by a reduced food intake. The extent of the negative nitrogen balance varies with the type of infection and its duration; however, it is reasonable to suggest that the loss of body protein could be minimized by the provision of dietary nitrogen, although anorexia will limit this. Further, distinctions need to be made about the provision of nutrients or protein during the catabolic and anabolic or recovery phase of the infection, since the capacity of the body to retain protein is enhanced in the anabolic recovery phase. Meeting the increased requirement for protein (and other nutrients) in infection does not imply a complete therapeutic strategy. Infections need to be treated appropriately, with nutrition as an adjunct to the treatment. Prior undernutrition could also impair the body's response to infection, although the weight of the evidence would suggest that this happens more particularly in oedematous undernutrition. In general, the amount of extra protein that would appear to be needed is of the order of 20-25 per cent of the recommended intake, for most infections. In acute infections, this is particularly relevant during the convalescence period. Community trials have suggested that lysine supplementation to the level required for normal daily nutriture, in predominantly wheat eating or potentially lysine deficient communities, improves immune function among other functional nutritional parameters; however, there is as yet insufficient evidence to suggest a specific requirement for amino acids in infections over and above the normal daily requirement as based on recent evidence. Some clinical studies that have showed

  14. The influence of chronic ethanol administration on adriamycin-induced nephrotic syndrome in rats.

    PubMed

    Tesar, V; Zima, T; Poledne, R; Stejskalová, A; Stípek, S; Tĕmínová, J

    1995-01-01

    Alcoholic liver disease may be frequently complicated by mesangial proliferation with the deposition of IgA in glomeruli and glomerulosclerosis, but these glomerular lesions are usually mild and without greater impact on renal function. To evaluate the putative role of ethanol in glomerular pathology we studied the influence of chronic ethanol administration on the development of experimental adriamycin nephropathy in rats. Nephrotic syndrome was induced by a single i.v. dose of adriamycin (5 mg/kg body wt) both in rats given ethanol at a dose of 4 g/day for 3 months and control rats given standard chow. Further controls on both diets without adriamycin administration were also studied. Blood and urine were examined before and 3 and 6 weeks after adriamycin administration. All rats were killed and examined histologically 6 weeks after adriamycin administration. Ethanol fed nephrotic rats were more catabolic than control nephrotic rats (with higher free fatty acids, lower glycaemia, higher urea with similar creatinine) and had lower proteinuria (0.55 +/- 0.34 versus 5.79 +/- 3.15 g of protein/nmol of creatinine, P < 0.05), higher albuminaemia (5.41 +/- 2.62 versus 1.92 +/- 1.94 g/l, P < 0.01), lower plasma cholesterol (6.54 +/- 2.6 versus 10.57 +/- 2.92 mmol/l, P < 0.01) and triglycerides. The development of nephrotic syndrome and renal morphological changes after adriamycin administration in rats seemed to be ameliorated, or at least delayed by chronic ethanol feeding with much milder and focal glomerulosclerosis as compared with more severe and diffuse glomerulosclerosis in control nephrotic animals. The mechanism of this effect of chronic ethanol feeding remains to be elucidated.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7748275

  15. Citric acid cough threshold and airway responsiveness in asthmatic patients and smokers with chronic airflow obstruction.

    PubMed Central

    Auffarth, B; de Monchy, J G; van der Mark, T W; Postma, D S; Koëter, G H

    1991-01-01

    The relation between citric acid cough threshold and airway hyperresponsiveness was investigated in 11 non-smoking patients with allergic asthma (mean FEV1 94% predicted) and 25 non-atopic smokers with chronic airflow obstruction (mean FEV1 65% predicted). Cough threshold was determined on two occasions by administering doubling concentrations of citric acid. Seven of the 11 asthmatic subjects and 14 of 25 smokers with chronic airflow obstruction had a positive cough threshold on both test days. Cough threshold measurements were reproducible in both groups (standard deviation of duplicate measurements 1.2 doubling concentrations in asthma, 1.1 doubling concentrations in chronic airflow obstruction). Citric acid provocation did not cause bronchial obstruction in most patients, though four patients had a fall in FEV1 of more than 20% for a short time on one occasion only. No significant difference in cough threshold was found between the two patient groups despite differences in baseline FEV1 values. There was no significant correlation between cough threshold and the provocative concentration of histamine causing a 20% fall in FEV1 (PC20) histamine in either group. Thus sensory nerves can be activated with a tussive agent in patients with asthma and chronic airflow obstruction without causing bronchial smooth muscle contraction. PMID:1948792

  16. Chronic oral treatment with 13-cis-retinoic acid (isotretinoin) or all-trans-retinoic acid does not alter depression-like behaviors in rats.

    PubMed

    Ferguson, Sherry A; Cisneros, F Javier; Gough, B; Hanig, Joseph P; Berry, Kimberly J

    2005-10-01

    Oral treatment with the anti-acne drug Accutane (isotretinoin, 13-cis-retinoic acid) has been associated with suicide ideation and depression. Here, depression-like behaviors (i.e., behavioral despair and anhedonia) were quantified in adult Sprague-Dawley rats gavaged daily beginning at postnatal day (PND) 82 with 13-cis-RA (7.5 or 22.5 mg/kg) or all-trans-retinoic acid (10 or 15 mg/kg ). Tested at PND 130-131 in the Forced Swim Test, 7.5 mg/kg 13-cis-RA marginally decreased immobility and slightly increased climb/struggle durations whereas neither all-trans-retinoic acid group differed from controls. Voluntary saccharin solution (0.03%) intake at PND 102-104 and PND 151-153 was not different from controls in any treated group, although all RA-treated groups had lower intakes. Swim speed in a water maze at PND 180 was similar across groups, indicating no RA-induced differences in physical ability. Open field activity was mildly decreased at PND 91 in 7.5 mg/kg-treated males only, but it was within the control range at PND 119, 147, and 175. Thus, at serum levels similar to those in humans receiving the drug, chronic 13-cis-RA treatment did not severely affect depression-like behaviors in rats. These data do not substantiate the hypothesis of 13-cis-RA-induced depression. PMID:16033993

  17. Chronical sleep interruption-induced cognitive decline assessed by a metabolomics method.

    PubMed

    Feng, Li; Wu, Hong-wei; Song, Guang-qing; Lu, Cong; Li, Ying-hui; Qu, Li-na; Chen, Shan-guang; Liu, Xin-min; Chang, Qi

    2016-04-01

    Good sleep is necessary for optimal health, especially for mental health. Insomnia, sleep deprivation will make your ability to learn and memory impaired. Nevertheless, the underlying pathophysiological mechanism of sleep disorders-induced cognitive decline is still largely unknown. In this study, the sleep deprivation of animal model was induced by chronical sleep interruption (CSI), the behavioral tests, biochemical index determinations, and a liquid chromatography-mass spectrometry (LC-MS) based serum metabolic profiling analysis were performed to explore the effects of CSI on cognitive function and the underlying mechanisms. After 14-days CSI, the cognitive function of the mice was evaluated by new objects preference (NOP) task and temporal order judgment (TOJ) task. Serum corticosterone (CORT), and brain Malondialdehyde (MDA), Superoxide Dismutase (SOD), and Catalase (CAT) levels were determined by ELISA kits. Data were analyzed by Principal Component Analysis (PCA), Partial Least Squares project to latent structures-Discriminant Analysis (PLS-DA), and Student's t-test. We found that the cognitive function of the mice was significantly affected by CSI. Besides, levels of CORT and MDA were higher, and SOD and CAT were lower in CSI mice than those of control. Obvious body weight loss of CSI mice was also observed. Thirteen potential serum biomarkers including choline, valine, uric acid, allantoic acid, carnitines, and retinoids were identified. Affected metabolic pathways involve metabolism of purine, retinoid, lipids, and amino acid. These results showed that CSI can damage the cognitive performance notably. The cognitive decline may ascribe to excessive oxidative stress and a series of disturbed metabolic pathways. PMID:26747207

  18. Behavioral responses in rats submitted to chronic administration of branched-chain amino acids.

    PubMed

    Scaini, Giselli; Jeremias, Gabriela C; Furlanetto, Camila B; Dominguini, Diogo; Comim, Clarissa M; Quevedo, João; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-01-01

    Maple syrup urine disease (MSUD) is an inborn metabolism error caused by a deficiency of branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to an accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, as well as their corresponding α-keto and α-hydroxy acids. Previous reports suggest that MSUD patients are at high risk for chronic neuropsychiatric problems. Therefore, in this study, we assessed variables that suggest depressive-like symptoms (anhedonia as measured by sucrose intake, immobility during the forced swimming test and body and adrenal gland weight) in rats submitted to chronic administration of BCAA during development. Furthermore, we determined if these parameters were sensitive to imipramine and N-acetylcysteine/deferoxamine (NAC/DFX). Our results demonstrated that animals subjected to chronic administration of branched-chain amino acids showed a decrease in sucrose intake without significant changes in body weight. We also observed an increase in adrenal gland weight and immobility time during the forced swimming test. However, treatment with imipramine and NAC/DFX reversed these changes in the behavioral tasks. In conclusion, this study demonstrates a link between MSUD and depression in rats. Moreover, this investigation reveals that the antidepressant action of NAC/DFX and imipramine might be associated with their capability to maintain pro-/anti-oxidative homeostasis. PMID:24214724

  19. Acid-induced hyperalgesia and anxio-depressive comorbidity in rats.

    PubMed

    Liu, Yu-Ting; Shao, Yen-Wen; Yen, Chen-Tung; Shaw, Fu-Zen

    2014-05-28

    Fibromyalgia is a prevalent disorder characterized by chronic widespread pain (CWP) and complex comorbid symptoms. A CWP model is developed through repeated unilateral intramuscular injections of acid saline resulting in bilateral mechanical hyperalgesia in rats. The present study aims to evaluate whether both anxious and depressive comorbidities exist in this acid-induced pain model, similarly to patients with CWP syndromes. The anxiety-like behaviors were evaluated using the open field and elevated plus maze tests, and depression-like behaviors were measured by the forced swimming, sucrose consumption, and sucrose preference tests. The pain group receiving acidic saline displayed significantly lower paw withdrawal thresholds for 4weeks than animals in the vehicle group after repetitive intramuscular injections. The pain group showed a significantly shorter duration of exploring the central zone of the open field and the open arms of the elevated plus maze compared to the vehicle group. The pain group had a significantly lower preference for and consumption of the hedonic sucrose. Moreover, rats with chronic pain showed significantly longer immobility than the vehicle group in the forced swimming test. The results indicate that psychiatric behaviors are exacerbated in the CWP model. This study provides evidence for the validity of the acid-induced pain model analogous to patients with CWP syndromes. PMID:24726391

  20. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice

    PubMed Central

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia. PMID:26664256

  1. Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid

    SciTech Connect

    Wnek, S.M.; Medeiros, M.K.; Eblin, K.E.; Gandolfi, A.J.

    2009-12-01

    Malignant transformation was demonstrated in UROtsa cells following 52-weeks of exposure to 50 nM monomethylarsonous acid (MMA{sup III}); the result was the malignantly transformed cell line, URO-MSC. URO-MSC cells were used to study the induction of DNA damage and the alteration of DNA repair enzymes in both the presence of MMA{sup III} [URO-MSC(+)] and after subsequent removal of MMA{sup III} [URO-MSC(-)] following chronic, low-level exposure. In the presence of MMA{sup III}, URO-MSC(+) cells demonstrated a sustained increase in DNA damage following 12-weeks of exposure; in particular, a significant increase in DNA single-strand breaks at 12-weeks of exposure consistently elevated through 52 weeks. The persistence of DNA damage in URO-MSC cells was assessed after a 2-week removal of MMA{sup III}. URO-MSC(-) cells demonstrated a decrease in DNA damage compared to URO-MSC(+); however, DNA damage in URO-MSC(-) remained significantly elevated when compared to untreated UROtsa and increased in a time-dependent manner. Reactive oxygen species (ROS) were demonstrated to be a critical component in the generation of DNA damage determined through the incubation of ROS scavengers with URO-MSC cells. Poly (ADP-ribose) polymerase (PARP) is a key repair enzyme in DNA single-strand break repair. URO-MSC(+) resulted in a slight increase in PARP activity after 36-weeks of MMA{sup III} exposure, suggesting the presence of MMA{sup III} is inhibiting the increase in PARP activity. In support, PARP activity in URO-MSC(-) increased significantly, coinciding with a subsequent decrease in DNA damage demonstrated in URO-MSC(-) compared to URO-MSC(+). These data demonstrate that chronic, low-level exposure of UROtsa cells to 50 nM MMA{sup III} results in: the induction of DNA damage that remains elevated upon removal of MMA{sup III}; increased levels of ROS that play a role in MMA{sup III} induced-DNA damage; and decreased PARP activity in the presence of MMA{sup III}.

  2. Investigation of the roles of the substances in serum lipids and their constitutive fatty acids in chronic urticaria.

    PubMed

    Kobayashi, S

    1989-06-01

    The newly-generated lipid mediators include products of arachidonate metabolism, prostaglandins and leukotrienes. In this study, serum lipids and fatty acids, including arachidonic acid (C20:4) were examined in 12 normal subjects (6 males and 6 females) and 23 subjects with chronic urticaria (6 males and 17 females), including 17 who made an excellent or good recovery (4 males and 13 females). The results indicated a relationship between chronic urticaria and serum lipids and fatty acids. The omega 6 (n-6) and omega 3 (n-3) series of polyunsaturated fatty acids and lipid peroxidation were suggested that may be one of the mediators in chronic urticaria. Pantethine, glutathione and ascorbic acid were effective in controlling chronic urticaria. PMID:2794222

  3. Chronic ethanol consumption induces mitochondrial protein acetylation and oxidative stress in the kidney

    PubMed Central

    Harris, Peter S.; Roy, Samantha R.; Coughlan, Christina; Orlicky, David J.; Liang, Yongliang; Shearn, Colin T.; Roede, James R.; Fritz, Kristofer S.

    2015-01-01

    In this study, we present the novel findings that chronic ethanol consumption induces mitochondrial protein hyperacetylation in the kidney and correlates with significantly increased renal oxidative stress. A major proteomic footprint of alcoholic liver disease (ALD) is an increase in hepatic mitochondrial protein acetylation. Protein hyperacetylation has been shown to alter enzymatic function of numerous proteins and plays a role in regulating metabolic processes. Renal mitochondrial targets of hyperacetylation include numerous metabolic and antioxidant pathways, such as lipid metabolism, oxidative phosphorylation, and amino acid metabolism, as well as glutathione and thioredoxin pathways. Disruption of protein lysine acetylation has the potential to impair renal function through metabolic dysregulation and decreased antioxidant capacity. Due to a significant elevation in ethanol-mediated renal oxidative stress, we highlight the acetylation of superoxide dismutase, peroxiredoxins, glutathione reductase, and glutathione transferase enzymes. Since oxidative stress is a known factor in ethanol-induced nephrotoxicity, we examined biochemical markers of protein hyperacetylation and oxidative stress. Our results demonstrate increased protein acetylation concurrent with depleted glutathione, altered Cys redox potential, and the presence of 4-HNE protein modifications in our 6-week model of early-stage alcoholic nephrotoxicity. These findings support the hypothesis that ethanol metabolism causes an influx of mitochondrial metabolic substrate, resulting in mitochondrial protein hyperacetylation with the potential to impact mitochondrial metabolic and antioxidant processes. PMID:26177469

  4. Chronic Stress Induces Neurotrophin-3 in Rat Submandibular Gland

    PubMed Central

    Saruta, Juri; Iida, Michitaro; Kondo, Yusuke; To, Masahiro; Hayashi, Takashi; Hori, Mayumi; Sato, Sadao

    2012-01-01

    Purpose Plasma neurotrophin-3 (NT-3) levels are associated with several neural disorders. We previously reported that neurotrophins were released from salivary glands following acute immobilization stress. While the salivary glands were the source of plasma neurotrophins in that situation, the association between the expression of neurotrophins and the salivary gland under chronic stress conditions is not well understood. In the present study, we investigated whether NT-3 levels in the salivary gland and plasma were influenced by chronic stress. Materials and Methods Expressions of NT-3 mRNA and protein were characterized, using real-time polymerase chain reactions, enzyme-linked immunosorbent assay, and immunohistochemistry, in the submandibular glands of male rats exposed to chronic stress (12 h daily for 22 days). Results Plasma NT-3 levels were significantly increased by chronic stress (p<0.05), and remained elevated in bilaterally sialoadenectomized rats under the same condition. Since chronic stress increases plasma NT-3 levels in the sialoadenectomized rat model, plasma NT-3 levels were not exclusively dependent on salivary glands. Conclusion While the salivary gland was identified in our previous study as the source of plasma neurotrophins during acute stress, the exposure to long-term stress likely affects a variety of organs capable of releasing NT-3 into the bloodstream. In addition, the elevation of plasma NT-3 levels may play important roles in homeostasis under stress conditions. PMID:23074106

  5. Lysophosphatidic acid induces osteocyte dendrite outgrowth

    SciTech Connect

    Karagiosis, Sue A.; Karin, Norm J.

    2007-05-25

    A method was developed to measure dendrite formation in bone cells. Lysophosphatidic acid (LPA) was found to stimulate dendrite outgrowth. It is postulated that LPA plays a role in regulating the osteocyte network in vivo.

  6. Physiological concentrations of bile acids down-regulate agonist induced secretion in colonic epithelial cells.

    PubMed

    Keating, Niamh; Mroz, Magdalena S; Scharl, Michael M; Marsh, Christine; Ferguson, Gail; Hofmann, Alan F; Keely, Stephen J

    2009-08-01

    In patients with bile acid malabsorption, high concentrations of bile acids enter the colon and stimulate Cl(-) and fluid secretion, thereby causing diarrhoea. However, deoxycholic acid (DCA), the predominant colonic bile acid, is normally present at lower concentrations where its role in regulating transport is unclear. Thus, the current study set out to investigate the effects of physiologically relevant DCA concentrations on colonic epithelial secretory function. Cl(-) secretion was measured as changes in short-circuit current across voltage-clamped T(84) cell monolayers. At high concentrations (0.5-1 mM), DCA acutely stimulated Cl(-) secretion but this effect was associated with cell injury, as evidenced by decreased transepithelial resistance (TER) and increased lactate dehydrogenase (LDH) release. In contrast, chronic (24 hrs) exposure to lower DCA concentrations (10-200 microM) inhibited responses to Ca(2+) and cAMP-dependent secretagogues without altering TER, LDH release, or secretagogue-induced increases in intracellular second messengers. Other bile acids - taurodeoxycholic acid, chenodeoxycholic acid and cholic acid - had similar antisecretory effects. DCA (50 microM) rapidly stimulated phosphorylation of the epidermal growth factor receptor (EGFr) and both ERK and p38 MAPKs (mitogen-activated protein kinases). The EGFr inhibitor, AG1478, and the protein synthesis inhibitor, cycloheximide, reversed the antisecretory effects of DCA, while the MAPK inhibitors, PD98059 and SB203580, did not. In summary, our studies suggest that, in contrast to its acute prosecretory effects at pathophysiological concentrations, lower, physiologically relevant, levels of DCA chronically down-regulate colonic epithelial secretory function. On the basis of these data, we propose a novel role for bile acids as physiological regulators of colonic secretory capacity. PMID:19583809

  7. Role of ion transporters in the bile acid-induced esophageal injury.

    PubMed

    Laczkó, Dorottya; Rosztóczy, András; Birkás, Klaudia; Katona, Máté; Rakonczay, Zoltán; Tiszlavicz, László; Róka, Richárd; Wittmann, Tibor; Hegyi, Péter; Venglovecz, Viktória

    2016-07-01

    Barrett's esophagus (BE) is considered to be the most severe complication of gastro-esophageal reflux disease (GERD), in which the prolonged, repetitive episodes of combined acidic and biliary reflux result in the replacement of the squamous esophageal lining by columnar epithelium. Therefore, the acid-extruding mechanisms of esophageal epithelial cells (EECs) may play an important role in the defense. Our aim was to identify the presence of acid/base transporters on EECs and to investigate the effect of bile acids on their expressions and functions. Human EEC lines (CP-A and CP-D) were acutely exposed to bile acid cocktail (BAC) and the changes in intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i) were measured by microfluorometry. mRNA and protein expression of ion transporters was investigated by RT-PCR, Western blot, and immunohistochemistry. We have identified the presence of a Na(+)/H(+) exchanger (NHE), Na(+)/HCO3 (-) cotransporter (NBC), and a Cl(-)-dependent HCO3 (-) secretory mechanism in CP-A and CP-D cells. Acute administration of BAC stimulated HCO3 (-) secretion in both cell lines and the NHE activity in CP-D cells by an inositol triphosphate-dependent calcium release. Chronic administration of BAC to EECs increased the expression of ion transporters compared with nontreated cells. A similar expression pattern was observed in biopsy samples from BE compared with normal epithelium. We have shown that acute administration of bile acids differently alters ion transport mechanisms of EECs, whereas chronic exposure to bile acids increases the expression of acid/base transporters. We speculate that these adaptive processes of EECs represent an important mucosal defense against the bile acid-induced epithelial injury. PMID:27198194

  8. Physiological concentrations of bile acids down‐regulate agonist induced secretion in colonic epithelial cells

    PubMed Central

    Keating, Niamh; Mroz, Magdalena S.; Scharl, Michael M.; Marsh, Christine; Ferguson, Gail; Hofmann, Alan F.

    2009-01-01

    Abstract In patients with bile acid malabsorption, high concentrations of bile acids enter the colon and stimulate Cl− and fluid secretion, thereby causing diarrhoea. However, deoxycholic acid (DCA), the predominant colonic bile acid, is normally present at lower concentrations where its role in regulating transport is unclear. Thus, the current study set out to investigate the effects of physiologically relevant DCA concentrations on colonic epithelial secretory function. Cl− secretion was measured as changes in short‐circuit current across voltage‐clamped T84 cell monolayers. At high concentrations (0.5–1 mM), DCA acutely stimulated Cl− secretion but this effect was associated with cell injury, as evidenced by decreased transepithelial resistance (TER) and increased lactate dehydrogenase (LDH) release. In contrast, chronic (24 hrs) exposure to lower DCA concentrations (10–200 μM) inhibited responses to Ca2+ and cAMP‐dependent secretagogues without altering TER, LDH release, or secretagogue‐induced increases in intracellular second messengers. Other bile acids – taurodeoxycholic acid, chenodeoxycholic acid and cholic acid – had similar antisecretory effects. DCA (50 μM) rapidly stimulated phosphorylation of the epidermal growth factor receptor (EGFr) and both ERK and p38 MAPKs (mitogen‐activated protein kinases). The EGFr inhibitor, AG1478, and the protein synthesis inhibitor, cycloheximide, reversed the antisecretory effects of DCA, while the MAPK inhibitors, PD98059 and SB203580, did not. In summary, our studies suggest that, in contrast to its acute prosecretory effects at pathophysiological concentrations, lower, physiologically relevant, levels of DCA chronically down‐regulate colonic epithelial secretory function. On the basis of these data, we propose a novel role for bile acids as physiological regulators of colonic secretory capacity. PMID:19583809

  9. The role of gastric mucosal histamine in acid secretion and experimentally induced lesions in the rat.

    PubMed

    Andersson, K; Mattsson, H; Larsson, H

    1990-01-01

    The role played by histamine from enterochromaffin-like (ECL) cells and mast cells in gastric acid secretion and in the development of ethanol-induced gastric lesions was studied in the rat. This was done by examining the effects of inhibition of the histamine-producing enzyme histidine decarboxylase (HDC) with alpha-fluoromethylhistidine (alpha-FMH) and the effects of degranulation of the mucosal mast cells with dexamethasone. A single dose of alpha-FMH (50 mg/kg p.o.) inhibited the HDC activity by 94% but did not affect histamine levels in the gastric mucosa 2 h after dose. Repeated treatment resulted in an almost complete inhibition of HDC activity and in a reduction of histamine levels by 75%. Pentagastrin failed to stimulate acid secretion after 4 days treatment with alpha-FMH, whereas the acid response to histamine was unaffected in chronic gastric fistula rats. Ethanol failed to induce gastric lesions in rats pretreated for 4 days with dexamethasone whereas 4 days pretreatment with alpha-FMH did not influence ethanol-induced lesion formation. The present results show that histamine synthesis is required for pentagastrin-stimulated gastric acid secretion and that mucosal mast-cell histamine plays a role in the development of ethanol-induced gastric lesions. PMID:2210091

  10. [Role of non-coding regulatory ribonucleic acids in chronic inflammatory diseases].

    PubMed

    Heinz, G A; Mashreghi, M-F

    2016-05-01

    Non-coding regulatory ribonucleic acids (RNA), including microRNA, long non-coding RNA and circular RNA, can influence the expression of genes mediating inflammatory processes and therefore affect the course and progression of chronic inflammatory diseases. Recent studies using antisense oligonucleotides suggest that such non-coding regulatory RNAs are suitable as novel therapeutic target molecules for the treatment of inflammatory rheumatic diseases. PMID:27115697

  11. Acid fog-induced bronchoconstriction. The role of hydroxymethanesulfonic acid

    SciTech Connect

    Aris, R.; Christian, D.; Sheppard, D.; Balmes, J.R. )

    1990-03-01

    Hydroxymethanesulfonate (HMSA), the bisulfite (HSO3-) adduct of formaldehyde (CH2O), is a common constituent of California acid fogs. HMSA, most stable in a fog pH range of 3 to 5, dissociates at 6.6, the pH of the fluid lining human airways. The dissociation of inhaled HMSA should theoretically generate sulfur dioxide and CH2O, both of which have bronchoconstrictor potential. Thus, we hypothesized that HMSA may have a specific bronchoconstrictor effect independent of its strength as an acid. To determine whether HMSA has such an effect, 19 subjects with mild to moderate asthma were studied using two different protocols. Initially, a mouthpiece study was performed in which 9 subjects, on 2 separate days, inhaled five aerosols containing either sequentially increasing concentrations (0, 30, 100, 300, and 1000 microM) of HMSA in 50 microM sulfuric acid (H2SO4) or 50 microM H2SO4 alone. The subjects inhaled each aerosol for 3 min during tidal breathing at rest. Specific airway resistance (SRaw) was measured before and after each 3-min exposure. There were no significant differences in the mean changes in SRaw among the various aerosol exposures. To confirm this lack of bronchoconstrictor effect of HMSA, we then performed a chamber study in which 10 freely breathing, intermittently exercising subjects were exposed to fog containing either 1 mM HMSA in 5 mM H2SO4 or 5 mM H2SO4 alone for 1 h. SRaw was measured before, during, and at the end of the 1-h exposure.

  12. Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes

    PubMed Central

    Packard, Amy E. B.; Ghosal, Sriparna; Herman, James P.; Woods, Stephen C.; Ulrich-Lai, Yvonne M.

    2014-01-01

    The incidence of type-2 diabetes (T2D) and the burden it places on individuals, as well as society as a whole, compels research into the causes, factors and progression of this disease. Epidemiological studies suggest that chronic stress exposure may contribute to the development and progression of T2D in human patients. To address the interaction between chronic stress and the progression of T2D, we developed a dietary model of the prediabetic state in rats utilizing unlimited access to 30% sucrose solution (in addition to unlimited access to normal chow and water), which led to impaired glucose tolerance despite elevated insulin levels. We then investigated the effects of a chronic variable stress paradigm (CVS; twice daily exposure to an unpredictable stressor for 2 weeks) on metabolic outcomes in this prediabetic model. Chronic stress improved glucose tolerance in prediabetic rats following a glucose challenge. Importantly, pair-fed control groups revealed that the beneficial effect of chronic stress did not result from the decreased food intake or body weight gain that occurred during chronic stress. The present work suggests that chronic stress in rodents can ameliorate the progression of diet-induced prediabetic disease independent of chronic stress-induced decreases in food intake and body weight. PMID:25001967

  13. Heat Stress Nephropathy From Exercise-Induced Uric Acid Crystalluria: A Perspective on Mesoamerican Nephropathy.

    PubMed

    Roncal-Jimenez, Carlos; García-Trabanino, Ramón; Barregard, Lars; Lanaspa, Miguel A; Wesseling, Catharina; Harra, Tamara; Aragón, Aurora; Grases, Felix; Jarquin, Emmanuel R; González, Marvin A; Weiss, Ilana; Glaser, Jason; Sánchez-Lozada, Laura G; Johnson, Richard J

    2016-01-01

    Mesoamerican nephropathy (MeN), an epidemic in Central America, is a chronic kidney disease of unknown cause. In this article, we argue that MeN may be a uric acid disorder. Individuals at risk for developing the disease are primarily male workers exposed to heat stress and physical exertion that predisposes to recurrent water and volume depletion, often accompanied by urinary concentration and acidification. Uric acid is generated during heat stress, in part consequent to nucleotide release from muscles. We hypothesize that working in the sugarcane fields may result in cyclic uricosuria in which uric acid concentrations exceed solubility, leading to the formation of dihydrate urate crystals and local injury. Consistent with this hypothesis, we present pilot data documenting the common presence of urate crystals in the urine of sugarcane workers from El Salvador. High end-of-workday urinary uric acid concentrations were common in a pilot study, particularly if urine pH was corrected to 7. Hyperuricemia may induce glomerular hypertension, whereas the increased urinary uric acid may directly injure renal tubules. Thus, MeN may result from exercise and heat stress associated with dehydration-induced hyperuricemia and uricosuria. Increased hydration with water and salt, urinary alkalinization, reduction in sugary beverage intake, and inhibitors of uric acid synthesis should be tested for disease prevention. PMID:26455995

  14. Effect of chronic ethanol consumption on fatty acid profile of heart tissue in rats.

    PubMed

    Gómez-Tubío, A; Carreras, O; Tavares, E; Delgado, M J

    1999-03-01

    The effect of chronic ethanol ingestion on fatty acid composition and lipid content of heart tissue in rats, and whether this effect depends on age, was studied. Rats were maintained on a 30% ethanol solution in drinking water for 3 and 5 months. Control animals were given water. Phospholipid concentration was unchanged in the ethanol-fed groups, compared with control groups, whereas total cholesterol content was increased at 5 months of treatment. An increase in stearic acid, palmitoleic acid, and 22:5n6 were observed at 3 months of ethanol ingestion. When ethanol was administered for 5 months, polyunsaturated fatty acids series n3 were decreased with respect to control. The effect of age on the profile of fatty acids of heart showed an increase of monounsaturated fatty acids and a decrease of long-chain polyunsaturated fatty acids in both control and ethanol-fed rats. The effect of ethanol ingestion on fatty acid composition of heart tissue is not very pronounced, but the small changes observed could contribute to the development of functional and electrophysiological features of alcoholic heart disease. PMID:10195810

  15. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  16. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  17. Measuring and Inducing Brain Plasticity in Chronic Aphasia

    ERIC Educational Resources Information Center

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia…

  18. Ursodeoxycholic acid alleviates cholestasis-induced histophysiological alterations in the male reproductive system of bile duct-ligated rats.

    PubMed

    Saad, Ramadan A; Mahmoud, Yomna I

    2014-12-01

    Ursodeoxycholic acid is the most widely used drug for treating cholestatic liver diseases. However, its effect on the male reproductive system alterations associated with cholestasis has never been studied. Thus, this study aimed to investigate the effect of ursodeoxycholic acid on cholestasis-induced alterations in the male reproductive system. Cholestasis was induced by bile duct ligation. Bile duct-ligated rats had higher cholestasis biomarkers and lower levels of testosterone, LH and FSH than did the Sham rats. They also had lower reproductive organs weights, and lower sperm motility, density and normal morphology than those of Sham rats. Histologically, these animals suffered from testicular tubular atrophy, interstitial edema, thickening of basement membranes, vacuolation, and depletion of germ cells. After ursodeoxycholic acid administration, cholestasis-induced structural and functional alterations were significantly ameliorated. In conclusion, ursodeoxycholic acid can ameliorate the reproductive complications of chronic cholestasis in male patients, which represents an additional benefit to this drug. PMID:25461907

  19. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient

    PubMed Central

    Seide, Margaret; Stern, Robert G.

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  20. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient.

    PubMed

    Aiyer, Rohit; Seide, Margaret; Stern, Robert G

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  1. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    SciTech Connect

    Dawson, Jennifer E.; Raymond, Angela M.; Winn, Louise M. . E-mail: winnl@biology.queensu.ca

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  2. Effect of acute and chronic DSS induced colitis on plasma eicosanoid and oxylipin levels in the rat.

    PubMed

    Willenberg, Ina; Ostermann, Annika I; Giovannini, Samoa; Kershaw, Olivia; von Keutz, Anne; Steinberg, Pablo; Schebb, Nils Helge

    2015-07-01

    Eicosanoids and oxylipins are potent lipid mediators involved in the regulation of inflammation. In order to evaluate their role and suitability as biomarkers in colitis, we analyzed their systemic levels in the acute and chronic phase of dextran sulfate sodium (DSS) induced colitis. Male Fischer 344 rats were treated in three cycles with 4% DSS in the drinking water (4 days followed by 10 days recovery) and blood was drawn 3 days prior to the first DSS treatment and on days 4, 11, 32 and 39. Histopathological evaluation of the colon tissue after 42 days showed that the animals developed a mild to severe chronic colitis. Consistently, prostaglandin levels were massively (twofold) elevated in the colonic tissue. LC-MS based targeted metabolomics was used to determine plasma oxylipin levels at the different time points. In the acute phase of inflammation directly after DSS treatment, epoxy-fatty acid (FA), dihydroxy-FA and hydroxy-FA plasma concentrations were uniformly elevated. With each treatment cycle the increase in these oxylipin levels was more pronounced. Our data suggest that in the acute phase of colitis release of polyunsaturated FAs from membranes in the inflamed tissue is reflected by a uniform increase of oylipins formed in different branches of the arachidonic acid cascade. However, during the recovery phases the systemic oxylipin pattern is not or only moderately altered and does not allow to evaluate the onset of chronic inflammation in the colon. PMID:25908302

  3. Collision induced dissociation of alpha hydroxy acids

    NASA Astrophysics Data System (ADS)

    Bandu, Mary L.; Grubbs, Thomas; Kater, Marcus; Desaire, Heather

    2006-03-01

    Alpha hydroxy acids typically dissociate in tandem mass spectrometric experiments to produce product ions representing a neutral loss of 46 Da (CH2O2) in negative ion mode. Although it is widely accepted that the carboxylate group is lost in the dissociation process, the origin of the remaining two hydrogens is unclear. The current study utilizes an alpha hydroxy acid chemical library and deuterium labeling experiments to identify the origin of the two hydrogens lost during dissociation. Secondly, this study investigates the lower m/z region of the CID spectrum, a region previously unexplored, to aid in characterizing the dissociation mechanism. Further experiments testing the energy requirements and time parameters of the dissociation also are consistent with criteria previously defined for ion-neutral complex formation. In addition to describing the mechanism for the loss of CH2O2, we have conducted experiments that demonstrate the important chemical features of molecules that can prevent alpha hydroxy acids from undergoing the loss of 46 Da. By understanding the chemical composition of the 46 Da loss, the dissociation mechanism responsible for the loss, and the factors that hinder this mechanistic pathway, chemical information about alpha hydroxy acids can be obtained from their CID data.

  4. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction.

    PubMed

    Liu, Mingchao; Li, Juan; Dai, Peng; Zhao, Fang; Zheng, Gang; Jing, Jinfei; Wang, Jiye; Luo, Wenjing; Chen, Jingyuan

    2015-01-01

    Chronic stress is considered to be a major risk factor in the development of psychopathological syndromes in humans. Cognitive impairments and long-term potentiation (LTP) impairments are increasingly recognized as major components of depression, anxiety disorders and other stress-related chronic psychological illnesses. It seems timely to systematically study the potentially underlying neurobiological mechanisms of altered cognitive and synaptic plasticity in the course of chronic stress. In the present study, a rat model of chronic unpredictable stress (CUS) induced a cognitive impairment in spatial memory in the Morris water maze (MWM) test and a hippocampal LTP impairment. CUS also induced hippocampal microglial activation and attenuated phosphorylation of glutamate receptor 1 (GluR1 or GluA1). Moreover, chronic treatment with the selective microglial activation blocker, minocycline (120 mg/kg per day), beginning 3 d before CUS treatment and continuing through the behavioral testing period, prevented the CUS-induced impairments of spatial memory and LTP induction. Additional studies showed that minocycline-induced inhibition of microglia activation was associated with increased phosphorylation of GluR1. These results suggest that hippocampal microglial activation modulates the level of GluR1 phosphorylation and might play a causal role in CUS-induced cognitive and LTP disturbances. PMID:25472821

  5. Chronic melatonin administration mitigates behavioral dysfunction induced by γ-irradiation.

    PubMed

    Haridas, Seenu; Kumar, Mayank; Manda, Kailash

    2012-11-01

    Melatonin, a 'hormone of darkness,' has been reported to play a role in a wide variety of physiological responses including reproduction, circadian homeostasis, sleep, retinal neuromodulation, and vasomotor responses. Our recent studies reported a prophylactic effect of exogenous melatonin against radiation-induced neurocognitive changes. However, there is no reported evidence for a mitigating effect of chronic melatonin administration against radiation-induced behavioral alterations. In the present study, C57BL/6 mice were given either whole day chronic melatonin administration (CMA) or chronic night-time melatonin administration (CNMA) by a low dose of melatonin in drinking water for a period of 2 weeks and 1 month following exposure to 6 Gy of γ-radiation. Various behavioral endpoints, such as locomotor activities, gross behavioral traits, basal anxiety level, and depressive tendencies were scored at different time points. Radiation exposure significantly impaired gross behavioral traits as observed in the open field exploratory paradigms and forced swim test. Both the CMA and CNMA significantly ameliorated the radiation-induced changes in exploratory tendencies, risk-taking behavior and gross behavior traits, such as rearing and grooming. Melatonin administration afforded anxiolytic function against radiation in terms of center exploration tendencies. The radiation-induced augmentation of immobility time in the forced swim test, indices of depression-like behavior was also inhibited by chronic melatonin administration. The results demonstrated the mitigating effect of chronic melatonin administration on radiation-induced affective disorders in mice. PMID:23026539

  6. Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease.

    PubMed

    Kimura, Tomonori; Hamase, Kenji; Miyoshi, Yurika; Yamamoto, Ryohei; Yasuda, Keiko; Mita, Masashi; Rakugi, Hiromi; Hayashi, Terumasa; Isaka, Yoshitaka

    2016-01-01

    D-Amino acids, the enantiomers of L-amino acids, are increasingly recognized as novel biomarkers. Although the amounts of D-amino acids are usually very trace in human, some of them have sporadically been detected in blood from patients with kidney diseases. This study examined whether multiple chiral amino acids would be associated with kidney functions, comorbidities, and prognosis of chronic kidney disease (CKD) by enantioselective analyses of all chiral amino acids with a micro-two-dimensional high-performance liquid chromatograph (2D-HPLC)-based analytical platform. 16 out of 21 D-amino acids were detected in plasma from 108 CKD patients in a longitudinal cohort. The levels of D-Ser, D-Pro, and D-Asn were strongly associated with kidney function (estimated glomerular filtration ratio), the levels of D-Ala and D-Pro were associated with age, and the level of D-Asp and D-Pro were associated with the presence of diabetes mellitus. D-Ser and D-Asn were significantly associated with the progression of CKD in mutually-adjusted Cox regression analyses; the risk of composite end point (developing to ESKD or death before ESKD) was elevated from 2.7- to 3.8-fold in those with higher levels of plasma D-Ser and D-Asn. These findings identified chiral amino acids as potential biomarkers in kidney diseases. PMID:27188851

  7. The time effect of chronic ethanol feeding on phospholipid fatty acids

    SciTech Connect

    Nakamura, M.T.; Tang, A.B.; Halsted, C.H.; Phinney, S.D. )

    1992-02-26

    The authors have previously shown that chronic ethanol feeding reduces arachidonic acid (AA) and other products of {delta}6 and {delta}5 desaturases in various tissues including muscle, the largest phospholipid (PL) pool. In this study they investigated the time-course effect of ethanol feeding on tissue fatty acid (FA) profiles. Five Yucatan micropigs were fed 89 kcal/kg body wt of diet containing ethanol and fat as 40 and 34% of energy, respectively. Five control pigs were pairfed corn starch instead of ethanol. Corn oil, 61% linoleic acid (LA), supplied most of dietary fat. PL fatty acids were quantitated by thin layer and gas chromatography. Below are FA profiles of control/ethanol groups by wt%. Underlined values differ p<0.05. In liver PL, ethanol resulted in increased LA but decreased palmitic acid, AA and docosahexaenoic acid (DHA) at 2 months. These changes remained constant for 12 months, whereas alpha-linolenic acid and DHA showed a progressive decline. For muscle, however, significant differences were not seen until 12 months. These results indicate time differences in ethanol effect on w6 and w3 FA composition, and that liver and muscle differ in their rates of response to ethanol. Their findings suggest that ethanol affects both desaturase activity and the precursor pool, and thus may alter membrane function.

  8. Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease

    PubMed Central

    Kimura, Tomonori; Hamase, Kenji; Miyoshi, Yurika; Yamamoto, Ryohei; Yasuda, Keiko; Mita, Masashi; Rakugi, Hiromi; Hayashi, Terumasa; Isaka, Yoshitaka

    2016-01-01

    D-Amino acids, the enantiomers of L-amino acids, are increasingly recognized as novel biomarkers. Although the amounts of D-amino acids are usually very trace in human, some of them have sporadically been detected in blood from patients with kidney diseases. This study examined whether multiple chiral amino acids would be associated with kidney functions, comorbidities, and prognosis of chronic kidney disease (CKD) by enantioselective analyses of all chiral amino acids with a micro-two-dimensional high-performance liquid chromatograph (2D-HPLC)-based analytical platform. 16 out of 21 D-amino acids were detected in plasma from 108 CKD patients in a longitudinal cohort. The levels of D-Ser, D-Pro, and D-Asn were strongly associated with kidney function (estimated glomerular filtration ratio), the levels of D-Ala and D-Pro were associated with age, and the level of D-Asp and D-Pro were associated with the presence of diabetes mellitus. D-Ser and D-Asn were significantly associated with the progression of CKD in mutually-adjusted Cox regression analyses; the risk of composite end point (developing to ESKD or death before ESKD) was elevated from 2.7- to 3.8-fold in those with higher levels of plasma D-Ser and D-Asn. These findings identified chiral amino acids as potential biomarkers in kidney diseases. PMID:27188851

  9. Chronic liquid nutrition intake induces obesity and considerable but reversible metabolic alterations in Wistar rats.

    PubMed

    Mikuska, Livia; Vrabcova, Michaela; Tillinger, Andrej; Balaz, Miroslav; Ukropec, Jozef; Mravec, Boris

    2016-06-01

    We have previously described the development of substantial, but reversible obesity in Wistar rats fed with palatable liquid nutrition (Fresubin). In this study, we investigated changes in serum hormone levels, glycemia, fat mass, adipocyte size, and gene expression of adipokines and inflammatory markers in adipose tissue of Wistar rats fed by Fresubin (i) for 5 months, (ii) up to 90 days of age, or (iii) after 90 days of age to characterize metabolic alterations and their reversibility in rats fed with Fresubin. An intra-peritoneal glucose tolerance test was also performed to determine levels of serum leptin, adiponectin, insulin, and C-peptide in 2- and 4-month-old animals. In addition, mesenteric and epididymal adipose tissue weight, adipocyte diameter, and gene expression of pro- and anti-inflammatory adipokines and other markers were determined at the end of the study. Chronic Fresubin intake significantly increased adipocyte diameter, reduced glucose tolerance, and increased serum leptin, adiponectin, insulin, and C-peptide levels. Moreover, gene expression of leptin, adiponectin, CD68, and nuclear factor kappa B was significantly increased in mesenteric adipose tissue of Fresubin fed rats. Monocyte chemotactic protein 1 messenger RNA (mRNA) levels increased in mesenteric adipose tissue only in the group fed Fresubin during the entire experiment. In epididymal adipose tissue, fatty acid binding protein 4 mRNA levels were significantly increased in rats fed by Fresubin during adulthood. In conclusion, chronic Fresubin intake induced complex metabolic alterations in Wistar rats characteristic of metabolic syndrome. However, transition of rats from Fresubin to standard diet reversed these alterations. PMID:26939586

  10. Cadmium induces retinoic acid signaling by regulating retinoic acid metabolic gene expression.

    PubMed

    Cui, Yuxia; Freedman, Jonathan H

    2009-09-11

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, beta,beta-carotene 15,15'-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1-6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1-6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 microm cadmium in Hepa 1-6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  11. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  12. Ursodeoxycholic acid induced generalized fixed drug eruption.

    PubMed

    Ozkol, Hatice Uce; Calka, Omer; Dulger, Ahmet Cumhur; Bulut, Gulay

    2014-09-01

    Fixed drug eruption (FDE) is a rare form of drug allergies that recur at the same cutaneous or mucosal site in every usage of drug. Single or multiple round, sharply demarcated and dusky red plaques appear soon after drug exposure. Ursodeoxycholic acid (UDCA: 3α,7β-dihydroxy-5β-cholanic acid) is used for the treatment of cholestatic liver diseases. Some side effects may be observed, such as diarrhea, dyspepsia, pruritus and headaches. We encountered only three cases of lichenoid reaction regarding the use of UDCA among previous studies. In this article, we reported a generalized FDE case related to UDCA intake in a 59-year-old male patient with cholestasis for the first time in the literature. PMID:24147950

  13. Sulfur dioxide-induced chronic bronchitis in beagle dogs

    SciTech Connect

    Greene, S.A.; Wolff, R.K.; Hahn, F.F.; Henderson, R.F.; Mauderly, J.L.; Lundgren, D.L.

    1984-01-01

    This study was done to produce a model of chronic bronchitis. Twelve beagle dogs were exposed to 500 ppm sulfur dioxide (SO/sub 2/) for 2 h/d, 5d/wk for 21 wk and 4 dogs were sham-exposed to filtered ambient air for the same period. Exposure effects were evaluated by periodically examining the dogs using chest radiographs, pulmonary function, tracheal mucous clearance, and the cellular and soluble components of bronchopulmonary lavage fluids. Dogs were serially sacrificed after 13 and 21 wk of exposure and after 6 and 14 wk of recovery. Clinical signs produced in the SO/sub 2/-exposed dogs included mucoid nasal discharge, productive cough, moist rales on auscultation, tonsilitis, and conjunctivitis. Chest radiographs revealed mild peribronchiolar thickening. Histopathology, tracheal mucous clearance measurements, and lavage cytology were consistent with a diagnosis of chronic bronchitis. It is concluded that repeated exposure to 500 ppm SO/sub 2/ for 21 wk produced chronic bronchitis in the beagle dog. Complete recovery occurred within 5 wk following cessation of SO/sub 2/ exposure. 43 references, 2 figures, 2 tables.

  14. Sulfur dioxide-induced chronic bronchitis in beagle dogs.

    PubMed

    Greene, S A; Wolff, R K; Hahn, F F; Henderson, R F; Mauderly, J L; Lundgren, D L

    1984-01-01

    This study was done to produce a model of chronic bronchitis. Twelve beagle dogs were exposed to 500 ppm sulfur dioxide (SO2) for 2 h/d, 5 d/wk for 21 wk and 4 dogs were sham-exposed to filtered ambient air for the same period. Exposure effects were evaluated by periodically examining the dogs using chest radiographs, pulmonary function, tracheal mucous clearance; and the cellular and soluble components of bronchopulmonary lavage fluids. Dogs were serially sacrificed after 13 and 21 wk of exposure and after 6 and 14 wk of recovery. Clinical signs produced in the SO2-exposed dogs included mucoid nasal discharge, productive cough, moist rales on auscultation, tonsilitis, and conjunctivitis. Chest radiographs revealed mild peribronchiolar thickening. Histopathology, tracheal mucous clearance measurements, and lavage cytology were consistent with a diagnosis of chronic bronchitis. It is concluded that repeated exposure to 500 ppm SO2 for 21 wk produced chronic bronchitis in the beagle dog. Complete recovery occurred within 5 wk following cessation of SO2 exposure. PMID:6492210

  15. Curcumin, Silybin Phytosome(®) and α-R-Lipoic Acid Mitigate Chronic Hepatitis in Rat by Inhibiting Oxidative Stress and Inflammatory Cytokines Production.

    PubMed

    Ali, Shimaa O; Darwish, Hebatallah A; Ismail, Nabila A

    2016-05-01

    Chronic hepatitis is recognized as a worldwide health problem that gradually progresses towards cirrhosis and hepatocellular carcinoma. Despite the large number of experiments using animal models for allergic hepatitis, it is still difficult to produce a picture of chronic hepatitis. Therefore, this study was conducted to introduce an animal model approximating to the mechanism of chronicity in human hepatitis. The study also aimed to examine the hepatoprotective effects of curcumin, silybin phytosome(®) and α-R-lipoic acid against thioacetamide (TAA)-induced chronic hepatitis in rat model. TAA was administered intraperitoneally at a dose of 200 mg/kg three times weekly for 4 weeks. At the end of this period, a group of rats was killed to assess the development of chronic hepatitis in comparison with their respective control group. TAA administration was then discontinued, and the remaining animals were subsequently allocated into four groups. Group 1 was left untreated, whereas groups 2-4 were allowed to receive daily oral doses of curcumin, silybin phytosome(®) or α-R-lipoic acid, respectively, for 7 weeks. Increases in hepatic levels of malondialdehyde associated with TAA administration were inhibited in groups receiving supplements. Furthermore, glutathione depletion, collagen deposition, macrophage activation and nuclear factor κappa-B expression as well as tumour necrosis factor-α and interleukin-6 levels were significantly decreased in response to supplements administration. Serological analysis of liver function and liver histopathological examination reinforced the results. The above evidence collectively indicates that the antioxidant and anti-inflammatory activities of curcumin, silybin phytosome(®) and α-R-lipoic acid may confer therapeutic efficacy against chronic hepatitis. PMID:26457982

  16. Genetic background of uric acid metabolism in a patient with severe chronic tophaceous gout.

    PubMed

    Petru, Lenka; Pavelcova, Katerina; Sebesta, Ivan; Stiburkova, Blanka

    2016-09-01

    Hyperuricemia depends on the balance of endogenous production and renal excretion of uric acid. Transporters for urate are located in the proximal tubule where uric acid is secreted and extensively reabsorbed: secretion is principally ensured by the highly variable ABCG2 gene. Enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) plays a central role in purine metabolism and its deficiency is an X-linked inherited metabolic disorder associated with clinical manifestations of purine overproduction. Here we report the case of a middle-aged man with severe chronic tophaceous gout with a poor response to allopurinol and requiring repeated surgical intervention. We identified the causal mutations in the HPRT1 gene, variant c.481G>T (p.A161S), and in the crucial urate transporter ABCG2, a heterozygous variant c.421C>A (p.Q141K). This case shows the value of an analysis of the genetic background of serum uric acid. PMID:27288985

  17. An Inducible Fusaric Acid Tripartite Efflux Pump Contributes to the Fusaric Acid Resistance in Stenotrophomonas maltophilia

    PubMed Central

    Hu, Rouh-Mei; Liao, Sih-Ting; Huang, Chiang-Ching; Huang, Yi-Wei; Yang, Tsuey-Ching

    2012-01-01

    Background Fusaric acid (5-butylpicolinic acid), a mycotoxin, is noxious to some microorganisms. Stenotrophomonas maltophilia displays an intrinsic resistance to fusaric acid. This study aims to elucidate the mechanism responsible for the intrinsic fusaric acid resistance in S. maltophilia. Methodology A putative fusaric acid resistance-involved regulon fuaR-fuaABC was identified by the survey of the whole genome sequence of S. maltophilia K279a. The fuaABC operon was verified by reverse transcriptase-PCR. The contribution of the fuaABC operon to the antimicrobial resistance was evaluated by comparing the antimicrobials susceptibility between the wild-type strain and fuaABC knock-out mutant. The regulatory role of fuaR in the expression of the fuaABC operon was assessed by promoter transcription fusion assay. Results The fuaABC operon was inducibly expressed by fusaric acid and the inducibility was fuaR dependent. FuaR functioned as a repressor of the fuaABC operon in absence of a fusaric acid inducer and as an activator in its presence. Overexpression of the fuaABC operon contributed to the fusaric acid resistance. Significance A novel tripartite fusaric acid efflux pump, FuaABC, was identified in this study. Distinct from the formally classification, the FuaABC may constitute a new type of subfamily of the tripartite efflux pump. PMID:23236431

  18. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke.

    PubMed

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Acquadro, Alberto; de Vos, Ric; Beekwilder, Jules

    2008-09-24

    Leaf extracts from globe artichoke ( Cynara cardunculus L. var. scolymus) have been widely used in medicine as hepatoprotectant and choleretic agents. Globe artichoke leaves represent a natural source of phenolic acids with dicaffeoylquinic acids, such as cynarin (1,3-dicaffeoylquinic acid), along with its biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the most abundant molecules. This paper reports the development of an experimental system to induce caffeoylquinic acids. This system may serve to study the regulation of the biosynthesis of (poly)phenolic compounds in globe artichoke and the genetic basis of this metabolic regulation. By means of HPLC-PDA and accurate mass LC-QTOF MS and MS/MS analyses, the major phenolic compounds in globe artichoke leaves were identified: four isomers of dicaffeoylquinic acid, three isomers of caffeoylquinic acid, and the flavone luteolin 7-glucoside. Next, plant material was identified in which the concentration of phenolic compounds was comparable in the absence of particular treatments, with the aim to use this material to test the effect of stress application on the regulation of biosynthesis of caffeoylquinic acids. Using this material, the effect of UV-C, methyl jasmonate, and salicylic acid treatments on (poly)phenolic compounds was tested in different globe artichoke genotypes. UV-C exposure consistently increased the levels of dicaffeoylquinic acids in all genotypes, whereas the effect on compounds from the same biosynthetic pathway, for example, chlorogenic acid and luteolin-7-glucoside, was much less pronounced and was not statistically significant. No effect of methyl jasmonate or salicylic acid was found. Time-response experiments indicated that the level of dicaffeoylquinic acids reached a maximum at 24 h after UV radiation. On the basis of these results a role of dicaffeoylquinic acids in UV protection in globe artichoke is hypothesized. PMID:18710252

  19. Effects of Lipoic Acid on Acrylamide Induced Testicular Damage

    PubMed Central

    Lebda, Mohamed; Gad, Shereen; Gaafar, Hossam

    2014-01-01

    Introduction: Acrylamide is very toxic to various organs and associated with significant increase of oxidative stress and depletion of antioxidants. Alpha-lipoic acid enhances cellular antioxidant defense capacity, thereby protecting cells from oxidative stress. Aim of the study: This study aimed to evaluate the protective role of alpha-lipoic acid on the oxidative damage induced by acrylamide in testicular and epididymal tissues. Material and methods: Forty adult male rats were divided into four groups (10 rats each). Control group; acrylamide treated group administered acrylamide 0.05% (w/v) in drinking water for 21 days; alpha-lipoic acid group received basal diet supplemented with 1% alpha-lipoic acid and forth group was exposed to acrylamide and treated with alpha-lipoic acid at the same doses and treatment regimen mentioned before. Results: The administration of acrylamide resulted in significant elevation in testicular and epididymal malondialdehyde level (MDA) and significant reduction in the level of reduced glutathione (GSH) and the activities of glutathione-S-transferase (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). Also, acrylamide significantly reduced serum total testosterone and progesterone but increased estradiol (E2) levels. Treatment with alpha-lipoic acid prior to acrylamide induced protective effects and attenuated these biochemical changes. Conclusion: Alpha-lipoic acid has been shown to possess antioxidant properties offering promising efficacy against oxidative stress induced by acrylamide administration. PMID:25126019

  20. Targeting c-fms kinase attenuates chronic aristolochic acid nephropathy in mice.

    PubMed

    Dai, Xiao Y; Huang, Xiao R; Zhou, Li; Zhang, Lin; Fu, Ping; Manthey, Carl; Nikolic-Paterson, David J; Lan, Hui Y

    2016-03-01

    Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by some Chinese herbal medicines, but treatment remains ineffective. Macrophage accumulation is an early feature in human and experimental AAN; however, the role of macrophages in chronic AAN is unknown. We report here that targeting macrophages with fms-I, a selective inhibitor of the tyrosine kinase activity of the macrophage colony-stimulating factor receptor, suppressed disease progression in a mouse model of chronic AAN. Treatment with fms-I (10mg/kg/BID) from day 0 to 28 (prevention study) or from day 14 to 28 (intervention study) substantially inhibited macrophage accumulation and significantly improved renal dysfunction including a reduction in proteinuria and tubular damage. Progressive interstitial fibrosis (myofibroblast accumulation and collagen deposition) and renal inflammation (increased expression of MCP-1, MIF, and TNF-α) were also attenuated by fms-I treatment. These protective effects involved inhibition of TGF-β/Smad3 and NF-kB signaling. In conclusion, the present study establishes that macrophages are key inflammatory cells that exacerbates progressive tubulointerstitial damage in chronic AAN via mechanisms associated with TGF-β/Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation. Targeting macrophages via a c-fms kinase inhibitor may represent a novel therapy for chronic AAN. PMID:26909597

  1. Targeting c-fms kinase attenuates chronic aristolochic acid nephropathy in mice

    PubMed Central

    Zhou, Li; Zhang, Lin; Fu, Ping; Manthey, Carl; Nikolic-Paterson, David J.; Lan, Hui Y.

    2016-01-01

    Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by some Chinese herbal medicines, but treatment remains ineffective. Macrophage accumulation is an early feature in human and experimental AAN; however, the role of macrophages in chronic AAN is unknown. We report here that targeting macrophages with fms-I, a selective inhibitor of the tyrosine kinase activity of the macrophage colony-stimulating factor receptor, suppressed disease progression in a mouse model of chronic AAN. Treatment with fms-I (10mg/kg/BID) from day 0 to 28 (prevention study) or from day 14 to 28 (intervention study) substantially inhibited macrophage accumulation and significantly improved renal dysfunction including a reduction in proteinuria and tubular damage. Progressive interstitial fibrosis (myofibroblast accumulation and collagen deposition) and renal inflammation (increased expression of MCP-1, MIF, and TNF-α) were also attenuated by fms-I treatment. These protective effects involved inhibition of TGF-β/Smad3 and NF-kB signaling. In conclusion, the present study establishes that macrophages are key inflammatory cells that exacerbates progressive tubulointerstitial damage in chronic AAN via mechanisms associated with TGF-β/Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation. Targeting macrophages via a c-fms kinase inhibitor may represent a novel therapy for chronic AAN. PMID:26909597

  2. Bevacizumab‐induced chronic interstitial pneumonia during maintenance therapy in non‐small cell lung cancer

    PubMed Central

    Sekimoto, Yasuhito; Shukuya, Takehiko; Koyama, Ryo; Nagaoka, Tetsutaro; Takahashi, Kazuhisa

    2016-01-01

    Abstract Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor and a key drug for advanced non‐small cell lung cancer. There are few reports describing bevacizumab‐induced chronic interstitial pneumonia. A 62‐year‐old man with advanced non‐small cell lung cancer was admitted to our hospital with dyspnea. He previously received four courses of carboplatin plus paclitaxel with bevacizumab combination therapy and thereafter received four courses of maintenance bevacizumab monotherapy. A chest‐computed tomography scan on admission revealed diffuse ground glass opacity. He had not received any other drugs and did not have pneumonia. Thus, he was diagnosed with bevacizumab‐induced chronic interstitial pneumonia and was treated with a high dose of corticosteroids. After steroid treatment, his dyspnea and radiological findings improved. This case report is the first description of bevacizumab‐induced chronic interstitial pneumonia during maintenance therapy in a patient with non‐small cell lung cancer. PMID:27081491

  3. Nitric oxide-induced cellular stress and p53 activation in chronic inflammation

    PubMed Central

    Hofseth, Lorne J.; Saito, Shin'ichi; Hussain, S. Perwez; Espey, Michael G.; Miranda, Katrina M.; Araki, Yuzuru; Jhappan, Chamelli; Higashimoto, Yuichiro; He, Peijun; Linke, Steven P.; Quezado, Martha M.; Zurer, Irit; Rotter, Varda; Wink, David A.; Appella, Ettore; Harris, Curtis C.

    2003-01-01

    Free radical-induced cellular stress contributes to cancer during chronic inflammation. Here, we investigated mechanisms of p53 activation by the free radical, NO. NO from donor drugs induced both ataxia-telangiectasia mutated (ATM)- and ataxia-telangiectasia mutated and Rad3-related-dependent p53 posttranslational modifications, leading to an increase in p53 transcriptional targets and a G2/M cell cycle checkpoint. Such modifications were also identified in cells cocultured with NO-releasing macrophages. In noncancerous colon tissues from patients with ulcerative colitis (a cancer-prone chronic inflammatory disease), inducible NO synthase protein levels were positively correlated with p53 serine 15 phosphorylation levels. Immunostaining of HDM-2 and p21WAF1 was consistent with transcriptionally active p53. Our study highlights a pivotal role of NO in the induction of cellular stress and the activation of a p53 response pathway during chronic inflammation. PMID:12518062

  4. Oxytocin Reduces Cocaine Seeking and Reverses Chronic Cocaine-Induced Changes in Glutamate Receptor Function

    PubMed Central

    Zhou, Luyi; Sun, Wei-Lun; Young, Amy B.; Lee, Kunhee; McGinty, Jacqueline F.

    2015-01-01

    Background: Oxytocin, a neurohypophyseal neuropeptide, is a potential mediator and regulator of drug addiction. However, the cellular mechanisms of oxytocin in drug seeking remain unknown. Methods: In the present study, we used a self-administration/reinstatement model to study the effects of oxytocin on cocaine seeking and its potential interaction with glutamate function at the receptor level. Results: Systemic oxytocin dose-dependently reduced cocaine self-administration during various schedules of reinforcement, including fixed ratio 1, fixed ratio 5, and progressive ratio. Oxytocin also attenuated reinstatement to cocaine seeking induced by cocaine prime or conditioned cues. Western-blot analysis indicated that oxytocin increased phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor GluA1 subunit at the Ser 845 site with or without accompanying increases in phosphorylation of extracellular signal-regulated kinase, in several brain regions, including the prefrontal cortex, bed nucleus of the stria terminalis, amygdala, and dorsal hippocampus. Immunoprecipitation of oxytocin receptor and GluA1 subunit receptors further demonstrated a physical interaction between these 2 receptors, although the interaction was not influenced by chronic cocaine or oxytocin treatment. Oxytocin also attenuated sucrose seeking in a GluA1- or extracellular-signal-regulated kinase-independent manner. Conclusions: These findings suggest that oxytocin mediates cocaine seeking through interacting with glutamate receptor systems via second messenger cascades in mesocorticolimbic regions. PMID:25539504

  5. A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites

    PubMed Central

    Slocum, Connie S.; Weinberg, Ellen O.; Hua, Ning; Gudino, Cynthia V.; Hamilton, James A.; Genco, Caroline A.

    2014-01-01

    Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies

  6. Chronic Valproate Treatment Blocks D2-like Receptor-Mediated Brain Signaling via Arachidonic Acid in Rats

    PubMed Central

    Ramadan, Epolia; Basselin, Mireille; Taha, Ameer Y.; Cheon, Yewon; Chang, Lisa; Chen, Mei; Rapoport, Stanley I.

    2011-01-01

    Background and Objective Hyperdopaminergic signaling and an upregulated brain arachidonic acid (AA) cascade may contribute to bipolar disorder (BD). Lithium and carbamazepine, FDA-approved for the treatment of BD, attenuate brain dopaminergic D2-like (D2, D3, and D4) receptor signaling involving AA when given chronically to awake rats. We hypothesized that valproate (VPA), with mood-stabilizing properties, would also reduce the D2-like-mediated signaling via AA. Methods An acute dose of quinpirole (1 mg/kg) or saline was administered to unanesthetized rats that had been treated for 30 days with a therapeutically relevant dose of VPA (200 mg/kg/day) or vehicle. Regional brain AA incorporation coefficients, k*, and incorporation rates, Jin, markers of AA signaling and metabolism, were measured by quantitative autoradiography after intravenous [1-14C]AA infusion. Whole brain concentrations of prostaglandin (PG)E2 and thromboxane (TX)B2 also were measured. Results Quinpirole compared to saline significantly increased k* in 40 of 83 brain regions, and increased brain concentrations of PGE2 in chronic vehicle-treated rats. VPA treatment by itself reduced concentrations of plasma unesterified AA and whole brain PGE2 and TXB2, and blocked the quinpirole-induced increments in k* and PGE2. Conclusion These results further support our hypothesis that similar to lithium and carbamazepine, VPA downregulates brain dopaminergic D2-like receptor-signaling involving AA. PMID:21839100

  7. Sulfonic acid catalysts prepared by radiation-induced graft polymerization

    SciTech Connect

    Mizota, Tomotoshi; Tsuneda, Satoshi; Saito, Kyoichi, Saito

    1994-09-01

    In this study, the authors prepared two variations of graft-type acid catalysts with different adjacent groups by radiation-induced graft polymerization (RIGP), and compared the hydrolytic activity of the resultant acid catalysts for methyl acetate with that of commercially available SO{sub 3}H-type ion-exchange beads with different degrees of cross-linking. 8 refs., 3 figs.

  8. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    PubMed

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016. PMID:25533183

  9. The effect of chronic exposure to high palmitic acid concentrations on the aerobic metabolism of human endothelial EA.hy926 cells.

    PubMed

    Broniarek, Izabela; Koziel, Agnieszka; Jarmuszkiewicz, Wieslawa

    2016-09-01

    A chronic elevation of circulating free fatty acids (FFAs) is associated with diseases like obesity or diabetes and can lead to lipotoxicity. The goals of this study were to assess the influence of chronic exposure to high palmitic acid (PAL) levels on mitochondrial respiratory functions in endothelial cells and isolated mitochondria. Human umbilical vein endothelial cells (EA.hy926 line) were grown for 6 days in a medium containing either 100 or 150 μM PAL. Growth at high PAL concentrations induced a considerable increase in fatty acid-supplied respiration and a reduction of mitochondrial respiration during carbohydrate and glutamine oxidation. High PAL levels elevated intracellular and mitochondrial superoxide generation; increased inflammation marker, acyl-coenzyme A (CoA) dehydrogenase, uncoupling protein 2 (UCP2), and superoxide dismutase 2 expression; and decreased hexokinase I and pyruvate dehydrogenase expression. No change in aerobic respiration capacity was observed, while fermentation was decreased. In mitochondria isolated from high PAL-treated cells, an increase in the oxidation of palmitoylcarnitine, a decrease in the oxidation of pyruvate, and an increase in UCP2 activity were observed. Our results demonstrate that exposure to high PAL levels induces a shift in endothelial aerobic metabolism toward the oxidation of fatty acids. Increased levels of PAL caused impairment and uncoupling of the mitochondrial oxidative phosphorylation system. Our data indicate that FFAs significantly affect endothelial oxidative metabolism, reactive oxygen species (ROS) formation, and cell viability and, thus, might contribute to endothelial and vascular dysfunction. PMID:27417103

  10. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats

    PubMed Central

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography–tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney. PMID:26485038

  11. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats.

    PubMed

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography-tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney. PMID:26485038

  12. Aminomethylphosphonic acid has low chronic toxicity to Daphnia magna and Pimephales promelas.

    PubMed

    Levine, Steven L; von Mérey, Georg; Minderhout, Tui; Manson, Philip; Sutton, Peter

    2015-06-01

    Aminomethylphosphonic acid (AMPA) is the simplest member of a class of compounds known as aminomethylenephosphonates and the only environmental metabolite measured in significant amounts during the degradation of the herbicide glyphosate in soil. However, there are additional sources of AMPA in the environment, originating from organic phosphonates which are used in water treatment to inhibit scale formation and corrosion. Like glyphosate, AMPA has low acute toxicity to aquatic animals, and the no-observed-adverse effect concentration (NOAEC) obtained from a fish full-life cycle study for glyphosate was determined to be 26 mg/L. However, the chronic toxicity of AMPA to aquatic animals has not been evaluated before. The purpose of the present study was to assess the potential for chronic toxicity of AMPA to fathead minnow (Pimephales promelas) and Daphnia magna. Chronic toxicity to P. promelas was evaluated in a fish early-life stage study. The primary endpoints were larval survival, growth, and development. The NOAEC for P. promelas was determined to be 12 mg/L, the highest concentration tested. The chronic toxicity to D. magna was evaluated in a Daphnia reproduction test. The primary endpoints were survival, growth, and reproduction. The no-observed-effect concentration for D. magna was determined to be 15 mg/L. Conservatively predicted environmental surface water concentrations for AMPA from typical foliar agricultural application rates and values from surface water monitoring programs are 100 to 1000 times less than the NOAEC values from both studies. Consequently, there is a large and highly protective margin of safety between realistic environmental exposures to AMPA and chronic toxicity to aquatic vertebrates and invertebrates. PMID:25690938

  13. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells.

    PubMed

    Martino, Julieta; Holmes, Amie L; Xie, Hong; Wise, Sandra S; Wise, John Pierce

    2015-10-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification. PMID:26293554

  14. Renal and systemic acid-base effects of chronic dichloroacetate administration in dogs.

    PubMed

    Hulter, H N; Glynn, R D; Sebastian, A

    1980-10-01

    Dichloroacetate (DCA) increases metabolic disposal of lactic acid secondary to activation of pyruvate dehydrogenase and consequent acceleration of pyruvate oxidation. DCA has thus been proposed as a therapeutic agent for clinical states of lactic acidosis. Yet, DCA has a potential metabolic acidosis-producing effect by virtue of reported effects of (A) increasing blood ketoacid concentration, (B) decreasing tubular reabsorption of filtered ketoacid anions, and (C) decreasing renal NH3 production. In the present study chronic administration of DCA, 50 mg/kg p.o. daily for 6-8 days, resulted in a cumulative increase in renal net acid excretion (NAE) (sigma delta NAE, +61 meq, p < 0.05). The increase in NAE was accounted for entirely by increased NH4+ excretion. Production of ammonia by the kidney appeared to be increased since the increased excretion of NH4+ was accompanied by an increase in urine pH (delta UpH, +0.18 +/- 0.07, p < 0.05). The increase in NAE was accompanied by a nearly identical increase in urinary anion gap (UAG) (UAG = [NH4+ + Na+ + K+] - [Cl- + HCO3- + HPO4(2-) + H2PO4-]). The increase in UAG was caused by increased urinary total organic anions, accounted for at least in part by a significant increase in urinary acetoacetate. No significant increase in urinary potassium or sodium excretion occurred. A change in plasma acid-base composition occurred that was consistent with a mild respiratory acidosis without associated primary metabolic acidosis or alkalosis. These findings indicate that chronic DCA administration results in (1) increased steady state endogenous noncarbonic organic acid production, and (2) retention of carbonic acid. Further investigation of the potential metabolic and respiratory acidosis-producing effects of DCA is required to determine its clinical efficacy in the treatment of clinical lactic acidosis. PMID:7421587

  15. Inhibition of hypochlorous acid-induced cellular toxicity by nitrite

    NASA Astrophysics Data System (ADS)

    Whiteman, Matthew; Hooper, D. Craig; Scott, Gwen S.; Koprowski, Hilary; Halliwell, Barry

    2002-09-01

    Chronic inflammation results in increased nitrogen monoxide (NO) formation and the accumulation of nitrite (NO). Neutrophils stimulated by various inflammatory mediators release myeloperoxidase to produce the cytotoxic agent hypochlorous acid (HOCl). Exposure of chondrocytic SW1353 cells to HOCl resulted in a concentration- and time-dependent loss in viability, ATP, and glutathione levels. Treatment of cells with NO but not nitrate (NO) substantially decreased HOCl-dependent cellular toxicity even when NO was added at low (μM) concentrations. In contrast, NO alone (even at 1 mM concentrations) did not affect cell viability or ATP and glutathione levels. These data suggest that NO accumulation at chronic inflammatory sites, where both HOCl and NO are overproduced, may be cytoprotective against damage caused by HOCl. We propose that this is because HOCl is removed by reacting with NO to give nitryl chloride (NO2Cl), which is less damaging in our cell system. inflammation | cell toxicity | nitryl chloride | nitric oxide | arthritis

  16. Mevalonates restore zoledronic acid-induced osteoclastogenesis inhibition.

    PubMed

    Nagaoka, Y; Kajiya, H; Ozeki, S; Ikebe, T; Okabe, K

    2015-04-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is likely to be caused by continuous imperfection of bone healing after surgical treatments in patients with long-term administration of nitrogen-containing bisphosphonates (NBPs). NBPs inhibit osteoclastic bone resorption by impairing the mevalonic acid sterol pathway in osteoclasts. Thus, we hypothesized that exogenous mevalonic acid metabolites restore the inhibitory effects of NBPs on osteoclastogenesis and bone remodeling. To clarify the effects of mevalonic acid metabolites, especially geranylgeranyl pyrophosphate (GGPP) and geranylgeranyl transferase substrate geranylgeranyl acid (GGOH), we examined the effects of zoledronic acid with or without GGOH or GGPP on osteoclast differentiation, multinucleation, and bone mineral deposition in tooth-extracted sockets. Zoledronic acid decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells derived from mouse osteoclast precursors treated with receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. Zoledronic acid simultaneously suppressed not only the expressions of osteoclastic differentiation-related molecules such as TRAP, cathepsin K, calcitonin receptor, and vacuolar H-ATPase but also those of multinucleation-related molecules such as dendrocyte-expressed 7 transmembrane proteins and osteoclast stimulatory transmembrane protein. Treatment with GGOH or GGPP, but not farnesyl acid, restored the zoledronic acid-inhibited number of TRAP-positive multinuclear cells together with the expressions of these molecules. Although intraperitoneal administration of zoledronic acid and lipopolysaccharide into mice appeared to induce BRONJ-like lesions with empty bone lacunae and decreased mineral deposition in tooth-extracted socket, both GGOH and GGPP partially restored the inhibitory effects on zoledronic acid-related mineral deposition. These results suggest the potential of mevalonic acid

  17. Role of ASIC1 in the development of chronic hypoxia-induced pulmonary hypertension

    PubMed Central

    Nitta, Carlos H.; Osmond, David A.; Herbert, Lindsay M.; Beasley, Britta F.; Resta, Thomas C.; Walker, Benjimen R.

    2013-01-01

    Chronic hypoxia (CH) associated with respiratory disease results in elevated pulmonary vascular intracellular Ca2+ concentration, which elicits enhanced vasoconstriction and promotes vascular arterial remodeling and thus has important implications in the development of pulmonary hypertension (PH). Store-operated Ca2+ entry (SOCE) contributes to this elevated intracellular Ca2+ concentration and has also been linked to acute hypoxic pulmonary vasoconstriction (HPV). Since our laboratory has recently demonstrated an important role for acid-sensing ion channel 1 (ASIC1) in mediating SOCE, we hypothesized that ASIC1 contributes to both HPV and the development of CH-induced PH. To test this hypothesis, we examined responses to acute hypoxia in isolated lungs and assessed the effects of CH on indexes of PH, arterial remodeling, and vasoconstrictor reactivity in wild-type (ASIC1+/+) and ASIC1 knockout (ASIC1−/−) mice. Restoration of ASIC1 expression in pulmonary arterial smooth muscle cells from ASIC1−/− mice rescued SOCE, confirming the requirement for ASIC1 in this response. HPV responses were blunted in lungs from ASIC1−/− mice. Both SOCE and receptor-mediated Ca2+ entry, along with agonist-dependent vasoconstrictor responses, were diminished in small pulmonary arteries from control ASIC−/− mice compared with ASIC+/+ mice. The effects of CH to augment receptor-mediated vasoconstrictor and SOCE responses in vessels from ASIC1+/+ mice were not observed after CH in ASIC1−/− mice. In addition, ASIC1−/− mice exhibited diminished right ventricular systolic pressure, right ventricular hypertrophy, and arterial remodeling in response to CH compared with ASIC1+/+ mice. Taken together, these data demonstrate an important role for ASIC1 in both HPV and the development of CH-induced PH. PMID:24186095

  18. Intra-articular hyaluronic acid in the treatment of haemophilic chronic arthropathy.

    PubMed

    Fernández-Palazzi, F; Viso, R; Boadas, A; Ruiz-Sáez, A; Caviglia, H; De Bosch, N Blumenfeld

    2002-05-01

    We report our preliminary experience with the use of hyaluronic acid (Synvisc) in 29 joints from 25 different haemophilic patients (17 knees, six shoulders, four ankles, one elbow and one hip). All the joints were grade III of our classification, characterized by synovial thickening, axial deformities and muscle atrophy (chronic arthropathy). In view of the very satisfactory results obtained with this procedure, we have substituted Synvisc for the previous use of intra-articular long-standing corticosteroids that we had been used for some years. This method is theoretically more physiological and does not destroy the joint cartilage further, as corticosteroids can. PMID:12010437

  19. Effect of DHU001, a Polyherbal Formula on Formalin-induced Paw Chronic Inflammation of Mice

    PubMed Central

    Cho, Yoon-Hee; Chung, In-Kwon; Cheon, Woo-Hyun; Lee, Hyeung-Sik

    2011-01-01

    The effect of DHU001, a mixed herbal formula consisted of 7 types aqueous extracts for various respiratory disorders were evaluated on the formalin-induced paw chronic inflammation in mice after oral administration. Mice were subaponeurotically injected in the left hind paw with 0.02 ml of 3.75% formalin, then subjected to 500, 250 and 125 mg/kg of DHU001 oral administration, once a day for 10 days during which then the hind-paw thickness and volume were measured daily. The paw wet-weight, histological profiles, histomorphometrical analyses and paw tumor necrosis factor (TNF)-α contents were conducted at termination. After two formalin treatments, a marked increase in the paw thickness and volume was detected in the formalin-injected control as compared with that in the intact control, plus at the time of sacrifice the paw wet-weights, paw TNF-α contents were also dramatically increased with severe chronic inflammation signs at histopathological observations. However, these formalin-induced chronic inflammatory changes were dramatically decreased by treatment of dexamethasone and all three different dosages of DHU001. DHU001 has favorable effects on formalin-induced chronic inflammation mediated by TNF-α suppression, and DHU001 may represent an alternative approach for the treatment of chronic inflammatory diseases. PMID:24278557

  20. Peripheral metabolism of branched-chain keto acids in patients with chronic renal failure.

    PubMed

    Garibotto, G; Paoletti, E; Fiorini, F; Russo, R; Robaudo, C; Deferrari, G; Tizianello, A

    1993-01-01

    Peripheral tissue metabolism of branched-chain amino acids (BCAA) and branched-chain keto acids (BCKA) in the postabsorptive state was evaluated in 8 patients with chronic renal failure (CRF) and 7 controls by measuring the arterial-deep forearm venous differences for BCAA and BCKA. Arterial whole blood levels of BCAA and BCKA were also measured in an additional 7 patients and 11 controls. In CRF, total BCKA levels are reduced owing to a decrease in ketoisocaproic acid (KICA) and ketoisovaleric acid (KIVA) levels, parallel to changes in BCAA levels, whereas levels of ketomethylvaleric acid (KMVA) are not different from controls. Both in normal conditions and in patients, arterial levels of individual BCAA are directly correlated with arterial levels of the corresponding BCKA. However, in CRF, the ratios of leucine to KICA and of isoleucine to KMVA are increased. A direct correlation between KICA and HCO3- levels is observed. In CRF, the release of leucine and valine as well as of KICA and KMVA from peripheral tissues is reduced, whereas KIVA is neither released nor taken up by the forearm. The lack of KICA release from peripheral tissues likely accounts for its low circulating levels. The depressed peripheral release of leucine associated with the lack of KICA release suggests an increased degradation of leucine which proceeds beyond the transamination step. PMID:8345831

  1. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    PubMed Central

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  2. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders.

    PubMed

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  3. Chronic exposure to ELF fields may induce depression

    SciTech Connect

    Wilson, B.W.

    1988-01-01

    Exposure to extremely-low-frequency (ELF) electric or magnetic fields has been postulated as a potentially contributing factor in depression. Epidemiologic studies have yielded positive correlations between magnetic- and/or electric-field strengths in local environments and the incidence of depression-related suicide. Chronic exposure to ELF electric or magnetic fields can disrupt normal circadian rhythms in rat pineal serotonin-N-acetyltransferase activity as well as in serotonin and melatonin concentrations. Such disruptions in the circadian rhythmicity of pineal melatonin secretion have been associated with certain depressive disorders in human beings. In the rat, ELF fields may interfere with tonic aspects of neuronal input to the pineal gland, giving rise to what may be termed functional pinealectomy. If long-term exposure to ELF fields causes pineal dysfunction in human beings as it does in the rat, such dysfunction may contribute to the onset of depression or may exacerbate existing depressive disorders. 85 references.

  4. Salt-Induced Changes in Cardiac Phosphoproteome in a Rat Model of Chronic Renal Failure

    PubMed Central

    Su, Zhengxiu; Zhu, Hongguo; Zhang, Menghuan; Wang, Liangliang; He, Hanchang; Jiang, Shaoling; Hou, Fan Fan; Li, Aiqing

    2014-01-01

    Heart damage is widely present in patients with chronic kidney disease. Salt diet is the most important environmental factor affecting development of chronic renal failure and cardiovascular diseases. The proteins involved in chronic kidney disease -induced heart damage, especially their posttranslational modifications, remain largely unknown to date. Sprague-Dawley rats underwent 5/6 nephrectomy (chronic renal failure model) or sham operation were treated for 2 weeks with a normal-(0.4% NaCl), or high-salt (4% NaCl) diet. We employed TiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for phosphoproteomic profiling of left ventricular free walls in these animals. A total of 1724 unique phosphopeptides representing 2551 non-redundant phosphorylation sites corresponding to 763 phosphoproteins were identified. During normal salt feeding, 89 (54%) phosphopeptides upregulated and 76 (46%) phosphopeptides downregulated in chronic renal failure rats relative to sham rats. In chronic renal failure rats, high salt intake induced upregulation of 84 (49%) phosphopeptides and downregulation of 88 (51%) phosphopeptides. Database searches revealed that most of the identified phospholproteins were important signaling molecules such as protein kinases, receptors and phosphatases. These phospholproteins were involved in energy metabolism, cell communication, cell differentiation, cell death and other biological processes. The Search Tool for the Retrieval of Interacting Genes analysis revealed functional links among 15 significantly regulated phosphoproteins in chronic renal failure rats compared to sham group, and 23 altered phosphoproteins induced by high salt intake. The altered phosphorylation levels of two proteins involved in heart damage, lamin A and phospholamban were validated. Expression of the downstream genes of these two proteins, desmin and SERCA2a, were also analyzed. PMID:24945867

  5. PDIA3 Knockdown Exacerbates Free Fatty Acid-Induced Hepatocyte Steatosis and Apoptosis

    PubMed Central

    Yu, Chao-hui; Xu, Cheng-fu; Xu, Lei; Li, You-ming; Chen, Wei-xing

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) has emerged as one of the most common chronic liver disease over the past decades. Endoplasmic reticulum stress (ERS) plays a pivotal role during the development of NAFLD. This study aims to analyze the potential role of protein disulfide isomerase A3 precursor (PDIA3), one of the ER chaperones, in free fatty acid-induced cell model of NAFLD. Human liver L02 cell line was treated with sodium palmitate for 24 hours, which developed severe intracellular lipid accumulation. The increased protein level of PDIA3 was detected via immunoblotting analysis in the fat loaded cell models of NAFLD. siRNA-mediated knockdown of PDIA3 in L02 cells not only increased the cellular lipid accumulation, but also exacerbated hepatocytes apoptosis induced by sodium palmitate. Further investigation revealed that knockdown of PDIA3 up-regulated protein expression of fatty acid synthase (FAS), a key enzyme involved in fatty acid synthesis. PDIA3 knockdown also up-regulated key molecules of ERS pathway, including glucose-regulated protein 78 (GRP78), phospho-PKR-like ER kinase (p-PERK), and C/EBP homologous protein (CHOP). Our results suggested that ER chaperone PDIA3 plays a pivotal role in FFA-induced hepatocyte steatosis and apoptosis. PMID:26214517

  6. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway. PMID:24845645

  7. Amlodipine-induced gingival hyperplasia in chronic renal failure: a case report.

    PubMed

    Aldemir, N M; Begenik, H; Emre, H; Erdur, F M; Soyoral, Y

    2012-12-01

    Amlodipine is a dihydropyridine calcium channel blocker that is used in the management of both hypertension and angina. Amlodipine induced side effects are headache, dizziness, edema, flushing, palpitations, and rarely gingival hyperplasia. The exact reason of amlodipine-induced gingival hyperplasia is not known. We presented a case with chronic renal failure (CRF) that developed gingival hyperplasia due to amlodipine use, which improved after ceasing the drug. PMID:23516009

  8. Role of Cigarette Smoke-Induced Aggresome Formation in Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis.

    PubMed

    Tran, Ian; Ji, Changhoon; Ni, Inzer; Min, Taehong; Tang, Danni; Vij, Neeraj

    2015-08-01

    Cigarette smoke (CS) exposure is known to induce proteostasis imbalance that can initiate accumulation of ubiquitinated proteins. Therefore, the primary goal of this study was to determine if first- and secondhand CS induces localization of ubiquitinated proteins in perinuclear spaces as aggresome bodies. Furthermore, we sought to determine the mechanism by which smoke-induced aggresome formation contributes to chronic obstructive pulmonary disease (COPD)-emphysema pathogenesis. Hence, Beas2b cells were treated with CS extract (CSE) for in vitro experimental analysis of CS-induced aggresome formation by immunoblotting, microscopy, and reporter assays, whereas chronic CS-exposed murine model and human COPD-emphysema lung tissues were used for validation. In preliminary analysis, we observed a significant (P < 0.01) increase in ubiquitinated protein aggregation in the insoluble protein fraction of CSE-treated Beas2b cells. We verified that CS-induced ubiquitin aggregrates are localized in the perinuclear spaces as aggresome bodies. These CS-induced aggresomes (P < 0.001) colocalize with autophagy protein microtubule-associated protein 1 light chain-3B(+) autophagy bodies, whereas U.S. Food and Drug Administration-approved autophagy-inducing drug (carbamazepine) significantly (P < 0.01) decreases their colocalization and expression, suggesting CS-impaired autophagy. Moreover, CSE treatment significantly increases valosin-containing protein-p62 protein-protein interaction (P < 0.0005) and p62 expression (aberrant autophagy marker; P < 0.0001), verifying CS-impaired autophagy as an aggresome formation mechanism. We also found that inhibiting protein synthesis by cycloheximide does not deplete CS-induced ubiquitinated protein aggregates, suggesting the role of CS-induced protein synthesis in aggresome formation. Next, we used an emphysema murine model to verify that chronic CS significantly (P < 0.0005) induces aggresome formation. Moreover, we

  9. Chronic bioassays of chlorinated humic acids in B6C3F1 mice

    SciTech Connect

    van Duuren, B.L.; Melchionne, S.; Seidman, I.; Pereira, M.A.

    1986-11-01

    Humic acids (Fluka), chlorinated to carbon:chlorine (C:Cl) ratios of 1:1 and 1:0.3, were administered to B6C3F1 mice, 50 males and 50 females per group, in the drinking water at a total organic carbon (TOC) level of 0.5 g/L. The mice were 6 to 8 weeks old at the beginning of the bioassays. The doses used were based on short-term (8 weeks) evaluations for toxicity, palatability, and weight gain. The chronic bioassays included the following control groups: unchlorinated humic acids (0.5 g/L), no-treatment (100 males and 100 females), dibromoethane (DBE, 2.0 mM in drinking water; positive control) and 0.44% sodium chloride in drinking water, i.e., at the same concentration as those receiving chlorinated humic acids. The chlorinated humic acids were prepared freshly and chemically assayed once per week. All chemicals were, with the exception of DBE, administered for 24 months; DBE was administered for 18 months. The volumes of solutions consumed were measured once weekly. All treatment groups showed normal weight gain except the DBE group. No markedly significant increases in tumor incidences were evident in any of the organs and tissues examined in the chlorinated humic acid groups compared to unchlorinated humic acids and the no-treatment control groups. DBE caused the expected high incidence of squamous carcinomas of the forestomach. The chlorinated humic acids tested contained direct-acting alkylating agents, based on their reactivity with p-nitrobenzylpyridine (PNBP), and showed mutagenic activity in S. typhimurium.

  10. ASCORBIC ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    EPA Science Inventory

    Asthma is primarily an airways inflammatory disease, and the bronchial airways have been shown to be particularly susceptible to oxidant-induced tissue damage. The antioxidant ascorbic acid (AA) plays an essential role in defending against oxidant attack in the airways. Decreased...

  11. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  12. Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease

    PubMed Central

    Esteves, Sofia; Duarte-Silva, Sara; Naia, Luana; Neves-Carvalho, Andreia; Teixeira-Castro, Andreia; Rego, Ana Cristina; Silva-Fernandes, Anabela; Maciel, Patrícia

    2015-01-01

    Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics. PMID:26505994

  13. Gynura procumbens Reverses Acute and Chronic Ethanol-Induced Liver Steatosis through MAPK/SREBP-1c-Dependent and -Independent Pathways.

    PubMed

    Li, Xiao-Jun; Mu, Yun-Mei; Li, Ting-Ting; Yang, Yan-Ling; Zhang, Mei-Tuo; Li, Yu-Sang; Zhang, Wei Kevin; Tang, He-Bin; Shang, Hong-Cai

    2015-09-30

    The present study aimed to evaluate the hepatoprotective effect and mechanism of action of Gynura procumbens on acute and chronic ethanol-induced liver injuries. Ethanol extract from G. procumbens stems (EEGS) attenuated acute ethanol-induced serum alanine aminotransferase levels and hepatic lipid accumulation. Therefore, EEGS was successively extracted by petroleum, ethyl acetate, and n-butyl alcohol. The results showed that the n-butyl alcohol extract was the active fraction of EEGS, and hence it was further fractionated on a polyamide glass column. The 60% ethanol-eluted fraction that contained 13.6% chlorogenic acid was the most active fraction, and its effect was further evaluated using a chronic model. Both the n-butyl alcohol extract and the 60% ethanol-eluted fraction inhibited chronic ethanol-induced hepatic lipid accumulation by modulating lipid metabolism-related regulators through MAPK/SREBP-1c-dependent and -independent signaling pathways and ameliorated liver steatosis. Our findings suggest that EEGS and one of its active ingredients, chlorogenic acid, may be developed as potential effective agents for ethanol-induced liver injury. PMID:26345299

  14. Glucocorticoids differentially regulate Na-bile acid cotransport in normal and chronically inflamed rabbit ileal villus cells.

    PubMed

    Coon, Steven; Kekuda, Ramesh; Saha, Prosenjit; Sundaram, Uma

    2010-05-01

    Previous studies have demonstrated that apical Na-bile acid cotransport (ASBT) is inhibited during chronic ileitis by both a decrease in the affinity as well as a decrease in the number of cotransporters. Methylprednisolone (MP), a commonly used treatment for inflammatory bowel disease (IBD, e.g., Crohn's disease), has been shown to reverse the inhibition of several other Na-solute cotransporters during chronic enteritis. However, the effect of MP on ASBT in the chronically inflamed ileum is not known. MP stimulated ASBT in villus cells from the normal rabbit ileum by increasing the cotransporter expression without a change in the affinity of the cotransporter for bile acid. Western blot studies demonstrated an increase in cotransporter expression. MP reversed the inhibition of ASBT in villus cells from the chronically inflamed ileum. Kinetic studies demonstrated that the mechanism of MP-mediated reversal of ASBT inhibition was secondary to a restoration of both affinity as well as cotransporter numbers. Western blot analysis demonstrated restoration of cotransporter numbers after MP treatment of rabbits with chronic ileitis. Thus MP stimulates ASBT in the normal ileum by increasing cotransporter numbers. MP reverses the inhibition of ASBT during chronic ileitis. However, MP restores the diminished affinity as well as cotransporter expression levels during chronic ileitis. Thus MP differentially regulates ASBT in the normal and in the chronically inflamed ileum. PMID:20075140

  15. Glucocorticoids differentially regulate Na-bile acid cotransport in normal and chronically inflamed rabbit ileal villus cells

    PubMed Central

    Coon, Steven; Kekuda, Ramesh; Saha, Prosenjit

    2010-01-01

    Previous studies have demonstrated that apical Na-bile acid cotransport (ASBT) is inhibited during chronic ileitis by both a decrease in the affinity as well as a decrease in the number of cotransporters. Methylprednisolone (MP), a commonly used treatment for inflammatory bowel disease (IBD, e.g., Crohn's disease), has been shown to reverse the inhibition of several other Na-solute cotransporters during chronic enteritis. However, the effect of MP on ASBT in the chronically inflamed ileum is not known. MP stimulated ASBT in villus cells from the normal rabbit ileum by increasing the cotransporter expression without a change in the affinity of the cotransporter for bile acid. Western blot studies demonstrated an increase in cotransporter expression. MP reversed the inhibition of ASBT in villus cells from the chronically inflamed ileum. Kinetic studies demonstrated that the mechanism of MP-mediated reversal of ASBT inhibition was secondary to a restoration of both affinity as well as cotransporter numbers. Western blot analysis demonstrated restoration of cotransporter numbers after MP treatment of rabbits with chronic ileitis. Thus MP stimulates ASBT in the normal ileum by increasing cotransporter numbers. MP reverses the inhibition of ASBT during chronic ileitis. However, MP restores the diminished affinity as well as cotransporter expression levels during chronic ileitis. Thus MP differentially regulates ASBT in the normal and in the chronically inflamed ileum. PMID:20075140

  16. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  17. Protease Inhibition by Oleic Acid Transfer From Chronic Wound Dressings to Albumin

    SciTech Connect

    Edwards, J. V.; Howley, Phyllis; Davis, Rachel M.; Mashchak, Andrew D.; Goheen, Steven C.

    2007-08-01

    High elastase and cathepsin G activities have been observed in chronic wounds. These levels can inhibit healing through degradation of growth factors, cytokines, and extracellular matrix proteins. Oleic acid (18:1) is a non-toxic elastase inhibitor with some potential for redressing the imbalance of elastase activity found in chronic wounds. Cotton wound dressing material was characterized as a transfer carrier for affinity uptake of 18:1 by albumin under conditions mimicking chronic wounds. 18:1-treated cotton was examined for its ability to bind and release the fatty acid in the presence of albumin. The mechanism of 18:1 uptake from cotton and binding by albumin was examined with both intact dressings and cotton fiber-designed chromatography. Raman spectra of the albumin-18:1 complexes under liquid-liquid equilibrium conditions revealed fully saturated albumin-18:1 complexes with a 1:1 weight ratio of albumin:18:1. Cotton chromatography under liquid-solid equilibrium conditions revealed oleic acid transfer from cotton to albumin at 27 mole equivalents of 18:1 per mole albumin. Cotton was contrasted with hydrogel, and hydrocolloid wound dressing for its comparative ability to lower elastase activity. Each dressing material evaluated was found to release 18:1 in the presence of albumin with significant inhibition of elastase activity. The 18:1-formulated wound dressings lowered elastase activity in a dose dependent manner in the order cotton gauze > hydrogel > hydrocolloid. In contrast the cationic serine protease Cathepsin G was inihibited by 18:1 within a narrow range of 18:1-cotton formulations. Four per cent Albumin solutions were most effective in binding cotton bound-18:1. However, 2% albumin was sufficient to transfer quantities of 18:1 necessary to achieve a significant elastase-lowering effect. Formulations with 128 mg 18:1/g cotton gauze had equivalent elastase lowering with 1 - 4% albumin. 18:1 bound to cotton wound dressings may have promise in the

  18. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  19. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid.

    PubMed Central

    Doares, S. H.; Narvaez-Vasquez, J.; Conconi, A.; Ryan, C. A.

    1995-01-01

    Salicylic acid (SA) and acetylsalicylic acid (ASA), previously shown to inhibit proteinase inhibitor synthesis induced by wounding, oligouronides (H.M. Doherty, R.R. Selvendran, D.J. Bowles [1988] Physiol Mol Plant Pathol 33: 377-384), and linolenic acid (H. Pena-Cortes, T. Albrecht, S. Prat, E.W. Weiler, L. Willmitzer [1993] Planta 191: 123-128), are shown here to be potent inhibitors of systemin-induced and jasmonic acid (JA)-induced synthesis of proteinase inhibitor mRNAs and proteins. The inhibition by SA and ASA of proteinase inhibitor synthesis induced by systemin and JA, as well as by wounding and oligosaccharide elicitors, provides further evidence that both oligosaccharide and polypeptide inducer molecules utilize the octadecanoid pathway to signal the activation of proteinase inhibitor genes. Tomato (Lycopersicon esculentum) leaves were pulse labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the inhibitory effects of SA are shown to be specific for the synthesis of a small number of JA-inducible proteins that includes the proteinase inhibitors. Previous results have shown that SA inhibits the conversion of 13S-hydroperoxy linolenic acid to 12-oxo-phytodienoic acid, thereby inhibiting the signaling pathway by blocking synthesis of JA. Here we report that the inhibition of synthesis of proteinase inhibitor proteins and mRNAs by SA in both light and darkness also occurs at a step in the signal transduction pathway, after JA synthesis but preceding transcription of the inhibitor genes. PMID:12228577

  20. Chronic hyperammonemia induces tonic activation of NMDA receptors in cerebellum.

    PubMed

    ElMlili, Nisrin; Boix, Jordi; Ahabrach, Hanan; Rodrigo, Regina; Errami, Mohammed; Felipo, Vicente

    2010-02-01

    Reduced function of the glutamate--nitric oxide (NO)--cGMP pathway is responsible for some cognitive alterations in rats with hyperammonemia and hepatic encephalopathy. Hyperammonemia impairs the pathway in cerebellum by increasing neuronal nitric oxide synthase (nNOS) phosphorylation in Ser847 by calcium-calmodulin-dependent protein kinase II (CaMKII), reducing nNOS activity, and by reducing nNOS amount in synaptic membranes, which reduces its activation following NMDA receptors activation. The reason for increased CaMKII activity in hyperammonemia remains unknown. We hypothesized that it would be as a result of increased tonic activation of NMDA receptors. The aims of this work were to assess: (i) whether tonic NMDA activation receptors is increased in cerebellum in chronic hyperammonemia in vivo; and (ii) whether this tonic activation is responsible for increased CaMKII activity and reduced activity of nNOS and of the glutamate--NO--cGMP pathway. Blocking NMDA receptors with MK-801 increases cGMP and NO metabolites in cerebellum in vivo and in slices from hyperammonemic rats. This is because of reduced phosphorylation and activity of CaMKII, leading to normalization of nNOS phosphorylation and activity. MK-801 also increases nNOS in synaptic membranes and reduces it in cytosol. This indicates that hyperammonemia increases tonic activation of NMDA receptors leading to reduced activity of nNOS and of the glutamate--NO--cGMP pathway. PMID:20002515

  1. Chronic Nicotine Exposure Attenuates Methamphetamine-Induced Dopaminergic Deficits.

    PubMed

    Vieira-Brock, Paula L; McFadden, Lisa M; Nielsen, Shannon M; Ellis, Jonathan D; Walters, Elliot T; Stout, Kristen A; McIntosh, J Michael; Wilkins, Diana G; Hanson, Glen R; Fleckenstein, Annette E

    2015-12-01

    Repeated methamphetamine (METH) administrations cause persistent dopaminergic deficits resembling aspects of Parkinson's disease. Many METH abusers smoke cigarettes and thus self-administer nicotine; yet few studies have investigated the effects of nicotine on METH-induced dopaminergic deficits. This interaction is of interest because preclinical studies demonstrate that nicotine can be neuroprotective, perhaps owing to effects involving α4β2 and α6β2 nicotinic acetylcholine receptors (nAChRs). This study revealed that oral nicotine exposure beginning in adolescence [postnatal day (PND) 40] through adulthood [PND 96] attenuated METH-induced striatal dopaminergic deficits when METH was administered at PND 89. This protection did not appear to be due to nicotine-induced alterations in METH pharmacokinetics. Short-term (i.e., 21-day) high-dose nicotine exposure also protected when administered from PND 40 to PND 61 (with METH at PND 54), but this protective effect did not persist. Short-term (i.e., 21-day) high-dose nicotine exposure did not protect when administered postadolescence (i.e., beginning at PND 61, with METH at PND 75). However, protection was engendered if the duration of nicotine exposure was extended to 39 days (with METH at PND 93). Autoradiographic analysis revealed that nicotine increased striatal α4β2 expression, as assessed using [(125)I]epibatidine. Both METH and nicotine decreased striatal α6β2 expression, as assessed using [(125)I]α-conotoxin MII. These findings indicate that nicotine protects against METH-induced striatal dopaminergic deficits, perhaps by affecting α4β2 and/or α6β2 expression, and that both age of onset and duration of nicotine exposure affect this protection. PMID:26391161

  2. Topical administration of hyaluronic acid in children with recurrent or chronic middle ear inflammations.

    PubMed

    Torretta, Sara; Marchisio, Paola; Rinaldi, Vittorio; Gaffuri, Michele; Pascariello, Carla; Drago, Lorenzo; Baggi, Elena; Pignataro, Lorenzo

    2016-09-01

    Hyaluronic acid (HA) treatment has been successfully performed in patients with recurrent upper airway infections or rhinitis. The aim of this study was to assess the efficacy and safety of the topical nasal administration of an HA-based compound by investigating its effects in children with recurrent or chronic middle ear inflammations and chronic adenoiditis. A prospective, single-blind, 1:1 randomised controlled study was performed to compare otoscopy, tympanometry and pure-tone audiometry in children which received the daily topical administration of normal 0.9% sodium chloride saline solution (control group) or 9 mg of sodium hyaluronate in 3 mL of a 0.9% sodium saline solution. The final analysis was based on 116 children (49.1% boys; mean age, 62.9 ± 17.9 months): 58 in the control group and 58 in the study group. At the end of follow-up, the prevalence of patients with impaired otoscopy was significantly lower in the study group (P value = 0.024) compared to baseline but not in the control group. In comparison with baseline, the prevalence of patients with impaired tympanometry at the end of the follow-up period was significantly lower in the study group (P value = 0.047) but not in the control group. The reduction in the prevalence of patients with conductive hearing loss (CHL) (P value = 0.008) and those with moderate CHL (P value = 0.048) was significant in the study group, but not in the control group. The mean auditory threshold had also significantly improved by the end of treatment in the study group (P value = 0.004) but not in the control group. Our findings confirm the safety of intermittent treatment with a topical nasal sodium hyaluronate solution and are the first to document its beneficial effect on clinical and audiological outcomes in children with recurrent or chronic middle ear inflammations associated with chronic adenoiditis. PMID:27481884

  3. Hepatic fatty acid composition differs between chronic hepatitis C patients with and without steatosis.

    PubMed

    Arendt, Bianca M; Mohammed, Saira S; Aghdassi, Elaheh; Prayitno, Nita R; Ma, David W L; Nguyen, Augustin; Guindi, Maha; Sherman, Morris; Heathcote, E Jenny; Allard, Johane P

    2009-04-01

    Hepatic fatty acid (FA) composition may influence steatosis development in patients with chronic hepatitis C (CHC). In a cross-sectional study, we compared the hepatic FA profile in hepatitis C patients with (n = 9) and without (n = 33) steatosis (> or =5% of hepatocytes involved). FA composition of hepatic and RBC total lipids was measured by gas chromatography. Lipid peroxidation and antioxidants in liver and plasma, blood biochemistry, and nutritional status were also assessed. Patients with steatosis had more fibrosis, higher necroinflammatory activity of their hepatitis C infection, were more often infected with genotype 3, and had lower serum cholesterol. Monounsaturated FA in the liver were higher and trans FA were lower in patients with steatosis. Lower stearic acid and higher oleic acid in hepatic total lipids suggested higher Delta9-desaturase activity. alpha-Linolenic acid in the liver was higher and the ratios of long-chain PUFA:essential FA precursors were lower for (n-3) and (n-6) PUFA. Plasma vitamin C was lower in steatosis, but RBC FA composition and other parameters did not differ. We conclude that hepatic FA composition is altered in patients with hepatitis C and steatosis, probably due to modulation of enzymatic elongation and desaturation. Oxidative stress or nutritional status does not seem to play a predominant role for development of steatosis in CHC. PMID:19211827

  4. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model.

    PubMed

    Scaini, Giselli; Comim, Clarissa M; Oliveira, Giovanna M T; Pasquali, Matheus A B; Quevedo, João; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Bogo, Maurício R; Streck, Emilio L

    2013-09-01

    Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD. PMID:23109061

  5. Chronic treatment with a carbon monoxide releasing molecule reverses dietary induced obesity in mice

    PubMed Central

    Hosick, Peter A; AlAmodi, Abdulhadi A; Hankins, Michael W; Stec, David E

    2016-01-01

    ABSTRACT Chronic, low level treatment with a carbon monoxide releasing molecule (CO-RM), CORM-A1, has been shown to prevent the development of obesity in response to a high fat diet. The objective of this study was to test the hypothesis that chronic, low level treatment with this CO-RM can reverse established obesity via a mechanism independent of food intake. Dietary induced obese mice were treated with CORM-A1, the inactive compound iCORM-A1, or saline every 48 hours for 30 weeks while maintained on a high fat (60%) diet. Chronic treatment with CORM-A1 resulted in a 33% decrease from initial body weight over the 30 week treatment period while treatment with iCORM and saline were associated with 18 and 25% gain in initial body weight over the same time frame. Chronic treatment with CORM-A1 did not affect food intake or activity but resulted in a significant increase in metabolism. CORM-A1 treatment also resulted in lower fasting blood glucose, improvement in insulin sensitivity and decreased heptatic steatosis. Chronic treatment with CO releasing molecules can reverse dietary induced obesity and normalize insulin resistance independent of changes in food intake or activity. These findings are likely though a mechanism which increases metabolism. PMID:27144091

  6. n-3 Fatty Acid Supplementation and Leukocyte Telomere Length in Patients with Chronic Kidney Disease.

    PubMed

    Barden, Anne; O'Callaghan, Nathan; Burke, Valerie; Mas, Emile; Beilin, Lawrence J; Fenech, Michael; Irish, Ashley B; Watts, Gerald F; Puddey, Ian B; Huang, Rae-Chi; Mori, Trevor A

    2016-03-01

    DNA telomere shortening associates with the age-related increase cardiovascular disease (CVD) risk. Reducing oxidative stress, could modify telomere erosion during cell replication, and CVD risk in patients with chronic kidney disease (CKD). The effect of n-3 fatty acids and coenzyme Q10 (CoQ) on telomere length was studied in a double-blind placebo-controlled trial in CKD. Eighty-five CKD patients were randomized to: n-3 fatty acids (4 g); CoQ (200 mg); both supplements; or control (4 g olive oil), daily for 8 weeks. Telomere length was measured in neutrophils and peripheral blood mononuclear cells (PBMC) at baseline and 8 weeks, with and without correction for cell counts. Main and interactive effects of n-3 fatty acids and CoQ on telomere length were assessed adjusting for baseline values. F₂-isoprostanes were measured as markers of oxidative stress. There was no effect of n-3 fatty acids or CoQ on neutrophil or PBMC telomere length. However, telomere length corrected for neutrophil count was increased after n-3 fatty acids (p = 0.015). Post-intervention plasma F₂-isoprostanes were negative predictors of post-intervention telomere length corrected for neutrophil count (p = 0.025).The effect of n-3 fatty acids to increased telomere length corrected for neutrophil count may relate to reduced oxidative stress and increased clearance of neutrophils with shorter telomeres from the circulation. This may be a novel mechanism of modifying CVD risk in CKD patients. PMID:27007392

  7. n-3 Fatty Acid Supplementation and Leukocyte Telomere Length in Patients with Chronic Kidney Disease

    PubMed Central

    Barden, Anne; O’Callaghan, Nathan; Burke, Valerie; Mas, Emile; Beilin, Lawrence J.; Fenech, Michael; Irish, Ashley B.; Watts, Gerald F.; Puddey, Ian B.; Huang, Rae-Chi; Mori, Trevor A.

    2016-01-01

    DNA telomere shortening associates with the age-related increase cardiovascular disease (CVD) risk. Reducing oxidative stress, could modify telomere erosion during cell replication, and CVD risk in patients with chronic kidney disease (CKD). The effect of n-3 fatty acids and coenzyme Q10 (CoQ) on telomere length was studied in a double-blind placebo-controlled trial in CKD. Eighty-five CKD patients were randomized to: n-3 fatty acids (4 g); CoQ (200 mg); both supplements; or control (4 g olive oil), daily for 8 weeks. Telomere length was measured in neutrophils and peripheral blood mononuclear cells (PBMC) at baseline and 8 weeks, with and without correction for cell counts. Main and interactive effects of n-3 fatty acids and CoQ on telomere length were assessed adjusting for baseline values. F2-isoprostanes were measured as markers of oxidative stress. There was no effect of n-3 fatty acids or CoQ on neutrophil or PBMC telomere length. However, telomere length corrected for neutrophil count was increased after n-3 fatty acids (p = 0.015). Post-intervention plasma F2-isoprostanes were negative predictors of post-intervention telomere length corrected for neutrophil count (p = 0.025).The effect of n-3 fatty acids to increased telomere length corrected for neutrophil count may relate to reduced oxidative stress and increased clearance of neutrophils with shorter telomeres from the circulation. This may be a novel mechanism of modifying CVD risk in CKD patients. PMID:27007392

  8. Chronic Intake of Japanese Sake Mediates Radiation-Induced Metabolic Alterations in Mouse Liver

    PubMed Central

    Nakajima, Tetsuo; Vares, Guillaume; Wang, Bing; Nenoi, Mitsuru

    2016-01-01

    Sake is a traditional Japanese alcoholic beverage that is gaining popularity worldwide. Although sake is reported to have beneficial health effects, it is not known whether chronic sake consumption modulates health risks due to radiation exposure or other factors. Here, the effects of chronic administration of sake on radiation-induced metabolic alterations in the livers of mice were evaluated. Sake (junmai-shu) was administered daily to female mice (C3H/He) for one month, and the mice were exposed to fractionated doses of X-rays (0.75 Gy/day) for the last four days of the sake administration period. For comparative analysis, a group of mice were administered 15% (v/v) ethanol in water instead of sake. Metabolites in the liver were analyzed by capillary electrophoresis-time-of-flight mass spectrometry one day following the last exposure to radiation. The metabolite profiles of mice chronically administered sake in combination with radiation showed marked changes in purine, pyrimidine, and glutathione (GSH) metabolism, which were only partially altered by radiation or sake administration alone. Notably, the changes in GSH metabolism were not observed in mice treated with radiation following chronic administration of 15% ethanol in water. Changes in several metabolites, including methionine and valine, were induced by radiation alone, but were not detected in the livers of mice who received chronic administration of sake. In addition, the chronic administration of sake increased the level of serum triglycerides, although radiation exposure suppressed this increase. Taken together, the present findings suggest that chronic sake consumption promotes GSH metabolism and anti-oxidative activities in the liver, and thereby may contribute to minimizing the adverse effects associated with radiation. PMID:26752639

  9. Chronic ethanol-induced changes in cardiac and neuronal ATP-sensitive potassium channels

    SciTech Connect

    Bangalore, R.; Hawthorn, M.; Triggle, D.J. )

    1992-02-26

    The present study was designed to investigate the effect of chronic ethanol consumption on cardiac and neuronal ATP-sensitive potassium channels. These channels have been shown to be regulated under diseased conditions such as congestive heart failure. Rats were chronically fed with a liquid diet containing ethanol or equicaloric amount of dextrin for the three weeks. This diet induced tolerance to ethanol as assessed by the longer time the ethanol fed rats could stay on a rotorod compared to control rats when challenged with an i.p. injection of ethanol, ATP-sensitive potassium channels were characterized using ({sup 3}H)glibenclamide binding to membrane preparations from heart, olfactory bulb, hippocampus, striatum, cerebellum, cortex, brain stem and spinal cord. Chronic ethanol consumption caused a significant increase in the K{sub D} value in the hippocampus and cerebellum, and a significant decrease in the K{sub D} value in the cortex. The K{sub D} value did not change in other brain areas and heart with chronic ethanol consumption. In contrast, chronic ethanol caused a significant decrease in the B{sub max} value in the heart, and a slight but significant increase in the B{sub max} value in the spinal cord. Chronic ethanol did not affect the B{sub max} value in other brain areas. ATP-sensitive potassium channels are differently regulated by ethanol in cardiac and neuronal preparations.

  10. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation

    PubMed Central

    Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health. PMID:26074674

  11. The role of toll-like receptor 9 in chronic stress-induced apoptosis in macrophage.

    PubMed

    Xiang, Yanxiao; Yan, Hui; Zhou, Jun; Zhang, Qi; Hanley, Gregory; Caudle, Yi; LeSage, Gene; Zhang, Xiumei; Yin, Deling

    2015-01-01

    Emerging evidence implied that chronic stress has been exerting detrimental impact on immune system functions in both humans and animals. Toll-like receptors (TLRs) have been shown to play an essential role in modulating immune responses and cell survival. We have recently shown that TLR9 deficiency protects against lymphocyte apoptosis induced by chronic stress. However, the exact role of TLR9 in stress-mediated change of macrophage function remains unclear. The results of the current study showed that when BALB/c mice were treated with restraint stress (12 h daily for 2 days), the number of macrophages recruited to the peritoneal cavity was obviously increased. Results also demonstrated that the sustained effects of stress elevated cytokine IL-1β, TNF-α and IL-10 production yet diminished IFN-γ production from macrophage, which led to apoptotic cell death. However, TLR9 deficiency prevented the chronic stress-mediated accumulation of macrophages. In addition, knocking out TLR9 significantly abolished the chronic stress-induced imbalance of cytokine levels and apoptosis in macrophage. TLR9 deficiency was also found to reverse elevation of plasma IL-1β, IL-10 and IL-17 levels and decrease of plasma IFN-γ level under the condition of chronic stress. These results indicated that TLR9-mediated macrophage responses were required for chronic stress-induced immunosuppression. Further exploration showed that TLR9 deficiency prevented the increment of p38 MAPK phosphorylation and reduction of Akt/Gsk-3β phosphorylation; TLR9 deficiency also attenuated the release of mitochondrial cytochrome c into cytoplasm, caused upregulation of Bcl-2/Bax protein ratio, downregulation of cleavage of caspase-3 and PARP, as well as decreased TUNEL-positive cells in macrophage of stressed mice. Collectively, our studies demonstrated that deficiency of TLR9 maintained macrophage function by modulating macrophage accumulation and attenuating macrophage apoptosis, thus preventing

  12. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Lawson, Marcus A.; Chiu, Gabriel S.; Blevins, Neil A.; Kwakwa, Kristin A.; Freund, Gregory G.

    2014-01-01

    Objectives Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that lasts beyond an acute elevation in plasma FFAs. Methods Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 hrs after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. Results In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hrs after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24 hrs after palmitic acid treatment. Conclusions Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. PMID:25016520

  13. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  14. Bile acids induce hepatic differentiation of mesenchymal stem cells

    PubMed Central

    Sawitza, Iris; Kordes, Claus; Götze, Silke; Herebian, Diran; Häussinger, Dieter

    2015-01-01

    Mesenchymal stem cells (MSC) have the potential to differentiate into multiple cell lineages and their therapeutic potential has become obvious. In the liver, MSC are represented by stellate cells which have the potential to differentiate into hepatocytes after stimulation with growth factors. Since bile acids can promote liver regeneration, their influence on liver-resident and bone marrow-derived MSC was investigated. Physiological concentrations of bile acids such as tauroursodeoxycholic acid were able to initiate hepatic differentiation of MSC via the farnesoid X receptor and transmembrane G-protein-coupled bile acid receptor 5 as investigated with knockout mice. Notch, hedgehog, transforming growth factor-β/bone morphogenic protein family and non-canonical Wnt signalling were also essential for bile acid-mediated differentiation, whereas β-catenin-dependent Wnt signalling was able to attenuate this process. Our findings reveal bile acid-mediated signalling as an alternative way to induce hepatic differentiaion of stem cells and highlight bile acids as important signalling molecules during liver regeneration. PMID:26304833

  15. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats

    PubMed Central

    Zhang, Ning; Liang, Hanyu; Farese, Robert V.; Li, Ji

    2015-01-01

    Aims To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. Materials and Methods For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Results Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Conclusions Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo. PMID:26196892

  16. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    PubMed

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). PMID:25692407

  17. Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo.

    PubMed

    Jin, Xing-Ji; Kim, Eun Ju; Oh, In Kyung; Kim, Yeon Kyung; Park, Chi-Hyun; Chung, Jin Ho

    2010-06-01

    Polyunsaturated fatty acids (PUFAs) are known to play important roles in various physiological and pathological processes. Recent studies have shown that some omega-3 (omega-3) PUFAs, such as eicosapentaenoic acid (EPA) and dodecahexaenoic acid (DHA), have protective effects on acute and chronic UV-induced changes. However, the effects of other omega-3 PUFAs including 11,14,17-eicosatrienoic acid (20:3) (ETA) on UV-induced skin damages are poorly understood. In this study, we investigated the cutaneous photoprotective effects of ETA in hairless mice in vivo. Female HR-1 hairless mice were topically treated with vehicle (ethanol:polyethylene glycol=30:70) only, 0.1% ETA, or 1% ETA once a day for 3 successive days after one time UV irradiation (200 mJ/cm(2)) on dorsal skins. Skin biopsy was carried out on the fourth day (72 hr after UV irradiation). We found that topical treatment with ETA attenuated UV-induced epidermal and dermal thickness and infiltration of inflammatory cells, and impairment of skin barrier function. In addition, ETA suppressed the expression of IL-1beta, COX-2, and MMP-13 induced by UV irradiation. Our results show that the topical application of ETA protects against UV-induced skin damage in hairless mice and suggest that ETA can be a potential agent for preventing and/or treating UV-induced inflammation and photoaging. PMID:20514317

  18. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Hepatic Steatosis and Inflammation: Role of Autophagy

    PubMed Central

    Guo, Rui; Xu, Xihui; Babcock, Sara A.; Zhang, Yingmei; Ren, Jun

    2014-01-01

    Background & Aims Mitochondrial aldehyde dehydrogenase (ALDH2) plays a critical role in the detoxification of the ethanol metabolite acetaldehyde. This study was designed to examine the impact of global ALDH2 overexpression on alcohol-induced hepatic steatosis. Methods Wild-type friendly virus B (FVB) and ALDH2 transgenic mice were placed on a 4% alcohol or control diet for 12 weeks. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin and cholesterol, hepatic triglyceride, steatosis, fat metabolism-related proteins, pro-inflammatory cytokines, glutathione (GSH), oxidized glutathione (GSSG), autophagy and autophagy signaling were examined. The role of autophagy was evaluated in ADH1-transfected human hepatocellular liver carcinoma cells (VA-13) treated with or without autophagy inducer rapamycin and lysosomal inhibitors. Results Chronic alcohol intake led to elevated AST, ALT, bilirubin, AST/ALT ratio, cholesterol, hepatic triglycerides, hepatic fat deposition as evidenced by H&E and oil Red O staining, associated with disturbed fat metabolism-related proteins (fatty acid synthase, SCD1), upregulated interleukin-6, TNF-α, cyclooxygenase, oxidative stress, and loss of autophagy, the effects of which were attenuated or ablated by ALDH2 transgene. Moreover, ethanol (100 mM) and acetaldehyde (100, 500 μM) increased levels of IL-6 and IFN-γ, and suppressed autophagy in VA-13 cells, the effects of which were markedly alleviated by rapamycin. In addition, lysosomal inhibitors mimicked ethanol-induced p62 accumulation with little additive effect with ethanol. Ethanol significantly suppressed LC3 conversion in the presence of lysosomal inhibitors. Conclusions In summary, our results revealed that ALDH2 plays a beneficial role in ameliorating chronic alcohol intake-induced hepatic steatosis and inflammation through regulation of autophagy. PMID:25457208

  19. Differential expression of stress-inducible proteins in chronic hepatic iron overload

    SciTech Connect

    Brown, Kyle E. Broadhurst, Kimberly A.; Mathahs, M. Meleah; Weydert, Jamie

    2007-09-01

    Introduction:: Oxidative stress can trigger a cellular stress response characterized by induction of antioxidants, acute phase reactants (APRs) and heat shock proteins (HSPs), which are presumed to play a role in limiting tissue damage. In rodents, hepatic iron overload causes oxidative stress that results in upregulation of antioxidant defenses with minimal progressive liver injury. The aim of this study was to determine whether iron overload modulates expression of other stress-responsive proteins such as APRs and HSPs that may confer protection against iron-induced damage in rodent liver. Methods:: Male rats received repeated injections of iron dextran or dextran alone over a 6-month period. Hepatic transcript levels for a panel of APRs and HSPs were quantitated by real-time PCR and protein expression was evaluated by Western blot and immunohistochemistry. Results:: Hepatic iron concentrations were increased > 50-fold in the iron-loaded rats compared to controls. Iron loading resulted in striking increases in mRNAs for Hsp32 (heme oxygenase-1; 12-fold increase vs. controls) and metallothionein-1 and -2 (both increased {approx} 6-fold). Transcripts for {alpha}1-acid glycoprotein, the major rat APR, were increased {approx} 3-fold, while expression of other classical APRs was unaltered. Surprisingly, although mRNA levels for the HSPs were not altered by iron, the abundance of Hsp25, Hsp70 and Hsp90 proteins was uniformly reduced in the iron-loaded livers, as were levels of NAD(P)H:quinone oxidoreductase 1, an Hsp70 client protein. Conclusions:: Chronic iron administration elicits a unique pattern of stress protein expression. These alterations may modulate hepatic responses to iron overload, as well as other injury processes.

  20. Chronic postnatal stress induces voluntary alcohol intake and modifies glutamate transporters in adolescent rats.

    PubMed

    Odeon, María Mercedes; Andreu, Marcela; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2015-01-01

    Postnatal stress alters stress responses for life, with serious consequences on the central nervous system (CNS), involving glutamatergic neurotransmission and development of voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 °C) for 1 h daily for 20 days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7 days (5-7 rats per group), then killed. CPS: (1) increased voluntary ethanol intake, (2) did not affect body weight gain or produce signs of toxicity with alcohol exposure, (3) increased glutamate uptake by hippocampal synaptosomes in vitro and (4) reduced protein levels (Western measurements) in hippocampus and frontal cortex of glial glutamate transporter-1 (GLT-1) and excitatory amino-acid transporter-3 (EAAT-3) but increased glutamate aspartate transporter (GLAST) levels. We propose that CPS-induced decrements in GLT-1 and EAAT-3 expression levels are opposed by activation of a compensatory mechanism to prevent excitotoxicity. A greater role for GLAST in total glutamate uptake to prevent enlarged extracellular glutamate levels is inferred. Although CPS strongly increased intake of ethanol, this had little impact on effects of CPS on brain glutamate uptake or transporters. However, the impact of early life adverse events on glutamatergic neurotransmission may underlie increased alcohol consumption in adulthood. PMID:26037264

  1. Regulation of acid-base equilibrium in chronic hypocapnia. Evidence that the response of the kidney is not geared to the defense of extracellular (H+).

    PubMed Central

    Cohen, J J; Madias, N E; Wolf, C J; Schwartz, W B

    1976-01-01

    It is generally believed that the reduction in plasma [HCO3] characteristic of chronic hypocapnia results from renal homeostatic mechanisms designed to minimize the alkalemia produced by.the hypocapneic state. To test this hypothesis, we have induced chronic hypocapnia in dogs in which plasma [HCO3] had previously been markedly reduced (from 21 to 15 meq/liter) by the prolonged feeding of HCl. The PaCO2 of chronically acid-fed animals was reduced from 32 to 15 mm Hg by placing the animials in a large environmental chamber containing 9% oxygen. In response to this reduction in PaCO2, mean plasma [HCO3] fell by 8.6 meq/liter, reaching a new steady-state level of 6.4 meq/liter. This decrement in plasma [HCO3] is almost identical to the 8.1 meq/liter decrement previously observed in normal (nonacid-fed) animals in which the same degree of chronic hypocapnia had been induced. Thus, in both normal and HCl-fed animals, the renal response to chronic hypocapnia causes plasma [HCO3] to fall by approximately 0.5 meq/liter for each millimeter of Hg reduction in CO2 tension. By contrast, the response of plasma [H+] in the two groups was markedly different. Instead of the fall in [H+] which is seen during chronic hypocapnia in normal animals, [H+] in HCl-fed animals rose significantly from 53 to 59 neq/liter (pH 7.28-7.23). This seemingly paradoxical response is, of course, an expression of the constraints imposed by the Henderson equation and reflects the fact that the percent fall in [HCO3] in the HCl-fed animals was greater than the percent fall in PaCO2. These findings clearly indicate that in chronic hypocapnia the kidney cannot be regarded as the effector limb in a homeostatic feedback system geared to the defense of systemic acidity. Images PMID:6488

  2. Inducing Chronic Excitotoxicity in the Mouse Spinal Cord to Investigate Lower Motor Neuron Degeneration

    PubMed Central

    Blizzard, Catherine A.; Lee, K. M.; Dickson, Tracey C.

    2016-01-01

    We report the methodology for the chronic delivery of an excitotoxin to the mouse spinal cord via surgically implanted osmotic mini-pumps. Previous studies have investigated the effect of chronic application of excitotoxins in the rat, however there has been little translation of this model to the mouse. Using mice that express yellow fluorescent protein (YFP), motor neuron and neuromuscular junction alterations can be investigate following targeted, long-term (28 days) exposure to the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor excitotoxin, kainic acid. By targeting the L3-4 region of the lumbar spinal cord, with insertion of an intrathecal catheter into the subarachnoid space at L5, chronic application of the kainic acid results in slow excitotoxic death in the anterior ventral horn, with a significant (P < 0.05) reduction in the number of SMI-32 immunopositive neurons present after 28 days infusion. Use of the Thy1-YFP mice provides unrivaled visualization of the neuromuscular junction and enables the resultant distal degeneration in skeletal muscle to be observed. Both neuromuscular junction retraction at the gastrocnemius muscle and axonal fragmentation in the sciatic nerve were observed after chronic infusion of kainic acid for 28 days. Lower motor neuron, and distal neuromuscular junction, degeneration are pathological hallmarks of the devastating neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). This mouse model will be advantageous for increasing our understanding of how the pathophysiological phenomena associated with this disease can lead to lower motor neuron loss and distal pathology, as well as providing a robust in vivo platform to test therapeutic interventions directed at excitotoxic mechanisms. PMID:26973454

  3. Kolaviron and L-Ascorbic Acid Attenuate Chlorambucil-Induced Testicular Oxidative Stress in Rats

    PubMed Central

    2014-01-01

    Chlorambucil (4-[4-[bis(2-chloroethyl)amino]phenyl]butanoic acid) is an alkylating agent, indicated in chronic lymphocytic leukaemia. Kolaviron (KV), a biflavonoid complex from Garcinia kola, and L-ascorbic acid (AA) are known to protect against oxidative damage in vivo. This study evaluates the protective capacity of KV and AA on chlorambucil-induced oxidative stress in the testes of rat. Twenty male Wistar rats (180–200 g) were randomized into four groups: I: control, II: chlorambucil (0.2 mg/kg b.w.), III: 0.2 mg/kg chlorambucil and 100 mg/kg KV, and IV: 0.2 mg/kg chlorambucil and 100 mg/kg AA. After 14 days of treatments, results indicated that chlorambucil caused significant reduction (P < 0.05) in testicular vitamin C and glutathione by 32% and 39%, respectively, relative to control. Similarly, activities of testicular GST, SOD, and CAT reduced significantly by 48%, 47%, and 49%, respectively, in chlorambucil-treated rats relative to control. Testicular MDA and activities of ALP, LDH, and ACP were increased significantly by 53%, 51%, 64%, and 70%, respectively, in the chlorambucil-treated rat. However, cotreatment with KV and AA offered protection and restored the levels of vitamin C, GSH, and MDA as well as SOD, CAT, GST, ACP, ALP, and LDH activities. Overall, kolaviron and L-ascorbic acid protected against chlorambucil-induced damage in the testes of the rat. PMID:25309592

  4. Reduced Gut Acidity Induces an Obese-Like Phenotype in Drosophila melanogaster and in Mice

    PubMed Central

    Yen, Jui-Hung; Kuo, Ping-Chang; Yeh, Sheng-Rong; Lin, Hung-Yu; Fu, Tsai-Feng; Wu, Ming-Shiang; Wang, Horng-Dar; Wang, Pei-Yu

    2015-01-01

    In order to identify genes involved in stress and metabolic regulation, we carried out a Drosophila P-element-mediated mutagenesis screen for starvation resistance. We isolated a mutant, m2, that showed a 23% increase in survival time under starvation conditions. The P-element insertion was mapped to the region upstream of the vha16-1 gene, which encodes the c subunit of the vacuolar-type H+-ATPase. We found that vha16-1 is highly expressed in the fly midgut, and that m2 mutant flies are hypomorphic for vha16-1 and also exhibit reduced midgut acidity. This deficit is likely to induce altered metabolism and contribute to accelerated aging, since vha16-1 mutant flies are short-lived and display increases in body weight and lipid accumulation. Similar phenotypes were also induced by pharmacological treatment, through feeding normal flies and mice with a carbonic anhydrase inhibitor (acetazolamide) or proton pump inhibitor (PPI, lansoprazole) to suppress gut acid production. Our study may thus provide a useful model for investigating chronic acid suppression in patients. PMID:26436771

  5. Chronic suppurative otitis media due to nontuberculous mycobacteria: A case of successful treatment with topical boric acid.

    PubMed

    Lefebvre, Marie-Astrid; Quach, Caroline; Daniel, Sam J

    2015-07-01

    Nontuberculous mycobacteria (NTM) are an increasingly recognized cause of chronic suppurative otitis media in children with tympanostomy tubes. Treatment of this condition is difficult and typically requires a combination of systemic antibiotics and surgical debridement. We present the first case of a 2-year-old male with chronic suppurative otitis media due to NTM who failed systemic antibiotic therapy and was successfully managed with topical boric acid powder. This report highlights the challenges involved in treating this infection, and introduces boric acid as a potentially valuable component of therapy. PMID:26026892

  6. Anti-inflammatory effect of a novel food Cordyceps guangdongensis on experimental rats with chronic bronchitis induced by tobacco smoking.

    PubMed

    Yan, Wenjuan; Li, Taihui; Zhong, Zhiyong

    2014-10-01

    Cordyceps guangdongensis T. H. Li, Q. Y. Lin & B. Song (Cordycipitaceae) is a novel food approved by the Ministry of Public Health of China in 2013. Preliminary studies revealed that this novel food has multiple pharmacological activities such as anti-fatigue effect, antioxidant ability, prolonging life, anti-avian influenza virus activity, and therapeutic effect on chronic renal failure. However, the anti-inflammatory effect on chronic bronchitis and the effective constituent are still unknown. The purpose of this study was to investigate both the anti-inflammatory effect of the edible fungus on experimental rats with chronic bronchitis induced by tobacco smoking, and the pilot effective constituent. Test rats were intragastrically administered with 3 doses of hot-water extract from C. guangdongensis (0.325, 0.65 and 1.30 g kg(-1) bw daily for low, middle and high dose, respectively) for 26 days. Biochemical indices and histological examinations in rats with chronic bronchitis induced by tobacco smoking were determined. The content and molecular weights of the polysaccharide from the hot-water extract were detected by the phenol-sulfuric acid method and gel permeation chromatography, respectively. Biochemical indices in the low, middle and high-dose groups with the hot-water extract of C. guangdongensis were only 53.4%, 46.0% and 40.4% of those in the model control group (total leukocytes), respectively; 70.7%, 60.3% and 58.1% (macrophages); 33.0%, 26.8% and 16.1% (neutrophils); and 22.2%, 23.5% and 13.6% (lymphocytes) of those in the model control group. The bronchial lesions and inflammatory cell infiltration were significantly alleviated in all groups with hot-water extract of C. guangdongensis. This study indicates that the hot-water extract from C. guangdongensis has a significant anti-inflammatory effect on chronic bronchitis. The content of the polysaccharide was 6.92%; the molecular weights of the 3 polysaccharide components were respectively 1.28 × 10

  7. Knockdown of hypothalamic RFRP3 prevents chronic stress-induced infertility and embryo resorption

    PubMed Central

    Geraghty, Anna C; Muroy, Sandra E; Zhao, Sheng; Bentley, George E; Kriegsfeld, Lance J; Kaufer, Daniela

    2015-01-01

    Whereas it is well established that chronic stress induces female reproductive dysfunction, whether stress negatively impacts fertility and fecundity when applied prior to mating and pregnancy has not been explored. In this study, we show that stress that concludes 4 days prior to mating results in persistent and marked reproductive dysfunction, with fewer successful copulation events, fewer pregnancies in those that successfully mated, and increased embryo resorption. Chronic stress exposure led to elevated expression of the hypothalamic inhibitory peptide, RFamide-related peptide-3 (RFRP3), in regularly cycling females. Remarkably, genetic silencing of RFRP3 during stress using an inducible-targeted shRNA completely alleviates stress-induced infertility in female rats, resulting in mating and pregnancy success rates indistinguishable from non-stress controls. We show that chronic stress has long-term effects on pregnancy success, even post-stressor, that are mediated by RFRP3. This points to RFRP3 as a potential clinically relevant single target for stress-induced infertility. DOI: http://dx.doi.org/10.7554/eLife.04316.001 PMID:25581095

  8. Effects of chronic normovolemic anemia on gastric microcirculation and ethanol-induced gastric damage in rats.

    PubMed

    Marroni, N; Casadevall, M; Panés, J; Piera, C; Jou, J M; Pique, J M

    1994-04-01

    The effects of chronic normovolemic anemia on gastric microcirculation and gastric mucosal susceptibility to ethanol-induced gastric damage were investigated in anesthetized rats. Blood exchange by a plasma expander during four consecutive days rendered the animals anemic with a 34% decrease in the baseline hematocrit but without affecting blood volume. Chronic anemia induced a decrease in whole blood viscosity, an increase in gastric mucosal blood flow measured by hydrogen gas clearance, a decrease in gastric vascular resistance, and a decrease in gastric hemoglobin content without changes in the gastric oxygen content, the latter two parameters being measured by reflectance spectrophotometry. Gastric mucosal blood flow was lowered by intragastric administration of 100% ethanol in both anemic and control rats, but the final blood flow was significantly higher in anemic than in control animals. Macroscopic gastric damage induced by ethanol administration was significantly lower in anemic than in control rats. We conclude that chronic normovolemic anemia increases gastric mucosal blood flow and leads a protecting mechanism against gastric mucosal damage induced by absolute ethanol. PMID:8149840

  9. Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury

    PubMed Central

    Himpe, Eddy; Cunha, Daniel A.; Song, Imane; Bugliani, Marco; Marchetti, Piero; Cnop, Miriam; Bouwens, Luc

    2016-01-01

    Objective Previous studies demonstrated that a phenylpropenoic acid glucoside (PPAG) from rooibos (Aspalathus linearis) extract had anti-hyperglycemic activity and significant protective effects on the pancreatic beta cell mass in a chronic diet-induced diabetes model. The present study evaluated the cytoprotective effect of the phytochemical on beta cells exposed to acute cell stress. Methods Synthetically prepared PPAG was administered orally in mice treated with a single dose of streptozotocin to acutely induce beta cell death and hyperglycemia. Its effect was assessed on beta cell mass, proliferation and apoptotic cell death. Its cytoprotective effect was also studied in vitro on INS-1E beta cells and on human pancreatic islet cells. Results Treatment with the phytochemical PPAG protected beta cells during the first days after the insult against apoptotic cell death, as evidenced by TUNEL staining, and prevented loss of expression of anti-apoptotic protein BCL2 in vivo. In vitro, PPAG protected INS-1E beta cells from streptozotocin-induced apoptosis and necrosis in a BCL2-dependent and independent way, respectively, depending on glucose concentration. PPAG also protected human pancreatic islet cells against the cytotoxic action of the fatty acid palmitate. Conclusions These findings show the potential use of PPAG as phytomedicine which protects the beta cell mass exposed to acute diabetogenic stress. PMID:27299564

  10. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. PMID:26740181

  11. γ-Hydroxybutyric Acid-Induced Electrographic Seizures

    PubMed Central

    Cheung, Joseph; Lucey, Brendan P.; Duntley, Stephen P.; Darken, Rachel S.

    2014-01-01

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. Citation: Cheung J, Lucey BP, Duntley SP, Darken RS. γ-hydroxybutyric acid-induced electrographic seizures. J Clin Sleep Med 2014;10(7):811-812. PMID:25024661

  12. Chronic heart failure selectively induces regional heterogeneity of insulin-responsive glucose transporters

    PubMed Central

    Ware, Bruce; Bevier, Marie; Nishijima, Yoshinori; Rogers, Suzanne; Carnes, Cynthia A.

    2011-01-01

    Glucose uptake across the sarcolemma is regulated by a family of membrane proteins called glucose transporters (GLUTs), which includes GLUT4 (the major cardiac isoform) and GLUT12 (a novel, second insulin-sensitive isoform). Potential regional patterns in glucose transport across the cardiac chambers have not been examined; thus, we hypothesized that insulin-responsive GLUT4 and -12 protein and gene expression would be chamber specific in healthy subjects and during chronic heart failure (HF). Using a canine model of tachypacing-induced, progressive, chronic HF, total GLUT protein and messenger RNA in both ventricles and atria (free wall and appendage) were investigated by immunoblotting and real-time PCR. In controls, GLUT4, but not GLUT12, protein content was significantly higher in the atria compared with the ventricles, with the highest content in the right atrium (RA; P < 0.001). GLUT4 and GLUT12 mRNA levels were similar across the cardiac chambers. During chronic HF, GLUT4 and GLUT12 protein content was highest in the left ventricle (LV; by 2.5- and 4.2-fold, respectively, P < 0.01), with a concomitant increase in GLUT4 and GLUT12 mRNA (P < 0.001). GLUT4, but not GLUT12, protein content was decreased in RA during chronic HF (P = 0.001). In conclusion, GLUT4 protein was differentially expressed across the chambers in the healthy heart, and this regional pattern was reversed during HF. Our data suggest that LV was the primary site dependent on both GLUT4 and GLUT12 during chronic HF. In addition, the paradoxical decrease in GLUT4 content in RA may induce perturbations in atrial energy production during chronic HF. PMID:21849635

  13. Eicosapentaenoic acid attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling

    PubMed Central

    Liu, Meng-Han; Lin, An-Hsuan; Lu, Shing-Hwa; Peng, Ruo-Yun; Lee, Tzong-Shyuan; Kou, Yu Ru

    2014-01-01

    Cigarette smoking causes chronic lung inflammation that is mainly regulated by redox-sensitive pathways. Our previous studies have demonstrated that cigarette smoke (CS) activates reactive oxygen species (ROS)-sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling resulting in induction of lung inflammation. Eicosapentaenoic acid (EPA), a major type of omega-3 polyunsaturated fatty acid, is present in significant amounts in marine-based fish and fish oil. EPA has been shown to possess antioxidant and anti-inflammatory properties in vitro and in vivo. However, whether EPA has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we show that subchronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration (total cell count in bronchoalveolar lavage fluid (BALF), 11.0-fold increase), increased lung vascular permeability (protein level in BALF, 3.1-fold increase), elevated levels of chemokines (11.4–38.2-fold increase) and malondialdehyde (an oxidative stress biomarker; 2.0-fold increase) in the lungs, as well as lung inflammation; all of these CS-induced events were suppressed by daily supplementation with EPA. Using human bronchial epithelial cells, we further show that CS extract (CSE) sequentially activated NADPH oxidase (NADPH oxidase activity, 1.9-fold increase), increased intracellular levels of ROS (3.0-fold increase), activated both MAPKs and NF-κB, and induced interleukin-8 (IL-8; 8.2-fold increase); all these CSE-induced events were inhibited by pretreatment with EPA. Our findings suggest a novel role for EPA in alleviating the oxidative stress and lung inflammation induced by subchronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro via its antioxidant function and by inhibiting MAPKs/NF-κB signaling. PMID:25452730

  14. Chronic exposure to particulate chromate induces spindle assembly checkpoint bypass in human lung cells.

    PubMed

    Wise, Sandra S; Holmes, Amie L; Xie, Hong; Thompson, W Douglas; Wise, John Pierce

    2006-11-01

    One of the hallmarks of lung cancer is chromosome instability (CIN), particularly a tetraploid phenotype, which is normally prevented by the spindle assembly checkpoint. Hexavalent chromium Cr(VI) is an established human lung carcinogen, and Cr(VI) induces tumors at lung bifurcation sites where Cr(VI) particles impact and persist. However, the effects of Cr(VI) on the spindle assembly checkpoint are unknown and little is known about prolonged exposure to particulate Cr(VI). Accordingly, we investigated particulate Cr(VI)-induced bypass of the spindle assembly checkpoint after several days of exposure in WHTBF-6 cells. We found that lead chromate indeed induces spindle assembly checkpoint bypass in human lung cells, as 72, 96, and 120 h treatments with 0.5 or 1 microg/cm2 lead chromate induced significant increases in the percentage of cells with aberrant mitotic figures. For example, treatment with 1 microg/cm2 lead chromate for 96 h induced 11, 12.3, and 14% of cells with premature anaphase, centromere spreading and premature centromere division, respectively. In addition, we found a disruption of mitosis with more cells accumulating in anaphase; cells treated for 96 h increased from 18% in controls to 31% in cells treated with lead chromate. To confirm involvement of the spindle assembly checkpoint, Mad2 expression was used as a marker. Mad2 expression was decreased in cells exposed to chronic treatments of lead chromate, consistent with disruption of the checkpoint. We also found concentration- and time-dependent increases in tetraploid cells, which continued to grow and form colonies. When cells were treated with chronic lead alone there was no increase in aberrant mitotic cells or polyploidy; however, chronic exposure to a soluble Cr(VI) showed an increase in aberrant mitotic cells and polyploidy. These data suggest that lead chromate does induce CIN and may be one mechanism in the development of Cr(VI)-induced lung cancer. PMID:17112237

  15. Oleanolic acid prevents glucocorticoid-induced hypertension in rats.

    PubMed

    Bachhav, Sagar S; Patil, Savita D; Bhutada, Mukesh S; Surana, Sanjay J

    2011-10-01

    The present study was designed to evaluate the antihypertensive activity of oleanolic acid isolated from Viscum articulatum, Burm. (Loranthaceae) in glucocorticoid (dexamethasone)-induced hypertension in rats and to propose a probable mechanism of action for this effect. Male Wistar rats (300-350 g) received dexamethasone (20 μg/kg/day s.c.) or saline (vehicle) for 10 days. In a prevention study, the rats received oleanolic acid (60 mg/kg i.p.) for 5 days, followed by dexamethasone or saline for 10 days. During this period the systolic blood pressure and body weight were evaluated on alternate days. At the end of the experiment, the weight of the thymus gland, plasma nitrate/nitrite (nitric oxide metabolites) concentration and cardiac lipid peroxidation value were determined. Oleanolic acid (60 mg/kg i.p.) significantly prevented a rise in the systolic blood pressure and cardiac lipid peroxidation level after administration of dexamethasone (p < 0.01 and p < 0.05, respectively) without showing any significant effect on the dexamethasone-induced change in body and thymus weights. The decrease in concentration of plasma nitrate/nitrite due to dexamethasone was prevented significantly in the group treated with oleanolic acid (p < 0.05). These findings suggest that oleanolic acid (60 mg/kg i.p.) prevents dexamethasone-induced hypertension in rats, which may be attributed to its antioxidant and nitric oxide releasing action. PMID:21953707

  16. Overlapping Mechanisms of Stress-Induced Relapse to Opioid Use Disorder and Chronic Pain: Clinical Implications

    PubMed Central

    Ghitza, Udi E.

    2016-01-01

    Over the past two decades, a steeply growing number of persons with chronic non-cancer pain have been using opioid analgesics chronically to treat it, accompanied by a markedly increased prevalence of individuals with opioid-related misuse, opioid use disorders, emergency department visits, hospitalizations, admissions to drug treatment programs, and drug overdose deaths. This opioid misuse and overdose epidemic calls for well-designed randomized-controlled clinical trials into more skillful and appropriate pain management and for developing effective analgesics that have lower abuse liability and are protective against stress induced by chronic non-cancer pain. However, incomplete knowledge regarding effective approaches to treat various types of pain has been worsened by an under-appreciation of overlapping neurobiological mechanisms of stress, stress-induced relapse to opioid use, and chronic non-cancer pain in patients presenting for care for these conditions. This insufficient knowledge base has unfortunately encouraged common prescription of conveniently available opioid pain-relieving drugs with abuse liability, as opposed to treating underlying problems using team-based multidisciplinary, patient-centered, collaborative-care approaches for addressing pain and co-occurring stress and risk for opioid use disorder. This paper reviews recent neurobiological findings regarding overlapping mechanisms of stress-induced relapse to opioid misuse and chronic non-cancer pain, and then discusses these in the context of key outstanding evidence gaps and clinical-treatment research directions that may be pursued to fill these gaps. Such research directions, if conducted through well-designed randomized-controlled trials, may substantively inform clinical practice in general medical settings on how to effectively care for patients presenting with pain-related distress and these common co-occurring conditions. PMID:27199787

  17. Chronic Normobaric Hypoxia Induces Pulmonary Hypertension in Rats: Role of NF-κB.

    PubMed

    Fan, Junming; Fan, Xiaofang; Li, Yang; Ding, Lu; Zheng, Qingqing; Guo, Jinbin; Xia, Dongmei; Xue, Feng; Wang, Yongyu; Liu, Shufang; Gong, Yongsheng

    2016-03-01

    Junming Fan, Xiaofang Fan, Yang Li, Lu Ding, Qingqing Zheng, Jinbin Guo, Dongmei Xia, Feng Xue, Yongyu Wang, Shufang Liu, and Yongsheng Gong. Chronic normobaric hypoxia induces pulmonary hypertension in rats: role of NF-κB. High Alt Med Biol 17:43-49, 2016.-To investigate whether nuclear factor-kappa B (NF-κB) activation is involved in chronic normobaric hypoxia-induced pulmonary hypertension (PH), rats were treated with saline or an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC, 150 mg/kg, sc, twice daily), and exposed to normoxia or chronic normobaric hypoxia with a fraction of inspired oxygen of ∼0.1 for 14 days. Lung tissue levels of NF-κB activity, and interleukin (IL)-1β, IL-6, and cyclooxygenase-2 mRNAs, were determined, and mean pulmonary arterial pressure, right ventricular hypertrophy, and right heart function were evaluated. Compared to the normoxia exposure group, rats exposed to chronic normobaric hypoxia showed an increased NF-κB activity, measured by increased nuclear translocation of p50 and p65 proteins, an increased inflammatory gene expression in the lungs, elevated mean pulmonary arterial blood pressure and mean right ventricular pressure, right ventricular hypertrophy, as assessed by right ventricle-to-left ventricle plus septum weight ratio, and right heart dysfunction. Treatment of hypoxia-exposed rats with PDTC inhibited NF-κB activity, decreased pulmonary arterial blood pressure and right ventricular pressure, and ameliorated right ventricular hypertrophy and right heart dysfunction. Hypoxia exposure increased protein kinase C activity and promoted pulmonary artery smooth muscle cell proliferation in vitro. Our data suggest that NF-κB activation may contribute to chronic normobaric hypoxia-induced PH. PMID:26788753

  18. Chronic administration of antipsychotics attenuates ongoing and ketamine-induced increases in cortical γ oscillations.

    PubMed

    Anderson, Paul M; Pinault, Didier; O'Brien, Terence J; Jones, Nigel C

    2014-11-01

    Noncompetitive N-methyl-d-aspartate receptor (NMDAr) antagonists can elicit many of the symptoms observed in schizophrenia in healthy humans, and induce a behavioural phenotype in animals relevant to psychosis. These compounds also elevate the power and synchrony of gamma (γ) frequency (30-80 Hz) neural oscillations. Acute doses of antipsychotic medications have been shown to reduce ongoing γ power and to inhibit NMDAr antagonist-mediated psychosis-like behaviour in rodents. This study aimed to investigate how a chronic antipsychotic dosing regimen affects ongoing cortical γ oscillations, and the electrophysiological and behavioural responses induced by the NMDAr antagonist ketamine. Male Wistar rats were chronically treated with haloperidol (0.25 mg/kg/d), clozapine (5 mg/kg/d), LY379268 (0.3 mg/kg/d) or vehicle for 28 d, delivered by subcutaneous (s.c.) osmotic pumps. Weekly electrocorticogram (ECoG) recordings were acquired. On day 26, ketamine (5 mg/kg, s.c.) was administered, and ECoG and locomotor activity were simultaneously measured. These results were compared with data generated previously following acute treatment with these antipsychotics. Sustained and significant decreases in ongoing γ power were observed during chronic administration of haloperidol (64%) or clozapine (43%), but not of LY379268 (2% increase), compared with vehicle. Acute ketamine injection concurrently increased γ power and locomotor activity in vehicle-treated rats, and these effects were attenuated in rats chronically treated with all three antipsychotics. The ability of haloperidol or clozapine to inhibit ketamine-induced elevation in γ power was not observed following acute administration of these drugs. These results indicate that modulation of γ power may be a useful biomarker of chronic antipsychotic efficacy. PMID:24964190

  19. Acidic environments induce differentiation of Proteus mirabilis into swarmer morphotypes.

    PubMed

    Fujihara, Masatoshi; Obara, Hisato; Watanabe, Yusaku; Ono, Hisaya K; Sasaki, Jun; Goryo, Masanobu; Harasawa, Ryô

    2011-07-01

    Although swarmer morphotypes of Proteus mirabilis have long been considered to result from surfaced-induced differentiation, the present findings show that, in broth medium containing urea, acidic conditions transform some swimmer cells into elongated swarmer cells. This study has also demonstrates that P. mirabilis cells grown in acidic broth medium containing urea enhance virulence factors such as flagella production and cytotoxicity to human bladder carcinoma cell line T24, though no significant difference in urease activity under different pH conditions was found. Since there is little published data on the behavior of P. mirabilis at various hydrogen-ion concentrations, the present study may clarify aspects of cellular differentiation of P. mirabilis in patients at risk of struvite formation due to infection with urease-producing bacteria, as well as in some animals with acidic or alkaline urine. PMID:21707738

  20. Novel bile acid therapeutics for the treatment of chronic liver diseases

    PubMed Central

    Hegade, Vinod S.; Speight, R. Alexander; Etherington, Rachel E.; Jones, David E. J.

    2016-01-01

    Recent developments in understanding the role of bile acids (BAs) as signalling molecules in human metabolism and inflammation have opened new avenues in the field of hepatology research. BAs are no longer considered as simple molecules helping in fat digestion but as agents with real therapeutic value in treating complex autoimmune and metabolic liver diseases. BAs and their receptors such as farnesoid X receptor, transmembrane G protein-coupled receptor 5 and peroxisome proliferator-activated receptor have been identified as novel targets for drug development. Some of these novel pharmaceuticals are already in clinical evaluation with the most advanced drugs having reached phase III trials. Chronic liver diseases such as primary biliary cholangitis, primary sclerosing cholangitis and nonalcoholic fatty liver disease, for which there is no or limited pharmacotherapy, are most likely to gain from these developments. In this review we discuss recent and the most relevant basic and clinical research findings related to BAs and their implications for novel therapy for chronic liver diseases. PMID:27134666

  1. 3-Hydroxy fatty acids in saliva as diagnostic markers in chronic periodontitis.

    PubMed

    Ferrando, Raúl; Szponar, Bogumila; Sánchez, Arturo; Larsson, Lennart; Valero-Guillén, Pedro L

    2005-09-01

    Saturated straight- and branched-chain 3-hydroxy fatty acids (3-OH FAs) of 10-18 carbon chain lengths were determined in saliva from 27 individuals with chronic periodontitis and 18 healthy individuals by using gas chromatography-tandem mass spectrometry. Of the 14 different 3-OH FAs detected, 3-OH-C(i17:0) was the most abundant in the periodontitis samples while 3-OH-C(14:0) was the most abundant in the healthy individuals. Considering the relative percentages of 3-OH-C(12:0), 3-OH-C(14:0), 3-OH-C(i17:0), and 3-OH-C(17:0), 95.6% of all cases were correctly classified as healthy individuals or periodontitis patients by means of discriminant analysis. The sensitivity, specificity, positive predictive value and negative predictive value of 3-OH FA analysis in diagnosing peridontitis were, respectively, 0.92, 1.00, 1.00, and 0.90. The results indicate that 3-OH FA analysis of saliva samples is a useful diagnostic method in chronic periodontitis. PMID:15941605

  2. VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes

    PubMed Central

    Halin, Cornelia; Tobler, Nadja E.; Vigl, Benjamin; Brown, Lawrence F.

    2007-01-01

    Lymphangiogenesis is involved in tumor cell metastasis and plays a major role in chronic inflammatory disorders. To investigate the role of lymphangiogenesis in inflammation, we induced and maintained delayed-type hypersensitivity (DTH) reactions in the ears of mice and then analyzed the resulting lymphangiogenesis in the inflamed tissue and draining lymph nodes (LNs) by quantitative fluorescence-activated cell sorting (FACS) and by immunofluorescence. Long-lasting inflammation induced a significant increase in the number of lymphatic endothelial cells, not only in the inflamed ears but also in the ear-draining auricular LNs. Inflammation-induced lymphangiogenesis was potently blocked by systemic administration of a vascular endothelial growth factor (VEGF)-A neutralizing antibody. Surprisingly, tissue inflammation specifically induced LN lymphangiogenesis but not LN angiogenesis. These findings were explained by analysis of both VEGF-A protein and mRNA levels, which revealed that VEGF-A was expressed at high mRNA and protein levels in inflamed ears but that expression was increased only at the protein level in activated LNs. Inflammation-induced lymphangiogenesis in LNs was independent of the presence of nodal B lymphocytes, as shown in B cell-deficient mice. Our data reveal that chronic inflammation actively induces lymphangiogenesis in LNs, which is controlled remotely, by lymphangiogenic factors produced at the site of inflammation. PMID:17625067

  3. Acute and chronic exposure to Tyrophagus putrescentiae induces allergic pulmonary response in a murine model

    PubMed Central

    Nuñez, Nailê Karine; dos Santos Dutra, Moisés; Barbosa, Gustavo Leivas; Morassutti, Alessandra Loureiro; de Souza, Rodrigo Godinho; Vargas, Mauro Henrique Moraes; Antunes, Géssica Luana; Silveira, Josiane Silva; da Silva, Guilherme Liberato; Pitrez, Paulo Márcio

    2016-01-01

    Background Tyrophagus putrescentiae (Tp) is a source of aeroallergen that causes allergic diseases. Objective To describe an acute and chronic murine model of allergic asthma with Tp extract with no systemic sensitization and no use of adjuvant. Methods Mites from dust sample were cultured and a raw extract was produced. Female BALB/c mice (6-8 weeks) were challenged intranasally with Tp extract or Dulbecco's phosphate-buffered saline, for 10 consecutive days (acute protocol) or for 6 weeks (chronic protocol). Twenty-four hours after the last intranasal challenge, bronchoalveolar lavage fluid (BALF) was performed for total and differential cells count, cytokine analysis, and eosinophil peroxidase activity. Lung tissue was also removed for histopathologic analysis. Results Tp extract has shown a significant increase in total cells count from BALF as well as an increase in absolute eosinophils count, eosinophil peroxidase activity, interleukin (IL)-5 and IL-13 levels, in both acute and chronic protocols. Peribronchovascular infiltrate, goblet cells hyperplasia and collagen deposition were shown in the airways of acute and chronic Tp-exposed mice. Conclusion Our data suggest that the intranasal exposure to Tp extract, with no systemic sensitization and no use of adjuvants, induces a robust allergic inflammation in the lungs of mice, in both acute and chronic models. Our Tp extract seems to be a potent allergen extract which may be used in asthma model studies. PMID:26844220

  4. Environmental enrichment reduces behavioural alterations induced by chronic stress in Japanese quail.

    PubMed

    Laurence, A; Houdelier, C; Calandreau, L; Arnould, C; Favreau-Peigné, A; Leterrier, C; Boissy, A; Lumineau, S

    2015-02-01

    Animals perceiving repeated aversive events can become chronically stressed. Chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis can have deleterious consequences on physiological parameters (e.g. BW, blood chemistry) and behaviour (e.g. emotional reactivity, stereotypies, cognition). Environmental enrichment (EE) can be a mean to reduce animal stress and to improve welfare. The aim of this study was first, to assess the effects of EE in battery cages on the behaviour of young Japanese quail and second, to evaluate the impact of EE on quail exposed to chronic stress. The experiment involved quail housed in EE cages and submitted or not to a chronic stress procedure (CSP) (EE cages, control quail: n=16, CSP quail: n=14) and quail housed in standard cages and exposed or not to the CSP (standard non-EE cages, control quail: n=12, CSP quail: n=16). Our procedure consisted of repeated aversive events (e.g. ventilators, delaying access to food, physical restraint, noise) presented two to five times per 24 h, randomly, for 15 days. During CSP, EE improved quail's welfare as their stereotypic pacing decreased and they rested more. CSP decreased exploration in all quail. After the end of CSP, quail presented increased emotional reactivity in emergence test. However, the effect of EE varied with test. Finally, chronic stress effects on comfort behaviours in the emergence test were alleviated by EE. These results indicate that EE can alleviate some aspects of behavioural alterations induced by CSP. PMID:25354525

  5. Oral Lesions Induced by Chronic Khat Use Consist Essentially of Thickened Hyperkeratinized Epithelium

    PubMed Central

    Lukandu, Ochiba Mohammed; Koech, Lionel Sang; Kiarie, Paul Ngugi

    2015-01-01

    Objectives. The habit of khat chewing is prevalent in many Middle Eastern and African cultures and has been associated with various adverse conditions in humans. This study aimed to describe histological changes induced by chronic khat chewing on the buccal mucosa. Methods. Biopsies of the buccal mucosa from 14 chronic khat chewers, 20 chronic khat chewers who also smoked tobacco, and 8 nonchewers were compared for epithelial thickness, degree and type of keratinization, and connective tissue changes. Results. Tissues from khat chewers depicted abnormal keratinization of the superficial cell layer and showed increased epithelial thickness affecting all layers. Epithelial thickness in control samples was 205 ± 26 μm whereas thickness in khat chewers and khat chewers who smoked tobacco was significantly higher measuring 330 ± 35 μm and 335 ± 19 μm, respectively. Tissues from khat chewers also showed increased intracellular edema, increased melanin pigment deposits, and increased number of rete pegs most of which were thin and deep. Conclusions. These results show that oral lesions induced by chronic chewing of khat in the buccal mucosa present with white and brown discoloration due to increased epithelial thickness, increased keratinization, and melanin deposition. PMID:26491446

  6. Incoordination among Subcellular Compartments Is Associated with Depression-Like Behavior Induced by Chronic Mild Stress

    PubMed Central

    Xu, Aiping; Cui, Shan

    2016-01-01

    Background: Major depressive disorder is characterized as persistent low mood. A chronically stressful life in genetically susceptible individuals is presumably the major etiology that leads to dysfunctions of monoamine and hypothalamus-pituitary-adrenal axis. These pathogenic factors cause neuron atrophy in the limbic system for major depressive disorder. Cell-specific pathophysiology is unclear, so we investigated prelimbic cortical GABAergic neurons and their interaction with glutamatergic neurons in depression-like mice. Methods: Mice were treated with chronic unpredictable mild stress for 3 weeks until they expressed depression-like behaviors confirmed by sucrose preference, Y-maze, and forced swimming tests. The structures and functions of GABAergic and glutamatergic units in prelimbic cortices were studied by cell imaging and electrophysiology in chronic unpredictable mild stress-induced depression mice vs controls. Results: In depression-like mice, prelimbic cortical GABAergic neurons show incoordination among the subcellular compartments, such as decreased excitability and synaptic outputs as well as increased reception from excitatory inputs. GABAergic synapses on glutamatergic cells demonstrate decreased presynaptic innervation and increased postsynaptic responsiveness. Conclusions: Chronic unpredictable mild stress-induced incoordination in prelimbic cortical GABAergic and glutamatergic neurons dysregulates their target neurons, which may be the pathological basis for depressive mood. The rebalance of compatibility among subcellular compartments would be an ideal strategy to treat neural disorders. PMID:26506857

  7. Effect of ECQ on Iodoacetamide-Induced Chronic Gastritis in Rats

    PubMed Central

    Lee, Se Eun; Song, Hyun Ju; Park, Sun Young; Nam, Yoonjin; Min, Chang Ho; Lee, Do Yeon; Jeong, Jun Yeong; Ha, Hyun Su; Kim, Hyun-Jung; Whang, Wan Kyun; Jeong, Ji Hoon; Kim, In Kyeom; Kim, Hak Rim; Min, Young Sil

    2013-01-01

    This study investigated effect of extract containing quercetin-3-O-β-D-glucuronopyranoside from Rumex Aquaticus Herba (ECQ) against chronic gastritis in rats. To produce chronic gastritis, the animals received a daily intra-gastric administration of 0.1 ml of 0.15% iodoacetamide (IA) solution for 7 days. Daily exposure of the gastric mucosa to IA induced both gastric lesions and significant reductions of body weight and food and water intake. These reductions recovered with treatment with ECQ for 7 days. ECQ significantly inhibited the elevation of the malondialdehyde levels and myeloperoxidase activity, which were used as indices of lipid peroxidation and neutrophil infiltration. ECQ recovered the level of glutathione, activity of superoxide dismutase (SOD), and expression of SOD-2. The increased levels of total NO concentration and iNOS expression in the IA-induced chronic gastritis were significantly reduced by treatment with ECQ. These results suggest that the ECQ has a therapeutic effect on chronic gastritis in rats by inhibitory actions on neutrophil infiltration, lipid peroxidation and various steps of reactive oxygen species (ROS) generation. PMID:24227950

  8. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats

    PubMed Central

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A.; Hernández-Reyes, Ana Gabriela

    2015-01-01

    Abstract One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity. PMID:25599112

  9. Chronic CRF1 receptor blockade reduces heroin intake escalation and dependence-induced hyperalgesia.

    PubMed

    Park, Paula E; Schlosburg, Joel E; Vendruscolo, Leandro F; Schulteis, Gery; Edwards, Scott; Koob, George F

    2015-03-01

    Opioids represent effective drugs for the relief of pain, yet chronic opioid use often leads to a state of increased sensitivity to pain that is exacerbated during withdrawal. A sensitization of pain-related negative affect has been hypothesized to closely interact with addiction mechanisms. Neuro-adaptive changes occur as a consequence of excessive opioid exposure, including a recruitment of corticotropin-releasing factor (CRF) and norepinephrine (NE) brain stress systems. To better understand the mechanisms underlying the transition to dependence, we determined the effects of functional antagonism within these two systems on hyperalgesia-like behavior during heroin withdrawal utilizing models of both acute and chronic dependence. We found that passive or self-administered heroin produced a significant mechanical hypersensitivity. During acute opioid dependence, systemic administration of the CRF1 receptor antagonist MPZP (20 mg/kg) alleviated withdrawal-induced mechanical hypersensitivity. In contrast, several functional adrenergic system antagonists (clonidine, prazosin, propranolol) failed to alter mechanical hypersensitivity in this state. We then determined the effects of chronic MPZP or clonidine treatment on extended access heroin self-administration and found that MPZP, but not clonidine, attenuated escalation of heroin intake, whereas both drugs alleviated chronic dependence-associated hyperalgesia. These findings suggest that an early potentiation of CRF signaling occurs following opioid exposure that begins to drive both opioid-induced hyperalgesia and eventually intake escalation. PMID:24330252

  10. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats.

    PubMed

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A; Hernández-Reyes, Ana Gabriela; Martínez-Galero, Elizdath

    2015-08-01

    One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity. PMID:25599112

  11. Effects of ursodeoxycholic acid on serum liver enzymes and bile acid metabolism in chronic active hepatitis: a dose-response study.

    PubMed

    Crosignani, A; Battezzati, P M; Setchell, K D; Camisasca, M; Bertolini, E; Roda, A; Zuin, M; Podda, M

    1991-02-01

    The effect of ursodeoxycholic acid administration on liver function tests and on bile acid metabolism was investigated in 18 patients with chronic active hepatitis. Three different doses of ursodeoxycholic acid--250 mg, 500 mg and 750 mg--were administered daily to each patient for consecutive 2-mo periods. The order of doses was randomly assigned according to a replicated Latin-square design. A significant decrease in serum transaminases and gamma-glutamyl transpeptidase occurred with the lowest dose of ursodeoxycholic acid, which corresponded to 4 mg/kg body wt/day, and no further significant decrease with the higher doses was seen. Biliary bile acid composition was determined by high-performance liquid chromatography and gas chromatography-mass spectrometry. At entry the relative proportions of major bile acids were similar to those observed in normal individuals. During treatment the mean percentage of ursodeoxycholic acid in bile (22% with the 250 mg dose, 32% with the 500 mg dose and 34% with the 750 mg dose) was lower than values previously reported for patients with gallstones and normal liver function. The major bile acids were cholic, chenodeoxycholic and deoxycholic acids. A number of unusual bile acids were identified by gas chromatography-mass spectrometry, but these accounted for only 3% to 5% of the total and did not change during ursodeoxycholic acid therapy. No correlation between the improvement in liver function tests and the percentage of ursodeoxycholic acid in bile existed. These data suggest that even a slight enrichment of bile with ursodeoxycholic acid, as is attained with 250 mg/day, is effective in improving biochemical markers of liver function in patients with chronic active hepatitis. PMID:1671665

  12. Dietary acid load and chronic kidney disease among adults in the United States

    PubMed Central

    2014-01-01

    Background Diet can markedly affect acid-base status and it significantly influences chronic kidney disease (CKD) and its progression. The relationship of dietary acid load (DAL) and CKD has not been assessed on a population level. We examined the association of estimated net acid excretion (NAEes) with CKD; and socio-demographic and clinical correlates of NAEes. Methods Among 12,293 U.S. adult participants aged >20 years in the National Health and Nutrition Examination Survey 1999–2004, we assessed dietary acid by estimating NAEes from nutrient intake and body surface area; kidney damage by albuminuria; and kidney dysfunction by eGFR < 60 ml/min/1.73m2 using the MDRD equation. We tested the association of NAEes with participant characteristics using median regression; while for albuminuria, eGFR, and stages of CKD we used logistic regression. Results Median regression results (β per quintile) indicated that adults aged 40–60 years (β [95% CI] = 3.1 [0.3–5.8]), poverty (β [95% CI] = 7.1 [4.01–10.22]), black race (β [95% CI] = 13.8 [10.8–16.8]), and male sex (β [95% CI] = 3.0 [0.7- 5.2]) were significantly associated with an increasing level of NAEes. Higher levels of NAEes compared with lower levels were associated with greater odds of albuminuria (OR [95% CI] = 1.57 [1.20–2.05]). We observed a trend toward greater NAEes being associated with higher risk of low eGFR, which persisted after adjustment for confounders. Conclusion Higher NAEes is associated with albuminuria and low eGFR, and socio-demographic risk factors for CKD are associated with higher levels of NAEes. DAL may be an important target for future interventions in populations at high risk for CKD. PMID:25151260

  13. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    PubMed

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. PMID:26594836

  14. Imatinib-induced dental hyperpigmentation in chronic myeloid leukemia in an adult female

    PubMed Central

    Agrawal, Prabhat; Singh, Omkar; Nigam, Ashwini Kumar; Upadhyay, Shalini

    2015-01-01

    The course of chronic myeloid leukemia (CML) has changed since the introduction of imatinb, and its side-effects are still being reported. We are reporting a case of a CML patient who presented to us with discoloration of the upper front teeth following 6 months of therapy with imatinib. On detailed evaluation, the patient was found to have imatinib-induced dental hyperpigmentation. PMID:26729966

  15. Prevention of organophosphate-induced chronic epilepsy by early benzodiazepine treatment.

    PubMed

    Shrot, Shai; Ramaty, Erez; Biala, Yoav; Bar-Klein, Guy; Daninos, Moshe; Kamintsky, Lyn; Makarovsky, Igor; Statlender, Liran; Rosman, Yossi; Krivoy, Amir; Lavon, Ophir; Kassirer, Michael; Friedman, Alon; Yaari, Yoel

    2014-09-01

    Poisoning with organophosphates (OPs) may induce status epilepticus (SE), leading to severe brain damage. Our objectives were to investigate whether OP-induced SE leads to the emergence of spontaneous recurrent seizures (SRSs), the hallmark of chronic epilepsy, and if so, to assess the efficacy of benzodiazepine therapy following SE onset in preventing the epileptogenesis. We also explored early changes in hippocampal pyramidal cells excitability in this model. Adult rats were poisoned with the paraoxon (450μg/kg) and immediately treated with atropine (3mg/kg) and obidoxime (20mg/kg) to reduce acute mortality due to peripheral acetylcholinesterase inhibition. Electrical brain activity was assessed for two weeks during weeks 4-6 after poisoning using telemetric electrocorticographic intracranial recordings. All OP-poisoned animals developed SE, which could be suppressed by midazolam. Most (88%) rats which were not treated with midazolam developed SRSs, indicating that they have become chronically epileptic. Application of midazolam 1min following SE onset had a significant antiepileptogenic effect (only 11% of the rats became epileptic; p=0.001 compared to non-midazolam-treated rats). Applying midazolam 30min after SE onset did not significantly prevent chronic epilepsy. The electrophysiological properties of CA1 pyramidal cells, assessed electrophysiologically in hippocampal slices, were not altered by OP-induced SE. Thus we show for the first time that a single episode of OP-induced SE in rats leads to the acquisition of chronic epilepsy, and that this epileptogenic outcome can be largely prevented by immediate, but not delayed, administration of midazolam. Extrapolating these results to humans would suggest that midazolam should be provided together with atropine and an oxime in the immediate pharmacological treatment of OP poisoning. PMID:24881594

  16. Chronic Enhancement of Serotonin Facilitates Excitatory Transcranial Direct Current Stimulation-Induced Neuroplasticity.

    PubMed

    Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A

    2016-04-01

    Serotonin affects memory formation via modulating long-term potentiation (LTP) and depression (LTD). Accordingly, acute selective serotonin reuptake inhibitor (SSRI) administration enhanced LTP-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. However, it usually takes some time for SSRI to reduce clinical symptoms such as anxiety, negative mood, and related symptoms of depression and anxiety disorders. This might be related to an at least partially different effect of chronic serotonergic enhancement on plasticity, as compared with single-dose medication. Here we explored the impact of chronic application of the SSRI citalopram (CIT) on plasticity induced by tDCS in healthy humans in a partially double-blinded, placebo (PLC)-controlled, randomized crossover study. Furthermore, we explored the dependency of plasticity induction from the glutamatergic system via N-methyl-D-aspartate receptor antagonism. Twelve healthy subjects received PLC medication, combined with anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took CIT (20 mg/day) consecutively for 35 days. During this period, four additional interventions were performed (CIT and PLC medication with anodal/cathodal tDCS, CIT and dextromethorphan (150 mg) with anodal/cathodal tDCS). Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic application of CIT increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h, and converted cathodal tDCS-induced LTD-like plasticity into facilitation. These effects were abolished by dextromethorphan. Chronic serotonergic enhancement results in a strengthening of LTP-like glutamatergic plasticity, which might partially explain the therapeutic impact of SSRIs in depression and other neuropsychiatric diseases. PMID:26329381

  17. Chronic Treatment With an Erythropoietin Receptor Ligand Prevents Chronic Kidney Disease-Induced Enlargement of Myocardial Infarct Size.

    PubMed

    Nishizawa, Keitaro; Yano, Toshiyuki; Tanno, Masaya; Miki, Takayuki; Kuno, Atsushi; Tobisawa, Toshiyuki; Ogasawara, Makoto; Muratsubaki, Shingo; Ohno, Kouhei; Ishikawa, Satoko; Miura, Tetsuji

    2016-09-01

    Chronic kidney disease (CKD) is known to increase myocardial infarct size after ischemia/reperfusion. However, a strategy to prevent the CKD-induced myocardial susceptibility to ischemia/reperfusion injury has not been developed. Here, we examined whether epoetin β pegol, a continuous erythropoietin receptor activator (CERA), normalizes myocardial susceptibility to ischemia/reperfusion injury by its effects on protective signaling and metabolomes in CKD. CKD was induced by 5/6 nephrectomy in rats (subtotal nephrectomy, SNx), whereas sham-operated rats served controls (Sham). Infarct size as percentage of area at risk after 20-minutes coronary occlusion/2-hour reperfusion was larger in SNx than in Sham: 60.0±4.0% versus 43.9±2.2%. Administration of CERA (0.6 μg/kg SC every 7 days) for 4 weeks reduced infarct size in SNx (infarct size as percentage of area at risk=36.9±3.9%), although a protective effect was not detected for the acute injection of CERA. Immunoblot analyses revealed that myocardial phospho-Akt-Ser473 levels under baseline conditions and on reperfusion were lower in SNx than in Sham, and CERA restored the Akt phosphorylation on reperfusion. Metabolomic analyses showed that glucose 6-phosphate and glucose 1-phosphate were reduced and malate:aspartate ratio was 1.6-fold higher in SNx than in Sham, suggesting disturbed flux of malate-aspartate shuttle by CKD. The CERA improved the malate:aspartate ratio in SNx to the control level. In H9c2 cells, mitochondrial Akt phosphorylation by insulin-like growth factor-1 was attenuated by malate-aspartate shuttle inhibition. In conclusion, the results suggest that a CERA prevents CKD-induced susceptibility of the myocardium to ischemia/reperfusion injury by restoration of Akt-mediated signaling possibly via normalized malate-aspartate shuttle flux. PMID:27456523

  18. Phenolic Acids (Gallic and Tannic Acids) Modulate Antioxidant Status and Cisplatin Induced Nephrotoxicity in Rats

    PubMed Central

    Akomolafe, Seun F.; Akinyemi, Ayodele J.; Anadozie, Scholarstical O.

    2014-01-01

    Cisplatin (cis-diamminedichloroplatinum (II) or CDDP), used in the treatment of many solid-tissue cancers, has its chief side-effect in nephrotoxicity. Hence, this study sought to investigate and compare the protective effect of gallic acid (GA) and tannic acid (TA) against cisplatin induced nephrotoxicity in rats. The rats were given a prophylactic treatment of GA and TA orally at a dose of 20 and 40 mg/kg body weight for 7 consecutive days before the administration of a single intraperitoneal (i.p.) injection of cisplatin (CP) at 7.5 mg/kg bwt. The protective effects of both GA and TA on CP induced nephrotoxicity were investigated by assaying renal function, oxidative stress biomarkers, and histopathological examination of kidney architecture. A single dose of cisplatin (7.5 mg/kg bwt) injected i.p. caused a significant increase in some biomarkers of renal function (creatinine, uric acid, and urea levels), with a marked elevation in malondialdehyde (MDA) content accompanied by a significant (P < 0.05) decrease in reduced glutathione (GSH) content (103.27%) of kidney tissue as compared to control group. Furthermore, a significant (P < 0.05) reduction in kidney antioxidant enzymes (SOD, catalase, GPx, and GST) activity was observed. However, pretreatment with oral administration of tannic acid and gallic acid at a dose of 20 and 40 mg/kg body weight, respectively, for 7 days prior to cisplatin administration reduced histological renal damage and suppressed the generation of ROS, lipid peroxidation, and oxidative stress in kidney tissues. These results indicate that both gallic and tannic acids could serve as a preventive strategy against cisplatin induced nephrotoxicity. PMID:27382634

  19. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity.

    PubMed

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun; Choi, Yun-Sik

    2016-05-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  20. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

    PubMed Central

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun

    2016-01-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  1. Protective Role of Dietary Curcumin in the Prevention of the Oxidative Stress Induced by Chronic Alcohol with respect to Hepatic Injury and Antiatherogenic Markers

    PubMed Central

    Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C.; Reyes-Gordillo, Karina; Shah, Ruchi; Lakshman, M. Raj

    2016-01-01

    Curcumin, an antioxidant compound found in Asian spices, was evaluated for its protective effects against ethanol-induced hepatosteatosis, liver injury, antiatherogenic markers, and antioxidant status in rats fed with Lieber-deCarli low menhaden (2.7% of total calories from ω-3 polyunsaturated fatty acids (PUFA)) and Lieber-deCarli high menhaden (13.8% of total calories from ω-3 PUFA) alcohol-liquid (5%) diets supplemented with or without curcumin (150 mg/kg/day) for 8 weeks. Treatment with curcumin protected against high ω-3 PUFA and ethanol-induced hepatosteatosis and increase in liver injury markers, alanine aminotransferase, and aspartate aminotransferase. Curcumin upregulated paraoxonase 1 (PON1) mRNA and caused significant increase in serum PON1 and homocysteine thiolactonase activities as compared to high ω-3 PUFA and ethanol group. Moreover, treatment with curcumin protected against ethanol-induced oxidative stress by increasing the antioxidant glutathione and decreasing the lipid peroxidation adduct 4-hydroxynonenal. These results strongly suggest that chronic ethanol in combination with high ω-3 PUFA exacerbated hepatosteatosis and liver injury and adversely decreases antiatherogenic markers due to increased oxidative stress and depletion of glutathione. Curcumin supplementation significantly prevented these deleterious actions of chronic ethanol and high ω-3 PUFA. Therefore, we conclude that curcumin may have therapeutic potential to protect against chronic alcohol-induced liver injury and atherosclerosis. PMID:26881029

  2. Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy

    PubMed Central

    Yu, Xiao; Xu, Yanyan; Zhang, Shanshan; Sun, Jian; Liu, Peiyi; Xiao, Lin; Tang, Yuhan; Liu, Liegang; Yao, Ping

    2016-01-01

    Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease. PMID:26742072

  3. The Role of Chronic Exposure to Amoxicillin/Clavulanic Acid on the Developmental Enamel Defects in Mice.

    PubMed

    Mihalaş, Eugeniu; Matricala, Lavinia; Chelmuş, Alina; Gheţu, Nicolae; Petcu, Ana; Paşca, Sorin

    2016-01-01

    Amoxicillin used in early childhood may be associated with enamel hypomineralization. Our aim was to assess disturbances of amelogenesis in mice lower incisors induced by chronic administration of amoxicillin/clavulanic acid (AMC). Twenty-eight C57BL/6 male mice, of similar age, randomly divided into a control and 3 treatment groups (n = 7) received subcutaneous injection, once per day, for 60 days: 50, 100, and 150 mg/kg BW of AMC. Scanning electron microscopy/energy dispersive X-ray spectroscopy analysis in AMC treatment groups showed higher content in F and a decrease in P and Ca. Morphology changes ranged from scratched patterns, and small isolated pits-like enamel loss, to generalized demineralized enamel surface, giving a rough, foamy, scaly, or even cracked eggshell appearance to the affected areas. Histological analysis showed disturbances of maturation ameloblasts, which were less organized, with increased amounts of clear vacuoles in the cytoplasm and slightly more elongated and less condensed nucleus. Additionally, they were often detached from the enamel matrix. Transitional ameloblasts formed underlying the cysts of varied sizes. In conclusion, AMC dose-dependently affect ameloblast functions especially in the maturation phase, causing hypomineralized enamel formation with quantitative and/or qualitative defects. PMID:26534941

  4. High LEF1 expression predicts adverse prognosis in chronic lymphocytic leukemia and may be targeted by ethacrynic acid

    PubMed Central

    Wu, Wei; Zhu, Huayuan; Fu, Yuan; Shen, Wenyi; Miao, Kourong; Hong, Min; Xu, Wei; Fan, Lei; Young, Ken H.; Liu, Peng; Li, Jianyong

    2016-01-01

    Aberrant activation of lymphoid enhancer-binding factor-1 (LEF1) has been identified in several cancers, including chronic lymphocytic leukemia (CLL). As a key transcription factor of the Wnt/β-catenin pathway, LEF1 helps to regulate important genes involved in tumor cell death mechanisms. In this study, we determined LEF1 gene expression levels in CLL (n = 197) and monoclonal B-cell lymphocytosis (MBL) (n = 6) patients through real-time RT-PCR. LEF1 was significantly up-regulated in both MBL and CLL patients compared with normal B cells. Treatment-free survival (TFS) time and overall survival (OS) time were much longer in CLL patients with low LEF1 expression than in those with high LEF1 levels. Furthermore, Wnt inhibitor ethacrynic acid (EA) induced both apoptosis and necroptosis in primary CLL cells. EA also enhanced the cytotoxicity of both fludarabine and cyclophosphamide against CLL cells in vitro. Finally, we demonstrated that EA functions by inhibiting the recruitment of LEF1 to DNA promoters and restoring cylindromatosis (CYLD) expression in CLL cells. Our results showed, for the first time, that high LEF1 expression is associated with poor survival for CLL patients. Combined with other chemotherapeutic drugs, EA may be a promising therapeutic agent for CLL. PMID:26950276

  5. Oxidative stress, biochemical alterations, and hyperlipidemia in female rats induced by lead chronic toxicity during puberty and post puberty periods

    PubMed Central

    Alya, Annabi; Ines, Dhouib Bini; Montassar, Lasram; Najoua, Gharbi; Saloua, El Fazâa

    2015-01-01

    Objective(s): Lead (Pb) is a toxic metal inducing many destructive effects leading to a broad range of physiological, biochemical, and neurological dysfunctions in humans and laboratory animals. Materials and Methods: Here, we investigated the effect of chronic exposure to Pb (50 mg/l) on oxidative stress, hepatotoxicity, nephrotoxicity, and lipid profile of two different age groups of female rats treated with Pb from delivery until puberty period (40 days, Pb40) and post puberty period (65 days, Pb65). Results: Our results clearly show that the administration of Pb produces oxidative damage in liver and kidney, as strongly suggested by the significant increase in TBARS, decrease in total SH, and the alteration of SOD activity. Elevation in liver function biomarkers, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and reduction in total protein (liver and plasma) and albumin are evidence of perturbations of liver synthetic function. In young Pb-treated group, Pb-induced nephropathy was more pronounced by the increase in the levels of creatinine, urea, and uric acid. However, hyperlipidemia was evident for both Pb-exposed groups leading to a potential risk for cardiovascular diseases and atherosclerosis. Conclusion: It is concluded that Pb induces metabolic and oxidative disturbances depending on the age of the animals, which are not negligible. PMID:26730340

  6. Methanolic extract of Woodfordia fruticosa Kurz flowers ameliorates carbon tetrachloride-induced chronic hepatic fibrosis in rats.

    PubMed

    Nitha, A; Prabha, S P; Ansil, P N; Latha, M S

    2016-07-01

    Hepatic fibrosis, characterized by extracellular matrix accumulation, is the common cause of chronic liver failure and is a leading cause of morbidity and mortality worldwide. The aim of the present study was to evaluate the effect of dried flowers of Woodfordia fruticosa on carbon tetrachloride (CCl4)-induced hepatic fibrosis in rat model. Hepatic fibrosis was induced in male Wistar rats by CCl4 administration (150 μl/100 g rat weight, oral) twice a week for 10 weeks. In preventive model, administration of daily doses of methanolic extract of W. fruticosa (MEWF) at two different doses (100 mg/kg, body weight (b.w.) and 200 mg/kg, b.w.) was started 1 week before the onset of CCl4 administration and continued for 10 weeks. In curative model, MEWF at 100 and 200 mg/kg were given for last 2 weeks after the establishment of fibrosis. MEWF at a dose of 200 mg/kg was able to exert a more pronounced effect as evidenced histologically by significant reduction in fibrotic septa formation in liver tissue, immunohistochemically by abridged expression of collagen III, and also biochemically by serum and tissue antioxidant status, lipid peroxidation, and hydroxyproline level. Liquid chromatography-mass spectrometry analysis revealed the presence of confertin, quercetin methyl ether, ellagic acid, and stigmasterol in MEWF, which could be responsible for its antifibrotic activity. These results indicate the effective protection exerted by MEWF against CCl4-induced hepatic fibrosis in a dose-dependent manner. PMID:25415873

  7. CHRONIC FEEDING ALCOHOL-CONTAINING DIETS VIA TOTAL ENTERAL NUTRITION INDUCES ALCOHOL DEHYDROGENASE (ADH) AND INSULIN RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Induction of Class 1 ADH occurs in rats fed alcohol chronically, and we have reported that C/EBPs and SREBP-1 are important signaling factors in this process. Chronic alcohol intake in humans can result in alcohol-induced diabetes. We have studied insulin signaling pathways in adult male Sprague-D...

  8. Enhancement of mite antigen-induced histamine release by deuterium oxide from leucocytes of chronic urticarial patients

    SciTech Connect

    Numata, T.; Yamamoto, S.; Yamura, T.

    1981-09-01

    The mite antigen-induced histamine release from leucocytes of chronic urticarial patients was enhanced in the presence of deuterium oxide, which stabilizes microtubules. This enhancing effect of deuterium oxide on the histamine release from leucocytes may provide a useful means for the detection of allergens in vitro in chronic urticaria.

  9. Renal cell carcinomas of chronic kidney disease patients harbor the mutational signature of carcinogenic aristolochic acid.

    PubMed

    Jelaković, Bojan; Castells, Xavier; Tomić, Karla; Ardin, Maude; Karanović, Sandra; Zavadil, Jiri

    2015-06-15

    Aristolochic acid (AA) is a potent dietary cytotoxin and carcinogen, and an established etiological agent underlying severe human nephropathies and associated upper urinary tract urothelial cancers, collectively designated aristolochic acid nephropathy (AAN). Its genome-wide mutational signature, marked by predominant A:T > T:A transversions occurring in the 5'-CpApG-3' trinucleotide context and enriched on the nontranscribed gene strand, has been identified in human upper urinary tract urothelial carcinomas from East Asian patients and in experimental systems. Here we report a whole-exome sequencing screen performed on DNA from formalin-fixed, paraffin-embedded renal cell carcinomas (RCC) arising in chronic renal disease patients from a Balkan endemic nephropathy (EN) region. In the EN regions, the disease results from the consumption of bread made from wheat contaminated by seeds of Aristolochia clematitis, an AA-containing plant. In five of eight (62.5%) tested RCC tumor specimens, we observed the characteristic global mutational signature consistent with the mutagenic effects of AA. This signature was absent in the control RCC samples obtained from patients from a nonendemic, metropolitan region. By identifying a new tumor type associated with the AA-driven genome-wide mutagenic process in the context of renal disease, our results suggest new epidemiological and public health implications for the RCC incidence worldwide, particularly for the high-risk regions with unregulated use of AA-containing traditional herbal medicines. PMID:25403517

  10. Renal cell carcinomas of chronic kidney disease patients harbor the mutational signature of carcinogenic aristolochic acid

    PubMed Central

    Jelaković, Bojan; Castells, Xavier; Tomić, Karla; Ardin, Maude; Karanović, Sandra; Zavadil, Jiri

    2015-01-01

    Aristolochic acid (AA) is a potent dietary cytotoxin and carcinogen, and an established etiological agent underlying severe human nephropathies and associated upper urinary tract urothelial cancers, collectively designated aristolochic acid nephropathy (AAN). Its genome-wide mutational signature, marked by predominant A:T > T:A transversions occurring in the 5′-CpApG-3′ trinucleotide context and enriched on the nontranscribed gene strand, has been identified in human upper urinary tract urothelial carcinomas from East Asian patients and in experimental systems. Here we report a whole-exome sequencing screen performed on DNA from formalin-fixed, paraffin-embedded renal cell carcinomas (RCC) arising in chronic renal disease patients from a Balkan endemic nephropathy (EN) region. In the EN regions, the disease results from the consumption of bread made from wheat contaminated by seeds of Aristolochia clematitis, an AA-containing plant. In five of eight (62.5%) tested RCC tumor specimens, we observed the characteristic global mutational signature consistent with the mutagenic effects of AA. This signature was absent in the control RCC samples obtained from patients from a nonendemic, metropolitan region. By identifying a new tumor type associated with the AA-driven genome-wide mutagenic process in the context of renal disease, our results suggest new epidemiological and public health implications for the RCC incidence worldwide, particularly for the high-risk regions with unregulated use of AA-containing traditional herbal medicines. PMID:25403517

  11. Berberine Ameliorates Allodynia Induced by Chronic Constriction Injury of the Sciatic Nerve in Rats.

    PubMed

    Kim, Hyun Jee

    2015-08-01

    The objective of this study was to investigate whether berberine could ameliorate allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in rats. After inducement of CCI, significant increases in the number of paw lifts from a cold plate test (cold allodynia) and decreased paw withdrawal threshold in the von Frey hair stimulation test (mechanical allodynia) were observed. However, these cold and mechanical allodynia were markedly alleviated by berberine administration in a dose-dependent manner. Sciatic nerve myeloperoxidase and malondialdehyde activities were also attenuated by berberine administration. Continuous injection for 7 days induced no development of tolerance. The antiallodynic effect of 20 mg/kg berberine was comparable to that of amitriptyline 10 mg/kg. This study demonstrated that berberine could mitigate allodynia induced by CCI, a neuropathic pain model, and it suggested that the anti-inflammatory and antioxidative properties of berberine contributed to the antiallodynic effect in the CCI model. PMID:25674823

  12. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  13. High Fat Feeding Induces Hepatic Fatty Acid Elongation in Mice

    PubMed Central

    Oosterveer, Maaike H.; van Dijk, Theo H.; Tietge, Uwe J. F.; Boer, Theo; Havinga, Rick; Stellaard, Frans; Groen, Albert K.; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2009-01-01

    Background High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated. Methodology/Principal Findings To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized. Conclusions/Significance High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes

  14. Novel Oral Therapies for Opioid-induced Bowel Dysfunction in Patients with Chronic Noncancer Pain.

    PubMed

    Holder, Renee M; Rhee, Diane

    2016-03-01

    Opioid analgesics are frequently prescribed and play an important role in chronic pain management. Opioid-induced bowel dysfunction, which includes constipation, hardened stool, incomplete evacuation, gas, and nausea and vomiting, is the most common adverse event associated with opioid use. Mu-opioid receptors are specifically responsible for opioid-induced bowel dysfunction, resulting in reduced peristaltic and secretory actions. Agents that reverse these actions in the bowel without reversing pain control in the central nervous system may be preferred over traditional laxatives. The efficacy and safety of these agents in chronic noncancer pain were assessed from publications identified through Ovid and PubMed database searches. Trials that evaluated the safety and efficacy of oral agents for opioid-induced constipation or opioid-induced bowel dysfunction, excluding laxatives, were reviewed. Lubiprostone and naloxegol are approved in the United States by the Food and Drug Administration for use in opioid-induced constipation. Axelopran (TD-1211) and sustained-release naloxone have undergone phase 2 and phase 1 studies, respectively, for the same indication. Naloxegol and axelopran are peripherally acting μ-opioid receptor antagonists. Naloxone essentially functions as a peripherally acting μ-opioid receptor antagonist when administered orally in a sustained-release formulation. Lubiprostone is a locally acting chloride channel (CIC-2) activator that increases secretions and peristalsis. All agents increase spontaneous bowel movements and reduce other bowel symptoms compared with placebo in patients with noncancer pain who are chronic opioid users. The most common adverse events were gastrointestinal in nature, and none of the drugs were associated with severe adverse or cardiovascular events. Investigations comparing these agents to regimens using standard laxative and combination therapy and trials in special populations and patients with active cancer are

  15. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis.

    PubMed

    Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal

    2016-06-01

    Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative

  16. Effects of chronic intermittent hypoxia on allergen-induced airway inflammation in rats.

    PubMed

    Broytman, Oleg; Braun, Rudolf K; Morgan, Barbara J; Pegelow, David F; Hsu, Pei-Ning; Mei, Linda S; Koya, Ajay K; Eldridge, Marlowe; Teodorescu, Mihaela

    2015-02-01

    Obstructive sleep apnea aggravates asthma, but its mechanisms are unknown. Chronic intermittent hypoxia is one hallmark feature of sleep apnea. In this study, we tested the effects of chronic intermittent hypoxia on allergen-induced inflammation in rats. Four groups (n = 9-11/group) of ovalbumin (OVA)-sensitized Brown-Norway rats underwent intermittent hypoxia (10% oxygen, 30 cycles/h, 10 h/d) or normoxia for 30 days concurrent with weekly OVA or vehicle challenges. Lung physiology, differential leukocyte counts from bronchoalveolar lavage, and histology (Picro Sirius Red staining for collagen content) were compared between groups 2 days after the last challenge. Gene expression in bronchoalveolar lavage cells was quantified by quantitative PCR. Compared with normoxia, chronic intermittent hypoxia reduced the FEV0.1/FVC ratio (P = 0.005), peak expiratory flow (P = 0.002), and mean midexpiratory flow (P = 0.004), predominantly in medium and large airways; decreased the baseline eosinophil number (P = 0.01) and amplified the effect of OVA on monocyte number (P = 0.02 for the interaction); in proximal airways, increased (P = 0.008), whereas in distal airways it decreased (P = 0.004), collagen density; induced qualitative emphysematous changes in lung periphery; and increased expression of the M2 macrophage marker YM-1 and augmented OVA-induced expression of plasminogen activator inhibitor-1. Chronic intermittent hypoxia alters immune response to allergen toward a more TH-1-predominant cellular phenotype with collagen deposition and matrix degradation, leading to airflow limitation. These findings highlight the potential of sleep apnea to aggravate airway dysfunction in patients with preexistent asthma. PMID:25004109

  17. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients.

    PubMed

    Couillard, A; Koechlin, C; Cristol, J P; Varray, A; Prefaut, C

    2002-11-01

    Chronic inactivity may not be the sole factor involved in the myopathy of chronic obstructive pulmonary disease (COPD) patients. One hypothesis is that exercise-induced oxidative stress that leads to muscle alterations may also be involved. This study investigated whether exercise localised to a peripheral muscle group would induce oxidative stress in COPD patients. Eleven COPD patients (FEV1 1.15+/-0.4 L (mean+/-SD)) and 12 healthy age-matched subjects with a similar low quantity of physical activity performed endurance exercise localised to a peripheral muscle group, the quadriceps of the dominant leg. The authors measured plasma levels of thiobarbituric reactive substances (TBARs) as an index of oxidative stress, the release in superoxide anion (O2*-) by stimulated phagocytes as an oxidant, and blood vitamin E as one antioxidant. Quadriceps endurance was significantly lower in the COPD patients compared with healthy subjects (136+/-16 s versus 385+/-69 s (mean+/-SEM), respectively). A significant increase in TBARs 6 h after quadriceps exercise was only found in the COPD patients. In addition, significantly higher O2*- release and lower blood vitamin E levels were found in COPD patients than in controls at rest. This blood vitamin E level was significantly correlated with the resting level of plasma TBARs in the COPD patients. This study mainly showed that quadriceps exercise induced systemic oxidative stress in chronic obstructive pulmonary disease patients and that vitamin E levels were decreased in these patients at rest. The exact relevance of these findings to chronic obstructive pulmonary disease myopathy needs to be elucidated. PMID:12449164

  18. Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons.

    PubMed

    Holtsberg, F W; Steiner, M R; Keller, J N; Mark, R J; Mattson, M P; Steiner, S M

    1998-01-01

    A diverse body of evidence indicates a role for the lipid biomediator lysophosphatidic acid (LPA) in the CNS. This study identifies and characterizes the induction of neuronal death by LPA. Treatment of cultured hippocampal neurons from embryonic rat brains with 50 microM LPA resulted in neuronal necrosis, as determined morphologically and by the release of lactate dehydrogenase. A concentration of LPA as low as 10 microM led to the release of lactate dehydrogenase. In contrast, treatment of neurons with 0.1 or 1.0 microM LPA resulted in apoptosis, as determined by chromatin condensation. In addition, neuronal death induced by 1 microM LPA was characterized as apoptotic on the basis of terminal dUTP nick end-labeling (TUNEL) staining, externalization of phosphatidylserine, and protection against chromatin condensation, TUNEL staining, and phosphatidylserine externalization by treatment with N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a broad-spectrum inhibitor of caspases, i.e., members of the interleukin-1beta converting enzyme family. Studies with antagonists of ionotropic glutamate receptors did not indicate a significant role for these receptors in apoptosis induced by 1 microM LPA. LPA (1 microM) also induced a decrease in mitochondrial membrane potential. Moreover, pretreatment of neurons with cyclosporin A protected against the LPA-induced decrease in mitochondrial membrane potential and neuronal apoptosis. Thus, LPA, at pathophysiological levels, can induce neuronal apoptosis and could thereby participate in neurodegenerative disorders. PMID:9422348

  19. Orexin A attenuates palmitic acid-induced hypothalamic cell death.

    PubMed

    Duffy, Cayla M; Nixon, Joshua P; Butterick, Tammy A

    2016-09-01

    Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health. PMID:27449757

  20. Chronic treatment with antidepressant drugs and the analgesia induced by 5-methoxy-N,N-dimethyltryptamine: attenuation by desipramine.

    PubMed

    Danysz, W; Minor, B G; Post, C; Archer, T

    1986-08-01

    The effect of chronic and acute oral or intraperitoneal treatment with the antidepressant drugs, desipramine, amitriptyline, alaproclate and iprindole, upon pain thresholds in the tail flick, hot plate and shock titration tests of nociception in saline- and 5-MeODMT-treated rats was studied. Chronic desipramine treatment increased the pre-test tail flick latencies. In the saline-treated rats, chronic oral desipramine treatment increased tail flick latencies, whereas chronic oral amitriptyline treatment decreased tail flick latencies. In 5-MeODMT-treated rats, chronic oral desipramine treatment attenuated the effects of 5-MeODMT (1 mg/kg) in all three tests of nociception, whereas chronic amitriptyline caused a potentiation in the tail flick and hot plate tests. Chronic oral iprindole treatment attenuated 5-MeODMT-induced analgesia in the hot plate test. Chronic intraperitoneal desipramine treatment attenuated 5-MeODMT analgesia in the tail flick and shock titration tests. In a different chronic treatment experiment, oral desipramine treatment attenuated 5-MeODMT analgesia in the tail flick test and zimeldine did for both the tail flick and hot plate tests, whereas mianserin potentiated 5-MeODMT-induced analgesia in both the tail flick and hot plate tests. In the saline-treated rats, acute treatment with all four drugs, desipramine, amitriptyline, iprindole and alaproclate, elevated the shock thresholds, whereas in 5-MeODMT-treated rats, desipramine and amitriptyline elevated shock thresholds. Two main conclusions can be drawn: chronic desipramine caused a quite consistent attenuation of 5-MeODMT-induced analgesia and the effects of acute treatment differed strongly from that of the chronic treatment. The effects of chronic administration with these antidepressants were compared with other findings using different measures of behavioural and receptor function. PMID:3776549

  1. Retinoic acid-induced neural differentiation of embryonal carcinoma cells.

    PubMed Central

    Jones-Villeneuve, E M; Rudnicki, M A; Harris, J F; McBurney, M W

    1983-01-01

    We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs. Images PMID:6656766

  2. Nerve cell death induced in vivo by kainic acid and quinolinic acid does not involve apoptosis.

    PubMed

    Ignatowicz, E; Vezzani, A M; Rizzi, M; D'Incalci, M

    1991-11-01

    We investigated whether in vivo excitotoxicity was mediated by a mechanism of programmed cell death called apoptosis. Neurotoxic doses of kainic acid (1.2 nmol) and quinolinic acid (120 nmol) were unilaterally injected in the dorsal hippocampus of anesthetized rats. Eight or 16 h later the animals were killed and DNA was extracted from the injected hippocampi. DNA from mouse thymocytes exposed to methylprednisolone (10(-5) M for 6 h at 37 degrees C) was used as a positive control of apoptotic cells. No typical 'ladder' of DNA fragments (multimers of approximately 200 Kb) which characterizes apoptosis was seen in hippocampal cells after toxic doses of kainic or quinolinic acid, as assessed by agarose gel electrophoresis. This suggests that hippocampal nerve cell death induced in vivo by the excitotoxins is not mediated by apoptosis. PMID:1839770

  3. Phyllostachys edulis Compounds Inhibit Palmitic Acid-Induced Monocyte Chemoattractant Protein 1 (MCP-1) Production

    PubMed Central

    Higa, Jason K.; Liang, Zhibin; Williams, Philip G.; Panee, Jun

    2012-01-01

    Background Phyllostachys edulis Carriere (Poaceae) is a bamboo species that is part of the traditional Chinese medicine pharmacopoeia. Compounds and extracts from this species have shown potential applications towards several diseases. One of many complications found in obesity and diabetes is the link between elevated circulatory free fatty acids (FFAs) and chronic inflammation. This study aims to present a possible application of P. edulis extract in relieving inflammation caused by FFAs. Monocyte chemoattractant protein 1 (MCP-1/CCL2) is a pro-inflammatory cytokine implicated in chronic inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1) are transcription factors activated in response to inflammatory stimuli, and upregulate pro-inflammatory cytokines such as MCP-1. This study examines the effect of P. edulis extract on cellular production of MCP-1 and on the NF-κB and AP-1 pathways in response to treatment with palmitic acid (PA), a FFA. Methodology/Principal Findings MCP-1 protein was measured by cytometric bead assay. NF-κB and AP-1 nuclear localization was detected by colorimetric DNA-binding ELISA. Relative MCP-1 mRNA was measured by real-time quantitative PCR. Murine cells were treated with PA to induce inflammation. PA increased expression of MCP-1 mRNA and protein, and increased nuclear localization of NF-κB and AP-1. Adding bamboo extract (BEX) inhibited the effects of PA, reduced MCP-1 production, and inhibited nuclear translocation of NF-κB and AP-1 subunits. Compounds isolated from BEX inhibited MCP-1 secretion with different potencies. Conclusions/Significance PA induced MCP-1 production in murine adipose, muscle, and liver cells. BEX ameliorated PA-induced production of MCP-1 by inhibiting nuclear translocation of NF-κB and AP-1. Two O-methylated flavones were isolated from BEX with functional effects on MCP-1 production. These results may represent a possible therapeutic

  4. Fluorosulfonic acid and chlorosulfonic acid: possible candidates for OH-stretching overtone-induced photodissociation.

    PubMed

    Lane, Joseph R; Kjaergaard, Henrik G

    2007-10-01

    We have calculated the stationary points and internal reaction coordinate pathway for the dissociation of fluorosulfonic acid (FSO3H) and chlorosulfonic acid (ClSO3H). These sulfonic acids dissociate to sulfur trioxide and hydrogen fluoride and chloride, respectively. We have calculated the frequencies and intensities of the OH-stretching transitions of FSO3H and ClSO3H with an anharmonic oscillator local mode model. We find that excitation of the fourth and third OH-stretching overtones provide adequate energy for photodissociation of FSO3H and ClSO3H, respectively. We propose that experimental detection of the products of OH-stretching overtone-induced photodissociation of FSO3H and ClSO3H would be easier than the sulfuric acid (H2SO4) equivalent. The photodissociation of H2SO4 is thought to be important in the stratosphere. The FSO3H and ClSO3H experiment could be used in proxy to support the recently proposed OH-stretching overtone-induced photodissociation mechanism of H2SO4. PMID:17764162

  5. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice.

    PubMed

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease. PMID:26884937

  6. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice

    PubMed Central

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease. PMID:26884937

  7. Omega-3 fatty acids prevent early-life antibiotic exposure-induced gut microbiota dysbiosis and later-life obesity.

    PubMed

    Kaliannan, K; Wang, B; Li, X-Y; Bhan, A K; Kang, J X

    2016-06-01

    Early-life antibiotic exposure can disrupt the founding intestinal microbial community and lead to obesity later in life. Recent studies show that omega-3 fatty acids can reduce body weight gain and chronic inflammation through modulation of the gut microbiota. We hypothesize that increased tissue levels of omega-3 fatty acids may prevent antibiotic-induced alteration of gut microbiota and obesity later in life. Here, we utilize the fat-1 transgenic mouse model, which can endogenously produce omega-3 fatty acids and thereby eliminates confounding factors of diet, to show that elevated tissue levels of omega-3 fatty acids significantly reduce body weight gain and the severity of insulin resistance, fatty liver and dyslipidemia resulting from early-life exposure to azithromycin. These effects were associated with a reversal of antibiotic-induced dysbiosis of gut microbiota in fat-1 mice. These results demonstrate the beneficial effects of omega-3 fatty acids on antibiotic-induced gut dysbiosis and obesity, and suggest the potential utility of omega-3 supplementation as a safe and effective means for the prevention of obesity in children who are exposed to antibiotics. PMID:26876435

  8. A Self-defeating Anabolic Program Leads to β-Cell Apoptosis in Endoplasmic Reticulum Stress-induced Diabetes via Regulation of Amino Acid Flux*

    PubMed Central

    Krokowski, Dawid; Han, Jaeseok; Saikia, Mridusmita; Majumder, Mithu; Yuan, Celvie L.; Guan, Bo-Jhih; Bevilacqua, Elena; Bussolati, Ovidio; Bröer, Stefan; Arvan, Peter; Tchórzewski, Marek; Snider, Martin D.; Puchowicz, Michelle; Croniger, Colleen M.; Kimball, Scot R.; Pan, Tao; Koromilas, Antonis E.; Kaufman, Randal J.; Hatzoglou, Maria

    2013-01-01

    Endoplasmic reticulum (ER) stress-induced responses are associated with the loss of insulin-producing β-cells in type 2 diabetes mellitus. β-Cell survival during ER stress is believed to depend on decreased protein synthesis rates that are mediated via phosphorylation of the translation initiation factor eIF2α. It is reported here that chronic ER stress correlated with increased islet protein synthesis and apoptosis in β-cells in vivo. Paradoxically, chronic ER stress in β-cells induced an anabolic transcription program to overcome translational repression by eIF2α phosphorylation. This program included expression of amino acid transporter and aminoacyl-tRNA synthetase genes downstream of the stress-induced ATF4-mediated transcription program. The anabolic response was associated with increased amino acid flux and charging of tRNAs for branched chain and aromatic amino acids (e.g. leucine and tryptophan), the levels of which are early serum indicators of diabetes. We conclude that regulation of amino acid transport in β-cells during ER stress involves responses leading to increased protein synthesis, which can be protective during acute stress but can lead to apoptosis during chronic stress. These studies suggest that the increased expression of amino acid transporters in islets can serve as early diagnostic biomarkers for the development of diabetes. PMID:23645676

  9. Protective effects of myricetin on chronic stress-induced cognitive deficits.

    PubMed

    Wang, Qi-Min; Wang, Gui-Lin; Ma, Ze-Gang

    2016-06-15

    The aim of the present study is to investigate the possible effects of chronic administration of myricetin, a natural flavonoid, on chronic stress-induced learning and memory deficits in mice. The mice were restrained daily 4 h/day for 21 days in well-ventilated plexiglass tubes without access to food and water. These animals were injected with myricetin or vehicle 40 min before each restraint stress over a period of 21 days. Then, spatial learning and memory of the mice were evaluated by the Morris water maze task. We did not observe a significant difference in the escape latency in mice subjected to repeated restraint stress, which indicates that learning ability was not affected by restraint stress. However, the spatial memory ability was significantly impaired in the repeatedly restrained mice. Myricetin administration specifically increased the time spent in the target quadrant in mice exposed to chronic stress in the probe trial as tested in the Morris water maze task. Further studies showed that myricetin treatment decreased plasma adrenocorticotrophic hormone levels of those mice subjected to repeated restraint stress. The effect of myricetin on the levels of brain-derived neurotrophic factor (BDNF) in hippocampus was also investigated. The result showed that myricetin normalized the decreased BDNF levels in mice subjected to repeated restraint stress. These findings provide more evidence that chronic administration of myricetin improves spatial memory in repeatedly restrained mice and BDNF signaling in the hippocampus may be involved in the protective effects of myricetin. PMID:27171032

  10. Histological Image Processing Features Induce a Quantitative Characterization of Chronic Tumor Hypoxia

    PubMed Central

    Grabocka, Elda; Bar-Sagi, Dafna; Mishra, Bud

    2016-01-01

    Hypoxia in tumors signifies resistance to therapy. Despite a wealth of tumor histology data, including anti-pimonidazole staining, no current methods use these data to induce a quantitative characterization of chronic tumor hypoxia in time and space. We use image-processing algorithms to develop a set of candidate image features that can formulate just such a quantitative description of xenographed colorectal chronic tumor hypoxia. Two features in particular give low-variance measures of chronic hypoxia near a vessel: intensity sampling that extends radially away from approximated blood vessel centroids, and multithresholding to segment tumor tissue into normal, hypoxic, and necrotic regions. From these features we derive a spatiotemporal logical expression whose truth value depends on its predicate clauses that are grounded in this histological evidence. As an alternative to the spatiotemporal logical formulation, we also propose a way to formulate a linear regression function that uses all of the image features to learn what chronic hypoxia looks like, and then gives a quantitative similarity score once it is trained on a set of histology images. PMID:27093539

  11. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    SciTech Connect

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  12. RNA 1 and RNA 2 Genomic Segments of Chronic Bee Paralysis Virus Are Infectious and Induce Chronic Bee Paralysis Disease

    PubMed Central

    Youssef, Ibrahim; Schurr, Frank; Goulet, Adeline; Cougoule, Nicolas; Ribière-Chabert, Magali; Darbon, Hervé; Thiéry, Richard; Dubois, Eric

    2015-01-01

    Chronic bee paralysis virus (CBPV) causes an infectious and contagious disease of adult honeybees. Its segmented genome is composed of two major positive single-stranded RNAs, RNA 1 (3,674 nt) and RNA 2 (2,305 nt). Three minor RNAs (about 1,000 nt each) have been described earlier but they were not detected by sequencing of CBPV genome. In this study, the results of in vivo inoculation of the two purified CBPV major RNAs are presented and demonstrate that RNA 1 and RNA 2 are infectious. Honeybees inoculated with 109 RNA copies per bee developed paralysis symptoms within 6 days after inoculation. The number of CBPV RNA copies increased significantly throughout the infection. Moreover, the negative strand of CBPV RNA was detected by RT-PCR, and CBPV particles were visualized by electronic microscopy in inoculated honeybees. Taken together, these results show that CBPV RNA 1 and CBPV RNA 2 segments can induce virus replication and produce CBPV virus particles. Therefore, the three minor RNAs described in early studies are not essential for virus replication. These data are crucial for the development of a reverse genetic system for CBPV. PMID:26583154

  13. Serum Uric Acid Predicts Declining of Circulating Proangiogenic Mononuclear Progenitor Cells in Chronic Heart Failure Patients

    PubMed Central

    Berezin, Alexander E.; Kremzer, Alexander A.; Samura, Tatyana A.; Berezina, Tatyana A.; Martovitskaya, Yulia V.

    2014-01-01

    Introduction: Serum uric acid (SUA) is considered a marker for natural progression of chronic heart failure (CHF) mediated cardiovascular remodelling. CHF associates with declining of circulating mononuclear progenitor cells (MPCs). The objective of this study was to evaluate the interrelationship between SUA concentrations and proangiogenic MPCs in ischemic CHF patients. Methods: The study population was structured retrospectively after determining the coronary artery disease (CAD) by contrast-enhanced spiral computed tomography angiography in 126 subjects with symptomatic ischemic mild-to-severe CHF and 128 CAD subjects without CHF. Baseline biomarkers were measured in all patients. Cox proportional multivariate hazard ratio was calculated for predictors of MPCs declining in both CHF and non-CHF patient population predictors of MPCs declining in CHF subjects were examined in stepwise logistic regression. C-statistics, integrated discrimination indices (IDI) and net-reclassification improvement were utilized for prediction performance analyses. Results: Cox proportional adjusted hazard ratio analyses for CD14+CD309+ and CD14+CD309+Tie2+ MPCs by SUA has shown that the higher quartiles (Q3 and Q4) of SUA compared to the lower quartiles (Q1 and Q2) are associated with increased risks of depletion of both CD14+CD309+ and CD14+CD309+Tie2+ MPCs. The addition of Q4 SUA to the ABC model improved the relative IDI by 13.8% for depletion of CD14+CD309+ MPCs and by 14.5% for depletion of CD14+CD309+Tie2+ MPCs. Conclusion: Circulating levels of proangiogenic MPCs are declined progressively depending on the levels of SUA in the HF subjects with CHF. We suggest that even mild elevations of SUA might be used to predict of relative depletion of proangiogenic MPCs among chronic HF patients. PMID:25320662

  14. Effect of low-level NO/sub 2/ chronic exposure on elastase-induced emphysema

    SciTech Connect

    Lafuma, C.; Harf, A.; Lange, F.; Bozzi, L.; Poncy, J.L.; Bignon, J.

    1987-06-01

    The effect of chronic exposure to 2 ppm nitrogen dioxide (NO/sub 2/) for 8 hr a day, 5 days a week, for 8 weeks was assessed in normal and emphysematous hamsters by measuring (1) lung morphometry (mean linear intercept (Lm) and internal surface area (ISA)), (2) lung mechanics (lung volume, compliance and coefficient of static deflation, pressure-volume curve fitted to an exponential equation), and (3) serum elastolytic activity and protease inhibitor capacity. Emphysema was induced by a single intratracheal injection of 6 IU porcine pancreatic elastase. Four groups of animals were used: control, NO/sub 2/-exposed, elastase-treated, and NO/sub 2/-exposed postelastase. Results show that NO/sub 2/ exposure alone induced mild emphysematous lesions whose degree of severity was of the same order as that of the lesions induced by 6 IU elastase. Exposure to 2 ppm NO/sub 2/ enhanced elastase-induced emphysema. By contrast, study of lung mechanics revealed no difference between the control and NO/sub 2/-exposed groups or between the elastase-treated animals exposed to NO/sub 2/ and those not so exposed. Lastly, results suggest that chronic exposure to 2 ppm NO/sub 2/ may cause individuals with inherited or acquired emphysematous lesions to develop more severe emphysema.

  15. Prostatic inflammation induces fibrosis in a mouse model of chronic bacterial infection.

    PubMed

    Wong, Letitia; Hutson, Paul R; Bushman, Wade

    2014-01-01

    Inflammation of the prostate is strongly correlated with development of lower urinary tract symptoms and several studies have implicated prostatic fibrosis in the pathogenesis of bladder outlet obstruction. It has been postulated that inflammation induces prostatic fibrosis but this relationship has never been tested. Here, we characterized the fibrotic response to inflammation in a mouse model of chronic bacterial-induced prostatic inflammation. Transurethral instillation of the uropathogenic E. coli into C3H/HeOuJ male mice induced persistent prostatic inflammation followed by a significant increase in collagen deposition and hydroxyproline content. This fibrotic response to inflammation was accompanied with an increase in collagen synthesis determined by the incorporation of 3H-hydroxyproline and mRNA expression of several collagen remodeling-associated genes, including Col1a1, Col1a2, Col3a1, Mmp2, Mmp9, and Lox. Correlation analysis revealed a positive correlation of inflammation severity with collagen deposition and immunohistochemical staining revealed that CD45+VIM+ fibrocytes were abundant in inflamed prostates at the time point coinciding with increased collagen synthesis. Furthermore, flow cytometric analysis demonstrated an increased percentage of these CD45+VIM+ fibrocytes among collagen type I expressing cells. These data show-for the first time-that chronic prostatic inflammation induces collagen deposition and implicates fibrocytes in the fibrotic process. PMID:24950301

  16. Modified constraint-induced movement therapy for clients with chronic stroke: interrupted time series (ITS) design

    PubMed Central

    Park, JuHyung; Lee, NaYun; Cho, YongHo; Yang, YeongAe

    2015-01-01

    [Purpose] The purpose of this study was to investigate the impact that modified constraint-induced movement therapy has on upper extremity function and the daily life of chronic stroke patients. [Subjects and Methods] Modified constraint-induced movement therapy was conduct for 2 stroke patients with hemiplegia. It was performed 5 days a week for 2 weeks, and the participants performed their daily living activities wearing mittens for 6 hours a day, including the 2 hours of the therapy program. The assessment was conducted 5 times in 3 weeks before and after intervention. The upper extremity function was measured using the box and block test and a dynamometer, and performance daily of living activities was assessed using the modified Barthel index. The results were analyzed using a scatterplot and linear regression. [Results] All the upper extremity functions of the participants all improved after the modified constraint-induced movement therapy. Performance of daily living activities by participant 1 showed no change, but the results of participant 2 had improved after the intervention. [Conclusion] Through the results of this research, it was identified that modified constraint-induced movement therapy is effective at improving the upper extremity functions and the performance of daily living activities of chronic stroke patients. PMID:25931770

  17. The role of hepcidin in chronic mild stress-induced depression.

    PubMed

    Farajdokht, Fereshteh; Soleimani, Mansoureh; Mehrpouya, Sara; Barati, Mahmood; Nahavandi, Arezo

    2015-02-19

    Depression is one of the most prevalent challenges of mental conditions. Yet its exact etiology has not been clear. Chronic stress increases the production of cytokines, which can lead to depression. Hepcidin, an iron modulator, is involved in the inflammation process as well as iron homeostasis. This study was designed to investigate the role of hepcidin, on stress-induced depression. 60 male wistar rats were entered the experiment. We used a chronic unpredictable mild stress (for 28 days) as a rat model of depression. In stressed group, three subgroups were treated with three different doses of dalteparin (a hepcidin inhibitor): 70IU/kg, 100IU/kg and 140IU/kg daily, for 4 weeks. The animals in the stressed group had more depressive-like behavior than the control group. Moreover, chronic mild stress produced an increased serum interleukin-6 levels. These effects were accompanied by an obvious increase in hepcidin mRNA level and iron content in the hippocampus. These changes were blocked by the injection of dalteparin. In conclusion, inhibition of hepcidin may reduce many pathological changes seen in stress-induced depressive disorders. PMID:25576700

  18. Effectiveness of Physical Therapy as an Adjunctive Treatment for Trauma-induced Chronic Torticollis in Raptors.

    PubMed

    Nevitt, Benjamin N; Robinson, Narda; Kratz, Gail; Johnston, Matthew S

    2015-03-01

    Management of trauma-induced chronic torticollis in raptors has historically been challenging. Euthanasia is common in affected birds because of their inability to maintain normal cervical position, although they may be able to function normally. To assess effectiveness of physical therapy of the neck and head as an adjunct treatment for this condition, a case-control study was done in raptors admitted to the Rocky Mountain Raptor Program from 2003 to 2010. Eleven cases were identified with a diagnosis of chronic torticollis resulting from traumatic brain injury. Five cases were treated with physical therapy of the head and neck, and 6 control cases did not receive any physical therapy for the torticollis. Of the control cases, 0 of 6 had resolution of the torticollis, 0 of 6 were released, and 5 of 6 were euthanatized. Of the treated cases, 4 of 5 had complete resolution of the torticollis and 5 of 5 were released. Resolution of torticollis differed significantly between cases receiving physical therapy and controls. These results indicate that physical therapy should be used as an adjunctive therapy in cases of chronic torticollis induced by trauma in raptors because it results in better resolution of the torticollis and increased likelihood of release. PMID:25867664

  19. Hormone replacement therapy in morphine-induced hypogonadic male chronic pain patients

    PubMed Central

    2011-01-01

    Background In male patients suffering from chronic pain, opioid administration induces severe hypogonadism, leading to impaired physical and psychological conditions such as fatigue, anaemia and depression. Hormone replacement therapy is rarely considered for these hypogonadic patients, notwithstanding the various pharmacological solutions available. Methods To treat hypogonadism and to evaluate the consequent endocrine, physical and psychological changes in male chronic pain patients treated with morphine (epidural route), we tested the administration of testosterone via a gel formulation for one year. Hormonal (total testosterone, estradiol, free testosterone, DHT, cortisol), pain (VAS and other pain questionnaires), andrological (Ageing Males' Symptoms Scale - AMS) and psychological (POMS, CES-D and SF-36) parameters were evaluated at baseline (T0) and after 3, 6 and 12 months (T3, T6, T12 respectively). Results The daily administration of testosterone increased total and free testosterone and DHT at T3, and the levels remained high until T12. Pain rating indexes (QUID) progressively improved from T3 to T12 while the other pain parameters (VAS, Area%) remained unchanged. The AMS sexual dimension and SF-36 Mental Index displayed a significant improvement over time. Conclusions In conclusion, our results suggest that a constant, long-term supply of testosterone can induce a general improvement of the male chronic pain patient's quality of life, an important clinical aspect of pain management. PMID:21332999

  20. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-12-01

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification. PMID:26517697

  1. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala.

    PubMed

    Narita, Minoru; Kaneko, Chihiro; Miyoshi, Kan; Nagumo, Yasuyuki; Kuzumaki, Naoko; Nakajima, Mayumi; Nanjo, Kana; Matsuzawa, Kiyomi; Yamazaki, Mitsuaki; Suzuki, Tsutomu

    2006-04-01

    Clinically, it has been reported that chronic pain induces depression, anxiety, and reduced quality of life. The endogenous opioid system has been implicated in nociception, anxiety, and stress. The present study was undertaken to investigate whether chronic pain could induce anxiogenic effects and changes in the opioidergic function in the amygdala in mice. We found that either injection of complete Freund's adjuvant (CFA) or neuropathic pain induced by sciatic nerve ligation produced a significant anxiogenic effect at 4 weeks after the injection or surgery. Under these conditions, the selective mu-opioid receptor agonist [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAMGO)- and the selective delta-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80)-stimulated [35S]GTPgammaS binding in membranes of the amygdala was significantly suppressed by CFA injection or nerve ligation. CFA injection was associated with a significant increase in the kappa-opioid receptor agonist 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-phenyl-2-(1-pyrrolidinyl)ethyl]acetamide hydrochloride (ICI199,441)-stimulated [35S]GTPgammaS binding in membranes of the amygdala. The intracerebroventricular administration and microinjection of a selective mu-opioid receptor antagonist, a selective delta-opioid receptor antagonist, and the endogenous kappa-opioid receptor ligand dynorphin A caused a significant anxiogenic effect in mice. We also found that thermal hyperalgesia induced by sciatic nerve ligation was reversed at 8 weeks after surgery. In the light-dark test, the time spent in the lit compartment was not changed at 8 weeks after surgery. Collectively, the present data constitute the first evidence that chronic pain has an anxiogenic effect in mice. This phenomenon may be associated with changes in opioidergic function in the amygdala. PMID:16123756

  2. Lipopolysaccharide-induced epithelial monoamine oxidase mediates alveolar bone loss in a rat chronic wound model.

    PubMed

    Ekuni, Daisuke; Firth, James D; Nayer, Tarun; Tomofuji, Takaaki; Sanbe, Toshihiro; Irie, Koichiro; Yamamoto, Tatsuo; Oka, Takashi; Liu, Zhenzi; Vielkind, Juergen; Putnins, Edward E

    2009-10-01

    Reactive oxygen species (ROS) production is an antimicrobial response to pathogenic challenge that may, in the case of persistent infection, have deleterious effects on the tissue of origin. A rat periodontal disease model was used to study ROS-induced chronic epithelial inflammation and bone loss. Lipopolysaccharide (LPS) was applied for 8 weeks into the gingival sulcus, and histological analysis confirmed the onset of chronic disease. Junctional epithelium was collected from healthy and diseased animals using laser-capture microdissection, and expression microarray analysis was performed. Of 19,730 genes changed in disease, 42 were up-regulated >/=4-fold. Three of the top 10 LPS-induced genes, monoamine oxidase B (MAO/B) and flavin-containing monooxygenase 1 and 2, are implicated in ROS signaling. LPS-associated induction of the ROS mediator H(2)O(2), as well as MAO/B and tumor necrosis factor (TNF)-alpha levels were validated in the rat histological sections and a porcine junctional epithelial cell culture model. Topical MAO inhibitors significantly counteracted LPS-associated elevation of H(2)O(2) production and TNF-alpha expression in vivo and in vitro, inhibited disease-associated apical migration and proliferation of junctional epithelium and inhibited induced systemic H(2)O(2) levels and alveolar bone loss in vivo. These results suggest that LPS induces chronic wounds via elevated MAO/B-mediated increases in H(2)O(2) and TNF-alpha activity by epithelial cells and is further associated with more distant effects on systemic oxidative stress and alveolar bone loss. PMID:19779138

  3. Potentiation of phenobarbital-induced anticonvulsant activity by pipecolic acid.

    PubMed

    Takahama, K; Miyata, T; Okano, Y; Kataoka, M; Hitoshi, T; Kasé, Y

    1982-07-01

    Pipecolic acid (PA) is an intermediate of lysine metabolism in the mammalian brain. Recent findings suggest a functional connection of PA as neuromodulator in GABAergic transmission. Since many drugs are postulated to produce their effects by interaction with the central GABA system, the influence of PA on the anticonvulsant activity of phenobarbital was examined. Pretreatment of mice with 50 mg . kg-1 of PA potentiated the suppressing effects of the barbiturate on electrically and chemically induced convulsions. However, there was no potentiation of the behavioral effects and hypothermia induced by phenobarbital. PA itself had no or only little effect on the convulsions, motor function and rectal temperature when given in i.p. doses up to 500 mg . kg-1. Intraventricular administration of 500 microgram of PA also did not suppress either type of convulsion, although it produced ptosis, hypotonia, sedation and hypothermia. The results are discussed in relation to GABA system. PMID:6288409

  4. Benzoic Acid-Inducible Gene Expression in Mycobacteria

    PubMed Central

    Dragset, Marte S.; Barczak, Amy K.; Kannan, Nisha; Mærk, Mali; Flo, Trude H.; Valla, Svein; Rubin, Eric J.; Steigedal, Magnus

    2015-01-01

    Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance. PMID:26348349

  5. [Sunitinib and zoledronic acid induced osteonecrosis of the jaw].

    PubMed

    Soós, Balázs; Vajta, László; Szalma, József

    2015-11-15

    The tendency for bisphosphonate and non-bisphosphonate (eg.: antiresorptive or anti-angiogenesis drugs) induced osteonecrosis is increasing. Treatment of these patients is a challenge both for dentists and for oral and maxillofacial surgeons. Cooperation with the drug prescribing general medicine colleagues to prevent osteonecrosis is extremely important. Furthermore, prevention should include dental focus elimination, oral hygienic instructions and education, dental follow-up and, in case of manifest necrosis, referral to maxillofacial departments. Authors outline the difficulties of conservative and surgical treatment of a patient with sunitinib and zoledronic acid induced osteonecrosis. The patient became symptomless and the operated area healed entirely six and twelve months postoperatively. A long term success further follow-up is necessary to verify long-term success. PMID:26548471

  6. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    PubMed

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage. PMID:23063544

  7. Essential role for telomerase in chronic myeloid leukemia induced by BCR-ABL in mice

    PubMed Central

    Vicente-Dueñas, Carolina; Barajas-Diego, Marcos; Romero-Camarero, Isabel; González-Herrero, Inés; Flores, Teresa; Sánchez-García, Isidro

    2012-01-01

    The telomerase protein is constitutively activated in malignant cells from many patients with cancer, including the chronic myeloid leukemia (CML), but whether telomerase is essential for the pathogenesis of this disease is not known. Here, we used telomerase deficient mice to determine the requirement for telomerase in CML induced by BCR-ABL in mouse models of CML. Loss of one telomerase allele or complete deletion of telomerase prevented the development of leukemia induced by BCR-ABL. However, BCR-ABL was expressed and active in telomerase heterozygous and null leukemic hematopoietic stem cells. These results demonstrate that telomerase is essential for oncogene-induced reprogramming of hematopoietic stem cells in CML development and validate telomerase and the genes it regulates as targets for therapy in CML. PMID:22408137

  8. High-intensity laser therapy during chronic degenerative tenosynovitis experimentally induced in broiler chickens

    NASA Astrophysics Data System (ADS)

    Fortuna, Damiano; Rossi, Giacomo; Bilotta, Teresa W.; Zati, Allesandro; Gazzotti, Valeria; Venturini, Antonio; Pinna, Stefania; Serra, Christian; Masotti, Leonardo

    2002-10-01

    The aims of this study was the safety and the efficacy of High Intensity Laser Therapy (HILT) on chronic degenerative tenosynovitis. We have effectuated the histological evaluation and seroassay (C reactive protein) on 18 chickens affect by chronic degenerative tenosynovitis experimentally induced. We have been employed a Nd:YAG laser pulsed wave; all irradiated subjects received the same total energy (270 Joule) with a fluence of 7,7 J/cm2 and intensity of 10,7 W/cm2. The histological findings revealed a distinct reduction of the mineralization of the choral matrix, the anti-inflammatory effect of the laser, the hyperplasia of the synoviocytes and ectasia of the lymphatic vessels.

  9. Co-culture-inducible bacteriocin production in lactic acid bacteria.

    PubMed

    Chanos, Panagiotis; Mygind, Tina

    2016-05-01

    It is common knowledge that microorganisms have capabilities, like the production of antimicrobial compounds, which do not normally appear in ideal laboratory conditions. Common antimicrobial discovery techniques require the isolation of monocultures and their individual screening against target microorganisms. One strategy to achieve expression of otherwise hidden antimicrobials is induction by co-cultures. In the area of bacteriocin-producing lactic acid bacteria, there has been some research focusing into the characteristics of co-culture-inducible bacteriocin production and particularly the molecular mechanism(s) of such interactions. No clear relationship has been seen between bacteriocin-inducing and bacteriocin-producing microorganisms. The three-component regulatory system seems to be playing a central role in the induction, but inducing compounds have not been identified or characterized. However, the presence of the universal messenger molecule autoinducer-2 has been associated in some cases with the co-culture-inducible bacteriocin phenotype and it may play the role in the additional regulation of the three-component regulatory system. Understanding the mechanisms of induction would facilitate the development of strategies for screening and development of co-culture bacteriocin-producing systems and novel products as well as the perseverance of such systems in food and down to the intestinal tract, possibly conferring a probiotic effect on the host. PMID:27037694

  10. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF. PMID:12504106

  11. Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics.

    PubMed

    Cowan, Theresa E; Palmnäs, Marie S A; Yang, Jaeun; Bomhof, Marc R; Ardell, Kendra L; Reimer, Raylene A; Vogel, Hans J; Shearer, Jane

    2014-04-01

    Epidemiological data confirms a strong negative association between regular coffee consumption and the prevalence of type 2 diabetes. Coffee is initially absorbed in the stomach and small intestine but is further fermented in the colon by gut microbiota. The bioavailability, production and biological activity of coffee polyphenols is modulated, in part, by gut microbiota. The purpose of this study was to determine if chronic coffee consumption could mitigate negative gut microbiota and metabolomic profile changes induced by a high-fat diet. Male Sprague-Dawley rats were randomized to chow (12% kcal fat) or high-fat (60% kcal fat) diet. Each group was further divided into water or caffeinated coffee for 10 weeks. Coffee consumption in high-fat-fed rats was associated with decreased body weight, adiposity, liver triglycerides and energy intake. Despite a more favorable body composition, rats displayed profound systemic insulin resistance, likely due to caffeine. Coffee consumption attenuated the increase in Firmicutes (F)-to-Bacteroidetes (B) ratio and Clostridium Cluster XI normally associated with high-fat feeding but also resulted in augmented levels of Enterobacteria. In the serum metabolome, coffee had a distinct impact, increasing levels of aromatic and circulating short-chain fatty acids while lowering levels of branched-chain amino acids. In summary, coffee consumption is able to alter gut microbiota in high-fat-fed rats although the role of these changes in reducing diabetes risk is unclear given the increased insulin resistance observed with coffee in this study. PMID:24629912

  12. Acid aspiration-induced airways hyperresponsiveness in mice.

    PubMed

    Allen, Gilman B; Leclair, Timothy R; von Reyn, Jessica; Larrabee, Yuna C; Cloutier, Mary E; Irvin, Charles G; Bates, Jason H T

    2009-12-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 microl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (R(N)), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak R(N), G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  13. Acid aspiration-induced airways hyperresponsiveness in mice

    PubMed Central

    Leclair, Timothy R.; von Reyn, Jessica; Larrabee, Yuna C.; Cloutier, Mary E.; Irvin, Charles G.; Bates, Jason H. T.

    2009-01-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 μl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (RN), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak RN, G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  14. Chronic stress sensitizes rats to pancreatitis induced by cerulein: Role of TNF-α

    PubMed Central

    Binker, Marcelo G; Binker-Cosen, Andres A; Richards, Daniel; Gaisano, Herbert Y; de Cosen, Rodica H; Cosen-Binker, Laura I

    2010-01-01

    AIM: To investigate chronic stress as a susceptibility factor for developing pancreatitis, as well as tumor necrosis factor-α (TNF-α) as a putative sensitizer. METHODS: Rat pancreatic acini were used to analyze the influence of TNF-α on submaximal (50 pmol/L) cholecystokinin (CCK) stimulation. Chronic restraint (4 h every day for 21 d) was used to evaluate the effects of submaximal (0.2 μg/kg per hour) cerulein stimulation on chronically stressed rats. RESULTS: In vitro exposure of pancreatic acini to TNF-α disorganized the actin cytoskeleton. This was further increased by TNF-α/CCK treatment, which additionally reduced amylase secretion, and increased trypsin and nuclear factor-κB activities in a protein-kinase-C δ and ε-dependent manner. TNF-α/CCK also enhanced caspases’ activity and lactate dehydrogenase release, induced ATP loss, and augmented the ADP/ATP ratio. In vivo, rats under chronic restraint exhibited elevated serum and pancreatic TNF-α levels. Serum, pancreatic, and lung inflammatory parameters, as well as caspases’activity in pancreatic and lung tissue, were substantially enhanced in stressed/cerulein-treated rats, which also experienced tissues’ ATP loss and greater ADP/ATP ratios. Histological examination revealed that stressed/cerulein-treated animals developed abundant pancreatic and lung edema, hemorrhage and leukocyte infiltrate, and pancreatic necrosis. Pancreatitis severity was greatly decreased by treating animals with an anti-TNF-α-antibody, which diminished all inflammatory parameters, histopathological scores, and apoptotic/necrotic markers in stressed/cerulein-treated rats. CONCLUSION: In rats, chronic stress increases susceptibility for developing pancreatitis, which involves TNF-α sensitization of pancreatic acinar cells to undergo injury by physiological cerulein stimulation. PMID:21105189

  15. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    PubMed

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. PMID:23725345

  16. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    PubMed Central

    Mohd Sairazi, Nur Shafika; Sirajudeen, K. N. S.; Asari, Mohd Asnizam; Muzaimi, Mustapha; Mummedy, Swamy; Sulaiman, Siti Amrah

    2015-01-01

    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration. PMID:26793262

  17. Uric acid induces NADPH oxidase-independent neutrophil extracellular trap formation.

    PubMed

    Arai, Yasuyuki; Nishinaka, Yoko; Arai, Toshiyuki; Morita, Makiko; Mizugishi, Kiyomi; Adachi, Souichi; Takaori-Kondo, Akifumi; Watanabe, Tomohiro; Yamashita, Kouhei

    2014-01-10

    Neutrophil extracellular traps (NETs) are composed of extracellular DNA fibers with antimicrobial peptides that capture and kill microbes. NETs play a critical role in innate host defense and in autoimmune and inflammatory diseases. While the mechanism of NET formation remains unclear, reactive oxygen species (ROS) produced via activation of NADPH oxidase (Nox) are known to be an important requirement. In this study, we investigated the effect of uric acid (UA) on NET formation. UA, a well-known ROS scavenger, was found to suppress Nox-dependent ROS release in a dose-dependent manner. Low concentrations of UA significantly inhibited Nox-dependent NET formation. However, high concentrations of UA unexpectedly induced, rather than inhibited, NET formation. NETs were directly induced by UA alone in a Nox-independent manner, as revealed by experiments using control neutrophils treated with ROS inhibitors or neutrophils of patients with chronic granulomatous disease who have a congenital defect in ROS production. Furthermore, we found that UA-induced NET formation was partially mediated by NF-κB activation. Our study is the first to demonstrate the novel function of UA in NET formation and may provide insight into the management of patients with hyperuricemia. PMID:24326071

  18. Mechanism of the toxicity induced by natural humic acid on human vascular endothelial cells.

    PubMed

    Kihara, Yusuke; Yustiawati; Tanaka, Masato; Gumiri, Sulmin; Ardianor; Hosokawa, Toshiyuki; Tanaka, Shunitz; Saito, Takeshi; Kurasaki, Masaaki

    2014-08-01

    Humic acid (HA), a group of high-molecular weight organic compounds characterized by an ability to bind heavy metals, is normally found in natural water. Although the impairment of vascular endothelial cells in the presence of humic substances has been reported to be involved in some diseases, the mechanisms responsible for this involvement remain unclear. In this study, we examined the cytotoxicity of HA obtained from peatland in Central Kalimantan, Indonesia, to human vascular endothelial cells, as well as the mechanisms behind these effects. It was found that 50 mg/L HA showed cytotoxicity, which we considered to be mediated by apoptosis through the mitochondrial pathway because of an increase in the expression of caspases 6 and 9 in response to HA administration. In addition, this cytotoxicity was enhanced when cells in this experimental system were exposed to oxidative stress, while it was decreased by the addition of vitamin C. Thus, we conclude that the apoptosis induced by HA depends upon oxidative stress. Furthermore, an iron chelator, DFO, showed a tendency to decrease HA-induced cytotoxicity, suggesting that iron may potentially mediate HA-induced oxidative stress. In conclusion, long-term consumption of HA-rich water obtained from our study area may cause damage to endothelial cells and subsequent chronic health problems. PMID:23042718

  19. Dasatinib accelerates valproic acid-induced acute myeloid leukemia cell death by regulation of differentiation capacity.

    PubMed

    Heo, Sook-Kyoung; Noh, Eui-Kyu; Yoon, Dong-Joon; Jo, Jae-Cheol; Park, Jae-Hoo; Kim, Hawk

    2014-01-01

    Dasatinib is a compound developed for chronic myeloid leukemia as a multi-targeted kinase inhibitor against wild-type BCR-ABL and SRC family kinases. Valproic acid (VPA) is an anti-epileptic drug that also acts as a class I histone deacetylase inhibitor. The aim of this research was to determine the anti-leukemic effects of dasatinib and VPA in combination and to identify their mechanism of action in acute myeloid leukemia (AML) cells. Dasatinib was found to exert potent synergistic inhibitory effects on VPA-treated AML cells in association with G1 phase cell cycle arrest and apoptosis induction involving the cleavage of poly (ADP-ribose) polymerase and caspase-3, -7 and -9. Dasatinib/VPA-induced cell death thus occurred via caspase-dependent apoptosis. Moreover, MEK/ERK and p38 MAPK inhibitors efficiently inhibited dasatinib/VPA-induced apoptosis. The combined effect of dasatinib and VPA on the differentiation capacity of AML cells was more powerful than the effect of each drug alone, being sufficiently strong to promote AML cell death through G1 cell cycle arrest and caspase-dependent apoptosis. MEK/ERK and p38 MAPK were found to control dasatinib/VPA-induced apoptosis as upstream regulators, and co-treatment with dasatinib and VPA to contribute to AML cell death through the regulation of differentiation capacity. Taken together, these results indicate that combined dasatinib and VPA treatment has a potential role in anti-leukemic therapy. PMID:24918603

  20. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival.

    PubMed

    Utzschneider, Daniel T; Alfei, Francesca; Roelli, Patrick; Barras, David; Chennupati, Vijaykumar; Darbre, Stephanie; Delorenzi, Mauro; Pinschewer, Daniel D; Zehn, Dietmar

    2016-08-22

    Chronic infections induce T cells showing impaired cytokine secretion and up-regulated expression of inhibitory receptors such as PD-1. What determines the acquisition of this chronic phenotype and how it impacts T cell function remain vaguely understood. Using newly generated recombinant antigen variant-expressing chronic lymphocytic choriomeningitis virus (LCMV) strains, we uncovered that T cell differentiation and acquisition of a chronic or exhausted phenotype depend critically on the frequency of T cell receptor (TCR) engagement and less significantly on the strength of TCR stimulation. In fact, we noted that low-level antigen exposure promotes the formation of T cells with an acute phenotype in chronic infections. Unexpectedly, we found that T cell populations with an acute or chronic phenotype are maintained equally well in chronic infections and undergo comparable primary and secondary expansion. Thus, our observations contrast with the view that T cells with a typical chronic infection phenotype are severely functionally impaired and rapidly transition into a terminal stage of differentiation. Instead, our data unravel that T cells primarily undergo a form of phenotypic and functional differentiation in the early phase of a chronic LCMV infection without inheriting a net survival or expansion deficit, and we demonstrate that the acquired chronic phenotype transitions into the memory T cell compartment. PMID:27455951

  1. Effects of propranolol and sucralfate on ethanol-induced gastric mucosal damage in chronic portal hypertensive rats.

    PubMed

    Geoffroy, P; Duchateau, A; Thiéfin, G; Zeitoun, P

    1987-10-01

    In a rat model of chronic portal hypertension we studied ethanol-induced gastric mucosal damage and the effects of pretreatment by propranolol and sucralfate. Susceptibility to ethanol was increased in chronic portal hypertensive rats compared with sham-operated rats (55 +/- 8% vs. 25 +/- 4%). Both acute pretreatment (10 min) and chronic pretreatment (3 weeks) with propranolol reduced gastric mucosal injury induced by ethanol in portal hypertensive rats, compared with saline-treated rats. Acute and chronic pretreatment with propranolol had no protective effect in sham-operated rats. In portal hypertensive rats, sucralfate in two different doses (500 and 125 mg/kg) protected the gastric mucosa against ethanol-induced gastric injury compared with animals receiving saline (2 +/- 1% and 3 +/- 2% vs. 25 +/- 3%). Sucralfate at the higher dose did not reduce portal pressure in portal hypertensive rats. We conclude that: (1) chronic portal hypertension increases ethanol-induced gastric damage; (2) acute and chronic propranolol treatment reduces ethanol-induced gastric injury in portal hypertensive rats, probably by decreasing portal hypertension; (3) sucralfate has a cytoprotective effect in portal hypertensive rats without reducing portal pressure. These results suggest a potential application of sucralfate in patients otherwise treated by sclerotherapy. PMID:3693860

  2. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory

    PubMed Central

    Xu, Lin-Hao; Xie, Hui; Shi, Zhi-Hui; Du, Li-Da; Wing, Yun-Kwok; Li, Albert M.

    2015-01-01

    Abstract Aims: This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. Results: Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. Innovation and Conclusion: These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment. Antioxid. Redox Signal. 23, 695–710. PMID:25843188

  3. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    SciTech Connect

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P.

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship

  4. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels. PMID:26571019

  5. Effects of chronic nitric oxide synthase inhibition in cold-restraint and ethanol-induced gastric mucosal damage in rats.

    PubMed

    Qiu, B S; Pfeiffer, C J; Cho, C H

    1996-01-01

    Gastric actions of Nw-nitro-1-arginine methyl ester (L-NAME) were investigated in rats, as this agent is a reliable nitric oxide synthase inhibitor L-NAME solutions were placed in subcutaneous osmotic minipumps which continuously released L-NAME at 0.1, 1.0, 10, or 40 mg/kg/day. L-NAME dose and time-dependently enhanced stress-induced gastric ulceration but did not affect mucosal mast cell population. Ulcerogenic actions of L-NAME were reversed by L-arginine but not by D-arginine. Ten L-NAME treatment also enhanced the ethanol-induced gastric mucosal damage, depressed gastric mucosal blood flow but did not alter gastric mucus, secretory volume, or acid output. It is concluded that in the present models, chronic nitric oxide synthase inhibition enhanced ulcerogenesis by decreasing mucosal resistance due to reduced mucosal blood perfusion. This implicates nitric oxide as a mucosal defense factor which acts in part by maintaining mucosal blood flow. PMID:8626050

  6. Oral essential amino acid supplements in children with advanced chronic renal failure.

    PubMed

    Jones, R W; Dalton, N; Start, K; El-Bishti, M M; Chantler, C

    1980-07-01

    The effects on growth, nitrogen balance, and body composition of a protein-restricted diet supplemented with oral essential amino acids (EAA) were studied in seven children with advanced chronic renal failure. The diet was designed to provide minimum protein requirements for height-age, half in unselected form and half as an EAA supplement. Energy from carbohydrate and fat were increased to give a protein/energy ratio of 1.25 G:100 kcal. Nitrogen balance, studied in five children before and after 6 to 8 months of EAA treatment, was improved in each case. intracellular water (total body water minus bromide space) increased in four children but fell in three children during treatment. No significant improvement in growth, expressed as height or height velocity standard deviation scores in relation to bone age, was observed. Serum urea and urea/creatinine ratio fell after institution of EAA treatment, but the fall was not sustained. Although the EAA preparation proved acceptable to the children, dietary assessments indicated that the desired dietary aims were rarely achieved. It is concluded that, in this pediatric age group, the long-term application of a protein restricted diet with EAA supplements is of limited value. PMID:7395791

  7. Ascorbic acid: its role in immune system and chronic inflammation diseases.

    PubMed

    Sorice, Angela; Guerriero, Eliana; Capone, Francesca; Colonna, Giovanni; Castello, Giuseppe; Costantini, Susan

    2014-05-01

    Ascorbic acid (AA), also known as vitamin C, was initially identified as the factor preventing the scurvy disease, and became very popular for its antioxidant properties. It is an important co-substrate of a large class of enzymes, and regulates gene expression by interacting with important transcription factors. AA is important in all stressful conditions that are linked to inflammatory processes and involve immunity. It has been known for decades that the persistence of an inflammatory stimulus is responsible for the onset of many diseases. AA is essential to stimulate the immune system by increasing the strength and protection of the organism. Therefore, its immunostimulant, antinflammatory, antiviral and antibacterial roles are well known, we have summarized its main functions in different types of diseases related to the immune system and chronic inflammation. We can conclude that AA, due to its effects and diversity of regulated pathways, is suitable for use in various fields of medicine including immunology, toxicology, radiobiology and others. AA is not preferable to be used as an isolated mode of treatment, but it can be co-applied as an adjuvant to regulate immunity, gene expression and other important physiological processes. However, we propose that future studies will take into consideration the research of new combinations of antioxidant natural substances and drugs. PMID:24766384

  8. Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Chronic Epileptogenesis

    PubMed Central

    Yang, Feng; Sun, Xiaolong; Ding, Yinxiu; Ma, Hui; Yang, Tangpeng Ou; Ma, Yue; Wei, Dong; Li, Wen; Xu, Tianle; Jiang, Wen

    2016-01-01

    Unraveling mechanisms underlying epileptogenesis after brain injury is an unmet medical challenge. Although histopathological studies have revealed that reactive astrogliosis and tissue acidosis are prominent features in epileptogenic foci, their roles in epileptogenesis remain unclear. Here, we explored whether astrocytic acid-sensing ion channel-1a (ASIC1a) contributes to the development of chronic epilepsy. High levels of ASIC1a were measured in reactive astrocytes in the hippocampi of patients with temporal lobe epilepsy (TLE) and epileptic mice. Extracellular acidosis caused a significant Ca2+ influx in cultured astrocytes, and this influx was sensitive to inhibition by the ASIC1a-specific blocker psalmotoxin 1 (PcTX1). In addition, recombinant adeno-associated virus (rAAV) vectors carrying a GFAP promoter in conjunction with ASIC1a shRNA or cDNA were generated to suppress or restore, respectively, ASIC1a expression in astrocytes. Injection of rAAV-ASIC1a-shRNA into the dentate gyrus of the wide type TLE mouse model resulted in the inhibition of astrocytic ASIC1a expression and a reduction in spontaneous seizures. By contrast, rAAV-ASIC1a-cDNA restored astrocytic ASIC1a expression in an ASIC1a knock-out TLE mouse model and increased the frequency of spontaneous seizures. Taken together, our results reveal that astrocytic ASIC1a may be an attractive new target for the treatment of epilepsy. PMID:27526777

  9. Effect of Dichlorphenamide on Gas Exchange and CSF Acid-Base State in Chronic Respiratory Failure

    PubMed Central

    Naimark, Arnold; Cherniack, Reuben M.

    1966-01-01

    Dichlorphenamide was administered to 13 patients with chronic respiratory failure, and the effects on gas exchange at rest and during exercise and on the acid-base state of CSF were observed. The ventilation for a given level of CO2 production was increased both at rest and during exercise, resulting in an increased arterial Po2 and decreased Pco2. The ventilatory stimulation paralleled the development of a metabolic acidosis but was not associated with tissue CO2 accumulation. Indeed, CSF Pco2 and the oxygenated mixed venous (rebreathing) Pco2 fell by the same amount as arterial Pco2. The level of CO2 elimination after two minutes of exercise was as great for a given work load after dichlorphenamide as before. These findings do not support the view that the drug impairs CO2 transport from tissues either at rest or during exercise. They are most consistent with the view that the primary locus of action of dichlorphenamide in therapeutic doses is the kidney. The metabolic acidosis which results is likely the basis of the respiratory stimulatin, perhaps by its effects on the CSF H2CO3-HCO3 - system. Inhibition of carbonic anhydrase in the red cell and choroid plexus are probably unimportant effects. ImagesFig. 4 PMID:5901159

  10. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites.

    PubMed

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I

    2011-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) to lipoxin A₄ (LXA₄) and 15-epi-LXA₄. However, it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE₂, TXB₂ and leukotriene B₄ (LTB₄) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE₂, but increased LTB₄, LXA₄ and 15-epi-LXA₄ concentrations. Both doses attenuated the LPS effects on PGE₂, and TXB₂. The increments in LXA₄ and 15-epi-LXA₄ caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA₄ and 15-epi-LXA₄ and reduce pro-inflammatory PGE₂ and TXB₂ suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  11. Neuroprotective Effects of Agomelatine and Vinpocetine Against Chronic Cerebral Hypoperfusion Induced Vascular Dementia.

    PubMed

    Gupta, Surbhi; Singh, Prabhat; Sharma, Brij Mohan; Sharma, Bhupesh

    2015-01-01

    Chronic cerebral hypoperfusion (CCH) has been considered as a critical cause for the development of cognitive decline and dementia of vascular origin. Melatonin receptors have been reported to be beneficial in improving memory deterioration. Phosphodiesterase-1 (PDE1) enzyme offers protection against cognitive impairments and cerebrovascular disorders. Aim of this study is to explore the role of agomelatine (a dual MT1 and MT2 melatonin receptor agonist) and vinpocetine (selective PDE1 inhibitor) in CCH induced vascular dementia (VaD). Two vessel occlusion (2VO) or bilateral common carotid arteries ligation method was performed to initiate a phase of chronic hypoperfusion in mice. 2VO animals have shown significant cognitive deficits (Morris water maze), cholinergic dysfunction (increased acetyl cholinesterase -AChE) activity alongwith increased brain oxidative stress (decreased brain catalase, glutathione, as well as superoxide dismutase with an increase in malondialdehyde levels), and significant increase in brain infarct size (2,3,5- triphenylterazolium chloride-TTC staining). Treatment of agomelatine and vinpocetine reduced CCH induced learning and memory deficits and limited cholinergic dysfunction, oxidative stress, and tissue damage, suggesting that agomelatine and vinpocetine may provide benefits in CCH induced VaD. PMID:26036976

  12. Peroxisome Proliferator-Activated Receptor γ Regulates Chronic Alcohol-Induced Alveolar Macrophage Dysfunction.

    PubMed

    Yeligar, Samantha M; Mehta, Ashish J; Harris, Frank L; Brown, Lou Ann S; Hart, C Michael

    2016-07-01

    Peroxisome proliferator-activated receptor (PPAR) γ is critical for alveolar macrophage (AM) function. Chronic alcohol abuse causes AM phagocytic dysfunction and susceptibility to respiratory infections by stimulating nicotinamide adenine dinucleotide oxidases (Nox), transforming growth factor-β1, and oxidative stress in the AM. Because PPARγ inhibits Nox expression, we hypothesized that alcohol reduces PPARγ, stimulating AM dysfunction. AMs were examined from: (1) patients with alcoholism or control patients; (2) a mouse model of chronic ethanol consumption; (3) PPARγ knockout mice; or (4) MH-S cells exposed to ethanol in vitro. Alcohol reduced AM PPARγ levels and increased Nox1, -2, and -4, transforming growth factor-β1, oxidative stress, and phagocytic dysfunction. Genetic loss of PPARγ recapitulated, whereas stimulating PPARγ activity attenuated alcohol-mediated alterations in gene expression and phagocytic function, supporting the importance of PPARγ in alcohol-induced AM derangements. Similarly, PPARγ activation in vivo reduced alcohol-mediated impairments in lung bacterial clearance. Alcohol increased levels of microRNA-130a/-301a, which bind to the PPARγ 3' untranslated region to reduce PPARγ expression. MicroRNA-130a/-301a inhibition attenuated alcohol-mediated PPARγ reductions and derangements in AM gene expression and function. Alcohol-induced Toll-like receptor 4 endocytosis was reversed by PPARγ activation. These findings demonstrate that targeting PPARγ provides a novel therapeutic approach for mitigating alcohol-induced AM derangements and susceptibility to lung infection. PMID:26677910

  13. Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice.

    PubMed

    Wei, Ruifen; Luo, Guangying; Sun, Zilong; Wang, Shaolin; Wang, Jundong

    2016-06-01

    Previous studies have indicated that fluoride (F) can affect testicular toxicity in humans and rodents. However, the mechanism underlying F-induced testicular toxicity is not well understood. This study was conducted to evaluate the sperm quality, testicular histomorphology and inflammatory response in mice followed F exposure. Healthy male mice were randomly divided into four groups with sodium fluoride (NaF) at 0, 25, 50, 100 mg/L in the drinking water for 180 days. At the end of the exposure, significantly increased percentage of spermatozoa abnormality was found in mice exposed to 50 and 100 mg/L NaF. Disorganized spermatogenic cells, vacuoles in seminiferous tubules and loss and shedding of sperm cells were also observed in the NaF treated group. In addition, chronic F exposure increased testicular interleukin-17(IL-17), interleukin-17 receptor C (IL-17RC), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in transcriptional levels, as well as IL-17 and TNF-α levels in translational levels. Interestingly, we observed that F treated group elevated testicular inducible nitric oxide synthase (iNOS) mRNA level and nitric oxide (NO) concentration. Taken together, these results indicated that testicular inflammatory response could contribute to chronic F exposure induced testicular toxicity in mice. PMID:27031805

  14. Chronic inflammation in biomaterial induced periprosthetic osteolysis: NF-κB as a therapeutic target

    PubMed Central

    Lin, Tzu-hua; Tamaki, Yasunobu; Pajarinen, Jukka; Waters, Heather A.; Woo, Deanna K.; Yao, Zhenyu; Goodman, Stuart B.

    2013-01-01

    Biomaterial-induced tissue responses in patients with total joint replacement are associated with the generation of wear particles, which may lead to chronic inflammation and local bone destruction (periprosthetic osteolysis). Inflammatory reactions associated with wear particles are mediated by several important signaling pathways, the most important of which involves the transcription factor NF-κB. NF-κB activation is essential for macrophage recruitment and maturation, as well as the production of pro-inflammatory cytokines and chemokines such as TNF-α, IL-1β, IL-6, MCP1, etc. In addition, NF-κB activation contributes to osteoclast differentiation and maturation via RANK/RANKL signaling, which increases bone destruction and reduces bone formation. Targeting individual downstream cytokines directly (such as TNF-α or IL-1β) may not effectively prevent wear particle induced osteolysis. A more logical upstream therapeutic approach may be provided by direct modulation of the core IκB/IKKα/β/NF-κB signaling pathway in the local environment, however, the timing, dose, and strategy for administration should be considered. Suppression of chronic inflammation via inhibition of NF-κB activity in patients with malfunctioning joint replacements may be an effective strategy to mitigate wear particle induced periprosthetic osteolysis. PMID:24090989

  15. Preventive effect of oral goshajinkigan on chronic oxaliplatin-induced hypoesthesia in rats

    PubMed Central

    Kono, Toru; Suzuki, Yasuyuki; Mizuno, Keita; Miyagi, Chika; Omiya, Yuji; Sekine, Hitomi; Mizuhara, Yasuharu; Miyano, Kanako; Kase, Yoshio; Uezono, Yasuhito

    2015-01-01

    Oxaliplatin, a widely used chemotherapeutic agent, induces peripheral neuropathy that manifests itself as two distinct phases: acute cold hyperesthesia and chronic peripheral hypoesthesia/dysesthesia. The latter is a serious dose-limiting side effect that can often lead to withdrawal of treatment. We have developed a rat model expressing both phases and used the model to investigate the action of goshajinkigan (GJG), a traditional Japanese herbal medicine, which was reported to ameliorate oxaliplatin-induced neuropathy in a placebo-controlled double-blind randomized phase II study. In this study, neuropathy was induced by injection of oxaliplatin twice weekly for 8 wks. The maximum level of cold hyperesthesia was observed at 4 wks with heat hypoesthesia developing later. Microscopy studies revealed atrophy of axons of myelinated sciatic nerve fibers in oxaliplatin-treated rats at 8 wks. Co-administration of GJG ameliorated both abnormal sensations as well as histological damage to the sciatic nerve. A pharmacokinetic study revealed numerous neuroprotective components of GJG that are rapidly absorbed into the blood. GJG and some of its components attenuated the generation of oxaliplatin-induced reactive oxygen species, which is a possible mechanism of oxaliplatin-induced neurotoxicity. The present study provides a useful animal model for oxaliplatin-induced neurotoxicity as well as a promising prophylactic agent. PMID:26542342

  16. Treadmill exercise alleviates chronic mild stress-induced depression in rats

    PubMed Central

    Lee, Taeck-Hyun; Kim, Kijeong; Shin, Mal-Soon; Kim, Chang-Ju; Lim, Baek-Vin

    2015-01-01

    Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2′-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression. PMID:26730380

  17. Treadmill exercise alleviates chronic mild stress-induced depression in rats.

    PubMed

    Lee, Taeck-Hyun; Kim, Kijeong; Shin, Mal-Soon; Kim, Chang-Ju; Lim, Baek-Vin

    2015-12-01

    Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2'-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression. PMID:26730380

  18. Novel long chain fatty acid derivatives of quercetin-3-O-glucoside reduce cytotoxicity induced by cigarette smoke toxicants in human fetal lung fibroblasts.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2016-06-15

    Smoking has become a global health concern due to its association with many disease conditions, such as chronic obstructive pulmonary disease (COPD), cardiovascular diseases (CVD) and cancer. Flavonoids are plant polyphenolic compounds, studied extensively for their antioxidant, anti-inflammatory, and anti-carcinogenic properties. Quercetin-3-O-glucoside (Q3G) is a flavonoid which is widely found in plants. Six novel long chain fatty acid [stearic acid, oleic acid, linoleic acid, α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] derivatives of Q3G were evaluated for their potential in protecting human lung fibroblasts against cytotoxicity induced by selected cigarette smoke toxicants: 4-(methylnitrosoamino)-1-(3-pyridinyl)-1-butanone (NNK), benzo-α-pyrene (BaP), nicotine and chromium (Cr[VI]). Nicotine and Cr[VI] induced toxicity in fibroblasts and reduced the percentage of viable cells, while BaP and NNK did not affect cell viability. The fatty acid derivatives of Q3G provided protection against nicotine- and Cr[VI]-induced cell death and membrane lipid peroxidation. Based on the evaluation of inflammatory markers of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2), the fatty acid derivatives of Q3G were found to be effective in lowering the inflammatory response. Overall, these novel fatty acid esters of Q3G warrant further investigation as potential cytoprotective agents. PMID:27071958

  19. Docosahexaenoic acid and eicosapentaenoic acid induce changes in the physical properties of a lipid bilayer model membrane.

    PubMed

    Onuki, Yoshinori; Morishita, Mariko; Chiba, Yoshiyuki; Tokiwa, Shinji; Takayama, Kozo

    2006-01-01

    We investigated the effect of fatty acids such as stearic acid (SA, 18:0), oleic acid (OA, 18:1), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) on a dipalmitoylphosphatidylcholine (DPPC) bilayer by determining the phase transition temperature, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), and detergent insolubility. Treatment with unsaturated fatty acid broadened and shifted the phase transitions of the DPPC bilayer to a lower temperature. The phase transition temperature and the value of fluorescence anisotropy of DPH at 37 degrees C decreased progressively with increasing treatment amounts of unsaturated fatty acid. A large amount of the DPPC bilayer treated with unsaturated fatty acid was dissolved in Triton X-100, obtaining a low level of detergent insolubility. These modifications of the bilayer physical properties were most pronounced with DHA and EPA treatment. These data show that unsaturated fatty acids, particularly DHA and EPA, induce a marked change in the lipid bilayer structure. The composition of fatty acids in the DPPC bilayer was similar after treatment with various unsaturated fatty acids, suggesting that the different actions of unsaturated fatty acids are attributed to change in the molecular structure (e.g., kinked conformation by double bonds). We further explored the change in physical properties induced by fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted efficiently on the DPPC bilayer, even when incorporated in emulsion form. PMID:16394552

  20. Two-week cast immobilization induced chronic widespread hyperalgesia in rats.

    PubMed

    Ohmichi, Y; Sato, J; Ohmichi, M; Sakurai, H; Yoshimoto, T; Morimoto, A; Hashimoto, T; Eguchi, K; Nishihara, M; Arai, Y-C P; Ohishi, H; Asamoto, K; Ushida, T; Nakano, T; Kumazawa, T

    2012-03-01

    It has been postulated that physical immobilization is an essential factor in developing chronic pain after trauma or surgery in an extremity. However, the mechanisms of sustained immobilization-induced chronic pain remain poorly understood. The present study, therefore, aimed to develop a rat model for chronic post-cast pain (CPCP) and to clarify the mechanism(s) underlying CPCP. To investigate the effects of cast immobilization on pain behaviours in rats, one hindlimb was immobilized for 2 weeks with a cast and remobilization was conducted for 10 weeks. Cast immobilization induced muscle atrophy and inflammatory changes in the immobilized hindlimb that began 2 h after cast removal and continued for 1 week. Spontaneous pain-related behaviours (licking and reduction in weight bearing) in the immobilized hindlimb were observed for 2 weeks, and widespread mechanical hyperalgesia in bilateral calves, hindpaws and tail all continued for 5-10 weeks after cast removal. A sciatic nerve block with lidocaine 24 h after cast removal transitorily abolished bilateral mechanical hyperalgesia in CPCP rats, suggesting that sensory inputs originating in the immobilized hindlimb contribute to the mechanism of both ipsilateral and contralateral hyperalgesia. Intraperitoneal injection of the free radical scavengers 4-hydroxy-2,2,6,6-tetramethylpiperydine-1-oxy1 or N-acetylcysteine 24 h after cast removal clearly inhibited mechanical hyperalgesia in bilateral calves and hindpaws in CPCP rats. These results suggest that cast immobilization induces ischaemia/reperfusion injury in the hindlimb and consequent production of oxygen free radicals, which may be involved in the mechanism of widespread hyperalgesia in CPCP rats. PMID:22337282

  1. Chronic stress-induced oxidative damage and hyperlipidemia are accompanied by atherosclerotic development in rats.

    PubMed

    Devaki, M; Nirupama, R; Yajurvedi, H N

    2013-03-01

    Although stress-induced hyperlipidemia and increased oxidative stress have been reported and implicated in etiology of atherosclerosis, experimental evidence for stress-induced atherosclerotic development concomitant with these alterations is lacking. In this study, exposure of adult male albino Wistar rats (Rattus norvegicus) to restraint for 1 h and after a gap of 4 h to forced swimming for 15 min every day for 2, 4, or 24 weeks resulted in a duration of exposure-dependent hyperlipidemia as shown by significant increases in concentrations of blood cholesterol, low-density lipoproteins, and triglycerides and decrease in high-density lipoprotein concomitant with increased oxidative stress as indicated by decrease in hepatic antioxidant enzyme activities and increase in lipid peroxidation in the liver, kidney, and heart. These alterations were accompanied by development of fibrous layer, formation of foam cells, reduction in elastic fibers, and accumulation of Oil-Red-O-positive lipid droplets in the intima of thoracic aorta following 24 weeks of stress exposure, but not after 4 weeks. The study demonstrates for the first time that (i) chronic stress-induced hyperlipidemia and oxidative damage are coupled with atherosclerotic development in rats fed with normal diet and (ii) chronic stress effects prevail even after the cessation of stress exposure as indicated by high concentration of blood cholesterol and reduced hepatic superoxide dismutase activity 20 weeks after 2 or 4 weeks of stress. This study exemplifies long-term allostatic regulation leading to a pathological state, with long-term hyperlipidemia and oxidative damage from chronic stress resulting in atherosclerosis. PMID:22894170

  2. Chronic sustained hypoxia-induced redox remodeling causes contractile dysfunction in mouse sternohyoid muscle.

    PubMed

    Lewis, Philip; Sheehan, David; Soares, Renata; Varela Coelho, Ana; O'Halloran, Ken D

    2015-01-01

    Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid-a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease. PMID:25941492

  3. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition.

    PubMed

    Samantaray, Supriti; Knaryan, Varduhi H; Patel, Kaushal S; Mulholland, Patrick J; Becker, Howard C; Banik, Naren L

    2015-10-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60%), myelin proteins (myelin basic protein, 20-40% proteolipid protein, 25%) and enzyme (2', 3'-cyclic-nucleotide 3'-phosphodiesterase, 21-55%) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy against

  4. Chronic sustained hypoxia-induced redox remodeling causes contractile dysfunction in mouse sternohyoid muscle

    PubMed Central

    Lewis, Philip; Sheehan, David; Soares, Renata; Varela Coelho, Ana; O'Halloran, Ken D.

    2015-01-01

    Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease. PMID:25941492

  5. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition

    PubMed Central

    Samantaray, Supriti; Knaryan, Varduhi H.; Patel, Kaushal S.; Mulholland, Patrick J.; Becker, Howard C.; Banik, Naren L.

    2015-01-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60 %), myelin proteins (myelin basic protein, 20-40 % proteolipid protein, 25 %) and enzyme (2′, 3′-cyclic-nucleotide 3′-phosphodiesterase, 21-55 %) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy

  6. Escherichia coli-induced immune paralysis is not exacerbated during chronic filarial infection

    PubMed Central

    Buerfent, Benedikt C; Gondorf, Fabian; Wohlleber, Dirk; Schumak, Beatrix; Hoerauf, Achim; Hübner, Marc P

    2015-01-01

    Sepsis initially starts with a systemic inflammatory response (SIRS phase) and is followed by a compensatory anti-inflammatory response syndrome (CARS) that causes impaired adaptive T-cell immunity, immune paralysis and an increased susceptibility to secondary infections. In contrast, parasitic filariae release thousands of microfilariae into the peripheral blood without triggering inflammation, as they induce regulatory, anti-inflammatory host responses. Hence, we investigated the impact of chronic filarial infection on adaptive T-cell responses during the SIRS and CARS phases of a systemic bacterial infection and analysed the development of T-cell paralysis following a subsequent adenovirus challenge in BALB/c mice. Chronic filarial infection impaired adenovirus-specific CD8+ T-cell cytotoxicity and interferon-γ responses in the absence of a bacterial challenge and led to higher numbers of splenic CTLA-4+ CD4+ T cells, whereas splenic T-cell expression of CD69 and CD62 ligand, serum cytokine levels and regulatory T-cell frequencies were comparable to naive controls. Irrespective of filarial infection, the SIRS phase dominated 6–24 hr after intravenous Escherichia coli challenge with increased T-cell activation and pro-inflammatory cytokine production, whereas the CARS phase occurred 6 days post E. coli challenge and correlated with high levels of transforming growth factor-β and increased CD62 ligand T-cell expression. Escherichia coli-induced impairment of adenovirus-specific CD8+ T-cell cytotoxicity and interferon-γ production was not additionally impaired by chronic filarial infection. This suggests that filarial immunoregulation does not exacerbate E. coli-induced T-cell paralysis. PMID:25521437

  7. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  8. Long-chain polyunsaturated fatty acids in chronic childhood disorders: panacea, promising, or placebo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-chain polyunsaturated fatty acids (LCPUFA, or LCP) include the essential fatty acids alpha-linolenic acid (ALA, 18:3 n-3) and linoleic acid (LA, 18:2 n-6) as well as a number of metabolites of both, including eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachid...

  9. Dietary eritadenine suppresses guanidinoacetic Acid-induced hyperhomocysteinemia in rats.

    PubMed

    Fukada, Shin-ichiro; Setoue, Minoru; Morita, Tatsuya; Sugiyama, Kimio

    2006-11-01

    We assessed the effect of eritadenine, a hypocholesterolemic factor isolated from the edible mushroom Lentinus edodes, on plasma homocysteine concentration using methyl-group acceptor-induced hyperhomocysteinemic rats. Male Wistar rats were fed a control diet or diets supplemented with a methyl-group acceptor or a precursor of methyl-group acceptor. Diets were supplemented with guanidinoacetic acid (GAA) at 2.5, 5, 7.5, and 10 g/kg, nicotinic acid (NiA) or ethanolamine (EA) at 5 and 10 g/kg, or glycine at 25 and 50 g/kg, and the rats were fed for 10 d (Expt. 1). Plasma total homocysteine concentration was increased 255 and 421% by 5 and 10 g/kg GAA, respectively, and 39 and 58% by 5 and 10 g/kg NiA, respectively, but not by EA or glycine. GAA supplementation dose-dependently decreased the hepatic S-adenosylmethionine (SAM) concentration and the activity of cystathionine beta-synthase (CBS) and increased the hepatic S-adenosylhomocysteine (SAH) and homocysteine concentrations. In another study in which rats were fed 5 g/kg GAA-supplemented diet for 1-10 d, plasma homocysteine and the other variables affected in Expt. 1 were affected in rats fed the GAA-supplemented diet (Expt. 2). We investigated the effect of supplementation of 5 g/kg GAA-supplemented diet with eritadenine (50 mg/kg) on plasma homocysteine concentration (Expt. 3). Eritadenine supplementation significantly suppressed the GAA-induced increase in plasma homocysteine concentration. Eritadenine also restored the decreased SAM concentration and CBS activity in the liver, whereas it further increased hepatic SAH concentration, suggesting that eritadenine might elicit its effect by both slowing homocysteine production and increasing cystathionine formation. The results confirm that GAA is a useful compound to induce experimental hyperhomocysteinemia and indicate that eritadenine can effectively counteract the hyperhomocysteinemic effect of GAA. PMID:17056803

  10. Inflammatory cells’ role in acetic acid-induced colitis

    PubMed Central

    Sanei, Mohammad H.; Hadizadeh, Fatemeh; Adibi, Peyman; Alavi, Sayyed Ali

    2014-01-01

    Background: Free radicals are the known mechanisms responsible for inducing colitis with two origins: Inflammatory cells and tissues. Only the inflammatory cells can be controlled by corticosteroids. Our aim was to assess the importance of neutrophils as one of the inflammatory cells in inducing colitis and to evaluate the efficacy of corticosteroids in the treatment of inflammatory bowel disease (IBD). Materials and Methods: Thirty-six mice were divided into six groups of six mice each. Colitis was induced in three groups by exposing them to acetic acid through enema (group 1), ex vivo (group 3), and enema after immune suppression (group 5). Each group had one control group that was exposed to water injection instead of acetic acid. Tissue samples were evaluated and compared based on macroscopic damages and biochemical and pathological results. Results: Considering neutrophilic infiltration, there were significant differences between groups 1, 3, 5, and the control of group 1. Groups 3, 5, and their controls, and group 1 and the control of group 3 had significant differences in terms of goblet depletion. Based on tissue originated H2O2, we found significant differences between group 1 and its control and group 3, and also between groups 5 and the control of group 3. All the three groups were significantly different from their controls based on Ferric Reducing Ability of Plasma (FRAP) and such differences were also seen between group 1 with two other groups. Conclusion: Neutrophils may not be the only cause of oxidation process in colitis, and also makes the effectiveness of corticosteroids in the treatment of this disease doubtful. PMID:25337523

  11. Dihydrolipoic acid induces cytotoxicity in mouse blastocysts through apoptosis processes.

    PubMed

    Houng, Wei-Li; Lin, Cheng-An J; Shen, Ji-Lin; Yeh, Hung-I; Wang, Hsueh-Hsiao; Chang, Walter H; Chan, Wen-Hsiung

    2012-01-01

    α-Lipoic acid (LA) is a thiol with antioxidant properties that protects against oxidative stress-induced apoptosis. LA is absorbed from the diet, taken up by cells and tissues, and subsequently reduced to dihydrolipoic acid (DHLA). In view of the recent application of DHLA as a hydrophilic nanomaterial preparation, determination of its biosafety profile is essential. In the current study, we examined the cytotoxic effects of DHLA on mouse embryos at the blastocyst stage, subsequent embryonic attachment and outgrowth in vitro, in vivo implantation by embryo transfer, and early embryonic development in an animal model. Blastocysts treated with 50 μM DHLA exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with DHLA were lower than that of their control counterparts. Moreover, in vitro treatment with 50 μM DHLA was associated with increased resorption of post-implantation embryos and decreased fetal weight. Data obtained using an in vivo mouse model further disclosed that consumption of drinking water containing 100 μM DHLA led to decreased early embryo development, specifically, inhibition of development to the blastocyst stage. However, it appears that concentrations of DHLA lower than 50 μM do not exert a hazardous effect on embryonic development. Our results collectively indicate that in vitro and in vivo exposure to concentrations of DHLA higher than 50 μM DHLA induces apoptosis and retards early pre- and post-implantation development, and support the potential of DHLA to induce embryonic cytotoxicity. PMID:22489194

  12. Neonatal capsaicin treatment in rats induces chronic hyperthermia resulting in infectious disease

    PubMed Central

    JEONG, KEUN-YEONG; KIM, HWAN MOOK

    2015-01-01

    Treatment of neonatal animals with capsaicin has previously been associated with long-lasting hyperthermia and severe cutaneous lesions. The present study analyzed the effects of capsaicin-induced hyperthermia on the occurrence of infectious disease and pruritic dermatitis in a rat model. Pregnant Sprague-Dawley (SD) rats were obtained 1 week prior to parturition. Pups from each litter were randomly assigned to the following experimental groups: Capsaicin-treated (cap-treated; n=10) or vehicle-treated (n=5). Capsaicin (50 mg/kg) or vehicle were systemically administered to the SD rat pups (age, 48 h), after which body temperature was measured using a biotelemetry system, and the effects of hyperthermia on the ability of the rat pups to resist bacterial infection were analyzed. Furthermore, pruritus-induced scratching behavior and dermatitis were assessed, and changes in interleukin (IL)-4- and IL-13-induced immunoglobulin E expression were measured. Treatment of neonatal rats with capsaicin resulted in chronic hyperthermia, which had negative effects on the host immune defense response. The expression levels of T-helper type 2 cell-associated cytokines were significantly increased (P<0.01) in the cap-treated rats following bacterial infection with Staphylococcus aureus or Streptococcus agalactiae. Furthermore, cap-treated rats exhibited pruritus-induced scratching behavior and dermatitis. The results of the present study suggested that treatment of neonatal rats with capsaicin induces chronic hyperthermia and decreases the effectiveness of the host defense system. Therefore, a cap-treated neonatal rat model may be considered useful when investigating the association between hyperthermia and infectious disease. PMID:26668650

  13. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats.

    PubMed

    Kushwah, Neetu; Jain, Vishal; Deep, Satayanarayan; Prasad, Dipti; Singh, Shashi Bala; Khan, Nilofar

    2016-01-01

    Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state. PMID:26901349

  14. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats

    PubMed Central

    Deep, Satayanarayan; Prasad, Dipti; Singh, Shashi Bala; Khan, Nilofar

    2016-01-01

    Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state. PMID:26901349

  15. Effect of arachidonic and eicosapentaenoic acids on acute lung injury induced by hypochlorous acid

    PubMed Central

    Wahn, H; Ruenauver, N; Hammerschmidt, S

    2002-01-01

    Background: Hypochlorous acid (HOCl) is the main oxidant of activated polymorphonuclear neutrophil granulocytes (PMN) and generated by myeloperoxidase during respiratory burst. This study investigates the effects of HOCl on pulmonary artery pressure (PAP) and vascular permeability and characterises the influence of arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the observed effects. Methods: HOCl (500, 1000, 2000 nmol/min) was continuously infused into the perfusate (Krebs-Henseleit buffer solution, KHB). AA or EPA in subthreshold doses (both 2 nmol/min) or buffer were simultaneously infused using a separate port. PAP, pulmonary venous pressure (PVP), ventilation pressure, and lung weight gain were continuously recorded. The capillary filtration coefficient (Kf,c) was calculated before and 30, 60, and 90 minutes after starting the HOCl infusion. Results: HOCl application resulted in a dose dependent increase in PAP and Kf,c. The onset of these changes was inversely related to the HOCl dose used. The combined infusion of AA with HOCl resulted in a significant additional rise in pressure and oedema formation which forced premature termination of all experiments. The combination of EPA with HOCl did not result in an enhancement of the HOCl induced rise in pressure and oedema formation. Conclusions: Changes in the pulmonary microvasculature caused by HOCl are differently influenced by ω-6 and ω-3 polyunsaturated free fatty acids, suggesting a link between neutrophil derived oxidative stress and pulmonary eicosanoid metabolism. PMID:12454302

  16. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    PubMed Central

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  17. Differential Effects of Chronic Antidepressant Treatment on Swim Stress- and Fluoxetine-Induced Secretion of Corticosterone and Progesterone1

    PubMed Central

    DUNCAN, GARY E.; KNAPP, DARIN J.; CARSON, STANLEY W.; BREESE, GEORGE R.

    2011-01-01

    Hypersecretion of cortisol occurs in numerous patients with major depression and normalizes with clinical recovery during the course of chronic antidepressant treatment. These clinical data suggest that investigation of the effects of antidepressant treatments on the regulation of the brain-pituitary-adrenal axis may assist in elucidating the therapeutic basis of antidepressant actions. In the present investigation, both swim stress and acute fluoxetine challenge increased release of corticosterone and progesterone to reflect an activation of the brain pituitary-adrenal axis. The effects of chronic antidepressant treatment (21 days) on corticosterone and progesterone secretion induced by these challenges were investigated. Chronic fluoxetine treatment (5 mg/kg/day) completely blocked the increased secretion of corticosterone and progesterone in response to the acute fluoxetine challenge. Chronic treatment with desipramine, imipramine or amytriptyline (15 mg/kg/day) also markedly attenuated fluoxetine-induced corticosterone and progesterone secretion. However, chronic treatment with the monoamine oxidase inhibitors, phenelzine (5 mg/kg) and tranylcypromine (5 mg/kg), did not affect this hormonal response to acute fluoxetine challenge. Plasma levels of fluoxetine after acute challenge were not significantly different for the various chronic antidepressant treatment conditions from the chronic saline controls; therefore, an increase in the metabolism of fluoxetine can not explain the antagonism of the fluoxetine-induced hormonal response after chronic antidepressant treatment. In contrast to the effects of selected antidepressants on acute fluoxetine-induced steroid release, chronic treatment with imipramine (20 mg/kg/day), fluoxetine (5 mg/kg/day) or phenelzine (5 mg/kg) did not significantly alter this swim stress-induced corticosterone or progesterone secretion. Because chronic fluoxetine and tricyclic antidepressant drugs blocked the acute action of fluoxetine to

  18. The effect of docosahexaenoic acid on t10, c12-conjugated linoleic acid-induced changes in fatty acid composition of mouse liver, adipose and muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Concomitant supplementation of 1.5% docosahexaenoic acid (22:6 n-3; DHA) with 0.5% t10, c12- conjugated linoleic acid (18:2 n-6; CLA) prevented the CLA-induced increase in expression of hepatic genes involved in fatty acid synthesis and the decrease in expression of genes involved in fat...

  19. Docosahexaenoic Acid (DHA) But Not Eicosapentaenoic Acid (EPA) Reverses Trans-10, Cis-12 Conjugated Linoleic Acid Induced Insulin Resistance in Mice1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: t10, c12-Conjugated linoleic acid (CLA) induces insulin resistance and fatty liver in mice which can be reversed by fish oils. We determined if it is eicospentaenoic acid (20:5n-3, EPA) or docoshexaenoic acid (22:6n-3, DHA) that reverses these adverse effects of CLA. Research Design and M...

  20. H. hepaticus-induced liver tumor promotion is associated with increased serum bile acid and a persistent microbial-induced immune response

    PubMed Central

    García, Alexis; Zeng, Yu; Muthupalani, Sureshkumar; Ge, Zhongming; Potter, Amanda; Mobley, Melissa W.; Boussahmain, Chakib; Feng, Yan; Wishnok, John S.; Fox, James G.

    2011-01-01

    Chronic microbial infection influence cancer progression but the mechanisms that link them remain unclear. Constitutive androstane receptor (CAR) is a nuclear receptor that regulates enzymes involved in endobiotic and xenobiotic metabolism. CAR activation is a mechanism of xenobiotic tumor promotion, however, the effects of chronic microbial infection on tumor promotion have not been studied in the context of CAR function. Here we report that CAR limits the effects of chronic infection-associated progression of liver cancer. CAR knockout (KO) and wild-type (WT) male mice were treated or not with the tumor initiator diethylnitrosamine (DEN) at 5 weeks of age and then orally inoculated with Helicobacter hepaticus (Hh) or sterile media at 8 weeks of age. At 50 weeks postinoculation mice were euthanized for histopathological, microbiological, molecular, and metabolomic analyses. Hh infection induced comparable hepatitis in WT and KO mice with or without DEN that correlated with significant upregulation of Tnfα and toll receptor Tlr2. Notably, DEN-treated Hh-infected KO mice exhibited increased numbers of liver lobes with dysplasia and neoplasia, as well as increased multiplicity of neoplasia, relative to similarly treated WT mice. Enhanced tumor promotion was associated with decreased hepatic expression of P450 enzymes Cyp2b10 and Cyp3a11, increased expression of Camp, and increased serum concentrations of chenodeoxycholic acid. Together, our findings suggest that liver tumor promotion is enhanced by an impaired metabolic detoxification of endobiotics and a persistent microbial-induced immune response. PMID:21335546

  1. Gibberellic Acid-induced Phase Change in Hedera helix as Studied by Deoxyribonucleic Acid-Ribonucleic Acid Hybridization 1

    PubMed Central

    Rogler, Charles E.; Dahmus, Michael E.

    1974-01-01

    Applications of gibberellic acid to the mature form of Hedera helix induce morphological reversions to the juvenile form of growth. The juvenile forms produced are stable with time and differ dramatically from the mature in phenotype. DNA-RNA hybridization techniques have been used to study the RNA populations of juvenile, mature and gibberellic acid-treated mature apices. Hybridization competition experiments using RNA extracted by a hot phenol technique and uniformly labeled in vitro with 3H dimethylsulfate show no qualitative differences between the species of RNA present in juvenile and mature apices. However, differences are observed in the frequency distribution of RNA species using both uniformly labeled or pulse-labeled RNA as a reference. RNA extracted from gibberellic acid-treated mature buds was a less effective competitor than control mature RNA and the difference observed was comparable to that observed between mature and juvenile RNA. These results indicate that at least part of the molecular basis of phase change and gibberellic acid action may involve an alteration in the rate of transcription of certain genes in the apices of the mature form. RNA extracted using the hot phenol procedure contained a fraction of rapidly labeled RNA which was not extractable with cold phenol. When RNA extracted only with cold phenol was used in competition experiments sequences unique to the juvenile were detected and sequences unique to the mature were not detected. Implications of these results in relation to possible post-transcriptional control mechanisms are discussed. PMID:16658844

  2. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle.

    PubMed

    Gibbons, David D; Kutschke, William J; Weiss, Robert M; Benson, Christopher J

    2015-10-15

    Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure. PMID:26314284

  3. Spontaneous and antiviral-induced cutaneous lesions in chronic hepatitis B virus infection

    PubMed Central

    Grigorescu, Ioana; Dumitrascu, Dan Lucian

    2014-01-01

    AIM: To describe spontaneous, or interferon (IFN)- or immunization-induced skin lesions in hepatitis B virus (HBV) infection. METHODS: A comprehensive literature search of all the papers presenting case reports of dermatological lesions in patients with chronic HBV infection was carried out. We included only patients with histologically proven skin lesions that appeared in the normal course of hepatitis B infection, or after immunization for hepatitis B or antiviral treatment. RESULTS: We found 44 papers on this topic, reporting 151 cases. About 2% of patients with hepatitis B infection, mainly men, presented with skin lesions. Among patients with chronic hepatitis B, vasculitis and essential mixed cryoglobulinemia seemed to be the most frequent skin lesion (53.3%), followed by papular changes, rashes and Gianotti-Crosti syndrome, skin carcinoma and Henoch-Schönlein purpura were rare. IFN treatment seemed to be effective against HBV-associated and immunoglobulin-complex-mediated disease (vasculitis). Two cutaneous lesions (lichen planus and granuloma annulare) were described after hepatitis B vaccination. Systemic lupus and lupus-like lesions were the most frequently encountered lesions after antiviral treatment. Immunosuppressive and steroid therapy ameliorates lichen planus lesions in 50% of cases. CONCLUSION: Vasculitis was the most frequent spontaneous skin lesion found in chronic hepatitis B. Lichen planus was most frequent after immunization and lupus/lupus-like lesions after IFN. PMID:25400473

  4. Investigation of redox status in chronic cerebral hypoperfusion-induced neurodegeneration in rats

    PubMed Central

    Saxena, Anil Kumar; Abdul-Majeed, Saif Saad; Gurtu, Sunil; Mohamed, Wael M.Y.

    2015-01-01

    Aging related reduction in cerebral blood flow (CBF) has been linked with neurodegenerative disorders including Alzheimer's disease and dementia. Experimentally, a condition of chronic cerebral hypoperfusion due to reduced CBF can be induced by permanent bilateral occlusion of common carotid arteries (2-vessel occlusion, 2VO) in rats. Since oxidative stress, leading to neuronal apoptosis and death, is one of the mechanisms, which is thought to play a significant role in chronic degenerative neurological disorders, the present study was planned to assess the ROS status by measuring the levels of anti-oxidant enzymes that might occur during chronic cerebral hypoperfusion. Antioxidant enzymes namely glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase were measured in the brain tissue at eight weeks of 2VO induction in rats. Results show significantly elevated levels of GPx, SOD, and catalase enzymes as compared with the control group. It is possible that compensatory rise in antioxidant enzymes occurs in response to increased oxidative stress following ischemic insult. PMID:26937356

  5. Effects of Arachidonic Acid Supplementation on Acute Anabolic Signaling and Chronic Functional Performance and Body Composition Adaptations

    PubMed Central

    De Souza, Eduardo O.; Lowery, Ryan P.; Wilson, Jacob M.; Sharp, Matthew H.; Mobley, Christopher Brooks; Fox, Carlton D.; Lopez, Hector L.; Shields, Kevin A.; Rauch, Jacob T.; Healy, James C.; Thompson, Richard M.; Ormes, Jacob A.; Joy, Jordan M.; Roberts, Michael D.

    2016-01-01

    Background The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. Methods Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. Results Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-β (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. Conclusions Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation. PMID:27182886

  6. Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1.

    PubMed

    Huber, S; Oelsner, M; Decker, T; zum Büschenfelde, C Meyer; Wagner, M; Lutzny, G; Kuhnt, T; Schmidt, B; Oostendorp, R A J; Peschel, C; Ringshausen, I

    2011-05-01

    Chronic lymphocytic leukemia (CLL) has a high prevalence in western countries and remains incurable to date. Here, we provide evidence that the multikinase inhibitor sorafenib induces apoptosis in primary CLL cells. This strong pro-apoptotic effect is not restricted to any subgroup of patients, based on Binet stage and the expression of ZAP70 or CD38. Mechanistically, sorafenib-induced cell death is preceded by a rapid downregulation of Mcl-1 through the inhibition of protein translation. Subsequently, the cell intrinsic apoptotic pathway is activated, indicated by destabilization of the mitochondrial membrane potential and activation of caspase-3 and -9. In contrast to sorafenib, the monoclonal vascular epidermal growth factor (VEGF)-antibody bevacizumab failed to induce apoptosis in CLL cells, suggesting that sorafenib induces cell death irrespectively of VEGF signalling. Notably, although sorafenib inhibits phosphorylation of the Scr-kinase Lck, knock-down of Lck did not induce apoptosis in CLL cells. Of note, the pro-apoptotic effect of sorafenib is not restricted to cell-cycle arrested cells, but is also maintained in proliferating CLL cells. In addition, we provide evidence that sorafenib can overcome drug resistance in CLL cells protected by microenvironmental signals from stromal cells. Conclusively, sorafenib is highly active in CLL and may compose a new therapeutic option for patients who relapse after immunochemotherapy. PMID:21293487

  7. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid. PMID:24043703

  8. Pathogenesis of lesions induced in rat lung by chronic tobacco smoke inhalation

    SciTech Connect

    Heckman, C.A.; Dalbey, W.E.

    1982-07-01

    Lesions were induced in the lungs of specific-pathogen-free F344 rats by chronic tobacco smoke exposure. Animals exposed to 7 cigarettes/day were killed after 1, 1.5 or 2 years of exposure. Parallel lifetime exposures induced pulmonary tumors in 9% of the animals. In serially killed animals, four types of lesions were found: (1) perivascular or peribronchiolar accumulation of lymphoreticular cells; (2) fibrotic and cellular enlargement of peribronchiolar septa; (3) type II cell hyperplasia with septal fibrosis; and (4) air-space enlargement (emphysema). However, emphysema occurred only in animals exposed to a higher (10 cigarettes) dose of tobacco smoke. Ultrastructural studies showed all of the focal lesions to be infiltrated by cells typical of the inflammatory response. The type II hyperplastic and peribronchiolar alveolar lesions involved larger portions of the parenchyma in fibrotic changes but differed in structure, location, and frequency. The incidence of the peribronchiolar alveolar lesions was temporally related to tumor incidence.

  9. Umbelliferone attenuates unpredictable chronic mild stress induced-insulin resistance in rats.

    PubMed

    Su, Qiang; Tao, Weiwei; Wang, Hanqing; Chen, Yanyan; Huang, Huang; Chen, Gang

    2016-05-01

    The aim of this study was to investigate whether umbelliferone (Umb) could attenuate insulin resistance in unpredictable chronic mild stress (CUMS)-induced rats. Behavioral changes were evaluated through sucrose preference test (SPT), open-field test, forced swimming test, and tail suspension test (TST), suggesting that Umb (20 and 40 mg/kg) could effectively improve depression symptoms. Oral glucose tolerance test and serum insulin indicated that Umb attributed to the control of blood glucose levels. The phosphorylation of insulin receptor, insulin receptor substrate (IRS)-1, glycogen synthase kinase-3β, PI3K, and Akt was increased in Umb (20 and 40 mg/kg) treatment according to Western blot analysis. Taken together, the current results suggested the ameliorative effect of Umb against insulin resistance in the CUMS-induced rats. © 2016 IUBMB Life, 68(5):403-409, 2016. PMID:27027512

  10. Circulating and Hepatic Fas Expression in HCV-Induced Chronic Liver Disease and Hepatocellular Carcinoma

    PubMed Central

    El Bassiouny, Azza E. I.; El-Bassiouni, Nora E. I.; Nosseir, Mona M. F.; Zoheiry, Mona M.K.; El-Ahwany, Eman G.; Salah, Faten; Omran, Zeinab S.O.; Ibrahim, Raafat A.

    2008-01-01

    Apoptosis is central for control and elimination of viral infections. In chronic hepatitis C virus (HCV) infection, enhanced hepatocyte apoptosis and upregulation of the death-inducing ligands CD95/Fas occur. This study aimed to study the role of serum soluble Fas and hepatic Fas expression as early predictors of advancement of chronic hepatitis C disease. The current study included 50 cases of chronic hepatitis C (CHC) (and negative hepatitis B virus infection), 30 cases of liver cirrhosis (LC) and HCV, and 20 cases of hepatocellular carcinoma (HCC) and HCV admitted to Theodor Bilharz Research Institute, Giza, Egypt. Fifteen wedge liver biopsies, taken during laparoscopic cholecystectomy, were included in the study as normal controls. Assessment of serum soluble Fas level (sFas) and other laboratory investigations, including liver function tests, serologic markers for viral hepatitis, and serum alpha-fetoprotein level (alpha-FP), were determined for all cases. Histopathologic study and immunohistochemistry using monoclonal antibody for CD95 were also done. The sFas was significantly increased in CHC, LC, and HCC cases compared with normal controls (P < .01). The increase of sFas in HCC was also significantly higher than that of CHC (P < .01). However, positive hepatic expression of Fas antigen was higher in CHC than LC with no significant difference; meanwhile, it was significantly lower in HCC (P < .01) compared with CHC. In conclusion, circulating and hepatic Fas expression in chronic hepatitis C infection illustrate the mechanism of liver injury caused by death receptors throughout the multistep process of fibrosis/carcinogenesis. Not only the higher degree of hepatic fibrosis, but also the lower expression of Fas protein, are correlated with the increased incidence of HCC. PMID:18679533

  11. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    PubMed Central

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Olive Ngalame, Ntube N.; Waalkes, Michael P.

    2013-01-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell’s ability to adapt to chronic cadmium exposure. PMID:23811327

  12. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P) Rats

    PubMed Central

    Godfrey, Jessica; Jeanguenin, Lisa; Castro, Norma; Olney, Jeffrey J.; Dudley, Jason; Pipkin, Joseph; Walls, Stanley M.; Wang, Wei; Herr, Deron R.; Harris, Greg L.; Brasser, Susan M.

    2015-01-01

    Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P) rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total) or were given access only to water (control). Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4)-desaturase (Degs2), an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels achieved by

  13. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling.

    PubMed

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-01-01

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS. PMID:27012709

  14. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling

    PubMed Central

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-01-01

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS. PMID:27012709

  15. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis.

    PubMed

    Chen, Jinglou; Du, Lifen; Li, Jingjing; Song, Hongping

    2016-10-01

    Cadmium (Cd) pollution is a serious environmental problem. Kidney is a main target organ of Cd toxicity. This study was undertaken to investigate the potential protective effects of epigallocatechin-3-gallate (EGCG) against chronic renal injury and fibrosis induced by CdCl2. Rat model was induced by exposing to 250 mg/L CdCl2 through drinking water. The renal function was evaluated by detecting the levels of blood urea nitrogen (BUN) and serum creatinine (SCR). The oxidative stress was measured by detecting the levels of malondialdehyde (MDA), nitric oxide (NO), reduced glutathione/oxidized glutathione (GSH/GSSG) and renal enzymatic antioxidant status. Additionally, the renal levels of transforming growth factor-β1 (TGF-β1), Smad3, phosphorylation-Smad3 (pp-Smad3), α-smooth muscle actin (α-SMA), vimentin and E-cadherin were measured by western blot assay. Renal levels of microRNA-21 (miR-21), miR-29a/b/c and miR-192 were measured by quantitative RT-PCR. It was found that EGCG ameliorated the CdCl2-induced renal injury, inhibited the level of oxidative stress, normalized renal enzymatic antioxidant status and E-cadherin level, as well as attenuated the over generation of TGF-β1, pp-Smad3, vimentin and α-SMA. EGCG also decreased the production of miR-21 and miR-192, and enhanced the levels of miR-29a/b/c. These results showed that EGCG could attenuate Cd induced chronic renal injury. PMID:27474435

  16. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  17. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases.

    PubMed

    Gomes, Marilia Brito; Negrato, Carlos Antonio

    2014-01-01

    Alpha-lipoic acid is a naturally occurring substance, essential for the function of different enzymes that take part in mitochondria's oxidative metabolism. It is believed that alpha-lipoic acid or its reduced form, dihydrolipoic acid have many biochemical functions acting as biological antioxidants, as metal chelators, reducers of the oxidized forms of other antioxidant agents such as vitamin C and E, and modulator of the signaling transduction of several pathways. These above-mentioned actions have been shown in experimental studies emphasizing the use of alpha-lipoic acid as a potential therapeutic agent for many chronic diseases with great epidemiological as well economic and social impact such as brain diseases and cognitive dysfunctions like Alzheimer disease, obesity, nonalcoholic fatty liver disease, burning mouth syndrome, cardiovascular disease, hypertension, some types of cancer, glaucoma and osteoporosis. Many conflicting data have been found concerning the clinical use of alpha-lipoic acid in the treatment of diabetes and of diabetes-related chronic complications such as retinopathy, nephropathy, neuropathy, wound healing and diabetic cardiovascular autonomic neuropathy. The most frequent clinical condition in which alpha-lipoic acid has been studied was in the management of diabetic peripheral neuropathy in patients with type 1 as well type 2 diabetes. Considering that oxidative stress, a imbalance between pro and antioxidants with excessive production of reactive oxygen species, is a factor in the development of many diseases and that alpha-lipoic acid, a natural thiol antioxidant, has been shown to have beneficial effects on oxidative stress parameters in various tissues we wrote this article in order to make an up-to-date review of current thinking regarding alpha-lipoic acid and its use as an antioxidant drug therapy for a myriad of diseases that could have potential benefits from its use. PMID:25104975

  18. Protective effect of Dillenia indica L. on acetic acid induced colitis in mice.

    PubMed

    Somani, S J; Badgujar, L B; Sutariya, B K; Saraf, M N

    2014-09-01

    The inflammatory bowel disease (IBD) is an idiopathic, immune mediated and chronic inflammation of the intestine. The study aimed to elucidate the ameliorative effect of methanolic extract of Dillenia indica (DIME), hexane fraction (HFDI) and chloroform fraction (CFDI) of Dillenia indica in acetic acid induced experimental colitis in mice. Macroscopic score, colon weight, colonic catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), myeloperoxidase (MPO), malondialdehyde (MDA), tumor necrosis factor (TNF-alpha), and histological changes were recorded after the treatment regimen of 7 days. Intra-rectal instillation of acetic acid caused enhanced macroscopic score, colon weight, colonic MPO, MDA, and TNF-alpha level. It caused significant decreased level of CAT, SOD and GSH. DIME (800 mg/kg), HFDI (200 mg/kg) and CFDI (200 mg/kg) treatment exhibited significant effect in lowering macroscopic score, colon weight, MPO, MDA, TNF-alpha levels and elevation of CAT, GSH and SOD levels. The results suggest that D. indica has ameliorating effects on experimental colitis by inhibiting the proinflammatory mediators like TNF-alpha production. PMID:25241587

  19. Omega-3 Fatty Acid Deficiency Does Not Alter the Effects of Chronic Fluoxetine Treatment on Central Serotonin Turnover or Behavior in the Forced Swim Test in Female Rats

    PubMed Central

    McNamara, Robert K.; Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Lipton, Jack W.

    2013-01-01

    While translational evidence suggests that long-chain omega-3 fatty acid status is positively associated with the efficacy of selective serotonin reuptake inhibitor drugs, the neurochemical mechanisms mediating this interaction are not known. Here we investigated the effects of dietary omega-3 (n-3) fatty acid insufficiency on the neurochemical and behavioral effects of chronic fluoxetine (FLX) treatment. Female rats were fed diets with (CON, n=56) or without (DEF, n=40) the n-3 fatty acids during peri-adolescent development (P21-P90), and one half of each group were administered FLX (10 mg/kg/d) for 30 d (P60-P90) prior to testing. In adulthood (P90), regional brain serotonin (5-HT) and 5-hydroxyindoleacetic (5-HIAA) concentrations, presynaptic markers of 5-HT neurotransmission, behavioral responses in the forced swim test (FST), and plasma FLX and norfluoxetine (NFLX) concentrations were investigated. Peri-adolescent n-3 insufficiency led to significant reductions in cortical docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (−25%, p≤0.0001) and DEF+FLX (−28%, p≤0.0001) rats. Untreated DEF rats exhibited significantly lower regional 5-HIAA/5-HT ratios compared with untreated CON rats, but exhibited similar behavioral responses in the FST. In both CON and DEF rats, chronic FLX treatment similarly and significantly decreased 5-HIAA concentrations and the 5-HIAA/5-HT ratio in the hypothalamus, hippocampus, and nucleus accumbens, brainstem tryptophan hydroxylase-2 mRNA expression, and immobility in the FST. While the FLX-induced reduction in 5-HIAA concentrations in the prefrontal cortex was significantly blunted in DEF rats, the reduction in the 5-HIAA/5-HT ratio was similar to CON rats. Although plasma FLX and NFLX levels were not significantly different in DEF and CON rats, the NFLX/FLX ratio was significantly lower in DEF+FLX rats. These preclinical data demonstrate that n-3 fatty acid deficiency does not significantly reduce the effects of chronic

  20. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors.

    PubMed

    Lyons, D N; Kniffin, T C; Zhang, L P; Danaher, R J; Miller, C S; Bocanegra, J L; Carlson, C R; Westlund, K N

    2015-06-01

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. PMID:25818051

  1. Chlordecone potentiates hepatic fibrosis in chronic liver injury induced by carbon tetrachloride in mice.

    PubMed

    Tabet, Elise; Genet, Valentine; Tiaho, François; Lucas-Clerc, Catherine; Gelu-Simeon, Moana; Piquet-Pellorce, Claire; Samson, Michel

    2016-07-25

    Chronic liver damage due to viral or chemical agents leads to a repair process resulting in hepatic fibrosis. Fibrosis may lead to cirrhosis, which may progress to liver cancer or a loss of liver function, with an associated risk of liver failure and death. Chlordecone is a chlorinated pesticide used in the 1990s. It is not itself hepatotoxic, but its metabolism in the liver triggers hepatomegaly and potentiates hepatotoxic agents. Chlordecone is now banned, but it persists in soil and water, resulting in an ongoing public health problem in the Caribbean area. We assessed the probable impact of chlordecone on the progression of liver fibrosis in the population of contaminated areas, by developing a mouse model of chronic co-exposure to chlordecone and a hepatotoxic agent, carbon tetrachloride (CCl4). After repeated administrations of chlordecone and CCl4 by gavage over a 12-week period, we checked for liver damage in the exposed mice, by determining serum liver transaminase (AST, ALT) levels, histological examinations of the liver and measuring the expression of genes encoding extracellular matrix components. The co-exposure of mice to CCl4 and chlordecone resulted in significant increases in ALT and AST levels. Chlordecone also increased expression of the Col1A2, MMP-2, TIMP-1 and PAI-1 genes in CCl4-treated mice. Finally, we demonstrated, by quantifying areas of collagen deposition and alpha-SMA gene expression, that chlordecone potentiated the hepatic fibrosis induced by CCl4. In conclusion, our data suggest that chlordecone potentiates hepatic fibrosis in mice with CCl4-induced chronic liver injury. PMID:26853152

  2. Trigeminal Inflammatory Compression (TIC) Injury Induces Chronic Facial Pain and Susceptibility to Anxiety-Related Behaviors

    PubMed Central

    Lyons, Danielle N.; Kniffin, Tracey C.; Zhang, Liping; Danaher, Robert J.; Miller, Craig S.; Bocanegra, Jose L.; Carlson, Charles R.; Westlund, Karin N.

    2015-01-01

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week 8 post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury which resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model’s chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. PMID:25818051

  3. Sphingosine kinase inhibition ameliorates chronic hypoperfusion-induced white matter lesions.

    PubMed

    Yang, Ying; Torta, Federico; Arai, Ken; Wenk, Markus R; Herr, Deron R; Wong, Peter T-H; Lai, Mitchell K P

    2016-03-01

    White matter lesions (WML) are thought to contribute to vascular cognitive impairment in elderly patients. Growing evidence show that failure of myelin formation arising from the disruption of oligodendrocyte progenitor cell (OPC) differentiation is a cause of chronic vascular white matter damage. The sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) signaling pathway regulates oligodendroglia differentiation and function, and is known to be altered in hypoxia. In this study, we measured SphK, S1P as well as markers of WML, hypoxia and OPC (NG2) in a mouse bilateral carotid artery stenosis (BCAS) model of chronic cerebral hypoperfusion. Our results indicated that BCAS induced hypoxia inducible factor (HIF)-1α, Sphk2, S1P, and NG2 up-regulation together with accumulation of WML. In contrast, BCAS mice treated with the SphK inhibitor, SKI-II, showed partial reversal of SphK2, S1P and NG2 elevation and amelioration of WML. In an in vitro model of hypoxia, SKI-II reversed the suppression of OPC differentiation. Our study suggests a mechanism for hypoperfusion-associated WML involving HIF-1α-SphK2-S1P-mediated disruption of OPC differentiation, and proposes the SphK signaling pathway as a potential therapeutic target for white matter disease. PMID:26921668

  4. Chronic Arsenic Exposure-Induced Oxidative Stress is Mediated by Decreased Mitochondrial Biogenesis in Rat Liver.

    PubMed

    Prakash, Chandra; Kumar, Vijay

    2016-09-01

    The present study was executed to study the effect of chronic arsenic exposure on generation of mitochondrial oxidative stress and biogenesis in rat liver. Chronic sodium arsenite treatment (25 ppm for 12 weeks) decreased mitochondrial complexes activity in rat liver. There was a decrease in mitochondrial superoxide dismutase (MnSOD) activity in arsenic-treated rats that might be responsible for increased protein and lipid oxidation as observed in our study. The messenger RNA (mRNA) expression of mitochondrial and nuclear-encoded subunits of complexes I (ND1 and ND2) and IV (COX I and COX IV) was downregulated in arsenic-treated rats only. The protein and mRNA expression of MnSOD was reduced suggesting increased mitochondrial oxidative damage after arsenic treatment. There was activation of Bax and caspase-3 followed by release of cytochrome c from mitochondria suggesting induction of apoptotic pathway under oxidative stress. The entire phenomenon was associated with decrease in mitochondrial biogenesis as evident by decreased protein and mRNA expression of nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor 2 (NRF-2), peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), and mitochondrial transcription factor A (Tfam) in arsenic-treated rat liver. The results of the present study indicate that arsenic-induced mitochondrial oxidative stress is associated with decreased mitochondrial biogenesis in rat liver that may present one of the mechanisms for arsenic-induced hepatotoxicity. PMID:26767369

  5. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

    PubMed

    Larguinho, Miguel; Cordeiro, Ana; Diniz, Mário S; Costa, Pedro M; Baptista, Pedro V

    2014-11-01

    Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated. PMID:25262075

  6. Resveratrol prevents impaired cognition induced by chronic unpredictable mild stress in rats.

    PubMed

    Liu, Dexiang; Zhang, Qingrui; Gu, Jianhua; Wang, Xueer; Xie, Kai; Xian, Xiuying; Wang, Jianmei; Jiang, Hong; Wang, Zhen

    2014-03-01

    Depression is one of the most common neuropsychiatric disorders and has been associated with impaired cognition, as well as causing neuroendocrine systems and brain proteins alterations. Resveratrol is a natural polyphenol enriched in polygonum cuspidatum and has diverse biological activities, including potent antidepressant-like effects. The aim of this study was to determine whether resveratrol administration influences chronic unpredictable mild stress (CUMS)-induced cognitive deficits and explores underlying mechanisms. The results showed that CUMS (5weeks) was effective in producing cognitive deficits in rats as indicated by Morris water maze and novel object recognition task. Additionally, CUMS exposure significantly elevated serum corticosterone levels and decreased BDNF levels in the prefrontal cortex (PFC) and hippocampus, accompanied by decreased phosphorylation of extracellular signal-regulated kinase (pERK) and cAMP response element-binding protein (pCREB). Chronic administration of resveratrol (80mg/kg, i.p., 5weeks) significantly prevented all these CUMS-induced behavioral and biochemical alterations. In conclusion, our study shows that resveratrol may be an effective therapeutic agent for cognitive disturbances as was seen within the stress model and its neuroprotective effect was mediated in part by normalizing serum corticosterone levels, up-regulating of the BDNF, pCREB and pERK levels. PMID:24184538

  7. Effects of kramecyne on LPS induced chronic inflammation and gastric ulcers.

    PubMed

    Alonso-Castro, Angel Josabad; Pérez-Ramos, Julia; Sánchez-Mendoza, Ernesto; Pérez-González, Cuauhtemoc; Pérez-Gutiérrez, Salud

    2015-06-01

    Preclinical Research Krameria cytisoides is used for the treatment of inflammation, stomach pain, and gastric ulcers. The active ingredient from this plant is a peroxide, kramecyne (KACY) which has anti-inflammatory effects. The aim of the present study was to evaluate the anti-inflammatory activities of KACY in lipopolysaccharide (LPS)-induced systemic chronic inflammation in mice for 60 days, using dexamethasone (DEX) as the positive control, vehicle (the LPS group) as the negative control and the control group (mice without inflammation). KACY did not affect survival, body weight or relative organ weight in mice but it: decreased nitric oxide (NO) production by 68%; prostaglandin E2 (PGE2 ) by 67%; increased release of anti-inflammatory cytokine IL-10 (2.0-fold), and reduced production of the proinflammatory cytokines, IL-6 (2.0-fold), IL-1β (2.4-fold), and TNF-α (2.0-fold). Furthermore, the gastroprotective effects of KACY in mice were evaluated in an ethanol-induced gastric ulcer model. The results showed that KACY at 50 and 100 mg/kg exerted gastroprotective effects with similar activity to 50 mg/kg ranitidine. In gastric tissues, KACY decreased the level of malondialdehyde (MDA) but increased the catalase (CAT) activity. KACY have potential for the treatment of chronic inflammatory diseases due its similar activity to that of DEX. It also has gastroprotective effects. PMID:26109468

  8. Chronic Kidney Disease Induced Intestinal Mucosal Barrier Damage Associated with Intestinal Oxidative Stress Injury

    PubMed Central

    Yu, Chao; Wang, Qiang; Zhou, Chunyu; Kang, Xin; Zhao, Shuang; Liu, Shuai; Fu, Huijun; Yu, Zhen; Peng, Ai

    2016-01-01

    Background. To investigate whether intestinal mucosal barrier was damaged or not in chronic kidney disease progression and the status of oxidative stress. Methods. Rats were randomized into two groups: a control group and a uremia group. The uremia rat model was induced by 5/6 kidney resection. In postoperative weeks (POW) 4, 6, 8, and 10, eight rats were randomly selected from each group to prepare samples for assessing systemic inflammation, intestinal mucosal barrier changes, and the status of intestinal oxidative stress. Results. The uremia group presented an increase trend over time in the serum tumor necrosis factor-alpha, interleukin-6 (IL-6) and IL-10, serum D-lactate and diamine oxidase, and intestinal permeability, and these biomarkers were significantly higher than those in control group in POW 8 and/or 10. Chiu's scores in uremia group were also increased over time, especially in POW 8 and 10. Furthermore, the intestinal malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were significantly higher in uremia group when compared with those in control group in POW 8 and/or 10. Conclusions. The advanced chronic kidney disease could induce intestinal mucosal barrier damage and further lead to systemic inflammation. The underlying mechanism may be associated with the intestinal oxidative stress injury. PMID:27493661

  9. MDMA pretreatment leads to mild chronic unpredictable stress-induced impairments in spatial learning.

    PubMed

    Cunningham, Jacobi I; Raudensky, Jamie; Tonkiss, John; Yamamoto, Bryan K

    2009-10-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a drug of abuse worldwide and a selective serotonin (5-HT) neurotoxin. An important factor in the risk of drug abuse and relapse is stress. Although multiple parallels exist between MDMA abuse and stress, including effects on 5-HTergic neurotransmission, few studies have investigated the consequences of combined exposure to MDMA and chronic stress. Therefore, rats were pretreated with MDMA and exposed 7 days later to 10 days of mild chronic unpredictable stress (CUS). MDMA pretreatment was hypothesized to enhance the effects of CUS leading to enhanced 5-HT transporter (SERT) depletion in the hippocampus and increased anxiety and cognitive impairment. Whereas MDMA alone increased anxiety-like behavior on the elevated plus maze, CUS alone or in combination with MDMA pretreatment did not increase anxiety-like behavior. In contrast, MDMA pretreatment led to CUS-induced learning impairment in the Morris water maze but not an enhanced depletion of hippocampal SERT protein. These results show that prior exposure to MDMA leads to stress-induced impairments in learning behavior that is not otherwise observed with stress alone and appear unrelated to an enhanced depletion of SERT. PMID:19824774

  10. Chronic intermittent voluntary alcohol drinking induces hyperalgesia in Sprague-Dawley rats

    PubMed Central

    Fu, Rao; Gregor, Danielle; Peng, Zengliu; Li, Jing; Bekker, Alex; Ye, Jianghong

    2015-01-01

    The mechanisms of hyperalgesia in alcoholics are not completely clear, and the development of animal models would therefore be necessary in investigating the underlying changes. Several studies including our own have demonstrated that the intermittent access to 20% ethanol two-bottle choice procedure (IA2BC) promotes escalation of drinking, and induces physical dependence in the Sprague-Dawley (SD) rat, one of the strains most commonly used in preclinical alcohol research. In this study, we investigated whether the IA2BC procedure could produce hyperalgesia in SD rats. We show here that, the SD rats in the IA2BC procedure significantly escalated their drinking within 8 weeks, which is consistent with other studies. Starting from 8 weeks of repeated chronic drinking, the mechanical and thermal sensitivity was significantly increased. During withdrawal, there were noticeable physical dependence signs, including tail stiffness and lower limb flexion, which started at 4 hours and lasted for more than 3 days after ethanol removal. Importantly, during withdrawal, the mechanical and thermal sensitivity was further increased, which started at 12 hours and lasted for more than seven days after ethanol removal. These results suggest that utilizing the SD rat under the IA2BC procedure could be a useful animal model with heuristic value for exploring the mechanisms underlying hyperalgesia induced by chronic alcohol abuse. PMID:26823962

  11. Diethylcarbamazine Reduces Chronic Inflammation and Fibrosis in Carbon Tetrachloride- (CCl4-) Induced Liver Injury in Mice

    PubMed Central

    Rocha, Sura Wanessa Santos; de França, Maria Eduarda Rocha; Rodrigues, Gabriel Barros; Barbosa, Karla Patrícia Sousa; Nunes, Ana Karolina Santana; Pastor, André Filipe; Oliveira, Anne Gabrielle Vasconcelos; Oliveira, Wilma Helena; Luna, Rayana Leal Almeida; Peixoto, Christina Alves

    2014-01-01

    This study investigated the anti-inflammatory effects of DEC on the CCl4-induced hepatotoxicity in C57BL/6 mice. Chronic inflammation was induced by i.p. administration of CCl4 0.5 μL/g of body weight through two injections a week for 6 weeks. DEC (50 mg/kg) was administered by gavage for 12 days before finishing the CCl4 induction. Histological analyses of the DEC-treated group exhibited reduced inflammatory process and prevented liver necrosis and fibrosis. Immunohistochemical and immunofluorescence analyses of the DEC-treated group showed reduced COX-2, IL1β, MDA, TGF-β, and αSMA immunopositivity, besides exhibiting decreased IL1β, COX-2, NFκB, IFNγ, and TGFβ expressions in the western blot analysis. The DEC group enhanced significantly the IL-10 expression. The reduction of hepatic injury in the DEC-treated group was confirmed by the COX-2 and iNOS mRNA expression levels. Based on the results of the present study, DEC can be used as a potential anti-inflammatory drug for chronic hepatic inflammation. PMID:25374445

  12. Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice.

    PubMed

    Yu, Jie; Yu, Bing; He, Jun; Zheng, Ping; Mao, Xiangbing; Han, Guoquan; Chen, Daiwen

    2014-01-01

    Prolonged and excessive glucocorticoids (GC) exposure resulted from Cushing's syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g) were administrated with 100 µg/ml corticosterone (CORT) or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue. PMID:25389775

  13. γ-Hydroxybutyric acid-induced electrographic seizures.

    PubMed

    Cheung, Joseph; Lucey, Brendan P; Duntley, Stephen P; Darken, Rachel S

    2014-07-15

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. PMID:25024661

  14. Valproic Acid and Other HDAC Inhibitors Induce Microglial Apoptosis and Attenuate Lipopolysaccharide- induced Dopaminergic Neurotoxicity

    PubMed Central

    Chen, Po See; Wang, Chao-Chuan; Bortner, Carl D.; Peng, Giia-Sheun; Wu, Xuefei; Pang, Hao; Lu, Ru-Band; Gean, Po-Wu; Chuang, De-Maw; Hong, Jau-Shyong

    2009-01-01

    Valproic acid (VPA), a widely prescribed drug for seizures and bipolar disorder, has been shown to be an inhibitor of histone deacetylase (HDAC). Our previous study has demonstrated that VPA pretreatment reduces lipopolysaccharide (LPS)-induced dopaminergic (DA) neurotoxicity through the inhibition of microglia over-activation. The aim of this study was to determine the mechanism underlying VPA-induced attenuation of microglia over-activation. Other HDAC inhibitors (HDACIs) were compared with VPA for their effects on microglial activity. We found that VPA induced apoptosis of microglia cells in a time and concentration-dependent manner. VPA-treated microglial cells showed typical apoptotic hallmarks including phosphatidylserine externalization, chromatin condensation and DNA fragmentation. Further studies revealed that trichostatin A (TSA) and sodium butyrate (SB), two structurally dissimilar HDACIs, also induced microglial apoptosis. The apoptosis of microglia was accompanied by the disruption of mitochondrial membrane potential and the enhancement of acetylation levels of the histone H3 protein. Moreover, pretreatment with SB or TSA caused a robust decrease in LPS-induced pro-inflammatory responses and protected DA neurons from damage in mesencephalic neuron-glia cultures. Taken together, our results shed light on a novel mechanism whereby HDACIs induce neuroprotection and underscore the potential utility of HDACIs in preventing inflammation-related neurodegenerative disorders such as Parkinson’s disease. PMID:17850978

  15. The radiation-induced degradation of hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Deeble, D. J.; Phillips, G. O.; Bothe, E.; Schuchmann, H.-P.; von Sonntag, C.

    Free-radical-induced chain scission in hyaluronic acid in aqueous solution has been studied using pulse radiolysis. In the absence of oxygen (nitrous oxide-saturated solutions) the process of chain breakage was monitored by measuring changes in conductivity resulting from the release of condensed counter-ions (K +), originally located in the vicinity of the break. The rate of formation of breaks was found to be first order and was catalysed by acid and base (overall half-lives at pH values of 4.8, 7 and 10.2 were 0.6, 1 and 0.1 ms). It would seem that more than two independent reaction pathways are involved in the cleavage processes. In the presence of oxygen (N 2O/O 2), chain scission has been measured by pulse radiolysis monitoring changes in scattered light intensity as well as following conductivity changes. In oxygenated solutions, the kinetics of OH-radical-induced chain scission were found to contain a second-order component; the rate of breakage was base catalysed. Yield-dose plots for chain breaks (N 2O/O 2, pulse-irradiated), showed a marked dependence on pH, with G-values (molecules/100 eV) of 0.7, 2.5 and 4.7 at pH values of 7, 9.7 and 10.4, respectively. Steady-state radiolysis (N 2O/O 2) was used to determine G-values for oxygen consumption [ G(-O 2) ≈ 6], carbon dioxide formation [ G(CO 2) = 0.8 in the absence of O 2 and 1.3 in its presence] and peroxide formation [ G(H 2O 2) ≈ 2; G(organic hydroperoxide) < 0.15].

  16. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  17. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I.

    2010-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) to lipoxin A4 (LXA4) and 15-epi-LXA4. However it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE2, TXB2 and leukotriene B4 (LTB4) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE2, but increased LTB4, LXA4 and 15-epi-LXA4 concentrations. Both doses attenuated the LPS effects on PGE2, and TXB2. The increments in LXA4 and 15-epi-LXA4 caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA4 and 15-epi-LXA4 and reduce pro-inflammatory PGE2 and TXB2 suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  18. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

    PubMed Central

    Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan

    2015-01-01

    Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis. PMID:26442866

  19. Iron transformations induced by an acid-tolerant Desulfosporosinus species.

    PubMed

    Bertel, Doug; Peck, John; Quick, Thomas J; Senko, John M

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe₃S₄) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe₈O₈(OH)₆SO₄ · nH₂O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  20. Iron Transformations Induced by an Acid-Tolerant Desulfosporosinus Species

    PubMed Central

    Bertel, Doug; Peck, John; Quick, Thomas J.

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe3S4) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe8O8(OH)6SO4 · nH2O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  1. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products. PMID:25300299

  2. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  3. The Necrotic Signal Induced by Mycophenolic Acid Overcomes Apoptosis-Resistance in Tumor Cells

    PubMed Central

    Dilhuydy, Marie-Sarah; Pinson, Benoît; Mahfouf, Walid; Pasquet, Jean-Max; Mahon, François-Xavier; Pourquier, Philippe; Moreau, Jean-François; Legembre, Patrick

    2009-01-01

    Background The amount of inosine monophosphate dehydrogenase (IMPDH), a pivotal enzyme for the biosynthesis of the guanosine tri-phosphate (GTP), is frequently increased in tumor cells. The anti-viral agent ribavirin and the immunosuppressant mycophenolic acid (MPA) are potent inhibitors of IMPDH. We recently showed that IMPDH inhibition led to a necrotic signal requiring the activation of Cdc42. Methodology/Principal Findings Herein, we strengthened the essential role played by this small GTPase in the necrotic signal by silencing Cdc42 and by the ectopic expression of a constitutive active mutant of Cdc42. Since resistance to apoptosis is an essential step for the tumorigenesis process, we next examined the effect of the MPA–mediated necrotic signal on different tumor cells demonstrating various mechanisms of resistance to apoptosis (Bcl2-, HSP70-, Lyn-, BCR-ABL–overexpressing cells). All tested cells remained sensitive to MPA–mediated necrotic signal. Furthermore, inhibition of IMPDH activity in Chronic Lymphocytic Leukemia cells was significantly more efficient at eliminating malignant cells than apoptotic inducers. Conclusions/Significance These findings indicate that necrosis and apoptosis are split signals that share few if any common hub of signaling. In addition, the necrotic signaling pathway induced by depletion of the cellular amount of GTP/GDP would be of great interest to eliminate apoptotic-resistant tumor cells. PMID:19430526

  4. Tauroursodeoxycholate improves 2,4,6-trinitrobenzenesulfonic acid-induced experimental acute ulcerative colitis in mice.

    PubMed

    Yang, Yang; He, Jiao; Suo, Yuan; Zheng, Zongwei; Wang, Jingjing; Lv, Le; Huo, Chuanchuan; Wang, Ziye; Li, Jing; Sun, Wenji; Zhang, Yongmin

    2016-07-01

    Ulcerative colitis is a chronic nonspecific inflammatory disease of unknown cause. The aim of this study was to evaluate the anti-inflammatory effect of tauroursodeoxycholate in 2, 4, 6-trinitrobenzenesulfonic acid-induced experimental colitis in mice. After the induction of colitis for 24h, the mice were administrated orally with tauroursodeoxycholate (20, 40 and 60mg/kg) and sulfasalazine (500mg/kg) by gavage for 7 consecutive days. The inhibition effects were evaluated by the body of weight change, survival rate, macroscopical and histological evaluations. Besides, myeloperoxidase (MPO) activity, interleukin (IL)-1β, interferon (IFN)-γ and tumour necrosis factor-α (TNF-α) in colon tissue were also determined by enzyme-linked immunosorbent assay. Treatment with different doses of tauroursodeoxycholate (20, 40 and 60mg/kg) significantly improved the body weight change, decreased the macroscopic and histopathological scores. Compared with the model group, the accumulation of MPO activity, the colonic tissue levels of IL-1β, IFN-γ and TNF-α were significantly reduced in the tauroursodeoxycholate treated groups. Moreover, tauroursodeoxycholate assuaged the symptoms of colitis. These results suggested that tauroursodeoxycholate has an anti-inflammatory effect in TNBS-induced ulcerative colitis in mice. PMID:27179450

  5. Anti-inflammatory effects of potato extract on a rat model of cigarette smoke–induced chronic obstructive pulmonary disease

    PubMed Central

    Xu, Gui Hua; Shen, Jie; Sun, Peng; Yang, Min Li; Zhao, Peng Wei; Niu, Yan; Lu, Jing Kun; Wang, Zhi Qiang; Gao, Chao; Han, Xue; Liu, Lei Lei; Liu, Chen Chen; Cong, Zhang Yue

    2015-01-01

    Highlights: (1) Potato extract (PE) exhibits non-toxic effects on mice. (2) Cigarette smoke (CS)–induced COPD rats exhibit significant thickened and disordered lung markings. (3) PE could improve the histopathological symptoms of lung tissue in COPD. (4) PE could increase the expression of IL-10 and reduce the expression of TNF-α and G-CSF in COPD rats. Objective This study aimed to evaluate the therapeutic effects of potato extract (PE) on cigarette smoke (CS)–induced chronic obstructive pulmonary disease (COPD). Methods PE was first prepared by frozen centrifugation, and its amino acid composition was detected. Toxicity of PE was analyzed by changes in morphology, behavior, routine blood indexes, and biochemical criteria of mice. Then, the COPD rat model was established by CS exposure, and PE, doxofylline, and prednisolone acetate were used to treat these rats. After 45 days of treatment, the morphology and behavior of rats were recorded. In addition, the histopathology of lung tissue was evaluated by chest x-ray and hematoxylin and eosin staining. The expression of interleukine-10 (IL-10), tumor necrosis factor-α (TNF-α), and granulocyte colony-stimulating factor (G-CSF) was detected in serum and lung tissue by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. Results Various amino acids were identified in PE, and no toxicity was exhibited in mice. The CS-induced COPD rat model was successfully established, which exhibited significant thickened and disordered lung markings on 90% of the rats. After administering doxofylline and prednisolone acetate, inflammation symptoms were improved. However, side effects such as emaciation, weakness, and loosening of teeth appeared. In the PE group, obviously improved histopathology was observed in lung tissues. Meanwhile, it was revealed that PE could increase the expression of IL-10 and reduce the expression of TNF-α and G-CSF in COPD rats, and doxofylline and prednisolone acetate

  6. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    PubMed Central

    Kotb, Magd A.

    2012-01-01

    Ursodeoxycholic acid (UDCA) is a steroid bile acid approved for primary biliary cirrhosis (PBC). UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively). “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day) and toxic dose (28 mg/kg/day), and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified. PMID:22942741

  7. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    PubMed Central

    Lu, Yongke; Cederbaum, Arthur I.

    2015-01-01

    Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT), CYP2E1 knockout (KO) or CYP2E1 humanized transgenic knockin (KI), mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA), an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These results suggest

  8. Chronic ciguatoxin treatment induces synaptic scaling through voltage gated sodium channels in cortical neurons.

    PubMed

    Martín, Víctor; Vale, Carmen; Rubiolo, Juan A; Roel, Maria; Hirama, Masahiro; Yamashita, Shuji; Vieytes, Mercedes R; Botana, Luís M

    2015-06-15

    Ciguatoxins are sodium channels activators that cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents with long-term neurological alterations. In central neurons, chronic perturbations in activity induce homeostatic synaptic mechanisms that adjust the strength of excitatory synapses and modulate glutamate receptor expression in order to stabilize the overall activity. Immediate early genes, such as Arc and Egr1, are induced in response to activity changes and underlie the trafficking of glutamate receptors during neuronal homeostasis. To better understand the long lasting neurological consequences of ciguatera, it is important to establish the role that chronic changes in activity produced by ciguatoxins represent to central neurons. Here, the effect of a 30 min exposure of 10-13 days in vitro (DIV) cortical neurons to the synthetic ciguatoxin CTX 3C on Arc and Egr1 expression was evaluated using real-time polymerase chain reaction approaches. Since the toxin increased the mRNA levels of both Arc and Egr1, the effect of CTX 3C in NaV channels, membrane potential, firing activity, miniature excitatory postsynaptic currents (mEPSCs), and glutamate receptors expression in cortical neurons after a 24 h exposure was evaluated using electrophysiological and western blot approaches. The data presented here show that CTX 3C induced an upregulation of Arc and Egr1 that was prevented by previous coincubation of the neurons with the NaV channel blocker tetrodotoxin. In addition, chronic CTX 3C caused a concentration-dependent shift in the activation voltage of NaV channels to more negative potentials and produced membrane potential depolarization. Moreover, 24 h treatment of cortical neurons with 5 nM CTX 3C decreased neuronal firing and induced synaptic scaling mechanisms, as evidenced by a decrease in the amplitude of mEPSCs and downregulation in the protein level of glutamate receptors that was also prevented by tetrodotoxin

  9. Chronic orthostatic and antiorthostatic restraint induce neuroendocrine, immune and neurophysiological disorders in rats

    NASA Astrophysics Data System (ADS)

    Assenmacher, I.; Mekaouche, M.; Maurel, D.; Barbanel, G.; Givalois, L.; Boissin, J.; Malaval, F.; Ixart, G.

    The tail-cast suspension rat model has been developed in ground laboratories interested in space physiology for extensive study of mechanisms causing the pathophysiological syndrome associated with space flights. We used individually-caged male rats to explore the effects of acute and chronic (7d) orthostatic restraint (OR) and head-down anti-orthostatic restraint (AOR) on a series of physiological variables. The acute restraint study showed that (1) the installation of the OR device induced an acute reaction for 2 days, with a substantial rise in ACTH (x2) and CORT (x6), and that (2) the head-down tilt from OR to AOR induced (i) within 10 min and lasting 60 min a 2-fold rise in the intra-cerebro-ventricular pressure (Picv) monitored with an icv telemetric recording system, which receded to normal between 60 and 120 min; and (ii) within 30 min a short-lived 4-fold rise in plasma ACTH and CORT levels. Chronic OR induced (1) the suppression of the diurnal ACTH/CORT rhythm, with increased mean levels, especially for ACTH, (2) a degraded circadian locomotor activity rhythm manifested by a significant reduction in the spectral power of the 24h periodicity and a concomitant emergence of shorter (ultradian) periodicities, (3) an associated, but less pronounced alteration of the diurnal rhythm in body temperature; and (4) a marked increase in baseline plasma levels of IL-1β and an increased reactivity in cytokine release following an E. coli endotoxin (LPS) challenge. AOR induced (1) a similar obliteration of the circadian ACTH/CORT rhythm, (2) the loss of close correlation between ACTH and CORT, (3) a generalized increase in baseline plasma IL-1β levels and (4) more extensive degradation of the arcadian periodicity for both locomotor activity and, to a lesser extent, body temperature, replaced by dominant spectral powers for ultradian periodicities (3 to 10h). In conclusion, both experimental paradigms — but AOR more than OR — caused a blockade of the arcadian

  10. Th1-Th17 cells contribute to the development of uropathogenic Escherichia coli-induced chronic pelvic pain.

    PubMed

    Quick, Marsha L; Wong, Larry; Mukherjee, Soumi; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen

    2013-01-01

    The etiology of chronic prostatitis/chronic pelvic pain syndrome in men is unknown but may involve microbes and autoimmune mechanisms. We developed an infection model of chronic pelvic pain in NOD/ShiLtJ (NOD) mice with a clinical Escherichia coli isolate (CP-1) from a patient with chronic pelvic pain. We investigated pain mechanisms in NOD mice and compared it to C57BL/6 (B6) mice, a strain resistant to CP-1-induced pain. Adoptive transfer of CD4+ T cells, but not serum, from CP-1-infected NOD mice was sufficient to induce chronic pelvic pain. CD4+ T cells in CP-1-infected NOD mice expressed IFN-γ and IL-17A but not IL-4, consistent with a Th1/Th17 immune signature. Adoptive transfer of ex-vivo expanded IFN-γ or IL-17A-expressing cells was sufficient to induce pelvic pain in naïve NOD recipients. Pelvic pain was not abolished in NOD-IFN-γ-KO mice but was associated with an enhanced IL-17A immune response to CP1 infection. These findings demonstrate a novel role for Th1 and Th17-mediated adaptive immune mechanisms in chronic pelvic pain. PMID:23577183

  11. Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells

    SciTech Connect

    Liu, Xiao-Yun; Yang, Yue-Feng; Wu, Chu-Tse; Xiao, Feng-Jun; Zhang, Qun-Wei; Ma, Xiao-Ni; Li, Qing-Fang; Yan, Jun; Wang, Hua; Wang, Li-Sheng

    2010-03-19

    Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML.

  12. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis

    PubMed Central

    Zhang, Wei; Xu, Li; Cho, Si-Young; Min, Kyung-Jin; Oda, Tatsuya; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103−CD11c+ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103+CD11c+ cDCs and expansion of Foxp3+ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis. PMID:27058552

  13. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis.

    PubMed

    Zhang, Wei; Xu, Li; Cho, Si-Young; Min, Kyung-Jin; Oda, Tatsuya; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103(-)CD11c⁺ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103⁺CD11c⁺ cDCs and expansion of Foxp3⁺ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis. PMID:27058552

  14. Delayed treatment with oleanolic acid attenuates tubulointerstitial fibrosis in chronic cyclosporine nephropathy through Nrf2/HO-1 signaling

    PubMed Central

    2014-01-01

    Background Nuclear factor erythroid-2-related factor-2 (Nrf2) is known to protect against tissue injury by orchestrating antioxidant and detoxification responses to oxidative stress. This study investigated whether upregulation of Nrf2-dependent signaling by oleanolic acid (OA), which is known to activate Nrf2, could attenuate renal inflammation and fibrosis in cyclosporine (CsA)-induced kidney injury. Methods Male ICR mice were divided into four treatment groups: Vehicle (VH, n = 6), VH + OA (n = 6), CsA (n = 8), and CsA + OA (n = 8). For the OA-treated groups, OA (25 mg/kg/day) was administered by intraperitoneal injection for the final week of the 4-week experimental period. Renal function, morphologies and signaling were evaluated at the end of the study. Results Treatment with CsA resulted in decreased kidney function and urine osmolality and increased urine volume and urinary albumin levels. The CsA-induced changes were improved by OA treatment. Specifically, administration of OA decreased tubulointerstitial fibrosis and inflammation scores that were increased in CsA-treated mice. Furthermore, OA treatment decreased urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-epi-prostaglandin F2α (8-iso-PGF2α) levels. The beneficial effects of OA were attributed to an increased ratio of nuclear/total Nrf2 and subsequently enhanced expression of heme oxygenase (HO)-1, as well as a stable level of Kelch-like ECH-associated protein 1 (Keap1) expression, indicating that OA enhanced nuclear translocation of Nrf2. Increased apoptotic cell death and a high ratio of B cell leukaemia/lymphoma 2 (Bcl-2)-associated X protein (Bax) to Bcl-2 in CsA-treated mice were also significantly ameliorated by OA treatment. Conclusion Our results suggest that OA activates Nrf2/HO-1 signaling in chronic CsA nephropathy, which may have beneficial effects on inflammation and oxidative stress. PMID:24559268

  15. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  16. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  17. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    PubMed Central

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  18. Streptomycin inhibits electrophysiological changes induced by stretching of chronically infarcted rat hearts*

    PubMed Central

    Cao, Jun-xian; Fu, Lu; Gao, Qian-ping; Xie, Rong-sheng; Qu, Fan

    2014-01-01

    Objective: To investigate stretch-induced electrop