Science.gov

Sample records for acid inducible gene-i

  1. Importance of interferon inducible trans-membrane proteins and retinoic acid inducible gene I for influenza virus replication: A review.

    PubMed

    Suo, Siqingaowa; Ren, Xiaofeng

    2016-01-01

    Understanding the interplay between Influenza viruses and host cells is key to elucidating the pathogenesis of these viruses. Several host factors have been identified that exert antiviral functions; however, influenza viruses continue to replicate utilizing host cell machinery. Herein, we review the mechanisms of action of two host-derived proteins on conferring cellular resistance to the influenza virus; (1) the interferon inducible trans-membrane proteins, 1, 2 and 3, a recently identified family of early restriction factors; and (2) retinoic acid inducible gene I, a key mediator of antiviral immunity. These data may contribute to the design of novel and efficient anti-influenza treatments.

  2. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  3. Retinoic acid-induced gene-I (RIG-I) associates with nucleotide-binding oligomerization domain-2 (NOD2) to negatively regulate inflammatory signaling.

    PubMed

    Morosky, Stefanie A; Zhu, Jianzhong; Mukherjee, Amitava; Sarkar, Saumendra N; Coyne, Carolyn B

    2011-08-12

    Cytoplasmic caspase recruiting domain (CARD)-containing molecules often function in the induction of potent antimicrobial responses in order to protect mammalian cells from invading pathogens. Retinoic acid-induced gene-I (RIG-I) and nucleotide binding oligomerization domain 2 (NOD2) serve as key factors in the detection of viral and bacterial pathogens, and in the subsequent initiation of innate immune signals to combat infection. RIG-I and NOD2 share striking similarities in their cellular localization, both localize to membrane ruffles in non-polarized epithelial cells and both exhibit a close association with the junctional complex of polarized epithelia. Here we show that RIG-I and NOD2 not only colocalize to cellular ruffles and cell-cell junctions, but that they also form a direct interaction that is mediated by the CARDs of RIG-I and multiple regions of NOD2. Moreover, we show that RIG-I negatively regulates ligand-induced nuclear factor-κB (NF-κB) signaling mediated by NOD2, and that NOD2 negatively regulates type I interferon induction by RIG-I. We also show that the three main Crohn disease-associated mutants of NOD2 (1007fs, R702W, G908R) form an interaction with RIG-I and negatively regulate its signaling to a greater extent than wild-type NOD2. Our results show that in addition to their role in innate immune recognition, RIG-I and NOD2 form a direct interaction at actin-enriched sites within cells and suggest that this interaction may impact RIG-I- and NOD2-dependent innate immune signaling.

  4. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I

    PubMed Central

    Park, Seung Bum; Seronello, Scott; Mayer, Wasima; Ojcius, David M.

    2016-01-01

    Hepatitis C virus (HCV) actively evades host interferon (IFN) responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I)-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP) from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP) and poly(IC). The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain) were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity. PMID:27404108

  5. Muscovy duck retinoic acid-induced gene I (MdRIG-I) functions in innate immunity against H9N2 avian influenza viruses (AIV) infections.

    PubMed

    Cheng, Yuqiang; Huang, Qingqing; Ji, Wenhui; Du, Bin; Fu, Qiang; An, Huiting; Li, Jing; Wang, Hengan; Yan, Yaxian; Ding, Chan; Sun, Jianhe

    2015-02-15

    Retinoic acid inducible gene I (RIG-I) is a cytosolic pattern recognition receptor that senses pathogen-associated molecular patterns (PAMPs). Muscovy duck (Cairina moschata) is a large duck different from other species of ducks, and is more susceptible to some microbial pathogens. In this study, the Muscovy duck RIG-I gene (MdRIG-I) was identified. Quantitative RT-PCR showed that MdRIG-I mRNA was widely expressed in different tissues, especially in those with mucosa. RIG-I null DF-1 cells transfected with DNA constructs encoding MdRIG-I or CARDs domain can activate IRF-3 and NF-κB to up-regulated activity of IFN-β promoter. The components of the signaling pathway downstream of RIG-I in mammalian cells including IRF-3, NF-κB, IFN-β and the IFN-stimulated genes Mx-1, PKR and MDA5 were significantly up-regulated in CARDs-overexpressing-DF-1 cells. Implicating RIG-I in the antiviral response to an infection in vivo, we found that RIG-I expression in brain, spleen, lung and bursa were up-regulated in ducks challenged with H9N2 avian influenza virus (AIV), whose six internal genes were closely related to the H7N9 and H10N8 AIV. In vitro, DF-1 cells transfected with MdRIG-I plasmid can respond significantly to H9N2 AIV, evident through enhancement of IFN-β promoter activity and decreased virus titer. Altogether, these results indicated that MdRIG-I is a novel member of RLR gene family, engaging in the early stage of antiviral innate immunity.

  6. Role of Toll-like receptors and retinoic acid inducible gene I in endogenous production of type I interferon in dermatomyositis.

    PubMed

    Li, Ling; Dai, Tingjun; Lv, Jingwei; Ji, Kunqian; Liu, Junling; Zhang, Bin; Yan, Chuanzhu

    2015-08-15

    To explore the possible mechanisms implicated in the endogenous production of type I interferons within the muscle tissue of dermatomyositis (DM) patients. We detected the co-localization of plasmacytoid dendritic cells (pDCs) with Toll-like receptors (TLRs) and retinoic acid inducible gene (RIG)-I by immunohistochemistry and immunofluorescence. Western blotting confirmed the expression of TLRs and RIG-I. TLR-3 and RIG-I was preferentially expressed in the perifascicular atrophy fibers of DM. TLR-7 was only in inflammatory infiltrates of a few DM patients. TLR-4 and TLR-9 was expressed mainly in inflammatory infiltrates. Immunofluorescence showed extensive co-localization of BDCA-2 with TLR-9 and little co-localization with TLR-7. Western blotting showed upregulation of expression of TLRs and RIG-I in DM compared with the controls. Our findings indicate that endogenous production of type I IFN in DM is generated by pDCs, mainly through the TLR-9 pathway and in part by TLR-7. TLR-3 and RIG-I are implicated in the formation of perifascicular atrophy in DM.

  7. Grass Carp Laboratory of Genetics and Physiology 2 Serves As a Negative Regulator in Retinoic Acid-Inducible Gene I- and Melanoma Differentiation-Associated Gene 5-Mediated Antiviral Signaling in Resting State and Early Stage of Grass Carp Reovirus Infection

    PubMed Central

    Rao, Youliang; Wan, Quanyuan; Yang, Chunrong; Su, Jianguo

    2017-01-01

    Laboratory of genetics and physiology 2 (LGP2) is a key component of RIG-I-like receptors (RLRs). However, the lack of the caspase recruitment domains (CARDs) results in its controversial functional performance as a negative or positive regulator in antiviral responses. Especially, no sufficient evidence uncovers the functional mechanisms of LGP2 in RLR signaling pathways in teleost. Here, negative regulation mechanism of LGP2 in certain situations in retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5)-mediated antiviral responses was identified in Ctenopharyngodon idella kidney cells. LGP2 overexpression inhibits synthesis and phosphorylation of interferon regulatory factor 3/7 (IRF3/7), and mRNA levels and promoter activities of IFNs and NF-κBs in resting state and early phase of grass carp reovirus (GCRV) infection. Knockdown of LGP2 obtains opposite effects. Luciferase report assay indicates that LGP2 works at the upstream of RIG-I and MDA5. LGP2 binds to RIG-I and MDA5 with diverse domain preference and which is independent of GCRV infection. Furthermore, LGP2 restrains K63-linked ubiquitination of RIG-I and MDA5 in various degrees. These differences result in disparate repressive mechanisms of LGP2 to RIG-I- and MDA5-mediated signal activations of IFN-β promoter stimulator 1 and mediator of IRF3 activation. Interestingly, LGP2 also inhibits K48-linked RIG-I and MDA5 ubiquitination to suppress proteins degradation, which guarantees the basal protein levels for subsequently rapid signal activation. All these results reveal a mechanism that LGP2 functions as a suppressor in RLR signaling pathways to maintain cellular homeostasis in resting state and early phase during GCRV infection.

  8. Grass Carp Laboratory of Genetics and Physiology 2 Serves As a Negative Regulator in Retinoic Acid-Inducible Gene I- and Melanoma Differentiation-Associated Gene 5-Mediated Antiviral Signaling in Resting State and Early Stage of Grass Carp Reovirus Infection.

    PubMed

    Rao, Youliang; Wan, Quanyuan; Yang, Chunrong; Su, Jianguo

    2017-01-01

    Laboratory of genetics and physiology 2 (LGP2) is a key component of RIG-I-like receptors (RLRs). However, the lack of the caspase recruitment domains (CARDs) results in its controversial functional performance as a negative or positive regulator in antiviral responses. Especially, no sufficient evidence uncovers the functional mechanisms of LGP2 in RLR signaling pathways in teleost. Here, negative regulation mechanism of LGP2 in certain situations in retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5)-mediated antiviral responses was identified in Ctenopharyngodon idella kidney cells. LGP2 overexpression inhibits synthesis and phosphorylation of interferon regulatory factor 3/7 (IRF3/7), and mRNA levels and promoter activities of IFNs and NF-κBs in resting state and early phase of grass carp reovirus (GCRV) infection. Knockdown of LGP2 obtains opposite effects. Luciferase report assay indicates that LGP2 works at the upstream of RIG-I and MDA5. LGP2 binds to RIG-I and MDA5 with diverse domain preference and which is independent of GCRV infection. Furthermore, LGP2 restrains K63-linked ubiquitination of RIG-I and MDA5 in various degrees. These differences result in disparate repressive mechanisms of LGP2 to RIG-I- and MDA5-mediated signal activations of IFN-β promoter stimulator 1 and mediator of IRF3 activation. Interestingly, LGP2 also inhibits K48-linked RIG-I and MDA5 ubiquitination to suppress proteins degradation, which guarantees the basal protein levels for subsequently rapid signal activation. All these results reveal a mechanism that LGP2 functions as a suppressor in RLR signaling pathways to maintain cellular homeostasis in resting state and early phase during GCRV infection.

  9. Tranexamic Acid-Induced Fixed Drug Eruption

    PubMed Central

    Matsumura, Natsuko; Hanami, Yuka; Yamamoto, Toshiyuki

    2015-01-01

    A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary. PMID:26288438

  10. Tranexamic Acid-Induced Fixed Drug Eruption.

    PubMed

    Matsumura, Natsuko; Hanami, Yuka; Yamamoto, Toshiyuki

    2015-01-01

    A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary.

  11. Electron transfer induced fragmentation of acetic acid

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Meneses, G.; Almeida, D.; Limão-Vieira, P.

    2014-04-01

    We present negative ion formation driven by electron transfer in atom (K) molecule (acetic acid) collisions. Acetic acid has been found in the interstellar medium, is also considered a biological related compound and as such studying low energy electron interactions will bring new insights as far as induced chemistry is concerned.

  12. Conjugated Linoleic Acid Induces Human Adipocyte Delipidation

    PubMed Central

    Brown, J. Mark; Boysen, Maria Sandberg; Chung, Soonkyu; Fabiyi, Olowatoyin; Morrison, Ron F.; Mandrup, Susanne; McIntosh, Michael K.

    2005-01-01

    Dietary conjugated linoleic acid (CLA) reduces body fat in animals and some humans. Here we show that trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, when added to cultures of stromal vascular cells containing newly differentiated human adipocytes, caused a time-dependent decrease in triglyceride content, insulin-stimulated glucose and fatty acid uptake, incorporation into lipid, and oxidation compared with controls. In parallel, gene expression of peroxisome proliferator-activated receptor-γ and many of its downstream targets were diminished by trans-10, cis-12 CLA, whereas leptin gene expression was increased. Prior to changes in gene expression and metabolism, trans-10, cis-12 CLA caused a robust and sustained activation of mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling. Furthermore, the trans-10, cis-12 CLA-mediated activation of MEK/ERK could be attenuated by pretreatment with U0126 and pertussis toxin. In parallel, pretreatment with U0126 blocked the ability of trans-10, cis-12 CLA to alter gene expression and attenuate glucose and fatty acid uptake of the cultures. Intriguingly, the induction by CLA of MEK/ERK signaling was linked to hypersecretion of adipocytokines interleukin-6 and interleukin-8. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA decreases the triglyceride content of newly differentiated human adipocytes by inducing MEK/ERK signaling through the autocrine/paracrine actions of interleukins-6 and 8. PMID:15067015

  13. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in ...

    EPA Pesticide Factsheets

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPAR_). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that d

  14. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  15. Lysophosphatidic acid induces osteocyte dendrite outgrowth.

    PubMed

    Karagiosis, Sue A; Karin, Norman J

    2007-05-25

    Osteocytes elaborate an extensive mechanosensory network in bone matrix and communicate intercellularly via gap junctions established at dendrite termini. We developed a method to measure osteocyte dendritogenesis in vitro using a modified transwell assay and determined that the lipid growth factor lysophosphatidic acid (LPA) is a potent stimulator of dendrite outgrowth in MLO-Y4 osteocytes. The stimulatory effects were dose-dependent with maximal outgrowth observed within a physiological range of LPA. LPA-treated osteocytes exhibited distinct rearrangements of the actin cytoskeleton and a more stellate morphology than control cells. LPA also promoted osteocyte chemotaxis, suggesting a shared molecular mechanism between dendrite outgrowth and cell motility. The LPA-induced increase in dendrite formation was blocked by the specific LPA-receptor antagonist Ki16425 and by pertussis toxin. Bone cells in vivo encounter platelet-derived LPA in regions of bone damage, and we postulate that this lipid factor is important for re-establishing osteocyte connectivity during fracture repair.

  16. Lacosamide-induced valproic acid toxicity.

    PubMed

    Jones, Gina L; Popli, Gautam S; Silvia, Mary T

    2013-04-01

    Valproic acid is commonly used in the treatment of both focal and generalized epilepsies and is often well tolerated. There are many reported cases of hyperammonemic encephalopathy and other well-known side effects reported during use of valproic acid either alone or in combination with other antiepileptics. This case report demonstrates valproic acid toxicity in the presence of lacosamide, which has not previously been reported. Full recovery occurred after withdrawal of both valproic acid and lacosamide.

  17. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  18. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  19. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    SciTech Connect

    Dawson, Jennifer E.; Raymond, Angela M.; Winn, Louise M. . E-mail: winnl@biology.queensu.ca

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  20. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice.

    PubMed

    Dawson, Jennifer E; Raymond, Angela M; Winn, Louise M

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-kappaB, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-kappaB, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P<0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P<0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P<0.05). Folic acid also reduced VPA-induced alterations in p53, NF-kappaB, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-kappaB, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  1. Ursodeoxycholic acid induced generalized fixed drug eruption.

    PubMed

    Ozkol, Hatice Uce; Calka, Omer; Dulger, Ahmet Cumhur; Bulut, Gulay

    2014-09-01

    Fixed drug eruption (FDE) is a rare form of drug allergies that recur at the same cutaneous or mucosal site in every usage of drug. Single or multiple round, sharply demarcated and dusky red plaques appear soon after drug exposure. Ursodeoxycholic acid (UDCA: 3α,7β-dihydroxy-5β-cholanic acid) is used for the treatment of cholestatic liver diseases. Some side effects may be observed, such as diarrhea, dyspepsia, pruritus and headaches. We encountered only three cases of lichenoid reaction regarding the use of UDCA among previous studies. In this article, we reported a generalized FDE case related to UDCA intake in a 59-year-old male patient with cholestasis for the first time in the literature.

  2. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  3. Nitrous acid induced damage in T7 DNA and phage

    SciTech Connect

    Scearce, L.M.; Masker, W.E.

    1986-05-01

    The response of bacteriophage T7 to nitrous acid damage was investigated. The T7 system allows in vitro mimicry of most aspects of in vivo DNA metabolism. Nitrous acid is of special interest since it has been previously shown to induce deletions and point mutations as well as novel adducts in DNA. T7 phage was exposed to 56 mM nitrous acid at pH 4.6 in vivo, causing a time dependent 98% decrease in survival for each 10 min duration of exposure to nitrous acid. These studies were extended to include examination of pure T7 DNA exposed in vitro to nitrous acid conditions identical to those used in the in vivo survival studies. The treated DNA was dialyzed to remove the nitrous acid and the DNA was encapsulated into empty phage heads. These in vitro packaged phage showed a survival curve analogous to the in vivo system. There was no change in survival when either in vitro or in vivo exposed phage were grown on wild type E. coli or on E. coli strains deficient in DNA repair due to mutations in DNA polymerase I, exonuclease III or a uvrA mutation. Survival was not increased when nitrous acid treated T7 were grown on E. coli induced for SOS repair. In vitro replication of nitrous acid treated DNA showed a time dependent decrease in the total amount of DNA synthesized.

  4. Uric acid protects membranes and linolenic acid from ozone-induced oxidation.

    PubMed

    Meadows, J; Smith, R C; Reeves, J

    1986-05-29

    Aqueous preparations of linolenic acid, bovine serum albumin, and bovine erythrocyte membrane fragments were bubbled with ozone in the presence or absence of uric acid. Ozonation of the membrane fragments or the bovine serum albumin did not result in protein degradation. After 15 min of ozonation, the absorbance of the thiobarbituric acid-reactive material increased by 0.34 in the linolenic acid preparation and by 0.08 in the suspension of membrane fragments. In the presence of uric acid, these changes in absorbance were reduced to 0.14 for the fatty acid and to 0.01 for the membrane fragments. This result indicates that uric acid protects lipids from ozone-induced oxidation.

  5. Protective Mechanisms of Nitrone Antioxidants in Kanic Acid Induced Neurodegeneration

    DTIC Science & Technology

    2004-01-01

    L., Hong, J.S. (1996) Expression of) FosB in the rat hippocampus and striatum after systemic administration of kainic acid. Neurosci. Abstr. 22...gene expression in the hippocampus . Immunohistochemical methods and electromobility gel shift assays (EMSAs) demonstrate the concerted activation of...acid-induced neurodegenerative diseases. The major focus will be on the pathophysiological changes in the hippocampus . Special attention will be given

  6. Oleic acid-induced mucosal injury in developing piglet intestine.

    PubMed

    Velasquez, O R; Henninger, K; Fowler, M; Tso, P; Crissinger, K D

    1993-03-01

    A role for luminal nutrients, in particular products of lipid digestion, in the pathogenesis of mucosal injury to developing intestine has been postulated. We evaluated changes in mucosal permeability and light and electron microscopic histology induced by luminal perfusion with the long-chain fatty acid oleate in developing piglet intestine as a function of age and concentration of the fatty acid. 51Cr-labeled EDTA plasma-to-lumen clearance was measured in jejunum and ileum of 1-day-, 3-day-, 2-wk-, and 1-mo-old piglets during sequential perfusion with saline control (20 min); 0, 1, 5, and 10 mM oleic acid/10 mM taurocholate in saline (20 min); and normal saline (60 min). The jejunum of piglets < or = 2 wk showed significantly greater increases in mucosal permeability compared with 1-mo-old animals after perfusion with oleic acid. This effect was dependent on the luminal concentration of the fatty acid and was associated with mucosal injury evident under light and electron microscopy. In contrast, the overall response in ileum was more attenuated compared with jejunum. Thus oleic acid, a common dietary fatty acid, induces dose- and age-dependent injury in developing piglet intestine. Investigation of the mechanisms of this injury may provide the basis for dietary modifications directed at decreasing the risk of mucosal injury during enteral feeding in neonatal intestine.

  7. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  8. ASCORBIC ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    EPA Science Inventory

    Asthma is primarily an airways inflammatory disease, and the bronchial airways have been shown to be particularly susceptible to oxidant-induced tissue damage. The antioxidant ascorbic acid (AA) plays an essential role in defending against oxidant attack in the airways. Decreased...

  9. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.

  10. A molecular basis for retinoic acid-induced axial truncation.

    PubMed

    Iulianella, A; Beckett, B; Petkovich, M; Lohnes, D

    1999-01-01

    Dietary deprivation and gene disruption studies clearly demonstrate that biologically active retinoids, such as retinoic acid (RA), are essential for numerous developmental programs. Similar ontogenic processes are also affected by retinoic acid excess, suggesting that the effects of retinoid administration reflect normal retinoid-dependent events. In the mouse, exogenous retinoic acid can induce both anterior (anencephaly, exencephaly) and posterior (spina bifida) neural tube defects depending on the developmental stage of treatment. Retinoic acid receptor gamma (RARgamma) mediates these effects on the caudal neural tube at 8.5 days postcoitum, as RARgamma-/- mice are completely resistant to spina bifida induced by retinoic acid at this stage. We therefore used this null mouse as a model to examine the molecular nature of retinoid-induced caudal neural tube defects by using a panel of informative markers and comparing their expression between retinoic acid-treated wild-type and RARgamma-/- embryos. Our findings indicate that treatment of wild-type embryos led to a rapid and significant decrease in the caudal expression of all mesodermal markers examined (e.g., brachyury, wnt-3a, cdx-4), whereas somite, neuroepithelial, notochord, floorplate, and hindgut markers were unaffected. RARgamma-/- mutants exhibited normal expression patterns for all markers examined, consistent with the notion that mesodermal defects underlie the etiology of retinoid-induced spina bifida. We also found that posterior somitic, but not caudal presomitic, embryonic tissues contained detectable bioactive retinoids, an observation which correlated with the ability of caudal explants to rapidly clear exogenous RA. Interestingly, transcripts encoding mP450RAI, a cytochrome P450, the product of which is believed to catabolize retinoic acid, were abundant in the retinoid-poor region of the caudal embryo. mP450RAI was rapidly induced by retinoic acid treatment in vivo, consistent with previous

  11. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  12. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  13. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate.

    PubMed

    Jiang, Wenge; Pacella, Michael S; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M; Gray, Jeffrey J; McKee, Marc D

    2017-04-13

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a 'right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas 'left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a 'mother' subunit nanoparticle spawns a slightly tilted, consequential 'daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures.

  14. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  15. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Lawson, Marcus A.; Chiu, Gabriel S.; Blevins, Neil A.; Kwakwa, Kristin A.; Freund, Gregory G.

    2014-01-01

    Objectives Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that lasts beyond an acute elevation in plasma FFAs. Methods Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 hrs after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. Results In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hrs after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24 hrs after palmitic acid treatment. Conclusions Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. PMID:25016520

  16. Unsaturated fatty acids induce non-canonical autophagy

    PubMed Central

    Niso-Santano, Mireia; Malik, Shoaib Ahmad; Pietrocola, Federico; Bravo-San Pedro, José Manuel; Mariño, Guillermo; Cianfanelli, Valentina; Ben-Younès, Amena; Troncoso, Rodrigo; Markaki, Maria; Sica, Valentina; Izzo, Valentina; Chaba, Kariman; Bauvy, Chantal; Dupont, Nicolas; Kepp, Oliver; Rockenfeller, Patrick; Wolinski, Heimo; Madeo, Frank; Lavandero, Sergio; Codogno, Patrice; Harper, Francis; Pierron, Gérard; Tavernarakis, Nektarios; Cecconi, Francesco; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kroemer, Guido

    2015-01-01

    To obtain mechanistic insights into the cross talk between lipolysis and autophagy, two key metabolic responses to starvation, we screened the autophagy-inducing potential of a panel of fatty acids in human cancer cells. Both saturated and unsaturated fatty acids such as palmitate and oleate, respectively, triggered autophagy, but the underlying molecular mechanisms differed. Oleate, but not palmitate, stimulated an autophagic response that required an intact Golgi apparatus. Conversely, autophagy triggered by palmitate, but not oleate, required AMPK, PKR and JNK1 and involved the activation of the BECN1/PIK3C3 lipid kinase complex. Accordingly, the downregulation of BECN1 and PIK3C3 abolished palmitate-induced, but not oleate-induced, autophagy in human cancer cells. Moreover, Becn1+/− mice as well as yeast cells and nematodes lacking the ortholog of human BECN1 mounted an autophagic response to oleate, but not palmitate. Thus, unsaturated fatty acids induce a non-canonical, phylogenetically conserved, autophagic response that in mammalian cells relies on the Golgi apparatus. PMID:25586377

  17. Valproic acid-induced hyperammonaemic coma and unrecognised portosystemic shunt.

    PubMed

    Nzwalo, Hipólito; Carrapatoso, Leonor; Ferreira, Fátima; Basilio, Carlos

    2013-06-01

    Hyperammonaemic encephalopathy is a rare and potentially fatal complication of valproic acid treatment. The clinical presentation of hyperammonaemic encephalopathy is wide and includes seizures and coma. We present a case of hyperammonaemic coma precipitated by sodium valproate use for symptomatic epilepsy in a patient with unrecognised portosystemic shunt, secondary to earlier alcoholism. The absence of any stigmata of chronic liver disease and laboratory markers of liver dysfunction delayed the recognition of this alcohol-related complication. The portal vein bypass led to a refractory, valproic acid-induced hyperammonaemic coma. The patient fully recovered after dialysis treatment.

  18. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  19. Gababuline induces delta-aminolevulinic acid excretion by cyanobacteria

    SciTech Connect

    Freeman, L.; Guikema, J.A.

    1986-04-01

    Gabaculine (5-amino-1,3-cyclohexadienylcarboxylic acid) was examined as an inhibitor of Chl biosynthesis in the cyanobacterium, Anacystis nidulans. At 20 ..mu..M, it blocked the synthesis of both Chl and phycocyanin. Similar results were obtained using aminooxyacetic acid. Because gabaculine is well established as an inhibitor of aminotransferase activity, the authors expected it to cause an inhibition of ..delta..-aminolevulinic acid (ALA) synthesis. However, an excretion of ALA was observed instead. Concentrated cell cultures were incubated in the presence of gabaculine, and the spent media was examined for ALA excretion using modified Ehrlick's reagent. Gabaculine induced ALA excretion in normal cultures, and in those stressed by iron or phosphate deficiency. Nitrate deficiency depressed the extent of ALA excretion. These results suggest that, in cyanobacteria, gabaculine inhibits CHl biosynthesis at a site after ALA formation.

  20. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  1. Acid-induced unfolding mechanism of recombinant human endostatin.

    PubMed

    Li, Bing; Wu, Xiaoyu; Zhou, Hao; Chen, Qianjie; Luo, Yongzhang

    2004-03-09

    Endostatin is a potent angiogenesis inhibitor. The structure of endostatin is unique in that its secondary structure is mainly irregular loops and beta-sheets and contains only a small fraction of alpha-helices with two pairs of disulfide bonds in a nested pattern. We choose human endostatin as a model system to study the folding mechanism of this kind. Nuclear magnetic resonance (NMR), tryptophan emission fluorescence, and circular dichroism (CD) were used to monitor the unfolding process of endostatin upon acid titration. Urea-induced unfolding was used to measure the stability of endostatin under different conditions. Our results show that endostatin is very acid-resistant; some native structure still remains even at pH 2 as evidenced by (1)H NMR. Trifluoroethanol (TFE) destabilizes native endostatin, while it makes endostatin even more acid-resistant in the low pH region. Stability measurement of endostatin suggests that endostatin is still in native structure at pH 3.5 despite the decreased stability. Acid-induced unfolding of endostatin is reversible, although it requires a long time to reach equilibrium below pH 3. Surprisingly, the alpha-helical content of endostatin is increased when it is unfolded at pH 1.6, and the alpha-helical content of the polypeptide chain of unfolded endostatin increases linearly with TFE concentration in the range of 0-30%. This observation indicates that the polypeptide chain of unfolded endostatin has an intrinsic alpha-helical propensity. Our discoveries may provide clues for refolding endostatin more efficiently. The acid-resistance property of endostatin may have biological significance in that it cannot be easily digested by proteases in an acidic environment such as in a lysosome in the cell.

  2. Dissolution of kaolinite induced by citric, oxalic, and malic acids.

    PubMed

    Wang, Xingxiang; Li, Qingman; Hu, Huafeng; Zhang, Taolin; Zhou, Yiyong

    2005-10-15

    Kaolinite is a dominant clay mineral in the soils in tropical and subtropical regions, and its dissolution has an influence on a variety of soil properties. In this work, kaolinite dissolution induced by three kinds of low-molecular-weight organic acid, i.e., citric, oxalic, and malic acids, was evaluated under far-from-equilibrium conditions. The rates of kaolinite dissolution depended on the kind and concentration of organic acids, with the sequence R(oxalate)>R(citrate)>R(malate). Chemical calculation showed the change in concentration of organic ligand relative to change in concentration of organic acid in suspensions of kaolinite and organic acid. The effect of organic acid on kaolinite dissolution was modeled by species of organic anionic ligand. For oxalic acid, L(2-)(oxalic) and HL(-)(oxalic) jointly enhanced the dissolution of kaolinite, but for malic and citric acids, HL(-)(malic) and H2L-(citric) made a higher contribution to the total dissolution rate of kaolinite than L(2-)(malic) and L(3-)(citric), respectively. For oxalic acid, the proposed model was R(Si)=1.89x10(-12)x[(25x)/(1+25x)]+1.93x10(-12)x[(1990x1)/(1+1990x1)] (R2=0.9763), where x and x1 denote the concentrations of HL(oxalic) and L(oxalic), respectively, and x1=10(-3.81)xx/[H+]. For malic acid, the model was R(Si)=4.79x10(-12)x[(328x)/(1+328x)]+1.67x10(-13)x[(1149x1)/(1+1149x1)] (R2=0.9452), where x and x1 denote the concentrations of HL(malic) and L(malic), respectively, and x1=10(-5.11)xx/[H+], and for citric acid, the model was R(Si)=4.73x10(-12)x[(845x)/(1+845x)]+4.68x10(-12)x[(2855x1)/(1+2855x1)] (R2=0.9682), where x and x1 denote the concentrations of H2L(citric) and L(citric), respectively, and [Formula: see text] .

  3. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola.

    PubMed

    Wittek, Finni; Kanawati, Basem; Wenig, Marion; Hoffmann, Thomas; Franz-Oberdorf, Katrin; Schwab, Wilfried; Schmitt-Kopplin, Philippe; Vlot, A Corina

    2015-08-01

    Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.

  4. Phenolic Acids (Gallic and Tannic Acids) Modulate Antioxidant Status and Cisplatin Induced Nephrotoxicity in Rats.

    PubMed

    Akomolafe, Seun F; Akinyemi, Ayodele J; Anadozie, Scholarstical O

    2014-01-01

    Cisplatin (cis-diamminedichloroplatinum (II) or CDDP), used in the treatment of many solid-tissue cancers, has its chief side-effect in nephrotoxicity. Hence, this study sought to investigate and compare the protective effect of gallic acid (GA) and tannic acid (TA) against cisplatin induced nephrotoxicity in rats. The rats were given a prophylactic treatment of GA and TA orally at a dose of 20 and 40 mg/kg body weight for 7 consecutive days before the administration of a single intraperitoneal (i.p.) injection of cisplatin (CP) at 7.5 mg/kg bwt. The protective effects of both GA and TA on CP induced nephrotoxicity were investigated by assaying renal function, oxidative stress biomarkers, and histopathological examination of kidney architecture. A single dose of cisplatin (7.5 mg/kg bwt) injected i.p. caused a significant increase in some biomarkers of renal function (creatinine, uric acid, and urea levels), with a marked elevation in malondialdehyde (MDA) content accompanied by a significant (P < 0.05) decrease in reduced glutathione (GSH) content (103.27%) of kidney tissue as compared to control group. Furthermore, a significant (P < 0.05) reduction in kidney antioxidant enzymes (SOD, catalase, GPx, and GST) activity was observed. However, pretreatment with oral administration of tannic acid and gallic acid at a dose of 20 and 40 mg/kg body weight, respectively, for 7 days prior to cisplatin administration reduced histological renal damage and suppressed the generation of ROS, lipid peroxidation, and oxidative stress in kidney tissues. These results indicate that both gallic and tannic acids could serve as a preventive strategy against cisplatin induced nephrotoxicity.

  5. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

    PubMed Central

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun

    2016-01-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  6. Acid exposure induces multiplication of Salmonella enterica serovar Typhi.

    PubMed

    Ahirwar, Suneel Kumar; Pratap, Chandra Bhan; Patel, Saurabh Kumar; Shukla, Vijay K; Singh, Indarjeet Gambhir; Mishra, Om Prakash; Kumar, Kailash; Singh, Tej Bali; Nath, Gopal

    2014-12-01

    Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens.

  7. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  8. Dimethylarsenic acid induces tetraploids in Chinese hamster cells

    SciTech Connect

    Endo, Ginji; Horiguchi, Shun'ichi ); Kuroda, Koichi; Okamoto, Akiyoshi )

    1992-01-01

    Arsenic has been documented as a human carcinogen of the skin and lungs. However, attempts to induce tumors in experimental animals with inorganoarsenic compounds have mostly failed except in a few studies in which animals were given arsenic trioxide by intratracheal instillation. Moreover, inorganoarsenics are either inactive or too weak to induce gene mutations in vitro. The mechanism of arsenic carcinogenicity has not yet been discovered. Most mammals including human are able to methylate inorganoarsenic compounds to methylarsonic acid and dimethylarsenic acid. However, the genotoxicity of organoarsenic compounds has hardly been examined. The authors therefore decided to study this genotoxicity, including the frequency of sister chromatid exchange (SCE) of nine organic and three inorganic arsenic compounds. Observation of the metaphases in the SCE test revealed that only DMA of the organo- and inorgano-arsenic compounds induces tetraploids and mitotic arrest. This indicates that the role of DMA may be important in arsenic genotoxicity and may give a clue to the carcinogenic mechanism of arsenic.

  9. [Signaling pathway of meiosis induced by retinoic acid during spermatogenesis].

    PubMed

    Wang, Ke; Wu, Ying-Ji

    2013-02-01

    Retinoic acid (RA) is an oxidative metabolite of vitamin A (retinol, ROH) and plays an important role in the spermatogenesis (as in meiosis) of mammals. In mammalian testes, RA, in combination with its retinoic acid receptor (RAR), regulates the expressions of related target genes in various types of cells at different times. It activates meiosis by up-regulating the expressions of the genes that promote meiosis and down-regulate those that inhibit it during spermatogenesis in a specific stage. The results of researches on mammalian spermatogenesis have a great application value in reproductive biology, developmental biology, and reproductive engineering. Therefore, it is of considerable significance to study the signaling pathway of RA-induced meiosis during mammalian spermatogenesis. This article presents an introduction of the RA signal transduction system and its action mechanisms, as well as an overview on the signaling pathway of RA-activated meiosis during spermatogenesis.

  10. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    SciTech Connect

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  11. [Sunitinib and zoledronic acid induced osteonecrosis of the jaw].

    PubMed

    Soós, Balázs; Vajta, László; Szalma, József

    2015-11-15

    The tendency for bisphosphonate and non-bisphosphonate (eg.: antiresorptive or anti-angiogenesis drugs) induced osteonecrosis is increasing. Treatment of these patients is a challenge both for dentists and for oral and maxillofacial surgeons. Cooperation with the drug prescribing general medicine colleagues to prevent osteonecrosis is extremely important. Furthermore, prevention should include dental focus elimination, oral hygienic instructions and education, dental follow-up and, in case of manifest necrosis, referral to maxillofacial departments. Authors outline the difficulties of conservative and surgical treatment of a patient with sunitinib and zoledronic acid induced osteonecrosis. The patient became symptomless and the operated area healed entirely six and twelve months postoperatively. A long term success further follow-up is necessary to verify long-term success.

  12. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-10-26

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.

  13. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.

  14. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    PubMed

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage.

  15. Acid aspiration-induced airways hyperresponsiveness in mice

    PubMed Central

    Leclair, Timothy R.; von Reyn, Jessica; Larrabee, Yuna C.; Cloutier, Mary E.; Irvin, Charles G.; Bates, Jason H. T.

    2009-01-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 μl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (RN), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak RN, G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  16. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    PubMed

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  17. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  18. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  19. Salicylic acid attenuates gentamicin-induced nephrotoxicity in rats.

    PubMed

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  20. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid.

    PubMed

    Zhang, C; Patel, R; Eiserich, J P; Zhou, F; Kelpke, S; Ma, W; Parks, D A; Darley-Usmar, V; White, C R

    2001-10-01

    The myeloperoxidase (MPO)-derived oxidant hypochlorous acid (HOCl) plays a role in tissue injury under inflammatory conditions. The present study tests the hypothesis that HOCl decreases nitric oxide (NO) bioavailability in the vasculature of Sprague-Dawley rats. Aortic ring segments were pretreated with HOCl (1-50 microM) followed by extensive washing. Endothelium-dependent relaxation was then assessed by cumulative addition of acetylcholine (ACh) or the calcium ionophore A23187. HOCl treatment significantly impaired both ACh- and A23187-mediated relaxation. In contrast, endothelium-independent relaxation induced by sodium nitroprusside was unaffected. The inhibitory effect of HOCl on ACh-induced relaxation was reversed by exposure of ring segments to L-arginine but not D-arginine. In cellular studies, HOCl did not alter endothelial NO synthase (NOS III) protein or activity, but inhibited formation of the NO metabolites nitrate (NO3(-) and nitrite (NO2(-). The reduction in total NO metabolite production in bovine aortic endothelial cells was also reversed by addition of L-arginine. These data suggest that HOCl induces endothelial dysfunction via modification of L-arginine.

  1. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression.

    PubMed

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto

    2016-01-01

    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  2. The effect of docosahexaenoic acid on t10, c12-conjugated linoleic acid-induced changes in fatty acid composition of mouse liver, adipose and muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Concomitant supplementation of 1.5% docosahexaenoic acid (22:6 n-3; DHA) with 0.5% t10, c12- conjugated linoleic acid (18:2 n-6; CLA) prevented the CLA-induced increase in expression of hepatic genes involved in fatty acid synthesis and the decrease in expression of genes involved in fat...

  3. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice.

    PubMed

    Zhao, Mei; Chen, Yuan-Hua; Chen, Xue; Dong, Xu-Ting; Zhou, Jun; Wang, Hua; Wu, Shu-Xian; Zhang, Cheng; Xu, De-Xiang

    2014-01-13

    Folic acid is a water-soluble B-complex vitamin. Increasing evidence demonstrates that physiological supply of folic acid during pregnancy prevents folic acid deficiency-related neural tube defects (NTDs). Previous studies showed that maternal lipopolysaccharide (LPS) exposure caused NTDs in rodents. The aim of this study was to investigate the effects of high-dose folic acid supplementation during pregnancy on LPS-induced NTDs. Pregnant mice were intraperitoneally injected with LPS (20 μg/kg/d) from gestational day (GD) 8 to GD12. As expected, a five-day LPS injection resulted in 19.96% of fetuses with NTDs. Interestingly, supplementation with folic acid (3mg/kg/d) during pregnancy significantly alleviated LPS-induced NTDs. Additionally, folic acid significantly attenuated LPS-induced fetal growth restriction and skeletal malformations. Additional experiment showed that folic acid attenuated LPS-induced glutathione (GSH) depletion in maternal liver and placentas. Moreover, folic acid significantly attenuated LPS-induced expression of placental MyD88. Additionally, folic acid inhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation and nuclear factor kappa B (NF-κB) activation in placentas. Correspondingly, folic acid significantly attenuated LPS-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in placentas, maternal serum and amniotic fluid. In conclusion, supplementation with high-dose folic acid during pregnancy protects against LPS-induced NTDs through its anti-inflammatory and anti-oxidative effects.

  4. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  5. The Acetic Acid Tolerance Response induces cross-protection to salt stress in Salmonella typhimurium.

    PubMed

    Greenacre, E J; Brocklehurst, T F

    2006-10-15

    Salmonella typhimurium induces an Acid Tolerance Response (ATR) upon exposure to mildly acidic conditions in order to protect itself against severe acid shock. This response can also induce cross-protection to other stresses such as heat and salt. We investigated whether both the acetic acid induced and lactic acid induced ATR in S. typhimurium provided cross-protection to a salt stress at 20 degrees C. Acid-adapted cells were challenged with both a sodium chloride (NaCl) and potassium chloride (KCl) shock and their ability to survive ascertained. Acetic acid adaptation provided cells with protection against both NaCl and KCl stress. However, lactic acid adaptation did not protect against either osmotic stressor and rendered cells hypersensitive to NaCl. These results have implications for the food industry where hurdle technology means multiple sub-lethal stresses such as mild pH and low salt are commonly used in the preservation of products.

  6. Chlorogenic acid and coffee prevent hypoxia-induced retinal degeneration.

    PubMed

    Jang, Holim; Ahn, Hong Ryul; Jo, Hyoung; Kim, Kyung-A; Lee, Eun Ha; Lee, Ki Won; Jung, Sang Hoon; Lee, Chang Y

    2014-01-08

    This study explored whether chlorogenic acid (CGA) and coffee have protective effects against retinal degeneration. Under hypoxic conditions, the viability of transformed retinal ganglion (RGC-5) cells was significantly reduced by treatment with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP). However, pretreatment with CGA attenuated cell death in a concentration-dependent manner. In addition, CGA prevented the up-regulation of apoptotic proteins such as Bad and cleaved caspase-3. Similar beneficial effects of both CGA and coffee extracts were observed in mice that had undergone an optic nerve crush (ONC) procedure. CGA and coffee extract reduced cell death by preventing the down-regulation of Thy-1. Our in vitro and in vivo studies demonstrated that coffee and its major component, CGA, significantly reduce apoptosis of retinal cells induced by hypoxia and NO, and that coffee consumption may help in preventing retinal degeneration.

  7. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  8. Iron transformations induced by an acid-tolerant Desulfosporosinus species.

    PubMed

    Bertel, Doug; Peck, John; Quick, Thomas J; Senko, John M

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe₃S₄) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe₈O₈(OH)₆SO₄ · nH₂O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2.

  9. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  10. Iron Transformations Induced by an Acid-Tolerant Desulfosporosinus Species

    PubMed Central

    Bertel, Doug; Peck, John; Quick, Thomas J.

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe3S4) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe8O8(OH)6SO4 · nH2O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  11. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  12. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice

    PubMed Central

    Chen, Jinmei; Zhang, Weijian; Zhang, Lurong; Zhang, Jiemin; Chen, Xiuying; Yang, Meichun; Chen, Ting; Hong, Jinsheng

    2017-01-01

    Radiation-induced lung injury (RILI) is a common complication of thoracic radiotherapy, but efficacious therapy for RILI is lacking. This study ascertained whether glycyrrhetinic acid (GA; a functional hydrolyzed product of glycyrrhizic acid, which is extracted from herb licorice) can protect against RILI and investigated its relationship to the transforming growth factor (TGF)-β1/Smads signaling pathway. C57BL/6 mice were divided into four groups: a control group, a GA group and two irradiation (IR) groups. IR groups were exposed to a single fraction of X-rays (12 Gy) to the thorax and administered normal saline (IR + NS group) or GA (IR + GA group). Two days and 17 days after irradiation, histologic analyses were performed to assess the degree of lung injury, and the expression of TGF-β1, Smad2, Smad3 and Smad7 was recorded. GA administration mitigated the histologic changes of lung injury 2 days and 17 days after irradiation. Protein and mRNA expression of TGF-β1, Smad2 and Smad3, and the mRNA level of Smad7, in lung tissue were significantly elevated after irradiation. GA decreased expression of TGF-β1, Smad2 and Smad3 in lung tissue, but did not increase Smad7 expression. GA can protect against early-stage RILI. This protective effect may be associated with inhibition of the TGF-β1/Smads signaling pathway. PMID:27672101

  13. High dose of ascorbic acid induces cell death in mesothelioma cells.

    PubMed

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  14. Carbon nanotubes induced gelation of unmodified hyaluronic acid.

    PubMed

    Zamora-Ledezma, Camilo; Buisson, Lionel; Moulton, Simon E; Wallace, Gordon; Zakri, Cécile; Blanc, Christophe; Anglaret, Eric; Poulin, Philippe

    2013-08-13

    This work reports an experimental study of the kinetics and mechanisms of gelation of carbon nanotubes (CNTs)-hyaluronic acid (HA) mixtures. These materials are of great interest as functional biogels for future medical applications and tissue engineering. We show that CNTs can induce the gelation of noncovalently modified HA in water. This gelation is associated with a dynamical arrest of a liquid crystal phase separation, as shown by small-angle light scattering and polarized optical microscopy. This phenomenon is reminiscent of arrested phase separations in other colloidal systems in the presence of attractive interactions. The gelation time is found to strongly vary with the concentrations of both HA and CNTs. Near-infrared photoluminescence reveals that the CNTs remain individualized both in fluid and in gel states. It is concluded that the attractive forces interplay are likely weak depletion interactions and not strong van der Waals interactions which could promote CNT rebundling, as observed in other biopolymer-CNT mixtures. The present results clarify the remarkable efficiency of CNT at inducing the gelation of HA, by considering that CNTs easily phase separate as liquid crystals because of their giant aspect ratio.

  15. Monomeric Tartrate Resistant Acid Phosphatase Induces Insulin Sensitive Obesity

    PubMed Central

    Lång, Pernilla; van Harmelen, Vanessa; Rydén, Mikael; Kaaman, Maria; Parini, Paolo; Carneheim, Claes; Cassady, A. Ian; Hume, David A.; Andersson, Göran; Arner, Peter

    2008-01-01

    Background Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP) is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. Principal Findings Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. Conclusion Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity. PMID:18320034

  16. Monomethylarsonous acid induces transformation of human bladder cells

    SciTech Connect

    Bredfeldt, Tiffany G.; Jagadish, Bhumasamudram; Eblin, Kylee E.; Mash, Eugene A.; Gandolfi, A. Jay . E-mail: gandolfi@pharmacy.arizona.edu

    2006-10-01

    Arsenic is a human bladder carcinogen. Arsenic is methylated to both monomethyl and dimethyl metabolites which have been detected in human urine. The trivalent methylated arsenicals are more toxic than inorganic arsenic. It is unknown if these trivalent methylated metabolites can directly cause malignant transformation in human cells. The goal of this study is determine if monomethylarsonous acid (MMA{sup III}) can induce malignant transformation in a human bladder urothelial cell line. To address this goal, a non-tumorigenic human urothelial cell line (UROtsa) was continuously exposed to 0.05 {mu}M MMA{sup III} for 52 weeks. Hyperproliferation was the first phenotypic change observed in exposed UROtsa (URO-MSC). After 12 weeks of exposure, doubling time had decreased from 42 h in unexposed control cells to 27 h in URO-MSC. Hyperproliferation continued to be a quality possessed by the URO-MSC cells after both 24 and 52 weeks of exposure to MMA{sup III}, which had a 40-50% reduction in doubling time. Throughout the 52-week exposure, URO-MSC cells retained an epithelial morphology with subtle morphological differences from control cells. 24 weeks of MMA{sup III} exposure was required to induce anchorage-independent growth as detected by colony formation in soft agar, a characteristic not found in UROtsa cells. To further substantiate that malignant transformation had occurred, URO-MSC cells were tested after 24 and 52 weeks of exposure to MMA{sup III} for the ability to form tumors in SCID mice. Enhanced tumorigenicity in SCID mouse xenografts was observed after 52 weeks of treatment with MMA{sup III}. These observations are the first demonstration of MMA{sup III}-induced malignant transformation in a human bladder urothelial cell line and provide important evidence that MMA{sup III} may be carcinogenic in human tissues.

  17. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  18. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects.

  19. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  20. Uric acid protects erythrocytes from ozone-induced changes.

    PubMed

    Meadows, J; Smith, R C

    1987-08-01

    Uric acid effectively reduced hemolysis and methemoglobin formation in bovine and swine erythrocytes bubbled with ozone in vitro. In bovine erythrocytes, formation of thiobarbituric acid-reactive material was inhibited by uric acid, but there was little immediate protection for the swine cells. Antioxidant protection was due to preferential degradation of the uric acid by ozone. These results provide evidence to support the hypothesis that in plasma, uric acid can provide antioxidant protection for erythrocytes.

  1. Epigenetic modifications in valproic acid-induced teratogenesis

    SciTech Connect

    Tung, Emily W.Y.; Winn, Louise M.

    2010-11-01

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400 mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24 h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3 h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  2. Epigenetic modifications in valproic acid-induced teratogenesis.

    PubMed

    Tung, Emily W Y; Winn, Louise M

    2010-11-01

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  3. Viewpoints on Acid-Induced Inflammatory Mediators in Esophageal Mucosa

    PubMed Central

    Harnett, Karen M; Rieder, Florian; Behar, Jose

    2010-01-01

    We have focused on understanding the onset of gastroesophageal reflux disease by examining the mucosal response to the presence of acid in the esophageal lumen. Upon exposure to HCl, inflammation of the esophagus begins with activation of the transient receptor potential channel vanilloid subfamily member-1 (TRPV1) in the mucosa, and production of IL-8, substance P (SP), calcitonin gene related peptide (CGRP) and platelet activating factor (PAF). Production of SP and CGRP, but not PAF, is abolished by the neural blocker tetrodotoxin suggesting that SP and CGRP are neurally released and that PAF arises from non neural pathways. Epithelial cells contain TRPV1 receptor mRNA and protein and respond to HCl and to the TRPV1 agonist capsaicin with production of PAF. PAF, SP and IL-8 act as chemokines, inducing migration of peripheral blood leukocytes. PAF and SP activate peripheral blood leukocytes inducing the production of H2O2. In circular muscle, PAF causes production of IL-6, and IL-6 causes production of additional H2O2, through activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Among these, NADPH oxidase 5 cDNA is significantly up-regulated by exposure to PAF; H2O2 content of esophageal and lower esophageal sphincter circular muscle is elevated in human esophagitis, causing dysfunction of esophageal circular muscle contraction and reduction in esophageal sphincter tone. Thus esophageal keratinocytes, that constitute the first barrier to the refluxate, may also serve as the initiating cell type in esophageal inflammation, secreting inflammatory mediators and pro-inflammatory cytokines and affecting leukocyte recruitment and activity. PMID:21103419

  4. Protective Effects of Norursodeoxycholic Acid Versus Ursodeoxycholic Acid on Thioacetamide-induced Rat Liver Fibrosis

    PubMed Central

    Buko, Vyacheslav U.; Lukivskaya, Oxana Y.; Naruta, Elena E.; Belonovskaya, Elena B.; Tauschel, Horst-Dietmar

    2014-01-01

    Background/objectives Effects of norursodeoxycholic acid (norUDCA) and ursodeoxycholic acid (UDCA) on liver fibrosis progression and liver fibrosis reversal in thioacetamide (TAA)-treated rats were studied. Methods Advanced liver fibrosis was induced by TAA treatment (200 mg/kg, i.p.) for 12 weeks. In the second experiment resolution of liver fibrosis was assessed after 8 weeks of TAA withdrawal. During 8 last weeks of each trial, fibrotic rats were daily administered with UDCA (80 mg/kg) and norUDCA (equimolar to 80 mg/kg of UDCA) by oral gavage. Liver fibrosis was assessed by Sirius red staining, liver hydroxyproline and serum fibrosis markers determination. Results The TAA treatment resulted in advanced fibrosis and increase in liver hydroxyproline content and serum fibrosis markers. These signs of fibrosis were less pronounced in rats after TAA withdrawal. Treatment with of norUDCA significantly decreased the total and relative liver hydroxyproline contents in rats with fibrosis reversal, whereas UDCA did not change these parameters. Both compounds decreased serum TGFβ and type IV collagen contents, whereas other serum markers did not differ from the placebo group. In the fibrosis progression model the square of connective tissue was decreased by norUDCA. Serum type IV collagen and procollagen III-NT contents in these experiments were lowered by both UDCA and norUDCA, whereas rest of serum fibrosis markers were diminished only by norUDCA. Conclusions Both norUDCA and UDCA showed therapeutic and prophylactic antifibrotic effect in rats with TAA-induced liver fibrosis. For most of tested parameters norUDCA was more effective than UDCA, especially in the experiment with liver fibrosis regression. PMID:25755576

  5. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  6. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.

    PubMed

    Kawahata, Miho; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2006-09-01

    Using two types of genome-wide analysis to investigate yeast genes involved in response to lactic acid and acetic acid, we found that the acidic condition affects metal metabolism. The first type is an expression analysis using DNA microarrays to investigate 'acid shock response' as the first step to adapt to an acidic condition, and 'acid adaptation' by maintaining integrity in the acidic condition. The other is a functional screening using the nonessential genes deletion collection of Saccharomyces cerevisiae. The expression analysis showed that genes involved in stress response, such as YGP1, TPS1 and HSP150, were induced under the acid shock response. Genes such as FIT2, ARN1 and ARN2, involved in metal metabolism regulated by Aft1p, were induced under the acid adaptation. AFT1 was induced under acid shock response and under acid adaptation with lactic acid. Moreover, green fluorescent protein-fused Aft1p was localized to the nucleus in cells grown in media containing lactic acid, acetic acid, or hydrochloric acid. Both analyses suggested that the acidic condition affects cell wall architecture. The depletion of cell-wall components encoded by SED1, DSE2, CTS1, EGT2, SCW11, SUN4 and YNL300W and histone acetyltransferase complex proteins encoded by YID21, EAF3, EAF5, EAF6 and YAF9 increased resistance to lactic acid. Depletion of the cell-wall mannoprotein Sed1p provided resistance to lactic acid, although the expression of SED1 was induced by exposure to lactic acid. Depletion of vacuolar membrane H+-ATPase and high-osmolarity glycerol mitogen-activated protein kinase proteins caused acid sensitivity. Moreover, our quantitative PCR showed that expression of PDR12 increased under acid shock response with lactic acid and decreased under acid adaptation with hydrochloric acid.

  7. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  8. DL-beta-aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins.

    PubMed

    Eschen-Lippold, Lennart; Altmann, Simone; Rosahl, Sabine

    2010-05-01

    Inducing systemic resistance responses in crop plants is a promising alternative way of disease management. To understand the underlying signaling events leading to induced resistance, functional analyses of plants defective in defined signaling pathway steps are required. We used potato, one of the economically most-important crop plants worldwide, to examine systemic resistance against the devastating late blight pathogen Phytophthora infestans, induced by treatment with dl-beta-aminobutyric acid (BABA). Transgenic plants impaired in either the 9-lipoxygenase pathway, which produces defense-related compounds, or the 13-lipoxygenase pathway, which generates jasmonic acid-derived signals, expressed wild-type levels of BABA-induced resistance. Plants incapable of accumulating salicylic acid (SA), on the other hand, failed to mount this type of induced resistance. Consistently, treatment of these plants with the SA analog 2,6-dichloroisonicotinic acid restored BABA-induced resistance. Together, these results demonstrate the indispensability of a functional SA pathway for systemic resistance in potato induced by BABA.

  9. Ameliorative effects of phycocyanin against gibberellic acid induced hepatotoxicity.

    PubMed

    Hussein, Mohamed M A; Ali, Haytham A; Ahmed, Mona M

    2015-03-01

    Gibberellic acid (GA3) was used extensively unaware in agriculture in spite of its dangerous effects on human health. The current study was designed to investigate the ameliorative effects of the co-administration of phycocyanin with GA3 induced oxidative stress and histopathological changes in the liver. Forty male albino rats were randomly divided into four groups. Group I (control group) received normal saline for 6 weeks, Group II (GA3 treated group) received 3.85 mg/kg body weight GA3 once daily for 6 weeks, Group III (phycocyanin treated group) received Phycocyanin 200 mg/kg body weight/day for 6 weeks orally dissolved in distilled water and Group IV was treated with GA3 and phycocyanin at the same doses as groups 2 and 3. All treatments were given daily using intra-gastric intubation and continued for 6 weeks. Our results revealed significant downregulation of antioxidant enzyme activities and their mRNA levels (CAT, GPx and Cu-Zn, SOD) with marked elevation of liver enzymes and extensive fibrous connective tissue deposition with large biliary cells in hepatic tissue of GA3 treated rats, while treatment with phycocyanin improved the antioxidant defense system, liver enzymes and structural hepatocytes recovery in phycocyanin treated group with GA3. These data confirm the antioxidant potential of Phycocyanin and provide strong evidence to support the co-administration of Phycocyanin during using GA3.

  10. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    PubMed

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  11. Lysophosphatidic acid induced red blood cell aggregation in vitro.

    PubMed

    Kaestner, Lars; Steffen, Patrick; Nguyen, Duc Bach; Wang, Jue; Wagner-Britz, Lisa; Jung, Achim; Wagner, Christian; Bernhardt, Ingolf

    2012-10-01

    Under physiological conditions healthy RBCs do not adhere to each other. There are indications that RBCs display an intercellular adhesion under certain (pathophysiological) conditions. Therefore we investigated signaling steps starting with transmembrane calcium transport by means of calcium imaging. We found a lysophosphatidic acid (LPA) concentration dependent calcium influx with an EC(50) of 5 μM LPA. Downstream signaling was investigated by flow cytometry as well as by video-imaging comparing LPA induced with "pure" calcium mediated phosphatidylserine exposure and concluded the coexistence of two branches of the signaling pathway. Finally we performed force measurements with holographic optical tweezers (HOT): The intercellular adhesion of RBCs (aggregation) exceeds a force of 25 pN. These results support (i) earlier data of a RBC associated component in thrombotic events under certain pathophysiological conditions and (ii) the concept to use RBCs in studies of cellular adhesion behavior, especially in combination with HOT. The latter paves the way to use RBCs as model cells to investigate molecular regulation of cellular adhesion processes.

  12. Retinoic acid induces TGFbeta-dependent autocrine fibroblast growth.

    PubMed

    Fadloun, A; Kobi, D; Delacroix, L; Dembélé, D; Michel, I; Lardenois, A; Tisserand, J; Losson, R; Mengus, G; Davidson, I

    2008-01-17

    To evaluate the role of murine TFIID subunit TAF4 in activation of cellular genes by all-trans retinoic acid (T-RA), we have characterized the T-RA response of taf4(lox/-) and taf4(-/-) embryonic fibroblasts. T-RA regulates almost 1000 genes in taf4(lox/-) cells, but less than 300 in taf4(-/-) cells showing that TAF4 is required for T-RA regulation of most, but not all cellular genes. We further show that T-RA-treated taf4(lox/-) cells exhibit transforming growth factor (TGF)beta-dependent autocrine growth and identify a set of genes regulated by loss of TAF4 and by T-RA corresponding to key mediators of the TGFbeta signalling pathway. T-RA rapidly and potently induces expression of connective tissue growth factor (CTGF) via a conserved DR2 type response element in its proximal promoter leading to serum-free autocrine growth. These results highlight the role of TAF4 as a cofactor in the cellular response to T-RA and identify the genetic programme of a novel cross talk between the T-RA and TGFbeta pathways that leads to deregulated cell growth.

  13. Microbially induced organic acid underdeposit attack in a gas pipeline

    SciTech Connect

    Dias, O.C.; Bromel, M.C. )

    1990-04-01

    A leaking undersea carbon-steel gas pipeline was investigated, and attack was confined to low areas where water had accumulated.Analyses showed that pitting, which occurred under deposits, was caused by organic acids generated by bacteria. The metabolic activities of anaerobic sporeformers produce these acids. Alkyl amine carboxylic acid and metronidizole were effective deterrents at low concentrations.

  14. Molecular characterization of the acid-inducible asr gene of Escherichia coli and its role in acid stress response.

    PubMed

    Seputiene, Vaida; Motiejūnas, Domantas; Suziedelis, Kestutis; Tomenius, Henrik; Normark, Staffan; Melefors, Ojar; Suziedeliene, Edita

    2003-04-01

    Enterobacteria have developed numerous constitutive and inducible strategies to sense and adapt to an external acidity. These molecular responses require dozens of specific acid shock proteins (ASPs), as shown by genomic and proteomic analysis. Most of the ASPs remain poorly characterized, and their role in the acid response and survival is unknown. We recently identified an Escherichia coli gene, asr (acid shock RNA), encoding a protein of unknown function, which is strongly induced by high environmental acidity (pH < 5.0). We show here that Asr is required for growth at moderate acidity (pH 4.5) as well as for the induction of acid tolerance at moderate acidity, as shown by its ability to survive subsequent transfer to extreme acidity (pH 2.0). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of acid-shocked E. coli cells harboring a plasmid-borne asr gene demonstrated that the Asr protein is synthesized as a precursor with an apparent molecular mass of 18 kDa. Mutational studies of the asr gene also demonstrated the Asr preprotein contains 102 amino acids. This protein is subjected to an N-terminal cleavage of the signal peptide and a second processing event, yielding 15- and 8-kDa products, respectively. Only the 8-kDa polypeptide was detected in acid-shocked cells containing only the chromosomal copy of the asr gene. N-terminal sequencing and site-directed mutagenesis revealed the two processing sites in the Asr protein precursor. Deletion of amino acids encompassing the processing site required for release of the 8-kDa protein resulted in an acid-sensitive phenotype similar to that observed for the asr null mutant, suggesting that the 8-kDa product plays an important role in the adaptation to acid shock. Analysis of Asr:PhoA fusions demonstrated a periplasmic location for the Asr protein after removal of the signal peptide. Homologues of the asr gene from other Enterobacteriaceae were cloned and shown to be induced in E. coli

  15. LIMB DEFECTS INDUCED BY RETINOIC ACID SIGNALING ANTAGONISM AND SYNTHESIS INHIBITION ARE CONSISTENT WITH ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects

    Johnson CS1, Sulik KK1,2, Hunter, ES III3
    1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....

  16. Increased production of γ-lactones from hydroxy fatty acids by whole Waltomyces lipofer cells induced with oleic acid.

    PubMed

    An, Jung-Ung; Oh, Deok-Kun

    2013-09-01

    Among several fatty acids tested, oleic acid was selected as the most efficient inducer for the production of 4-hydroxydodecanoic acid, a metabolite of β-oxidation, by Waltomyces lipofer. Cells were induced by incubation for 12 h in a medium containing 10 g l(-1) yeast extract, 10 g l(-1) peptone, 5 g l(-1) oleic acid, 1 g l(-1) glucose, and 0.05 % (w/v) Tween 80. The optimal reaction conditions for the production of γ-lactones by induced cells were pH 6.5, 35 °C, 200 rpm, 0.71 M Tris, 60 g l(-1) hydroxy fatty acid, and 20 g l(-1) cells. Non-induced cells produced 38 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 63 % (w/w) and a productivity of 1.3 g l(-1) h(-1) under the optimized conditions, whereas induced cells produced 51 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 85 % (w/w) and a productivity of 1.7 g l(-1) h(-1). The conversion yield and productivity of induced cells were 22 % and 1.3-fold higher, respectively, than those of non-induced cells. Induced cells also produced 28 g l(-1) γ-decalactone and 12 g l(-1) γ-butyrolactone from 60 g l(-1) 12-hydroxystearic acid and 60 g l(-1) 10-hydroxydecanoic acid, respectively, after 30 h. The concentration, conversion yield, and productivity of γ-dodecalactone and γ-decalactone are the highest reported thus far. This is the first study on the biotechnological production of γ-butyrolactone.

  17. Role of docosahexaenoic acid in modulating methylmercury-induced neurotoxicity.

    PubMed

    Kaur, Parvinder; Schulz, Kristina; Aschner, Michael; Syversen, Tore

    2007-12-01

    The effect of docosahexaenoic acid (DHA) in modulating methylmercury (MeHg)-induced neurotoxicity was investigated in C6-glial and B35-neuronal cell lines. Gas chromatography measurements indicated increased DHA content in both the cell lines after 24 h supplementation. Mitochondrial activity evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) reduction indicated that 10 microM MeHg treatment for 50 min led to a significant (p < 0.001) and similar decrease in MTT activity in both the cell lines. However, DHA pretreatment led to more pronounced depletion (p < 0.05) in the MTT activity in C6 cells as compared to B35 cells. The depletion of glutathione (GSH) content measured with the fluorescent indicator monochlorobimane was more apparent (p < 0.001) in C6 cells treated with DHA and MeHg. The amount of reactive oxygen species (ROS) detected with the fluorescent indicator -- chloromethyl derivative of dichloro dihydro fluorescein diacetate (CMH(2)DCFDA) -- indicated a fourfold increase in C6 cells (p < 0.001) as compared to twofold increase in B35 cells (p < 0.001) upon DHA and MeHg exposure. However, the cell-associated MeHg measurement using (14)C-labeled MeHg indicated a decrease (p < 0.05) in MeHg accumulation upon DHA exposure in both the cell lines. These findings provide experimental evidence that although pretreatment with DHA reduces cell-associated MeHg, it causes an increased ROS (p < 0.001) and GSH depletion (p < 0.05) in C6 cells.

  18. Neurotoxic effects induced by gammahydroxybutyric acid (GHB) in male rats.

    PubMed

    Pedraza, Carmen; García, Francisca Belén; Navarro, José Francisco

    2009-10-01

    Gammahydroxybutyric acid (GHB) is an endogenous constituent of the central nervous system that has acquired great social relevance for its use as a recreational 'club drug'. GHB, popularly known as 'liquid ecstasy', is addictive when used continuously. Although the symptoms associated with acute intoxication are well known, the effects of prolonged use remain uncertain. We examined in male rats the effect of repeated administration of GHB (10 and 100 mg/kg) on various parameters: neurological damage, working memory and spatial memory, using neurological tests, the Morris water maze and the hole-board test. The results showed that repeated administration of GHB, especially at doses of 10 mg/kg, causes neurological damage, affecting the 'grasping' reflex, as well as alteration in spatial and working memories. Stereological quantification showed that this drug produces a drastic neuronal loss in the CA1 hippocampal region and in the prefrontal cortex, two areas clearly involved in cognitive and neurological functions. No effects were noted after quantification in the periaqueductal grey matter (PAG), a region lacking GHB receptors. Moreover, NCS-382, a putative antagonist of GHB receptor, prevented both neurological damage and working- memory impairment induced by GHB. This suggests that the effects of administration of this compound may be mediated, at least partly, by specific receptors in the nervous system. The results show for the first time that the repeated administration of GHB, especially at very low doses, produces neurotoxic effects. This is very relevant because its abuse, especially by young persons, could produce considerable neurological alterations after prolonged abuse.

  19. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  20. Valproic acid induces the glutamate transporter excitatory amino acid transporter-3 in human oligodendroglioma cells.

    PubMed

    Bianchi, M G; Franchi-Gazzola, R; Reia, L; Allegri, M; Uggeri, J; Chiu, M; Sala, R; Bussolati, O

    2012-12-27

    Glutamate transport in early, undifferentiated oligodendrocytic precursors has not been characterized thus far. Here we show that human oligodendroglioma Hs683 cells are not endowed with EAAT-dependent anionic amino acid transport. However, in these cells, but not in U373 human glioblastoma cells, valproic acid (VPA), an inhibitor of histone deacetylases, markedly induces SLC1A1 mRNA, which encodes for the glutamate transporter EAAT3. The effect is detectable after 8h and persists up to 120h of treatment. EAAT3 protein increase becomes detectable after 24h of treatment and reaches its maximum after 72-96h, when it is eightfold more abundant than control. The initial influx of d-aspartate increases in parallel, exhibiting the typical features of an EAAT3-mediated process. SLC1A1 mRNA induction is associated with the increased expression of PDGFRA mRNA (+150%), a marker of early oligodendrocyte precursor cells, while the expression of GFAP, CNP and TUBB3 remains unchanged. Short term experiments have indicated that the VPA effect is shared by trichostatin A, another inhibitor of histone deacetylases. On the contrary, EAAT3 induction is neither prevented by inhibitors of mitogen-activated protein kinases nor triggered by a prolonged incubation with lithium, thus excluding a role for the GSK3β/β-catenin pathway. Thus, the VPA-dependent induction of the glutamate transporter EAAT3 in human oligodendroglioma cells likely occurs through an epigenetic mechanism and may represent an early indicator of commitment to oligodendrocytic differentiation.

  1. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    The influence of growth temperature and acidification of the culture medium up to pH 4.25 with acetic, citric, lactic and hydrochloric acids on the growth and subsequent acid resistance at pH 3.0 of Salmonella typhimurium CECT 443 was studied. The minimum pH value which allowed for S. typhimurium growth within the temperature range of 25-37 degrees C was 4.5 when the pH was reduced using citric and hydrochloric acids, and 5.4 and 6.4 when lactic acid and acetic acid were used, respectively. At high (45 degrees C) or low (10 degrees C) temperatures, the growth pH boundary was increased about 1 pH unit. The growth temperature markedly modified the acid resistance of the resulting cells. In all cases, D-values were lower for cells grown at 10 degrees C and significantly increased with increasing growth temperature up to 37 degrees C, at which D-values obtained were up to 10 times higher. Cells grown at 45 degrees C showed D-values similar to those found for cells grown at 25 degrees C. The growth of cells in acidified media, regardless of the pH value, caused an increase in their acid resistance at the four incubation temperatures, although the magnitude of the Acid Tolerance Response (ATR) observed depended on the growth temperature. Acid adapted cultures at 10 degrees C showed D-values ranging from 5.75 to 6.91 min, which turned out to be about 2 times higher than those corresponding to non-acid adapted cultures, while higher temperatures induced an increase in D-values of at least 3.5 times. Another finding was that, while at 10 and 45 degrees C no significant differences among the effect of the different acids tested in inducing an ATR were observed, when cells were grown at 25 and 37 degrees C citric acid generally turned out to be the acid which induced the strongest ATR. Results obtained in this study show that growth temperature is an important factor affecting S. typhimurium acid resistance and could contribute to find new strategies based on intelligent

  2. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    PubMed

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  3. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition.

    PubMed

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-04-08

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.

  4. Tranexamic acid induces kaolin intake stimulating a pathway involving tachykinin neurokinin 1 receptors in rats.

    PubMed

    Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Kuwagata, Makiko; Orito, Kensuke

    2014-01-15

    Tranexamic acid suppresses post-partum haemorrhage and idiopathic menorrhagia through its anti-fibrinolytic action. Although it is clinically useful, it is associated with high risks of side effects such as emesis. Understanding the mechanisms underlying tranexamic acid-induced emesis is very important to explore appropriate anti-emetic drugs for the prevention and/or suppression of emesis. In this study, we examined the receptors involved in tranexamic acid-induced kaolin intake in rats, which reflects the drug's clinical emetogenic potential in humans. Further, we examined the brain regions activated by administration of tranexamic acid and elucidated pivotal pathways of tranexamic acid-induced kaolin intake. We examined the effects of ondansetron, a 5-hydroxytryptamine 3 receptor antagonist, domperidone, a dopamine 2 receptor antagonist, and aprepitant, a tachykinin neurokinin 1 (NK1) receptor antagonist, on tranexamic acid-induced kaolin intake in rats. Then, we determined the brain regions that showed increased numbers of c-Fos immunoreactive cells. Finally, we examined the effects of an antagonist(s) that reduced tranexamic acid-induced kaolin intake on the increase in c-Fos immunoreactive cells. Aprepitant significantly decreased tranexamic acid-induced kaolin intake. However, neither ondansetron nor domperidone decreased kaolin intake. Tranexamic acid significantly increased c-Fos immunoreactive cells by approximately 5.5-fold and 22-fold in the area postrema and nucleus of solitary tract, respectively. Aprepitant decreased the number of c-Fos immunoreactive cells in both areas. Tranexamic acid induced kaolin intake possibly via stimulation of tachykinin NK1 receptors in rats. The tachykinin NK1 receptor could be targeted to prevent and/or suppress emesis in patients receiving tranexamic acid.

  5. Hepatic mitochondrial dysfunction induced by fatty acids and ethanol.

    PubMed

    Gyamfi, Daniel; Everitt, Hannah E; Tewfik, Ihab; Clemens, Dahn L; Patel, Vinood B

    2012-12-01

    Understanding the key aspects of the pathogenesis of alcoholic fatty liver disease particularly alterations to mitochondrial function remains to be resolved. The role of fatty acids in this regard requires further investigation due to their involvement in fatty liver disease and obesity. This study aimed to characterize the early effects of saturated and unsaturated fatty acids alone on liver mitochondrial function and during concomitant ethanol exposure using isolated liver mitochondria and VA-13 cells (Hep G2 cells that efficiently express alcohol dehydrogenase). Liver mitochondria or VA-13 cells were treated with increasing concentrations of palmitic or arachidonic acid (1 to 160 μM) for 24 h with or without 100 mM ethanol. The results showed that in isolated liver mitochondria both palmitic and arachidonic acids significantly reduced state 3 respiration in a concentration-dependent manner (P<0.001), implicating their ionophoric activities. Increased ROS production occurred in a dose-dependent manner especially in the presence of rotenone (complex I inhibitor), which was significantly more prominent in arachidonic acid at 80 μM (+970%, P<0.001) than palmitic acid (+40%, P<0.01). In VA-13 cells, ethanol alone and both fatty acids (40 μM) were able to decrease the mitochondrial membrane potential and cellular ATP levels and increase lipid formation. ROS production was significantly increased with arachidonic acid (+110%, P<0.001) exhibiting a greater effect than palmitic acid (+39%, P<0.05). While in the presence of ethanol, the drop in the mitochondrial membrane potential, cellular ATP levels, and increased lipid formation were further enhanced by both fatty acids, but with greater effect in the case of arachidonic acid, which also correlated with significant cytotoxicity (P<0.001). This study confirms the ability of fatty acids to promote mitochondrial injury in the development of alcoholic fatty liver disease.

  6. Ursolic acid induces neural regeneration after sciatic nerve injury

    PubMed Central

    Liu, Biao; Liu, Yan; Yang, Guang; Xu, Zemin; Chen, Jiajun

    2013-01-01

    In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tube-rosity. The successfully generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1–4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L4–6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury. PMID:25206561

  7. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  8. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  9. Galantamine potentiates the protective effect of rofecoxib and caffeic acid against intrahippocampal Kainic acid-induced cognitive dysfunction in rat.

    PubMed

    Kumar, Anil; Prakash, Atish; Pahwa, Deeksha

    2011-05-30

    Role of neuroinflammatory mediators particularly cyclooxygenase (COX), lipoxygenase (LOX), have been well suggested in the pathophysiology of neurodegenerative disorders. Rofecoxib is a selective cyclooxygenase 2 enzymes belongs to non-steroidal anti-inflammatory drug, commonly called as coxibs. Whereas, caffeic acid (3,4-dihydroxycinnamic acid) is one of the natural phenolic compounds and reported to inhibit 5-lipoxygenase (5-LOX) activity as one of mechanisms. Present study has been designed to investigate the effects of rofecoxib, caffeic acid and its potentiation by galantamine against intrahippocampal kainic acid-induced cognitive impairment, oxidative damage and mitochondrial respiratory enzyme alterations in rats. Kainic acid (KA) was administrated in the hippocampus region of rat brain. Various behavioral (locomotor activity and memory performances were assessed by using actophotometer and Morris water maze respectively) followed by oxidative stress, mitochondrial enzyme complex were assessed. Intrahippocampal administration of KA significantly impaired locomotor activity, memory performance, mitochondrial enzyme complexes and caused oxidative stress as compared to sham treatment. Rofecoxib (5 and 10mg/kg), caffeic acid (5 and 10mg/kg), Gal (2.5 and 5mg/kg) treatment for 14 days significantly improved locomotor activity, memory retention and oxidative defense (as evidenced by decrease lipid peroxidation, nitrite, increased superoxide dismutase activity and redox ratio) in hippocampus. Besides, alterations in the levels of mitochondrial enzymes and acetylcholine esterase enzyme were significantly restored by rofecoxib and caffeic acid as compared to control. Further, combination of rofecoxib (5mg/kg) with caffeic acid (5mg/kg) and lower dose of gal (2.5mg/kg) with rofecoxib (5mg/kg) treatments significantly potentiated their protective effect which was significant as compared to their effect per se. The results of the present study suggest that galantamine

  10. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  11. Evidence for a significant role of gastrin in cysteamine-induced hypersecretion of gastric acid.

    PubMed

    Shiratori, K; Shimizu, K; Ikeda, M; Watanabe, S; Hayashi, N

    1997-01-01

    Cysteamine has been known to stimulate gastric acid secretion and to induce duodenal ulcers in rats. We investigated the role of gastrin in cysteamine-induced acid hypersecretion in the perfused rat stomach. Intravenous infusion of cysteamine (75 mg/kg/h) resulted in a significant increase in acid secretion, which was accompanied by a marked increase in the plasma gastrin concentration. The cysteamine-induced increase in gastric acid secretion was completely blocked by i.v. injection of anti-gastrin rabbit serum (500 microliters). In addition, i.v. infusion of a CCK-B/gastrin receptor antagonist (L-365,260) (1 mg/kg/h) also suppressed the cysteamine-induced increase in acid secretion. Atropine significantly, but only partially, inhibited the increase. The elevated plasma gastrin levels induced by cysteamine were unaffected by atropine and L-365,260. In conclusion, cysteamine-induced acid hypersecretion is mediated mainly by cysteamine-induced gastrin release and partially by cholinergic factors. Furthermore, gastrin release caused by cysteamine appears to be independent of cholinergic tone.

  12. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    PubMed

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.

  13. Sasa quelpaertensis and p-coumaric acid attenuate oleic acid-induced lipid accumulation in HepG2 cells.

    PubMed

    Kim, Jeong-Hwan; Kang, Seong-Il; Shin, Hye-Sun; Yoon, Seon-A; Kang, Seung-Woo; Ko, Hee-Chul; Kim, Se-Jae

    2013-01-01

    In this study, we examined the effects of Jeju dwarf bamboo (Sasa quelpaertensis Nakai) extract (JBE) and p-coumaric acid (CA) on oleic acid (OA)-induced lipid accumulation in HepG2 cells. JBE and CA increased the phosphorylation of AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC) and the expression of carnitine palmitoyl transferase 1a (CPT1a) in OA-treated HepG2 cells. Additionally, these compounds decreased sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and OA-induced lipid accumulation, suggesting that JBE and CA modulate lipid metabolism in HepG2 cells via the AMPK activation pathway.

  14. Chemical processes induced by OH attack on nucleic acids

    NASA Astrophysics Data System (ADS)

    Kuwabara, Mikinori

    Recent studies concerning the chemical processes in nucleic acids starting with OH attack to produce free radicals and ending with the formation of stable products were reviewed. Using nucleosides, nucleotides and homopolynucleotides as model compounds, and DNA itself, free radicals produced by OH attack on nucleic acids have been mainly studied by a method combining ESR, spin trapping and high-performance liquid chromatography. For identification of final products in both base and sugar moieties of nucleic acids, mass and NMR spectroscopies combined with gas chromatography or high-performance liquid chromatography are usually employed. Kinetic measurements of structural alterations in the polynucleotides and DNA after OH attack have been made by a method combining electron-pulse irradiation and laser-light scattering. From these studies, the chemical reaction processes from the generation of free radicals in nucleic acids by OH attack, through the formation of unstable intermediates, to the formation of final products can be described.

  15. Ellagic acid ameliorates isoproterenol induced oxidative stress: Evidence from electrocardiological, biochemical and histological study.

    PubMed

    Kannan, M Mari; Quine, S Darlin

    2011-05-20

    The present study was designed to evaluate the cardioprotective effects of ellagic acid against isoproterenol induced myocardial infarction in rats by studying electrocardiography, blood pressure, cardiac markers, lipid peroxidation, antioxidant defense system and histological changes. Male Wistar rats were treated orally with ellagic acid (7.5 and 15mg/kg) daily for a period of 10 days. After 10 days of pretreatment, isoproterenol (100mg/kg) was injected subcutaneously to rats at an interval of 24h for 2 days to induce myocardial infarction. Isoproterenol administered rats showed significant changes in the electrocardiogram pattern, arterial pressure, and heart rate. Isoproterenol-induced rats also showed significant (P<0.05) increase in the levels of serum troponin-I, creatine kinase, lactate dehydrogenase, C-reactive protein, plasma homocysteine, heart tissue thiobarbituric acid reactive substances and lipid hydro peroxides. The activities/levels of antioxidant system were decreased in isoproterenol-induced rats. The histopathological findings of the myocardial tissue evidenced myocardial damage in isoproterenol induced rats. The oral pretreatment of ellagic acid restored the pathological electrocardiographic patterns, regulated the arterial blood pressures and heart rate in the isoproterenol induced myocardial infarcted rats. The ellagic acid pretreatment significantly reduced the levels of biochemical markers, lipid peroxidation and significantly increased the activities/levels of the antioxidant system in the isoproterenol induced rats. An inhibited myocardial necrosis was evidenced by the histopathological findings in ellagic acid pretreated isoproterenol induced rats. Our study shows that oral pretreatment of ellagic acid prevents isoproterenol induced oxidative stress in myocardial infarction.

  16. Protective effect of phytic acid hydrolysis products on iron-induced lipid peroxidation of liposomal membranes.

    PubMed

    Miyamoto, S; Kuwata, G; Imai, M; Nagao, A; Terao, J

    2000-12-01

    Beneficial effects of dietary phytic acid (myo-inositol hexaphosphate; IP6) have often been explained by its strong iron ion-chelating ability, which possibly suppresses iron ion-induced oxidative damage in the gastrointestinal tract. Because phytic acid is hydrolyzed during digestion, this work aimed to know whether its hydrolysis products (IP2, IP3, IP4, and IP5) could still prevent iron ion-induced lipid peroxidation. Studies using liposomal membranes demonstrated that hydrolysis products containing three or more phosphate groups are able to inhibit iron ion-induced lipid peroxidation although their effectiveness decreased with dephosphorylation. Similarly, they also prevented iron ion-induced decomposition of phosphatidylcholine hydroperoxide. These results demonstrate that intermediate products of phytic acid hydrolysis still possess iron ion-chelating ability, and thus they can probably prevent iron ion-induced lipid peroxidation in biological systems.

  17. Effects of sodium bicarbonate on butyric acid-induced epithelial cell damage in vitro.

    PubMed

    Takigawa, Satoko; Sugano, Naoyuki; Ochiai, Kuniyasu; Arai, Noriyuki; Ota, Noriko; Ito, Koichi

    2008-12-01

    Butyric acid is detected in periodontal pockets and is thought to be involved in the initiation and progression of periodontal disease. We examined the effects of sodium bicarbonate on the butyric acid-induced epithelial cell damage. The human gingival carcinoma cell line Ca9-22 was cultured in medium that contained butyric acid with or without sodium bicarbonate. The viability of cells treated with sodium bicarbonate was significantly higher than that of cells treated with butyric acid alone. The effects of butyric acid on ICAM-1 expression were significantly improved by sodium bicarbonate. Within the limitations of this in vitro study, sodium bicarbonate was indicated to be a useful therapeutic agent to reduce the butyric acid-induced periodontal tissue damage.

  18. Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice.

    PubMed

    Ince, Sinan; Keles, Hikmet; Erdogan, Metin; Hazman, Omer; Kucukkurt, Ismail

    2012-07-01

    The protective effect of boric acid against liver damage was evaluated by its attenuation of carbon tetrachloride (CCl(4))-induced hepatotoxicity in mice. Male albino mice were treated intraperitoneally (i.p.) with boric acid (50, 100, and 200 mg/kg) or silymarin daily for 7 days and received 0.2% CCl(4) in olive oil (10 mL/kg, i.p.) on day 7. Results showed that administration of boric acid significantly reduced the elevation in serum levels of aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase, and the level of malondialdehyde in the liver that were induced by CCl(4) in mice. Boric acid treatment significantly increased glutathione content, as well as the activities of superoxide dismutase and catalase in the liver. Boric acid treatment improved the catalytic activity of cytochrome P450 2E1 and maintained activation of nuclear factor kappa light-chain enhancer of activated B cell gene expression, with no effect on inducible nitric oxide synthase gene expression in the livers of mice. Histopathologically, clear decreases in the severity of CCl(4)-induced lesions were observed, particularly at high boric acid concentrations. Results suggest that boric acid exhibits potent hepatoprotective effects on CCl(4)-induced liver damage in mice, likely the result of both the increase in antioxidant-defense system activity and the inhibition of lipid peroxidation.

  19. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  20. Sweating treatment enhances citrus fruit disease resistance by inducing the accumulation of amino acids and salicylic acid-induced resistance pathway.

    PubMed

    Yun, Ze; Zhu, Feng; Liu, Ping; Zeng, Yunliu; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2015-04-20

    To clarify the mechanism of fruit disease resistance activated by sweating treatment, 'Guoqing NO.1' Satsuma mandarin (Citrus unshiu Marc.) fruits were treated by sweating, which is a traditional prestorage treatment in China. Subsequently, we performed inoculation and physiological characterization, two-dimensional gel electrophoresis (2-DE) proteomics analysis and metabonomics analysis based on gas chromatography coupled to mass spectrometry (GC-MS) and high-performance liquid chromatography/electrospray ionization-time of flight-mass spectrometry (HPLC-qTOF-MS). The results showed that sweating treatment significantly inhibited pathogen infection without negatively affecting the fruit commercial quality. In addition, sweating treatment rapidly promoted the accumulation of amino acids (such as proline and serine). Meanwhile, hydrogen peroxide (H2 O2 ) and salicylic acid (SA) were significantly accumulated in the sweating-treated fruit. Thereafter, some stress-response proteins and metabolites [such as ascorbate peroxidase (APX), β-1,3-glucanase, vanillic acid and rutin] which can be induced by SA were also significantly increased in the sweating-treated fruit. Taken together, the disease resistance induced by sweating treatment might be attributed to: (1) the induction of the accumulation of amino acids; and (2) the accumulation of SA and subsequent activation of SA-induced resistance pathway, which can induce the stress-response proteins and metabolites that can directly inhibit pathogen development.

  1. Biosynthesis of terephthalic acid, isophthalic acid and their derivatives from the corresponding dinitriles by tetrachloroterephthalonitrile-induced Rhodococcus sp.

    PubMed

    He, Yu-Cai; Wu, Ya-Dong; Pan, Xue-He; Ma, Cui-Luan

    2014-02-01

    The nitrilase from Rhodococcus sp. CCZU10-1 catalyses the hydrolysis of dinitriles to acids without the formation of amides and cyanocarboxylic acids. It was induced by benzonitrile and its analogues (tetrachloroterephthalonitrile > ε-caprolactam > benzonitrile > phenylacetonitrile), and had activity towards aromatic nitriles (terephthalonitrile > tetrachloroterephthalonitrile > isophthalonitrile > tetrachloroisophthalonitrile > tetrafluoroterephthalonitrile > benzonitrile). After the optimization, the highest nitrilase induction [311 U/(g DCW)] was achieved with tetrachloroterephthalonitrile (1 mM) in the medium after 24 h at 30 °C after optimum enzyme activity was at pH 6.8 and at 30 °C. Efficient biocatalyst recycling was achieved by cell immobilization in calcium alginate, with a product-to-biocatalyst ratios of 776 g terephthalic acid/g DCW and 630 g isophthalic acid/g DCW.

  2. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  3. New insights into structural alteration of enamel apatite induced by citric acid and sodium fluoride solutions.

    PubMed

    Wang, Xiaojie; Klocke, Arndt; Mihailova, Boriana; Tosheva, Lubomira; Bismayer, Ulrich

    2008-07-24

    Attenuated total reflectance infrared spectroscopy and complementary scanning electron microscopy were applied to analyze the surface structure of enamel apatite exposed to citric acid and to investigate the protective potential of fluorine-containing reagents against citric acid-induced erosion. Enamel and, for comparison, geological hydroxylapatite samples were treated with aqueous solutions of citric acid and sodium fluoride of different concentrations, ranging from 0.01 to 0.5 mol/L for citric acid solutions and from 0.5 to 2.0% for fluoride solutions. The two solutions were applied either simultaneously or consecutively. The citric acid-induced structural modification of apatite increases with the increase in the citric acid concentration and the number of treatments. The application of sodium fluoride alone does not suppress the atomic level changes in apatite exposed to acidic agents. The addition of sodium fluoride to citric acid solutions leads to formation of surface CaF2 and considerably reduces the changes in the apatite P-O-Ca framework. However, the CaF2 globules deposited on the enamel surface seem to be insufficient to prevent the alteration of the apatite structure upon further exposure to acidic agents. No evidence for fluorine-induced recovery of the apatite structure was found.

  4. The acid-induced folded state of Sac7d is the native state.

    PubMed Central

    Bedell, J. L.; McCrary, B. S.; Edmondson, S. P.; Shriver, J. W.

    2000-01-01

    Sac7d unfolds at low pH in the absence of salt, with the greatest extent of unfolding obtained at pH 2. We have previously shown that the acid unfolded protein is induced to refold by decreasing the pH to 0 or by addition of salt (McCrary BS, Bedell J. Edmondson SP, Shriver JW, 1998, J Mol Biol 276:203-224). Both near-ultraviolet circular dichroism spectra and ANS fluorescence enhancements indicate that the acid- and salt-induced folded states have a native fold and are not molten globular. 1H,15N heteronuclear single quantum coherence NMR spectra confirm that the native, acid-, and salt-induced folded states are essentially identical. The most significant differences in amide 1H and 15N chemical shifts are attributed to hydrogen bonding to titrating carboxyl side chains and through-bond inductive effects. The 1H NMR chemical shifts of protons affected by ring currents in the hydrophobic core of the acid- and salt-induced folded states are identical to those observed in the native. The radius of gyration of the acid-induced folded state at pH 0 is shown to be identical to that of the native state at pH 7 by small angle X-ray scattering. We conclude that acid-induced collapse of Sac7d does not lead to a molten globule but proceeds directly to the native state. The folding of Sac7d as a function of pH and anion concentration is summarized with a phase diagram that is similar to those observed for other proteins that undergo acid-induced folding except that the A-state is encompassed by the native state. These results demonstrate that formation of a molten globule is not a general property of proteins that are refolded by acid. PMID:11106160

  5. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids

    PubMed Central

    Ringel, Amit; Majchrzak-Hong, Sharon F; Yang, Jun; Blanchard, Helene; Zamora, Daisy; Loewke, James D; Rapoport, Stanley I; Hibbeln, Joseph R; Davis, John M; Hammock, Bruce D; Taha, Ameer Y

    2016-01-01

    Background Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. Results Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. Conclusions The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes. PMID:27030719

  6. Relationships between fatty acids and psychophysiological parameters in depressive inpatients under experimentally induced stress.

    PubMed

    Irmisch, G; Schläfke, D; Richter, J

    2006-02-01

    Fatty acids can influence important cellular and hormonal processes in the human body. Non-adequate contents of fatty acids, e.g., in blood, can cause and/or result in various diseases. In depressive patients, changes in fatty acid concentrations were found (deficits in omega3-fatty acids, in particular). This paper poses the question whether there are any relations between psychophysiological parameters and changes in fatty acid compositions. The concentration of fatty acids in serum of 118 psychiatric inpatients measured directly before and after experimentally induced stress of about 1h were analysed in relation to psychophysiological parameters continuously registered during the experimental sessions at admission, discharge and at 3 months follow-up. Systolic and diastolic blood pressure, finger pulse amplitude, forehead temperature (FD) and the EMG activity of the musculus zygomaticus consistently correlated with concentrations of single unsaturated oleic (18:1n-9) and erucic acid (22:1) and saturated myristic (14:0) and lauric acid (12:0). Negative relations were found between FD and the concentration of arachidonic acid (20:4n-6) as well as of palmitoleic acid (16:1). Furthermore, the higher the concentration of the erucic acid at discharge the higher the depression score as assessed by the Beck depression inventory (BDI). High concentrations of palmitoleic acid and lauric acid were related to a low level of depression (BDI and Hamilton scores). The implications of these findings for add-on treatment regimens in depression are discussed.

  7. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    PubMed

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness.

  8. Properties of an Inducible C4-Dicarboxylic Acid Transport System in Bacillus subtilis

    PubMed Central

    Ghei, Om. K.; Kay, William W.

    1973-01-01

    The transport of the tricarboxylic acid cycle C4-dicarboxylic acids was studied in both the wild-type strain and tricarboxylic acid cycle mutants of Bacillus subtilis. Active transport of malate, fumarate, and succinate was found to be inducible by these dicarboxylic acids or by precursors to them, whereas glucose or closely related metabolites catabolite-repressed their uptake. l-Malate was found to be the best dicarboxylic acid transport inducer in succinic dehydrogenase, fumarase, and malic dehydrogenase mutants. Succinate and fumarate are accumulated over 100-fold in succinic dehydrogenase and fumarase mutants, respectively, whereas mutants lacking malate dehydrogenase were unable to accumulate significant quantities of the C4-dicarboxylic acids. The stereospecificity of this transport system was studied from a comparison of the rates of competitive inhibition of both succinate uptake and efflux in a succinate dehydrogenase mutant by utilizing thirty dicarboxylic acid analogues. The system was specific for the C4-dicarboxylic acids of the tricarboxylic acid cycle, neither citrate nor α-ketoglutarate were effective competitive inhibitors. Of a wide variety of metabolic inhibitors tested, inhibiors of oxidative phosphorylation and of the formation of proton gradients were the most potent inhibitors of transport. From the kinetics of dicarboxylic acid transport (Km approximately 10−4 M for succinate or fumarate in succinic acid dehydrogenase and fumarase mutants) and from the competitive inhibition studies, it was concluded that an inducible dicarboxylic acid transport system mediates the entry of malate, fumarate, or succinate into B. subtilis. Mutants devoid of α-ketoglutarate dehydrogenase were shown to accumulate both α-ketoglutarate and glutamate, and these metabolites subsequently inhibited the transport of all the C4-dicarboxylic acids, suggesting a regulatory role. Images PMID:4633350

  9. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  10. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells.

    PubMed

    Hopkins, Mandi M; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E

    2016-01-26

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  11. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    SciTech Connect

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  12. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  13. [Pseudothrombocytopenia induced by ethylenediaminetetraacetic acid in burned patients].

    PubMed

    Carrillo-Esper, Raúl; Contreras-Domínguez, Vladimir

    2004-01-01

    The EDTA-dependent pseudothrombocytopenia is a false decrease in the number of platelets below the normal value when analyzed with automated devices. There is an incidence of 0.09 to 0.21% in hospitalized patients. Pseudothrombocytopenia is secondary to platelet clumping induced by antibodies in the presence of EDTA and has been associated with sepsis, cancer, cardiac surgery and drugs. We report the first case of pseudothrombocytopenia induced by EDTA in a burn patient.

  14. [Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures].

    PubMed

    Liu, Liancheng; Wang, Cong; Dong, Juan'e; Su, Hui; Zhuo, Zequn; Xue, Yaxin

    2013-07-01

    We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.

  15. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts.

  16. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production.

    PubMed

    Krzemińska, Izabela; Oleszek, Marta

    2016-10-01

    This study evaluates the effect of different concentrations of glucose supplementation on growth, lipid accumulation, and the fatty acid profile in the Auxenochlorella protothecoides. Addition of glucose promoted the growth rate and decreased the chlorophyll content. Compared with photoautotrophic cells, an increase in the lipid content was observed in mixotrophic cells. The glucose addition induced changes in the fatty acid profile. Higher content of saturated fatty acids was found in the case of cells growing in the glucose-free medium. Oleic acid was the predominant component in mixotrophic cells supplemented with 5gL(-1) glucose, while linoleic acids dominated in cultures supplemented with both 1 and 3gL(-1) glucose. The use of glucose was associated with decreased levels of linolenic acid and PUFA. The changes in the fatty acid profile in mixotrophic cells are favourable for biodiesel production.

  17. Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells.

    PubMed

    Huang, Shang-Ming; Chuang, Hong-Chih; Wu, Chi-Hao; Yen, Gow-Chin

    2008-08-01

    In the process of glycation, methylglyoxal is a reactive dicarbonyl compound physiologically generated as an intermediate of glycolysis, and is found in high levels in blood or tissue of diabetic models. Biological glycation has been commonly implicated in the development of diabetic microvascular complications of neuropathy. Increasing evidence suggests that neuronal cell cycle regulatory failure followed by apoptosis is an important mechanism in the development of diabetic neuropathy complication. Naturally occurring antioxidants, especially phenolic acids have been recommended as the major bioactive compounds to prevent chronic diseases and promote health benefits. The objective of this study was to investigate the inhibitory abilities of phenolic acids (chlorogenic acid, syringic acid and vanillic acid) on methylglyoxal-induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis in the progression of diabetic neuropathy. The data indicated that methylglyoxal induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis via alternation of mitochondria membrane potential and Bax/Bcl-2 ratio, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase. Furthermore, the results demonstrated that activation of mitogen-activated protein kinase signal pathways (JNK and p38) participated in the methylglyoxal-induced Neuro-2A cell apoptosis process. Treatment of Neuro-2A cells with phenolic acids markedly suppresses cell apoptosis induced by methylglyoxal, suggesting that phenolic acids possess cytoprotective ability in the prevention of diabetic neuropathy complication.

  18. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  19. Chronic exercise dampens hippocampal glutamate overflow induced by kainic acid in rats.

    PubMed

    Holmes, Philip V; Reiss, Jenny I; Murray, Patrick S; Dishman, Rod K; Spradley, Jessica M

    2015-05-01

    Our laboratory has previously reported that chronic, voluntary exercise diminishes seizure-related behaviors induced by convulsant doses of kainic acid. The present experiments tested the hypothesis that exercise exerts this protective effect through a mechanism involving suppression of glutamate release in the hippocampal formation. Following three weeks of voluntary wheel running or sedentary conditions, rats were injected with 10 mg/kg of kainic acid, and hippocampal glutamate was measured in real time using a telemetric, in vivo voltammetry system. A separate experiment measured electroencephalographic (EEG) activity following kainic acid treatment. Results of the voltammetry experiment revealed that the rise in hippocampal glutamate induced by kainic acid is attenuated in exercising rats compared to sedentary controls, indicating that the exercise-induced protection against seizures involves regulation of hippocampal glutamate release. The findings reveal the potential benefit of regular exercise in the treatment and prevention of seizure disorders and suggest a possible neurobiological mechanism underlying this effect.

  20. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro.

    PubMed

    Jiang, Xu-Shun; Chen, Xue-Mei; Wan, Jiang-Min; Gui, Hai-Bo; Ruan, Xiong-Zhong; Du, Xiao-Gang

    2017-02-22

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.

  1. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro

    PubMed Central

    Jiang, Xu-shun; Chen, Xue-mei; Wan, Jiang-min; Gui, Hai-bo; Ruan, Xiong-zhong; Du, Xiao-gang

    2017-01-01

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis. PMID:28225005

  2. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  3. Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats.

    PubMed

    Shin, Dong-Su; Kim, Kung Wook; Chung, Hae Young; Yoon, Sik; Moon, Jeon-Ok

    2013-05-01

    Sinapic acid is a member of the phenylpropanoid family and is abundant in cereals, nuts, oil seeds, and berries. It exhibits a wide range of pharmacological properties. In this study, we investigated the hepatoprotective and antifibrotic effects of sinapic acid on dimethylnitrosamine (DMN)-induced chronic liver injury in rats. Sinapic acid remarkably prevented DMN-induced loss of body weight. This was accompanied by a significant increase in levels of serum alanine transaminase, aspartate transaminase, and liver malondialdehyde content. Furthermore, sinapic acid reduced hepatic hydroxyproline content, which correlated with a reduction in the expression of type I collagen mRNA and histological analysis of collagen in liver tissue. Additionally, the expression of hepatic fibrosis-related factors such as α-smooth muscle actin and transforming growth factor-β1 (TGF-β1), were reduced in rats treated with sinapic acid. Sinapic acid exhibited strong scavenging activity. In conclusion, we find that sinapic acid exhibits hepatoprotective and antifibrotic effects against DMN-induced liver injury, most likely due to its antioxidant activities of scavenging radicals, its capacity to suppress TGF-β1 and its ability to attenuate activation of hepatic stellate cells. This suggests that sinapic acid is a potentially useful agent for the protection against liver fibrosis and cirrhosis.

  4. Endothelium-dependent contraction of rat thoracic aorta induced by gallic acid.

    PubMed

    Sanae, Fujiko; Miyaichi, Yukinori; Hayashi, Hisao

    2003-02-01

    The vascular effect of a component of hydrolysable tannins, gallic acid, was examined in isolated rat thoracic aorta. Gallic acid exerted a contractile effect on the phenylephrine- or prostaglandin F(2/alpha)-precontracted endothelium-intact arteries. In endothelium-denuded arteries, the contractile response to-gallic acid was absent. Pretreatment with N(G)-nitro-L-arginine methyl ester (30 microM) abolished the gallic acid-induced contraction. Pretreatment with indomethacin (10 microM) or BQ610 (100 nM) had no observed effect. Pretreatment with gallic acid (1-10 microM) significantly attenuated the relaxation induced by acetylcholine, and that with 10 microM gallic acid also reduced the potency of sodium nitroprusside in the relaxation, without a reduction in efficacy, in endothelium-denuded arteries. These findings indicate that gallic acid induced endothelium-dependent contraction and strongly inhibited the endothelium-dependent relaxation rather than the endothelium-independent relaxation, probably through inhibition of endothelial nitric oxide (NO) production. Since NO plays an important role in vasodilative regulation and inflammatory disorders, these findings may also indicate that gallic acid interferes with the inflammatory responses.

  5. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  6. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging

    PubMed Central

    Chen, Chunye

    2016-01-01

    Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas. PMID:27069529

  7. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    PubMed

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats.

  8. The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapy-induced toxicity.

    PubMed

    Akyol, Sumeyya; Ginis, Zeynep; Armutcu, Ferah; Ozturk, Gulfer; Yigitoglu, M Ramazan; Akyol, Omer

    2012-07-01

    Protection of the patients against the side effects of chemotherapy and radiotherapy regimens has attracted increasing interest of clinicians and practitioners. Caffeic acid phenethyl ester (CAPE), which is extracted from the propolis of honeybee hives as an active component, specifically inhibits nuclear factor κB at micromolar concentrations and show ability to stop 5-lipoxygenase-catalysed oxygenation of linoleic acid and arachidonic acid. CAPE has antiinflammatory, antiproliferative, antioxidant, cytostatic, antiviral, antibacterial, antifungal and antineoplastic properties. The purpose of this review is to summarize in vivo and in vitro usage of CAPE to prevent the chemotherapy-induced and radiotherapy-induced damages and side effects in experimental animals and to develop a new approach for the potential usage of CAPE in clinical trial as a protective agent during chemotherapy and radiotherapy regimens.

  9. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance.

    PubMed

    Talbot, Nicola A; Wheeler-Jones, Caroline P; Cleasby, Mark E

    2014-08-05

    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.

  10. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    PubMed

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  11. Folic acid improve developmental toxicity induced by aluminum sulphates.

    PubMed

    Yassa, Heba A; George, Safaa M; Mohamed, Heba K

    2017-03-01

    Aluminum sulphate has a significant toxic effects for humans. Aluminum is one of the most abundant metal on the Earth crust. The purpose of this study is to evaluate the effects of short term exposure to aluminum sulphate on the bone development of the fetuses in rats, and if folic acid has a protective role upon that effects or not. Forty female rats were used, ten per group, GI served as negative control (receive nothing except normal feeding and water), GII served as positive control (receive water by gastric gavage), GIII treated with aluminum sulphate orally by gastric gavage and GIV treated with aluminum sulphate with folic acid. Mating occurred and known by presence of vaginal plug in the female rats. Rats were killed on day 18 of gestation.

  12. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C.

    PubMed

    Ahlemeyer, B; Selke, D; Schaper, C; Klumpp, S; Krieglstein, J

    2001-10-26

    The standardized extract from Ginkgo biloba (EGb 761) is used for the treatment of dementia. Because of allergenic and genotoxic effects, ginkgolic acids are restricted in EGb 761 to 5 ppm. The question arises whether ginkgolic acids also have neurotoxic effects. In the present study, ginkgolic acids caused death of cultured chick embryonic neurons in a concentration-dependent manner, in the presence and in the absence of serum. Ginkgolic acids-induced death showed features of apoptosis as we observed chromatin condensation, shrinkage of the nucleus and reduction of the damage by the protein synthesis inhibitor cycloheximide, demonstrating an active type of cell death. However, DNA fragmentation detected by the terminal-transferase-mediated ddUTP-digoxigenin nick-end labeling (TUNEL) assay and caspase-3 activation, which are also considered as hallmarks of apoptosis, were not seen after treatment with 150 microM ginkgolic acids in serum-free medium, a dose which increased the percentage of neurons with chromatin condensation and shrunken nuclei to 88% compared with 25% in serum-deprived, vehicle-treated controls. This suggests that ginkgolic acid-induced death showed signs of apoptosis as well as of necrosis. Ginkgolic acids specifically increased the activity of protein phosphatase type-2C, whereas other protein phosphatases such as protein phosphatases 1A, 2A and 2B, tyrosine phosphatase, and unspecific acid- and alkaline phosphatases were inhibited or remained unchanged, suggesting protein phosphatase 2C to play a role in the neurotoxic effect mediated by ginkgolic acids.

  13. Acidic pH environment induces autophagy in osteoblasts

    PubMed Central

    Zhang, Zhichao; Lai, Qingguo; Li, Yanan; Xu, Chao; Tang, Xiaopeng; Ci, Jiangbo; Sun, Shaolong; Xu, Bingbing; Li, Yan

    2017-01-01

    Osteoblasts (OBs) play an important role in bone fracture healing, yet the extreme adverse microenvironment in fracture sites has a negative impact on the survival of OBs. Therefore, it is important to study how OBs behave in the complex fracture microenvironment. Studies have shown that autophagy plays a pivotal role in maintaining cellular homeostasis and defending the cell against adverse microenvironments. In this study we found the induction of autophagy in OBs at femoral bone fracture sites, which may be a result of ischemia, oxidative stress and hypoxia within the local area. At fracture sites a low pH environment also developed. Until now it has been unclear whether the induction of autophagy in osteoblasts is triggered by the acidic pH environment. Therefore, we cultured OBs in vitro in media of different pH values, and found both autophagy and apoptosis increased in OBs in acidic conditions. However, when autophagy inhibitor chloroquine (CQ) was used, apoptosis increased significantly compared with that without CQ. Thus indicating that inhibition of autophagy may promote apoptosis in OBs in an acidic environment, which may provide a new therapeutic strategy to decrease cell apoptosis in OBs through the use of drugs that modulate the autophagic state. PMID:28382973

  14. Reversible phenotypic modulation induced by deprivation of exogenous essential fatty acids.

    PubMed

    Laposata, M; Minda, M; Capriotti, A M; Hartman, E J; Furth, E E; Iozzo, R V

    1988-12-01

    Essential fatty acid deficiency, produced by deprivation of omega-6 and omega-3 fatty acids, is a condition characterized by renal disease, dermatitis, and infertility. Although many of the biochemical aspects of this disorder have been investigated, little is known about the ultrastructural changes induced by essential fatty acid deficiency. Using a unique fatty acid-deficient cell line (EFD-1), which demonstrates the in vivo fatty acid changes of essential fatty acid deficiency, and the prostaglandin E2-producing mouse fibrosarcoma line from which it was derived (HSDM1C1), we correlated ultrastructural and biochemical changes induced by prolonged deprivation of all exogenous lipids and subsequent repletion of selected essential fatty acids. We found that in cells deprived of all exogenous lipids, there was dilation of rough endoplasmic reticulum and an associated defect in protein secretion; these changes were specifically reversed by arachidonate. There was also an accumulation of secondary lysosomes containing degraded membranes in these cells with an associated increase in phospholipids relative to parent HSDM1C1 cells. Cytoplasmic lipid bodies present in parent cells disappeared, with an associated decrease in triacylglycerol. After just 2 days in lipid-free medium, all these changes were apparent, and prostaglandin E2 production was markedly impaired despite normal amounts of cellular arachidonate. Incubation of EFD-1 cells with arachidonate, the major prostaglandin precursor fatty acid, induced a reversion to the HSDM1C1 phenotype, whereas other fatty acids were totally ineffective. These results indicate changes in fatty acid metabolism in essential fatty acid deficiency are associated with marked alterations in ultrastructure and secretion of protein from cells.

  15. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    PubMed

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C; García-Ruiz, Carmen

    2015-12-08

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.

  16. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis

    PubMed Central

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C.; García-Ruiz, Carmen

    2015-01-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy. PMID:26539645

  17. Contribution of gastrin to cysteamine-induced gastric acid secretion in rats.

    PubMed

    van de Brug, F J; Jansen, J B; Kuijpers, I J; Lamers, C B

    1993-01-01

    The role of circulating gastrin in cysteamine induced gastric acid secretion was examined in conscious male Wistar rats, provided with a portal vein catheter, a jugular vein catheter and a pyloric drainage tube. Intravenous infusion of 0.3 nmol/kg.30 min of gastrin 17-l resulted in serum gastrin concentrations of 1138 +/- 151 pg/ml and gastric acid secretion of 104 +/- 36 mumol H+/kg.30 min. This acid response was abolished by intravenous injection of 60 microliters of a gastrin-antiserum, indicating the efficacy of immunoneutralization with this antiserum in vivo. Intravenous bolus administration of 125 mg/kg of cysteamine induced increases in serum gastrin concentration (864 +/- 96 pg/ml) and gastric acid outputs (107 +/- 27 mumol H+/kg.30 min) not significantly different from the gastrin 17-l infusion experiments. Gastrin antiserum abolished cysteamine-induced gastric acid secretion, indicating that gastric acid secretion induced by 125 mg/kg of cysteamine is largely mediated by circulating gastrin in rats.

  18. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    PubMed

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-05

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects.

  19. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens.

    PubMed

    Campos, Laura; Granell, Pablo; Tárraga, Susana; López-Gresa, Pilar; Conejero, Vicente; Bellés, José María; Rodrigo, Ismael; Lisón, Purificación

    2014-04-01

    We have observed that treatments with salicylic acid (SA) or gentisic acid (GA) induced resistance to RNA pathogens such as ToMV and CEVd in tomato and Gynura auriantiaca, respectively. Accumulation of SA and GA has been found to occur in plants infected by these pathogens, thus pointing out a possible defence role of both molecules. To study the molecular basis of the observed induced resistance to RNA pathogens the induction of silencing-related genes by SA and GA was considered. For that purpose, we searched for tomato genes which were orthologous to those described in Arabidopsis thaliana, such as AtDCL1, AtDCL2, AtDCL4, AtRDR1, AtRDR2 and AtRDR6, and we tracked their induction in tomato along virus and viroid infections. We observed that CEVd significantly induced all these genes in tomato, with the exception of ToRDR6, being the induction of ToDCL4 the most outstanding. Regarding the ToMV asymptomatic infection, with the exception of ToRDR2, we observed a significant induction of all the indicated silencing-related genes, being ToDCL2 the most induced gene. Subsequently, we analyzed their transcriptional activation by SA and at the time when ToMV was inoculated on plants. ToDCL2, ToRDR1 and ToRDR2 were significantly induced by both SA and GA, whereas ToDCL1 was only induced by SA. Such an induction resulted more effective by SA treatment, which is in agreement with the stronger SA-induced resistance observed. Our results suggest that the observed delay in the RNA pathogen accumulation could be due to the pre-induction of RNA silencing-related genes by SA or GA.

  20. Preventive Effect of Phytic Acid on Isoproterenol-Induced Cardiotoxicity in Wistar Rats

    PubMed Central

    Brindha, E.; Rajasekapandiyan, M.

    2015-01-01

    This study was aimed to evaluate the preventive role of phytic acid on membrane bound enzymes such as sodium potassium- dependent adenosine triphosphatase (Na+ /K+ ATPase), calcium-dependent adenosine triphosphatase (Ca2+ ATPase) and magnesium- dependent adenosine triphosphatase (Mg2+ ATPase) and glycoproteins such as hexose, hexosamine, fucose and sialic acid in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Male albino Wistar rats were pretreated with phytic acid (25 and 50 mg/kg, respectively) for a period of 56 days. After the treatment period, ISO (85 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days. ISO-induced rats showed a significant decrease in the activity of Na+ /K+ ATPase and increase in the activities of Ca2+ and Mg2+ ATPase in the heart and a significant (P<0.05) increase in the levels of glycoproteins in serum and the heart were also observed in ISO-induced rats. Pretreatment with phytic acid for a period of 56 days exhibited a significant (P<0.05) effect and altered these biochemical parameters positively in ISO-induced rats. Thus, our study shows that phytic acid has cardioprotective role in ISO-induced MI in rats.

  1. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  2. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    SciTech Connect

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-08-15

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion (< 5%) of tauro-BALU-1 was detected. BALU-1 did not inhibit the biliary secretion of endogenous bile acids. When highly choleretic bile acids, - ursodeoxycholic (UDCA) and dehydrocholic acid (DHCA) - were administered, they were found less efficient than BALU-1 in preventing phalloidin-induced cholestasis. Biliary phalloidin elimination was low but it was increased by BALU-1 > TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  3. Ursodeoxycholic acid protects colon cancer HCT116 cells from deoxycholic acid-induced apoptosis by inhibiting apoptosome formation.

    PubMed

    Saeki, Tohru; Yui, Satoko; Hirai, Tadashi; Fujii, Takami; Okada, Sawami; Kanamoto, Ryuhei

    2012-01-01

    We previously demonstrated that ursodeoxycholic acid (UDC) requires prolonged (≥5 h) preincubation to exhibit effective protection of colon cancer HCT116 cells from deoxycholic acid (DC)-induced apoptosis. Although UDC diminished DC-mediated caspase-9 activation, cytochrome c release from the mitochondria was not inhibited, indicating that UDC acts on the steps of caspase-9 activation. In the present study, therefore, we investigated the effects of UDC on the factors involved in caspase-9 activation. We found that UDC had no significant effect on the expression of antiapoptotic XIAP. Furthermore, UDC did not affect the expression or release of proapoptotic Smac/DIABLO, or the association of XIAP and Smac/DIABLO. In contrast, association of Apaf-1 and caspase-9 stimulated by 500 μM DC was inhibited by UDC pretreatment. Although UDC caused remarkable activation of Akt/PKB, phosphatidylinositol-3-kinase (PI3K) inhibitor did not significantly reduce UDC-mediated cytoprotection. Furthermore, phosphorylation of threonine residues on caspase-9 after UDC pretreatment could not be detected. UDC-mediated cytoprotection was independent of the MAPK pathway, and cyclic AMP (cAMP) analogue did not inhibit DC-induced apoptosis. Our results indicate that UDC protects colon cancer cells from apoptosis induced by hydrophobic bile acids, by inhibiting apoptosome formation independently of the survival signals mediated by the PI3K, MAPK, or cAMP pathways.

  4. CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass.

    PubMed

    Liu, Xinyao; Fallon, Sarah; Sheng, Jie; Curtiss, Roy

    2011-04-26

    Using genetically modified cyanobacterial strains, we engineered a Green Recovery strategy to convert membrane lipids into fatty acids for economical and environmentally sustainable biofuel production. The Green Recovery strategy utilizes lipolytic enzymes under the control of promoters induced by CO(2) limitation. Data indicate that strains of the cyanobacterium Synechocystis sp. PCC6803 engineered for Green Recovery underwent degradation of membrane diacylglycerols upon CO(2) limitation, leading to release of fatty acids into the culture medium. Recovered fatty acid yields of 36.1 × 10(-12) mg/cell were measured in one of the engineered strains (SD239). Green Recovery can be incorporated into previously constructed fatty-acid-secretion strains, enabling fatty acid recovery from the remaining cyanobacterial biomass that will be generated during fatty acid biofuel production in photobioreactors.

  5. Proline induces calcium-mediated oxidative burst and salicylic acid signaling.

    PubMed

    Chen, Jiugeng; Zhang, Yueqin; Wang, Cuiping; Lü, Weitao; Jin, Jing Bo; Hua, Xuejun

    2011-05-01

    Although free proline accumulation is a well-documented phenomenon in many plants in response to a variety of environmental stresses, and is proposed to play protective roles, high intracellular proline content, by either exogenous application or endogenous over-production, in the absence of stresses, is found to be inhibitory to plant growth. We have shown here that exogenous application of proline significantly induced intracellular Ca(2+) accumulation in tobacco and calcium-dependent ROS production in Arabidopsis seedlings, which subsequently enhanced salicylic acid (SA) synthesis and PR genes expression. This suggested that proline can promote a reaction similar to hypersensitive response during pathogen infection. Other amino acids, such as glutamate, but not arginine and phenylalanine, were also found to be capable of inducing PR gene expression. In addition, proline at concentration as low as 0.5 mM could induce PR gene expression. However, proline could not induce the expression of PDF1.2 gene, the marker gene for jasmonic acid signaling pathway. Furthermore, proline-induced SA production is mediated by NDR1-dependent signaling pathway, but not that mediated by PAD4. Our data provide evidences that exogenous proline, and probably some other amino acids can specifically induce SA signaling and defense response.

  6. Free fatty acids normalize a rosiglitazone-induced visfatin release.

    PubMed

    Haider, Dominik G; Mittermayer, Friedrich; Schaller, Georg; Artwohl, Michaela; Baumgartner-Parzer, Sabina M; Prager, Gerhard; Roden, Michael; Wolzt, Michael

    2006-11-01

    The detrimental effect of elevated free fatty acids (FFAs) on insulin sensitivity can be improved by thiazolidinediones (TZDs) in patients with type 2 diabetes mellitus. It is unknown whether this salutary action of TZD is associated with altered release of the insulin-mimetic adipocytokine visfatin. In this study, we investigated whether visfatin concentrations are altered by FFA and TZD treatment. In a randomized, double-blind, placebo-controlled, parallel-group study 16 healthy volunteers received an infusion of triglycerides/heparin to increase plasma FFA after 3 wk of treatment with rosiglitazone (8 mg/day, n = 8) or placebo (n = 8), and circulating plasma visfatin was measured. As a corollary, human adipocytes were incubated with synthetic fatty acids and rosiglitazone to assess visfatin release in vitro. The results were that rosiglitazone treatment increased systemic plasma visfatin concentrations from 0.6 +/- 0.1 to 1.7 +/- 0.2 ng/ml (P < 0.01). Lipid infusion caused a marked elevation of plasma FFA but had no effect on circulating visfatin in controls. In contrast, elevated visfatin concentrations in subjects receiving rosiglitazone were normalized by lipid infusion. In isolated adipocytes, visfatin was released into supernatant medium by acute addition and long-term treatment of rosiglitazone. This secretion was blocked by synthetic fatty acids and by inhibition of phosphatidylinositol 3-kinase or Akt. In conclusion, release of the insulin-mimetic visfatin may represent a major mechanism of metabolic TZD action. The presence of FFA antagonizes this action, which may have implications for visfatin bioactivity.

  7. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato.

    PubMed

    Mandal, Sudhamoy; Mallick, Nirupama; Mitra, Adinpunya

    2009-07-01

    We demonstrated that exogenous application of 200 microM salicylic acid through root feeding and foliar spray could induce resistance against Fusarium oxysporum f. sp. Lycopersici (Fol) in tomato. Endogenous accumulation of free salicylic acid in tomato roots was detected by HPLC and identification was confirmed by LC-MS/MS analysis. At 168h of salicylic acid treatment through roots, the endogenous salicylic acid level in the roots increased to 1477ngg(-1) FW which was 10 times higher than control plants. Similarly, the salicylic acid content was 1001ngg(-1) FW at 168h of treatment by foliar spray, which was 8.7 times higher than control plants. The activities of phenylalanine ammonia lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7) were 5.9 and 4.7 times higher, respectively than the control plants at 168h of salicylic acid feeding through the roots. The increase in PAL and POD activities was 3.7 and 3.3 times higher, respectively at 168h of salicylic acid treatments through foliar spray than control plants. The salicylic acid-treated tomato plants challenged with Fol exhibited significantly reduced vascular browning and leaf yellowing wilting. The mycelial growth of Fol was not significantly affected by salicylic acid. Significant increase in basal level of salicylic acid in noninoculated plants indicated that tomato root system might have the capacity to assimilate and distribute salicylic acid throughout the plant. The results indicated that the induced resistance observed in tomato against Fol might be a case of salicylic acid-dependent systemic acquired resistance.

  8. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion

  9. CO 2 and CO utilization: radiation-induced carboxylation of aqueous chloroacetic acid to malonic acid

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola

    2003-07-01

    CO 2 and CO in addition to HCOOH/HCOO - can be used to produce the carboxylating radical rad COOH/ rad COO - under the influence of ionizing radiation. The carboxylation of ClCH 2COOH/ClCH 2COO - to malonic acid/malonate was studied at the pH range 2-7. A maximum yield G(malonic acid)=85 at pH=3 was observed by using 5×10 -2 mol dm -3 ClCH 2COOH, 1×10 -2 mol dm -3 HCOOH and 1×10 -3 mol dm -3 CO at a dose of 4.8 kGy. Oxalic and succinic acids were found as byproducts. The yield of the formed Cl - ions passes two maxima, at pH=3 ( G=7.5) and 7 ( G=15). Reaction mechanisms for the carboxylation process are presented.

  10. The potential benefits and adverse effects of phytic Acid supplement in streptozotocin-induced diabetic rats.

    PubMed

    Omoruyi, F O; Budiaman, A; Eng, Y; Olumese, F E; Hoesel, J L; Ejilemele, A; Okorodudu, A O

    2013-01-01

    In this study, the effect of phytic acid supplement on streptozotocin-induced diabetic rats was investigated. Diabetic rats were fed rodent chow with or without phytic acid supplementation for thirty days. Blood and organ samples were collected for assays. The average food intake was the highest and the body weight gain was the lowest in the group fed phytic acid supplement compared to the diabetic and normal control groups. There was a downward trend in intestinal amylase activity in the group fed phytic acid supplement compared to the other groups. The spike in random blood glucose was the lowest in the same group. We noted reduced serum triglycerides and increased total cholesterol and HDL cholesterol levels in the group fed phytic acid supplement. Serum alkaline phosphatase and alanine amino transferase activities were significantly (P < 0.05) increased by phytic acid supplementation. Systemic IL-1 β level was significantly (P < 0.05) elevated in the diabetic control and supplement treated groups. The liver lipogenic enzyme activities were not significantly altered among the groups. These results suggest that phytic acid supplementation may be beneficial in the management of diabetes mellitus. The observed adverse effect on the liver may be due to the combined effect of streptozotocin-induced diabetes and phytic acid supplementation.

  11. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function

    PubMed Central

    2012-01-01

    Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms. PMID:22360800

  12. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    PubMed Central

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  13. Investigating acid-induced structural transitions of lysozyme in an electrospray ionization source.

    PubMed

    Lee, Jong Wha; Kim, Hugh I

    2015-01-21

    The effect of acids on the structure of lysozyme (Lyz) during electrospray ionization (ESI) was studied by comparing the solution and gas-phase structures of Lyz. Investigation using circular dichroism spectroscopy and small-angle X-ray scattering demonstrated that the folded conformation of Lyz was maintained in pH 2.2 solutions containing different acids. On the other hand, analysis of the charge state distributions and ion mobility (IM) distributions, combined with molecular dynamics simulations, demonstrated that the gas phase structures of Lyz depend on the pKa of the acid used to acidify the protein solution. Formic acid and acetic acid, which are weak acids (pKa > 3.5), induce unfolding of Lyz during ESI, presumably because the undissociated weak acids provide protons to maintain the acidic groups within Lyz protonated and prevent the formation of salt bridges. However, HCl suppressed the formation of the unfolded conformers because the acid is already dissociated in solution, and chloride anions within the ESI droplet can interact with Lyz to reduce the intramolecular electrostatic repulsion. These trends in the IM distributions are observed for all charge states, demonstrating the significance of the acid effect on the structure of Lyz during ESI.

  14. Modification of polyethylene by radiation-induced graft polymerization of acrylic acid

    NASA Astrophysics Data System (ADS)

    Sidorova, L. P.; Aliev, A. D.; Zlobin, V. B.; Aliev, R. E.; Chalykh, A. E.; Kabanov, V. Ya.

    The kinetics investigation of the radiation-induced graft polymerization of acrylic acid onto low density polyethylene by direct method in aqueous solution in the presence of Mohr's salt, was performed. The technique of the contrasting of polyacrylic acid (PAA) graft layer was worked out by Ag +-ions. The structural and morphological peculiarities of grafted copolymers of PE with PAA were determined by the method of electron probe, and X-ray microanalysis by means of the electron microscopy.

  15. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

    PubMed Central

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  16. The role of hyaluronic acid in SEB-induced acute lung inflammation.

    PubMed

    Uchakina, Olga N; Castillejo, Clara M; Bridges, Christy C; McKallip, Robert J

    2013-01-01

    We investigated the role of the extracellular matrix component, hyaluronic acid (HA) in SEB-induced ALI/ARDS. Intranasal exposure of mice to SEB led to a significant increase in the level of soluble hyaluronic acid in the lungs. Similarly, in an endothelial cell/spleen cell co-culture, SEB exposure led to significant increases in soluble levels of hyaluronic acid, cellular proliferation, and cytokine production compared with SEB-exposed spleen cells or endothelial cells alone. Exposure of SEB-activated spleen cells to hyaluronic acid led to increased cellular proliferation and increased cytokine production. SEB-induced cytokine production and proliferation in vitro were significantly reduced by the hyaluronic acid blocking peptide, Pep-1. Finally, treatment of SEB-exposed mice with Pep-1 significantly reduced SEB-induced ALI/ARDS, through reduction of cytokine production and numbers of lung inflammatory cells, compared to mice treated with a control peptide. Together, these results suggest the possibility of targeting HA for the treatment of SEB-induced ALI/ARDS.

  17. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-09-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis.

  18. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    PubMed

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively.

  19. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats.

  20. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species.

    PubMed

    Onaka, Hiroyasu; Mori, Yukiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2011-01-01

    Natural products produced by microorganisms are important starting compounds for drug discovery. Secondary metabolites, including antibiotics, have been isolated from different Streptomyces species. The production of these metabolites depends on the culture conditions. Therefore, the development of a new culture method can facilitate the discovery of new natural products. Here, we show that mycolic acid-containing bacteria can influence the biosynthesis of cryptic natural products in Streptomyces species. The production of red pigment by Streptomyces lividans TK23 was induced by coculture with Tsukamurella pulmonis TP-B0596, which is a mycolic acid-containing bacterium. Only living cells induced this pigment production, which was not mediated by any substances. T. pulmonis could induce natural-product synthesis in other Streptomyces strains too: it altered natural-product biosynthesis in 88.4% of the Streptomyces strains isolated from soil. The other mycolic acid-containing bacteria, Rhodococcus erythropolis and Corynebacterium glutamicum, altered biosynthesis in 87.5 and 90.2% of the Streptomyces strains, respectively. The coculture broth of T. pulmonis and Streptomyces endus S-522 contained a novel antibiotic, which we named alchivemycin A. We concluded that the mycolic acid localized in the outer cell layer of the inducer bacterium influences secondary metabolism in Streptomyces, and this activity is a result of the direct interaction between the mycolic acid-containing bacteria and Streptomyces. We used these results to develop a new coculture method, called the combined-culture method, which facilitates the screening of natural products.

  1. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  2. Incorporated Fish Oil Fatty Acids Prevent Action Potential Shortening Induced by Circulating Fish Oil Fatty Acids

    PubMed Central

    Ruijter, Hester M. Den; Verkerk, Arie O.; Coronel, Ruben

    2010-01-01

    Increased consumption of fatty fish, rich in omega-3-polyunsaturated fatty acids (ω3-PUFAs) reduces the severity and number of arrhythmias. Long-term ω3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating ω3-PUFAs in the bloodstream and incorporated ω3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating ω3-PUFAs in the bloodstream enhance or diminish the effects of incorporated ω3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (ω3) or sunflower oil (ω9, as control) for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch-clamp technique in the absence and presence of acutely administered ω3-PUFAs. Plasma of ω3 fed rabbits contained more free eicosapentaenoic acid (EPA) and isolated myocytes of ω3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA) in their sarcolemma compared to control. In the absence of acutely administered fatty acids, ω3 myocytes had a shorter action potential with a more negative plateau than ω9 myocytes. In the ω9 myocytes, but not in the ω3 myocytes, acute administration of a mixture of EPA + DHA shortened the action potential significantly. From these data we conclude that incorporated ω3-PUFAs into the sarcolemma and acutely administered ω3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac ω3-PUFA status will probably not benefit from short term ω3 supplementation as an antiarrhythmic therapy. PMID:21423389

  3. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  4. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

    PubMed

    Roy, Subhro Jyoti; Stanely Mainzen Prince, Ponnian

    2012-11-01

    In the pathology of myocardial infarction, lysosomal lipid peroxidation and resulting enzyme release play an important role. We evaluated the protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Male Wistar rats were treated with sinapic acid (12 mg/kg body weight) orally daily for 10 days and isoproterenol (100 mg/kg body weight) was injected twice at an interval of 24 h (9th and 10th day). Then, lysosomal lipid peroxidation, lysosomal enzymes in serum, heart homogenate, lysosomal fraction and myocardial infarct size were measured. Isoproterenol induced myocardial infarcted rats showed a significant increase in serum creatine kinase-MB and lysosomal lipid peroxidation. The activities of β-glucuronidase, β-galactosidase, cathepsin-B and D were significantly increased in serum, heart and the activities of β-glucuronidase and cathepsin-D were significantly decreased in lysosomal fraction of myocardial infarcted rats. Pre-and-co-treatment with sinapic acid normalized all the biochemical parameters and reduced myocardial infarct size in myocardial infarcted rats. In vitro studies confirmed the free radical scavenging effects of sinapic acid. The possible mechanisms for the observed effects are attributed to sinapic acid's free radical scavenging and membrane stabilizing properties. Thus, sinapic acid has protective effects on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

  5. Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice.

    PubMed

    Peng, Chang; Luo, Xiaomei; Li, Shuo; Sun, Huichao

    2017-03-28

    Cardiac hypertrophy is a complex process involving highly coordinated but tight regulation of multiple elements, such as in epigenetics, which make an important contribution to myocardium remodeling and cardiac hypertrophy. Epigenetic regulations, particularly histone acetylation, have been implicated in cardiac hypertrophy, however, the exact mechanism is still largely unknown. In the present study, we explored the potential attenuating effects of Chinese herbal extract anacardic acid on phenylephrine-induced cardiac hypertrophy and the underlying mechanism. The mouse cardiac hypertrophy model was established and the hearts were collected from C57BL/6 mice for further analyses. The data showed that anacardic acid modulated the cardiac genes expression and attenuated the phenylephrine-induced cardiac hypertrophy via the suppression of histone acetylases activity and downstream cardiac genes. In addition, anacardic acid abrogated histone and MEF2A acetylation and DNA-binding activity by blocking p300-HAT and PCAF-HAT activities. In addition, anacardic acid normalized the cardiac hypertrophy-related genes expressions (ANP, BNP, cTnT, cTnI, β-MHC, and Cx43) induced by phenylephrine at the level of transcription and translation. In addition, anacardic acid did not affect the blood routine index, hepatic function, renal function, and myocardial enzymes. Therefore, anacardic acid may prove to be a candidate drug to cure hypertrophic cardiomyopathy.

  6. Chemical and biological characterization of cinnamic acid derivatives from cell cultures of lavender (Lavandula officinalis) induced by stress and jasmonic acid.

    PubMed

    Nitzsche, Astrid; Tokalov, Sergey V; Gutzeit, Herwig O; Ludwig-Müller, Jutta

    2004-05-19

    Cell cultures of lavender (Lavandula officinalis) were analyzed for the metabolite profile under normal growth conditions and under stress as well as after jasmonic acid treatment. The main compound synthesized was rosmarinic acid, which was also secreted into the culture medium. Different solvent extraction methods at different pH values altered the profile slightly. Anoxic stress induced the synthesis of a cinnamic acid derivative, which was identified as caffeic acid by gas chromatography-mass spectrometry. Caffeic acid was also induced after treatment of the cell cultures with jasmonic acid. Although the antioxidative activity of both compounds, rosmarinic acid and caffeic acid, was confirmed in an assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH), it was demonstrated that both substances have a low cytotoxic potential in vitro using acute myeloid leukemia (HL-60) cells. The potential of the system for finding new bioactive compounds is discussed.

  7. Pseudomonas aeruginosa Pyocyanin Induces Neutrophil Death via Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase

    PubMed Central

    Managò, Antonella; Becker, Katrin Anne; Carpinteiro, Alexander; Wilker, Barbara; Soddemann, Matthias; Seitz, Aaron P.; Edwards, Michael J.; Grassmé, Heike

    2015-01-01

    Abstract Aims: Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. Results: Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. Innovation: These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. Conclusion: These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions. Antioxid. Redox Signal. 22, 1097–1110. PMID:25686490

  8. Palmitoleic acid induces the cardiac mitochondrial membrane permeability transition despite the presence of L-carnitine.

    PubMed

    Oyanagi, Eri; Uchida, Masataka; Miyakawa, Takeshi; Miyachi, Motohiko; Yamaguchi, Hidetaka; Nagami, Kuniatsu; Utsumi, Kozo; Yano, Hiromi

    Although palmitoleic acid (C16:1) is associated with arrhythmias, and increases in an age-dependent matter, the effects of L-carnitine, which is essential for the transport of long-chain fatty acids into the mitochondria, are unclear. It has been postulated that L-carnitine may attenuate palmitate (C16:0)-induced mitochondrial dysfunction and the apoptosis of cardiomyocytes. The aim of this study was to elucidate the activity of L-carnitine in the prevention of the palmitoleic acid-induced mitochondrial membrane permeability transition and cytochrome c release using isolated cardiac mitochondria from rats. Palmitoleoyl-CoA-induced mitochondrial respiration was not accelerated by L-carnitine treatment, and this respiration was slightly inhibited by oligomycin, which is an inhibitor of ATP synthase. Despite pretreatment with L-carnitine, the mitochondrial membrane potential decreased and mitochondrial swelling was induced by palmitoleoyl-CoA. In the presence of a combination of L-carnitine and tiron, a free radical scavenger, there was attenuated mitochondrial swelling and cytochrome c release following palmitoleoyl-CoA treatment. We concluded that palmitoleic acid, but not palmitate, induces the cardiac mitochondrial membrane permeability transition despite the presence of L-carnitine.

  9. Protection of arsenic-induced testicular oxidative stress by arjunolic acid.

    PubMed

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C

    2008-01-01

    Arsenic-induced tissue damage is a major concern to the human population. An impaired antioxidant defense mechanism followed by oxidative stress is the major cause of arsenic-induced toxicity, which can lead to reproductive failure. The present study was carried out to investigate the preventive role of arjunolic acid, a triterpenoid saponin isolated from the bark of Terminalia arjuna, against arsenic-induced testicular damage in mice. Administration of arsenic (in the form of sodium arsenite, NaAsO(2), at a dose of 10 mg/kg body weight) for 2 days significantly decreased the intracellular antioxidant power, the activities of the antioxidant enzymes, as well as the levels of cellular metabolites. In addition, arsenic intoxication enhanced testicular arsenic content, lipid peroxidation, protein carbonylation and the level of glutathione disulfide (GSSG). Exposure to arsenic also caused significant degeneration of the seminiferous tubules with necrosis and defoliation of spermatocytes. Pretreatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days could prevent the arsenic-induced testicular oxidative stress and injury to the histological structures of the testes. Arjunolic acid had free radical scavenging activity in a cell-free system and antioxidant power in vivo. In summary, the results suggest that the chemopreventive role of arjunolic acid against arsenic-induced testicular toxicity may be due to its intrinsic antioxidant property.

  10. Contributions of spinal D-amino acid oxidase to chronic morphine-induced hyperalgesia.

    PubMed

    Ma, Shuai; Li, Xin-Yan; Gong, Nian; Wang, Yong-Xiang

    2015-12-10

    Spinal D-amino acid oxidase (DAAO) is an FAD-dependent peroxisomal flavoenzyme which mediates the conversion of neutral and polar D-amino acids (including D-serine) to the corresponding α-keto acids, and simultaneously produces hydrogen peroxide and ammonia. This study has aimed to explore the potential contributions of spinal DAAO and its mediated hydrogen peroxide/D-serine metabolism to the development of morphine-induced hyperalgesia. Bi-daily subcutaneous injections of morphine to mice over 7 days induced thermal hyperalgesia as measured by both the hot-plate and tail-immersion tests, and spinal astroglial activation with increased spinal gene expression of DAAO, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)). Subcutaneous injections of the potent DAAO inhibitor CBIO (5-chloro-benzo[D]isoxazol-3-ol) prevented and reversed the chronic morphine-induced hyperalgesia. CBIO also inhibited both astrocyte activation and the expression of pro-inflammatory cytokines. Intrathecal injection of the hydrogen peroxide scavenger PBN (phenyl-N-tert-butylnitrone) and of catalase completely reversed established morphine hyperalgesia, whereas subcutaneous injections of exogenous D-serine failed to alter chronic morphine-induced hyperalgesia. These results provided evidence that spinal DAAO and its subsequent production of hydrogen peroxide rather than the D-serine metabolism contributed to the development of morphine-induced hyperalgesia.

  11. Studies on the vascular and hematological changes induced by ellagic acid in rats.

    PubMed

    Damas, J; Adam, A; Remacle-Volon, G; Grek, V

    1987-12-01

    We compared the major changes induced by ellagic acid (EA), a Hageman factor activator, in normal rats and in kininogen-deficient Brown Norway rats. In normal rats, large doses of EA induced a congestion of lymph nodes, spleen and liver, a prolongation of activated partial thromboplastin time, the consumption of prekallikrein, high molecular weight kininogen and fibrinogen, as well as the stimulation of platelets with their accumulation in lungs, liver and spleen. A systemic hypotension of long duration was also observed. The fibrinogen consumption, the thrombocytopenia and the lengthening of activated partial thromboplastin time were dose-dependent. In kininogen-deficient rats, EA induced only a minimal congestion of lymphoid tissues, the accumulation of platelets in lungs, a decrease of plasma fibrinogen and a short-lasting hypotension. It is concluded that the vascular changes induced by blood coagulation with ellagic acid resulted mainly from kinin formation.

  12. Hepatoprotective effect of Matrine salvianolic acid B salt on Carbon Tetrachloride-Induced Hepatic Fibrosis

    PubMed Central

    2012-01-01

    The aim of this study was to investigate the hepatoprotective effect of Matrine salvianolic acid B salt on carbon tetrachloride (CCl4)-induced hepatic fibrosis in rats. Salvianolic acid B and Matrine has long been used to treat liver fibrosis. Matrine salvianolic acid B salt is a new compound containing Salvianolic acid B and Matrine. Hepatic fibrosis induced by CCl4 was studied in animal models using Wistar rats. Organ coefficient, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), hexadecenoic acid (HA), laminin (LN), hydroxyproline (Hyp), and glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) in liver tissues were measured, respectively. Histopathological changes in the livers were studied by hematoxylin-eosin (H&E) staining and Masson Trichrome (MT) examination. The expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) was observed by immunohistochemical analysis. A significant reduction in serum levels of AST, ALT, HA, LN and Hyp was observed in the Matrine salvianolic acid B salt treated groups, suggesting that the salt had hepatoprotective effects. The depletion of GSH and SOD, as well as MDA accumulation in liver tissues was suppressed by Matrine salvianolic acid B salt too. The expression of TGF-β1 and α-SMA measured by immunohistology was significantly reduced by Matrine salvianolic acid B salt in a dose-dependent manner. Matrine salvianolic acid B salt treatment attenuated the necro-inflammation and fibrogenesis induced by CCl4 injection, and thus it is promising as a therapeutic anti-fibrotic agent against hepatic fibrosis. PMID:22559721

  13. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    PubMed

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  14. Arachidonic acid enhances reproduction in Daphnia magna and mitigates changes in sex ratios induced by pyriproxyfen.

    PubMed

    Ginjupalli, Gautam K; Gerard, Patrick D; Baldwin, William S

    2015-03-01

    Arachidonic acid is 1 of only 2 unsaturated fatty acids retained in the ovaries of crustaceans and an inhibitor of HR97g, a nuclear receptor expressed in adult ovaries. The authors hypothesized that, as a key fatty acid, arachidonic acid may be associated with reproduction and potentially environmental sex determination in Daphnia. Reproduction assays with arachidonic acid indicate that it alters female:male sex ratios by increasing female production. This reproductive effect only occurred during a restricted Pseudokirchneriella subcapitata diet. Next, the authors tested whether enriching a poorer algal diet (Chlorella vulgaris) with arachidonic acid enhances overall reproduction and sex ratios. Arachidonic acid enrichment of a C. vulgaris diet also enhances fecundity at 1.0 µM and 4.0 µM by 30% to 40% in the presence and absence of pyriproxyfen. This indicates that arachidonic acid is crucial in reproduction regardless of environmental sex determination. Furthermore, the data indicate that P. subcapitata may provide a threshold concentration of arachidonic acid needed for reproduction. Diet-switch experiments from P. subcapitata to C. vulgaris mitigate some, but not all, of arachidonic acid's effects when compared with a C. vulgaris-only diet, suggesting that some arachidonic acid provided by P. subcapitata is retained. In summary, arachidonic acid supplementation increases reproduction and represses pyriproxyfen-induced environmental sex determination in D. magna in restricted diets. A diet rich in arachidonic acid may provide protection from some reproductive toxicants such as the juvenile hormone agonist pyriproxyfen. Environ Toxicol Chem 2015;34:527-535. © 2014 SETAC.

  15. Combination of chlorogenic acid and salvianolic acid B protects against polychlorinated biphenyls-induced oxidative stress through Nrf2.

    PubMed

    Chen, Lijun; Li, Yuan; Yin, Wenqin; Shan, Wenqi; Dai, Jinfeng; Yang, Ye; Li, Lei

    2016-09-01

    Caffeic acid derivatives (CADs) are well-known phytochemicals with multiple physiological and pharmacological activities. This study aimed to investigate the combined protective effects of CADs on PCB126-induced liver damages and oxidative stress in mice. Here, we used chemiluminescence and chose chlorogenic acid (CGA), salvianolic acid B (Sal B) as the best antioxidants. Then, mice were intragastrically administered with 60mg/kg/d CGA, Sal B, and CGA plus Sal B (1:1) for 3 weeks before exposing to 0.05mg/kg/d PCB126 for 2 weeks. We found that pretreatment with CGA, Sal B, and CGA plus Sal B effectively attenuated liver injury and cytotoxicity caused by PCB126, but improved the expressions of superoxide dismutase (SOD), glutathione reduced (GSH), heme oxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf2), CGA plus Sal B especially, was found to have the best effects that indicated a synergetic protective effect. Taken together, as the Nrf2 regulates the cyto-protective response by up-regulating the expression of antioxidant genes, we suggested that CGA plus Sal B had a combined protection on PCB126-induced tissue damages and that the Nrf2 signaling might be involved.

  16. Fruit acids do not enhance sodium lauryl sulphate-induced cumulative irritant contact dermatitis in vivo.

    PubMed

    Schliemann-Willers, Sibylle; Fuchs, Silke; Kleesz, Peter; Grieshaber, Romano; Elsner, Peter

    2005-01-01

    Combined exposure to different irritants in the workplace may lead to irritant contact dermatitis, which is the main type of occupational dermatitis among bakers and confectioners. Following previous work on "tandem irritation", a panel of healthy volunteers was exposed twice daily for 4 days to the organic fruit acids: citric, malic, and lactic acid, either alone or in tandem application with 0.5% sodium lauryl sulphate (SLS) in a repetitive irritation test. Irritant cutaneous reactions were quantified by visual scoring and non-invasive measurement of transepidermal water loss and skin colour reflectance. Twice daily application of either citric or malic acid alone did not induce a significant irritant reaction. Combined exposure to one of the fruit acids and SLS caused marked barrier disturbance, but the latter irritant effect was smaller than that obtained by combined exposure to SLS and water. Thus, combined exposure to the above-mentioned fruit acids and SLS did not enhance cumulative skin irritation.

  17. Exacerbation of Alcohol-Induced Oxidative Stress in Rats by Polyunsaturated Fatty Acids and Iron Load

    PubMed Central

    Patere, S. N.; Majumdar, A. S.; Saraf, M. N.

    2011-01-01

    The hypothesis that excessive intake of vegetable oil containing polyunsaturated fatty acids and iron load precipitate alcohol-induced liver damage was investigated in a rat model. In order to elucidate the mechanism underlying this synergism, the serum levels of iron, total protein, serum glutamate pyruvate transaminase, liver thiobarbituric acid reactive substances, and activities of antioxidant enzymes superoxide dismutase, catalase in liver of rats treated with alcohol, polyunsaturated fatty acids and iron per se and in combination were examined. Alcohol was fed to the rats at a level of 10-30% (blood alcohol was maintained between 150-350 mg/dl by using head space gas chromatography), polyunsaturated fatty acids at a level of 15% of diet and carbonyl iron 1.5-2% of diet per se and in combination to different groups for 30 days. Hepatotoxicity was assessed by measuring serum glutamate pyruvate transaminase, which was elevated and serum total protein, which was decreased significantly in rats fed with a combination of alcohol, polyunsaturated fatty acids and iron. It was also associated with increased lipid peroxidation and disruption of antioxidant defense in combination fed rats as compared to rats fed with alcohol or polyunsaturated fatty acids or iron. The present study revealed significant exacerbation of the alcohol-induced oxidative stress in presence of polyunsaturated fatty acids and iron. PMID:22303057

  18. Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine.

    PubMed

    Koriem, Khaled M M; Soliman, Rowan E

    2014-01-01

    Methamphetamine intoxication can cause acute hepatic failure. Chlorogenic and caftaric acids are the major dietary polyphenols present in various foods. The aim of this study was to evaluate the protective role of chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine in rats. Thirty-two male albino rats were divided into 4 equal groups. Group 1, which was control group, was injected (i.p) with saline (1 mL/kg) twice a day over seven-day period. Groups 2, 3, and 4 were injected (i.p) with methamphetamine (10 mg/kg) twice a day over seven-day period, where groups 3 and 4 were injected (i.p) with 60 mg/kg chlorogenic acid and 40 mg/kg caftaric acid, respectively, one day before methamphetamine injections. Methamphetamine increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin, cholesterol, low-density lipoprotein, and triglycerides. Also, malondialdehyde in serum, liver, and brain and plasma and liver nitric oxide levels were increased while methamphetamine induced a significant decrease in serum total protein, albumin, globulin, albumin/globulin ratio, brain serotonin, norepinephrine and dopamine, blood and liver superoxide dismutase, and glutathione peroxidase levels. Chlorogenic and caftaric acids prior to methamphetamine injections restored all the above parameters to normal values. In conclusion, chlorogenic and caftaric acids before methamphetamine injections prevented liver toxicity and oxidative stress where chlorogenic acid was more effective.

  19. Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid.

    PubMed

    Noh, A Long Sae Mi; Yim, Mijung

    2011-03-01

    Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.

  20. Sialic acid attenuates puromycin aminonucleoside-induced desialylation and oxidative stress in human podocytes.

    PubMed

    Pawluczyk, Izabella Z A; Ghaderi Najafabadi, Maryam; Patel, Samita; Desai, Priyanka; Vashi, Dipti; Saleem, Moin A; Topham, Peter S

    2014-01-15

    Sialoglycoproteins make a significant contribution to the negative charge of the glomerular anionic glycocalyx-crucial for efficient functioning of the glomerular permselective barrier. Defects in sialylation have serious consequences on podocyte function leading to the development of proteinuria. The aim of the current study was to investigate potential mechanisms underlying puromycin aminonucleosisde (PAN)-induced desialylation and to ascertain whether they could be corrected by administration of free sialic acid. PAN treatment of podocytes resulted in a loss of sialic acid from podocyte proteins. This was accompanied by a reduction, in the expression of sialyltransferases and a decrease in the key enzyme of sialic acid biosynthesis N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). PAN treatment also attenuated expression of the antioxidant enzyme superoxide dismutase (mSOD) and concomitantly increased the generation of superoxide anions. Sialic acid supplementation rescued podocyte protein sialylation and partially restored expression of sialyltransferases. Sialic acid also restored mSOD mRNA expression and quenched the oxidative burst. These data suggest that PAN-induced aberrant sialylation occurs as a result of modulation of enzymes involved sialic acid metabolism some of which are affected by oxidative stress. These data suggest that sialic acid therapy not only reinstates functionally important negative charge but also acts a source of antioxidant activity.

  1. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids.

    PubMed

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-09-24

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.

  2. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots.

    PubMed Central

    Moons, A; Prinsen, E; Bauw, G; Van Montagu, M

    1997-01-01

    Abscisic acid (ABA) and jasmonates have been implicated in responses to water deficit and wounding. We compared the molecular and physiological effects of jasmonic acid (JA) (< or = 10 microM), ABA, and salt stress in roots of rice. JA markedly induced a cationic peroxidase, two novel 32- and 28-kD proteins, acidic PR-1 and PR-10 pathogenesis-related proteins, and the salt stress-responsive SalT protein in roots. Most JA-responsive proteins (JIPs) from roots also accumulated when plants were subjected to salt stress. None of the JIPs accumulated when plants were treated with ABA. JA did not induce an ABA-responsive group 3 late-embryogenesis abundant (LEA) protein. Salt stress and ABA but not JA induced oslea3 transcript accumulation. By contrast, JA, ABA, and salt stress induced transcript accumulation of salT and osdrr, which encodes a rice PR-10 protein. However, ABA also negatively affected salT transcript accumulation, whereas JA negatively affected ABA-induced oslea3 transcript levels. Endogenous root ABA and methyl jasmonate levels showed a differential increase with the dose and the duration of salt stress. The results indicate that ABA and jasmonates antagonistically regulated the expression of salt stress-inducible proteins associated with water deficit or defense responses. PMID:9437865

  3. Ethanol promotes saturated fatty acid-induced hepatoxicity through endoplasmic reticulum (ER) stress response.

    PubMed

    Yi, Hong-Wei; Ma, Yu-Xiang; Wang, Xiao-Ning; Wang, Cui-Fen; Lu, Jian; Cao, Wei; Wu, Xu-Dong

    2015-04-01

    Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.

  4. Temperature induced denaturation of collagen in acidic solution.

    PubMed

    Mu, Changdao; Li, Defu; Lin, Wei; Ding, Yanwei; Zhang, Guangzhao

    2007-07-01

    The denaturation of collagen solution in acetic acid has been investigated by using ultra-sensitive differential scanning calorimetry (US-DSC), circular dichroism (CD), and laser light scattering (LLS). US-DSC measurements reveal that the collagen exhibits a bimodal transition, i.e., there exists a shoulder transition before the major transition. Such a shoulder transition can recover from a cooling when the collagen is heated to a temperature below 35 degrees C. However, when the heating temperature is above 37 degrees C, both the shoulder and major transitions are irreversible. CD measurements demonstrate the content of triple helix slowly decreases with temperature at a temperature below 35 degrees C, but it drastically decreases at a higher temperature. Our experiments suggest that the shoulder transition and major transition arise from the defibrillation and denaturation of collagen, respectively. LLS measurements show the average hydrodynamic radius R(h), radius of gyration R(g)of the collagen gradually decrease before a sharp decrease at a higher temperature. Meanwhile, the ratio R(g)/R(h) gradually increases at a temperature below approximately 34 degrees C and drastically increases in the range 34-40 degrees C, further indicating the defibrillation of collagen before the denaturation.

  5. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko; Danielache, Sebastian O.; Nanbu, Shinkoh

    2015-05-01

    Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S1 and S2) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu-Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning's augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO4(12A″) + H(2S) by S1-excitation, and (ii) HSO4(22A″) + H(2S) by S2-excitation. The direct dissociation dynamics yield products different from the SO2 + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO4 fragment. The trajectories running on S2 do not hop with S0 and a nonadiabatic transition happens at the S2-S1 conical intersection located at a longer OH bond-length than the S1-S0 intersection producing an electronic excited state (22A″) of HSO4 product.

  6. Alteration of cyclosporine (CsA)-induced nephrotoxicity by gamma linolenic acid (GLA) and eicosapentaenoic acid (EPA) in Wistar rats.

    PubMed

    Morphake, P; Bariety, J; Darlametsos, I; Tsipas, G; Gkikas, G; Hornysh, A; Papanikolaou, N

    1994-01-01

    Administration of cyclosporine (CsA), 37.4 microM (45 mg)/Kg, per day for 7 days, to Wistar rats, induced decreased creatinine clearance (Ccr) and body weight loss (BWL), but it did not induce proteinuria. These changes were associated with enhanced urinary thromboxane B2 (TXB2) and diminished 6-keto-PGF1 alpha (6kPGF1 alpha) and prostaglandin E2 (PGE2) excretions. The augmentation in TXB2 and the decrease in PGs highly diminished the ratios of 6kPGF1 alpha/TXB2 and PGE2/TXB2. In microscopic sections all of the kidneys were affected to variable degrees. When CsA was administered to animals fed for 70 days, prior to the experiment, on standard chow (SC) containing evening primrose oil (EPO) or fish oil (FO), 1% and 10% respectively (EPO contained 9% gamma-linolenic acid (GLA) and FO 5.6% eicosapentaenoic acid (EPA)), the nephrotoxic effect of CsA was partially prevented. These changes were accompanied by increased ratios of urinary 6kPGF1 alpha/TXB2 and PGE2/TXB2 excretions. Light microscopic (LM) studies showed that rats' kidneys fed on SC containing EPO or FO were not always affected and the lesions were of minor importance. In conclusion, these results suggest that EPO (GLA) and FO (EPA) could play a beneficial role in the development or the modulation of the renal syndrome induced by CsA.

  7. Betulin, betulinic acid and butein are inhibitors of acetaldehyde-induced activation of liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Plewka, Krzysztof; Kandefer-Szerszeń, Martyna

    2011-01-01

    Liver fibrosis has been reported to be inhibited in vivo by oleanolic and ursolic acids; however, the activity of other triterpenes like betulin and betulinic acid has not been examined. Butein has also been reported to prevent and partly reverse liver fibrosis in vivo, although its mechanism of action is poorly understood. Therefore, the aim of this study was to determine the antifibrotic potential of butein, betulin, and betulinic acid and examine their mechanisms of action in vitro. This study was conducted in rat stellate cells (HSCs) that were treated with acetaldehyde, which is the most reactive product of ethanol metabolism. Butein, betulin, and betulinic acid were preincubated with rat HSCs at non-toxic concentrations. Treatment effects were measured in regard to acetaldehyde-induced toxicity and cell migration, and several markers of HSC activation were evaluated, including smooth muscle α-actin (α-SMA) and procollagen I expression. In addition, changes in the release of reactive oxygen species (ROS) and cytokines such as tumor necrosis factor-α (TNF-α) and tumor growth factor-β1 (TGF-β1) and changes in the production of metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were determined. In vitro, HSCs were protected against acetaldehyde-induced toxicity by betulin but not by betulinic acid and butein. However, butein, betulin, and betulinic acid inhibited the production of ROS by HSCs treated with acetaldehyde and inhibited their migration. Butein also inhibited acetaldehyde-induced TGF-β1 production. Butein, betulin, and betulinic acid down-regulated acetaldehyde-induced production of TIMP-1 and TIMP-2. Betulin decreased the acetaldehyde-induced activity of MMP-2, but butein and betulinic acid did not. The results indicated that butein, betulin, and betulinic acid inhibited the acetaldehyde-induced activation of HSCs. Each drug functioned in a different manner, whereby some were acting as either

  8. Effect of niflumic acid on noradrenaline-induced contractions of the rat aorta.

    PubMed

    Criddle, D N; de Moura, R S; Greenwood, I A; Large, W A

    1996-06-01

    1. The effects of niflumic acid, an inhibitor of calcium-activated chloride channels, were compared with the actions of the calcium channel antagonist nifedipine on noradrenaline-evoked contractions in isolated preparations of the rat aorta. 2. The cumulative concentration-effect curve to noradrenaline (NA) was depressed by both nifedipine and niflumic acid in a reversible and concentration-dependent manner. The degree of inhibition of the maximal contractile response to NA (1 microM) produced by 10 microM niflumic acid (38%) was similar to the effect of 1 microM nifedipine (39%). 3. Contractions to brief applications (30 s) of 1 microM NA were inhibited by 55% and 62% respectively by 10 microM niflumic acid and 1 microM nifedipine. 4. In the presence of 0.1 microM nifedipine, niflumic acid (10 microM) produced no further inhibition of the NA-evoked contractions. Thus, the actions of niflumic acid and nifedipine were not additive. 5. In Ca-free conditions the transient contraction induced by 1 microM NA was not inhibited by niflumic acid (10 microM) and therefore this agent does not reduce the amount of calcium released from the intracellular store or reduce the sensitivity of the contractile apparatus to calcium. 6. Niflumic acid 10 microM did not inhibit the contractions produced by KCl (up to 120 mM) which were totally blocked by nifedipine. Contractions induced by 25 mM KCl were completely inhibited by 1 microM levcromakalim but were unaffected by niflumic acid. 7. It was concluded that niflumic acid produces selective inhibition of a component of NA-evoked contraction which is probably mediated by voltage-gated calcium channels. These data are consistent with a model in which NA stimulates a calcium-activated chloride conductance which leads to the opening of voltage-gated calcium channels to produce contraction.

  9. Calcium Uptake via Mitochondrial Uniporter Contributes to Palmitic Acid-induced Apoptosis in Mouse Podocytes.

    PubMed

    Yuan, Zeting; Cao, Aili; Liu, Hua; Guo, Henjiang; Zang, Yingjun; Wang, Yi; Wang, Yunman; Wang, Hao; Yin, Peihao; Peng, Wen

    2017-02-09

    Podocytes are component cells of the glomerular filtration barrier, and their loss by apoptosis is the main cause of proteinuria that leads to diabetic nephropathy (DN). Therefore, insights into podocyte apoptosis mechanism would allow a better understanding of DN pathogenesis and thus help develop adequate therapeutic strategies. Here, we investigated the molecular mechanism of palmitic acid-inhibited cell death in mouse podocytes, and found that palmitic acid increased cell death in a dose- and time-dependent manner. Palmitic acid induces apoptosis in podocytes through up-regulation of cytosolic and mitochondrial Ca(2+) , mitochondrial membrane potential (MMP), cytochrome c release and depletion of endoplasmic reticulum (ER) Ca(2+) , The intracellular calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N, N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM), partially prevented this up-regulation whereas 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-triphosphate receptor (IP3R) inhibitor; dantrolene, a ryanodine receptor (RyR) inhibitor; and 4,4'-diisothiocyanatostibene-2,2'-disulfonic acid (DIDS), an anion exchange inhibitor, had no effect. Interestingly, ruthenium red and Ru360, both inhibitors of the mitochondrial Ca(2+) uniporter (MCU), blocked palmitic acid-induced mitochondrial Ca(2+) elevation, cytochrome c release from mitochondria to cytosol, and apoptosis. siRNA to MCU markedly reduced curcumin-induced apoptosis. These data indicate that Ca(2+) uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. This article is protected by copyright. All rights reserved.

  10. Clavulanic acid induces penile erection and yawning in male rats: comparison with apomorphine.

    PubMed

    Sanna, Fabrizio; Melis, Maria Rosaria; Angioni, Laura; Argiolas, Antonio

    2013-02-01

    The beta-lactamase inhibitor clavulanic acid induced penile erection and yawning in a dose dependent manner when given intraperitoneally (IP, 0.05-5mg/kg), perorally (OS, 0.1-5mg/kg) and intracereboventricularly (ICV, 0.01-5 μg/rat) to male rats. The effect resembles that of the dopamine receptor agonist apomorphine given subcutaneously (SC) (0.02-0.25mg/kg), although the responses of the latter followed a U inverted dose-response curve, disappearing at doses higher than 0.1mg/kg. Clavulanic acid responses were reduced by about 55% by haloperidol, a dopamine D2 receptor antagonist (0.1mg/kg IP), and by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist (2 μg/rat ICV), both given 15 min before clavulanic acid. A higher reduction of clavulanic acid responses (more than 80%) was also found with morphine, an opioid receptor agonist (5mg/kg IP), and with mianserin, a serotonin 5HT(2c) receptor antagonist (0.2mg/kg SC). In contrast, no reduction was found with naloxone, an opioid receptor antagonist (1mg/kg IP). The ability of haloperidol, d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin and morphine to reduce clavulanic acid induced penile erection and yawning suggests that clavulanic acid induces these responses, at least in part, by increasing central dopaminergic neurotransmission. Dopamine in turn activates oxytocinergic neurotransmission and centrally released oxytocin induces penile erection and yawning. However, since both penile erection and yawning episodes were reduced not only by the blockade of central dopamine and oxytocin receptors and by the stimulation of opioid receptors, which inhibits oxytocinergic neurotransmission, but also by mianserin, an increase of central serotonin neurotransmission is also likely to participate in these clavulanic acid responses.

  11. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity.

    PubMed

    Lolicato, Francesca; Brouwers, Jos F; de Lest, Chris H A van; Wubbolts, Richard; Aardema, Hilde; Priore, Paola; Roelen, Bernard A J; Helms, J Bernd; Gadella, Bart M

    2015-01-01

    Mobilization of fatty acids from adipose tissue during metabolic stress increases the amount of free fatty acids in blood and follicular fluid and is associated with impaired female fertility. In a previous report, we described the effects of the three predominant fatty acids in follicular fluid (saturated palmitate and stearate and unsaturated oleate) on oocyte maturation and quality. In the current study, the effects of elevated fatty acid levels on cumulus cells were investigated. In a dose-dependent manner, the three fatty acids induced lipid storage in cumulus cells accompanied by an enhanced immune labeling of perilipin-2, a marker for lipid droplets. Lipidomic analysis confirmed incorporation of the administered fatty acids into triglyceride, resulting in a 3- to 6-fold increase of triglyceride content. In addition, palmitate selectively induced ceramide formation, which has been implicated in apoptosis. Indeed, of the three fatty acids tested, palmitate induced reactive oxygen species formation, caspase 3 activation, and mitochondria deterioration, leading to degeneration of the cumulus cell layers. This effect could be mimicked by addition of the ceramide-C2 analog and could be inhibited by the ceramide synthase inhibitor fumonisin-B1. Interfering with the intactness of the cumulus cell layers, either by mechanical force or by palmitate treatment, resulted in enhanced uptake of lipids in the oocyte and increased radical formation. Our results show that cumulus cells act as a barrier, protecting oocytes from in vitro induced lipotoxic effects. We suggest that this protective function of the cumulus cell layers is important for the developmental competence of the oocyte. The relevance of our findings for assisted reproduction technologies is discussed.

  12. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    PubMed

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  13. Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis.

    PubMed

    Ton, Jurriaan; Jakab, Gabor; Toquin, Valérie; Flors, Victor; Iavicoli, Annalisa; Maeder, Muriel N; Métraux, Jean-Pierre; Mauch-Mani, Brigitte

    2005-03-01

    Plants treated with the nonprotein amino acid beta-aminobutyric acid (BABA) develop an enhanced capacity to resist biotic and abiotic stresses. This BABA-induced resistance (BABA-IR) is associated with an augmented capacity to express basal defense responses, a phenomenon known as priming. Based on the observation that high amounts of BABA induce sterility in Arabidopsis thaliana, a mutagenesis screen was performed to select mutants impaired in BABA-induced sterility (ibs). Here, we report the isolation and subsequent characterization of three T-DNA-tagged ibs mutants. Mutant ibs1 is affected in a cyclin-dependent kinase-like protein, and ibs2 is defective in AtSAC1b encoding a polyphosphoinositide phosphatase. Mutant ibs3 is affected in the regulation of the ABA1 gene encoding the abscisic acid (ABA) biosynthetic enzyme zeaxanthin epoxidase. To elucidate the function of the three IBS genes in plant resistance, the mutants were tested for BABA-IR against the bacterium Pseudomonas syringae pv tomato, the oomycete Hyaloperonospora parasitica, and BABA-induced tolerance to salt. All three ibs mutants were compromised in BABA-IR against H. parasitica, although to a different extent. Whereas ibs1 was reduced in priming for salicylate (SA)-dependent trailing necrosis, mutants ibs2 and ibs3 were affected in the priming for callose deposition. Only ibs1 failed to express BABA-IR against P. syringae, which coincided with a defect in priming for SA-inducible PR-1 gene expression. By contrast, ibs2 and ibs3 showed reduced BABA-induced tolerance to salt, which correlated with an affected priming for ABA-inducible gene expression. For all three ibs alleles, the defects in BABA-induced sterility and BABA-induced protection against P. syringae, H. parasitica, and salt could be confirmed in independent mutants. The data presented here introduce three novel regulatory genes involved in priming for different defense responses.

  14. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    PubMed

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  15. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    NASA Astrophysics Data System (ADS)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  16. Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects

    PubMed Central

    Morkmued, Supawich; Laugel-Haushalter, Virginie; Mathieu, Eric; Schuhbaur, Brigitte; Hemmerlé, Joseph; Dollé, Pascal; Bloch-Zupan, Agnès; Niederreither, Karen

    2017-01-01

    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations. PMID:28111553

  17. Ultrastructural Changes in Chick Cerebellum Induced by Polyinosinic Polycytidylic Acid

    PubMed Central

    Yu, Mang C.; Young, Paul A.; Yu, Wan-Hua Amy

    1971-01-01

    The ultrastructural changes in cerebellar encephalopathy induced by intravenous injection of poly I:C in young chickens were studied. The neuroglia and the small blood vessels showed the most severe injury. In the astroglia, initial alterations consisted of a mild cytoplasmic swelling whereas terminally, evagination of the outer nuclear membrane, formation of large vacuoles, and mitochondrial swelling occurred. In the cortex, oligodendroglial alterations consisted of dilatation of the nuclear membranes and of the endoplasmic reticulum, whereas in the white matter, the interfascicular oligodendroglia exhibited clumping and coagulation of the chromatin material. Some small blood vessels appeared normal, while others showed massive erosion of the endothelium resulting in aneurysm-like ballooning of the vascular wall. The granule cells displayed marked edema. The myelin of nerve fibers showed an accumulation of fluid initially, with splitting occurring in the terminal stages. These studies indicated a severe cytotoxic effect of poly I:C on the cerebella of young chickens. ImagesFig 16Fig 17Fig 13Fig 14Fig 15Fig 5Fig 6Fig 7Fig 8Fig 9Fig 10Fig 11Fig 12Fig 1Fig 2Fig 3Fig 4 PMID:5142269

  18. Folic acid and safflower oil supplementation interacts and protects embryos from maternal diabetes-induced damage.

    PubMed

    Higa, R; Kurtz, M; Mazzucco, M B; Musikant, D; White, V; Jawerbaum, A

    2012-05-01

    Maternal diabetes increases the risk of embryo malformations. Folic acid and safflower oil supplementations have been shown to reduce embryo malformations in experimental models of diabetes. In this study we here tested whether folic acid and safflower oil supplementations interact to prevent embryo malformations in diabetic rats, and analyzed whether they act through the regulation of matrix metalloproteinases (MMPs), their endogenous inhibitors (TIMPs), and nitric oxide (NO) and reactive oxygen species production. Diabetes was induced by streptozotocin administration prior to mating. From Day 0.5 of pregnancy, rats did or did not receive folic acid (15 mg/kg) and/or a 6% safflower oil-supplemented diet. Embryos and decidua were explanted on Day 10.5 of gestation for further analysis of embryo resorptions and malformations, MMP-2 and MMP-9 activities, TIMP-1 and TIMP-2 levels, NO production and lipid peroxidation. Maternal diabetes induced resorptions and malformations that were prevented by folic acid and safflower oil supplementation. MMP-2 and MMP-9 activities were increased in embryos and decidua from diabetic rats and decreased with safflower oil and folic acid supplementations. In diabetic animals, the embryonic and decidual TIMPs were increased mainly with safflower oil supplementation in decidua and with folic acid in embryos. NO overproduction was decreased in decidua from diabetic rats treated with folic acid alone and in combination with safflower oil. These treatments also prevented increases in embryonic and decidual lipid peroxidation. In conclusion, folic acid and safflower oil supplementations interact and protect the embryos from diabetes-induced damage through several pathways related to a decrease in pro-inflammatory mediators.

  19. Protective role of ascorbic acid against asbestos induced toxicity in rat lung: in vitro study.

    PubMed

    Khan, S G; Ali, S; Rahman, Q

    1990-01-01

    Asbestos fibers adsorb cytochrome P-450 and P-448 proteins from rat lung micosomal fractions and liberate heme from cytochrome P-448 on prolonged incubation in vitro. further, fibers, decrease the activities of benzo(a)pyrene hydroxylase and glutathione-S-transferase in microsomal and cytosolic fractions respectively. Mineral fibers also stimulate both the enzymatic (NADPH-induced) and non-enzymatic (Fe2(+)-induced) lipid peroxidation in microsomal fractions. Preincubation of microsomal and cytosolic fractions with a physiological concentration of ascorbic acid ameliorates, to a large extent, the changes induced by asbestos fibers.

  20. Lysophosphatidic acid induces cell migration through the selective activation of Akt1

    PubMed Central

    Kim, Eun Kyoung; Yun, Sung Ji; Do, Kee Hun; Kim, Min Sung; Cho, Mong; Suh, Dong-Soo; Kim, Chi Dae; Kim, Jae Ho; Birnbaum, Morris J.

    2008-01-01

    Akt plays pivotal roles in many physiological responses including growth, proliferation, survival, metabolism, and migration. In the current studies, we have evaluated the isoform-specific role of akt in lysophosphatidic acid (LPA)-induced cell migration. Ascites from ovarian cancer patients (AOCP) induced mouse embryo fibroblast (MEF) cell migration in a dose-dependent manner. On the other hand, ascites from liver cirrhosis patients (ALCP) did not induce MEF cell migration. AOCP-induced MEF cell migration was completely blocked by pre-treatment of cells with LPA receptor antagonist, Ki16425. Both LPA- and AOCP-induced MEF cell migration was completely attenuated by PI3K inhibitor, LY294002. Furthermore, cells lacking Akt1 displayed defect in LPA-induced cell migration. Re-expression of Akt1 in DKO (Akt1-/-Akt2-/-) cells restored LPA-induced cell migration, whereas re-expression of Akt2 in DKO cells could not restore the LPA-induced cell migration. Finally, Akt1 was selectively phosphorylated by LPA and AOCP stimulation. These results suggest that LPA is a major factor responsible for AOCP-induced cell migration and signaling specificity of Akt1 may dictate LPA-induced cell migration. PMID:18779657

  1. Synergistic protective effects of ceftriaxone and ascorbic acid against subacute deltamethrin-induced nephrotoxicity in rats.

    PubMed

    Abdel-Daim, Mohamed M; El-Ghoneimy, Ashraf

    2015-03-01

    Deltamethrin (DLM) is a synthetic class II pyrethroid acaricide and insecticide widely used for veterinary and agricultural purposes. However, its animal and human exposure leads to nephrotoxicity. Our experimental objective was to evaluate protective effects of ceftriaxone and/or ascorbic acid against DLM-induced renal injury in male Wistar albino rats. DLM-treated animals revealed significant alterations in serum biochemical parameters related to renal injury; urea, uric acid and creatinine. There was a significant increase in renal lipid peroxidation and a significant inhibition in antioxidant biomarkers. Moreover, DLM significantly reduced serum acetylcholinesterase (AChE) activity. In addition, It induced serum and kidney tumor necrosis factor-α (TNF-α). Both ceftriaxone and ascorbic acid protect against DLM-induced biochemical alterations in serum and renal tissue when used alone or in combination along with DLM-intoxication. Furthermore, both ceftriaxone and ascorbic acid produced synergetic nephroprotective and antioxidant effects. Therefore, it could be concluded that ceftriaxone and/or ascorbic acid administration able to minimize the toxic effects of DLM through their free radical-scavenging and potent antioxidant activity.

  2. Uric Acid Is a Mediator of the Plasmodium falciparum-Induced Inflammatory Response

    PubMed Central

    Orengo, Jamie Marie; Leliwa-Sytek, Aleksandra; Evans, James E.; Evans, Barbara; van de Hoef, Diana; Nyako, Marian; Day, Karen; Rodriguez, Ana

    2009-01-01

    Background Malaria triggers a high inflammatory response in the host that mediates most of the associated pathologies and contributes to death. The identification of pro-inflammatory molecules derived from Plasmodium is essential to understand the mechanisms of pathogenesis and to develop targeted interventions. Uric acid derived from hypoxanthine accumulated in infected erythrocytes has been recently proposed as a mediator of inflammation in rodent malaria. Methods and Findings We found that human erythrocytes infected with Plasmodium falciparum gradually accumulate hypoxanthine in their late stages of development. To analyze the role of hypoxanthine-derived uric acid induced by P. falciparum on the inflammatory cytokine response from human blood mononuclear cells, cultures were treated with allopurinol, to inhibit uric acid formation from hypoxanthine, or with uricase, to degrade uric acid. Both treatments significantly reduce the secretion of TNF, IL-6, IL-1β and IL-10 from human cells. Conclusions and Significance Uric acid is a major contributor of the inflammatory response triggered by P. falciparum in human peripheral blood mononuclear cells. Since the inflammatory reaction induced by P. falciparum is considered a major cause of malaria pathogenesis, identifying the mechanisms used by the parasite to induce the host inflammatory response is essential to develop urgently needed therapies against this disease. PMID:19381275

  3. Inducible Arginase 1 Deficiency in Mice Leads to Hyperargininemia and Altered Amino Acid Metabolism

    PubMed Central

    St. Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D.

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  4. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis

    SciTech Connect

    Chang, Soo Im; Jin, Bohwan; Youn, Pilju; Park, Changbo; Park, Jung-Duck; Ryu, Doug-Young . E-mail: dyryu@snu.ac.kr

    2007-01-15

    Oxidative stress has been suggested to be a major cause of male reproductive failure. Here, we investigated whether arsenic, which impairs male reproductive functions in rodent models, acts by inducing oxidative stress. Male 8-week-old ICR mice were given drinking water containing 20 or 40 mg/l sodium arsenite with or without 0.75 or 1.5 g/l of the antioxidant ascorbic acid for 5 weeks. The arsenic-treated mice showed decreased epididymidal sperm counts and testicular weights compared to untreated mice. These effects were reversed in mice that were co-treated with ascorbic acid. Similarly, arsenic treatment lowered the activities of testicular 3{beta}-hydroxysteroid dehydrogenase (HSD) and 17{beta}-HSD, which play important roles in steroidogenesis, and this was reversed by co-treatment with ascorbic acid. The testicles of arsenic-treated mice had decreased glutathione (GSH) levels (which correlate inversely with the degree of cellular oxidative stress) and elevated levels of protein carbonyl (a marker of oxidative damage to tissue proteins). Ascorbic acid co-treatment reversed both of these effects. Thus, ascorbic acid blocks both the adverse effects of arsenic on male reproductive functions and the arsenic-induced testicular oxidative changes. These observations support the notion that arsenic impairs male reproductive function by inducing oxidative stress.

  5. Prevention of photocarcinogenesis and UV-induced immunosuppression in mice by topical tannic acid.

    PubMed

    Gensler, H L; Gerrish, K E; Williams, T; Rao, G; Kittelson, J

    1994-01-01

    Topical application of tannic acid, a phenolic antioxidant derived from plants, was found to inhibit the cutaneous carcinogenesis and the immunosuppression induced by ultraviolet B (UVB) irradiation with no visible toxicity. BALB/cAnNTacfBR mice were treated with 200 micrograms of tannic acid three times weekly for two weeks before UV treatments began and throughout the experiment. UVB irradiation consisted of five 30-minute exposures per week to banks of six FS40 Westinghouse sunlamps. In the photocarcinogenesis study, mice received a total dose of approximately 1.09 x 10(6) J/m2. Skin cancer incidence in UV-irradiated mice was 75% at 26 weeks after the first UV exposure; tannic acid reduced this to 42%. Immunosuppression induced by UVB irradiation normally prevents the host from rejecting antigenic syngeneic UV-induced tumors. Immunosuppression in these experiments was measured by a passive transfer assay. Tumor challenges grew to an average of 88 +/- 20, 36 +/- 11, and 20 +/- 8 mm2 in naive recipients of splenocytes from UVB-irradiated mice, nonirradiated control mice, and UVB-irradiated mice treated with tannic acid, respectively. Thus topical tannic acid treatment prevented the transfer of enhanced tumor susceptibility with splenocytes from UVB-irradiated mice.

  6. Phytic acid suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum.

    PubMed

    Obata, Toshio

    2003-07-18

    The present study examined the antioxidant effect of phytic acid on iron (II)-enhanced hydroxyl radical (*OH) generation induced by 1-methyl-4-phenylpyridinium ion (MPP(+)) in the extracellular fluid of rat striatum. Rats were anesthetized, and sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was infused through a microdialysis probe to detect the generation of *OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Phytic acid (100 microM) did not significantly decrease the levels of MPP(+)-induced *OH formation trapped as 2,3-DHBA. To confirm the generation of *OH by the Fenton-type reaction, iron (II) was infused through a microdialysis probe. Introduction of iron (II) (10 microM) enhanced MPP(+) induced *OH generation. However, phytic acid significantly suppressed iron (II)-enhanced *OH formation after MPP(+) treatment (n=6, P<0.05). These results suggest that the antiradical effect of phytic acid occurs by chelating iron required for the MPP(+)-enhanced *OH generation via the Fenton-type reaction.

  7. APOPTOSIS AND PROLIFERATION DURING DICHLOROACETIC ACID (DCA) INDUCED HEPTACELLULAR CARCINOGENESIS IN THE F344 MALE RAT

    EPA Science Inventory

    Apoptosis and Proliferation During DicWoroacetic Acid (DCA) Induced Hepatocellular
    Carcinogenesis in the F344 Male Rat

    Chlorine, introduced into public drinking \\\\'ater supplies for disinfection, can react with organic compounds in surface waters to form toxic by-prod...

  8. Dithiolopyrrolone antibiotic formation induced by adding valeric acid to the culture broth of Saccharothrix algeriensis.

    PubMed

    Merrouche, Rabiâa; Bouras, Noureddine; Coppel, Yannick; Mathieu, Florence; Monje, Marie-Carmen; Sabaou, Nasserdine; Lebrihi, Ahmed

    2010-06-25

    Three new antibiotics were isolated from the fermentation broth of Saccharothrix algeriensis NRRL B-24137 and characterized as the dithiolopyrrolone derivatives valerylpyrrothine (1), isovalerylpyrrothine (2), and formylpyrrothine (3) as well as the known antibiotic aureothricin. The production of the dithiolopyrrolone derivatives was induced by adding valeric acid to the culture medium. The compounds exhibited moderate antimicrobial activity in vitro.

  9. Breast Cancer Prevention by Fatty Acid Binding Protein MRG-Induced Pregnancy Like Mammary Gland Differentiation

    DTIC Science & Technology

    2005-08-01

    Annual Summary 3. DATES COVERED (From - To) 1 AUG 2004 - 31 JUL 2005 4. TITLE AND SUBTITLE Breast Cancer Prevention by Fatty Acid Binding Protein...differentiation. Overexpression of MRG in human breast cancer cells induced differentiation with changes in cellular morphology and a significant increase

  10. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid

    SciTech Connect

    Qi Xinming; Cai Yan; Gong Likun; Liu Linlin; Chen Fangping; Xiao Ying; Wu Xiongfei; Li Yan; Xue Xiang |; Ren Jin . E-mail: cdser_simm@mail.shcnc.ac.cn

    2007-07-01

    Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca{sup 2+}, AAI caused mitochondrial swelling, leakage of Ca{sup 2+}, membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid.

  11. Inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA methylation by ellagic acid.

    PubMed Central

    Dixit, R; Gold, B

    1986-01-01

    Ellagic acid, a naturally occurring plant phenol, inhibits the activity of the direct-acting mutagen N-methyl-N-nitrosourea (MeNU) in Salmonella typhimurium TA100. Ellagic acid at 0.10, 0.25, 0.50, and 1.00 mM inhibited the mutagenicity of MeNU (0.40 mM) by 3%, 13%, 45%, and 60%, respectively. Ellagic acid (3 mM) also inhibited the mutagenic activity of N,N-dimethylnitrosamine (25-200 mM) in the presence of pyrazole-induced rat liver fraction S-9. The effect of ellagic acid on DNA methylation was studied by incubating 0, 0.72, 1.32, 2.64, and 6.60 mM ellagic acid with DNA (0.9 mM nucleotide) and [3H]MeNU (0.66 mM). HPLC analysis of DNA hydrolysates showed that ellagic acid caused a dose-dependent 36-84% decrease in O6-methylguanine but only a 20% decrease in the 7-methylguanine adduct. Under conditions where methylation at the O6 position of guanine in double-stranded DNA was inhibited 65% by ellagic acid, no significant inhibition of either O6- or 7-methylguanine formation was detected in single-stranded DNA. Affinity-binding studies revealed that [3H]ellagic acid binds equally to double-stranded or single-stranded DNA but that poly(dA X dT) binds 1.5 times as much ellagic acid as does poly(dG X dC). The binding of ellagic acid to DNA is dependent on the concentration of both ellagic acid and DNA. The specific inhibition of O6-methylguanine formation only in double-stranded DNA and the relatively low inhibition of 7-methylguanine formation rule out the possibility that ellagic acid prevents DNA alkylation by scavenging the electrophilic intermediate generated in the hydrolysis of MeNU. The results suggest that ellagic acid inhibition of MeNU-induced mutagenicity is due to specific inhibition of methylation at the O6 position of guanine through an ellagic acid-duplex DNA affinity-binding mechanism. PMID:3464940

  12. Taurocholic Acid Prevents Biliary Damage Induced by Hepatic Artery Ligation in Cholestatic Rats

    PubMed Central

    Glaser, Shannon; Onori, Paolo; Gaudio, Eugenio; Ueno, Yoshiyuki; Pannarale, Luigi; Franchitto, Antonio; Francis, Heather; Mancinelli, Romina; Carpino, Guido; Venter, Julie; White, Mellanie; Kopriva, Shelley; Vetuschi, Antonella; Sferra, Roberta; Alpini, Gianfranco

    2010-01-01

    Background Ischemic injury by hepatic artery ligation (HAL) during obstructive cholestasis induced by bile duct ligation (BDL) results in bile duct damage, which can be prevented by administration of VEGF-A. The potential regulation of VEGF and VEGF receptor expression and secretion by bile acids in BDL with HAL is unknown. Aims We evaluated whether taurocholic acid (TC) can prevent HAL-induced cholangiocyte damage via the alteration of VEGFR-2 and/or VEGF-A expression. Methods Utilizing BDL, BDL+TC, BDL+HAL, BDL+HAL+TC, and BDL+HAL+wortmannin+TC treated rats, we evaluated cholangiocyte apoptosis, proliferation, and secretion as well VEGF-A and VEGFR-2 expression by immunohistochemistry. In vitro, we evaluated the effects of TC on cholangiocyte secretion of VEGF-A and the dependence of TC-induced proliferation on the activity of VEGFR-2. Results In BDL rats with HAL, chronic feeding of TC prevented HAL-induced loss of bile ducts and HAL-induced decreased cholangiocyte secretion. TC also prevented HAL-inhibited VEGF-A and VEGFR-2 expression in liver sections and HAL-induced circulating VEGF-A levels, which were blocked by wortmannin administration. In vitro, TC stimulated increased VEGF-A secretion by cholangiocytes, which was blocked by wortmannin and stimulated cholangiocyte proliferation that was blocked by VEGFR-2 kinase inhibitor. Conclusion TC prevented HAL-induced biliary damage by upregulation of VEGF-A expression. PMID:20303838

  13. Protective effect of oleanolic acid on oxidized-low density lipoprotein induced endothelial cell apoptosis.

    PubMed

    Cao, Jianhua; Li, Guanghui; Wang, Meizhi; Li, Hui; Han, Zhiwu

    2015-10-01

    Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a naturally-occurring triterpenoid with various promising pharmacological properties. The present study was conducted to determine the protective effects of OA against oxidized low-density lipoprotein (ox-LDL) induced endothelial cell apoptosis and the possible underlying mechanisms. Our results showed that ox-LDL significantly decreased cell viability and induced apoptosis in human umbilical vein endothelial cells (HUVECs). OA in the co-treatment showed a protective effect against ox-LDL induced loss in cell viability and an increase in apoptosis, which was associated with the modulating effect of OA on ox-LDL induced hypoxia-inducible factor 1α(HIF-1α) expression. Moreover, our results showed that the modulating effect of OA against ox-LDL induced HIF-1α expression was obtained via inhibition of lipoprotein receptor 1 (LOX-1)/reactive oxygen species (ROS) signaling. Collectively, we suggested that the protective effect of OA against ox-LDL induced HUVEC apoptosis might, at least in part, be obtained via inhibition of the LOX-1/ROS/HIF-1α signaling pathway.

  14. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    PubMed Central

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  15. SCH 58261 differentially influences quinolinic acid-induced effects in striatal and in hippocampal slices.

    PubMed

    Tebano, Maria Teresa; Domenici, Maria Rosaria; Popoli, Patrizia

    2002-08-30

    The influence of the adenosine A(2A) receptor antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-trizolo[1,5-c] pyrimidine) (50, 200 nM, 1 microM) on quinolinic acid effects has been studied in rat striatal and hippocampal slices. Quinolinic acid induced disappearance of field potentials at concentrations of 500 microM and 2 mM in hippocampal and corticostriatal slices, respectively. We found that 1 microM SCH 58261 prevented quinolinic acid-induced field potential disappearance in corticostriatal but not in hippocampal slices. This finding demonstrates that the peculiar binding profile of SCH 58261 and the predominance in the hippocampus of "atypical" adenosine A(2A) receptor population (not recognized by SCH 58261) could have a functional relevance in the occurrence of region-specific neuroprotective effects.

  16. A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells.

    PubMed

    Tran, Daniel; Kadono, Takashi; Molas, Maria Lia; Errakhi, Rafik; Briand, Joël; Biligui, Bernadette; Kawano, Tomonori; Bouteau, François

    2013-03-01

    Ozone (O(3) ) is an air pollutant with an impact increasingly important in our industrialized world. It affects human health and productivity in various crops. We provide the evidences that treatment of Arabidopsis thaliana with O(3) results in ascorbate-derived oxalic acid production. Using cultured cells of A. thaliana as a model, here we further showed that oxalic acid induces activation of anion channels that trigger depolarization of the cell, increase in cytosolic Ca(2+) concentration, generation of reactive oxygen species and cell death. We confirmed that O(3) reacts with ascorbate in the culture, thus resulting in production of oxalic acid and this could be part of the O(3) -induced signalling pathways that trigger programmed cell death.

  17. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Ludovico, Paula; Sansonetty, Filipe; Silva, Manuel T; Côrte-Real, Manuela

    2003-03-01

    Here we show that 320-800 mM acetic acid induces in Zygosaccharomyces bailii a programmed cell death (PCD) process that is inhibited by cycloheximide, is accompanied by structural and biochemical alterations typical of apoptosis, and occurs in cells with preserved mitochondrial and plasma membrane integrity (as revealed by rhodamine 123 (Rh123) and propidium iodide (PI) staining, respectively). Mitochondrial ultrastructural changes, namely decrease of the cristae number, formation of myelinic bodies and swelling were also seen. Exposure to acetic acid above 800 mM resulted in killing by necrosis. The occurrence of an acetic acid-induced active cell death process in Z. bailii reinforces the concept of a physiological role of the PCD in the normal yeast life cycle.

  18. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll.

  19. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  20. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.

    PubMed

    Sazanova, Katerina; Osmolovskaya, Natalia; Schiparev, Sergey; Yakkonen, Kirill; Kuchaeva, Ludmila; Vlasov, Dmitry

    2015-04-01

    Heavy metals, Zn and Cu, in high concentration (2 mM for Zn and 0.5 mM for Cu) have some inhibiting effect on the growth of Aspergillus niger and Penicillium citrinum. Toxic effects of these metals considerably depend on cultivation conditions including nitrogen sources, pH of nutrient media, and its consistency (presence or absence of agar). In general, nitrate media provides less inhibiting effect on fungal growth under heavy metal exposure than ammonium-containing media. Adding of Zn in nitrate media induces oxalic acid production by fungi. Importance of oxalic acid production in detoxification of heavy metals is confirmed by the formation of Zn-containing crystals in fungal cultures. Cu bringing to the cultural media had no stimulating effect on oxalic acid production as well as no copper-containing crystals were observed. But proceeding from essential increase in oxalic acid production during a long-term fungi adaptation to Cu, it may be proposed that oxalic acid plays some functional role in Cu tolerance of fungi as well. It may be concluded that the role of organic acids and oxalate, in particular, in fungi tolerance and adaptation to heavy metals can be determined by the nature of the metal and its ability to form stable complexes with an acid anion. Stimulating effect of metals on acid production is not universal for all species of fungi and largely depends on metal concentration, nitrogen form in a medium, and other cultivation conditions.

  1. Amino acid- and lipid-induced insulin resistance in rat heart: molecular mechanisms.

    PubMed

    Terruzzi, Ileana; Allibardi, Sonia; Bendinelli, Paola; Maroni, Paola; Piccoletti, Roberta; Vesco, Flavio; Samaja, Michele; Luzi, Livio

    2002-04-25

    Lipids compete with glucose for utilization by the myocardium. Amino acids are an important energetic substrate in the heart but it is unknown whether they reduce glucose disposal. The molecular mechanisms by which lipids and amino acids impair insulin-mediated glucose disposal in the myocardium are unknown. We evaluated the effect of lipids and amino acids on the insulin stimulated glucose uptake in the isolated rat heart and explored the involved target proteins. The hearts were perfused with 16 mM glucose alone or with 6% lipid or 10% amino acid solutions at the rate of 15 ml/min. After 1 h of perfusion (basal period), insulin (240 nmol/l) was added and maintained for an additional hour. Both lipids and amino acids blocked the insulin effect on glucose uptake (P<0.01) and reduced the activity of the IRSs/PI 3-kinase/Akt/GSK3 axis leading to the activation of glucose transport and glycogen synthesis. Amino acids, but not lipids, increased the activity of the p70 S6 kinase leading to the stimulation of protein synthesis. Amino acids induce myocardial insulin resistance recruiting the same molecular mechanisms as lipids. Amino acids retain an insulin-like stimulatory effect on p70 S6 kinase, which is independent from the PI 3-Kinase downstream effectors.

  2. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  3. Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses1[W][OA

    PubMed Central

    Zarate, Sonia I.; Kempema, Louisa A.; Walling, Linda L.

    2007-01-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. PMID:17189328

  4. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.

    PubMed

    Zarate, Sonia I; Kempema, Louisa A; Walling, Linda L

    2007-02-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF.

  5. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    PubMed Central

    Zhou, Xinhua; Zhu, Longjun; Wang, Liang; Guo, Baojian; Zhang, Gaoxiao; Sun, Yewei; Zhang, Zaijun; Lee, Simon Ming-Yuen; Yu, Pei; Wang, Yuqiang

    2015-01-01

    Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities. PMID:26557222

  6. Identification of jasmonic acid and its methyl ester as gum-inducing factors in tulips.

    PubMed

    Skrzypek, Edyta; Miyamoto, Kensuke; Saniewski, Marian; Ueda, Junichi

    2005-02-01

    The purpose of this study was to identify endogenous factors that induce gummosis and to show their role in gummosis in tulip (Tulipa gesneriana L. cv. Apeldoorn) stems. Using procedures to detect endogenous factors that induce gum in the stem of tulips, jasmonic acid (JA) and methyl jasmonate (JA-Me) were successfully identified using gas-liquid chromatography-mass spectrometry. Total amounts of JA and JA-Me designated as jasmonates in tulip stems were also estimated at about 70-80 ng/g fresh weight, using deuterium-labeled jasmonates as internal standards. The application of JA and JA-Me as lanolin pastes substantially induced gums in tulip stems with ethylene production. The application of ethephon, an ethylene-generating compound, however, induced no gummosis although it slightly affected jasmonate content in tulip stems. These results strongly suggest that JA and JA-Me are endogenous factors that induce gummosis in tulip stems.

  7. Uncoupling protein 2 regulates palmitic acid-induced hepatoma cell autophagy.

    PubMed

    Lou, Jiaxin; Wang, Yunjiao; Wang, Xuejiang; Jiang, Ying

    2014-01-01

    Mitochondrial uncoupling protein 2 (UCP2) is suggested to have a role in the development of nonalcoholic steatohepatitis (NASH). However, the mechanism remains unclear. Autophagy is an important mediator of many pathological responses. This study aims to investigate the relationship between UCP2 and hepatoma cells autophagy in palmitic acid- (PA-) induced lipotoxicity. H4IIE cells were treated with palmitic acid (PA), and cell autophagy and apoptosis were examined. UCP2 expression, in association with LC3-II and caspase-3, which are indicators of cell autophagy and apoptosis, respectively,was measured. Results demonstrated that UCP2 was associated with autophagy during PA-induced hepatic carcinoma cells injury. Tests on reactive oxygen species (ROS) showed that UCP2 overexpression strongly decreases PA-induced ROS production and apoptosis. Conversely, UCP2 inhibition by genipin or UCP2 mRNA silencing enhances PA-induced ROS production and apoptosis. Autophagy partially participates in this progress. Moreover, UCP2 was associated with ATP synthesis during PA-induced autophagy. In conclusion, increasing UCP2 expression in hepatoma cells may contribute to cell autophagy and antiapoptotic as result of fatty acid injury. Our results may bring new insights for potential NASH therapies.

  8. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid.

    PubMed

    Gonugunta, Vijay K; Srivastava, Nupur; Puli, Mallikarjuna R; Raghavendra, Agepati S

    2008-11-01

    Abscisic acid (ABA) raised the cytosolic pH and nitric oxide (NO) levels in guard cells while inducing stomatal closure in epidermis of Pisum sativum. Butyrate (a weak acid) reduced the cytosolic pH/NO production and prevented stomatal closure by ABA. Methylamine (a weak base) enhanced the cytosolic alkalinization and aggravated stomatal closure by ABA. The rise in guard cell pH because of ABA became noticeable after 6 min and peaked at 12 min, while NO production started at 9 min and peaked at 18 min. These results suggested that NO production was downstream of the rise in cytosolic pH. The ABA-induced increase in NO of guard cells and stomatal closure was prevented by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (cPTIO, a NO scavenger) and partially by N-nitro-L-Arg-methyl ester (L-NAME, an inhibitor of NO synthase). In contrast, cPTIO or L-NAME had only a marginal effect on the pH rise induced by ABA. Ethylene glycol tetraacetic acid (EGTA, a calcium chelator) prevented ABA-induced stomatal closure while restricting cytosolic pH rise and NO production. We suggest that during ABA-induced stomatal closure, a rise in cytosolic pH is necessary for NO production. Calcium may act upstream of cytosolic alkalinization and NO production, besides its known function as a downstream component.

  9. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis.

    PubMed

    Bell, E; Creelman, R A; Mullet, J E

    1995-09-12

    Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene.

  10. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells.

    PubMed

    Ignacio Barrasa, Juan; Olmo, Nieves; Pérez-Ramos, Pablo; Santiago-Gómez, Angélica; Lecona, Emilio; Turnay, Javier; Antonia Lizarbe, M

    2011-10-01

    The continuous exposure of the colonic epithelium to high concentrations of bile acids may exert cytotoxic effects and has been related to pathogenesis of colon cancer. A better knowledge of the mechanisms by which bile acids induce toxicity is still required and may be useful for the development of new therapeutic strategies. We have studied the effect of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) treatments in BCS-TC2 human colon adenocarcinoma cells. Both bile acids promote cell death, being this effect higher for CDCA. Apoptosis is detected after 30 min-2 h of treatment, as observed by cell detachment, loss of membrane asymmetry, internucleosomal DNA degradation, appearance of mitochondrial transition permeability (MPT), and caspase and Bax activation. At longer treatment times, apoptosis is followed in vitro by secondary necrosis due to impaired mitochondrial activity and ATP depletion. Bile acid-induced apoptosis is a result of oxidative stress with increased ROS generation mainly by activation of plasma membrane enzymes, such as NAD(P)H oxidases and, to a lower extent, PLA2. These effects lead to a loss of mitochondrial potential and release of pro-apoptotic factors to the cytosol, which is confirmed by activation of caspase-9 and -3, but not caspase-8. This initial apoptotic steps promote cleavage of Bcl-2, allowing Bax activation and formation of additional pores in the mitochondrial membrane that amplify the apoptotic signal.

  11. Characteristics of weak base-induced vacuoles formed around individual acidic organelles.

    PubMed

    Hiruma, Hiromi; Kawakami, Tadashi

    2011-01-01

    We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.

  12. Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice.

    PubMed

    Yan, Sheng-Lei; Wang, Zhi-Hong; Yen, Hsiu-Fang; Lee, Yi-Ju; Yin, Mei-Chin

    2016-12-01

    Ethanol was used to induce acute hepatotoxicity in mice. Effects of cinnamic acid (CA) and syringic acid (SA) post-intake for hepatic recovery from alcoholic injury was investigated. Ethanol treated mice were supplied by CA or SA at 40 or 80 mg/kg BW/day for 5 days. Results showed that ethanol stimulated protein expression of CYP2E1, p47(phox), gp91(phox), cyclooxygenase-2 and nuclear factor kappa B in liver. CA or SA post-intake restricted hepatic expression of these molecules. Ethanol suppressed nuclear factor erythroid 2-related factor (Nrf2) expression, and CA or SA enhanced Nrf2 expression in cytosolic and nuclear fractions. Ethanol increased the release of reactive oxygen species, oxidized glutathione, interleukin-6, tumor necrosis factor-alpha, nitric acid and prostaglandin E2. CA or SA lowered hepatic production of these oxidative and inflammatory factors. Histological data revealed that ethanol administration caused obvious foci of inflammatory cell infiltration, and CA or SA post-intake improved hepatic inflammatory infiltration. These findings support that cinnamic acid and syringic acid are potent nutraceutical agents for acute alcoholic liver disease therapy. However, potential additive or synergistic benefits of cinnamic and syringic acids against ethanol-induced hepatotoxicity need to be investigated.

  13. Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence.

    PubMed

    Li, Yuan; Chang, Ying; Zhao, Chongchong; Yang, Hailian; Ren, Dongtao

    2016-08-01

    Leaf senescence is the final leaf developmental process that is regulated by both intracellular factors and environmental conditions. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to play important roles in regulating leaf senescence; however, the component(s) downstream of the MAPK cascades in regulating leaf senescence are not fully understood. Here we showed that the transcriptions of ZmMEK1, ZmSIMK1, and ZmMPK3 were induced during dark-induced maize leaf senescence. Furthermore, in-gel kinase analysis revealed the 42 kDa MAPK was activated. ZmMEK1 interacted with ZmSIMK1 in yeast and maize mesophyll protoplasts and ZmSIMK1 was activated by ZmMEK1 in vitro. Expression of a dominant negative mutant of ZmMEK1 in Arabidopsis transgenic plants induced salicylic acid (SA) accumulation and SA-dependent leaf senescence. ZmMEK1 interacted with Arabidopsis MPK4 in yeast and activated MPK4 in vitro. SA treatment accelerated dark-induced maize leaf senescence. Moreover, blockage of MAPK signaling increased endogenous SA accumulation in maize leaves. These findings suggest that ZmMEK1-ZmSIMK1 cascade and its modulating SA levels play important roles in regulating leaf senescence.

  14. Geraniol attenuates hydrogen peroxide-induced liver fatty acid alterations in male rats

    PubMed Central

    Ozkaya, Ahmet; Sahin, Zafer; Gorgulu, Ahmet Orhan; Yuce, Abdurrauf; Celik, Sait

    2017-01-01

    Background: Hydrogen peroxide (H2O2) is an oxidant agent and this molecule naturally occurs in the body as a product of aerobic metabolism. Geraniol is a plant-derived natural antioxidant. The aim of this study was to determine the role of geraniol on hepatic fatty acids alterations following H2O2-induced oxidative stress in male rats. Methods: After randomization, male Wistar rats were divided into four groups (n = 7 each group). Geraniol (50 mg/kg, dissolved in corn oil) and H2O2 (16 mg/kg, dissolved in distilled water) were administered by an intraperitoneal injection. Administrations were performed during 30 days with 1-day interval. Results: Administration of H2O2 resulted with a significant increase in malondialdehyde (MDA) and a significant decrease in glutathione (GSH) peroxidase glutathione level; geraniol restored its effects on liver. However, hepatic catalase (CAT) activities were significantly higher in H2O2, geraniol, and geraniol+H2O2 groups than control group. The ratio of hepatic total saturated fatty acids increased in H2O2-treated animals compared with control. In addition, hepatic total unsaturated fatty acids reduced in H2O2 group compared with control. The percentages of both hepatic total saturated and unsaturated fatty acids were not different between geraniol+H2O2 and control groups. Conclusions: H2O2-induced oxidative stress may affect fatty acid composition in liver and body. Geraniol can partly restore oxidative hepatic damage because it cannot completely reverse the H2O2-induced increase in hepatic CAT activities. Moreover, this natural compound can regulate hepatic total saturated and unsaturated fatty acids percentages against H2O2-induced alterations. PMID:28163957

  15. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    PubMed

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P < 0.05). By comparison, neither mixed saturated fatty acid (100, 250, or 500 microM for acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  16. Niflumic acid, a TRPV1 channel modulator, ameliorates stavudine-induced neuropathic pain.

    PubMed

    Marwaha, Lovish; Bansal, Yashika; Singh, Raghunath; Saroj, Priyanka; Sodhi, Rupinder Kaur; Kuhad, Anurag

    2016-12-01

    TRP channels have been discovered as a specialized group of somatosensory neurons involved in the detection of noxious stimuli. Desensitization of TRPV1 located on dorsal root and trigeminal ganglia exhibits analgesic effect and makes it potential therapeutic target for treatment of neuropathic pain. With this background, the present study was aimed to investigate the protective effect of niflumic acid, a TRPV1 modulator, on stavudine (STV)-induced neuropathic pain in rats. Stavudine (50 mg/kg) was administered intravenously via tail vein in rats to induce neuropathic pain. Various behavioral tests were performed to access neuropathic pain (hyperalgesia and allodynia) on 7th, 14th, 21st, and 28th days. Electrophysiology (motor nerve conduction velocity; MNCV) and biochemical estimations were conducted after 28th day. Niflumic acid (10, 15, and 20 mg/kg) was administered intraperitoneally and evaluated against behavioral, electrophysiological (MNCV), and biochemical alterations in stavudine-treated rats. Pregabalin (30 mg/kg) was taken as reference standard and administered intraperitoneally. Four weeks after stavudine injection, rats developed behavioral, electrophysiological (MNCV), and biochemical (oxidative, nitrosative stress, and inflammatory cytokines, TRPV1) alterations. Niflumic acid restored core and associated symptoms of peripheral neuropathy by suppressing oxidative-nitrosative stress, inflammatory cytokines (TNF-α, IL-1β) and TRPV1 level in stavudine-induced neuropathic pain in rats. Pharmacological efficacy of niflumic acid (20 mg/kg) was equivalent to pregabalin (30 mg/kg). In conclusion, niflumic acid attenuates STV-induced behavioral, electrophysiological and biochemical alterations by manipulating TRP channel activity in two manners: (1) direct antagonistic action against TRPV1 channels and (2) indirect inhibition of TRP channels by blocking oxidative and inflammatory surge. Therefore, NA can be developed as a potential pharmacotherapeutic

  17. CA3 Synaptic Silencing Attenuates Kainic Acid-Induced Seizures and Hippocampal Network Oscillations123

    PubMed Central

    Yu, Lily M. Y.; Wintzer, Marie E.

    2016-01-01

    Abstract Epilepsy is a neurological disorder defined by the presence of seizure activity, manifest both behaviorally and as abnormal activity in neuronal networks. An established model to study the disorder in rodents is the systemic injection of kainic acid, an excitatory neurotoxin that at low doses quickly induces behavioral and electrophysiological seizures. Although the CA3 region of the hippocampus has been suggested to be crucial for kainic acid-induced seizure, because of its strong expression of kainate glutamate receptors and its high degree of recurrent connectivity, the precise role of excitatory transmission in CA3 in the generation of seizure and the accompanying increase in neuronal oscillations remains largely untested. Here we use transgenic mice in which CA3 pyramidal cell synaptic transmission can be inducibly silenced in the adult to demonstrate CA3 excitatory output is required for both the generation of epileptiform oscillatory activity and the progression of behavioral seizures. PMID:27022627

  18. Neuroprotective activity of L-theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum.

    PubMed

    Thangarajan, Sumathi; Deivasigamani, Asha; Natarajan, Suganya Sarumani; Krishnan, Prasanna; Mohanan, Sandhya Koombankallil

    2014-09-01

    The present study has been designed to investigate the protective effect of L-theanine against 3-nitropropionic acid (3-NP)-induced Huntington's disease (HD)-like symptoms in rats. The present experimental protocol design includes systemic 3-NP acid (10 mg/kg intraperitonially) treatment for 14 d. L-theanine (100 and 200 mg/kg) was given orally, once a day, 1 h before 3-NP acid treatment for 14 d. Body weight and behavioral parameters (Morris water maze, open field test (OFT), forced swim test (FST) and rotarod activity) were assessed on 1st, 5th, 10th and 15th day post-3-NP acid administration. Malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels and mitochondrial enzyme complex. Succinate dehydrogenase (SDH) were measured on the 15th day in the striatum. Systemic 3-NP acid treatment significantly reduced body weight, locomotor activity and oxidative defense. The mitochondrial enzyme activity was also significantly impaired in the striatum region in 3-NP acid-treated animals. L-theanine (100 and 200 mg/kg b.wt.) treatment significantly attenuated the impairment in behavioral, biochemical and mitochondrial enzyme activities as compared to the 3-NP acid-treated group. The results of the present study suggest that pretreatment with L-theanine significantly attenuated 3-NP induced oxidative stress and restored the decreased SOD, GSH, CAT and SDH activity. It also decreased the neuronal damage as evidenced by histopathological analysis of striatum. Based on the above study, it has been proved that L-theanine has neuroprotective activity against 3-NP induced neurotoxicity.

  19. Phytic acid suppresses ischemia-induced hydroxyl radical generation in rat myocardium.

    PubMed

    Obata, Toshio; Nakashima, Michiko

    2016-03-05

    The present study examined whether ischemia-reperfusion-induced hydroxyl radical (·OH) generation was attenuated by myo-inositol hexaphosphoric acid (phytic acid). A flexibly mounted microdialysis technique was used to detect the generation of ·OH in in vivo rat hearts. To measure the level of ·OH, sodium salicylate in Ringer's solution (0.5mM or 0.5 nmol/μl/min) was infused directly through a microdialysis probe to detect the generation of ·OH as reflected by the nonenzymatic formation of 2,3-dihydroxybenzoic acid (2,3-DHBA). To confirm the generation of ·OH by Fenton-type reaction, iron(II) was infused through a microdialysis probe. A positive linear correlation between iron(II) and the formation of 2,3-DHBA (R(2)=0.983) was observed. However, the level of 2,3-DHBA in norepinephrine (100 μM) plus phytic acid (100 μM) treated group were significantly lower than those observed in norepinephrine-only-treated group (n=6, *p<0.05). To examine the effect of phytic acid on ischemia-reperfusion-induced ·OH generation, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with phytic acid. These results suggest that phytic acid is associated with antioxidant effect due to the suppression of iron-induced ·OH generation.

  20. Ethacrynic acid and 1 alpha,25-dihydroxyvitamin D3 cooperatively inhibit proliferation and induce differentiation of human myeloid leukemia cells.

    PubMed

    Makishima, M; Honma, Y

    1996-09-01

    The active form of vitamin D, 1 alpha,25-dihydroxyvitamin D3 (VD3), inhibits proliferation and induces differentiation of leukemia cells, but its clinical use is limited by the adverse effect of hypercalcemia. In this study we found that the loop diuretic ethacrynic acid, which is used to treat hypercalcemia, enhanced the differentiation of human leukemia cells induced by VD3. Ethacrynic acid alone inhibited the proliferation of human promyelocytic HL-60 cells while only slightly increasing differentiation markers such as nitroblue tetrazolium (NBT)-reducing and lysozyme activities. Ethacrynic acid effectively enhanced the growth-inhibiting action of VD3. In the presence of ethacrynic acid, VD3 increased the NBT-reducing and lysozyme activities and the CD11b expression of HL-60 cells more effectively than VD3 alone. Other loop diuretics, furosemide and bumetanide, also enhanced the differentiation of HL-60 cells induced by VD3, but to a lesser extent than ethacrynic acid. The differentiation of HL-60 cells induced by all-trans retinoic acid, dimethyl sulfoxide or phorbol-12-myristate 13-acetate was also enhanced by ethacrynic acid with increasing NBT-reducing and lysozyme activities and the expression of CD11b or CD14 surface antigen. Morphologically, ethacrynic acid enhanced the monocytic differentiation of HL-60 cells induced by VD3 and phorbol ester and the granulocytic differentiation by retinoic acid and dimethyl sulfoxide. Other human myelomonocytic leukemia ML-1, U937, P39/TSU and P31/FUJ cells were induced to differentiate by VD3 and this was also enhanced by ethacrynic acid. The long-term culture of HL-60 cells showed that ethacrynic acid plus VD3 induced the complete growth arrest of HL-60 cells. Therefore ethacrynic acid, which is used to treat hypercalcemia, enhanced the proliferation-inhibiting and differentiation-inducing activities of VD3 and the combination of ethacrynic acid and VD3 may be useful in therapy for myeloid leukemia.

  1. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells.

    PubMed

    Tian, Lin-Lin; Wang, Xue-Jun; Sun, Yu-Ning; Li, Chun-Rong; Xing, Ya-Ling; Zhao, Hai-Bao; Duan, Ming; Zhou, Zhe; Wang, Sheng-Qi

    2008-01-01

    Oxidative stress caused by dopamine may play an important role in the pathogenesis of Parkinson's disease. Salvianolic acid B is an antioxidant derived from the Chinese herb, Salvia miltiorrhiza. In this study, we investigated the neuroprotective effect of salvianolic acid B against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells. Pretreatment of SH-SY5Y cells with salvianolic acid B significantly reduced 6-hydroxydopamine-induced generation of reactive oxygen species, and prevented 6-hydroxydopamine-induced increases in intracellular calcium. Our data demonstrated that 6-hydroxydopamine-induced apoptosis was reversed by salvianolic acid B treatment. Salvianolic acid B reduced the 6-hydroxydopamine-induced increase of caspase-3 activity, and reduced cytochrome C translocation into the cytosol from mitochondria. The 6-hydroxydopamine-induced decrease in the Bcl-x/Bax ratio was prevented by salvianolic acid B. Additionally, salvianolic acid B decreased the activation of extracellular signal-regulated kinase and induced the activation of 6-hydroxydopamine-suppressed protein kinase C. These results indicate that the protective function of salvianolic acid B is dependent upon its antioxidative potential. Our results strongly suggest that salvianolic acid B may be effective in treating neurodegenerative diseases associated with oxidative stress.

  2. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis.

    PubMed

    Zhao, Hui; Qin, Hou-Ying; Cao, Lin-Feng; Chen, Yuan-Hua; Tan, Zhu-Xia; Zhang, Cheng; Xu, De-Xiang

    2015-01-05

    A recent report showed that unfolded protein response (UPR) signaling was activated during bleomycin (BLM)-induced pulmonary fibrosis. Phenylbutyric acid (PBA) is an endoplasmic reticulum (ER) chemical chaperone that inhibits the UPR signaling. The present study investigated the effects of PBA on BLM-induced epithelial-mesenchymal transition (EMT) and pulmonary fibrosis. For induction of pulmonary fibrosis, all mice except controls were intratracheally injected with a single dose of BLM (3.0mg/kg). In PBA+BLM group, mice were intraperitoneally injected with PBA (150mg/kg) daily. Three weeks after BLM injection, EMT was measured and pulmonary fibrosis was evaluated. BLM-induced pulmonary UPR activation was inhibited by PBA. Moreover, BLM-induced pulmonary nuclear factor kappa B (NF-κB) p65 activation was blocked by PBA. In addition, BLM-induced up-regulation of pulmonary inflammatory cytokines was repressed by PBA. Further analysis showed that BLM-induced α-smooth muscle actin (α-SMA), a marker for EMT, was significantly attenuated by PBA. Moreover, BLM-induced pulmonary collagen (Col1α1 and Col1α2) was obviously inhibited by PBA. Importantly, BLM-induced pulmonary fibrosis, as determined using Sirius red staining, was obviously alleviated by PBA. Taken together, these results suggest that PBA alleviates ER stress-mediated EMT in the pathogenesis of BLM-induced pulmonary fibrosis.

  3. Folic acid supplementation attenuates hyperhomocysteinemia-induced preeclampsia-like symptoms in rats☆

    PubMed Central

    Wang, Jun; Cui, Yan; Ge, Jing; Ma, Meijing

    2012-01-01

    Folic acid participates in the metabolism of homocysteine and lowers plasma homocysteine levels directly or indirectly. To establish a hyperhomocysteinemic pregnant rat model, 2 mL of DL-homocysteine was administered daily by intraperitoneal injection at a dose of 200 mg/kg from day 10 to day 19 of gestation. Folic acid was administered by intragastric administration at a dose of 20 mg/kg during the period of preeclampsia induction. Results showed that systolic blood pressure, proteinuria/creatinine ratio, and plasma homocysteine levels in the hyperhomocysteinemic pregnant rats increased significantly, and that body weight and brain weight of rat pups significantly decreased. Folic acid supplementation markedly reversed the above-mentioned abnormal changes of hyperhomocysteinemic pregnant rats and rat pups. These findings suggest that folic acid can alleviate the symptoms of hyperhomocysteinemia- induced preeclampsia in pregnant rats without influencing brain development of rat pups. PMID:25624824

  4. Ultraviolet-induced oxidation of ascorbic acid in a model juice system: identification of degradation products.

    PubMed

    Tikekar, Rohan V; Anantheswaran, Ramaswamy C; Elias, Ryan J; LaBorde, Luke F

    2011-08-10

    Degradation products of ultraviolet (UV-C, 254 nm) treated ascorbic acid (AA) are reported. Analysis by high-performance liquid chromatography-mass spectroscopy (HPLC-MS) conducted in a 0.5% malic acid model juice system (pH 3.3) demonstrated increased degradation of AA above untreated controls with concomitant increases in dehydroascorbic acid (DHA) and 2,3-diketogulonic acid (DKGA) levels. Electron spin resonance (ESR) spectroscopy studies, conducted in phosphate buffer (pH 7.0) to increase detection sensitivity, demonstrated that ascorbyl radical (AA•) formation occurs simultaneously with AA degradation. Consistent with a previous study in which UV treatments were shown to accelerate dark storage degradation, AA• radicals continued to form for up to 200 min after an initial UV treatment. Results from this study suggest that the mechanism for UV-induced degradation is the same as the general mechanism for metal-catalyzed oxidation of AA in juice.

  5. Amino acid composition of cadmium-binding protein induced in a marine diatom

    SciTech Connect

    Maita, Y.; Kawaguchi, S. )

    1989-09-01

    Organisms living in environments polluted with heavy metals develop tolerance against these contaminants. The tolerance has been attributed to the ability to synthesize metal binding substances. These recent findings imply metal binding complexes from animals and plants, although having very similar functional properties, may have entirely different amino acid compositions. Researchers reported that cadystin from fission yeast, Schizosaccharomyces pombe was composed of only glutamic acid, cysteine, and glycine. A year later, a heavy metal binding substance was isolated from Rauwolfia serpetina which contains only Glu, Cys, and Gly. Heavy metal binding complexes isolated from the water hyacinth and morning glory Datura innoxia also showed an amino acid composition similar to cadystin or phytochelatin. In this study, the cadmium binding protein induced in the marine diatom, Phaeodactylum tricornutum, was isolated and purified and its amino acid composition determined.

  6. The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Nosova, D. A.; Zarochentseva, E. P.; Vysotskaya, S. O.; Klemesheva, N. A.; Korotkov, V. I.

    2014-12-01

    The luminescence of three derivatives of 2-(phenylamino)-benzoic acid (N-phenylanthranilic, mefenamic, and niflumic acids) in benzene solution, in the polycrystalline state, and in the hexamethylbenzene matrix is studied. In the crystalline state, these compounds exhibit intense aggregation-induced luminescence. An increase in luminescence is also observed in the impurity crystal. The hexamethylbenzene crystal lattice restricts the mobility of molecules, thus ensuring the rigidity of the molecular structure of acids, which decreases the efficiency of nonradiative electron energy degradation. The main reason for the increase in the luminescence intensity in the case of fixation in a crystalline matrix is the formation of intramolecular hydrogen bonds and dimers of acid molecules.

  7. Craniofacial abnormalities induced by retinoic acid: a preliminary histological and scanning electron microscopic (SEM) study.

    PubMed

    Emmanouil-Nikoloussi, E N; Goret-Nicaise, M; Foroglou, C H; Katsarma, E; Dhem, A; Dourov, N; Persaud, T V; Thliveris, J A

    2000-10-01

    Exogenous retinoic acid has been found to be teratogenic in animals and man. Craniofacial defects induced by retinoic acid have stimulated considerable research interest. The present report deals with scanning electron microscopical observations of the craniofacial region concurrent with histological examination of craniofacial dysmorphism induced in rat embryos following maternal treatment treated with varying dosages of all-trans-retinoic acid (tretinoin). Two groups of pregnant rats were treated with rat embryos exposed to retinoic acid suspended in corn oil (100 mg/kg b.w. on gestational day 11.5 and 50 mg/kg b.w. on gestational day 10, 11 and 12 respectively). A third group was treated with corn oil (vehicle) while a fourth group remained untreated. A wide spectrum of congenital abnormalities, including exophthalmos, microphthalmia and anophthalmia, maxillo-mandibular dysostosis, micrognathia of both maxilla and mandible, cleft palate, subdevelopment of ear lobe, preauricular tags and macroglossia, were observed in the offspring of retinoic acid treated animals. The abnormalities were both time and dosage dependent, and characteristic of Treacher Collins syndrome when retinoic-acid was administered on gestational day 11.5. In contrast, when retinoic acid was administered were on gestational days 10-12, the defects were similar to those seen in the first and second pharyngeal arch syndrome, as well as in the oculo-auriculo-vertebral spectrum. Whereas our data support the hypothesis that all-trans retinoic-acid disturbs growth and differentiation of several embryonic cell types essential for normal craniofacial development, its mechanism of action remains unclear.

  8. Exocrine pancreas ER stress is differentially induced by different fatty acids.

    PubMed

    Danino, Hila; Ben-Dror, Karin; Birk, Ruth

    2015-12-10

    Exocrine pancreas acinar cells have a highly developed endoplasmic reticulum (ER), accommodating their high protein production rate. Overload of dietary fat (typical to obesity) is a recognized risk factor in pancreatitis and pancreatic cancer. Dietary fat, especially saturated fat, has been suggested by others and us to induce an acinar lipotoxic effect. The effect of different dietary fatty acids on the ER stress response is unknown. We studied the effect of acute (24h) challenge with different fatty acids (saturated, mono and poly-unsaturated) at different concentrations (between 200 and 500µM, typical to normal and obese states, respectively), testing fat accumulation, ER stress indicators, X-box binding protein 1 (Xbp1) splicing and nuclear translocation, as well as unfolded protein response (UPR) transcripts and protein levels using exocrine pancreas acinar AR42J and primary cells. Acute exposure of AR42J cells to different fatty acids caused increased accumulation of triglycerides, dependent on the type of fat. Different FAs had different effects on ER stress: most notably, saturated palmitic acid significantly affected the UPR response, as demonstrated by altered Xbp1 splicing, elevation in transcript levels of UPR (Xbp, CHOP, Bip) and immune factors (Tnfα, Tgfβ), and enhanced Xbp1 protein levels and Xbp1 time-dependent nuclear translocation. Poly-unsaturated FAs caused milder elevation of ER stress markers, while mono-unsaturated oleic acid attenuated the ER stress response. Thus, various fatty acids differentially affect acinar cell fat accumulation and, apart from oleic acid, induce ER stress. The differential effect of the various fatty acids could have potential nutritional and therapeutic implications.

  9. Acetylsalicylic Acid Inhibits IL-18-Induced Cardiac Fibroblast Migration Through the Induction of RECK

    PubMed Central

    SIDDESHA, JALAHALLI M.; VALENTE, ANTHONY J.; SAKAMURI, SIVA S.V.P.; GARDNER, JASON D.; DELAFONTAINE, PATRICE; NODA, MAKOTO; CHANDRASEKAR, BYSANI

    2015-01-01

    The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18 induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18 induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Spl-mediated RECK suppression, mechanisms that required Nox4-dependent H2O2 generation. Notably, forced expression of RECK attenuated IL-18 induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18 induced H2O2 generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18 induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms. PMID:24265116

  10. Evidence in the formation of conjugated linoleic acids from thermally induced 9t12t linoleic acid: a study by gas chromatography and infrared spectroscopy.

    PubMed

    Christy, Alfred A

    2009-10-01

    Thermally induced isomerisation leading to the formation of conjugated linoleic acids (CLAs) has been observed for the first time during the thermal treatment of 9t12t fatty acid triacylglycerol, and methyl ester. Fifteen microlitre portions of the triacylglycerol sample containing 9t12t fatty acid (trilinoelaidin) were placed in micro glass ampoules and sealed under nitrogen, then subjected to thermal treatment at 250 degrees C. The glass ampoules were removed at regular time intervals, cut open, and the contents were analysed by infrared spectroscopy using a single reflectance attenuated total internal reflectance crystal accessory. The samples were then subjected to derivatisation into their methyl esters. The methyl esters of the isomerised fatty acids were analysed by gas chromatography. The same procedure was repeated with methyl ester samples containing 9t12t fatty acid (methyl linoelaidate). Each sample was subjected to infrared measurements and gas chromatographic analysis after appropriate dilution in heptane. The results show that the thermally induced isomerisation of 9t12t fatty acids from both triacylglycerol molecules and methyl esters give identical CLA profiles as those found for the thermally induced isomerisation of 9c12c fatty acids. The infrared spectrometry provides additional evidence confirming the formation of CLA acids during thermal treatment. A mechanism for the formation of the CLAs from 9t12t fatty acid molecules is also formulated for the first time. This mechanism complements the pathways of formation of CLAs from 9c12c fatty acids during thermal treatment.

  11. Humic acid inhibits HBV-induced autophagosome formation and induces apoptosis in HBV-transfected Hep G2 cells

    PubMed Central

    Pant, Kishor; Yadav, Ajay K.; Gupta, Parul; Rathore, Abhishek Singh; Nayak, Baibaswata; Venugopal, Senthil K.

    2016-01-01

    Hepatitis B Virus (HBV) utilizes several mechanisms to survive in the host cells and one of the main pathways being autophagosome formation. Humic acid (HA), one of the major components of Mineral pitch, is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. We hypothesized that HA could induce cell death and inhibit HBV-induced autophagy in hepatic cells. Incubation of Hep G2.2.1.5 cells (HepG2 cells stably expressing HBV) with HA (100 μM) inhibited both cell proliferation and autophagosome formation significantly, while apoptosis induction was enhanced. Western blot results showed that HA incubation resulted in decreased levels of beclin-1, SIRT-1 and c-myc, while caspase-3 and β-catenin expression were up-regulated. Western blot results showed that HA significantly inhibited the expression of HBx (3-fold with 50 μM and 5-fold with 100 μM) compared to control cells. When HA was incubated with HBx-transfected Hep G2 cells, HBx-induced autophagosome formation and beclin-1 levels were decreased. These data showed that HA induced apoptosis and inhibited HBV-induced autophagosome formation and proliferation in hepatoma cells. PMID:27708347

  12. Polyunsaturated fatty acid enrichment enhances endothelial cell-induced low-density-lipoprotein peroxidation.

    PubMed Central

    Mazière, C; Dantin, F; Conte, M A; Degonville, J; Ali, D; Dubois, F; Mazière, J C

    1998-01-01

    Oxidative modification of low-density lipoprotein (LDL) is an important feature in the initiation and progression of atherosclerosis. LDL modification by endothelial cells was studied after supplementation of the cells with oleic acid and polyunsaturated fatty acids (PUFA) of the n-6 and n-3 series. In terms of the lipid peroxidation product [thiobarbituric acid reactive substances (TBARS)] content and diene level of the LDL particle, oleic acid had no significant effect, and linoleic acid was poorly effective. Gamma linolenic acid (C18:3,n-6) and arachidonic acid (C20:4,n-6) increased by about 1.6-1.9-fold the cell-mediated LDL modification. PUFA from the n-3 series, alpha linolenic acid (C18:3,n-3), eicosapentaenoic acid (C20:5,n-3) and docosahexaenoic acid (C22:6,n-3), induced a less marked effect (1. 3-1.6-fold increase). The relative electrophoretic mobility of the LDL particle and its degradation by macrophages were enhanced in parallel. Concomitantly, PUFA stimulated superoxide anion secretion by endothelial cells. The intracellular TBARS content was also increased by PUFA. Comparison of PUFA from the two series indicates a good correlation between LDL oxidative modification, superoxide anion secretion and intracellular lipid peroxidation. The lipophilic antioxidant vitamin E decreased the basal as well as the PUFA-stimulated LDL peroxidation. These results indicate that PUFAs with a high degree of unsaturation of the n-6 and n-3 series could accelerate cell-mediated LDL peroxidation and thus aggravate the atherosclerotic process. PMID:9806884

  13. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity

    PubMed Central

    Van heusden, J; Van Ginckel, R; Bruwiere, H; Moelans, P; Janssen, B; Floren, W; van der Leede, B J; van Dun, J; Sanz, G; Venet, M; Dillen, L; Van Hove, C; Willemsens, G; Janicot, M; Wouters, W

    2002-01-01

    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC50-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg−1. In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action. British Journal of Cancer (2002) 86, 605–611. DOI: 10.1038/sj/bjc/6600056 www.bjcancer.com © 2002 Cancer Research UK PMID:11870544

  14. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity.

    PubMed

    Van Heusden, J; Van Ginckel, R; Bruwiere, H; Moelans, P; Janssen, B; Floren, W; van der Leede, B J; van Dun, J; Sanz, G; Venet, M; Dillen, L; Van Hove, C; Willemsens, G; Janicot, M; Wouters, W

    2002-02-12

    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC(50)-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg(-1). In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action.

  15. Jacaric acid and its octadecatrienoic acid geoisomers induce apoptosis selectively in cancerous human prostate cells: a mechanistic and 3-D structure-activity study.

    PubMed

    Gasmi, Jihane; Thomas Sanderson, J

    2013-06-15

    Plant-derived non-essential fatty acids are important dietary nutrients, and some are purported to have chemopreventive properties against various cancers, including that of the prostate. In this study, we determined the ability of seven dietary C-18 fatty acids to cause cytotoxicity and induce apoptosis in various types of human prostate cancer cells. These fatty acids included jacaric and punicic acid found in jacaranda and pomegranate seed oil, respectively, three octadecatrienoic geometric isomers (alpha- and beta-calendic and catalpic acid) and two mono-unsaturated C-18 fatty acids (trans- and cis-vaccenic acid). Jacaric acid and four of its octadecatrienoic geoisomers selectively induced apoptosis in hormone-dependent (LNCaP) and -independent (PC-3) human prostate cancer cells, whilst not affecting the viability of normal human prostate epithelial cells (RWPE-1). Jacaric acid induced concentration- and time-depedent LNCaP cell death through activation of intrinsic and extrinsic apoptotic pathways resulting in cleavage of PARP-1, modulation of pro- and antiapoptotic Bcl-2 family of proteins and increased cleavage of caspase-3, -8 and -9. Moreover, activation of a cell death-inducing signalling cascade involving death receptor 5 was observed. Jacaric acid induced apoptosis in PC-3 cells by activation of the intrinsic pathway only. The spatial conformation cis, trans, cis of jacaric and punicic acid was shown to play a key role in the increased potency and efficacy of these two fatty acids in comparison to the five other C-18 fatty acids tested. Three-dimensional conformational analysis using the PubChem Database (http://pubchem.ncbi.nlm.nih.gov) showed that the cytotoxic potency of the C-18 fatty acids was related to their degree of conformational similarity to our cytotoxic reference compound, punicic acid, based on optimized shape (ST) and feature (CT) similarity scores, with jacaric acid being most 'biosimilar' (ST(ST-opt)=0.81; CT(CT-opt)=0.45). This 3-D

  16. Targeting oxidative stress attenuates malonic acid induced Huntington like behavioral and mitochondrial alterations in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-05-25

    Objective of the present study was to explore the possible role of oxidative stress in the malonic acid induced behavioral, biochemical and mitochondrial alterations in rats. In the present study, unilateral single injections of malonic acid at different doses (1.5, 3 and 6 micromol) were made into the ipsilateral striatum in rats. Behavioral parameters were accessed on 1st, 7th and 14th day post malonic acid administration. Oxidative stress parameters and mitochondrial enzyme functions were assessed on day 14 after behavioral observations. Ipsilateral striatal malonic acid (3 and 6 micromol) administration significantly reduced body weight, locomotor activity, motor coordination and caused oxidative damage (lipid peroxidation, nitrite, superoxide dismutase, catalase and glutathione) in the striatum as compared to sham treated animal. Mitochondrial enzyme complexes and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolinium bromide) activity were significantly inhibited by malonic acid. Vitamin E treatment (50 and 100 mg/kg, p.o.) significantly reversed the various behavioral, biochemical and mitochondrial alterations in malonic acid treated animals. Our findings show that targeting oxidative stress by vitamin E in malonic acid model, results in amelioration of behavioral and mitochondrial alterations are linked to inhibition of oxidative damage. Based upon these finding present study hypothesize that protection exerted by vitamin E on behavioral, mitochondrial markers indicates the possible preservation of the functional status of the striatal neurons by targeting the deleterious actions of oxidative stress.

  17. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa. PMID:26798415

  18. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  19. Regulation of epinasty induced by 2,4-dichlorophenoxyacetic acid in pea and Arabidopsis plants.

    PubMed

    Pazmiño, D M; Rodríguez-Serrano, M; Sanz, M; Romero-Puertas, M C; Sandalio, L M

    2014-07-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) causes uncontrolled cell division and malformed growth in plants, giving rise to leaf epinasty and stem curvature. In this study, mechanisms involved in the regulation of leaf epinasty induced by 2,4-D were studied using different chemicals involved in reactive oxygen species (ROS) accumulation (diphenyleniodonium, butylated hydroxyanisole, EDTA, allopurinol), calcium channels (LaCl3), protein phosphorylation (cantharidin, wortmannin) and ethylene emission/perception (aminoethoxyvinyl glycine, AgNO3). The effect of these compounds on the epinasty induced by 2,4-D was analysed in shoots and leaf strips from pea plants. For further insight into the effect of 2,4-D, studies were also made in Arabidopsis mutants deficient in ROS production (rbohD, rbohF, xdh), ethylene (ein 3-1, ctr 1-1, etr 1-1), abscisic acid (aba 3.1), and jasmonic acid (coi 1.1, jar 1.1, opr 3) pathways. The results suggest that ROS production, mainly ·OH, is essential in the development of epinasty triggered by 2,4-D. Epinasty was also found to be regulated by Ca2+, protein phosphorylation and ethylene, although all these factors act downstream of ROS production. The use of Arabidopsis mutants appears to indicate that abscisic and jasmonic acid are not involved in regulating epinasty, although they could be involved in other symptoms induced by 2,4-D.

  20. Azadirachta indica Attenuates Colonic Mucosal Damage in Experimental Colitis Induced by Trinitrobenzene Sulfonic Acid

    PubMed Central

    Gautam, M. K.; Goel, Shalini; Ghatule, R. R.; Singh, A.; Joshi, V. K.; Goel, R. K.

    2013-01-01

    Azadirachta indica leaves indicated the presence of active principles with proven antioxidants, antiinflammatory, immunomodulatory, free radical scavenging and healing properties. In the present study we evaluated the healing effects of 50% ethanol extract of dried leaves of Azadirachta indica on trinitrobenzene sulfonic acid-induced colitis in rats. Azadirachta indica extract (500 mg/kg) was administered orally, once daily for 14 days and studied for its effects on diarrhoea, food and water intake, body weight changes, colonic damage and inflammation, histology, antibacterial activity and free radicals (nitric oxide and lipid peroxidation), antioxidants (superoxide dismutase, catalase and reduced glutathione) and myeloperoxidase activities in colonic tissue. Intracolonic trinitrobenzene sulfonic acid increased colonic mucosal damage and inflammation, diarrhea, but decreased body weight which were reversed by Azadirachta indica extract and sulfasalazine (positive control) treatments. Azadirachta indica extract showed antibacterial activity. Azadirachta indica extract and sulfasalazine enhanced the antioxidants but decreased free radicals and myeloperoxidase activities affected in trinitrobenzene sulfonic acid-induced colitis. Azadirachta indica extract, thus seemed to be effective in healing trinitrobenzene sulfonic acid-induced colitis in rats. PMID:24403663

  1. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors.

    PubMed

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Simasko, Steve M; Ritter, Sue

    2016-04-15

    Mercaptoacetate (MA) is an orexigenic agent reported to block fatty acid (FA) oxidation. Recently, however, we reported evidence from isolated nodose ganglion neurons that MA antagonizes the G protein-coupled long- and medium-chain FA receptor GPR40. GPR40 mediates FA-induced secretion of the satietogenic incretin peptide glucagon-like peptide 1 (GLP-1), by enteroendocrine L cells, as well as FA-induced enhancement of glucose-stimulated insulin secretion. Our results in cultured nodose neurons suggest that MA would also block GPR40 in enteroendocrine cells controlling GLP-1 secretion. If so, this would suggest an alternative mechanism by which MA increases food intake. We tested the hypothesis that MA blocks FA-induced GLP-1 secretion in vitro using cultured STC-1 cells (a murine enteroendocrine cell line) and in vivo in adult male rats. In vitro, MA blocked the increase in both cytosolic Ca(2+)and GLP-1 release stimulated by FAs and also reduced (but less effectively) the response of STC-1 cells to grifolic acid, a partial agonist of the GPR120 FA receptor. In vivo, MA reduced GLP-1 secretion following olive oil gavage while also increasing glucose and decreasing insulin levels. The carnitine palmatoyltransferase 1 antagonist etomoxir did not alter these responses. Results indicate that MA's actions, including its orexigenic effect, are mediated by GPR40 (and possibly GPR120) receptor antagonism and not by blockade of fat oxidation, as previously believed. Analysis of MA's interaction with GPR40 may facilitate understanding of the multiple functions of this receptor and the manner in which FAs participate in the control of hunger and satiety.

  2. Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice.

    PubMed

    Cheng, Licai; Yu, Yinghua; Szabo, Alexander; Wu, Yizhen; Wang, Hongqin; Camer, Danielle; Huang, Xu-Feng

    2015-05-01

    The consumption of diets rich in saturated fat largely contributes to the development of obesity in modern societies. A diet high in saturated fats can induce inflammation and impair leptin signaling in the hypothalamus. However, the role of saturated fatty acids on hypothalamic leptin signaling, and hepatic glucose and lipid metabolism remains largely undiscovered. In this study, we investigated the effects of intracerebroventricular (icv) administration of a saturated fatty acid, palmitic acid (PA, C16:0), on central leptin sensitivity, hypothalamic leptin signaling, inflammatory molecules and hepatic energy metabolism in C57BL/6J male mice. We found that the icv administration of PA led to central leptin resistance, evidenced by the inhibition of central leptin's suppression of food intake. Central leptin resistance was concomitant with impaired hypothalamic leptin signaling (JAK2-STAT3, PKB/Akt-FOXO1) and a pro-inflammatory response (TNF-α, IL1-β, IL-6 and pIκBa) in the mediobasal hypothalamus and paraventricular hypothalamic nuclei. Furthermore, the pre-administration of icv PA blunted the effect of leptin-induced decreases in mRNA expression related to gluconeogenesis (G6Pase and PEPCK), glucose transportation (GLUT2) and lipogenesis (FAS and SCD1) in the liver of mice. Therefore, elevated central PA concentrations can induce pro-inflammatory responses and leptin resistance, which are associated with disorders of energy homeostasis in the liver as a result of diet-induced obesity.

  3. Lack of kainic acid-induced gamma oscillations predicts subsequent CA1 excitotoxic cell death

    PubMed Central

    Jinde, Seiichiro; Belforte, Juan E.; Yamamoto, Jun; Wilson, Matthew A.; Tonegawa, Susumu; Nakazawa, Kazu

    2009-01-01

    Gamma oscillations are a prominent feature of hippocampal network activity, but their functional role remains debated, ranging from mere epiphenomenon to crucial for information processing. Similarly, persistent gamma oscillations sometimes appear prior to epileptic discharges in patients with mesial temporal sclerosis. However, the significance of this activity in hippocampal excitotoxicity is unclear. We assessed the relationship between kainic acid (KA)-induced gamma oscillations and excitotoxicity in genetically-engineered mice in which N-methyl-D-aspartic acid (NMDA) receptor deletion was confined to CA3 pyramidal cells. Mutants showed reduced CA3 pyramidal cell firing and augmented sharp wave-ripple activity, resulting in higher susceptibility to KA-induced seizures, and leading to strikingly selective neurodegeneration in the CA1 subfield. Interestingly, the KA-induced gamma-aminobutyric acid (GABA) level increases and persistent 30-50 Hz gamma oscillations observed in control mice prior to the first seizure discharge was abolished in the mutants. Consequently, on subsequent days, mutants manifested prolonged epileptiform activity and massive neurodegeneration of CA1 cells, including local GABAergic neurons. Remarkably, pretreatment with the potassium channel blocker α-dendrotoxin (DTX) increased GABA levels, restored gamma oscillations, and prevented CA1 degeneration in the mutants. These results demonstrate that emergence of low frequency gamma oscillations predicts increased resistance to KA-induced excitotoxicity, raising the possibility that gamma oscillations may have potential prognostic value for the treatment of epilepsy. PMID:19735292

  4. Ginseng alleviates cyclophosphamide-induced hepatotoxicity via reversing disordered homeostasis of glutathione and bile acid

    PubMed Central

    Zhu, He; Long, Min-Hui; Wu, Jie; Wang, Meng-Meng; Li, Xiu-Yang; Shen, Hong; Xu, Jin-Di; Zhou, Li; Fang, Zhi-Jun; Luo, Yi; Li, Song-Lin

    2015-01-01

    Cyclophosphamide (CP), a chemotherapeutic agent, is restricted due to its side effects, especially hepatotoxicity. Ginseng has often been clinically used with CP in China, but whether and how ginseng reduces the hepatotoxicity is unknown. In this study, the hepatoprotective effects and mechanisms under the combined usage were investigated. It was found that ginseng could ameliorate CP-induced elevations of ALP, ALT, ALS, MDA and hepatic deterioration, enhance antioxidant enzymes’ activities and GSH’s level. Metabolomics study revealed that 33 endogenous metabolites were changed by CP, 19 of which were reversed when ginseng was co-administrated via two main pathways, i.e., GSH metabolism and primary bile acids synthesis. Furthermore, ginseng could induce expression of GCLC, GCLM, GS and GST, which associate with the disposition of GSH, and expression of FXR, CYP7A1, NTCP and MRP 3, which play important roles in the synthesis and transport of bile acids. In addition, NRF 2, one of regulatory elements on the expression of GCLC, GCLM, GS, GST, NTCP and MRP3, was up-regulated when ginseng was co-administrated. In conclusion, ginseng could alleviate CP-induced hepatotoxicity via modulating the disordered homeostasis of GSH and bile acid, which might be mediated by inducing the expression of NRF 2 in liver. PMID:26625948

  5. Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress

    PubMed Central

    Zhao, Min; Pan, Wei; Shi, Rui-zheng; Bai, Yong-ping; You, Bo-yang; Zhang, Kai; Fu, Qiong-mei; Schuchman, Edward H.

    2016-01-01

    Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway. PMID:26923251

  6. Hepatoprotective effects of pantothenic acid on carbon tetrachloride-induced toxicity in rats

    PubMed Central

    Eidi, Akram; Mortazavi, Pejman; Tehrani, Masoud Ebrahim; Rohani, Ali Haeri; Safi, Shahabaldin

    2012-01-01

    The present study was undertaken to investigate the hepatoprotective effect of pantothenic acid on CCl4-induced liver damage. Male Wistar rats were orally treated with pantothenic acid (0.005, 0.01, 0.025, 0.05 and 0.1 g/kg) daily, with administration of CCl4 (1 mL/kg, 50 % CCl4 in olive oil) twice a week for 28 days. The effect of pantothenic acid on serum markers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyltransferase) was measured in CCl4-induced hepatotoxicity in rat. Further, the effects on enzymatic antioxidant (superoxide dismutase) were estimated in the liver samples. CCl4 challenge not only elevated the serum marker enzyme activities but also suppressed hepatic antioxidative defense system including superoxide dismutase. The biochemical observations were supplemented with histopathological examination of rat liver sections. Histopathological examination of livers showed that pantothenic acid reduced fatty degeneration, cytoplasmic vacuolization and necrosis in CCl4-treated rats. Therefore, pantothenic acid may be an effective hepatoprotective agent and viable candidate for treating hepatic disorders and other oxidative stress-related diseases. PMID:27847457

  7. Comparative neuroprotective profile of statins in quinolinic acid induced neurotoxicity in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2011-01-01

    A possible neuroprotective role has been recently suggested for 3H3MGCoA reductase inhibitors (statins). Here, we sought to determine neuroprotective effect of statins in quinolinic acid induced neurotoxicity in rats. Rats were surgically administered quinolinic acid and treated with Atorvastatin (10, 20 mg/kg), simvastatin (15, 30 mg/kg) and fluvastatin (5, 10 mg/kg) once daily up to 3 weeks. Atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) treatment significantly attenuated the quinolinic acid induced behavioral (locomotor activity, rotarod performance and beam walk test), biochemical (lipid peroxidation, nitrite concentration, SOD and catalase), mitochondrial enzyme complex alterations in rats suggesting their free radical scavenging potential. Additionally, atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) significantly decrease the TNF-α level and striatal lesion volume in quinolinic acid treated animals indicating their anti-inflammatory effects. In comparing the protective effect of different statins, atorvastatin is effective at both the doses while simvastatin and fluvastatins at respective lower doses were not able to produce the protective effect in quinolinic acid treated animals. These modulations can account, at least partly, for the beneficial effect of statins in our rodent model of striatal degeneration. Our findings show that statins could be explored as possible neuroprotective agents for neurodegenerative disorders such as HD.

  8. Experimental protoporphyria: effect of bile acids on liver damage induced by griseofulvin.

    PubMed

    Martinez, María Del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria; Batlle, Alcira

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris.

  9. Localization of gastric peroxidase and its inhibition by mercaptomethylimidazole, an inducer of gastric acid secretion.

    PubMed Central

    Bandyopadhyay, U; Bhattacharyya, D K; Chatterjee, R; Banerjee, R K

    1992-01-01

    Mercaptomethylimidazole (MMI) is a potent inducer of gastric acid secretion which is associated with significant inhibition of peroxidase activity of rat gastric mucosa in vivo. A time-dependent increase in acid secretion correlates well with time-dependent decrease in the peroxidase activity. In a chamber experiment in vitro using isolated gastric mucosa, MMI stimulates acid secretion, showing an almost linear response up to 600 microM. The time-dependent increase in acid secretion is also correlated with time-dependent inhibition of the peroxidase activity. This effect is not mediated through oxidation of MMI by flavin-containing mono-oxygenase, which is absent from gastric mucosa. The peroxidase has been localized mainly in parietal cells isolated and purified from gastric mucosa by controlled digestion with collagenase followed by Percoll-density-gradient centrifugation. Peroxidase activity was further localized in the outer membrane of the purified mitochondria of the parietal cell by some membrane-impermeant reagents, indicating outward orientation of the enzyme. MMI can inhibit the peroxidase activity of both the parietal cell and its mitochondria in a concentration-dependent manner. The possible involvement of the parietal-cell peroxidase-H2O2 system in MMI-induced acid secretion may be suggested. PMID:1318028

  10. Pulmonary vasoconstriction in oleic acid induced lung injury. A morphometric study.

    PubMed Central

    Grotjohan, H. P.; van der Heijde, R. M.; Wagenvoort, C. A.; Wagenvoort, N.; Versprille, A.

    1993-01-01

    Distribution and severity of active vasoconstriction of muscular pulmonary arteries were morphometrically assessed in anaesthetized, paralysed and mechanically ventilated pigs with respiratory distress, induced by oleic acid. Vasoconstriction was deduced from the medial thickness which was measured and expressed as a percentage of external diameter. Six pigs received oleic acid (0.12 +/- 0.07 ml/kg), dissolved 1:1 in 96% alcohol, in multiple injections of 0.1 ml. Six pigs were used as controls. After the oleic acid injections a stable hypoxaemia (PaO2 = 57 +/- 8 mmHg, at an inspiratory oxygen fraction of 0.6) and pulmonary hypertension (mean Ppa = 36 +/- 2 mmHg) were obtained for several hours. Electron microscopy revealed swelling of endothelial cells with signs of degeneration. Medial thickness was far greater in the oleic acid group than in the control group; overall mean values were 8.1 +/- 3.2 and 3.8 +/- 1.7% respectively (P < 0.001). Arteries with prominent vasoconstriction were lying in clusters. This pattern was the same in dependent and non-dependent regions. We concluded that in oleic acid induced respiratory distress active vasoconstriction of muscular pulmonary arteries is an important factor in the development of pulmonary hypertension. Besides vasoconstriction, endothelial swelling and intravascular clotting may contribute to the development of pulmonary hypertension. Images Figure 1 Figure 2 Figure 3 PMID:8398807

  11. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants.

    PubMed

    Kovácik, Jozef; Klejdus, Borivoj; Hedbavny, Josef; Backor, Martin

    2009-07-01

    Influence of 100 mM NaCl and 50 microM salicylic acid (SA) and their combination on the metabolism of chamomile (Matricaria chamomilla) during 7 days was studied. NaCl reduced growth and selected physiological parameters and SA in combined treatment (NaCl + SA) reversed majority of these symptoms. Application of SA reduced NaCl-induced increase of Na+ in the rosettes, but not in the roots. Accumulation of total amino acids was stimulated in NaCl-treated roots, especially due to exceptional increase of proline (4.4-fold). Among phenolic acids, accumulation of protocatechuic acid was the most enhanced in NaCl-exposed leaf rosettes (ca. 3-fold) while chlorogenic and caffeic acids in the roots (2.4- and 2.8-fold, respectively). Total soluble phenols increased after NaCl and SA treatments, but root lignin content was not affected. Activity of phenylalanine ammonia-lyase and shikimate dehydrogenase increased in response to NaCl, but cinnamyl alcohol dehydrogenase was not affected and polyphenol oxidase decreased. Stress parameters were elevated by NaCl treatment (superoxide radical and malondialdehyde content, activities of catalase, ascorbate- and guaiacol-peroxidase) and substantially prevented by SA, while accumulation of hydrogen peroxide decreased. Overall, SA showed strong beneficial properties against NaCl-induced negative symptoms. Protective effect of SA was the most visible at the level of guaiacol-peroxidase and through amelioration of stress parameters and mineral nutrient contents.

  12. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  13. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration.

    PubMed

    Gómez-Vicente, Violeta; Lax, Pedro; Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss.

  14. Near-infrared laser-induced generation of three rare conformers of glycolic acid.

    PubMed

    Halasa, Anna; Lapinski, Leszek; Reva, Igor; Rostkowska, Hanna; Fausto, Rui; Nowak, Maciej J

    2014-07-31

    Structural transformations were induced in conformers of glycolic acid by selective excitation with monochromatic tunable near-infrared laser light. For the compound isolated in Ar matrixes, near-IR excitation led to generation of two higher-energy conformers (GAC; AAT) differing from the most stable SSC form by 180° rotation around the C-C bond. A detailed investigation of this transformation revealed that one conformer (GAC) is produced directly from the near-IR-excited most stable conformer. The other higher-energy conformer (AAT) was effectively generated only upon excitation of the primary photoproduct (GAC) with another near-IR photon. Once these higher-energy conformers of glycolic acid were generated in an Ar matrix, they could be subsequently transformed into one another upon selective near-IR excitations. Interestingly, no repopulation of the initial most stable SSC conformer occurred upon near-IR excitation of the higher-energy forms of the compound isolated in solid Ar. A dramatically different picture of near-IR-induced conformational transformations was observed for glycolic acid isolated in N2 matrixes. In this case, upon near-IR excitation, the most stable SSC form converted solely into a new conformer (SST), where the acid OH group is rotated by 180°. This conformational transformation was found to be photoreversible. Moreover, SST conformer, photoproduced in the N2 matrix, spontaneously converted to the most stable SSC form of glycolic acid, when the matrix was kept at cryogenic temperature and in the dark.

  15. Economic valuation of acid deposition induced changes in the productivity of commercial forests

    SciTech Connect

    Callaway, J.M. Jr.

    1984-02-01

    Several recent studies have reported localized decreases in the growth of several commercially important forest species in the northeast United States. These observed reductions in basal area growth may be related to increases in acid deposition and other man-made pollutants over the last two or three decades. If this is the case, then increases in region-wide levels of acid deposition may have effects on the biomass content and age-species composition of the regional timber inventory. These physical changes can influence regional stumpage prices and harvest levels through changes in the marginal cost of harvesting timber as a product and through changes in the opportunity cost of holding timber as an asset. Resultant changes in the profits earned by timber owners and the buyers of stumpage can be used to attach monetary value to the effects of acid deposition on the timber resource base. The objective of this study is to develop a capability to value acid deposition-induced changes in the productivity of commercial timberland in the northeast United States. Simulations will be conducted to determine the effects of acid deposition-induced changes in species growth rates on the profits earned by timber owners and buyers in relevant stumpage markets. The sensitivity of these results to different rates of return to private owners, alternative management practices, and to the levels of exogenous variables which influence the demand for stumpage will be assessed. 8 references.

  16. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    PubMed Central

    Martinez, María del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris. PMID:25945334

  17. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid.

    PubMed

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA.

  18. A role for sodium and chloride in kainic acid-induced beading of inhibitory interneuron dendrites.

    PubMed

    Al-Noori, S; Swann, J W

    2000-01-01

    Excitotoxic injury of the dendrites of inhibitory interneurons could lead to decreases in their synaptic activation and explain subsequent local circuit hyperexcitability and epilepsy. A hallmark of dendrotoxicity, at least in principal neurons of the hippocampus and cortex, is focal or varicose swellings of dendritic arbors. In experiments reported here, transient (1h) exposure of hippocampal explant cultures to kainic acid produced marked focal swellings of the dendrites of parvalbumin-immunoreactive pyramidal basket cells in a highly reproducible and dose-dependent manner. At 5mM kainic acid, more than half of the immunopositive apical dendrites in area CA(1) had a beaded appearance. However, the somal volumes of these cells were unaltered by the same treatment. The presence of focal swellings was reversible with kainate washout and was not accompanied by interneuronal cell death. In contrast, exposure to much higher concentrations (300mM) of kainic acid resulted in the total loss of parvalbumin-positive interneurons from explants. Surprisingly, kainic acid-induced dendritic beading does not appear to be mediated by extracellular calcium. Beading was unaltered in the presence of N-methyl-D-aspartate receptor antagonists, the L-type calcium channel antagonist, nimodipine, cadmium, or by removing extracellular calcium. However, blockade of voltage-gated sodium channels by either tetrodotoxin or lidocaine abolished dendritic beading, while the activation of existing voltage-gated sodium channels by veratridine mimicked the kainic acid-induced dendritic beading. Finally, the removal of extracellular chloride prevented the kainic acid-induced dendritic beading.Thus, we suggest that the movement of Na(+) and Cl(-), rather than Ca(2+), into cells underlies the focal swellings of interneuron dendrites in hippocampus.

  19. Effectiveness of malic acid 1% in patients with xerostomia induced by antihypertensive drugs

    PubMed Central

    Guardia, Javier; Aguilar-Salvatierra, Antonio; Cabrera-Ayala, Maribel; Maté-Sánchez de-Val, José E.; Calvo-Guirado, José L.

    2013-01-01

    Objectives: Assessing the clinical effectiveness of a topical sialogogue on spray (malic acid, 1%) in the treatment of xerostomia induced by antihypertensive drugs. Study Design: This research has been carried out through a randomized double-blind clinical trial. 45 patients suffering from hypertensive drugs-induced xerostomia were divided into 2 groups: the first group (25 patients) received a topical sialogogue on spray (malic acid, 1%) whereas the second group (20 patients) received a placebo. Both of them were administered on demand for 2 weeks. Dry Mouth Questionnaire (DMQ) was used in order to evaluate xerostomia levels before and after product/placebo application. Unstimulated and stimulated salivary flows rates, before and after application, were measured. All the statistical analyses were performed by using SPSS software v17.0. Different DMQ scores at the earliest and final stage of the trial were analysed by using Mann-Whitney U test, whereas Student’s T-test was used to analyse salivary flows. Critical p-value was established at p<0.05. Results: DMQ scores increased significantly (clinical recovery) from 1.21 to 3.36 points (p<0.05) after malic acid (1%) application whereas DMQ scores increased from 1.18 to 1.34 points (p>0.05) after placebo application. After two weeks of treatment with malic acid, unstimulated salivary flow increased from 0.17 to 0.242 mL/min whereas the stimulated one increased from 0.66 to 0.92 mL/min (p<0.05). After placebo application unstimulated flow ranged from 0.152 to 0.146 mL/min and stimulated flow increased from 0.67 to 0.70 mL/min (p>0.05). Conclusions: Malic acid 1% spray improved antihypertensive-induced xerostomia and stimulated the production of saliva. Key words:Xerostomia, hyposialia, malic acid, antihypertensive drugs. PMID:22926481

  20. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis1[OPEN

    PubMed Central

    Padilla, María N.; Begara-Morales, Juan C.; Luque, Francisco; Melguizo, Manuel; Fierro-Risco, Jesús; Peñas-Sanjuán, Antonio; Valderrama, Raquel

    2016-01-01

    Nitro-fatty acids (NO2-FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO2-FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied. Here, we examine the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in Arabidopsis and the modulation of NO2-Ln levels throughout this plant’s development by mass spectrometry. The observed levels of this NO2-FA at picomolar concentrations suggested its role as a signaling effector of cell function. In fact, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant defense response against different abiotic-stress conditions, mainly by inducing heat shock proteins and supporting a conserved mechanism of action in both animal and plant defense processes. Bioinformatics analysis revealed that NO2-Ln was also involved in the response to oxidative stress conditions, mainly depicted by H2O2, reactive oxygen species, and oxygen-containing compound responses, with a high induction of ascorbate peroxidase expression. Closely related to these results, NO2-Ln levels significantly rose under several abiotic-stress conditions such as wounding or exposure to salinity, cadmium, and low temperature, thus validating the outcomes found by RNA-seq technology. Jointly, to our knowledge, these are the first results showing the endogenous presence of NO2-Ln in Arabidopsis (Arabidopsis thaliana) and supporting the strong signaling role of these molecules in the defense mechanism against different abiotic-stress situations. PMID:26628746

  1. NDRG1 contributes to retinoic acid-induced differentiation of leukemic cells.

    PubMed

    Chen, Su; Han, Yu-Hui; Zheng, Ying; Zhao, Meng; Yan, Hua; Zhao, Qiao; Chen, Guo-Qiang; Li, Dao

    2009-08-01

    N-Myc downstream-regulated gene 1 (NDRG1) protein has been shown to be up-regulated during leukemic cell differentiation induced by some differentiation-inducing agents such as all-trans retinoic acid (ATRA). However, the potential role of up-regulated NDRG1 in the event is greatly unknown. In this work, we show that inducible NDRG1 expression can drive leukemic U937 cells to undergo differentiation, while the knock-down of NDRG1 expression by specific small interfering RNA significantly antagonizes ATRA-induced differentiation of leukemic cells, proposing the role of NDRG1 in leukemic cell differentiation. Furthermore, our work shows that CCAAT/enhancer-binding protein beta (C/EBPbeta) and PU.1, which are important hematopoiesis-related transcription factors, may act as downstream effectors of NDRG1 in leukemic cell differentiation. Taking together, this study provides direct evidence for the role of NDRG1 protein in myeloid leukemic cell differentiation.

  2. Radiation-induced graft polymerization of acrylamide and acrylic acid onto polyethylene

    NASA Astrophysics Data System (ADS)

    Grushevskaya, L. N.; Aliev, R. E.; Kabanov, V. Ya.

    The radiation-induced grafting of acrylamide onto low-density polyethylene by the different methods and under different conditions was investigated: by the direct liquid phase method from this monomer solution in water (in neutral and acid media) and acetone, and by the pre-irradiation method from aqueous solutions as well as from its sublimated vapour. The molecular masses of polyacrylamide homopolymers were determined. The discussion and comparison of different methods of acrylamide grafting are performed. The relationship between rates of graft polymerization onto polyethylene and homopolymerization of acrylic acid in the presence of metal ions is considered.

  3. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production.

    PubMed

    Nakamura, Jun; Hirano, Seiko; Ito, Hisao; Wachi, Masaaki

    2007-07-01

    Corynebacterium glutamicum is a biotin auxotroph that secretes L-glutamic acid in response to biotin limitation; this process is employed in industrial L-glutamic acid production. Fatty acid ester surfactants and penicillin also induce L-glutamic acid secretion, even in the presence of biotin. However, the mechanism of L-glutamic acid secretion remains unclear. It was recently reported that disruption of odhA, encoding a subunit of the 2-oxoglutarate dehydrogenase complex, resulted in L-glutamic acid secretion without induction. In this study, we analyzed odhA disruptants and found that those which exhibited constitutive L-glutamic acid secretion carried additional mutations in the NCgl1221 gene, which encodes a mechanosensitive channel homolog. These NCgl1221 gene mutations lead to constitutive L-glutamic acid secretion even in the absence of odhA disruption and also render cells resistant to an L-glutamic acid analog, 4-fluoroglutamic acid. Disruption of the NCgl1221 gene essentially abolishes L-glutamic acid secretion, causing an increase in the intracellular L-glutamic acid pool under biotin-limiting conditions, while amplification of the wild-type NCgl1221 gene increased L-glutamate secretion, although only in response to induction. These results suggest that the NCgl1221 gene encodes an L-glutamic acid exporter. We propose that treatments that induce L-glutamic acid secretion alter membrane tension and trigger a structural transformation of the NCgl1221 protein, enabling it to export L-glutamic acid.

  4. Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein

    SciTech Connect

    Citovsky, V.; Knorr, D.; Zambryski, P. )

    1991-03-15

    Cauliflower mosaic virus (CaMV) is a double-stranded DNA (dsDNA) pararetrovirus capable of cell-to-cell movement presumably through intercellular connections, the plasmodesmata, of the infected plant. This movement is likely mediated by a specific viral protein encoded by the gene I locus. Here we report that the purified gene I protein binds RNA and single-stranded DNA (ssDNA) but not dsDNA regardless of nucleotide sequence specificity. The binding is highly cooperative, and the affinity of the gene I protein for RNA is 10-fold higher than for ssDNA. CaMV replicates by reverse transcription of a 35S RNA that is homologous to the entire genome. The authors propose that the 35S RNA may be involved in cell-to-cell movement of CaMV as an intermediate that is transported through plasmodesmata as an RNA-gene I protein complex.

  5. Neuroprotective effects of butterbur and rough aster against kainic Acid-induced oxidative stress in mice.

    PubMed

    Oh, Sang Hee; Sok, Dai-Eun; Kim, Mee Ree

    2005-01-01

    The separate and combined neuroprotective effects of rough aster (Aster scaber) and butterbur (Petasite japonicus) extracts against oxidative damage in the brain of mice challenged with kainic acid were examined by comparing behavioral changes and biochemical parameters of oxidative stress. Rough aster butanol extract (400 mg/kg) and/or butterbur butanol extract (150 or 400 mg/kg) were administered to male ICR mice, 6-8 weeks old, through a gavage for 4 days consecutively, and on day 4, kainic acid (50 mg/kg) was administered intraperitoneally. Compared with the vehicle-treated control, no significant changes in body and brain weight were observed in mice administered rough aster or butterbur butanol extract. Administration of kainic acid only, causing a lethality of approximately 54%, resulted in a significant decrease of total glutathione level and increase of thiobarbituric acid-reactive substances (TBARS) value in brain tissue. The administration of butterbur or rough aster extract (400 mg/kg) decreased the lethality (50%) of kainic acid to 25%, alleviated the behavioral signs of neurotoxicity, restored the cytosolic glutathione level of brain homogenate to approximately 80% (P < .05), and reduced kainic acid-induced increases in TBARS values. In contrast to no significant neuroprotection by butterbur extract at a low dose (150 mg/kg), the combination of rough aster extract and butterbur extract reduced the lethality to 12.5%. Moreover, the combination delayed the onset time of behavioral signs by twofold, and significantly preserved the level of cytosolic glutathione peroxidase and glutathione reductase activities. However, the other biochemical parameters were not altered significantly by the combination. Thus, the combination of two vegetable extracts significantly increased the neuroprotective action against kainic acid-induced neurotoxicity. Based on these findings, the combination of butterbur extract and rough aster extract contains a functional agent or

  6. Effects of induced subacute ruminal acidosis on milk fat content and milk fatty acid profile.

    PubMed

    Enjalbert, F; Videau, Y; Nicot, M C; Troegeler-Meynadier, A

    2008-06-01

    Two lactating dairy cows fitted with a rumen cannula received successively diets containing 0%, 20%, 34% and again 0% of wheat on a dry matter basis. After 5, 10 and 11 days, ruminal pH was measured between 8:00 and 16:00 hours, and milk was analysed for fat content and fatty acid profile. Diets with 20% and 34% wheat induced a marginal and a severe subacute ruminal acidosis respectively. After 11 days, diets with wheat strongly reduced the milk yield and milk fat content, increased the proportions of C8:0 to C13:0 even- or odd-chain fatty acids, C18:2 n-6 and C18:3 n-3 fatty acids but decreased the proportions of C18:0 and cis-9 C18:1 fatty acids. Wheat also increased the proportions of trans-5 to trans-10 C18:1, the latter exhibiting a 10-fold increase with 34% of wheat compared with value during the initial 0% wheat period. There was also an increase of trans-10, cis-12 C18:2 fatty acid and a decrease of trans-11 to trans-16 C18:1 fatty acids. The evolution during adaptation or after return to a 0% wheat diet was rapid for pH but much slower for the fatty acid profile. The mean ruminal pH was closely related to milk fat content, the proportion of odd-chain fatty acids (linear relationship) and the ratio of trans-10 C18:1/trans-11 C18:1 (nonlinear relationship). Such changes in fatty acid profile suggested a possible use for non-invasive diagnosis of subacute ruminal acidosis.

  7. Ascorbic Acid Alleviates Pancreatic Damage Induced by Dibutyltin Dichloride (DBTC) in Rats

    PubMed Central

    Song, Yan-Hua; Fu, Yan-Biao; Qian, Ke-Da

    2007-01-01

    Purpose Because previous studies have reported depleted antioxidant capacity in patients with chronic pancreatitis (CP), prevention of free radical production has gained importance in antifibrotic treatment strategies for CP. The aim of this study was to investigate the effects of ascorbic acid on oxidative capacity and pancreatic damage in experimental CP. Materials and Methods CP was induced in male Sprague-Dawley rats by infusion of dibutyltin dichloride (DBTC) into the tail vein. Ascorbic acid was given intraperitoneally at a daily dose of 10 mg/kg body weight. The treatment groups were as follows: group 1, DBTC plus intraperitoneal physiologic saline; group 2, DBTC plus intraperitoneal ascorbic acid; group 3, solvent plus intraperitoneal physiologic saline; group 4, no operation plus intraperitoneal physiologic saline. Each group contained 15 animals. Treatment was started after CP was established. After 4 weeks of treatment, serum hyaluronic acid and laminin levels were determined by radioimmunoassay, pancreatic tissue oxidative stress was analyzed, and the degree of pancreatic damage was determined. Results Ascorbic acid treatment markedly increased superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) concentrations in pancreatic tissue (p < 0.01 for both). Significant serum hyaluronic acid and laminin reductions were observed in group 2 as compared with group 1 (p < 0.05). However, the serum hyaluronic acid and laminin levels remained elevated when compared with those of groups 3 and 4 (p < 0.05). Histopathologic scores were also lower in animals with CP that underwent ascorbic acid-treatment (p < 0.05). Conclusion Ascorbic acid treatment alleviated the degree of oxidative stress and pancreatic damage in rat CP. Antioxidant treatment might be considered a potential option to improve the pathologic process in CP. PMID:18159597

  8. A requirement for fatty acid oxidation in the hormone-induced meiotic maturation of mouse oocytes.

    PubMed

    Valsangkar, Deepa; Downs, Stephen M

    2013-08-01

    We have previously shown that fatty acid oxidation (FAO) is required for AMP-activated protein kinase (PRKA)-induced maturation in vitro. In the present study, we have further investigated the role of this metabolic pathway in hormone-induced meiotic maturation. Incorporating an assay with (3)H-palmitic acid as the substrate, we first examined the effect of PRKA activators on FAO levels. There was a significant stimulation of FAO in cumulus cell-enclosed oocytes (CEO) treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and RSVA405. In denuded oocytes (DO), AICAR stimulated FAO only in the presence of carnitine, the molecule that facilitates fatty acyl CoA entry into the mitochondria. The carnitine palmitoyltransferase 1 activator C75 successfully stimulated FAO in CEO. All three of these activators trigger germinal vesicle breakdown. Meiotic resumption induced by follicle-stimulating hormone (FSH) or amphiregulin was completely inhibited by the FAO inhibitors etomoxir, mercaptoacetate, and malonyl CoA. Importantly, FAO was increased in CEO stimulated by FSH and epidermal growth factor, and this increase was blocked by FAO inhibitors. Moreover, compound C, a PRKA inhibitor, prevented the FSH-induced increase in FAO. Both carnitine and palmitic acid augmented hormonal induction of maturation. In a more physiological setting, etomoxir eliminated human chorionic gonadotropin (hCG)-induced maturation in follicle-enclosed oocytes. In addition, CEO and DO from hCG-treated mice displayed an etomoxir-sensitive increase in FAO, indicating that this pathway was stimulated during in vivo meiotic resumption. Taken together, our data indicate that hormone-induced maturation in mice requires a PRKA-dependent increase in FAO.

  9. PGC-1β suppresses saturated fatty acid-induced macrophage inflammation by inhibiting TAK1 activation.

    PubMed

    Chen, Hongen; Liu, Yan; Li, Di; Song, Jiayi; Xia, Min

    2016-02-01

    Inflammation of infiltrated macrophages in adipose tissue is a key contributor to the initiation of adipose insulin resistance. These macrophages are exposed to high local concentrations of free fatty acids (FFAs) and can be proinflammatory activated by saturated fatty acids (SFAs). However, the regulatory mechanisms on SFA-induced macrophage inflammation are still elusive. Peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) is a member of the PGC-1 family of transcriptional coactivators and has been reported to play a key role in SFAs metabolism and in the regulation of inflammatory signaling. However, it remains unclear whether PGC-1β is involved in SFA-induced macrophage inflammation. In this study, we found that PGC-1β expression was significantly decreased in response to palmitic acid (PA) in macrophages in a dose dependent manner. PGC-1β inhibited PA induced TNFα, MCP-1, and IL-1β mRNA and protein expressions. Furthermore, PGC-1β significantly antagonized PA induced macrophage nuclear factor-κB (NF-κB) p65 and JUN N-terminal kinase activation. Mechanistically, we revealed that TGF-β-activated kinase 1 (TAK1) and its adaptor protein TAK1 binding protein 1 (TAB1) played a dominant role in the regulatory effects of PGC-1β. We confirmed that PGC-1β inhibited downstream inflammatory signals via binding with TAB1 and thus preventing TAB1/TAK1 binding and TAK1 activation. Finally, we showed that PGC-1β overexpression in PA treated macrophages improved adipocytes PI3K-Akt insulin signaling in a paracrine fashion. Collectively, our results uncovered a novel mechanism on how macrophage inflammation induced by SFAs was regulated and suggest a potential target in the treatment of obesity induced insulin resistance.

  10. Valproic acid-induced acute pancreatitis in pediatric age: case series and review of literature

    PubMed Central

    COFINI, M.; QUADROZZI, F.; FAVORITI, P.; FAVORITI, M.; COFINI, G.

    2015-01-01

    Valproic acid (VPA) is commonly prescribed medication for epilepsy, migraine and bipolar disorder. Although the common adverse effect associated with VPA are typically benign, less common adverse effect can occur; these include hepatotixicity, teratogenicity and acute pancreatitis (AP). VPA-induced pancreatitis does not depend on valproic acid serum level and may occur anytime after onset of therapy. Re-challenge with VPA is dangerous and should be avoided. The diagnosis of VPA-induced pancreatitis seems to be underestimated because of difficulties in determining the causative agent and the need for a retrospective re-evaluation of the causative factor. More of idiopathic pancreatitis should be a drug-induced pancreatitis. We report four cases of VPA-induced AP found in a group of 52 cases of AP in children come to our attention from January 2008 to December 2012. The aim of these reports is to point out our experience about clinical presentation, diagnosis, management, outcome in children with VPA-induced AP and review of literature. PMID:26712070

  11. α-Lipoic acid protects against cholecystokinin-induced acute pancreatitis in rats

    PubMed Central

    Park, Sung-Joo; Seo, Sang-Wan; Choi, Ok-Sun; Park, Cheung-Seog

    2005-01-01

    AIM: α-Lipoic acid (ALA) has been used as an antioxidant. The aim of this study was to investigate the effect of α-lipoic acid on cholecystokinin (CCK)-octapeptide induced acute pancreatitis in rats. METHODS: ALA at 1 mg/kg was intra-peritoneally injected, followed by 75 μg/kg CCK-octapeptide injected thrice subcutaneously after 1, 3, and 5 h. This whole procedure was repeated for 5 d. We checked the pancreatic weight/body weight ratio, the secretion of pro-inflammatory cytokines and the levels of lipase, amylase of serum. Repeated CCK octapeptide treatment resulted in typical laboratory and morphological changes of experimentally induced pancreatitis. RESULTS: ALA significantly decreased the pancreatic weight/body weight ratio and serum amylase and lipase in CCK octapeptide-induced acute pancreatitis. However, the secretion of IL-1β, IL-6, and TNF-α were comparable in CCK octapeptide-induced acute pancreatitis. CONCLUSION: ALA may have a protective effect against CCK octapeptide-induced acute pancreatitis. PMID:16097064

  12. The role of acid-base imbalance in statin-induced myotoxicity.

    PubMed

    Taha, Dhiaa A; De Moor, Cornelia H; Barrett, David A; Lee, Jong Bong; Gandhi, Raj D; Hoo, Chee Wei; Gershkovich, Pavel

    2016-08-01

    cellular uptake of the more lipophilic lactone or unionized hydroxy acid form. Consequently, our results suggest that comorbidities associated with acid-base imbalance can play a substantial role in the development and potentiation of statin-induced myotoxicity.

  13. Alpha-amylase production is induced by sulfuric acid in rice aleurone cells.

    PubMed

    Mitsunaga, Shin-ichiro; Kobayashi, Midori; Fukui, Satoe; Fukuoka, Kayoko; Kawakami, Osamu; Yamaguchi, Junji; Ohshima, Masahiro; Mitsui, Toshiaki

    2007-12-01

    The hydrolytic enzyme alpha-amylase (EC 3.2.1.1) is produced mainly in aleurone cells of germinating cereals, and the phytohormone gibberellin (GA) is essential for its induction. However, in rice (Oryza sativa L.), sulfuric acid (H(2)SO(4)) induces alpha-amylase production in aleurone tissue even in the absence of GA. Here, the pre-treatment of rice aleurone cells with H(2)SO(4) and incubation in water induced alpha-amylase activity, as if the cells had been incubated in GA solution.

  14. Cytoplasmic nucleic acid sensors in antiviral immunity.

    PubMed

    Ranjan, Priya; Bowzard, J Bradford; Schwerzmann, Joy W; Jeisy-Scott, Victoria; Fujita, Takashi; Sambhara, Suryaprakash

    2009-08-01

    The innate immune system uses pattern recognition receptors (PRRs) to sense invading microbes and initiate a rapid protective response. PRRs bind and are activated by structural motifs, such as nucleic acids or bacterial and fungal cell wall components, collectively known as pathogen-associated molecular patterns. PRRs that recognize pathogen-derived nucleic acids are present in vesicular compartments and in the cytosol of most cell types. Here, we review recent studies of these cytosolic sensors, focusing on the nature of the ligands for DNA-dependent activator of interferon (DAI)-regulatory factors, absent in melanoma 2 (AIM2), and the retinoic acid-inducible gene I-like helicase (RLH) family of receptors, the basis of ligand recognition and the signaling pathways triggered by the activation of these receptors. An increased understanding of these molecular aspects of innate immunity will guide the development of novel antiviral therapeutics.

  15. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes.

    PubMed

    Varol, Mehmet; Türk, Ayşen; Candan, Mehmet; Tay, Turgay; Koparal, Ayşe Tansu

    2016-01-01

    Vulpinic and gyrophoric acids are known as ultraviolet filters for natural lichen populations because of their chemical structures. However, to the best of our knowledge, there has been no reference to their cosmetic potential for skin protection against ultraviolet B (UVB)-induced damage and, consequently, we propose to highlight their photoprotective profiles in human keratinocytes (HaCaT). Therefore, vulpinic acid and gyrophoric acid were isolated from acetone extracts of Letharia vulpina and Xanthoparmelia pokornyi, respectively. Their photoprotective activities on irradiated HaCaT cells and destructive effects on non-irradiated HaCaT cells were compared through in vitro experimentation: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, 4',6-diamino-2-phenylindole and tetramethylrhodamine B isothiocyanate-phalloidin staining protocols. Both of the lichen substances effectively prevented cytotoxic, apoptotic and cytoskeleton alterative activities of 2.5 J/cm(2) UVB in a dose-dependent manner. Moreover, vulpinic and gyrophoric acids showed no toxic, apoptotic or cytoskeleton alterative effects on non-irradiated HaCaT cells, except at high doses (≥400 μM) of gyrophoric acid. The findings suggest that vulpinic and gyrophoric acids can be promising cosmetic ingredients to photo-protect human skin cells and should therefore be further investigated by in vitro and in vivo multiple bioassays.

  16. Acid Sphingomyelinase Deficiency Prevents Diet-induced Hepatic Triacylglycerol Accumulation and Hyperglycemia in Mice*

    PubMed Central

    Deevska, Gergana M.; Rozenova, Krassimira A.; Giltiay, Natalia V.; Chambers, Melissa A.; White, James; Boyanovsky, Boris B.; Wei, Jia; Daugherty, Alan; Smart, Eric J.; Reid, Michael B.; Merrill, Alfred H.; Nikolova-Karakashian, Mariana

    2009-01-01

    Acid sphingomyelinase plays important roles in ceramide homeostasis, which has been proposed to be linked to insulin resistance. To test this association in vivo, acid sphingomyelinase deletion (asm–/–) was transferred to mice lacking the low density lipoprotein receptor (ldlr–/–), and then offsprings were placed on control or modified (enriched in saturated fat and cholesterol) diets for 10 weeks. The modified diet caused hypercholesterolemia in all genotypes; however, in contrast to asm+/+/ldlr–/–, the acid sphingomyelinase-deficient littermates did not display hepatic triacylglyceride accumulation, although sphingomyelin and other sphingolipids were substantially elevated, and the liver was enlarged. asm–/–/ldlr–/– mice on a modified diet did not accumulate body fat and were protected against diet-induced hyperglycemia and insulin resistance. Experiments with hepatocytes revealed that acid sphingomyelinase regulates the partitioning of the major fatty acid in the modified diet, palmitate, into two competitive and inversely related pools, triacylglycerides and sphingolipids, apparently via modulation of serine palmitoyltransferase, a rate-limiting enzyme in de novo sphingolipid synthesis. These studies provide evidence that acid sphingomyelinase activity plays an essential role in the regulation of glucose metabolism by regulating the hepatic accumulation of triacylglycerides and sphingolipids during consumption of a diet rich in saturated fats. PMID:19074137

  17. Association of ACE Gene I/D polymorphism with migraine in Kashmiri population

    PubMed Central

    Wani, Irfan Yousuf; Sheikh, Saleem; Shah, Zafar Amin; Pandith, Arshid A.; Wani, Mushtaq; Asimi, Ravouf; Wani, Maqbool; Sheikh, Shahnawaz; Mehraj, Iqra

    2016-01-01

    Introduction: Migraine is a complex, recurrent headache disorder that is one of the most common complaints in neurology practice. The role of various genes in its pathogenesis is being studied. We did this study to see whether an association exists between ACE gene I/D polymorphism and migraine in our region. Materials and Methods: The study included 100 patients diagnosed with migraine and 121 healthy controls. The study subject were age and gender matched. The analysis was based on Polymerase Chain Reaction (PCR) and included following steps: DNA extraction from blood, PCR and Restriction Fragment Length Polymorphism (RFLP). Results: Out of 100 cases, 69 were females and 31 were males. Fifty-seven were having migraine without aura and 43 had migraine with aura. 45 of the cases had II polymorphism, 40 had ID polymorphism and 15 had DD polymorphism in ACE gene. Conclusion: We were not able to find a statistically significant association between ACE gene I/D polymorphism with migraine. The reason for difference in results between our study and other studies could be because of different ethnicity in study populations. So a continuous research is needed in this regard in order to find the genes and different polymorphism that increase the susceptibility of Kashmiri population to migraine. PMID:27011636

  18. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    PubMed

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis.

  19. Estrogens protect against hydrogen peroxide and arachidonic acid induced DNA damage.

    PubMed

    Tang, M; Subbiah, M T

    1996-01-19

    The ability of estrogens to protect against DNA damage induced by either hydrogen peroxide or arachidonic acid alone or in combination with Cu2+ was investigated. DNA strand breaks were determined by conversion of double stranded supercoiled OX-174 RFI DNA to double stranded open circular DNA and linear single stranded DNA. Estradiol-17 beta significantly decreased the formation of single and double strand breaks in DNA induced by H2O2 alone or with Cu2+. Equilin (an equine estrogen) was more effective than estradiol-17 beta at the doses tested. Arachidonic acid in the presence of Cu2+ caused the formation of high levels of linear DNA which was protected by estrogen with equilen being more effective. These studies suggest that estrogens through this protective effect on DNA damage might contribute to cardioprotection.

  20. Oleanolic Acid Induces the Type III Secretion System of Ralstonia solanacearum

    PubMed Central

    Wu, Dousheng; Ding, Wei; Zhang, Yong; Liu, Xuejiao; Yang, Liang

    2015-01-01

    Ralstonia solanacearum, the causal agent of bacterial wilt, can naturally infect a wide range of host plants. The type III secretion system (T3SS) is a major virulence determinant in this bacterium. Studies have shown that plant-derived compounds are able to inhibit or induce the T3SS in some plant pathogenic bacteria, though no specific T3SS inhibitor or inducer has yet been identified in R. solanacearum. In this study, a total of 50 different compounds were screened and almost half of them (22 of 50) significantly inhibited or induced the T3SS expression of R. solanacearum. Based on the strong induction activity on T3SS, the T3SS inducer oleanolic acid (OA) was chosen for further study. We found that OA induced the expression of T3SS through the HrpG-HrpB pathway. Some type III effector genes were induced in T3SS inducing medium supplemented with OA. In addition, OA targeted only the T3SS and did not affect other virulence determinants. Finally, we observed that induction of T3SS by OA accelerated disease progress on tobacco. Overall our results suggest that plant-derived compounds are an abundant source of R. solanacearum T3SS regulators, which could prove useful as tools to interrogate the regulation of this key virulence pathway. PMID:26732647

  1. Retinoic acid inhibits inducible nitric oxide synthase expression in 3T3-L1 adipocytes.

    PubMed

    Yang, Jeong-Yeh; Koo, Bon-Sun; Kang, Mi-Kyung; Rho, Hye-Won; Sohn, Hee-Sook; Jhee, Eun-Chung; Park, Jin-Woo

    2002-11-30

    The present study was undertaken to explore whether retinoids, which are known to have immunomodulatory actions, could attenuate tumor necrosis factor-alpha (TNF)-stimulated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 adipocytes. Adipocytes incubated with TNF induced dose- and time-dependent accumulation of nitrite in the culture medium through the iNOS induction as confirmed by Western blotting. Treatment of cells with TNF in the presence of all-trans-retinoic acid (RA) significantly decreased their ability to produce nitrite and iNOS induction. Both 13-cis- and all- trans-RA-induced suppression was dose-dependent, and all-trans-RA was somewhat potent than 13-cis-RA. The inhibitory effect of RA on TNF-induced iNOS induction was reversible, completely recovered after 2 days, and was exerted through the inhibition of NF-kappaB activation. TNF also suppressed the lipoprotein lipase (LPL) activity of 3T3-L1 adipocytes. RA could not reverse the TNF- induced LPL suppression at RA levels causing near complete inhibition of the TNF-induced NO production. These results indicate that RAs attenuate iNOS expression reversibly in TNF-stimulated 3T3-L1 adipocytes, and that the TNF-induced LPL suppression is not the result of NO overproduction.

  2. Ethacrynic Acid Inhibits Sphingosylphosphorylcholine-Induced Keratin 8 Phosphorylation and Reorganization via Transglutaminase-2 Inhibition.

    PubMed

    Byun, Hyun Jung; Kang, Kyung Jin; Park, Mi Kyung; Lee, Hye Ja; Kang, June Hee; Lee, Eun Ji; Kim, You Ri; Kim, Hyun Ji; Kim, Young Woo; Jung, Kyung Chae; Kim, Soo Youl; Lee, Chang Hoon

    2013-09-30

    Sphingosylphosphorylcholine (SPC) is significantly increased in the malicious ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments in PANC-1 cells. The reorganization contributes to the viscoelasticity of metastatic cancer cells resulting in increased migration. Recently, we reported that transglutaminase-2 (Tgase-2) is involved in SPC-induced K8 phosphorylation and reorganization. However, effects of Tgase-2 inhibitors on SPC-induced K8 phosphorylation and reorganization were not clearly studied. We found that ethacrynic acid (ECA) concentration-dependently inhibited Tgase-2. Therefore, we examined the effects of ECA on SPC-induced K8 phosphorylation and reorganization. ECA concentration-dependently suppressed the SPC-induced phosphorylation and perinuclear reorganization of K8. ECA also suppressed the SPC-induced migration and invasion. SPC induced JNK activation through Tgase-2 expression and ECA suppressed the activation and expression of JNK in PANC-1 cells. These results suggested that ECA might be useful to control Tgase-2 dependent metastasis of cancer cells such as pancreatic cancer and lung cancers.

  3. Glycyrrhizic Acid Prevents Sepsis-Induced Acute Lung Injury and Mortality in Rats.

    PubMed

    Zhao, Hongyu; Zhao, Min; Wang, Yu; Li, Fengchun; Zhang, Zhigang

    2016-02-01

    Glycyrrhizic acid (GA), an active ingredient in licorice, has multiple pharmacological activities. However, the effects of GA on sepsis-induced acute lung injury (ALI) have not been determined. Tthe aim of this study was to investigate the molecular mechanism involved in the effects of GA against sepsis-induced ALI in rats. We found that GA alleviated sepsis-induced ALI through improvements in various pathological changes, as well as decreases in the lung wet/dry weight ratio and total protein content in bronchoalveolar lavage fluid, and a significant increase in the survival rate of treated rats. Additionally, GA markedly inhibited sepsis-induced pulmonary inflammatory responses. Moreover, we found that treatment with GA inhibited oxidative stress damage and apoptosis in lung tissue induced by ALI. Finally, GA treatment significantly inhibited NF-κ B, JNK and P38 MAPK activation. Our data indicate that GA has a protective effect against sepsis-induced ALI by inhibiting the inflammatory response, damage from oxidative stress, and apoptosis via inactivation of NF-κB and MAPK signaling pathways, providing a molecular basis for a new medical treatment for sepsis-induced ALI.

  4. Effect of niflumic acid on noradrenaline-induced contractions of the rat aorta.

    PubMed Central

    Criddle, D. N.; de Moura, R. S.; Greenwood, I. A.; Large, W. A.

    1996-01-01

    1. The effects of niflumic acid, an inhibitor of calcium-activated chloride channels, were compared with the actions of the calcium channel antagonist nifedipine on noradrenaline-evoked contractions in isolated preparations of the rat aorta. 2. The cumulative concentration-effect curve to noradrenaline (NA) was depressed by both nifedipine and niflumic acid in a reversible and concentration-dependent manner. The degree of inhibition of the maximal contractile response to NA (1 microM) produced by 10 microM niflumic acid (38%) was similar to the effect of 1 microM nifedipine (39%). 3. Contractions to brief applications (30 s) of 1 microM NA were inhibited by 55% and 62% respectively by 10 microM niflumic acid and 1 microM nifedipine. 4. In the presence of 0.1 microM nifedipine, niflumic acid (10 microM) produced no further inhibition of the NA-evoked contractions. Thus, the actions of niflumic acid and nifedipine were not additive. 5. In Ca-free conditions the transient contraction induced by 1 microM NA was not inhibited by niflumic acid (10 microM) and therefore this agent does not reduce the amount of calcium released from the intracellular store or reduce the sensitivity of the contractile apparatus to calcium. 6. Niflumic acid 10 microM did not inhibit the contractions produced by KCl (up to 120 mM) which were totally blocked by nifedipine. Contractions induced by 25 mM KCl were completely inhibited by 1 microM levcromakalim but were unaffected by niflumic acid. 7. It was concluded that niflumic acid produces selective inhibition of a component of NA-evoked contraction which is probably mediated by voltage-gated calcium channels. These data are consistent with a model in which NA stimulates a calcium-activated chloride conductance which leads to the opening of voltage-gated calcium channels to produce contraction. Images Figure 3 PMID:8799583

  5. Insulin Protects Pancreatic Acinar Cells from Palmitoleic Acid-induced Cellular Injury*

    PubMed Central

    Samad, Aysha; James, Andrew; Wong, James; Mankad, Parini; Whitehouse, John; Patel, Waseema; Alves-Simoes, Marta; Siriwardena, Ajith K.; Bruce, Jason I. E.

    2014-01-01

    Acute pancreatitis is a serious and sometimes fatal inflammatory disease where the pancreas digests itself. The non-oxidative ethanol metabolites palmitoleic acid (POA) and POA-ethylester (POAEE) are reported to induce pancreatitis caused by impaired mitochondrial metabolism, cytosolic Ca2+ ([Ca2+]i) overload and necrosis of pancreatic acinar cells. Metabolism and [Ca2+]i are linked critically by the ATP-driven plasma membrane Ca2+-ATPase (PMCA) important for maintaining low resting [Ca2+]i. The aim of the current study was to test the protective effects of insulin on cellular injury induced by the pancreatitis-inducing agents, ethanol, POA, and POAEE. Rat pancreatic acinar cells were isolated by collagenase digestion and [Ca2+]i was measured by fura-2 imaging. An in situ [Ca2+]i clearance assay was used to assess PMCA activity. Magnesium green (MgGreen) and a luciferase-based ATP kit were used to assess cellular ATP depletion. Ethanol (100 mm) and POAEE (100 μm) induced a small but irreversible Ca2+ overload response but had no significant effect on PMCA activity. POA (50–100 μm) induced a robust Ca2+ overload, ATP depletion, inhibited PMCA activity, and consequently induced necrosis. Insulin pretreatment (100 nm for 30 min) prevented the POA-induced Ca2+ overload, ATP depletion, inhibition of the PMCA, and necrosis. Moreover, the insulin-mediated protection of the POA-induced Ca2+ overload was partially prevented by the phosphoinositide-3-kinase (PI3K) inhibitor, LY294002. These data provide the first evidence that insulin directly protects pancreatic acinar cell injury induced by bona fide pancreatitis-inducing agents, such as POA. This may have important therapeutic implications for the treatment of pancreatitis. PMID:24993827

  6. Modulation by glycyrrhetinic acid derivatives of TPA-induced mouse ear oedema.

    PubMed Central

    Inoue, H.; Mori, T.; Shibata, S.; Koshihara, Y.

    1989-01-01

    1. The anti-inflammatory effects of glycyrrhetinic acid and its derivatives on TPA (12-O-tetradecanoylphorbol-13-acetate)-induced mouse ear oedema were studied. The mechanisms of TPA-induced ear oedema were first investigated with respect to the chemical mediators. 2. The formation of ear oedema reached a maximum 5 h after TPA application (2 micrograms per ear) and the prostaglandin E2 (PGE2) production of mouse ear increased with the oedema formation. 3. TPA-induced ear oedema was prevented by actinomycin D and cycloheximide (0.1 mg per ear, respectively) when applied during 60 min after TPA treatment. 4. Of glycyrrhetinic acid derivatives examined, dihemiphthalate derivatives (IIe, IIe', IIIa, IIIa', IVa, IVa') most strongly inhibited ear oedema on both topical (ID50, 1.6 mg per ear for IIe, 2.0 mg per ear for IIIa and 1.6 mg per ear for IVa) and oral (ID50, 88 mg kg-1 for IIe', 130 mg kg-1 for IIIa' and 92 mg kg-1 for IVa') administration. 5. Glycyrrhetinic acid (Ia) and its derivatives applied 30 min before TPA treatment were much more effective in inhibiting oedema than when applied 30 min after TPA. A dihemiphthalate of triterpenoid compound IVa completely inhibited oedema, even when applied 3 h before TPA treatment. 6. Glycyrrhetinic acid (Ia) and deoxoglycyrrhetol (IIa), the parent compounds, produced little inhibition by oral administration at less than 200 mg kg-1. 7. These results suggest that the dihemiphthalate derivatives of triterpenes derived from glycyrrhetinic acid by chemical modification are useful for the treatment of skin inflammation by both topical and oral application. PMID:2924072

  7. Omega-3 Fatty Acid Protects Against Arsenic Trioxide-Induced Cardiotoxicity In Vitro and In Vivo.

    PubMed

    Varghese, Mathews V; Abhilash, M; Paul, M V Sauganth; Alex, Manju; Nair, R Harikumaran

    2017-04-01

    Arsenic trioxide (As2O3) is a highly effective therapeutic against acute promyelocytic leukaemia, but its clinical efficacy is burdened by serious cardiac toxicity. The present study was performed to evaluate the effect of omega (ω)-3 fatty acid on As2O3-induced cardiac toxicity in in vivo and in vitro settings. In in vivo experiments, male Wistar rats were orally administered with As2O3 4 mg/kg body weight for a period of 45 days and cardiotoxicity was assessed. As2O3 significantly increased the tissue arsenic deposition, micronuclei frequency and creatine kinase (CK)-MB activity. There were a rise in lipid peroxidation and a decline in reduced glutathione, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase in heart tissue of arsenic-administered rats. The cardioprotective role of ω-3 fatty acid was assessed by combination treatment with As2O3. ω-3 fatty acid co-administration with As2O3 significantly alleviated these changes. In in vitro study using H9c2 cardiomyocytes, As2O3 treatment induced alterations in cell viability, lactate dehydrogenase (LDH) release, lipid peroxidation, cellular calcium levels and mitochondrial membrane potential (∆Ψm). ω-3 fatty acid co-treatment significantly increased cardiomyocyte viability, reduced LDH release, lipid peroxidation and intracellular calcium concentration and improved the ∆Ψm. These findings suggested that the ω-3 fatty acid has the potential to protect against As2O3-induced cardiotoxicity.

  8. Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells.

    PubMed

    Heo, Sook-Kyoung; Noh, Eui-Kyu; Yoon, Dong-Joon; Jo, Jae-Cheol; Koh, SuJin; Baek, Jin Ho; Park, Jae-Hoo; Min, Young Joo; Kim, Hawk

    2015-01-15

    Rosmarinic acid (RA, an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid) has a number of biological activities, but little is known about anti-leukemic activities of RA combined with all-trans retinoic acid (ATRA) against acute promyelocytic leukemia (APL) cells. We examined the differentiation marker, CD11b, in bone marrow cells (BMC) of an APL patient, in NB4 cells (APL cell line), and in normal BMC and peripheral blood mononuclear cells (PBMC) of healthy subjects by flow cytometric analysis. ATRA/RA induced expression of CD11b in the BMC of the APL patient and in NB4 cells, but not in normal BMC or PBMC. Therefore, we realized that RA potentiated ATRA-induced macrophage differentiation in APL cells. Further characterization of the induced macrophages showed that they exhibited morphological changes and were able to phagocytose and generate reactive oxygen species. Th also had typical expression of C-C chemokine receptor type 1 (CCR1), CCR2, and intercellular adhesion molecule-1 (ICAM-1). Moreover, the expression of CD11b(+) and CD14(+) cells depended on ERK-NF-κB axis activation. Together, these results indicate that RA potentiates ATRA-induced macrophage differentiation in APL cells. Thus, RA may play an important role as an appurtenant differentiation agent for functional macrophage differentiation in APL. Additionally, the differentiated macrophages might have a normal life span and, they could die. These data indicate that co-treatment with RA and ATRA has potential as an anti-leukemic therapy in APL.

  9. Effect of oleic, lauric and myristic acids on phenylephrine-induced contractions of isolated rat vas deferens.

    PubMed

    Arruzazabala, M L; Pérez, Y; Ravelo, Y; Molina, V; Carbajal, D; Mas, R; Rodríguez, E

    2011-09-01

    D-004, a lipid extract of Roystonea regia fruits that contains oleic, lauric and myristic acids as major components inhibits alpha1-adrenoreceptors-mediated contractile responses in isolated rat vas deferens and prostate trips; no study has demonstrated a similar effect for oleic, lauric or myristic acids individually. Therefore, the effects of D-004 (250 microg/mL), oleic (100 microg/mL), lauric (50 microg/mL) or myristic (25 microg/mL) acids and their combined effects on phenylephrine (PHE: 10(-7)-10(-4) mol/L) induced contractions has been studied. No treatment changed the basal tone of the preparations, but all inhibited PHE-induced contractions. D-004 produced the highest inhibition, followed by lauric acid, which was more effective than myristic and oleic acids against PHE-induced contractions of control group. D-004 and the mixture of the three acids produced similar inhibitions.

  10. Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells.

    PubMed

    Im, Eunok; Martinez, Jesse D

    2004-02-01

    Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is known as a cytoprotective agent. UDCA prevents apoptosis induced by a variety of stress stimuli including cytotoxic bile acids such as deoxycholic acid (DCA). Here we examined the molecular mechanism by which UDCA can antagonize DCA-induced apoptosis in human colon cancer cells. UDCA pretreatment decreases the number of apoptotic cells caused by exposure to DCA and UDCA. Further studies of the signaling pathway showed that UDCA pretreatment suppressed DNA binding activity of activator protein-1 and this was accompanied by downregulation of both extracellular signal-regulated kinase (ERK) and Raf-1 kinase activities stimulated by exposure to DCA. DCA was also found to activate epidermal growth factor receptor (EGFR) activity and UDCA inhibited this. Collectively, these findings suggest that the inhibitory effect of UDCA in DCA-induced apoptosis is partly mediated by modulation of EGFR/Raf-1/ERK signaling.

  11. Tetrahydrocannabinolic acid reduces nausea-induced conditioned gaping in rats and vomiting in Suncus murinus

    PubMed Central

    Rock, E M; Kopstick, R L; Limebeer, C L; Parker, L A

    2013-01-01

    BACKGROUND AND PURPOSE We evaluated the anti-emetic and anti-nausea properties of the acid precursor of Δ9-tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), and determined its mechanism of action in these animal models. EXPERIMENTAL APPROACH We investigated the effect of THCA on lithium chloride- (LiCl) induced conditioned gaping (nausea-induced behaviour) to a flavour, and context (a model of anticipatory nausea) in rats, and on LiCl-induced vomiting in Suncus murinus. Furthermore, we investigated THCA's ability to induce hypothermia and suppress locomotion [rodent tasks to assess cannabinoid1 (CB1) receptor agonist-like activity], and measured plasma and brain THCA and THC levels. We also determined whether THCA's effect could be blocked by pretreatment with SR141716 (SR, a CB1 receptor antagonist). KEY RESULTS In rats, THCA (0.05 and/or 0.5 mg·kg−1) suppressed LiCl-induced conditioned gaping to a flavour and context; the latter effect blocked by the CB1 receptor antagonist, SR, but not by the 5-hydroxytryptamine-1A receptor antagonist, WAY100635. In S. murinus, THCA (0.05 and 0.5 mg·kg−1) reduced LiCl-induced vomiting, an effect that was reversed with SR. A comparatively low dose of THC (0.05 mg·kg−1) did not suppress conditioned gaping to a LiCl-paired flavour or context. THCA did not induce hypothermia or reduce locomotion, indicating non-CB1 agonist-like effects. THCA, but not THC was detected in plasma samples. CONCLUSIONS AND IMPLICATIONS THCA potently reduced conditioned gaping in rats and vomiting in S. murinus, effects that were blocked by SR. These data suggest that THCA may be a more potent alternative to THC in the treatment of nausea and vomiting. PMID:23889598

  12. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    SciTech Connect

    Qiao, Jingbo; Paul, Pritha; Lee, Sora; Qiao, Lan; Josifi, Erlena; Tiao, Joshua R.; Chung, Dai H.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  13. Disorder and twinning in molecular crystals: impurity-induced effects in adipic acid.

    PubMed

    Williams-Seton, L; Davey, R J; Lieberman, H F; Pritchard, R G

    2000-03-01

    The variation in physical properties of crystals grown in the presence of additives or impurities have previously been attributed to lattice disorder developed during crystallization. Adipic acid crystallized in the presence of a variety of stereochemically related impurities typifies such behavior with disorder manifest in variations of dissolution rates and enthalpies of solution and fusion. In this case the most extreme habit, produced by the presence of added monoalkanoic acids, is a rounded dumbbell that was suggested previously to be a twinned crystal. In this contribution such crystals are fully characterized both through their external morphology and by means of single crystal X-ray diffraction. These techniques show that these particles are not twinned but rather are disordered single crystals comprising a small number of slightly misaligned domains. The interaction between additive and substrate is modeled and new additives selected that induce the formation of true mechanical twins in adipic acid.

  14. Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper(II)/ascorbic acid system.

    PubMed

    Beker, Bilge Yıldoğan; Bakır, Temelkan; Sönmezoğlu, Inci; Imer, Filiz; Apak, Reşat

    2011-11-01

    Antioxidants are compounds that can delay or inhibit lipid oxidation. The peroxidation of linoleic acid (LA) in the absence and presence of Cu(II) ion-ascorbate combinations was investigated in aerated and incubated emulsions at 37°C and pH 7. LA peroxidation induced by copper(II)-ascorbic acid system followed first order kinetics with respect to hydroperoxides concentration. The extent of copper-initiated peroxide production in a LA system assayed by ferric thiocyanate method was used to determine possible antioxidant and prooxidant activities of the added flavonoids. The effects of three different flavonoids of similar structure, i.e. quercetin (QR), morin (MR) and catechin (CT), as potential antioxidant protectors were studied in the selected peroxidation system. The inhibitive order of flavonoids in the protection of LA peroxidation was: morin>catechin≥quercetin, i.e. agreeing with that of formal reduction potentials versus NHE at pH 7, i.e. 0.60, 0.57 and 0.33V for MR, CT, and QR, respectively. Morin showed antioxidant effect at all concentrations whereas catechin and quercetin showed both antioxidant and prooxidant effects depending on their concentrations. The structural requirements for antioxidant activity in flavonoids interestingly coincide with those for Cu(II)-induced prooxidant activity, because as the reducing power of a flavonoid increases, Cu(II)-Cu(I) reduction is facilitated that may end up with the production of reactive species. The findings of this study were evaluated in the light of structure-activity relationships of flavonoids, and the results are believed to be useful to better understand the actual conditions where flavonoids may act as prooxidants in the preservation of heterogeneous food samples containing traces of transition metal ions.

  15. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells.

    PubMed

    Qin, Ying; Naito, Yuji; Handa, Osamu; Hayashi, Natsuko; Kuki, Aiko; Mizushima, Katsura; Omatsu, Tatsushi; Tanimura, Yuko; Morita, Mayuko; Adachi, Satoko; Fukui, Akifumi; Hirata, Ikuhiro; Kishimoto, Etsuko; Nishikawa, Taichiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Yagi, Nobuaki; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-11-01

    Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intestinal epithelial cells were incubated with 70 µM polaprezinc for 24 h, and then stimulated with or without 15 mM acetylsalicylic acid for a further 15 h. Subsequent cellular viability was quantified by fluorometric assay based on cell lysis and staining. Acetylsalicylic acid-induced cell death was also qualified by fluorescent microscopy of Hoechst33342 and propidium iodide. Heat shock proteins 70 protein expression after adding polaprezinc or acetylsalicylic acid was assessed by western blotting. To investigate the role of Heat shock protein 70, Heat shock protein 70-specific small interfering RNA was applied. Cell viability was quantified by fluorometric assay based on cell lysis and staining and apoptosis was analyzed by fluorescence-activated cell sorting. We found that acetylsalicylic acid significantly induced apoptosis of rat intestinal epithelial cells in a dose- and time-dependent manner. Polaprezinc significantly suppressed acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells at its late phase. At the same time, polaprezinc increased Heat shock protein 70 expressions of rat intestinal epithelial cells in a time-dependent manner. However, in Heat shock protein 70-silenced rat intestinal epithelial cells, polaprezinc could not suppress acetylsalicylic acid -induced apoptosis at its late phase. We conclude that polaprezinc-increased Heat shock protein 70 expression might be an important mechanism by which polaprezinc suppresses acetylsalicylic

  16. Alpha-eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd.

    PubMed

    Kobori, Masuko; Ohnishi-Kameyama, Mayumi; Akimoto, Yukari; Yukizaki, Chizuko; Yoshida, Mitsuru

    2008-11-26

    Bitter gourd ( Momordica charantia L.) pericarp, placenta, and seed extracts were previously shown to induce apoptosis in HL60 human leukemia cells. To determine the active component that induces apoptosis in cancer cells, bitter gourd ethanol extract was fractionated by liquid-liquid partition and silica gel column chromatography. Several fractions obtained by silica gel column chromatography inhibited growth and induced apoptosis in HL60 cells. Among them, fraction 7 had the strongest activity in inhibiting growth and inducing apoptosis in HL60 cells. A component that induced apoptosis in HL60 cells was then isolated from fraction 7 by another silica gel column chromatography and high-performance liquid chromatography (HPLC) using a C18 column and was identified as (9Z,11E,13E)-15,16-dihydroxy-9,11,13-octadecatrienoic acid (15,16-dihydroxy alpha-eleostearic acid). 15,16-Dihydroxy alpha-eleostearic acid induced apoptosis in HL60 cells within 5 h at a concentration of 160 microM (50 microg/mL). (9Z,11E,13E)-9,11,13-Octadecatrienoic acid (alpha-eleostearic acid) is known to be the major conjugated linolenic acid in bitter gourd seeds. Therefore, the effect of alpha-eleostearic acid on the growth of some cancer and normal cell lines was examined. alpha-Eleostearic acid strongly inhibited the growth of some cancer and fibroblast cell lines, including those of HL60 leukemia and HT29 colon carcinoma. alpha-Eleostearic acid induced apoptosis in HL60 cells after a 24 h incubation at a concentration of 5 microM. Thus, alpha-eleostearic acid and the dihydroxy derivative from bitter gourd were suggested to be the major inducers of apoptosis in HL60 cells.

  17. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  18. Involvement of Abscisic Acid in Ethylene-Induced Cotyledon Abscission in Cotton Seedlings.

    PubMed Central

    Suttle, J. C.; Hultstrand, J. F.

    1993-01-01

    Cotton (Gossypium hirsutum L. cv LG102) seedlings raised from seeds exposed to 100 [mu]M norflurazon (NFZ) during imbibition contained reduced levels of free abscisic acid (ABA) and were visibly achlorophyllous. Exposure of untreated cotton seedlings to ethylene concentrations >1 [mu]L/L for 24 h resulted in cotyledon abscission. In contrast, exposure of NFZ-treated seedlings to concentrations of ethylene [less than or equal to]50 [mu]L/L elicited no cotyledon abscission. Application of ABA, an ABA analog, or jasmonic acid to NFZ-treated seedlings restored ethylene-induced abscission. Isolated cotyledonary node explants prepared from NFZ-treated seedlings exhibited an altered dose-response pattern of ethylene-induced petiole abscission. Endogenous levels of free IAA were unaltered in NFZ-treated seedlings. Ethylene treatment (50 [mu]L/L, 24 h) had no effect on free indoleacetic acid (IAA) levels in either control or NFZ-treated seedlings. Levels of conjugated (ester plus amide) IAA were substantially increased in NFZ-treated seedlings regardless of ethylene treatment. These results indicate that endogenous ABA plays an essential, but physiologically undefined, role in ethylene-induced cotyledon abscission in cotton. PMID:12231720

  19. Striatal grafts provide sustained protection from kainic and quinolinic acid-induced damage.

    PubMed

    Tulipan, N; Luo, S Q; Allen, G S; Whetsell, W O

    1988-12-01

    Grafts of neonatal striatal tissue were placed into the striata of adult rats. When challenged immediately with intrastriatal injections of either kainic or quinolinic acid, excitotoxic damage was prevented. Thirty days later these same graft recipients received another injection of excitotoxin. The intrastriatal grafts continued to mitigate toxin-induced damage. It is hypothesized that the grafted cells not only survive, but that they may continue to elaborate some substance or substances that prevent excitotoxin-induced injury for at least 30 days. Previous investigations indicated that grafts of neonatal striatal tissue can protect the recipient striatum from kainic acid toxicity. In the following study it is demonstrated that such grafts also protect the striatum from quinolinic acid, an endogenous excitotoxin which induces kainate-like neuronal degeneration and has been implicated in the pathogenesis of Huntington's disease. It is postulated that the salutary effect of striatal grafting may be sufficiently long lasting to mitigate a chronic toxic insult. Such grafting may therefore represent a therapy for Huntington's disease and other neurodegenerative disorders in which an endogenous or exogenous toxin has been implicated as the pathogenetic agent.

  20. Substrate-Induced Ubiquitylation and Endocytosis of Yeast Amino Acid Permeases

    PubMed Central

    Ghaddar, Kassem; Merhi, Ahmad; Saliba, Elie; Krammer, Eva-Maria; Prévost, Martine

    2014-01-01

    Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. Following an approach based on permease structural modeling, mutagenesis, and kinetic parameter analysis, we obtained evidence that substrate-induced endocytosis requires transition of the permease to a conformational state preceding substrate release into the cell. Furthermore, this transient conformation must be stable enough, and thus sufficiently populated, for the permease to undergo efficient downregulation. Additional observations, including the constitutive downregulation of two active Gap1 mutants altered in cytosolic regions, support the model that the substrate-induced conformational transition inducing endocytosis involves remodeling of cytosolic regions of the permeases, thereby promoting their recognition by arrestin-like adaptors of the Rsp5 ubiquitin ligase. Similar mechanisms might control many other plasma membrane transporters according to the external concentrations of their substrates. PMID:25266656

  1. Salicylic Acid induces cyanide-resistant respiration in tobacco cell-suspension cultures.

    PubMed

    Kapulnik, Y; Yalpani, N; Raskin, I

    1992-12-01

    Cyanide-resistant, alternative respiration in Nicotiana tabacum L. cv Xanthi-nc was analyzed in liquid suspension cultures using O(2) uptake and calorimetric measurements. In young cultures (4-8 d after transfer), cyanide inhibited O(2) uptake by up to 40% as compared to controls. Application of 20 mum salicylic acid (SA) to young cells increased cyanide-resistant O(2) uptake within 2 h. Development of KCN resistance did not affect total O(2) uptake, but was accompanied by a 60% increase in the rate of heat evolution from cells as measured by calorimetry. This stimulation of heat evolution by SA was not significantly affected by 1 mm cyanide, but was reduced by 10 mm salicylhydroxamic acid (SHAM), an inhibitor of cyanide-resistant respiration. Treatment of SA-induced or uninduced cells with a combination of cyanide and SHAM blocked most of the O(2) consumption and heat evolution. Fifty percent of the applied SA was taken up within 10 min, with most of the intracellular SA metabolized in 2 h. 2,6-Dihydroxybenzoic and 4-hydroxybenzoic acids also induced cyanide-resistant respiration. These data indicate that in tobacco cell-suspension culture, SA induces the activity and the capacity of cyanide-resistant respiration without affecting the capacity of the cytochrome c respiration pathway.

  2. Ascorbic acid and beta-carotene reduce stress-induced oxidative organ damage in rats.

    PubMed

    Esrefoglu, M; Akinci, A; Taslidere, E; Elbe, H; Cetin, A; Ates, B

    2016-10-01

    Antioxidants are potential therapeutic agents for reducing stress-induced organ damage. We investigated the effects of ascorbic acid and β-carotene on oxidative stress-induced cerebral, cerebellar, cardiac and hepatic damage using microscopy and biochemistry. Male Wistar albino rats were divided into five groups: untreated control, stressed, stressed + saline, stressed + ascorbic acid and stressed + β-carotene. The rats in the stressed groups were subjected to starvation, immobilization and cold. The histopathological damage scores for the stressed and stressed + saline groups were higher than those of the control group for all organs examined. The histopathological damage scores and mean tissue malondialdehyde levels for the groups treated with antioxidants were lower than those for the stressed and stressed + saline groups. Mean tissue superoxide dismutase activities for groups that received antioxidants were higher than those for the stressed + saline group for most organs evaluated. Ascorbic acid and β-carotene can reduce stress-induced organ damage by both inhibiting lipid oxidation and supporting the cellular antioxidant defense system.

  3. Therapeutic paracetamol treatment in older persons induces dietary and metabolic modifications related to sulfur amino acids.

    PubMed

    Pujos-Guillot, Estelle; Pickering, Gisèle; Lyan, Bernard; Ducheix, Gilles; Brandolini-Bunlon, Marion; Glomot, Françoise; Dardevet, Dominique; Dubray, Claude; Papet, Isabelle

    2012-02-01

    Sulfur amino acids are determinant for the detoxification of paracetamol (N-acetyl-p-aminophenol) through sulfate and glutathione conjugations. Long-term paracetamol treatment is common in the elderly, despite a potential cysteine/glutathione deficiency. Detoxification could occur at the expense of anti-oxidative defenses and whole body protein stores in elderly. We tested how older persons satisfy the extra demand in sulfur amino acids induced by long-term paracetamol treatment, focusing on metabolic and nutritional aspects. Effects of 3 g/day paracetamol for 14 days on fasting blood glutathione, plasma amino acids and sulfate, urinary paracetamol metabolites, and urinary metabolomic were studied in independently living older persons (five women, five men, mean (±SEM) age 74 ± 1 years). Dietary intakes were recorded before and at the end of the treatment and ingested sulfur amino acids were evaluated. Fasting blood glutathione, plasma amino acids, and sulfate were unchanged. Urinary nitrogen excretion supported a preservation of whole body proteins, but large-scale urinary metabolomic analysis revealed an oxidation of some sulfur-containing compounds. Dietary protein intake was 13% higher at the end than before paracetamol treatment. Final sulfur amino acid intake reached 37 mg/kg/day. The increase in sulfur amino acid intake corresponded to half of the sulfur excreted in urinary paracetamol conjugates. In conclusion, older persons accommodated to long-term paracetamol treatment by increasing dietary protein intake without any mobilization of body proteins, but with decreased anti-oxidative defenses. The extra demand in sulfur amino acids led to a consumption far above the corresponding population-safe recommendation.

  4. Drug Reaction With Eosinophilia and Systemic Symptoms Induced by Valproic Acid: A Case Report

    PubMed Central

    Darban, Mahboubeh; Bagheri, Bahador

    2016-01-01

    Introduction Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare but life-threatening reaction to drugs such as carbamazepine and allopurinol. The condition is characterized by skin rashes, fever, hematological disturbances, lymphadenopathy, and organ failure, most probably hepatic dysfunction. To date, only a few cases of valproate-induced DRESS syndrome have been reported. Case Presentation We report on the case of a 60-year-old man who had been treated with valproic acid some time before being referred to Kowsar Hospital, Semnan, Iran in December 2015. He was given valproic acid 1000 mg PO, and after 20 days, he had developed widespread rashes, fever, esophagitis, cervical lymphadenopathy, and tender hepatomegaly. Laboratory results at Kowsar showed a drop in hemoglobin, in addition to lymphocytosis, thrombocytopenia, and elevated serum transaminases. DRESS was diagnosed, and corticosteroid therapy was initiated. Administration of the culprit drug to the patient was also stopped. Intravenous immunoglobulin (IVIG) improved the general condition of the patient. Conclusions Only a small number of case reports have described valproic acid-induced DRESS syndrome; therefore, the condition is difficult to prevent. Rechallenge with valproic acid should be avoided in patients with a history of reaction to the drug. PMID:28144463

  5. Betulinic acid protects against ischemia/reperfusion-induced renal damage and inhibits leukocyte apoptosis.

    PubMed

    Ekşioğlu-Demiralp, Emel; Kardaş, E Riza; Ozgül, Seçkin; Yağci, Tayfur; Bilgin, Hüseyin; Sehirli, Ozer; Ercan, Feriha; Sener, Göksel

    2010-03-01

    The possible protective effect of betulinic acid on renal ischemia/reperfusion (I/R) injury was studied. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Betulinic acid (250 mg/kg, i.p.) or saline was administered at 30 min prior to ischemia and immediately before the reperfusion. Creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) and TNF-alpha as well as the oxidative burst of neutrophil and leukocyte apoptosis were assayed in blood samples. Malondialdehyde (MDA), glutathione (GSH) levels, Na(+), K(+)-ATPase and myeloperoxidase (MPO) activities were determined in kidney tissue which was also analysed microscopically. I/R caused significant increases in blood creatinine, BUN, LDH and TNF-alpha. In the kidney samples of the I/R group, MDA levels and MPO activity were increased significantly, however, GSH levels and Na(+), K(+)-ATPase activity were decreased. Betulinic acid ameliorated the oxidative burst response to both formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA) stimuli, normalized the apoptotic response and most of the biochemical indices as well as histopathological alterations induced by I/R. In conclusion, these data suggest that betulinic acid attenuates I/R-induced oxidant responses, improved microscopic damage and renal function by regulating the apoptotic function of leukocytes and inhibiting neutrophil infiltration.

  6. Ca2+ channel blockade prevents lysergic acid diethylamide-induced changes in dopamine and serotonin metabolism.

    PubMed

    Antkiewicz-Michaluk, L; Románska, I; Vetulani, J

    1997-07-30

    To investigate the effect of a single and multiple administration of lysergic acid diethylamide (LSD) on cerebral metabolism of dopamine and serotonin, male Wistar rats were treated with low and high doses (0.1 and 2.0 mg/kg i.p.) of LSD and the levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, 3-methoxytyramine, serotonin and 5-hydroxyindoleacetic acid were assayed by HPLC in the nucleus accumbens, striatum and frontal cortex. Some rats received nifedipine, 5 mg/kg i.p., before each injection of LSD to assess the effect of a Ca2+ channel blockade. High-dose LSD treatment (8 x 2 mg/kg per day) caused a strong stimulation of dopamine metabolism in the nucleus accumbens and striatum, and serotonin metabolism in the nucleus accumbens: the changes were observed 24 (but not 1 h) after the last dose. The changes induced by the low-dose treatment (8 x 0.1 mg/kg per day) had a different pattern, suggesting the release of dopamine from vesicles to cytoplasm. Co-administration of nifedipine completely prevented the LSD-induced biochemical changes. The results suggest that Ca2+ channel blocking agents may prevent development of some behavioral consequences of chronically used LSD.

  7. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    PubMed

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2).

  8. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain.

    PubMed

    Swathy, S S; Indira, M

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The optimal dose of Ksheerabala was found from a dose escalation study, wherein it was found that Ksheerabala showed maximum protection against quinolinic acid-induced neurotoxicity at a dose of 15 microL/100 g body weight/day, which was selected for further experiments. Four groups of female albino rats were maintained for 21 days as follows: 1. Control group, 2. Quinolinic acid (55 microg/100 g body weight), 3. Ksheerabala (15 microL/100 g body weight), 4. Ksheerabala (15 microL/100 g body weight) + Quinolinic acid (55 microg/100 g body weight). At the end of the experimental period, levels of lipid peroxidation products, protein carbonyls, and activities of scavenging enzymes were analyzed. The results revealed that quinolinic acid intake caused enhanced lipid and protein peroxidation as evidenced by increased levels of peroxidation products such as malondialdehyde, hydroperoxide, conjugated dienes, and protein carbonyls. On the other hand, the activities of scavenging enzymes such as catalase, superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase as well as the concentration of glutathione were reduced. On coadminstration of Ksheerabala along with quinolinic acid, the levels of all the biochemical parameters were restored to near-normal levels, indicating the protective effect of the drug. These results were reinforced by histopathological studies.

  9. Ascorbic acid protects against colistin sulfate-induced neurotoxicity in PC12 cells.

    PubMed

    Liu, Yang; Dai, Chongshan; Gao, Ruixia; Li, Jichang

    2013-10-01

    This study aimed to examine the protective effect of ascorbic acid against colistin-induced neurotoxicity mediated by oxidative stress, a potential mechanism. An in vitro neurotoxicity model was established with PC12 cells exposed to 125 µg/mL colistin sulfate for 24 h. PC12 cells were treated with colistin (125 µg/mL) in the absence and presence of ascorbic acid (0.1, 1.0 and 10 µM/mL) for 24 h. Both 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) assay were carried out to evaluate cell viability. The levels of intracellular reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) levels were assessed. Moreover, we tested the level of DNA fragmentation, the release of cytochrome-c and the expressions of caspase-9 and -3 mRNA. The results showed that 1 and 10 µM/mL ascorbic acid significantly increased the cell viability and the levels of SOD and GSH (both p<0.05), while 0.1, 1 and 10 µM/mL ascorbic acid significantly decreased the generation of ROS, the release of cytochrome-c, formation of DNA fragmentation and the expressions of caspase-9 and -3 mRNA in colistin-treated PC12 cells, compared with the colistin model group. These results suggest that ascorbic acid could reduce colistin sulfate-induced neurotoxicity through the resistance of oxidative stress and the prevention of apoptosis mediated via mitochondria pathway. They also highlight the potential of coadministering ascorbic acid to widen the therapeutic dose of colistin.

  10. LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Keun; Kumaran, Rangarajulu Senthil; Jeon, Hyeon Jin; Song, Hak-Jin; Yang, Yung-Hun; Lee, Sang Hyun; Song, Kyung-Guen; Kim, Kwang Jin; Singh, Vijay; Kim, Hyung Joo

    2015-06-01

    Microbial algal system can serve as a potential source for the production of much high value bioproducts and biofuels. The quality and intensity of light are the key elements to optimize the production of algal biomass and fatty acid contents. This study presents the effect of differential LED flashing light conditions on the growth of microalgae, Acutodesmus obliquus. The induced light stress was optimized for its biomass and fatty acid content. The microalgae are exposed to various frequency of intermittent LED flashing light (blue and red lights) at three different phases in the 18 day cell growth (log, lag and stationary phase). The frequency of light flashing rate was adjusted to 120, 10, 5, 3.75, and 1 times per min. The effect of light stress on growth and fatty acids composition of A. obliquus induced an increase in algae growth and fatty acid production. Different optimal timing for light stress was subjected to elucidate the effect of light stress on algae growth and fatty acid production. The results showed an increase in the algae growth (1.2 mg/L of chl a content) under light stress condition at FT10 (flashing time, 10 times per min) from the initial day (log phase) compared with the control experiment (0.4 mg/L of chl a content). However, the total fatty acids (71 mg/g) and volumetric FAME production (9.4 ml/l) level was found to be significant under FT5 (flashing time, 5 times per min), adopting flashing light from day 10 (stationary phase). TEM studies also revealed the deposition of lipid to be largest in the 18 day old cells under flashing light (FT5) condition, representing maximum accumulation of lipids bodies (up to 770 nm diameter in particle size) occupying approximately 42% of the total area of the cell.

  11. LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus.

    PubMed

    Choi, Yong-Keun; Kumaran, Rangarajulu Senthil; Jeon, Hyeon Jin; Song, Hak-Jin; Yang, Yung-Hun; Lee, Sang Hyun; Song, Kyung-Guen; Kim, Kwang Jin; Singh, Vijay; Kim, Hyung Joo

    2015-06-15

    Microbial algal system can serve as a potential source for the production of much high value bioproducts and biofuels. The quality and intensity of light are the key elements to optimize the production of algal biomass and fatty acid contents. This study presents the effect of differential LED flashing light conditions on the growth of microalgae, Acutodesmus obliquus. The induced light stress was optimized for its biomass and fatty acid content. The microalgae are exposed to various frequency of intermittent LED flashing light (blue and red lights) at three different phases in the 18 day cell growth (log, lag and stationary phase). The frequency of light flashing rate was adjusted to 120, 10, 5, 3.75, and 1 times per min. The effect of light stress on growth and fatty acids composition of A. obliquus induced an increase in algae growth and fatty acid production. Different optimal timing for light stress was subjected to elucidate the effect of light stress on algae growth and fatty acid production. The results showed an increase in the algae growth (1.2mg/L of chl a content) under light stress condition at FT10 (flashing time, 10 times per min) from the initial day (log phase) compared with the control experiment (0.4 mg/L of chl a content). However, the total fatty acids (71 mg/g) and volumetric FAME production (9.4 ml/l) level was found to be significant under FT5 (flashing time, 5 times per min), adopting flashing light from day 10 (stationary phase). TEM studies also revealed the deposition of lipid to be largest in the 18 day old cells under flashing light (FT5) condition, representing maximum accumulation of lipids bodies (up to 770 nm diameter in particle size) occupying approximately 42% of the total area of the cell.

  12. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    SciTech Connect

    Wang, Jian-Qing; Chen, Xi; Zhang, Cheng; Tao, Li; Zhang, Zhi-Hui; Liu, Xiao-Qian; Xu, Yuan-Bao; Wang, Hua; Li, Jun; Xu, De-Xiang

    2013-01-15

    A recent report showed that the unfolded protein response (UPR) signaling was activated in the pathogenesis of carbon tetrachloride (CCl{sub 4})-induced hepatic fibrosis. Phenylbutyric acid (PBA) is a well-known chemical chaperone that inhibits endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling. In the present study, we investigated the effects of PBA on CCl{sub 4}-induced hepatic fibrosis in mice. All mice were intraperitoneally (i.p.) injected with CCl{sub 4} (0.15 ml/kg BW, twice per week) for 8 weeks. In CCl{sub 4} + PBA group, mice were i.p. injected with PBA (150 mg/kg, twice per day) from the beginning of CCl{sub 4} injection to the end. As expected, PBA significantly attenuated CCl{sub 4}-induced hepatic ER stress and UPR activation. Although PBA alleviated, only to a less extent, hepatic necrosis, it obviously inhibited CCl{sub 4}-induced tumor necrosis factor alpha (TNF-α) and transforming growth factor beta (TGF-β). Moreover, PBA inhibited CCl{sub 4}-induced hepatic nuclear factor kappa B (NF-κB) p65 translocation and extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) phosphorylation. Interestingly, CCl{sub 4}-induced α-smooth muscle actin (α-SMA), a marker for the initiation phase of HSC activation, was significantly attenuated in mice pretreated with PBA. Correspondingly, CCl{sub 4}-induced hepatic collagen (Col)1α1 and Col1α2, markers for the perpetuation phase of HSC activation, were inhibited in PBA-treated mice. Importantly, CCl{sub 4}-induced hepatic fibrosis, as determined using Sirius red staining, was obviously attenuated by PBA. In conclusion, PBA prevents CCl{sub 4}-induced hepatic fibrosis through inhibiting hepatic inflammatory response and HSC activation. Highlights: ► CCl{sub 4} induces hepatic ER stress, inflammation, HSC activation and hepatic fibrosis. ► PBA alleviates CCl{sub 4}-induced hepatic ER stress and UPR signaling activation. ► PBA inhibits CCl{sub 4}-induced

  13. Mechanisms of Motility Change on Trinitrobenzenesulfonic Acid-Induced Colonic Inflammation in Mice

    PubMed Central

    Cheon, Gab Jin; Cui, Yuan; Yeon, Dong-Soo; Kwon, Seong-Chun

    2012-01-01

    Ulcerative colitis is an inflammatory bowel disease (IBD) characterized by recurrent episodes of colonic inflammation and tissue degeneration in human or animal models. The contractile force generated by the smooth muscle is significantly attenuated, resulting in altered motility leading to diarrhea or constipation in IBD. The aim of this study is to clarify the altered contractility of circular and longitudinal smooth muscle layers in proximal colon of trinitrobenzen sulfonic acid (TNBS)-induced colitis mouse. Colitis was induced by direct injection of TNBS (120 mg/kg, 50% ethanol) in proximal colon of ICR mouse using a 30 G needle anesthetized with ketamin (50 mg/kg), whereas animals in the control group were injected of 50% ethanol alone. In TNBS-induced colitis, the wall of the proximal colon is diffusely thickened with loss of haustration, and showed mucosal and mucular edema with inflammatory infiltration. The colonic inflammation is significantly induced the reduction of colonic contractile activity including spontaneous contractile activity, depolarization-induced contractility, and muscarinic acetylcholine receptor-mediated contractile response in circular muscle layer compared to the longitudinal muscle layer. The inward rectification of currents, especially, important to Ca2+ and Na+ influx-induced depolarization and contraction, was markedly reduced in the TNBS-induced colitis compared to the control. The muscarinic acetylcholine-mediated contractile responses were significantly attenuated in the circular and longitudinal smooth muscle strips induced by the reduction of membrane expression of canonical transient receptor potential (TRPC) channel isoforms from the proximal colon of the TNBS-induced colitis mouse than the control. PMID:23269907

  14. Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats.

    PubMed

    Kim, Jong-Hoon; Kim, Sunoh; Yoon, In-Soo; Lee, Jong-Hwan; Jang, Byung-Jun; Jeong, Sang Min; Lee, Jun-Ho; Lee, Byung-Hwan; Han, Jin-Soo; Oh, Sekwan; Kim, Hyung-Chun; Park, Tae Kyu; Rhim, Hyewhon; Nah, Seung-Yeol

    2005-04-01

    The precise cause of neuronal cell death in Huntington's disease (HD) is not known. Systemic administration of 3-nitropropionic acid (3-NP), an irreversible succinate dehydrogenase inhibitor, not only induces a cellular ATP depletions but also causes a selective striatal degeneration similar to that seen in HD. Recent accumulating reports have shown that ginseng saponins (GTS), the major active ingredients of Panax ginseng, have protective effects against neurotoxin insults. In the present study, we examined in vitro and in vivo effects of GTS on striatal neurotoxicity induced by repeated treatment of 3-NP in rats. Here, we report that systemic administration of GTS produced significant protections against systemic 3-NP- and intrastriatal malonate-induced lesions in rat striatum with dose-dependent manner. GTS also improved significantly 3-NP-caused behavioral impairment and extended survival. However, GTS itself had no effect on 3-NP-induced inhibition of succinate dehydrogenase activity. To explain the mechanisms underlying in vivo protective effects of GTS against 3-NP-induced striatal degeneration, we examined in vitro effect of GTS against 3-NP-caused cytotoxicity using cultured rat striatal neurons. We found that GTS inhibited 3-NP-induced intracellular Ca(2+) elevations. GTS restored 3-NP-caused mitochondrial transmembrane potential reduction in cultured rat striatal neurons. GTS also prevented 3-NP-induced striatal neuronal cell deaths with dose-dependent manner. The EC(50) was 12.6 +/- 0. 7microg/ml. These results suggest that in vivo protective effects of GTS against 3-NP-induced rat striatal degeneration might be achieved via in vitro inhibition of 3-NP-induced intracellular Ca(2+) elevations and cytotoxicity of striatal neurons.

  15. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    PubMed

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  16. Tachykinin inhibition of acid-induced gastric hyperaemia in the rat.

    PubMed Central

    Heinemann, A.; Jocic, M.; Herzeg, G.; Holzer, P.

    1996-01-01

    1. Primary afferent neurones releasing the vasodilator, calcitonin gene-related peptide, mediate the gastric hyperaemic response to acid back-diffusion. The tachykinins neurokinin A (NKA) and substance P (SP) are located in the same neurones and are co-released with calcitonin gene-related peptide. In this study we investigated the effect and possible role of tachykinins in the acid-evoked gastric vasodilatation in urethane-anaesthetized rats. 2. Gastric acid back-diffusion, induced by perfusing the stomach with 15% ethanol in the presence of 0.05 M HCl, increased gastric mucosal blood flow by 60-90%, as determined by the hydrogen clearance technique. NKA and SP (0.14-3.78 nmol min-1 kg-1, infused intra-aortically) inhibited the gastric mucosal hyperaemic response to acid back-diffusion in a dose-dependent manner, an effect that was accompanied by aggravation of ethanol/acid-induced macroscopic haemorrhagic lesions. 3. The inhibitory effect of NKA (1.26 nmol min-1 kg-1) on the acid-induced gastric mucosal vasodilatation was prevented by the tachykinin NK2 receptor antagonists, MEN 10,627 (200 nmol kg-1) but left unaltered by the NK1 receptor antagonist, SR 140,333 (300 nmol kg-1) and the mast-cell stabilizer, ketotifen (4.6 mumol kg-1). 4. Under basal conditions, with 0.05 M HCl being perfused through the stomach, NKA (1.26 nmol min-1 kg-1) reduced gastric mucosal blood flow by about 25%, an effect that was abolished by SR 140,333 but not MEN 10,627 or ketotifen. 5. SR 140,333, MEN 10,627 or ketotifen had no significant effect on basal gastric mucosal blood flow nor did they modify the gastric mucosal hyperaemic reaction to acid back-diffusion. 6. The effect of NKA (1.26 nmol min-1 kg-1) in causing vasoconstriction and inhibiting the vasodilator response to acid back-diffusion was also seen when blood flow in the left gastric artery was measured with the ultrasonic transit time shift technique. 7. Arginine vasopressin (AVP, 0.1 nmol min-1 kg-1) induced gastric

  17. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation.

    PubMed

    McKallip, Robert J; Hagele, Harriet F; Uchakina, Olga N

    2013-10-17

    Exposure to bacterial superantigens, such as staphylococcal enterotoxin B (SEB), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for SEB-induced inflammation. In the current study we investigated the potential use of the hyaluronic acid synthase inhibitor 4-methylumbelliferone (4-MU) on staphylococcal enterotoxin B (SEB) induced acute lung inflammation. Culturing SEB-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production as well as an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from SEB-induced lung injury. Specifically, 4-MU treatment led to a reduction in SEB-induced HA levels, reduction in lung permeability, and reduced pro-inflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target hyaluronic acid production may be an effective treatment for the inflammatory response following exposure to SEB.

  18. Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses SEB-Induced Lung Inflammation

    PubMed Central

    McKallip, Robert J.; Hagele, Harriet F.; Uchakina, Olga N.

    2013-01-01

    Exposure to bacterial superantigens, such as staphylococcal enterotoxin B (SEB), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for SEB-induced inflammation. In the current study we investigated the potential use of the hyaluronic acid synthase inhibitor 4-methylumbelliferone (4-MU) on staphylococcal enterotoxin B (SEB) induced acute lung inflammation. Culturing SEB-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production as well as an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from SEB-induced lung injury. Specifically, 4-MU treatment led to a reduction in SEB-induced HA levels, reduction in lung permeability, and reduced pro-inflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target hyaluronic acid production may be an effective treatment for the inflammatory response following exposure to SEB. PMID:24141285

  19. Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines

    PubMed Central

    Zhang, Xing-Mei; Zhu, Jie

    2011-01-01

    Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro-toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurodegenerative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-α, interleukin (IL)-1, IL-12 and IL-18. PMID:22131947

  20. Mechanisms of p-methoxycinnamic acid-induced increase in insulin secretion.

    PubMed

    Adisakwattana, S; Hsu, W H; Yibchok-anun, S

    2011-10-01

    p-Methoxycinnamic acid (p-MCA) is a cinnamic acid derivative that shows various pharmacologic actions such as hepatoprotective and antihyperglycemic activities. The present study was to elucidate the mechanisms by which p-MCA increases [Ca²⁺]i and insulin secretion in INS-1 cells. p-MCA (100 μM) increased [Ca²⁺]i in INS-1 cells. The p-MCA-induced insulin secretion and rise in [Ca²⁺]i were markedly inhibited in the absence of extracellular Ca²⁺ or in the presence of an L-type Ca²⁺ channel blocker nimodipine. These results suggested that p-MCA increased Ca²⁺ influx via the L-type Ca²⁺ channels. Diazoxide, an ATP-sensitive K⁺ channel opener, did not alter p-MCA-induced insulin secretion, nor [Ca²⁺]i response. In addition, p-MCA enhanced glucose-, glibenclamide-induced insulin secretion whereas it also potentiated the increase in insulin secretion induced by arginine, and Bay K 8644, an L-type Ca²⁺ channel agonist. Taken together, our results suggest that p-MCA stimulated insulin secretion from pancreatic β-cells by increasing Ca²⁺ influx via the L-type Ca²⁺ channels, but not through the closure of ATP-sensitive K⁺ channels.

  1. Tannic acid mitigates the DMBA/croton oil-induced skin cancer progression in mice.

    PubMed

    Majed, Ferial; Rashid, Summya; Khan, Abdul Quaiyoom; Nafees, Sana; Ali, Nemat; Ali, Rashid; Khan, Rehan; Hasan, Syed Kazim; Mehdi, Syed Jafar; Sultana, Sarwat

    2015-01-01

    Skin cancer is the most common malignancy in the world and also one of the major causes of death worldwide. The toxic environmental pollutant 7,12-dimethylbenz[a]anthracene (DMBA) is a skin-specific carcinogen. Tannic acid (TA) is reported to be effective against various types of chemical-induced toxicities and carcinogenesis as well. In the present study, we have evaluated the therapeutic potential of tannic acid in DMBA + croton oil-induced skin cancer in Swiss albino mice. Protective effect of TA against skin cancer was evaluated in terms of antioxidant enzymes activities, lipid peroxidation, histopathological changes and expression of inflammation and early tumour markers. DMBA + croton oil causes depletion of antioxidant enzymes (p < 0.001) and elevation of early inflammatory and tumour promotional events. TA prevents the DMBA + croton oil-induced toxicity through a protective mechanism that involves the reduction of oxidative stress as well as COX-2, i-NOS, PCNA protein expression and level of proinflammatory cytokine such as IL-6 release at a very significant level (p < 0.001). It could be concluded from our results that TA attenuates DMBA + croton oil-induced tumour promotional potential possibly by inhibiting oxidative and inflammatory responses and acts as antioxidant, anti-inflammatory and antiproliferative agent.

  2. Inhibition of monomethylarsonous acid (MMA(III))-induced cell malignant transformation through restoring dysregulated histone acetylation.

    PubMed

    Ge, Yichen; Gong, Zhihong; Olson, James R; Xu, Peilin; Buck, Michael J; Ren, Xuefeng

    2013-10-04

    Inorganic arsenic (iAs) and its high toxic metabolite, monomethylarsonous acid (MMA(III)), are able to induce malignant transformation of human cells. Chronic exposure to these chemicals is associated with an increased risk of developing multiple cancers in human. However, the mechanisms contributing to iAs/MMA(III)-induced cell malignant transformation and carcinogenesis are not fully elucidated. We recently showed that iAs/MMA(III) exposure to human cells led to a decreased level of histone acetylation globally, which was associated with an increased sensitivity to arsenic cytotoxicity. In the current study, it demonstrated that prolonged exposure to low-level MMA(III) in human urothelial cells significantly increased the expression and activity of histone deacetylases (HDACs) with an associated reduction of histone acetylation levels both globally and lysine specifically. Administration of the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), at 4 weeks after the initial MMA(III) treatment inhibited the MMA(III)-mediated up-regulation of the expression and activities of HDACs, leading to increase histone acetylation and prevention of MMA(III)-induced malignant transformation. These new findings suggest that histone acetylation dysregulation may be a key mechanism in MMA(III)-induced malignant transformation and carcinogenesis, and that HDAC inhibitors could be targeted to prevent or treat iAs-related cancers.

  3. Contact Sensitizers Induce Skin Inflammation via ROS Production and Hyaluronic Acid Degradation

    PubMed Central

    Esser, Philipp R.; Wölfle, Ute; Dürr, Christoph; von Loewenich, Friederike D.; Schempp, Christoph M.; Freudenberg, Marina A.; Jakob, Thilo; Martin, Stefan F.

    2012-01-01

    Background Allergic contact dermatitis (ACD) represents a severe health problem with increasing worldwide prevalence. It is a T cell-mediated skin disease induced by protein-reactive organic and inorganic chemicals. A key feature of contact allergens is their ability to trigger an innate immune response that leads to skin inflammation. Previous evidence from the mouse contact hypersensitivity (CHS) model suggests a role for endogenous activators of innate immune signaling. Here, we analyzed the role of contact sensitizer induced ROS production and concomitant changes in hyaluronic acid metabolism on CHS responses. Methodology/Principal Findings We analyzed in vitro and in vivo ROS production using fluorescent ROS detection reagents. HA fragmentation was determined by gel electrophoresis. The influence of blocking ROS production and HA degradation by antioxidants, hyaluronidase-inhibitor or p38 MAPK inhibitor was analyzed in the murine CHS model. Here, we demonstrate that organic contact sensitizers induce production of reactive oxygen species (ROS) and a concomitant breakdown of the extracellular matrix (ECM) component hyaluronic acid (HA) to pro-inflammatory low molecular weight fragments in the skin. Importantly, inhibition of either ROS-mediated or enzymatic HA breakdown prevents sensitization as well as elicitation of CHS. Conclusions/Significance These data identify an indirect mechanism of contact sensitizer induced innate inflammatory signaling involving the breakdown of the ECM and generation of endogenous danger signals. Our findings suggest a beneficial role for anti-oxidants and hyaluronidase inhibitors in prevention and treatment of ACD. PMID:22848468

  4. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    PubMed

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  5. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway.

    PubMed

    Zhang, Wei; Yang, Xiufen; Qiu, Dewen; Guo, Lihua; Zeng, Hongmei; Mao, Jianjun; Gao, Qiufeng

    2011-04-01

    Systemic acquired resistance (SAR) is an inducible defense mechanism which plays a central role in protecting plants from pathogen attack. A new elicitor, PeaT1 from Alternaria tenuissima, was expressed in Escherichia coil and characterized with systemic acquired resistance to tobacco mosaic virus (TMV). PeaT1-treated plants exhibited enhanced systemic resistance with a significant reduction in number and size of TMV lesions on wild tobacco leaves as compared with control. The quantitative analysis of TMV CP gene expression with real-time quantitative PCR showed there was reduction in TMV virus concentration after PeaT1 treatment. Similarly, peroxidase (POD) activity and lignin increased significantly after PeaT1 treatment. The real-time quantitative PCR revealed that PeaT1 also induced the systemic accumulation of pathogenesis-related gene, PR-1a and PR-1b which are the markers of systemic acquired resistance (SAR), NPR1 gene for salicylic acid (SA) signal transduction pathway and PAL gene for SA synthesis. The accumulation of SA and the failure in development of similar level of resistance as in wild type tobacco plants in PeaT1 treated nahG transgenic tobacco plants indicated that PeaT1-induced resistance depended on SA accumulation. The present work suggested that the molecular mechanism of PeaT1 inducing disease resistance in tobacco was likely through the systemic acquired resistance pathway mediated by salicylic acid and the NPR1 gene.

  6. Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death.

    PubMed

    Park, Jeong Ae; Kim, Seung; Lee, Sook-Young; Kim, Chun-Sung; Kim, Do Kyung; Kim, Sung-Jun; Chun, Hong Sung

    2008-08-27

    Carnosic acid (CA) is one of the bioactive polyphenols present in extracts of the herb rosemary (Rosmarinus officinalis). In this study, we examined possible protective effects of CA on neurotoxicity induced by dieldrin, an organochlorine pesticide implicated in sporadic Parkinson's disease, in cultured dopaminergic cells (SN4741). CA (5-10 muM) pretreatment showed potent protective effects in a concentration-related manner and prevented dieldrin (10 muM)-induced caspase-3 activation, Jun N-terminal kinase phosphorylation, and caspase-12 activation. Furthermore, dieldrin-induced downregulation of brain-derived neurotrophic factor production was significantly attenuated by CA. These results suggest that CA may safeguard dopaminergic neuronal cells from environmental neurotoxins by enhancing brain-derived neurotrophic factor and repressing apoptotic molecules.

  7. Koetjapic acid, a natural triterpenoid, induces apoptosis in colon cancer cells.

    PubMed

    Nassar, Zeyad D; Aisha, Abdalrahim F A; Idris, Norshirin; Khadeer Ahamed, Mohamed B; Ismail, Zhari; Abu-Salah, Khalid M; Alrokayan, Salman A; Shah Abdul Majid, Amin Malik

    2012-03-01

    Deregulated cell signaling pathways result in cancer development. More than one signal transduction pathway is involved in colorectal cancer pathogenesis and progression. Koetjapic acid (KA) is a naturally occurring seco-A-ring oleanene triterpene isolated from the Sandoricum koetjape stem bark. We report the cellular and molecular mechanisms of anticancer activity of KA towards human colorectal cancer. The results showed that KA induces apoptosis in HCT 116 colorectal carcinoma cells by inducing the activation of extrinsic and intrinsic caspases. We confirmed that KA-induced apoptosis was mediated by DNA fragmentation, nuclear condensation and disruption in the mitochondrial membrane potential. Further studies on the effect of KA on cancer pathways show that the compound causes down-regulation of Wnt, HIF-1α, MAP/ERK/JNK and Myc/Max signaling pathways and up-regulates the NF-κB signaling pathway. The result of this study highlights the anticancer potential of KA against colorectal cancer.

  8. Dopaminergic inhibition involved in the alpha-naphthoxyacetic acid-induced jumping behavior in mice.

    PubMed

    Yamada, K; Furukawa, T

    1980-05-16

    alpha-Naphthoxyacetic acid (alpha-NOAA), one of the retching-inducers, elicited a dose-dependent jumping behavior shortly after i.p. administration in doses ranging from 250 to 700 mg/kg in ddY mice, the incidence of jumping being 97% at a dose of 700 mg/kg. alpha-NOAA also induced hypothermia, retching, head shaking, salivation and lacrimation. Phentolamine, reserpine, disulfiram, tranylcypromine, haloperidol, scopolamine, bicuculline, diazepam and lithium among the drugs tested inhibited to a certain degree but not markedly the alpha-NOAA-induced jumping behavior. However, the behavior was markedly inhibited by a dopaminergic agonist, apomorphine (1 mg/kg, i.p.), and this inhibitory effect was significantly antagonized by a dopaminergic antagonist, haloperidol (2 mg/kg, i.p.). These findings suggest that the jumping behavior elicited by alpha-NOAA may be due to the inhibition of dopaminergic neuron activity.

  9. Chlorogenic acid prevents isoproterenol-induced DNA damage in vascular smooth muscle cells

    PubMed Central

    Wang, Jingshuai; Li, Jiyang; Liu, Jie; Xu, Mengjiao; Tong, Xiaowen; Wang, Jianjun

    2016-01-01

    Numerous clinical therapeutic agents have been identified as DNA damaging. The present study revealed that isoproterenol (Iso) resulted in DNA damage in vascular smooth muscle cells (VSMCs) and increased the levels of intracellular oxygen free radicals. Administration of chlorogenic acid (CGA) inhibited this effect. Pretreatment with CGA abrogated the increase in protein expression levels of γ-H2A histone family member X, phosphorylated ataxia telangiectasia mutated, phosphorylated Rad3-related protein, breast cancer 1 and C-terminal Src homologous kinase induced by Iso. In addition, the increase in levels of intracellular reactive oxygen species (ROS) induced by Iso was inhibited by CGA pretreatment in a dose-dependent manner. The results of the present study suggest that CGA may inhibit Iso-induced VSMC damage via the suppression of ROS generation. Therefore, CGA may be a novel agent for the treatment of vascular diseases. PMID:27634104

  10. Eicosapentaenoic acid attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling

    PubMed Central

    Liu, Meng-Han; Lin, An-Hsuan; Lu, Shing-Hwa; Peng, Ruo-Yun; Lee, Tzong-Shyuan; Kou, Yu Ru

    2014-01-01

    Cigarette smoking causes chronic lung inflammation that is mainly regulated by redox-sensitive pathways. Our previous studies have demonstrated that cigarette smoke (CS) activates reactive oxygen species (ROS)-sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling resulting in induction of lung inflammation. Eicosapentaenoic acid (EPA), a major type of omega-3 polyunsaturated fatty acid, is present in significant amounts in marine-based fish and fish oil. EPA has been shown to possess antioxidant and anti-inflammatory properties in vitro and in vivo. However, whether EPA has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we show that subchronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration (total cell count in bronchoalveolar lavage fluid (BALF), 11.0-fold increase), increased lung vascular permeability (protein level in BALF, 3.1-fold increase), elevated levels of chemokines (11.4–38.2-fold increase) and malondialdehyde (an oxidative stress biomarker; 2.0-fold increase) in the lungs, as well as lung inflammation; all of these CS-induced events were suppressed by daily supplementation with EPA. Using human bronchial epithelial cells, we further show that CS extract (CSE) sequentially activated NADPH oxidase (NADPH oxidase activity, 1.9-fold increase), increased intracellular levels of ROS (3.0-fold increase), activated both MAPKs and NF-κB, and induced interleukin-8 (IL-8; 8.2-fold increase); all these CSE-induced events were inhibited by pretreatment with EPA. Our findings suggest a novel role for EPA in alleviating the oxidative stress and lung inflammation induced by subchronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro via its antioxidant function and by inhibiting MAPKs/NF-κB signaling. PMID:25452730

  11. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    PubMed Central

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D.; Chen, Albert; Stapleton, Heather M.; Volz, David C.

    2015-01-01

    Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72 hours post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RARα-, RARβ-, or RARγ to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans. PMID:25725299

  12. Beneficial effects of ellagic acid against animal models of scopolamine- and diazepam-induced cognitive impairments.

    PubMed

    Mansouri, Mohammad Taghi; Farbood, Yaghoub; Naghizadeh, Bahareh; Shabani, Sohreh; Mirshekar, Mohammad Ali; Sarkaki, Alireza

    2016-10-01

    Context In a previous study, it has been shown that ellagic acid (EA), a polyphenolic compound found in pomegranate and different berries, prevents cognitive and hippocampal long-term potentiation (LTP) impairments induced by traumatic brain injury in rats through antioxidant and anti-inflammatory mechanisms. Objective The present study was conducted to assess the potential of EA as a memory enhancer. Materials and methods The elevated plus maze (EPM) and passive avoidance (PA) paradigm were used to evaluate learning and memory parameters. Three doses (10, 30 and 100 mg/kg, i.p.) of EA were administered to animals. Memory impairment was induced by scopolamine treatment (0.4 mg/kg, i.p.) and/or diazepam (1 mg/kg, i.p.). Acquisition trials were carried out 30 min after scopolamine treatment and retention trials were performed for 5 min 24 h after the acquisition trials. Results EA at doses 30 and 100 mg/kg significantly reversed the amnesia induced by scopolamine (0.4 mg/kg, i.p.) in the EPM and PA tests in mice. Also, EA at doses 30 and 100 mg/kg significantly antagonized the amnesia induced by diazepam (1 mg/kg, i.p.) in EPM test in rats. Moreover, chronic administration of EA at dose 30 mg/kg ameliorated the memory deficit induced by diazepam (1 mg/kg, i.p.) in rats. Discussion and conclusion This study demonstrates that ellagic acid is effective in preventing scopolamine- and diazepam-induced cognitive impairments without altering the animals' locomotion. This suggests the potential of EA application as a useful memory restorative agent in the treatment of dementia seen in elderly persons.

  13. Dynamic release of amino acid transmitters induced by valproate in PTZ-kindled epileptic rat hippocampus.

    PubMed

    Li, Zhi-Ping; Zhang, Xu-Ying; Lu, Xiang; Zhong, Ming-Kang; Ji, Yong-Hua

    2004-03-01

    In the present communication, the dynamic release of amino acid (AA) transmitters induced by valproate (VPA) in pentylenetetrazol (PTZ)-kindled freely moving rats hippocampus has been determined. The results showed that glutamate and aspartate release were significantly increased during the seizure/interical periods, and markedly decreased after the application of 200mg/kg valproate. In contrast, gamma-aminobutyric acid and taurine release were markedly decreased during interical period, and significantly increased during the seizure period. Glycine release was similar to the case of glutamate and aspartate release. The increase of either gamma-aminobutyric acid/taurine or glycine releases during the seizure period could be inhibited by the application of valproate likewise. The results indicate that: (a) the imbalance between excitatory and inhibitory neurotransmitters is really involved in epilepsy; (b) the modulation of valproate on the major amino acid neurotransmitters certainly plays one of important roles on antiepilepsy efficacy; (c) the pentylenetetrazol-kindled epileptogenesis model is a fit one for approaching the mechanisms of valproate modulating amino acid neurotransmitters.

  14. The Effect of Ascorbic Acid on Mancozeb-Induced Toxicity in Rat Thymocytes.

    PubMed

    Pavlovic, V; Cekic, S; Kamenov, B; Ciric, M; Krtinic, D

    2015-01-01

    Mancozeb, as a dithiocarbamate fungicide, has been found to exhibit toxicological manifestations in different cells, mainly by generation of free radicals which may alter antioxidant defence systems in cells. The effect of mancozeb on the cells of a primary lymphoid organ has not been studied. In the present study, the effects of mancozeb (0.2, 2 and 5 μg/ml) or mancozeb+ascorbic acid (100 μg/ml), or ascorbic acid alone or control medium alone on the levels of cell viability, apoptosis, intracellular reactive oxygen species production (ROS), mitochondrial membrane potential (MMP) and ATP levels in rat thymocytes were examined in vitro. Cells treated with mancozeb displayed a concentration-dependent increase of hypodiploid cells and ROS production followed by markedly decreased viability of the cells, MMP and ATP levels. Application of ascorbic acid significantly reduced cytotoxicity in cell cultures treated with 0.2 and 2 μg/ml of mancozeb, together with significantly decreased ROS levels and increased MMP and ATP levels. In cells treated with 5 μg/ml of mancozeb, ascorbic acid failed to reduce toxicity while simultaneously increasing the apoptosis rate of thymocytes. These results suggest that ROS plays a significant role in mancozeb-induced toxicity, through alteration of mitochondrial function. Ascorbic acid administration reduced the toxicity rate in cells treated with lower mancozeb concentrations, while it may have the ability to shift cells from necrosis to apoptosis in the presence of highest mancozeb concentrations.

  15. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis.

    PubMed

    Svahn, Sara L; Ulleryd, Marcus A; Grahnemo, Louise; Ståhlman, Marcus; Borén, Jan; Nilsson, Staffan; Jansson, John-Olov; Johansson, Maria E

    2016-04-01

    Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics,S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival.

  16. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis

    PubMed Central

    Ulleryd, Marcus A.; Grahnemo, Louise; Ståhlman, Marcus; Borén, Jan; Nilsson, Staffan; Jansson, John-Olov

    2016-01-01

    Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics, S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus. Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival. PMID:26857576

  17. Trans Fatty Acids Induce Vascular Inflammation and Reduce Vascular Nitric Oxide Production in Endothelial Cells

    PubMed Central

    Iwata, Naomi G.; Pham, Matilda; Rizzo, Norma O.; Cheng, Andrew M.; Maloney, Ezekiel; Kim, Francis

    2011-01-01

    Intake of trans fatty acids (TFA), which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO) bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived—dairy products and meat) on endothelial NF-κB activation and nitric oxide (NO) production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans)), Linoelaidic (trans-C18:2 (9 trans, 12 trans)), and Transvaccenic (trans-C18:1 (11 trans)) for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses) did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation. PMID:22216328

  18. An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid.

    PubMed

    Peng, Siyuan; Yan, Lijuan; Zhang, Jie; Wang, Zhanlin; Tian, Meiping; Shen, Heqing

    2013-12-01

    Perfluorooctanoic acid (PFOA) is one of the most representative perfluorinated compounds and liver is the major organ where PFOA is accumulated. Although the multiple toxicities had been reported, its toxicological profile remained unclear. In this study, a systems toxicology strategy integrating liquid chromatography/mass spectrometry-based metabonomics and transcriptomics analyses was applied for the first time to investigate the effects of PFOA on a representative Chinese normal human liver cell line L-02, with focusing on the metabolic disturbance. Fifteen potential biomarkers were identified on metabolic level and most observations were consistent with the altered levels of gene expression. Our results showed that PFOA induced the perturbations in various metabolic processes in L-02 cells, especially lipid metabolism-related pathways. The up-stream mitochondrial carnitine metabolism was proved to be influenced by PFOA treatment. The specific transformation from carnitine to acylcarnitines, which showed a dose-dependent effect, and the expression level of key genes involved in this pathway were observed to be altered correspondingly. Furthermore, the down-stream cholesterol biosynthesis was directly confirmed to be up-regulated by both increased cholesterol content and elevated expression level of key genes. The PFOA-induced lipid metabolism-related effects in L-02 cells started from the fatty acid catabolism in cytosol, fluctuated to the processes in mitochondria, extended to the cholesterol biosynthesis. Many other metabolic pathways like amino acid metabolism and tricarboxylic acid cycle might also be disturbed. The findings obtained from the systems biological research provide more details about metabolic disorders induced by PFOA in human liver.

  19. Effect of wheatgrass on membrane fatty acid composition during hepatotoxicity induced by alcohol and heated PUFA.

    PubMed

    Durairaj, Varalakshmi; Shakya, Garima; Pajaniradje, Sankar; Rajagopalan, Rukkumani

    2014-06-01

    Alcoholism is a broad term used for problems related to alcohol, medically considered as disease, specifically an addictive illness, abuse, and dependence. It is the major cause of liver disease in western countries. Alcoholic liver disease encompasses the hepatic alterations leading to fatty liver, hepatitis, and fibrosis or cirrhosis. Fried food items prepared with repeatedly heated polyunsaturated fatty acid (PUFA) exacerbate the disturbances induced by alcohol. The use of herbs to treat diseases is almost universal. Wheatgrass (WG) is used as a supplemental nutrition because of its unique curative properties. As it has antioxidant property, it prevents cancer, diabetes, and acts as liver cleanser. The present study was undertaken to evaluate the efficacy of WG on preserving membrane integrity in liver damage induced by alcohol and heated PUFA (ΔPUFA).The rats were divided into four groups. The animals in group 1 served as normal (standard diet), group 2 served as hepatotoxic (alcohol + ΔPUFA), group 3 served as treated (alcohol + ΔPUFA + WG), and group 4 served as WG control. The compositions of membrane fatty acid, total phospholipids, phospholipase A, C (PLA and PLC) were analyzed in liver to evaluate the effects of WG. Changes in fatty acid composition, decrease in phospholipids levels, and increase in PLA, PLC were observed in the diseased group. Restoration effect was seen in WG-treated rats. Histopathological observations were in correlation with the biochemical parameters. From the results obtained, we conclude that WG effectively protects the liver against alcohol and ΔPUFA-induced changes in fatty acid composition and preserves membrane integrity.

  20. Effect of caffeic acid esters on carcinogen-induced mutagenicity and human colon adenocarcinoma cell growth.

    PubMed

    Rao, C V; Desai, D; Kaul, B; Amin, S; Reddy, B S

    1992-11-16

    Propolis, a honey bee hive product, is thought to exhibit a broad spectrum of activities including antibiotic, antiviral, anti-inflammatory and tumor growth inhibition; some of the observed biological activities may be due to caffeic acid (cinnamic acid) esters that are present in propolis. In the present study we synthesized three caffeic acid esters, namely methyl caffeate (MC), phenylethyl caffeate (PEC) and phenylethyl dimethylcaffeate (PEDMC) and tested them against the 3,2'-dimethyl-4-aminobiphenyl, (DMAB, a colon and mammary carcinogen)-induced mutagenicity in Salmonella typhimurium strains TA 98 and TA 100. Also, the effect of these agents on the growth of human colon adenocarcinoma, HT-29 cells and activities of ornithine decarboxylase (ODC) and protein tyrosine kinase (PTK) was studied. Mutagenicity was induced in Salmonella typhimurium strains TA 98 and TA 100 plus S9 activation using 5 and 10 micrograms DMAB and antimutagenic activities of 0-150 microM MC, 0-60 microM PEC and 0-80 microM PEDMC were determined. The results indicate that MC, PEC and PEDMC were not mutagenic in the Salmonella tester system. DMAB-induced mutagenicity was significantly inhibited with 150 microM MC, 40-60 microM PEC and 40-80 microM PEDMC in both tester systems. Treatment of HT-29 colon adenocarcinoma cells with > 150 microM MC, 30 microM PEC and 20 microM PEDMC significantly inhibited the cell growth and syntheses of RNA, DNA and protein. ODC and PTK activities were also inhibited in HT-29 cells treated with different concentrations of MC, PEC and PEDMC. These results demonstrate that caffeic acid esters which are present in Propolis possess chemopreventive properties when tested in short-term assay systems.

  1. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    SciTech Connect

    Lin, C.-H.; Lai, Y.-L. . E-mail: tiger@ha.mc.ntu.edu.tw

    2005-08-15

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H{sub 1} receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C{sub 4} (LTC{sub 4}) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV{sub 0.1}) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV{sub 0.1}, indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC{sub 4} and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction.

  2. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity.

    PubMed

    Alvheim, Anita R; Malde, Marian K; Osei-Hyiaman, Douglas; Lin, Yu Hong; Pawlosky, Robert J; Madsen, Lise; Kristiansen, Karsten; Frøyland, Livar; Hibbeln, Joseph R

    2012-10-01

    Suppressing hyperactive endocannabinoid tone is a critical target for reducing obesity. The backbone of both endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) is the ω-6 fatty acid arachidonic acid (AA). Here we posited that excessive dietary intake of linoleic acid (LA), the precursor of AA, would induce endocannabinoid hyperactivity and promote obesity. LA was isolated as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% occurring in the United States during the 20th century. Mice were fed diets containing 1 en% LA, 8 en% LA, and 8 en% LA + 1 en% eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) in medium-fat diets (35 en% fat) and high-fat diets (60 en%) for 14 weeks from weaning. Increasing LA from 1 en% to 8 en% elevated AA-phospholipids (PL) in liver and erythrocytes, tripled 2-AG + 1-AG and AEA associated with increased food intake, feed efficiency, and adiposity in mice. Reducing AA-PL by adding 1 en% long-chain ω-3 fats to 8 en% LA diets resulted in metabolic patterns resembling 1 en% LA diets. Selectively reducing LA to 1 en% reversed the obesogenic properties of a 60 en% fat diet. These animal diets modeled 20th century increases of human LA consumption, changes that closely correlate with increasing prevalence rates of obesity. In summary, dietary LA increased tissue AA, and subsequently elevated 2-AG + 1-AG and AEA resulting in the development of diet-induced obesity. The adipogenic effect of LA can be prevented by consuming sufficient EPA and DHA to reduce the AA-PL pool and normalize endocannabinoid tone.

  3. p-Coumaric acid, a common dietary polyphenol, protects cadmium chloride-induced nephrotoxicity in rats.

    PubMed

    Navaneethan, Dhanalakshmi; Rasool, Mahaboobkhan

    2014-03-01

    The present study was conducted to elucidate the protective role of p-coumaric acid, a common dietary polyphenol against cadmium induced nephrotoxicity in rats. For the purpose of comparison, a standard reference drug silymarin (50 mg/kg b. wt) was used. In this experiment, the animals were divided into four groups, with each consisting of six animals. The animals in Group I animals received saline and served as a control group and those in Group II received cadmium chloride (3 mg/kg b. wt) subcutaneously once daily for 3 weeks, but Group III and IV animals received cadmium chloride followed by p-coumaric acid (100 mg/kg b. wt, oral) and silymarin (50 mg/kg b. wt, oral), respectively, daily for 3 weeks. At the end of the treatment, the animals were sacrificed, and the blood and kidney samples were collected. The results obtained in this study revealed the fact that the levels of lipid peroxidation, lysosomal enzymes, glycoprotein, cadmium and metallothionein were increased in the cadmium chloride alone treated rats and antioxidant status was found to be decreased, when compared to the control group. The levels of kidney functional markers (urea, uric acid and creatinine) were also found to be abnormal in serum and urine of cadmium chloride alone treated rats. On the other hand, the administration of p-coumaric acid along with cadmium chloride significantly protected the biochemical alterations as observed in the cadmium chloride alone treated rats as evidenced by histopathology. Thus, the oral administration of p-coumaric acid significantly protected the cadmium-induced nephrotoxicity in rats.

  4. The effect of subchronic supplementation with folic acid on homocysteine induced seizures.

    PubMed

    Rasic-Markovic, A; Rankov-Petrovic, B; Hrncic, D; Krstic, D; Colovic, M; Macut, Dj; Djuric, D; Stanojlovic, Olivera

    2015-06-01

    Influence of folic acid on the CNS is still unclear. Folate has a neuroprotective effect, while on the other hand excess folate can exacerbate seizures in epileptics. The aim of the present study was to examine the effect of subchronic administration of folic acid on behavioural and electroencephalographic (EEG) characteristics of DL homocysteine thiolactone induced seizures in adult rats. The activity of Na⁺/K⁺-ATPase and Mg²⁺-ATPase in different brain regions was investigated. Adult male Wistar rats were divided into groups: 1. Controls (C, 0.9% NaCl); 2. DL homocysteine-thiolactone 8.0 mmol/kg (H); 3. Subchronic supplementation with folic acid 5 mg/kg for 7 days (F) and 4. Subchronic supplementation with F + single dose of H (FH). Seizure behaviour was assessed by incidence, latency, number and intensity of seizure episodes. Seizure severity was described by a descriptive scale with grades 0-4. For EEG recordings, three gold-plated recording electrodes were implanted into the skull. Subchronic supplementation with folic acid did not affect seizure incidence, median number of seizure episodes and severity in FH, comparison with H (p > 0.05). The majority of seizure episodes in all groups were of grade 2. There were no significant differences in lethal outcomes at 24 h upon H injection in the FH vs. H group. The activity of Na⁺/K⁺-ATPase and Mg²⁺-ATPase was significantly increased in almost all examined structures in the FH vs. H group. Subchronic folic acid administration did not exacerbate H induced seizures and completely recovered the activity of ATPases.

  5. Glucocorticoids modulate amino acid-induced translation initiation in human skeletal muscle.

    PubMed

    Liu, Zhenqi; Li, Guolian; Kimball, Scot R; Jahn, Linda A; Barrett, Eugene J

    2004-08-01

    Amino acids are unique anabolic agents in that they nutritively signal to mRNA translation initiation and serve as substrates for protein synthesis in skeletal muscle. Glucocorticoid excess antagonizes the anabolic action of amino acids on protein synthesis in laboratory animals. To examine whether excessive glucocorticoids modulate mixed amino acid-signaled translation initiation in human skeletal muscle, we infused an amino acid mixture (10% Travasol) systemically to 16 young healthy male volunteers for 6 h in the absence (n = 8) or presence (n = 8) of glucocorticoid excess (dexamethasone 2 mg orally every 6 h for 3 days). Vastus lateralis muscles were biopsied before and after amino acid infusion, and the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (p70(S6K)), and eIF2alpha and the guanine nucleotide exchange activity of eIF2B were measured. Systemic infusion of mixed amino acids significantly stimulated the phosphorylation of 4E-BP1 (P < 0.04) and p70(S6K) (P < 0.001) and the dephosphorylation of eIF2alpha (P < 0.003) in the control group. Dexamethasone treatment did not alter the basal phosphorylation state of 4E-BP1, p70(S6K), or eIF2alpha; however, it abrogated the stimulatory effect of amino acid infusion on the phosphorylation of 4E-BP1 (P = 0.31) without affecting amino acid-induced phosphorylation of p70(S6K) (P = 0.002) or dephosphorylation of eIF2alpha (P = 0.003). Neither amino acid nor dexamethasone treatment altered the guanine nucleotide exchange activity of eIF2B. We conclude that changes of amino acid concentrations within the physiological range stimulate mRNA translation by enhancing the binding of mRNA to the 43S preinitiation complex, and the activity of p70(S6K) and glucocorticoid excess blocks the former action in vivo in human skeletal muscle.

  6. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats.

    PubMed

    Yang, Zhi-Hong; Takeo, Jiro; Katayama, Masashi

    2013-06-01

    We have analyzed the effect of palmitoleic acid on short-term food intake in male rats. Administration of omega-7 palmitoleic acid by oral gavage significantly decreased food intake compared to palmitic acid, omega-9 oleic acid, or a vehicle control. Palmitoleic acid exhibited a dose-dependent effect in this context and did not cause general malaise. A triglyceride form of palmitoleate also decreased food intake, whereas olive oil, which is rich in oleic acid, did not. Palmitoleic acid accumulated within the small intestine in a dose-dependent fashion and elevated levels of the satiety hormone cholecystokinin (CCK). Both protein and mRNA levels of CCK were affected in this context. The suppression of food intake by palmitoleic acid was attenuated by intravenous injection of devazepide, a selective peripheral CCK receptor antagonist. Palmitoleic acid did not alter the expression of peroxisome proliferator-activated receptor alpha (PPARα) target genes, and a PPARα antagonist did not affect palmitoleic acid-induced satiety. This suggests that the PPARα pathway might not be involved in suppressing food intake in response to palmitoleic acid. We have shown that orally administered palmitoleic acid induced satiety, enhanced the release of satiety hormones in rats.

  7. Recent advances in the investigation of pancreatic inflammation induced by large doses of basic amino acids in rodents.

    PubMed

    Kui, Balázs; Balla, Zsolt; Végh, Eszter T; Pallagi, Petra; Venglovecz, Viktória; Iványi, Béla; Takács, Tamás; Hegyi, Péter; Rakonczay, Zoltán

    2014-02-01

    It has been known for approximately 30 years that large doses of the semi-essential basic amino acid L-arginine induce severe pancreatic inflammation in rats. Recently, it has been demonstrated that L-arginine can also induce pancreatitis in mice. Moreover, other basic amino acids like L-ornithine and L-lysine can cause exocrine pancreatic damage without affecting the endocrine parenchyma and the ducts in rats. The utilization of these noninvasive severe basic amino acid-induced pancreatitis models is becoming increasingly popular and appreciated as these models nicely reproduce most laboratory and morphological features of human pancreatitis. Consequently, the investigation of basic amino acid-induced pancreatitis may offer us a better understanding of the pathogenesis and possible treatment options of the human disease.

  8. Protective effect of docosahexaenoic acid against hydrogen peroxide-induced oxidative stress in human lymphocytes.

    PubMed

    Bechoua, S; Dubois, M; Dominguez, Z; Goncalves, A; Némoz, G; Lagarde, M; Prigent, A F

    1999-05-01

    Oxidatively stressed lymphocytes exhibit decreased proliferative response to mitogenic stimulation. Although several sensitive targets involved in lymphocyte suppression have already been identified, little is known about the influence of oxidative stress on cyclic nucleotide phosphodiesterases (PDE) (EC 3.1.4.17), thought to play a major role in the control of cyclic AMP (cAMP) level, a well-recognized negative effector of lymphoproliferation. Although the polyunsaturated fatty acid content of membrane phospholipids is thought to be directly related to the extent of oxidant-induced lipid peroxidation, some n-3 fatty acids also seem to have antioxidant effects, depending on the concentration used and the overall redox status of the cells in question. Results of the present study showed that human peripheral blood mononuclear cells (PBMC) as well as rat thymocytes were relatively resistant to a short-term exposure (10 min) to hydrogen peroxide (H2O2). Indeed, H2O2-induced lipid peroxidation, estimated by malondialdehyde (MDA) production, was only 2-fold increased by H2O2 concentrations lower than 2 mM, whereas a larger increase (10-fold) could be observed in PBMC at the highest dose (5 mM). Previous enrichment of PBMC with 5 microM docosahexaenoic acid (22:6n-3), brought to the cells as a fatty acid-albumin complex (ratio 1), significantly reduced MDA production induced by low doses of H2O2, the protective effect no longer being observed at the highest doses. In contrast, eicosapentaenoic acid (20:5n-3) did not have any protective effect. Cytosolic PDE activities of both human PBMC and rat thymocytes were significantly inhibited (40-50%) after H2O2 treatment of the cells, whereas particulate PDE activities were not modified. Different responses of PDE activities to H2O2 treatment were observed when PBMC were first enriched with 22:6n-3 prior to H2O2 addition. In 22:6n-3-treated cells, the H2O2-induced inhibition of both cAMP- and cGMP-PDE cytosolic activities was

  9. CCN1 is critical for acid-induced esophageal epithelial cell transformation.

    PubMed

    Modak, Cristina; Mouazzen, Wasim; Narvaez, Reinier; Reavis, Kevin M; Chai, Jianyuan

    2010-02-19

    CCN1 is a matricellular protein involved in both wound healing and cancer cell invasion. Increased CCN1 expression has been associated with the development of Barrett's esophagus and the increased risk of progression to esophageal adenocarcinoma. In both cases, acid reflux is a major contributor. Low pH has been shown to induce CCN1 gene expression in esophageal epithelial cells. Here we demonstrated that both CCN1 and low pH could cause esophageal epithelial cell transformation, including loss of E-cadherin, disruption of cell-cell junctions, and expression of mesenchymal markers. Furthermore, knockdown of CCN1 through RNA interference sufficiently attenuated acid-driven cell phenotypic changes, while over-expression of CCN1 exacerbated these effects, indicating a critical role of CCN1 in acid-induced esophageal epithelial cell transformation. Given the pivotal role of low pH in gastro-esophageal reflux disease and its progression towards esophageal adenocarcinoma, our study identified CCN1 as a key molecule mediating this process.

  10. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids.

    PubMed

    El-Yazbi, Amira F; Loppnow, Glen R

    2013-07-05

    Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb(3+)). Single-stranded oligonucleotides greatly enhance the Tb(3+) emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb(3+)/hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb(3+), producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb(3+)/hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb(3+)/hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36±1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage.

  11. Limb and lower-body duplications induced by retinoic acid in mice

    SciTech Connect

    Rutledge, J.C. ); Shourbaji, A.G.; Hughes, L.A.; Generoso, W.M. ); Polifka, J.E. ); Cruz, Y.P. ); Bishop, J.B. )

    1994-06-07

    The zygote and subsequent preimplantation stages of early mammalian development are susceptible to certain chemical perturbations that cause abnormal development of the conceptus. In certain cases, disruption in patterns of gene expression could be a primary event leading to abnormal development. To investigate this hypothesis, the authors treated pregnant mice with trans-retinoic acid, a known modulator of gene expression. Treatments were administered at various times during pregastrulation stages and the presumed onset of gastrulation. Trans-Retinoic acid induced a distinctive set of malformations, as manifested by supernumerary and ectopic limbs and duplication of portions of the lower body, but only when administered during the period of 4.5-5.5 days after mating (other malformations were induced at different stages). The limb and lower-body duplications suggest that exogenous trans-retinoic acid may influence not only the pattern for the hindlimbs but also that for the entire lower body. Since it appears likely that the embryos were affected in the late blastocyst and proamniotic-embryo stages, the provocative possibility arises that aspects of pattern formation of limbs and lower body actually occur prior to gastrulation.

  12. Role of nicotinic acid and nicotinamide in nicorandil-induced ulcerations: from hypothesis to demonstration.

    PubMed

    Trechot, Philippe; Jouzeau, Jean-Yves; Brouillard, Clotilde; Scala-Bertola, Julien; Petitpain, Nadine; Cuny, Jean-François; Gauchotte, Guillaume; Schmutz, Jean-Luc; Barbaud, Annick

    2015-10-01

    Nicorandil, a nicotinamide ester, was first reported to be involved in the induction of oral ulcers in 1997. Since then, many reports of single or multiple nicorandil-induced ulcerations (NIUs) have been reported. We hypothesised that in the case of high-dosage nicorandil or after an increased dosage of nicorandil, nicotinic acid and nicotinamide (two main metabolites of nicorandil) cannot appropriately merge into the endogenous pool of nicotinamide adenine dinucleotide/phosphate, which leads to abnormal distribution of these metabolites in the body. In recent or maintained trauma, nicotinamide increases blood flow at the edge of the raw area, inducing epithelial proliferation, while nicotinic acid ulcerates this epithelial formation, ultimately flooding the entire scar. We demonstrate, by comparison to a control patient non-exposed to nicorandil, an abnormal amount of nicotinic acid (×38) and nicotinamide (×11) in the ulcerated area in a patient with NIUs. All practitioners, especially geriatricians, dermatologists and surgeons, must be aware of these serious and insidious side effects of nicorandil. It is critical to rapidly reassess the risk-benefit ratio of this drug for any patient, and not only for those with diverticular diseases.

  13. Activation of the aryl hydrocarbon receptor induces hepatic steatosis via the upregulation of fatty acid transport.

    PubMed

    Kawano, Yuki; Nishiumi, Shin; Tanaka, Shinwa; Nobutani, Kentaro; Miki, Akira; Yano, Yoshihiko; Seo, Yasushi; Kutsumi, Hiromu; Ashida, Hitoshi; Azuma, Takeshi; Yoshida, Masaru

    2010-12-15

    The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix/Per-ARNT-Sim domain transcription factor, which is activated by various xenobiotic ligands. AHR is known to be abundant in liver tissue and to be associated with hepatic steatosis. However, it has not yet been elucidated how the activation of AHR promotes hepatic steatosis. The aim of this study is to clarify the role of AHR in hepatic steatosis. The intraperitoneal injection of 3-methylcholanthrene (3MC), a potent AHR ligand, into C57BL/6J mice significantly increased the levels of triglycerides and six long-chain monounsaturated fatty acids in the livers of mice, resulting in hepatic microvesicular steatosis. 3MC significantly enhanced the expression level of fatty acid translocase (FAT), a factor regulating the uptake of long-chain fatty acids into hepatocytes, in the liver. In an in vitro experiment using human hepatoma HepG2 cells, 3MC increased the expression level of FAT, and the downregulation of AHR by AHR siRNA led to the suppression of 3MC-induced FAT expression. In addition, the mRNA level of peroxisome proliferator-activated receptor (PPAR) α, an upstream factor of FAT, was increased in the livers of 3MC-treated mice. Taking together, AHR activation induces hepatic microvesicular steatosis by increasing the expression level of FAT.

  14. Reduced Gut Acidity Induces an Obese-Like Phenotype in Drosophila melanogaster and in Mice

    PubMed Central

    Yen, Jui-Hung; Kuo, Ping-Chang; Yeh, Sheng-Rong; Lin, Hung-Yu; Fu, Tsai-Feng; Wu, Ming-Shiang; Wang, Horng-Dar; Wang, Pei-Yu

    2015-01-01

    In order to identify genes involved in stress and metabolic regulation, we carried out a Drosophila P-element-mediated mutagenesis screen for starvation resistance. We isolated a mutant, m2, that showed a 23% increase in survival time under starvation conditions. The P-element insertion was mapped to the region upstream of the vha16-1 gene, which encodes the c subunit of the vacuolar-type H+-ATPase. We found that vha16-1 is highly expressed in the fly midgut, and that m2 mutant flies are hypomorphic for vha16-1 and also exhibit reduced midgut acidity. This deficit is likely to induce altered metabolism and contribute to accelerated aging, since vha16-1 mutant flies are short-lived and display increases in body weight and lipid accumulation. Similar phenotypes were also induced by pharmacological treatment, through feeding normal flies and mice with a carbonic anhydrase inhibitor (acetazolamide) or proton pump inhibitor (PPI, lansoprazole) to suppress gut acid production. Our study may thus provide a useful model for investigating chronic acid suppression in patients. PMID:26436771

  15. Kolaviron and L-Ascorbic Acid Attenuate Chlorambucil-Induced Testicular Oxidative Stress in Rats

    PubMed Central

    2014-01-01

    Chlorambucil (4-[4-[bis(2-chloroethyl)amino]phenyl]butanoic acid) is an alkylating agent, indicated in chronic lymphocytic leukaemia. Kolaviron (KV), a biflavonoid complex from Garcinia kola, and L-ascorbic acid (AA) are known to protect against oxidative damage in vivo. This study evaluates the protective capacity of KV and AA on chlorambucil-induced oxidative stress in the testes of rat. Twenty male Wistar rats (180–200 g) were randomized into four groups: I: control, II: chlorambucil (0.2 mg/kg b.w.), III: 0.2 mg/kg chlorambucil and 100 mg/kg KV, and IV: 0.2 mg/kg chlorambucil and 100 mg/kg AA. After 14 days of treatments, results indicated that chlorambucil caused significant reduction (P < 0.05) in testicular vitamin C and glutathione by 32% and 39%, respectively, relative to control. Similarly, activities of testicular GST, SOD, and CAT reduced significantly by 48%, 47%, and 49%, respectively, in chlorambucil-treated rats relative to control. Testicular MDA and activities of ALP, LDH, and ACP were increased significantly by 53%, 51%, 64%, and 70%, respectively, in the chlorambucil-treated rat. However, cotreatment with KV and AA offered protection and restored the levels of vitamin C, GSH, and MDA as well as SOD, CAT, GST, ACP, ALP, and LDH activities. Overall, kolaviron and L-ascorbic acid protected against chlorambucil-induced damage in the testes of the rat. PMID:25309592

  16. Long-term acid-induced wall extension in an in-vitro system

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Cosgrove, D.; Tepfer, M.

    1987-01-01

    When frozen-thawed Avena sativa L. coleoptile and Cucumis sativa L. hypocotyl sections, under tension, are acid-treated, they undergo rapid elongation (acid-extension). The acid-extension response consists of two concurrent phases: a burst of extension which decays exponentially over 1-2 h (ExE), and a constant rate of extension (CE) which can persist for at least 6h. The extension (delta L) is closely represented by the equation: delta L = a-a e(-kt) + C t where a is the total extension of the exponential phase, k is the rate constant for ExE, and c is the rate of linear extension (CE). Low pH and high tension increased a and c, whereas temperature influenced k. The magnitude of the CE (over 50% extension/10 h), the similarity in its time course to auxin-induced growth, and the apparent yield threshold for CE indicate that CE is more likely than ExE to be the type of extension which cell walls undergo during normal auxin-induced growth.

  17. Hydroxycinnamic acids in Crepidiastrum denticulatum protect oxidative stress-induced retinal damage.

    PubMed

    Ahn, Hong Ryul; Lee, Hee Ju; Kim, Kyung-A; Kim, Chul Young; Nho, Chu Won; Jang, Holim; Pan, Cheol-Ho; Lee, Chang Yong; Jung, Sang Hoon

    2014-02-12

    We investigated the effects of an ethanol extract of C. denticulatum (EECD) in a mouse model of glaucoma established by optic nerve crush (ONC), and found that EECD significantly protected against retinal ganglion cell (RGC) death caused by ONC. Furthermore, EECD effectively protected against N-methyl-d-aspartate-induced damage to the rat retinas. In vitro, EECD attenuated transformed retinal ganglion cell (RGC-5) death and significantly blunted the up-regulation of apoptotic proteins and mRNA level induced by 1-buthionine-(S,R)-sulfoximine combined with glutamate, reduced reactive oxygen species production by radical species, and inhibited lipid peroxidation. The major EECD components were found to be chicoric acid and 3,5-dicaffeoylquinic acid (3,5-DCQA) that have shown beneficial effects on retinal degeneration both in vitro and in vivo studies. Thus, EECD could be used as a natural neuroprotective agent for glaucoma, and chicoric acid and 3,5-DCQA as mark compounds for the development of functional food.

  18. Angiotensin II induces phosphatidic acid formation in neonatal rat cardiac fibroblasts: evaluation of the roles of phospholipases C and D.

    PubMed

    Booz, G W; Taher, M M; Baker, K M; Singer, H A

    1994-12-21

    Phosphatidic acid has been proposed to contribute to the mitogenic actions of various growth factors. In 32P-labeled neonatal rat cardiac fibroblasts, 100 nM [Sar1]angiotensin II was shown to rapidly induce formation of 32P-phosphatidic acid. Levels peaked at 5 min (1.5-fold above control), but were partially sustained over 2 h. Phospholipase D contributed in part to phosphatidic acid formation, as 32P- or 3H-phosphatidylethanol was produced when cells labeled with [32P]H3PO4 or 1-O-[1,2- 3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine were stimulated in the presence of 1% ethanol. [Sar1]angiotensin II-induced phospholipase D activity was transient and mainly mediated through protein kinase C (PKC), since PKC downregulation reduced phosphatidylethanol formation by 68%. Residual activity may have been due to increased intracellular Ca2+, as ionomycin also activated phospholipase D in PKC-depleted cells. Phospholipase D did not fully account for [Sar1]angiotensin II-induced phosphatidic acid: 1) compared to PMA, a potent activator of phospholipase D, [Sar1]angiotensin II produced more phosphatidic acid relative to phosphatidylethanol, and 2) PKC downregulation did not affect [Sar1]angiotensin II-induced phosphatidic acid formation. The diacylglycerol kinase inhibitor R59949 depressed [Sar1]angiotensin II-induced phosphatidic acid formation by only 21%, indicating that activation of a phospholipase C and diacylglycerol kinase also can not account for the bulk of phosphatidic acid. Thus, additional pathways not involving phospholipases C and D, such as de novo synthesis, may contribute to [Sar1]angiotensin II-induced phosphatidic acid in these cells. Finally, as previously shown for [Sar1]angiotensin II, phosphatidic acid stimulated mitogen activated protein (MAP) kinase activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid

    PubMed Central

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R.; Masliah, Eliezer; Lipton, Stuart A.

    2015-01-01

    Cyanide is a life threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species (ROS). This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain-barrier to upregulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human induced pluripotent stem cell (hiPSC)-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino (NSA) mouse model of cyanide poisoning that simulates damage observed in the human brain. PMID:25692407

  20. Corosolic acid inhibits the proliferation of osteosarcoma cells by inducing apoptosis

    PubMed Central

    Jia, Yong; Yuan, Hua; Shan, Shouqin; Xu, Gang; Yu, Jie; Zhao, Chenguang; Mou, Xiang

    2016-01-01

    Corosolic acid (CRA), a pentacyclic triterpene isolated from medicinal herbs, has been reported to exhibit anticancer properties in several cancers. However, the anticancer activity of CRA in osteosarcoma cells is still unclear. In the present study, the inhibitory effect of CRA in osteosarcoma MG-63 cells was investigated, and the results revealed that CRA significantly inhibited the viability of MG-63 cells in a dose- and time-dependent manner. A typical apoptotic hallmark such as DNA ladder was detected by agarose gel electrophoresis following treatment with CRA. Further experiments demonstrated that CRA induced apoptosis of MG-63 cells by flow cytometry using propidium iodide and annexin V staining. In addition, it was observed that the apoptosis of MG-63 cells induced by CRA was closely associated with activation of caspase-3 and caspase-9, loss of mitochondrial membrane potential, and release of cytochrome c from mitochondria, suggesting that CRA may trigger the activation of the mitochondria-mediated apoptosis pathway. In addition, the inhibition of caspase activity attenuated the CRA-induced apoptosis of MG-63 cells, which further confirmed the role of the mitochondrial pathway in CRA-induced apoptosis. These results indicated that CRA could induce the apoptosis of osteosarcoma cells through activating the mitochondrial pathway, which provides an evidence that CRA may be a useful chemotherapeutic agent for osteosarcoma. PMID:27895790

  1. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse

    PubMed Central

    Cheng, Joseph C.; Bai, Aiping; Beckham, Thomas H.; Marrison, S. Tucker; Yount, Caroline L.; Young, Katherine; Lu, Ping; Bartlett, Anne M.; Wu, Bill X.; Keane, Barry J.; Armeson, Kent E.; Marshall, David T.; Keane, Thomas E.; Smith, Michael T.; Jones, E. Ellen; Drake, Richard R.; Bielawska, Alicja; Norris, James S.; Liu, Xiang

    2013-01-01

    Escape of prostate cancer (PCa) cells from ionizing radiation–induced (IR-induced) killing leads to disease progression and cancer relapse. The influence of sphingolipids, such as ceramide and its metabolite sphingosine 1-phosphate, on signal transduction pathways under cell stress is important to survival adaptation responses. In this study, we demonstrate that ceramide-deacylating enzyme acid ceramidase (AC) was preferentially upregulated in irradiated PCa cells. Radiation-induced AC gene transactivation by activator protein 1 (AP-1) binding on the proximal promoter was sensitive to inhibition of de novo ceramide biosynthesis, as demonstrated by promoter reporter and ChIP-qPCR analyses. Our data indicate that a protective feedback mechanism mitigates the apoptotic effect of IR-induced ceramide generation. We found that deregulation of c-Jun induced marked radiosensitization in vivo and in vitro, which was rescued by ectopic AC overexpression. AC overexpression in PCa clonogens that survived a fractionated 80-Gy IR course was associated with increased radioresistance and proliferation, suggesting a role for AC in radiotherapy failure and relapse. Immunohistochemical analysis of human PCa tissues revealed higher levels of AC after radiotherapy failure than those in therapy-naive PCa, prostatic intraepithelial neoplasia, or benign tissues. Addition of an AC inhibitor to an animal model of xenograft irradiation produced radiosensitization and prevention of relapse. These data indicate that AC is a potentially tractable target for adjuvant radiotherapy. PMID:24091326

  2. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    PubMed

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy.

  3. Salvianolic acid B attenuates lung inflammation induced by cigarette smoke in mice.

    PubMed

    Zhang, Dong-Fang; Zhang, Jin; Li, Ran

    2015-08-15

    Salvianolic acid B (Sal B), a bioactive compound isolated from the Chinese herb Radix Salviae Miltiorrhizae, has been reported to exhibit anti-inflammatory and anti-oxidantive effects. The aim of this study was to investigate the protective effects of Sal B on cigarette smoke (CS)-induced acute lung inflammation. Sal B was given intraperitoneally (i.p.) to mice 1h before CS exposure daily for four consecutive days. Bronchoalveolar lavage fluid (BALF) was collected to assess the levels of inflammatory cytokines and cell counts. Lung tissues were used to analysis pathological changes, total glutathione (GSH), nuclear factor erythroid-2 related factor 2 (Nrf-2), and nuclear factor-kappa B (NF-κB) expression. The results showed that Sal B inhibited CS-induced lung pathological changes, the infiltration of inflammatory cells, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and monocyte chemoattractant protein 1 (MCP-1) productions. Sal B also up-regulated CS-induced total glutathione (GSH) production. Furthermore, Sal B was found to up-regulate Nrf-2, hemeoxygenase1 (HO1) expression and suppress CS-induced NF-κB activation. In conclusion, the current study demonstrated that Sal B exhibited a protective effect on CS-induced lung injury and the possible mechanism was involved in activating Nrf-2 and inhibiting NF-κB activation.

  4. Atorvastatin Prevents Glutamate Uptake Reduction Induced by Quinolinic Acid Via MAPKs Signaling.

    PubMed

    Vandresen-Filho, S; Martins, W C; Bertoldo, D B; Rieger, D K; Maestri, M; Leal, R B; Tasca, C I

    2016-08-01

    Statins have been shown to promote neuroprotection in a wide range of neurological disorders. However, the mechanisms involved in such effects of statins are not fully understood. Quinolinic acid (QA) is a neurotoxin that induces seizures when infused in vivo and promotes glutamatergic excitotoxicity in the central nervous system. The aim of this study was to evaluate the putative glutamatergic mechanisms and the intracellular signaling pathways involved in the atorvastatin neuroprotective effects against QA toxicity. Atorvastatin (10 mg/kg) treatment for 7 days prevented the QA-induced decrease in glutamate uptake, but had no effect on increased glutamate release induced by QA. Moreover, atorvastatin treatment increased the phosphorylation of ERK1 and prevented the decrease in Akt phosphorylation induced by QA. Neither atorvastatin treatment nor QA infusion altered glutamine synthetase activity or the levels of phosphorylation of p38(MAPK) or JNK1/2 during the evaluation. Inhibition of MEK/ERK signaling pathway, but not PI3K/Akt signaling, abolished the neuroprotective effect of atorvastatin against QA-induced decrease in glutamate uptake. Our data suggest that atorvastatin protective effects against QA toxicity are related to modulation of glutamate transporters via MAPK/ERK signaling pathway.

  5. The role of abscisic acid and water stress in root herbivore-induced leaf resistance.

    PubMed

    Erb, Matthias; Köllner, Tobias G; Degenhardt, Jörg; Zwahlen, Claudia; Hibbard, Bruce E; Turlings, Ted C J

    2011-01-01

    • Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. • To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. • Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. • We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response.

  6. Hyaluronic acid prevents immunosuppressive drug-induced ovarian damage via up-regulating PGRMC1 expression

    PubMed Central

    Zhao, Guangfeng; Yan, Guijun; Cheng, Jie; Zhou, Xue; Fang, Ting; Sun, Haixiang; Hou, Yayi; Hu, Yali

    2015-01-01

    Chemotherapy treatment in women can frequently cause damage to the ovaries, which may lead to primary ovarian insufficiency (POI). In this study, we assessed the preventative effects of hyaluronic acid (HA) in immunosuppressive drug-induced POI-like rat models and investigated the possible mechanisms. We found that HA, which was reduced in primary and immunosuppressant-induced POI patients, could protect the immunosuppressant-induced damage to granulosa cells (GCs) in vitro. Then we found that HA blocked the tripterygium glycosides (TG) induced POI-like presentations in rats, including delayed or irregular estrous cycles, reduced 17 beta-estradiol(E2) concentration, decreased number of follicles, destruction of follicle structure, and damage of reproductive ability. Furthermore, we investigated the mechanisms of HA prevention effects on POI, which was associated with promotion of GC proliferation and PGRMC1 expression. In conclusion, HA prevents chemotherapy-induced ovarian damage by promoting PGRMC1 in GCs. This study may provide a new strategy for prevention and treatment of POI. PMID:25558795

  7. Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition.

    PubMed

    Chung, Seung-Yun; Han, Seol-Heui

    2003-03-01

    The antioxidant and anti-inflammatory effects of melatonin on kainic acid (KA)-induced neurodegeneration in the hippocampus were evaluated in vivo. It has been suggested that the pineal secretory product, melatonin, protects neurons in vitro from excitotoxicity mediated by kainate-sensitive glutamate receptors, and from oxidative stress-induced DNA damage and apoptosis. In this study, we injected 10 mg/kg kainate intraperitoneally (i.p.) into adult male Sprague-Dawley rats. This results in selective neuronal degeneration accompanied by intense microglial activation and triggers DNA damage in the hippocampus. We tested the in vivo efficacy of melatonin in preventing KA-induced neurodegeneration, oxidative stress and neuroinflammation in the hippocampus. Melatonin (2.5 mg/kg, i.p.) was given 20 min before, immediately after, and 1 and 2 hr after KA administration. Rats were killed 72 hr later and their hippocampi were examined for evidence of DNA damage (in situ dUTP end-labeling, i.e. TUNEL staining), cell viability (hematoxylin and eosin staining), and microglial (isolectin-B4 histochemistry) and astroglial responses (glial fibrillary acidic protein immunohistochemistry), as well as lipid peroxidation (4-hydroxynonenal immunohistochemistry). A cumulative dose of 10 mg/kg melatonin attenuates KA-induced neuronal death, lipid peroxidation, and microglial activation, and reduces the number of DNA breaks. A possible mechanism for melatonin-mediated neuroprotection involves its antioxidant and anti-inflammatory actions. The present data suggest that melatonin is potentially useful in the treatment of acute brain pathologies associated with oxidative stress-induced neuronal damage such as epilepsy, stroke, and traumatic brain injury.

  8. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase

    PubMed Central

    Ruisanchez, Éva; Dancs, Péter; Kerék, Margit; Németh, Tamás; Faragó, Bernadett; Balogh, Andrea; Patil, Renukadevi; Jennings, Brett L.; Liliom, Károly; Malik, Kafait U.; Smrcka, Alan V.; Tigyi, Gabor; Benyó, Zoltán

    2014-01-01

    Lysophosphatidic acid (LPA) has been implicated as a mediator of several cardiovascular functions, but its potential involvement in the control of vascular tone is obscure. Here, we show that both LPA (18:1) and VPC31143 (a synthetic agonist of LPA1–3 receptors) relax intact mouse thoracic aorta with similar Emax values (53.9 and 51.9% of phenylephrine-induced precontraction), although the EC50 of LPA- and VPC31143-induced vasorelaxations were different (400 vs. 15 nM, respectively). Mechanical removal of the endothelium or genetic deletion of endothelial nitric oxide synthase (eNOS) not only diminished vasorelaxation by LPA or VPC31143 but converted it to vasoconstriction. Freshly isolated mouse aortic endothelial cells expressed LPA1, LPA2, LPA4 and LPA5 transcripts. The LPA1,3 antagonist Ki16425, the LPA1 antagonist AM095, and the genetic deletion of LPA1, but not that of LPA2, abolished LPA-induced vasorelaxation. Inhibition of the phosphoinositide 3 kinase–protein kinase B/Akt pathway by wortmannin or MK-2206 failed to influence the effect of LPA. However, pharmacological inhibition of phospholipase C (PLC) by U73122 or edelfosine, but not genetic deletion of PLCε, abolished LPA-induced vasorelaxation and indicated that a PLC enzyme, other than PLCε, mediates the response. In summary, the present study identifies LPA as an endothelium-dependent vasodilator substance acting via LPA1, PLC, and eNOS.—Ruisanchez, É., Dancs, P., Kerék, M., Németh, T., Faragó, B., Balogh, A., Patil, R., Jennings, B. L., Liliom, K., Malik, K. U., Smrcka, A. V., Tigyi, G., Benyó, Z. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. PMID:24249637

  9. Dietary n-3 polyunsaturated fatty acids modify fatty acid composition in hepatic and abdominal adipose tissue of sucrose-induced obese rats.

    PubMed

    Alexander-Aguilera, Alfonso; Berruezo, Silvia; Hernández-Diaz, Guillermo; Angulo, Ofelia; Oliart-Ros, Rosamaria

    2011-12-01

    The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn-canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn-canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity.

  10. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress.

    PubMed

    Horváth, Edit; Csiszár, Jolán; Gallé, Ágnes; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2015-07-01

    The role of salicylic acid (SA) in the control of abscisic acid (ABA) biosynthesis is controversial although both plant growth regulators may accumulate in tissues under abiotic and biotic stress conditions. Hardening of tomato plants to salinity stress with 10(-4)M SA ("high SA") resulted in an up-regulation of ABA biosynthesis genes, zeaxanthin epoxidase (SlZEP1), 9-cis-epoxycarotenoid dioxygenase (SlNCED1) and aldehyde oxidases (SlAO1 and SlAO2) in the roots and led to ABA accumulation both in root and leaf tissues. In plants pre-treated with lower concentration of SA (10(-7)M, "low SA"), the up-regulation of SlNCED1 in the roots promoted ABA accumulation in the root tissues but the hormone concentration remained at control level in the leaves. Salt stress induced by 100mM NaCl reduced the transcript abundance of ABA biosynthetic genes and inhibited SlAO activity in plants hardened with "high SA", but the tissues maintained root ABA level over the untreated control. The combined effect of "high SA" and ABA under salt stress led to partially recovered photosynthetic activity, reduced ethylene production in root apices, and restored root growth, which is one of the main features of salt tolerance. Unlike "high SA", hardening with "low SA" had no influence on ethylene production, and led to reduced elongation of roots in plants exposed to 100mM NaCl. The up-regulation of carotenoid cleavage dioxygenases SlCCD1A and SlCCD1B by SA, which produce apocarotenoids, may open new pathways in SA sensing and signalling processes.

  11. Vanillic Acid Ameliorates Cationic Bovine Serum Albumin Induced Immune Complex Glomerulonephritis in BALB/c Mice.

    PubMed

    Motiram Kakalij, Rahul; Tejaswini, G; Patil, Madhoosudan A; Dinesh Kumar, B; Diwan, Prakash V

    2016-06-01

    Preclinical Research Vanillic acid (VA) is a dihydroxybenzoic acid derivative widely used as a flavoring agent. It has chemopreventive effects on experimentally-induced carcinogenesis and in ulcerative colitis. The object of the present study was to investigate the effects of VA, alone and in combination with methylprednisolone (MP), on cationic bovine serum albumin (cBSA induced immune-complex glomerulonephritis in female BALB/c mice. Pre-immunization was carried out with cBSA in BALB/c mice and repeated (cBSA, 13 mg/kg, 3 times/week, i.v.) for 6 weeks to induce glomerulonephritis which was confirmed by the presence of severe proteinuria. The effect of VA (50, 100, and 200 mg/kg, p.o.) and its combination with MP (12.5 mg/kg, p.o.) was assessed in the nephrotic disease model. Treatment with VA decreased inflammatory nephrotic injury as evidenced by decreased proteinuria, serum creatinine, blood urea nitrogen, serum IgG1 and TNF-α levels. Co-administration of VA with MP showed an improvement in the immunohistochemistry of glomerular nephrin and podocin. The present results indicate that VA has a nephroprotective effect in the management of autoimmune nephritis. Drug Dev Res 77 : 171-179, 2016.   © 2016 Wiley Periodicals, Inc.

  12. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed.

  13. Acupuncture suppresses kainic acid-induced neuronal death and inflammatory events in mouse hippocampus.

    PubMed

    Kim, Seung-Tae; Doo, Ah-Reum; Kim, Seung-Nam; Kim, Song-Yi; Kim, Yoon Young; Kim, Jang-Hyun; Lee, Hyejung; Yin, Chang Shik; Park, Hi-Joon

    2012-09-01

    The administration of kainic acid (KA) causes seizures and produces neurodegeneration in hippocampal CA3 pyramidal cells. The present study investigated a possible role of acupuncture in reducing hippocampal cell death and inflammatory events, using a mouse model of kainic acid-induced epilepsy. Male C57BL/6 mice received acupuncture treatments at acupoint HT8 or in the tail area bilaterally once a day for 2 days and again immediately after an intraperitoneal injection of KA (30 mg/kg). HT8 is located on the palmar surface of the forelimbs, between the fourth and fifth metacarpal bones. Twenty-four hours after the KA injection, neuronal cell survival, the activations of microglia and astrocytes, and mRNA expression of two proinflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), were measured in the hippocampus. Acupuncture stimulation at HT8, but not in the tail area, significantly reduced the KA-induced seizure, neuron death, microglial and astrocyte activations, and IL-1β mRNA expression in the hippocampus. The acupuncture stimulation also decreased the mRNA expression of TNF-α, but it was not significant. These results indicate that acupuncture at HT8 can inhibit hippocampal cell death and suppress KA-induced inflammatory events, suggesting a possible role for acupuncture in the treatment of epilepsy.

  14. Ursolic acid derivative ameliorates streptozotocin-induced diabestic bone deleterious effects in mice

    PubMed Central

    Yu, Su-Guo; Zhang, Cheng-Jie; Xu, Xiu-E; Sun, Ji-Hua; Zhang, Li; Yu, Peng-Fei

    2015-01-01

    Objective: This study was performed to investigate bone deteriorations of diabetic mice in response to the treatment of ursolic acid derivative (UAD). Methods: The biomarkers in serum and urine were measured, tibias were taken for the measurement on gene and protein expression and histomorphology analysis, and femurs were taken for the measurement on bone Ca and three-dimensional architecture of trabecular bone. Results: UAD showed a greater increase in bone Ca, BMD and significantly increased FGF-23 and OCN, reduced PTH and CTX in diabetic mice. UAD reversed STZ-induced trabecular deleterious effects and stimulated bone remodeling. The treatment of STZ group with UAD significantly elevated the ratio of OPG/RANKL. Moreover, insulin and IGF-1 showed a negative correlation with both FBG and Hb1Ac in STZ group. We attributed down-regulating the level of Hb1Ac in diabetic mice to that ursolic acid derivative could primely control blood sugar levels. After analyzing of two adipocyte markers, PPARγ and aP2, increased expression in the tibias of diabetic mice, and UAD could improve STZ-induced adipocyte dysfunction. Conclusions: These results demonstrated that UAD could ameliorate STZ-induced bone deterioration through improving adipocyte dysfunction and enhancing new bone formation and inhibiting absorptive function of osteoclast in the bone of diabetic mice. PMID:26097549

  15. A High Linoleic Acid Diet does not Induce Inflammation in Mouse Liver or Adipose Tissue.

    PubMed

    Vaughan, Roger A; Garrison, Richard L; Stamatikos, Alexis D; Kang, Minsung; Cooper, Jamie A; Paton, Chad M

    2015-11-01

    Recently, the pro-inflammatory effects of linoleic acid (LNA) have been re-examined. It is now becoming clear that relatively few studies have adequately assessed the effects of LNA, independent of obesity. The purpose of this work was to compare the effects of several fat-enriched but non-obesigenic diets on inflammation to provide a more accurate assessment of LNA's ability to induce inflammation. Specifically, 8-week-old male C57Bl/6 mice were fed either saturated (SFA), monounsaturated (MUFA), LNA, or alpha-linolenic acid enriched diets (50 % Kcal from fat, 22 % wt/wt) for 4 weeks. Chow and high-fat, hyper-caloric diets were used as negative and positive controls, respectively. Expression of pro-inflammatory and pro-coagulant markers from epididymal fat, liver, and plasma were measured along with food intake and body weights. Mice fed the high SFA, MUFA, and high-fat diets exhibited increased pro-inflammatory markers in liver and adipose tissue; however, mice fed LNA for four weeks did not display significant changes in pro-inflammatory or pro-coagulant markers in epididymal fat, liver, or plasma. The present study demonstrates that LNA alone is insufficient to induce inflammation. Instead, it is more likely that hyper-caloric diets are responsible for diet-induced inflammation possibly due to adipose tissue remodeling.

  16. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis.

    PubMed

    Xu, Yan-Hong; Liao, Yong-Cui; Zhang, Zheng; Liu, Juan; Sun, Pei-Wen; Gao, Zhi-Hui; Sui, Chun; Wei, Jian-He

    2016-02-23

    Agarwood, a highly valuable resinous and fragrant heartwood of Aquilaria plants, is widely used in traditional medicines, incense and perfume. Only when Aquilaria trees are wounded by external stimuli do they form agarwood sesquiterpene defensive compounds. Therefore, understanding the signaling pathway of wound-induced agarwood formation is important. Jasmonic acid (JA) is a well-characterized molecule that mediates a plant's defense response and secondary metabolism. However, little is known about the function of endogenous JA in agarwood sesquiterpene biosynthesis. Here, we report that heat shock can up-regulate the expression of genes in JA signaling pathway, induce JA production and the accumulation of agarwood sesquiterpene in A. sinensis cell suspension cultures. A specific inhibitor of JA, nordihydroguaiaretic acid (NDGA), could block the JA signaling pathway and reduce the accumulation of sesquiterpene compounds. Additionally, compared to SA and H2O2, exogenously supplied methyl jasmonate has the strongest stimulation effect on the production of sesquiterpene compounds. These results clearly demonstrate the central induction role of JA in heat-shock-induced sesquiterpene production in A. sinensis.

  17. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis

    PubMed Central

    Xu, Yan-Hong; Liao, Yong-Cui; Zhang, Zheng; Liu, Juan; Sun, Pei-Wen; Gao, Zhi-Hui; Sui, Chun; Wei, Jian-He

    2016-01-01

    Agarwood, a highly valuable resinous and fragrant heartwood of Aquilaria plants, is widely used in traditional medicines, incense and perfume. Only when Aquilaria trees are wounded by external stimuli do they form agarwood sesquiterpene defensive compounds. Therefore, understanding the signaling pathway of wound-induced agarwood formation is important. Jasmonic acid (JA) is a well-characterized molecule that mediates a plant’s defense response and secondary metabolism. However, little is known about the function of endogenous JA in agarwood sesquiterpene biosynthesis. Here, we report that heat shock can up-regulate the expression of genes in JA signaling pathway, induce JA production and the accumulation of agarwood sesquiterpene in A. sinensis cell suspension cultures. A specific inhibitor of JA, nordihydroguaiaretic acid (NDGA), could block the JA signaling pathway and reduce the accumulation of sesquiterpene compounds. Additionally, compared to SA and H2O2, exogenously supplied methyl jasmonate has the strongest stimulation effect on the production of sesquiterpene compounds. These results clearly demonstrate the central induction role of JA in heat-shock-induced sesquiterpene production in A. sinensis. PMID:26902148

  18. Synergistic protective role of ceftriaxone and ascorbic acid against subacute diazinon-induced nephrotoxicity in rats.

    PubMed

    Abdel-Daim, Mohamed M

    2016-03-01

    Diazinon (DZN) is a synthetic organophosphrus acaricide and insecticide widely used for veterinary and agricultural purposes. However, its animal and human exposure leads to nephrotoxicity. Our experimental objective was to evaluate protective effects of ceftriaxone and/or ascorbic acid-vitamin C against DZN-induced renal injury in male Wistar albino rats. DZN-treated animals revealed significant elevation in serum biochemical parameters related to renal injury: urea, uric acid and creatinine. DZN intoxication significantly increased renal lipid peroxidation, and significant inhibition in antioxidant biomarkers including, reduced glutathione, glutathione peroxidase, superoxide dismutase, catalase and total antioxidant capacity. In addition, DZN significantly reduced serum acetylcholinestrase level. Moreover, It induced serum and kidney tumor necrosis factor-α level. Both ceftriaxone and vitamin C protect against DZN-induced serum as well as renal tissue biochemical parameters when used alone or in combination along with DZN-intoxication. Furthermore, both ceftriaxone and vitamin C produced synergetic nephroprotective and antioxidant effects. Therefore, it could be concluded that ceftriaxone and/or vitamin C administration are able to minimize the toxic effects of DZN by its free radical-scavenging and potent antioxidant activity.

  19. Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury

    PubMed Central

    Himpe, Eddy; Cunha, Daniel A.; Song, Imane; Bugliani, Marco; Marchetti, Piero; Cnop, Miriam; Bouwens, Luc

    2016-01-01

    Objective Previous studies demonstrated that a phenylpropenoic acid glucoside (PPAG) from rooibos (Aspalathus linearis) extract had anti-hyperglycemic activity and significant protective effects on the pancreatic beta cell mass in a chronic diet-induced diabetes model. The present study evaluated the cytoprotective effect of the phytochemical on beta cells exposed to acute cell stress. Methods Synthetically prepared PPAG was administered orally in mice treated with a single dose of streptozotocin to acutely induce beta cell death and hyperglycemia. Its effect was assessed on beta cell mass, proliferation and apoptotic cell death. Its cytoprotective effect was also studied in vitro on INS-1E beta cells and on human pancreatic islet cells. Results Treatment with the phytochemical PPAG protected beta cells during the first days after the insult against apoptotic cell death, as evidenced by TUNEL staining, and prevented loss of expression of anti-apoptotic protein BCL2 in vivo. In vitro, PPAG protected INS-1E beta cells from streptozotocin-induced apoptosis and necrosis in a BCL2-dependent and independent way, respectively, depending on glucose concentration. PPAG also protected human pancreatic islet cells against the cytotoxic action of the fatty acid palmitate. Conclusions These findings show the potential use of PPAG as phytomedicine which protects the beta cell mass exposed to acute diabetogenic stress. PMID:27299564

  20. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  1. Effect of galactose on acid induced molten globule state of Soybean Agglutinin: Biophysical approach

    NASA Astrophysics Data System (ADS)

    Alam, Parvez; Naseem, Farha; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2015-11-01

    In the present study the formation of molten globule-like unfolding intermediate Soybean Agglutinin (SBA) in acidic pH range has been established with the help of acrylamide quenching, intrinsic fluorescence, ANS fluorescence measurement, far UV CD and dynamic light scattering measurement. A marked increase in ANS fluorescence was observed at pH 2.2. Ksv of acrylamide quenching was found to be higher at pH 2.2 than that of native SBA at pH 7. Far UV CD spectra of pH induced state suggest that SBA shows significant retention of secondary structure closure to native. Hydrodynamic radius of SBA at pH 2.2 was found be more as compared to native state and also in other pH induced states. Further we checked the effect of galactose on the molten globule state of SBA. This study suggests that SBA exist as molten globule at pH 2.2 and this study will help in acid induced molten globule state of other proteins.

  2. Tiagabine treatment in kainic acid induced cerebellar lesion of dystonia rat model

    PubMed Central

    Wang, Tsui-chin; Ngampramuan, Sukonthar; Kotchabhakdi, Naiphinich

    2016-01-01

    Dystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements. The exaggerated movements have been studied and have implicated basal ganglia as the point of origin. In more recent studies, the cerebellum has also been identified as the possible target of dystonia, in the search for alternative treatments. Tiagabine is a selective GABA transporter inhibitor, which blocks the reuptake and recycling of GABA. The study of GABAergic drugs as an alternative treatment for cerebellar induced dystonia has not been reported. In our study, tiagabine was i.p. injected into kainic acid induced, cerebellar dystonic adult rats, and the effects were compared with non-tiagabine injected and sham-operated groups. Beam walking apparatus, telemetric electromyography (EMG) recording, and histological verification were performed to confirm dystonic symptoms in the rats on post-surgery treatment. Involuntary dystonic spasm was observed with repetitive rigidity, and twisting movements in the rats were also confirmed by a high score on the dystonic scoring and a high amplitude on the EMG data. The rats with tiagabine treatment were scored based on motor amelioration assessed via beam walking. The result of this study suggests and confirms that low dose of kainic acid microinjection is sufficient to induce dystonia from the cerebellar vermis. In addition, from the results of the EMG recording and the behavioral assessment through beam walking, tiagabine is demonstrated as being effective in reducing dystonic spasm and may be a possible alternative therapeutic drug in the treatment of dystonia. PMID:28337103

  3. Oleanolic acid ameliorates high glucose-induced endothelial dysfunction via PPARδ activation

    PubMed Central

    Zhang, Zihui; Jiang, Manli; Xie, Xinya; Yang, Haixia; Wang, Xinfeng; Xiao, Lei; Wang, Nanping

    2017-01-01

    Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a pentacyclic triterpenes widely distributed in food, medicinal plants and nutritional supplements. OA exhibits various pharmacological properties, such as hepatoprotective and anti-tumor effects. In this study, we analyzed the effect of OA on endothelial dysfunction induced by high glucose in human vascular endothelial cells (ECs). Western blotting showed that OA attenuated high glucose-reduced nitric production oxide (NO) as well as Akt-Ser473 and eNOS-Ser1177 phosphorylation in cultured human umbilical vein ECs (HUVECs). Next, luciferase reporter assay showed that OA activated peroxisome proliferators-activated receptor δ (PPARδ) activity. Quantitative reverse transcriptase PCR (qRT-PCR) demonstrated that OA increased the expressions of PPARδ target genes (PDK4, ADRP and ANGPTL4) in ECs. Meanwhile, the induced expressions of PDK4, ADRP and ANGPTL4 by OA were inhibited by GSK0660, a specific antagonist of PPARδ. In addition, inhibition of PPARδ abolished OA-induced the Akt-Ser473 and eNOS-Ser1177 phosphorylation, and NO production. Finally, by using Multi Myograph System, we showed that OA prevented high glucose-impaired vasodilation. This protective effect on vasodilation was inhibited in aortic rings pretreated with GSK0660. Collectively, we demonstrated that OA improved high glucose-impaired endothelial function via a PPARδ-mediated mechanism and through eNOS/Akt/NO pathway. PMID:28067284

  4. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    PubMed Central

    Koenitzer, Jeffrey R.; Bonacci, Gustavo; Woodcock, Steven R.; Chen, Chen-Shan; Cantu-Medellin, Nadiezhda; Kelley, Eric E.; Schopfer, Francisco J.

    2015-01-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval. PMID:26722838

  5. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels.

    PubMed

    Park, Woo Hyun

    2017-02-01

    Gallic acid (GA; 3,4,5-triphydroxyl-benzoic acid) is widely dispersed in various plants, fruits and foods and it shows various biological properties including anticancer effects. This study investigated the effects of GA on HeLa cervical cancer cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). GA dose-dependently inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC) at 24 or 72 h. The susceptibility of HeLa cells to GA was higher than that of HUVEC. GA induced apoptosis in HeLa cells, which was accompanied by the loss of mitochondrial membrane potential (MMP; ∆ψm). GA increased ROS levels including O2•- in HeLa cells at 24 h and it also induced GSH depletion. N-acetyl cysteine (NAC) increased the growth inhibition of GA-treated HeLa cells and enhanced the death of these cells. NAC differently influenced ROS levels in GA-treated HeLa cells and significantly increased GSH depletion in these cells. L-buthionine sulfoximine (BSO) increased MMP (∆ψm) loss, ROS levels and GSH depletion in GA-treated HeLa cells. In conclusion, GA significantly inhibited the growth of HeLa cells. GA-induced HeLa cell death was tightly related to GSH depletion rather than ROS level changes.

  6. Mast cells in citric acid-induced cough of guinea pigs

    SciTech Connect

    Lai, Y.-L. . E-mail: tiger@ha.mc.ntu.edu.tw; Lin, T.-Y.

    2005-01-01

    It was demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. To investigate the role of mast cells in CA-induced cough, three experiments were carried out in this study. In the first experiment, 59 guinea pigs were employed and we used compound 48/80 to deplete mast cells, cromolyn sodium to stabilize mast cells, MK-886 to inhibit leukotriene synthesis, pyrilamine to antagonize histamine H{sub 1} receptor, methysergide to antagonize serotonin receptor, and indomethacin to inhibit cyclooxygenase. In the second experiment, 56 compound 48/80-pretreated animals were divided into two parts; the first one was used to test the role of exogenous leukotriene (LT) C{sub 4}, while the second one to test the role of exogenous histamine in CA-induced cough. Each animal with one of the above pretreatments was exposed sequentially to saline (baseline) and CA (0.6 M) aerosol, each for 3 min. Then, cough was recorded for 12 min using a barometric body plethysmograph. In the third experiment, the activation of mast cells upon CA inhalation was investigated by determining arterial plasma histamine concentration in 17 animals. Exposure to CA induced a marked increase in cough number. Compound 48/80, cromolyn sodium, MK-886 and pyrilamine, but not indomethacin or methysergide, significantly attenuated CA-induced cough. Injection of LTC{sub 4} or histamine caused a significant increase in CA-induced cough in compound 48/80-pretreated animals. In addition, CA inhalation caused significant increase in plasma histamine concentration, which was blocked by compound 48/80 pretreatment. These results suggest that mast cells play an important role in CA aerosol inhalation-induced cough via perhaps mediators LTs and histamine.

  7. Nicotinic acid induces secretion of prostaglandin D2 in human macrophages: an in vitro model of the niacin flush.

    PubMed

    Meyers, C Daniel; Liu, Paul; Kamanna, Vaijinath S; Kashyap, Moti L

    2007-06-01

    Nicotinic acid is a safe, broad-spectrum lipid agent shown to prevent cardiovascular disease, yet its widespread use is limited by the prostaglandin D2 (PGD2) mediated niacin flush. Previous research suggests that nicotinic acid-induced PGD2 secretion is mediated by the skin, but the exact cell type remains unclear. We hypothesized that macrophages are a source of nicotinic acid-induced PGD2 secretion and performed a series of experiments to confirm this. Nicotinic acid (0.1-3 mM) induced PGD2 secretion in cultured human macrophages, but not monocytes or endothelial cells. The PGD2 secretion was dependent on the concentration of nicotinic acid and the time of exposure. Nicotinuric acid, but not nicotinamide, also induced PGD2 secretion. Pre-incubation of the cells with aspirin (100 microM) entirely prevented the nicotinic acid effects on PGD2 secretion. The PGD2 secreting effects of nicotinic acid were additive to the effects of the calcium ionophore A23187 (6 microM), but were independent of extra cellular calcium. These findings, combined with recent in vivo work, provide evidence that macrophages play a significant role in mediating the niacin flush and may lead to better strategies to eliminate this limiting side effect.

  8. DIBROMOACETIC ACID-INDUCED ELEVATIONS OF ESTRADIOL IN THE CYCLING AND OVARIECTOMOZED/ESTRADIOL-IMPLANTED FEMALE RAT

    EPA Science Inventory

    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations of Estradiol in Both Cycling and Ovariectomized / Estradiol-implanted Female Rats

    ABSTRACT
    Haloacetic acids are one of the principal classes of disinfection by-products generated by the chlorination of mun...

  9. Soya protein hydrolysates modify the expression of various pro-inflammatory genes induced by fatty acids in ovine phagocytes.

    PubMed

    Politis, Ioannis; Theodorou, Georgios; Lampidonis, Antonios D; Chronopoulou, Roubini; Baldi, Antonella

    2012-10-01

    The objective of the present study was to test the hypothesis that fatty acids are the circulating mediators acting in a pro-inflammatory manner towards activated circulating ovine monocyte/macrophages and neutrophils. Furthermore, whether soya protein hydrolysates (SPH) inhibit the fatty acid-induced increase in the production of pro-inflammatory responses by ovine phagocytes was tested in vitro. All the fatty acids tested (myristic, palmitic, palmitoleic, stearic and oleic) increased (P<0·01; C18>C16>C14) membrane-bound urokinase plasminogen activator (u-PA) and u-PA free binding sites in cell membranes of activated ovine blood monocytes/macrophages, but only the C18 fatty acids (stearic, oleic) were effective towards blood neutrophils. The C18 fatty acids up-regulated (P<0·05) the gene expression of u-PA, u-PA receptor, intercellular adhesion molecule 1 and inducible NO synthase (in monocytes) but not that of cyclo-oxygenase-2, integrin α X and plasminogen activator inhibitor types 1 and 2 by ovine phagocytes. SPH blocked completely or partially all C18 fatty acid-induced changes in the expression of various pro-inflammatory genes. In conclusion, fatty acids selectively 'activate' ovine phagocytes, suggesting that these cells 'sense' metabolic signals derived from adipocytes. Soya protein peptides inhibit all changes in gene expression induced by fatty acids in ovine phagocytes in vitro. This constitutes a novel mechanism of action.

  10. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    SciTech Connect

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun Chung, Won-Yoon

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  11. Lipid Rafts Promote trans Fatty Acid-Induced Inflammation in Human Umbilical Vein Endothelial Cells.

    PubMed

    Pan, Yao; Liu, Benxin; Deng, Zeyuan; Fan, Yawei; Li, Jing; Li, Hongyan

    2017-01-01

    The effects of two fatty acids, oleic acid (OLA) and elaidic acid (ELA) on normal human umbilical vein endothelial cells (HUVEC) and non-rafts HUVEC were investigated in this study. The expression levels of inflammatory cytokines (ICAM-1, VCAM-1 and IL-6) were analyzed. Western blot was used to analyze the expression levels of inflammation-related proteins (NF-κB, ERK1/2) and toll-like receptors 4 (TLR4). The results showed that the levels of nuclear translocation of NF-κB p65 and phosphorylated ERK1/2 were significantly decreased only in non-lipid rafts cells pretreated with trans fatty acid (TFA). The expression of TLR4 in the ELA-treated normal cells was higher than that in non-lipid rafts HUVEC. When the lipid rafts was destroyed by methyl-β-cyclodextrin, the levels of nuclear translocation of NF-κB p65, phosphorylated ERK1/2 and TLR4 were decreased significantly. Therefore, lipid rafts may be involved in TFA induced-inflammation in HUVEC through blocking the inflammatory signal pathway. Lipid rafts might be a platform for specific receptors such as TLR4 for TFA to activate the pro-inflammation on cell membranes.

  12. [Capillary electrophoresis analysis for glyphosate, glufosinate and aminomethylphosphonic acid with laser-induced fluorescence detection].

    PubMed

    Cao, Liwei; Liang, Siliu; Tan, Xiaofang; Meng, Jianxin

    2012-12-01

    A sensitive analytical method was developed for the simultaneous determination of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). 5-(4,6-Dichlorotriazinyl) amino fluorescein (DTAF) was successfully applied to label the herbicides. The optimal derivatization reaction was carried out in boric acid buffer of pH 9.5 at 30 degrees C for 40 min. The baseline separation of the three derivatives could be accomplished using 30 mmol/L boric acid, 15 mmol/L Brij-35 (pH 9.5) as the running buffer. The detection limits (S/N = 3) for the glyphosate, glufosinate and aminomethylphosphonic acid were 3.21, 6.14, 1.99 ng/kg, respectively. Finally, the method was successfully applied to the analysis of environmental samples, and the three compounds were measured without any interference from real samples. The recoveries of the compounds in these samples were 91.3% - 106.0%. The method has the advantages of easiness and sensitivity, and can meet the requirement of the determination of the herbicide and metabolite residues in the environmental samples.

  13. Bile acid induced colonic irritation stimulates intracolonic nitric oxide release in humans.

    PubMed Central

    Casellas, F; Mourelle, M; Papo, M; Guarner, F; Antolin, M; Armengol, J R; Malagelada, J R

    1996-01-01

    AIM--To measure the intracolonic release of nitric oxide end products (nitrates plus nitrites) and eicosanoids in response to intraluminal irritation with deoxycholic acid (DCA). PATIENTS--Seven patients with irritable bowel syndrome. METHODS--The left colon was perfused with a solution with or without 3 mM deoxycholic acid. Aspirates were assayed for eicosanoids by specific radioimmuno-assay, and for nitrates plus nitrites by the Griess reaction. To confirm that stimulated colonic mucosa can produce nitric oxide (NO), ancillary studies were performed in vitro using samples of normal mucosa obtained from five surgically resected colons. Samples were incubated for 30 minutes in Kreb's solution, 3 mM DCA or DCA with 1 mM L-nitro-arginine-methyl-ester (L-NAME) to inhibit the NO synthase. Finally, NO synthase activity was measured in five samples of human colonic mucosa. RESULTS--Intracolonic release of nitrates plus nitrites was basally undetectable in six of seven patients. Bile acid considerably increased the release of prostaglandin E2 and nitrates plus nitrites (p < 0.01). By contrast, no increase in thromboxane and leukotriene was seen. In vitro mucosal incubation with DCA increased the production of NO synthase products, which was blocked by L-NAME. Activity of Ca+2 independent NO synthase was detectable in four of five samples of human colonic mucosa. CONCLUSION--The human colonic mucosa responds to bile acid induced irritation by a surge in NO generation via NO synthase. PMID:8707118

  14. Transcriptomic response of Saccharomyces cerevisiae for its adaptation to sulphuric acid-induced stress.

    PubMed

    de Lucena, Rodrigo Mendonça; Elsztein, Carolina; de Barros Pita, Will; de Souza, Rafael Barros; de Sá Leitão Paiva Júnior, Sérgio; de Morais Junior, Marcos Antonio

    2015-11-01

    In bioethanol production plants, yeast cells are generally recycled between fermentation batches by using a treatment with sulphuric acid at a pH ranging from 2.0 to 2.5. We have previously shown that Saccharomyces cerevisiae cells exposed to sulphuric acid treatment induce the general stress response pathway, fail to activate the protein kinase A signalling cascade and requires the mechanisms of cell wall integrity and high osmolarity glycerol pathways in order to survive in this stressful condition. In the present work, we used transcriptome-wide analysis as well as physiological assays to identify the transient metabolic responses of S. cerevisiae under sulphuric acid treatment. The results presented herein indicate that survival depends on a metabolic reprogramming of the yeast cells in order to assure the yeast cell viability by preventing cell growth under this harmful condition. It involves the differential expression of a subset of genes related to cell wall composition and integrity, oxidation-reduction processes, carbohydrate metabolism, ATP synthesis and iron uptake. These results open prospects for application of this knowledge in the improvement of industrial processes based on metabolic engineering to select yeasts resistant to acid treatment.

  15. Nicotinic acid inhibits enterotoxin-induced jejunal secretion in the pig.

    PubMed Central

    Forsyth, G W; Kapitany, R A; Scoot, A

    1981-01-01

    The use of nicotinic acid for preventing intestinal secretion caused by cholera toxin and by the heat-stable enterotoxin of Escherichia coli has been investigated in the weanling pig. Secretory effects were measured in ligated jejunal loops of halothane-anesthetized pigs by dilution of a nonabsorbable marker added to the loop fluid. Different routes of administration and different initial pH values for nicotinate solutions were studied to determine optimal conditions for secretory inhibition. The neutral sodium salt of nicotinic acid had no significant antisecretory activity under any conditions used in these trials. Inhibition of secretion was most effective with partly neutralized nicotinic acid at pH 4.5 added directly to loops containing enterotoxin. Net fluid secretion induced by cholera toxin or heat-stable enterotoxin of E. coli was prevented by this treatment. Reversal of secretion was not accompanied by any measurable changes in cyclic nucleotide concentration in intestinal mucosa. Nicotinic acid antagonism of a secretory step common to cholera toxin and heat-stable enterotoxin of E. coli but subsequent to cyclic nucleotide involvement is indicated by these data. PMID:7020893

  16. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves : II. Relation to Amino Acid Pools.

    PubMed

    Flores, H E; Galston, A W

    1984-05-01

    Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, p