Science.gov

Sample records for acid ion units

  1. Ion electric propulsion unit

    DOEpatents

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  2. Acid rain reduced in eastern United States

    SciTech Connect

    Bowersox, V.C.; Lynch, J.A.; Grimm, J.W.

    1997-12-31

    Sulfate and free hydrogen ion concentrations in precipitation decreased 10 to 25 percent over large areas of the eastern United States in 1995. The largest decreases in both ions occurred in and downwind of the Ohio River Valley, the same area where Phase I of the 1990 Clean Air Act Amendments set limitations, effective January 1, 1995, on sulfur dioxide emissions from affected coal-fired sources. Based on our analysis of precipitation chemistry and emissions data, we conclude that substantial declines in acid rain occurred in the eastern United States in 1995 because of large reductions in sulfur dioxide emissions in the same region.

  3. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  4. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  5. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  6. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  7. ION SOURCE UNIT FOR CALUTRON

    DOEpatents

    Sloan, D.H.; Yockey, H.P.; Schmidt, F.H.

    1959-04-14

    An improvement in the mounting arrangement for an ion source within the vacuum tank of a calutron device is reported. The cathode and arc block of the source are independently supported from a stem passing through the tank wall. The arc block may be pivoted and moved longitudinally with respect to the stem to thereby align the arc chamber in the biock with the cathode and magnetic field in the tank. With this arrangement the elements of the ion source are capable of precise adjustment with respect to one another, promoting increased source efficiency.

  8. Ions in hyaluronic acid solutions

    NASA Astrophysics Data System (ADS)

    Horkay, Ferenc; Basser, Peter J.; Londono, David J.; Hecht, Anne-Marie; Geissler, Erik

    2009-11-01

    Hyaluronic acid (HA) is an anionic biopolymer that is almost ubiquitous in biological tissues. An attempt is made to determine the dominant features that account for both its abundance and its multifunctional role, and which set it apart from other types of biopolymers. A combination of osmotic and scattering techniques is employed to quantify its dynamic and static properties in near-physiological solution conditions, where it is exposed both to mono- and divalent counterions. An equation of state is derived for the osmotic pressure Π in the semidilute concentration region, in terms of two variables, the polymer concentration c and the ionic strength J of the added salt, according to which Π =1.4×103c9/4/J3/4 kPa, where c and J are expressed in mole. Over the physiological ion concentration range, the effect of the sodium chloride and calcium chloride on the osmotic properties of HA solutions is fully accounted for by their contributions to the ionic strength. The absence of precipitation, even at high CaCl2 concentrations, distinguishes this molecule from other biopolymers such as DNA. Dynamic light scattering measurements reveal that the collective diffusion coefficient in HA solutions exceeds that in aqueous solutions of typical neutral polymers by a factor of approximately 5. This property ensures rapid adjustment to, and recovery from, stress applied to HA-containing tissue. Small angle x-ray scattering measurements confirm the absence of appreciable structural reorganization over the observed length scale range 10-1000 Å, as a result of calcium-sodium ion exchange. The scattered intensity in the transfer momentum range q >0.03 Å-1 varies as 1/q, indicating that the HA chain segments in semidilute solutions are linear over an extended concentration range. The osmotic compression modulus c ∂Π/∂c, a high value of which is a prerequisite in structural biopolymers, is several times greater than in typical neutral polymer solutions.

  9. Lithium-Ion Cell Charge Control Unit

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Button, Robert; Manzo, Michelle; McKissock, Barbara; Miller, Thomas; Gemeiner, Russel; Bennett, William; Hand, Evan

    2006-01-01

    Life-test data of Lithium-Ion battery cells is critical in order to establish their performance capabilities for NASA missions and Exploration goals. Lithium-ion cells have the potential to replace rechargeable alkaline cells in aerospace applications, but they require a more complex charging scheme than is typically required for alkaline cells. To address these requirements in our Lithium-Ion Cell Test Verification Program, a Lithium-Ion Cell Charge Control Unit was developed by NASA Glenn Research Center (GRC). This unit gives researchers the ability to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and results in a substantial reduction in test costs as compared to individual cell testing. The Naval Surface Warfare Center at Crane, Indiana developed a power reduction scheme that works in conjunction with the Lithium-Ion Cell Charge Control Unit. This scheme minimizes the power dissipation required by the circuitry to prolong circuit life and improve its reliability.

  10. Acid-sensitive ion channels and receptors.

    PubMed

    Holzer, Peter

    2009-01-01

    Acidosis is a noxious condition associated with inflammation, ischaemia or defective acid containment. As a consequence, acid sensing has evolved as an important property of afferent neurons with unmyelinated and thinly myelinated nerve fibres. Protons evoke multiple currents in primary afferent neurons, which are carried by several acid-sensitive ion channels. Among these, acid-sensing ion channels (ASICs) and transient receptor potential (TRP) vanilloid-1 (TRPV1) ion channels have been most thoroughly studied. ASICs survey moderate decreases in extracellular pH, whereas TRPV1 is activated only by severe acidosis resulting in pH values below 6. Two-pore-domain K(+) (K(2P)) channels are differentially regulated by small deviations of extra- or intracellular pH from physiological levels. Other acid-sensitive channels include TRPV4, TRPC4, TRPC5, TRPP2 (PKD2L1), ionotropic purinoceptors (P2X), inward rectifier K(+) channels, voltage-activated K(+) channels, L-type Ca(2+) channels, hyperpolarization-activated cyclic nucleotide gated channels, gap junction channels, and Cl(-) channels. In addition, acid-sensitive G protein coupled receptors have also been identified. Most of these molecular acid sensors are expressed by primary sensory neurons, although to different degrees and in various combinations. Emerging evidence indicates that many of the acid-sensitive ion channels and receptors play a role in acid sensing, acid-induced pain and acid-evoked feedback regulation of homeostatic reactions. The existence and apparent redundancy of multiple pH surveillance systems attests to the concept that acid-base regulation is a vital issue for cell and tissue homeostasis. Since upregulation and overactivity of acid sensors appear to contribute to various forms of chronic pain, acid-sensitive ion channels and receptors are considered as targets for novel analgesic drugs. This approach will only be successful if the pathological implications of acid sensors can be differentiated

  11. Acid-sensitive ion channels and receptors

    PubMed Central

    Holzer, Peter

    2015-01-01

    Acidosis is a noxious condition associated with inflammation, ischaemia or defective acid containment. As a consequence, acid sensing has evolved as an important property of afferent neurons with unmyelinated and thinly myelinated nerve fibres. Protons evoke multiple currents in primary afferent neurons, which are carried by several acid-sensitive ion channels. Among these, acid-sensing ion channels (ASICs) and transient receptor potential (TRP) vanilloid-1 (TRPV1) ion channels have been most thoroughly studied. ASICs survey moderate decreases in extracellular pH whereas TRPV1 is activated only by severe acidosis resulting in pH values below 6. Two-pore domain K+ (K2P) channels are differentially regulated by small deviations of extra- or intracellular pH from physiological levels. Other acid-sensitive channels comprise TRPV4, TRPC4, TRPC5, TRPP2 (PKD2L1), ionotropic purinoceptors (P2X), inward rectifier K+ channels, voltage-activated K+ channels, L-type Ca2+ channels, hyperpolarization-activated cyclic nucleotide-gated channels, gap junction channels, and Cl− channels. In addition, acid-sensitive G protein-coupled receptors have also been identified. Most of these molecular acid sensors are expressed by primary sensory neurons, although to different degrees and in various combinations. Emerging evidence indicates that many of the acid-sensitive ion channels and receptors play a role in acid sensing, acid-induced pain and acid-evoked feedback regulation of homeostatic reactions. The existence and apparent redundancy of multiple pH surveillance systems attests to the concept that acid-base regulation is a vital issue for cell and tissue homeostasis. Since upregulation and overactivity of acid sensors appear to contribute to various forms of chronic pain, acid-sensitive ion channels and receptors are considered as targets for novel analgesic drugs. This approach will only be successful if the pathological implications of acid sensors can be differentiated

  12. A united physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 2. Influence of polyelectrolyte properties and functional group heterogeneity on the protonation equilibria of fulvic acid

    USGS Publications Warehouse

    Ephraim, J.; Alegret, S.; Mathuthu, A.; Bicking, M.; Malcolm, R.L.; Marinsky, J.A.

    1986-01-01

    Potentiometric studies of the neutralization of several fulvic acid sources with standard base in aqueous and nonaqueous media have been conducted. Analysis of the results with a recently developed unified physicochemical model has shown that the protonation behavior of these fulvic acid sources is a reflection of (1) their polyelectrolyte nature and (2) their heterogeneity. It has been possible to ascribe the polyelectrolyte properties observed to a rather inflexible fulvic acid molecule whose variably charged surface is impermeable to simple electrolyte. ?? 1986 American Chemical Society.

  13. Ion Atmosphere Near Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Mohanty, Udayan

    2015-03-01

    We will discuss all­atom structure based model that explicitly includes ionic effects, i.e., electrostatic interactions with explicit magnesium ions and implicit KCl that allow us to carry out explicit solvent molecular dynamics simulations of adenine riboswitch and SAM­I riboswitch. Our predictions for the excess ions around the riboswitch, and the magnesium­RNA interaction free energy will be compared with experimental data. We will provide upper and lower bounds for preferential interaction coefficient, a statistical mechanical quantity that is a measure of excess ion atmosphere around a polyelectrolyte. We will discuss the role of surface charge density of mobile ions from added salt in determining the counterion release entropy associated with chain collapse. Finally, the Poisson's ratio of oligomeric DNA will be determined. (Work done in collaboration with R. Hayes, J. Noel, P. Whitford, S. Hennelly, J. Onuchic, and K. Sanbonmatsu.) Work supported by fellowship from John Simon Guggenheim Memorial Foundation.

  14. Organic Acids by Ion Chromatography

    NASA Astrophysics Data System (ADS)

    Rich, William E.; Johnson, Edward; Lois, Louis; Stafford, Brian E.; Kabra, Pokar M.; Marton, Laurence J.

    The presence of increased levels of various organic acids in physiological fluids such as serum, plasma, and urine has been correlated with a variety of diseases (1). Although some are rare, others such as lactic acidosis and hyperoxaluria are more widespread (2, 3). The estimation of organic acids in biological fluids has long been an analytical problem owing to the nature of the samples and the hydrophilic behavior of the various acids.

  15. Ion exchange properties of humus acids

    NASA Astrophysics Data System (ADS)

    Shoba, V. N.; Chudnenko, K. V.

    2014-08-01

    Ion exchange equilibriums in a complex of brown humic acids (HAs) and related fulvic acids (FAs) with cations (H+, K+, Na+, Ca2+, Mg2+, Zn2+, Mn2+, Cu2+, Fe3+, and Al3+) have been studied, and the activity coefficients of the acid monoionic forms have been determined. The composition of the stoichiometric cell in the system of black and brown HAs and related FAs in a leached chernozem of the Ob' region has been calculated with consideration for the earlier studies of the ion exchange properties of black HAs and related FAs. It has been shown that hydrogen, calcium, magnesium, aluminum, and iron are the major components in the exchange complex of humus acids in the leached chernozem with the other cations being of subordinate importance. In spite of some differences between the analytical and calculated compositions of the humus acids, the results of the calculations can be considered satisfactory. They indicate that calculations are feasible for such complex objects as soils, and their accuracy will improve with the expansion of the experimental studies. The physicochemical simulation of the transformation of the humus acid composition under different acid-base conditions shows that the contents of most cations decrease under alkalization, and hydroxides or carbonates become the most stable forms of these cations. Under the acidification of solutions, the binding of alkaline and alkaline-earth elements by humus acids decreases and the adsorption of iron and aluminum by humus acids increases.

  16. Persistent Ion Pairing in Aqueous Hydrochloric Acid

    SciTech Connect

    Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam; Schenter, Gregory K.; Mundy, Christopher J.

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that the Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.

  17. Uptake of metal ions on humic acids

    SciTech Connect

    Pehlivan, E.; Arslan, G.

    2006-09-15

    The kinetics, the sorption capacities, pH and temperature dependence of sorption of humic acids (HAs) of Turkish brown coals with respect to Zn(II), Cu(II), Ni(II), Co(II) and Pb(II) ions were investigated, and the roles of the carboxylic and phenolic groups in the adsorption of metals ion on HAs were searched in this work. These metal ions are able to form complex compounds with carboxylic and phenolic groups of HAs. Adsorption equilibrium was achieved in between 50 and 60 min for all studied cations. HAs extracted from different brown coals have been characterized by chemical and physical methods. The chemical properties of HAs showed differences depending on the source from which they were obtained. The sorption of metals on the surface of HAs depends strongly on the pH, and sorption decreases with decreasing pH. Maximum removal of metal ions was demonstrated at pH values of 4.1-5.0. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The {Delta}G{sup 0} became negative as the temperature increased, and so the equilibrium constant decreased slightly. The investigation proved that the HAs are suitable materials for the studied heavy metal ion removal from aqueous solution and could be considered as potential material for purification of effluent polluted with toxic metal ions.

  18. ION SOURCE UNIT FOR A CALUTRON

    DOEpatents

    Brobeck, W.M.

    1958-08-19

    An improvement in the ion-producing mechanism for use in a calutron is described. In its broad aspects the improvement comprises the addition of shieid plates between the electron emitting filannent of the ion source and the ionization chamber. An aperture in one of the shields provides a path for electrons from the filament to enter the ionization chamber of the source block. As the shield members are electrically connected to the negative side of the filament power supply, the favorable action of the upper shield is to prevent the electron bombardment of all the elements of the calutron which overlie the filannent, and the lower shield member con fines the emission of electrons from the filannent to a relatively short segnnent, thereby increasing the life of the filannent.

  19. Acid-sensing ion channels under hypoxia

    PubMed Central

    Yingjun, Guo; Xun, Qu

    2013-01-01

    Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na+ channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on. PMID:23764948

  20. Acid rain reduced in Eastern United States

    SciTech Connect

    Lynch, J.A.; Bowersox, V.C.; Grimm, J.W.

    2000-03-15

    Concentrations of sulfate (SO{sub 4}{sup 2{minus}}) and free hydrogen ions (H{sup +}) in precipitation decreased from 10% to 25% over a large area of the Eastern US from 1995 through 1997 as compared to the previous 12-year (1983--1994) reference period. These decreases were unprecedented in magnitude and spatial extent. In contrast, nitrate (NO{sub 3}{sup {minus}}) concentrations generally did not change over this period. The largest decreases in both H{sup +} and SO{sub 4}{sup 2{minus}} concentrations, which nearly mimicked one another, occurred in and downwind of the Ohio River Valley, the same area where Title 4 of the 1990 Clean Air Act Amendments (CAAA) set limitations on sulfur dioxide (SO{sub 2}) emissions from a large number of utility-owned coal-fired sources. Phase 1 of the CAAA required that these limitations be met by January 1, 1995. On the basis of their analysis of precipitation chemistry and emissions data, the authors conclude that significant declines in acid rain occurred in many parts of the Eastern US from 1995 through 1997 because of large reductions in SO{sub 2} emissions in this region and a corresponding reduction in SO{sub 4}{sup 2{minus}} concentrations in precipitation.

  1. Ion-exchange properties of strontium hydroxyapatite under acidic conditions

    SciTech Connect

    Sugiyama, Shigeru; Nishioka, Hitoshi; Moriga, Toshihiro; Hayashi, Hiromu; Moffat, J.B.

    1998-09-01

    The ion exchange of strontium hydroxyapatite (SrHAp) with Pb{sup 2+} has been investigated under acidic conditions at 293 K. The addition of various acids to the exchanging solution enhanced the exchange capacity in the order HCl > HBr > HF > HNO{sub 3} > no acid, corresponding to the formation of halogen apatites with the former three acids or hydrogen phosphate with HNO{sub 3}. Since the ion-exchange capacity of SrHAp under nonacidic conditions is higher than that of chlorapatite, the aforementioned observations can be attributed to the participation of the protons introduced by the acids.z

  2. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  3. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  4. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  5. How Lewis acidic is your cation? Putting phosphenium ions on the fluoride ion affinity scale.

    PubMed

    Slattery, John M; Hussein, Sharifa

    2012-02-14

    The fluoride ion affinities (FIAs) of 33 phosphenium ions with a range of substituents were calculated using ab inito and DFT methods. The use of these FIA data as a measure of the Lewis acidities of phosphenium ions is described and the FIAs of the species studied here are compared to FIA data for more commonly encountered Lewis acids. Phosphenium ions are often stronger Lewis acids than neutral species, but in many cases are less Lewis acidic than highly electrophilic cations such as [Me(3)C](+) or [Me(3)Si](+). The impact of mesomeric, inductive and steric substituent effects on FIAs are discussed and related to the underlying electronic structures of different cation types. A comparison between the FIAs of known "free" phosphenium ions with those that are currently unknown and other highly electrophilic cations suggests that some diaryl- and dialkylphosphenium ions may yet be accessible under the right conditions. PMID:22159000

  6. Recovery of boric acid from ion exchangers

    DOEpatents

    Pollock, Charles W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.

  7. The fatty acids as penetration enhancers of amino acids by ion pairing.

    PubMed

    Arct, J; Chelkowska, M; Kasiura, K; Pietrzykowski, P

    2002-12-01

    The influence of palmitic acid on n-octanol/water partition coefficient (log P) of selected amino acids, alanine, glycine, proline, hydroxyproline, seine, valine, threonine and lysine, was measured at a wide range of pH. A parabolic shape curve was obtained in every case (pH vs. Deltalog P), with maximum depending on the amino acid. In each case in the presence of palmitic acid, the apparent partition coefficient increased. To check the possible mechanism of extraction of amino acids into n-octanol phase in the presence of palmitate additionally, the influence of an amount of counter ion on partition coefficient of lysine was investigated. The results suggest that the enhanced partitioning of lysine results from the ion pair formation with palmitate. The ion pair stratum corneum-lipid membrane transport of the amino acids was investigated as well, using palmitate as a counter ion. The apparent permeability coefficients were enhanced significantly by palmitic acid at pH 7.4. As many substances (e.g. organic solvents, unsaturated fatty acids, etc.) are penetration enhancers which change the structure of intercellular lipid, the influence of palmitic acid on membrane was investigated. After pretreatment of membrane with palmitic acid, no changes in permeation of alanine were observed. Investigations suggest the enhanced permeation of amino acids via ion pairing. The method for prediction of pH in which the possibility of ion pairing is the highest was developed as well. PMID:18494885

  8. Adsorption of heavy metal ions by immobilized phytic acid

    SciTech Connect

    Tsao, G.T.; Zheng, Yizhou; Lu, J.; Gong, Cheng S.

    1997-12-31

    Phytic acid (myoinositol hexaphosphate) or its calcium salt, phytate, is an important plant constituents. It accounts for up to 85% of total phosphorus in cereals and legumes. Phytic acid has 12 replaceable protons in the phytic molecule rendering it the ability to complex with multivalent cations and positively charged proteins. Poly 4-vinyl pyridine (PVP) and other strong-based resins have the ability to adsorb phytic acid. PVP has the highest adsorption capacity of 0.51 phytic acid/resins. The PVP resin was used as the support material for the immobilization of phytic acid. The immobilized phytic acid can adsorb heavy metal ions, such as cadmium, copper, lead, nickel, and zinc ions, from aqueous solutions. Adsorption isotherms of the selected ions by immobilized phytic acid were conducted in packed-bed column at room temperature. Results from the adsorption tests showed 6.6 mg of Cd{sup 2+}, 7 mg of Cu{sup 2+}, 7.2 mg of Ni{sup 2+}, 7.4 mg of Pb{sup 2+}, and 7.7 mg of Zn{sup 2+} can be adsorbed by each gram of PVP-phytic acid complex. The use of immobilized phytic acid has the potential for removing metal ions from industrial or mining waste water. 15 refs., 7 figs., 2 tabs.

  9. How acidic are monomeric structural units of heparin?

    NASA Astrophysics Data System (ADS)

    Remko, Milan; Broer, Ria; Van Duijnen, Piet Th.

    2013-12-01

    Density functional theory methods with the B3LYP functional have been used to letter the acidity of carboxyl, O-sulfo and N-sulfo groups in six basic monomeric structural units of heparin (1-OMe ΔUA-2S, 1-OMe GlcN-S6S, 1,4-DiOMe GlcA, 1,4-DiOMe GlcN-S3S6S, 1,4-DiOMe IdoA-2S, and 1,4-DiOMe GlcN-S6S). The predicted gas-phase acidity of the acidic functional groups in the monomeric structural units of heparin is: O-sulfo > N-sulfo > carboxyl. The computed pKa values provide the same order of acidity as was observed in water solution. This implies that hydration does not change ordering of acidity of major acidic groups of monomeric structural units of heparin.

  10. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  11. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  12. Charge-Control Unit for Testing Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Mazo, Michelle A.; Button, Robert M.

    2008-01-01

    A charge-control unit was developed as part of a program to validate Li-ion cells packaged together in batteries for aerospace use. The lithium-ion cell charge-control unit will be useful to anyone who performs testing of battery cells for aerospace and non-aerospace uses and to anyone who manufacturers battery test equipment. This technology reduces the quantity of costly power supplies and independent channels that are needed for test programs in which multiple cells are tested. Battery test equipment manufacturers can integrate the technology into their battery test equipment as a method to manage charging of multiple cells in series. The unit manages a complex scheme that is required for charging Li-ion cells electrically connected in series. The unit makes it possible to evaluate cells together as a pack using a single primary test channel, while also making it possible to charge each cell individually. Hence, inherent cell-to-cell variations in a series string of cells can be addressed, and yet the cost of testing is reduced substantially below the cost of testing each cell as a separate entity. The unit consists of electronic circuits and thermal-management devices housed in a common package. It also includes isolated annunciators to signal when the cells are being actively bypassed. These annunciators can be used by external charge managers or can be connected in series to signal that all cells have reached maximum charge. The charge-control circuitry for each cell amounts to regulator circuitry and is powered by that cell, eliminating the need for an external power source or controller. A 110-VAC source of electricity is required to power the thermal-management portion of the unit. A small direct-current source can be used to supply power for an annunciator signal, if desired.

  13. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  14. Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades

    USGS Publications Warehouse

    Reddy, M.M.; Aiken, G.R.

    2001-01-01

    Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.

  15. Unit: Indicating Acidity, Inspection Pack, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    The introductory core activities in this trial unit, prepared for students in grades seven through nine of Australian schools, use indicators derived from flower pigments to provide a more convenient measure of acidity than taste. Students are offered choices among seven options after completion of the core: "How Acidic is That?"; "What Colour is…

  16. New unit for sulfuric acid alkylation of isobutane by olefins

    SciTech Connect

    Khadzhiev, S.N.; Baiburskii, V.L.; Deineko, P.S.; Gruzdev, A.S.; Tagavov, I.T.

    1987-01-01

    The authors describe and illustrate a sulfuric acid alkylation unit with a horizontal contact. As a result of the use of this design solution, the isobutane/olefin ratio is 10/1 in comparison with 4/1 to 5/1 in the other types of units, namely vertical reactors and cascade tank reactors. The unit was designed to process the butane-butylene cut (BBC) and part of the propane-propylene cut (PPC) from the G-43-107 cat cracker. The unit design includes provisions for controlled caustic washing of the feed and dehydration in an electric field. The authors present the basic data obtained in the three months of unit operation after startup, in comparison with the operating indexes of a sulfuric acid alkylation unit.

  17. A voltage control unit for ion scattering spectroscopy analyzers

    NASA Astrophysics Data System (ADS)

    Roos, W. D.; Henson, R. P.; van Wyk, G. N.

    1993-04-01

    A voltage control unit for a spherical sector analyzer used in the energy analysis of scattered ions is described. Three modes of operation, namely, automatic, manual, and computer control is possible. The unit is directly calibrated in terms of the scattered energies which is displayed on a liquid crystal unit. The scanning time in the auto mode is adjustable from 1 to 999 s in 1-s steps for any selected energy range. A 0-10-V recorder output is available regardless of the energy window selected. The basic operation and the functioning of the various components are explained with the help of block diagrams and a final evaluation of the system is given. Complete circuit diagrams are available from the Physics Auxiliary Publication Service (PAPS) of the American Institute of Physics.

  18. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    PubMed Central

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  19. Amino acid sequence prerequisites for the formation of cn ions.

    PubMed

    Downard, K M; Biemann, K

    1993-11-01

    Ammo acid sequence prerequisites are described for the formation of c, ions observed in high-energy collision-induced decomposition spectra of peptides. It is shown that the formation of cn ions is promoted by the nature of the amino acid C-terminal to the cleavage site. A propensity for cn cleavage preceding threonine, and to a lesser extent tryptophan, lysine, and serine, is demonstrated where fragmentation is directed N-terminally at these residues. In addition, the nature of the residue N-terminal to the cleavage site is shown to have little effect on cn ion formation. A mechanism for cn ion formation is proposed and its applicability to the results observed is discussed. PMID:24227531

  20. Ion Chromatography Analysis of Dibutyl Phosphoric Acid

    SciTech Connect

    Ray, R.J.

    1998-12-04

    Analysis of dibutyl phosphate (DBP), a degradation product of tributyl phosphate (TBP), has long been a problem analysis by Ion Chromatography at the Savannah River Site. Due to the presence of UO{sub 2}{sup +2} and high NO{sub 3}{sup {minus}1} concentrations, inadequate recovery and separation of DBP on the chromatographic column had rendered the analysis undependable and very inconsistent, thus causing high uncertainties in the data. The method presented here by the Savannah River Technology Center (SRTC)/Analytical Development Section (ADS) addresses the sample preparation problems encountered when analyzing for DBP in the presence of uranium and nitrate. The data presented reflects the improvements made to decrease data uncertainty and increase data accuracy and precision.

  1. Acid-Sensing Ion Channels in Gastrointestinal Function

    PubMed Central

    Holzer, Peter

    2015-01-01

    Gastric acid is of paramount importance for digestion and protection from pathogens but, at the same time, is a threat to the integrity of the mucosa in the upper gastrointestinal tract and may give rise to pain if inflammation or ulceration ensues. Luminal acidity in the colon is determined by lactate production and microbial transformation of carbohydrates to short chain fatty acids as well as formation of ammonia. The pH in the oesophagus, stomach and intestine is surveyed by a network of acid sensors among which acid-sensing ion channels (ASICs) and acid-sensitive members of transient receptor potential ion channels take a special place. In the gut, ASICs (ASIC1, ASIC2, ASIC3) are primarily expressed by the peripheral axons of vagal and spinal afferent neurons and are responsible for distinct proton-gated currents in these neurons. ASICs survey moderate decreases in extracellular pH and through these properties contribute to a protective blood flow increase in the face of mucosal acid challenge. Importantly, experimental studies provide increasing evidence that ASICs contribute to gastric acid hypersensitivity and pain under conditions of gastritis and peptic ulceration but also participate in colonic hypersensitivity to mechanical stimuli (distension) under conditions of irritation that are not necessarily associated with overt inflammation. These functional implications and their upregulation by inflammatory and non-inflammatory pathologies make ASICs potential targets to manage visceral hypersensitivity and pain associated with functional gastrointestinal disorders. PMID:25582294

  2. Local Dynamics of Acid- and Ion-containing Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Winey, Karen; Middleton, Robert; Tarver, Jacob; Tyagi, Madhusudan; Soles, Christopher; Frischknecht, Amalie

    Interest in acid- and ion-containing polymers arises in part from applications as single-ion conductors for selectively transporting a counter ion for battery applications. Structurally, the low dielectric constant of organic polymers and strong ionic interactions leads to ionic aggregation. Here the polymer backbone motion was investigated through quasi-elastic neutron scattering measurements (QENS) and compared with fully atomistic molecular dynamic simulations of precise poly(ethylene-acrylic acid) copolymers and their ionomers (pxAA-y%Li). The effect of carbon spacer length (x =9, 15, 21) between the acid groups and the degree of neutralization (y) with Li on PE backbone dynamics were considered. Systematic slowing in chain dynamics were observed with increasing neutralization where polymer dynamics appear constrained due to anchoring effects. Simulations provide complementary viewpoints indicating a gradient in chain dynamics as a distance away from acid groups. These results indicate that the addition of pendant acid groups inhibit typical PE backbone motion and the neutralized forms strongly suppress the fraction of mobile PE chain.

  3. Chemical noise reduction via mass spectrometry and ion/ion charge inversion: amino acids.

    PubMed

    Hassell, Kerry M; LeBlanc, Yves C; McLuckey, Scott A

    2011-05-01

    Charge inversion ion/ion reactions can provide a significant reduction in chemical noise associated with mass spectra derived from complex mixtures for species composed of both acidic and basic sites, provided the ions derived from the matrix largely undergo neutralization. Amino acids constitute an important class of amphoteric compounds that undergo relatively efficient charge inversion. Precipitated plasma constitutes a relatively complex biological matrix that yields detectable signals at essentially every mass-to-charge value over a wide range. This chemical noise can be dramatically reduced using multiply charged reagent ions that can invert the charge of species amenable to the transfer of multiple charges upon a single interaction and by detecting product ions of opposite polarity. The principle is illustrated here with amino acids present in precipitated plasma subjected to ionization in the positive mode, reaction with anions derived from negative nanoelectrospray ionization of poly (amido amine) dendrimer generation 3.5, and mass analysis in the negative ion mode. PMID:21456599

  4. Ion flotation behaviour of thirty-one metal ions in mixed hydrochloric/nitric acid solutions.

    PubMed

    Hualing, D; Zhide, H

    1989-06-01

    The ion flotation of 31 metal ions in hydrochloric/nitric acid solution with the cationic surfactant cetylpyridinium chloride was investigated. A 25-ml portion of 0.27-2.87 x 10(-4)M metal ion and 1.8-6.0 x 10(-4)M cetylpyridinium chloride solution in 0.17-3.4M acid mixture ([HCl]:[HNO(3)] = 2.4:1) was subjected to flotation in a cell, 22.5 cm high and 4.0 cm in diameter, for 5 min, with nitrogen bubbles. Ir(IV), Pt(IV), Ge(IV), Sn(IV), Bi(III), Au(III), Tl(III), Pd(II) and Sn(II) were floated from solution in 95-100% yield; Ru(III), Rh(III), Ir(III), Hg(II), Ag(I) and Tl(I) were partly floated, while Cr(VI), Ti(IV), Zr(IV), Ga(III), In(III), Fe(III), Sb(III), Al(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), CD(II) and Pb(II) were floated with less than 20% yield. The flotation behaviour of these metal ions in the mixed acid system was compared with that in hydrochloric acid. The flotation is more efficient in the mixed acid system. PMID:18964771

  5. Online process control of acidic texturisation baths with ion chromatography.

    PubMed

    Zimmer, Martin; Oltersdorf, Antje; Rentsch, Jochen

    2009-12-15

    Etching of silicon with mixtures of hydrofluoric acid and nitric acid is a widely used process in silicon solar cell fabrication. One precondition for an optimized usage of the acidic etching baths is the exact knowledge of the chemical bath composition. In this paper, we investigated a fast and online-capable method for the total analysis of all bath constituents by ion chromatography. The chromatographical system consists of a low-volume injection valve, which injects the concentrated samples directly into the KOH-based eluent. After separation and detection of nitrate and fluoride, a post-column derivatization with sodium molybdate is applied to detect the hexafluorosilicic acid, which enriches in the texturisation bath during the etching process. The results of the presented approach are discussed and compared with already published chromatographical and titration methods found in literature. PMID:19836511

  6. Reactivity of the cadmium ion in concentrated phosphoric acid solutions.

    PubMed

    De Gyves, J; Gonzales, J; Louis, C; Bessiere, J

    1989-07-01

    The solvation transfer coefficients which characterize the changes of ion reactivity with phosphoric acid concentration have been calculated for cadmium from the constants of the successive chloride complexes, and for silver and diethyldithiophosphate from potentiometric measurements. They evidence the strong desolvation of the cadmium species in concentrated phosphoric acid media, causing a remarkable increase of its reactivity. They allow the results of liquid-liquid extraction, precipitation and flotation reactions to be correctly interpreted and their changes to be foreseen when the reagents are modified. PMID:18964794

  7. Acid-sensing ion channels in pain and disease

    PubMed Central

    Wemmie, John A.; Taugher, Rebecca J.; Kreple, Collin J.

    2015-01-01

    Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered. PMID:23783197

  8. Amino acid-sensing ion channels in plants

    SciTech Connect

    Spalding, Edgar P.

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  9. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  10. Template-directed synthesis of oligoguanylic acids - Metal ion catalysis

    NASA Technical Reports Server (NTRS)

    Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.

    1981-01-01

    The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.

  11. United in Diversity: Mechanosensitive Ion Channels in Plants

    PubMed Central

    Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462

  12. Epithelial Sodium and Acid-Sensing Ion Channels

    NASA Astrophysics Data System (ADS)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  13. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  14. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure

    SciTech Connect

    Tsuji, M. ); Komarneni, S. )

    1993-03-01

    The ion-exchange selectivity of divalent transition metal ions on cryptomelane-type manganic acid (CMA) with tunnel structure has been studied using the distribution coefficients ([ital K][sub [ital d

  15. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. PMID:27513962

  16. Proton-mediated Conformational Changes in an Acid-sensing Ion Channel*

    PubMed Central

    Ramaswamy, Swarna S.; MacLean, David M.; Gorfe, Alemayehu A.; Jayaraman, Vasanthi

    2013-01-01

    Acid-sensing ion channels are cation channels activated by external protons and play roles in nociception, synaptic transmission, and the physiopathology of ischemic stroke. Using luminescence resonance energy transfer (LRET), we show that upon proton binding, there is a conformational change that increases LRET efficiency between the probes at the thumb and finger subdomains in the extracellular domain of acid-sensing ion channels. Additionally, we show that this conformational change is lost upon mutating Asp-238, Glu-239, and Asp-260, which line the finger domains, to alanines. Electrophysiological studies showed that the single mutant D260A shifted the EC50 by 0.2 pH units, the double mutant D238A/E239A shifted the EC50 by 2.5 pH units, and the triple mutant D238A/E239A/D260A exhibited no response to protons despite surface expression. The LRET experiments on D238A/E239A/D260A showed no changes in LRET efficiency upon reduction in pH from 8 to 6. The LRET and electrophysiological studies thus suggest that the three carboxylates, two of which are involved in carboxyl/carboxylate interactions, are essential for proton-induced conformational changes in the extracellular domain, which in turn are necessary for receptor activation. PMID:24196950

  17. Highly sensitive and selective fluorescent sensor for zinc ion based on a new diarylethene with a thiocarbamide unit.

    PubMed

    Zhang, Congcong; Pu, Shouzhi; Sun, Zhiyuan; Fan, Congbin; Liu, Gang

    2015-04-01

    A new photochromic diarylethene has been synthesized by using thiocarbamide as a functional group and perfluordiarylethene as photoswitching trigger via a salicylidene Schiff base linkage. The diarylethene could be used as a multicontrollable fluorescence switch when triggered by base/acid, light, and metal ions. The results showed that the absorption and fluorescence characteristics of the diarylethene exhibited sequence-dependent responses through efficient interaction of specific salicylidene Schiff base-linked thiocarbamide unit with tetrabutylammonium hydroxide/trifluoroacetic acid and photoirradiation. Moreover, the diarylethene was highly selective toward Zn(2+) ion with obvious fluorescence change from light blue to bright yellow in acetonitrile. The deprotonated form of the diarylethene had typical photochromism, but it showed an irreversible photocyclization reaction after binding with Zn(2+). Finally, two logic circuits were constructed by using the fluorescence intensity as the output signal with the inputs of the combinational stimuli of light and chemical species. PMID:25760313

  18. Solution-phase secondary-ion mass spectrometry of protonated amino acids.

    PubMed

    Pettit, G R; Cragg, G M; Holzapfel, C W; Tuinman, A A; Gieschen, D P

    1987-04-01

    Although sulfolane proved unexpectedly to be a poor solvent for solution-phase secondary-ion mass spectrometry of underivatized amino acids in the presence of thallium(I) salts, glycerol was somewhat more effective. Also, the addition of trifluoromethanesulfonic acid proved more effective than addition of the metal in generating molecular ion complexes. A convenient and reliable method for rapidly determining amino acid molecular ions is based on these observations. PMID:3037939

  19. ION-EXCLUSION CHROMATOGRAPHIC DETERMINATION OF CARBOXYLIC ACIDS USED TO SUPPORT THE MICROBIALLY MEDIATED REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE

    EPA Science Inventory

    An analytical method was developed for the determination of lactic acid, formic acid, acetic acid, propionic acid, and butyric acid in environmental microcosm samples using ion-exclusion chromatography. The chromatographic behavior of various eluents was studied to determine the ...

  20. International Symposium on Ion Therapy: Planning the First Hospital-Based Heavy Ion Therapy Center in the United States

    PubMed Central

    Laine, Aaron; Pompos, Arnold; Story, Michael; Jiang, Steve; Timmerman, Robert; Choy, Hak

    2015-01-01

    Investigation into the use of heavy ions for therapeutic purposes was initially pioneered at Lawrence Berkeley National Laboratory in the 1970s [1, 2]. More recently, however, significant advances in determining the safety and efficacy of using heavy ions in the hospital setting have been reported in Japan and Germany [3, 4]. These promising results have helped to resurrect interest in the establishment of hospital-based heavy ion therapy in the United States. In line with these efforts, world experts in the field of heavy ion therapy were invited to attend the first annual International Symposium on Ion Therapy, which was held at the University of Texas Southwestern Medical Center, Dallas, Texas, from November 12 to 14, 2014. A brief overview of the results and discussions that took place during the symposium are presented in this article. PMID:27110586

  1. Identification of acid-sensing ion channels in bone.

    PubMed

    Jahr, Holger; van Driel, Marjolein; van Osch, Gerjo J V M; Weinans, Harrie; van Leeuwen, Johannes P T M

    2005-11-11

    Bone balances serum pH variations and both osteoclasts and osteoblasts are regulated by subtle changes in pH. The aim of the current study was to identify molecules in bone that can sense pH. Interesting candidates are the acid-sensing ion channels (ASICs). In bone, ASIC2 and ASIC3 were most abundant, while in chondrocytes it was ASIC1. Isolated human monocytes expressed ASIC1, -2, and -3, which persisted after induction to osteoclast differentiation, albeit to a lower level. In human osteoblasts ASIC1, ASIC2, and ASIC3 mRNAs were shown. Western blot and immunostaining confirmed this at protein level. ASIC4 expression was always very low abundant. For the first time, we demonstrated ASICs in human skeleton, providing a means to sense and respond to differences in extracellular pH. PMID:16185661

  2. [Acid-Sensing Ion Channels (ASICs) in pain].

    PubMed

    Lingueglia, Eric

    2014-01-01

    The discovery of new drug targets represents a real opportunity for developing fresh strategies against pain. Ion channels are interesting targets because they are directly involved in the detection and the transmission of noxious stimuli by sensory fibres of the peripheral nervous system and by neurons of the spinal cord. Acid-Sensing Ion Channels (ASICs) have emerged as important players in the pain pathway. They are neuronal, voltage-independent depolarizing sodium channels activated by extracellular protons. The ASIC family comprises several subunits that need to associate into homo- or hetero-trimers to form a functional channel. The ASIC1 and ASIC3 isoforms are particularly important in sensory neurons, whereas ASIC1a, alone or in association with ASIC2, is essential in the central nervous system. The potent analgesic effects associated with their inhibition in animals (which can be comparable to those of morphine) and data suggesting a role in human pain illustrate the therapeutic potential of these channels. PMID:24948015

  3. Comparative toxicity of hypochlorous acid and hypochlorite ions to mosquitofish

    SciTech Connect

    Mattice, J.S.; Tsai, S.C.; Burch, M.B.

    1981-07-01

    We examined the relative toxicity of hypochlorous acid (HOCl) and the hypochlorite ion (OCl/sup -/) by exposing mosquitofish Gambusia affinis for 1 hour to predominantly free residual chlorine (FRC) at six levels of pH following a 7-day acclimation to the test pH. Median lethal concentrations (LC50), in terms of total residual chlorine (TRC), increased with increasing pH. Because of the influence of hydrogen ion concentration on dissociation of HOCl, the percent of FRC present as HOCl is about 97% and 13%, respectively, at the low and high pH. Cursory examination of toxicity of monochloramine (NH/sub 2/Cl) and mixtures of NH/sub 2/Cl and dichloramine (NHCl/sub 2/) suggested that their contributions to toxicity were negligible at any test pH. Free residual chlorine concentrations at the LC50 for each pH were fitted to a theoretical model derived from an assumption that toxicities of HOCl and OCl/sup -/ were additive.

  4. Acid-sensing ion channels: trafficking and synaptic function

    PubMed Central

    2013-01-01

    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels. PMID:23281934

  5. Structure and activity of the acid-sensing ion channels

    PubMed Central

    Sherwood, Thomas W.; Frey, Erin N.

    2012-01-01

    The acid-sensing ion channels (ASICs) are a family of proton-sensing channels expressed throughout the nervous system. Their activity is linked to a variety of complex behaviors including fear, anxiety, pain, depression, learning, and memory. ASICs have also been implicated in neuronal degeneration accompanying ischemia and multiple sclerosis. As a whole, ASICs represent novel therapeutic targets for several clinically important disorders. An understanding of the correlation between ASIC structure and function will help to elucidate their mechanism of action and identify potential therapeutics that specifically target these ion channels. Despite the seemingly simple nature of proton binding, multiple studies have shown that proton-dependent gating of ASICs is quite complex, leading to activation and desensitization through distinct structural components. This review will focus on the structural aspects of ASIC gating in response to both protons and the newly discovered activators GMQ and MitTx. ASIC modulatory compounds and their action on proton-dependent gating will also be discussed. This review is dedicated to the memory of Dale Benos, who made a substantial contribution to our understanding of ASIC activity. PMID:22843794

  6. Metal ion adsorption to complexes of humic acid and metal oxides: Deviations from the additivity rule

    SciTech Connect

    Vermeer, A.W.P.; McCulloch, J.K.; Van Riemsdijk, W.H.; Koopal, L.K.

    1999-11-01

    The adsorption of cadmium ions to a mixture of Aldrich humic acid and hematite is investigated. The actual adsorption to the humic acid-hematite complex is compared with the sum of the cadmium ion adsorptivities to each of the isolated components. It is shown that the sum of the cadmium ion adsorptivities is not equal to the adsorption to the complex. In general, the adsorption of a specific metal ion to the complex can be understood and qualitatively predicted using the adsorptivities to each of the pure components and taking into account the effect of the pH on the interaction between humic acid and iron oxide on the metal ion adsorption. Due to the interaction between the negatively charged humic acid and the positively charged iron oxide, the adsorption of metal ions on the mineral oxide in the complex will increase as compared to that on the isolated oxide, whereas the adsorption to the humic acid will decrease as compared to that on the isolated humic acid. As a result, the overall adsorption of a specific metal ion to the complex will be smaller than predicted by the additivity rule when this metal ion has a more pronounced affinity for the humic acid than for the mineral oxide, whereas it will be larger than predicted by the additivity rule when the metal ion has a higher affinity for the oxide than for the humic acid.

  7. How Interfaces Affect the Acidity of the Anilinium Ion.

    PubMed

    Sripradite, Jarukorn; Miller, Susannah A; Johnson, Michael D; Tongraar, Anan; Crans, Debbie C

    2016-03-01

    The acidity of a compound is a fundamental property that dictates molecular speciation and reactivity in solution. Measurements of acidity of simple molecules in interfacial environments are rarely carried out but assumptions often are made that the difference is sufficiently small that the change can be ignored. The effect of oil-surfactant-water interfaces in reverse micellar systems on the pKa value of the anilinium ion was measured using titrations by NMR spectroscopy as the size of the bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane reverse micelles decreased. The pKa was observed to drop from 4.85±0.02 to 4.62±0.02 in water as the reverse micelle decreased from w(0) 10 to 4 (that is down to a reverse micellar radius of about 2 nm). NOSEY experiments demonstrated that the aniline moiety resides within the surfactant interface with the amine/ammonium moiety protruding into the waterpool bridging the interface. The presence of the aniline was found to have modest and variable effect on the size of the reverse micelles as observed using dynamic light scattering. Our experimental results provide information important to theoretical studies, which explore interface phenomena and provide a framework for information on such simple molecules. These studies quantitate the small but significant effect on the pKa values upon placement of an aromatic amine molecule at a hydrophilic-hydrophobic interface. PMID:26878992

  8. The Thumb Domain Mediates Acid-sensing Ion Channel Desensitization.

    PubMed

    Krauson, Aram J; Carattino, Marcelo D

    2016-05-20

    Acid-sensing ion channels (ASICs) are cation-selective proton-gated channels expressed in neurons that participate in diverse physiological processes, including nociception, synaptic plasticity, learning, and memory. ASIC subunits contain intracellular N and C termini, two transmembrane domains that constitute the pore, and a large extracellular loop with defined domains termed the finger, β-ball, thumb, palm, and knuckle. Here we examined the contribution of the finger, β-ball, and thumb domains to activation and desensitization through the analysis of chimeras and the assessment of the effect of covalent modification of introduced Cys at the domain-domain interfaces. Our studies with ASIC1a-ASIC2a chimeras showed that swapping the thumb domain between subunits results in faster channel desensitization. Likewise, the covalent modification of Cys residues at selected positions in the β-ball-thumb interface accelerates the desensitization of the mutant channels. Studies of accessibility with thiol-reactive reagents revealed that the β-ball and thumb domains reside apart in the resting state but that they become closer to each other in response to extracellular acidification. We propose that the thumb domain moves upon continuous exposure to an acidic extracellular milieu, assisting with the closing of the pore during channel desensitization. PMID:27015804

  9. Application of partially fluorinated carboxylic acids as ion-pairing reagents in LC/ESI-MS.

    PubMed

    Yamamoto, Eiichi; Ishihama, Yasushi; Asakawa, Naoki

    2014-09-01

    This report describes the application of partially fluorinated carboxylic acids as ion-pairing reagents for basic analytes in high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (LC/ESI-MS) in positive-ion mode. Partially fluoridated carboxylic acids such as difluoroacetic acid, 3,3,3-trifluoropropionic acid and 3,3,3-trifluoromethyl-2-trifluoromethylpropionic acid functioned as volatile paired-ion similarly as trifluoroacetic acid (TFA). These acids provided basic analytes larger retention factor (k) compared to acetic acid or formic acid in LC. The ESI-MS signal strength of analytes with these acids were higher than that of TFA and was analogous to that of acetic acid or formic acid. The performances of partially fluorinated carboxylic acids in LC and ESI-MS for basic analytes were analyzed by multivariate statistical analysis using physicochemical descriptors of acids. Equations obtained in the analysis enabled us the quantitative evaluation of the performance of fluorinated carboxylic acids as ion-pair reagents for basic analytes in LC/ESI-MS. PMID:24913879

  10. Quenching of fluorescence of phenolic compounds and modified humic acids by cadmium ions.

    PubMed

    Tchaikovskaya, O N; Nechaev, L V; Yudina, N V; Mal'tseva, E V

    2016-08-01

    The interaction of a number of phenolic compounds, being 'model fragments' of humic acids, with cadmium ions was investigated. The fluorescence quenching method was used to determine the complexation constants of these compounds with cadmium ions. It was established that bonding of phenolic compounds by cadmium ions at рН 7 is weak and reaches a maximum value of 15% for interaction with resorcinol. It was demonstrated that modification of humic acids by the mechanoactivation method increases by three times bonding of cadmium ions, which is caused by strengthening the acid properties of carboxyl and hydroxyl groups at the aromatic ring. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26729402

  11. Acid-sensing ion channel immunoreactivities in the cephalic neuromasts of adult zebrafish.

    PubMed

    Abbate, F; Madrigrano, M; Scopitteri, T; Levanti, M; Cobo, J L; Germanà, A; Vega, J A; Laurà, R

    2016-09-01

    The neuromasts are the morphofunctional unit of the lateral line system serving as mechanosensors for water flow and movement. The mechanisms underlying the detection of the mechanical stimuli in the vertebrate mechanosensory cells remain poorly understood at the molecular level, and no information is available on neuromasts. Mechanotransduction is the conversion of a mechanical stimulus into an electrical signal via activation of ion channels. The acid-sensing ion channels (ASICs) are presumably involved in mechanosensation, and therefore are expected to be expressed in the mechanoreceptors. Here we used immunohistochemistry to investigate the occurrence and distribution of ASICs in the cephalic neuromasts of the adult zebrafish. Specific immunoreactivity for ASIC1 and ASIC4 was detected in the hair cells while ASIC2 was restricted to the nerves supplying neuromasts. Moreover, supporting and mantle cells; i.e., the non-sensory cells of the neuromasts, also displayed ASIC4. For the first time, these results demonstrate the presence of the putative mechanoproteins ASIC1, ASIC2 and ASIC4 in neuromasts, suggesting a role for these ion channels in mechanosensation. PMID:27443821

  12. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    NASA Astrophysics Data System (ADS)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  13. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries

    PubMed Central

    Prentice, Boone M.

    2013-01-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field. PMID:23257901

  14. Receptor for protons: First observations on Acid Sensing Ion Channels.

    PubMed

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. PMID:25582296

  15. Acid-sensing ion channels in pathological conditions

    PubMed Central

    Chu, Xiang-Ping; Xiong, Zhi-Gang

    2013-01-01

    Acid-sensing ion channels (ASICs), a novel family of proton-gated amiloride-sensitive cation channels, are expressed primarily in neurons of peripheral sensory and central nervous systems. Recent studies have shown that activation of ASICs, particularly the ASIC1a channels, plays a critical role in neuronal injury associated with neurological disorders such as brain ischemia, multiple sclerosis, and spinal cord injury, etc. In normal conditions in vitro, ASIC1a channels desensitize rapidly in the presence of a continuous acidosis or following a pre-exposure to minor pH drop, raising doubt for their contributions to the acidosis-mediated neuronal injury. It is now known that the properties of ASICs can be dramatically modulated by signaling molecules or biochemical changes associated with pathological conditions. Modulation of ASICs by these molecules can lead to dramatically enhanced and/or prolonged activities of these channels thus promoting their pathological functions. Understanding of how ASICs behave in pathological conditions may help define new strategies for the treatment and/or prevention of neuronal injury associated with various neurological disorders. PMID:23224900

  16. Neurosensory mechanotransduction through acid-sensing ion channels

    PubMed Central

    Chen, Chih-Cheng; Wong, Chia-Wen

    2013-01-01

    Acid-sensing ion channels (ASICs) are voltage-insensitive cation channels responding to extracellular acidification. ASIC proteins have two transmembrane domains and a large extracellular domain. The molecular topology of ASICs is similar to that of the mechanosensory abnormality 4- or 10-proteins expressed in touch receptor neurons and involved in neurosensory mechanotransduction in nematodes. The ASIC proteins are involved in neurosensory mechanotransduction in mammals. The ASIC isoforms are expressed in Merkel cell–neurite complexes, periodontal Ruffini endings and specialized nerve terminals of skin and muscle spindles, so they might participate in mechanosensation. In knockout mouse models, lacking an ASIC isoform produces defects in neurosensory mechanotransduction of tissue such as skin, stomach, colon, aortic arch, venoatrial junction and cochlea. The ASICs are thus implicated in touch, pain, digestive function, baroreception, blood volume control and hearing. However, the role of ASICs in mechanotransduction is still controversial, because we lack evidence that the channels are mechanically sensitive when expressed in heterologous cells. Thus, ASIC channels alone are not sufficient to reconstruct the path of transducing molecules of mechanically activated channels. The mechanotransducers associated with ASICs need further elucidation. In this review, we discuss the expression of ASICs in sensory afferents of mechanoreceptors, findings of knockout studies, technical issues concerning studies of neurosensory mechanotransduction and possible missing links. Also we propose a molecular model and a new approach to disclose the molecular mechanism underlying the neurosensory mechanotransduction. PMID:23490035

  17. Computational scheme for the prediction of metal ion binding by a soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.H.; Mathuthu, A.S.

    1995-01-01

    The dissociation and metal ion binding properties of a soil fulvic acid have been characterized. Information thus gained was used to compensate for salt and site heterogeneity effects in metal ion complexation by the fulvic acid. An earlier computational scheme has been modified by incorporating an additional step which improves the accuracy of metal ion speciation estimates. An algorithm is employed for the prediction of metal ion binding by organic acid constituents of natural waters (once the organic acid is characterized in terms of functional group identity and abundance). The approach discussed here, currently used with a spreadsheet program on a personal computer, is conceptually envisaged to be compatible with computer programs available for ion binding by inorganic ligands in natural waters.

  18. Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions

    SciTech Connect

    Karadag, E.; Saraydin, D.; Gueven, O.

    1995-12-01

    In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with {gamma}-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178-219 mg uranyl ions from the solutions of uranyl acetate, 42-76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.

  19. Non-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids.

    PubMed

    Marra, Sébastien; Ferru-Clément, Romain; Breuil, Véronique; Delaunay, Anne; Christin, Marine; Friend, Valérie; Sebille, Stéphane; Cognard, Christian; Ferreira, Thierry; Roux, Christian; Euller-Ziegler, Liana; Noel, Jacques; Lingueglia, Eric; Deval, Emmanuel

    2016-02-15

    Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 channels. This effect is largely driven by lipids, and we identify lysophosphatidylcholine (LPC) and arachidonic acid (AA) as endogenous activators of ASIC3 in the absence of any extracellular acidification. The combination of LPC and AA evokes robust depolarizing current in DRG neurons at physiological pH 7.4, increases nociceptive C-fiber firing, and induces pain behavior in rats, effects that are all prevented by ASIC3 blockers. Lipid-induced pain is also significantly reduced in ASIC3 knockout mice. These findings open new perspectives on the roles of ASIC3 in the absence of tissue pH variation, as well as on the contribution of those channels to lipid-mediated signaling. PMID:26772186

  20. Acetic acid and aromatics units planned in China

    SciTech Connect

    Alperowicz, N.

    1993-01-27

    The Shanghai Wujing Chemical Complex (SWCC; Shanghai) is proceeding with construction of an acetic acid plant. The 100,000-m.t./year until will use BP Chemicals carbonylation technology, originally developed by Monsanto. John Brown has been selected by China National Technical Import Corp. (CNTIC) to supply the plant, Chinese sources say. The UK contractor, which competed against Mitsui Engineering Shipbuilding (Tokyo) and Lurgi (Frankfurt), has built a similar plant for BP in the UK, although using different technology. The new plant will require 54,000 m.t./year of methanol, which is available onsite. Carbon monoxide will be delivered from a new plant. The acetic acid unit will joint two other acetic plants in China supplied some time ago by Uhde (Dortmund). SWCC is due to be integrated with two adjacent complexes to form Shanghai Pacific Chemical. Meanwhile, four groups are competing to supply a UOP-process aromatics complex for Jilin Chemical Industrial Corp. They are Toyo Engineering, Lurgi, Lucky/Foster Wheeler, and Eurotechnica. The complex will include plants with annual capacities for 115,000 m.t. of benzene, 90,000 m.t. of ortho-xylene, 93,000 m.t. of mixed xylenes, and 20,000 m.t. of toluene. The plants will form part of a $2-billion petrochemical complex based on a 300,000-m.t./year ethylene plant awarded last year to a consortium of Samsung Engineering and Linde. Downstream plants will have annual capacities for 120,000 m.t. of linear low-density polyethylene, 80,000 m.t. of ethylene oxide, 100,000 m.t. of ethylene glycol, 80,000 m.t. of phenol, 100,000 m.t. of acrylonitrile, 20,000 m.t. of sodium cyanide, 40,000 m.t. of phthalic anhydride, 40,000 m.t. of ethylene propylene rubber, 20,000 m.t. of styrene butadiene styrene, and 30,000 m.t. of acrylic fiber.

  1. Peptides inhibitors of acid-sensing ion channels.

    PubMed

    Diochot, S; Salinas, M; Baron, A; Escoubas, P; Lazdunski, M

    2007-02-01

    Acid-sensing ion channels (ASICs) channels are proton-gated cationic channels mainly expressed in central and peripheric nervous system and related to the epithelial amiloride-sensitive Na(+) channels and to the degenerin family of ion channels. ASICs comprise four proteins forming functional channel subunits (ASIC1a, ASIC1b, ASIC2a, and ASIC3) and two proteins (ASIC2b and ASIC4) without yet known activators. Functional channels are activated by external pH variations ranging from pH(0.5) 6.8 to 4.0 and currents are characterized by either rapid kinetics of inactivation (ASIC1a, ASIC1b, ASIC3) or slow kinetics of inactivation (ASIC2a) and sometimes the presence of a plateau phase (ASIC3). ASIC1a and ASIC3, which are expressed in nociceptive neurons, have been implicated in inflammation and knockout mice studies support the role of ASIC3 in various pain processes. ASIC1a seems more related to synaptic plasticity, memory, learning and fear conditioning in the CNS. ASIC2a contributes to hearing in the cochlea, sour taste sensation, and visual transduction in the retina. The pharmacology of ASICs is limited to rather nonselective drugs such as amiloride, nonsteroid anti-inflammatory drugs, and neuropeptides. Recently, two peptides, PcTx1 and APETx2, isolated from a spider and a sea anemone, have been characterized as selective and high-affinity inhibitors for ASIC1a and ASIC3 channels, respectively. PcTx1 inhibits ASIC1a homomers with an affinity of 0.7 nM (IC(50)) without any effect on ASIC1a containing heteromers and thus helped to characterize ASIC1a homomeric channels in peripheric and central neurons. PcTx1 acts as a gating modifier since it shifts the channel from the resting to an inactivated state by increasing its affinity for H(+). APETx2 is less selective since it inhibits several ASIC3-containing channels (IC(50) from 63 nM to 2 microM) and to date its mode of action is unknown. Nevertheless, APETx2 structure is related to other sea anemone peptides, which

  2. Chelation Properties of Modified Humic Acids Toward Some Trivalent Lanthanide Ions

    SciTech Connect

    Yaghmour, Remah N.; Khalili, Fawwaz I.; Mubarak, Mohammad S.

    2007-05-09

    Three kinds of humic acids, Fluka (I), Fluka (II), and Ega-chemie (III) were modified through condensation with formaldehyde to afford polymers I, II, and III, respectively. The chelation behavior of these modified humic acids polymers towards the trivalent lanthanide metal-ions, La3+, Ce3+, Nd3+, Sm3+, and Gd3+ was studied by a batch equilibration technique at 25 deg. C as a function of contact time, pH, counter ion and counter ion concentration. The highest metal-ion uptake of the three polymers was achieved at pH 7.0 and by using perchlorate as a counter ion. Results of the study have revealed that polymer II has the highest metal-ion uptake capacity, and that the metal-ion uptake falls in the order: Gd3+ > Sm3+ > Nd3+ > La3+ {approx_equal} Ce3+.

  3. Tracing the atomic mass unit to the kilogram by ion accumulation

    NASA Astrophysics Data System (ADS)

    Gläser, Michael

    2003-12-01

    An experimental approach for linking the atomic mass unit to the kilogram with an uncertainty sufficiently small for a future re-definition of the kilogram is described. The concept consists of accumulation of ions from an ion beam up to a weighable mass and measurable total charge. The main problems and influencing factors connected with ion beam technology, weighing and current measurement together with the corresponding experimental solutions are discussed in detail. The first experiments with consistent results, but still large uncertainty, are described.

  4. Dental unit waterlines disinfection using hypochlorous acid-based disinfectant

    PubMed Central

    Shajahan, Irfana Fathima; Kandaswamy, D; Srikanth, Padma; Narayana, L Lakshmi; Selvarajan, R

    2016-01-01

    Objective: The purpose of the study was to investigate the efficacy of a new disinfectant to disinfect the dental unit waterlines. Materials and Methods: New dental unit waterlines were installed in 13 dental chairs, and biofilm was allowed to grow for 10 days. Disinfection treatment procedure was carried out in the 12 units, and one unit was left untreated. The dental unit waterlines were removed and analyzed using the scanning electron microscope (SEM) (TESCAN VEGA3 SBU). Result: On examination, SEM images showed that there was no slime layer or bacterial cells seen in any of the 12 cut sections obtained from the treated dental waterlines which mean that there was no evident of biofilm formation. Untreated dental unit waterlines showed a microbial colonization with continuous filamentous organic matrix. There was significant biofilm formation in the control tube relative to the samples. Conclusion: The tested disinfectant was found to be effective in the removal of biofilm from the dental unit waterlines. PMID:27563184

  5. Effect of ions on the measurement of sulphuric acid in the CLOUD experiment at CERN

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Kürten, A.; Ehrhart, S.; Schobesberger, S.; Franchin, A.; Junninen, H.; Petäjä, T.; Sipilä, M.; Worsnop, D. R.; Curtius, J.

    2014-07-01

    Ternary aerosol nucleation experiments were conducted in the CLOUD chamber at CERN in order to investigate the influence of ions on new particle formation. Neutral and ion-induced nucleation experiments, i.e., with and without the presence of ions, were carried out under precisely controlled conditions. The sulphuric acid concentration was measured with a Chemical Ionization Mass Spectrometer (CIMS) during the new particle formation experiments. The added ternary trace gases were ammonia (NH3), dimethylamine (DMA, C2H7N) or oxidised products of pinanediol (PD, C10H18O2). When pinanediol was introduced into the chamber, an increase in the mass spectrometric signal used to determine the sulphuric acid concentration (m/z 97, i.e., HSO4-) was observed due to ions from the CLOUD chamber. The enhancement was only observed during ion-induced nucleation measurements by using either galactic cosmic rays (GCR) or the proton synchrotron (PS) pion beam for the ion generation, respectively. The ion effect typically involved an increase in the apparent sulphuric acid concentration by a factor of ~2 to 3 and was qualitatively verified by the ion measurements by an Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometer. By applying a high voltage (HV) clearing field inside the CLOUD chamber the ion effect on the CIMS measurement was completely eliminated since, under these conditions, small ions are swept from the chamber in about one second. In order to exclude the ion effect and to provide corrected sulphuric acid concentrations during the GCR and PS beam nucleation experiments, a parameterisation was derived that utilizes the trace gas concentrations and the UV light intensity as input parameters. Atmospheric sulphuric acid measurements with a CIMS showed an insignificant ion effect.

  6. Effect of ions on the measurement of sulfuric acid in the CLOUD experiment at CERN

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Kürten, A.; Ehrhart, S.; Schobesberger, S.; Franchin, A.; Junninen, H.; Petäjä, T.; Sipilä, M.; Worsnop, D. R.; Curtius, J.

    2014-11-01

    Ternary aerosol nucleation experiments were conducted in the CLOUD chamber at CERN in order to investigate the influence of ions on new particle formation. Neutral and ion-induced nucleation experiments, i.e. without and with the presence of ions, respectively, were carried out under precisely controlled conditions. The sulfuric acid concentration was measured with a chemical ionisation mass spectrometer (CIMS) during the new particle formation experiments. The added ternary trace gases were ammonia (NH3), dimethylamine (DMA, C2H7N) or oxidised products of pinanediol (PD, C10H18O2). When pinanediol was introduced into the chamber, an increase in the mass spectrometric signal used to determine the sulfuric acid concentration (m/z 97, i.e. HSO4-) was observed due to ions from the CLOUD chamber. The enhancement was only observed during ion-induced nucleation measurements by using either galactic cosmic rays (GCRs) or the proton synchrotron (PS) pion beam for the ion generation, respectively. The ion effect typically involved an increase in the apparent sulfuric acid concentration by a factor of ~ 2 to 3 and was qualitatively verified by the ion measurements with an atmospheric-pressure interface-time of flight (APi-TOF) mass spectrometer. By applying a high-voltage (HV) clearing field inside the CLOUD chamber, the ion effect on the CIMS measurement was completely eliminated since, under these conditions, small ions are swept from the chamber in about 1 s. In order to exclude the ion effect and to provide corrected sulfuric acid concentrations during the GCR and PS beam nucleation experiments, a parameterisation was derived that utilises the trace gas concentrations and the UV light intensity as input parameters. Atmospheric sulfuric acid measurements with a CIMS showed an insignificant ion effect.

  7. [Determination of organic acids in rice wine by ion-exclusion chromatography].

    PubMed

    Lin, Xiaojie; Wei, Wei; He, Zhigang; Lin, Xiaozi

    2014-03-01

    An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine. PMID:24984473

  8. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  9. Modulation of acid-sensing ion channels: molecular mechanisms and therapeutic potential

    PubMed Central

    Chu, Xiang-Ping; Papasian, Christopher J; Wang, John Q; Xiong, Zhi-Gang

    2011-01-01

    Increases in extracellular proton concentrations, which takes place in physiological conditions such as synaptic signaling and pathological conditions such as tissue inflammation, ischemic stroke, traumatic brain injury, and epileptic seizure, activates a unique family of membrane ion channels; the acid-sensing ion channels (ASICs). All ASICs belong to amiloride-sensitive degenerin/epithelial Na+ channel superfamily. Four genes encoded at seven sub-units have been identified. ASICs are expressed primarily in neurons and have been shown to play critical roles in synaptic plasticity, learning/memory, fear conditioning, sensory transduction, pain perception, ischemic brain injury, seizure, and other neurological as well as psychological disorders. Although protons are the primary activator for ASICs, the properties and/or level of expression of these channels are modulated dramatically by neuropeptides, di-and polyvalent cations, inflammatory mediators, associated proteins, and protein phosphorylations, etc. Modulation of ASICs can result in profound changes in the activities and functions of these channels in both physiological and pathological processes. In this article, we provide an up to date review on the modulations of ASICs by exogenous agents and endogenous signaling molecules. A better understanding of how ASICs can be modulated should help define new strategies to counteract the deleterious effects of dysregulated ASIC activity. PMID:22162785

  10. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  11. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density. PMID:25122405

  12. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing-capacity streams

    SciTech Connect

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E.

    1991-01-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  13. Stream chemistry in the eastern United States, 2, Current sources of acidity in acidic and low acid-neutralizing capacity streams

    NASA Astrophysics Data System (ADS)

    Herlihy, Alan T.; Kaufmann, Philip R.; Mitch, Mark E.

    1991-04-01

    We examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid-neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small (<30 km2) forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  14. Anion Effects on Sodium Ion and Acid Molecule Adduction to Protein Ions in Electrospray Ionization Mass Spectrometry

    PubMed Central

    Flick, Tawnya G.; Merenbloom, Samuel I.; Williams, Evan R.

    2012-01-01

    Gaseous protein–metal ion and protein–molecule complexes can be readily formed by electrospray ionization (ESI) from aqueous solutions containing proteins and millimolar concentrations of sodium salts of various anions. The extent of sodium and acid molecule adduction to multiply charged protein ions is inversely related and depends strongly on the proton affinity (PA) of the anion, with extensive sodium adduction occurring for anions with PA values greater than ~300 kcal·mol−1 and extensive acid molecule adduction occurring for anions with PA values less than 315 kcal·mol−1. The role of the anion on the extent of sodium and acid molecule adduction does not directly follow the Hofmeister series, suggesting that direct protein–ion interactions may not play a significant role in the observed effect of anions on protein structure in solution. These results indicate that salts with anions that have low PA values may be useful solution-phase additives to minimize nonspecific metal ion adduction in ESI experiments designed to identify specific protein-metal ion interactions. PMID:21952761

  15. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  16. Acid-sensing ion channel-2 is not necessary for sour taste in mice.

    PubMed

    Richter, Trevor A; Dvoryanchikov, Gennady A; Roper, Stephen D; Chaudhari, Nirupa

    2004-04-21

    The acid-sensitive cation channel acid-sensing ion channel-2 (ASIC2) is widely believed to be a receptor for acid (sour) taste in mammals on the basis of its physiological properties and expression in rat taste bud cells. Using reverse transcriptase-PCR, we detected expression of ASIC1 and ASIC3, but not ASIC4, in mouse and rat taste buds and nonsensory lingual epithelium. Surprisingly, we did not detect mRNA for ASIC2 in mouse taste buds, although we readily observed its expression in rat taste buds. Furthermore, in Ca2+ imaging experiments, ASIC2 knock-out mice exhibited normal physiological responses (increases in intracellular Ca2+ concentrations) to acid taste stimuli. Our results indicate that ASIC2 is not required for acid taste in mice, and that if a universal mammalian acid taste transduction mechanism exists, it likely uses other acid-sensitive receptors or ion channels. PMID:15102924

  17. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  18. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.

    PubMed

    Anupriya; Jones, Chad A; Dearden, David V

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy. Graphical Abstract ᅟ. PMID:27220844

  19. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-05-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  20. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  1. Phase equilibria and distribution constants of metal ions in diantipyryl alkane-organic acid-hydrochloric acid-water systems

    NASA Astrophysics Data System (ADS)

    Degtev, M. I.; Popova, O. N.; Yuminova, A. A.

    2014-08-01

    The ability of antipyrine and its derivatives (diantipyryl alkanes) to form separating systems in the presence of salicylic (sulfosalicylic) acid and hydrochloric acid and water is studied. The optimum volume of the organic phase, the composition of complexes, and the mechanism for the distribution of metal ions are determined, depending on the concentrations of the main components and the salting-out agent. The complex distribution and extraction constants are calculated.

  2. Hydration studies of electrospray ions from amino acids and small peptides

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong (Steve)

    This project was undertaken to gain a better understanding of the hydration behaviors of gas phase ions from solutions containing amino acids and peptides. In order to characterize their hydration behavior, the molecules of interest in solutions were first converted into gas phase ions by electrospray ionization (ESI). The completely desolvated ions were then deliberately dispersed into an inert bath gas, usually nitrogen, containing accurately known concentrations of solvent vapor. The resulting mixtures of ions and bath gas were subsequently passed into a vacuum chamber by way of an adiabatic supersonic free jet expansion. The cooling during that expansion caused solvation of the ions, the extent of which was determined by a quadrupole mass analyzer. Mass analysis of the solute ions in the absence of vapor showed peaks with the mass to charge ratios corresponding to the desolvated ions. On the other hand, mass spectrometric analyses of ions in the presence of solvent vapor showed sequences of peaks corresponding to the solvated ions with varying numbers of water molecules. The extent of the ion solvation was controlled by varying the concentration of solvent vapor in the bath gas. Two different scales were proposed for the evaluation of the relative affinities of amino acids for water molecules. One was based primarily on the assumption that the affinities of amino acids for water molecules are directly proportional to their gas phase solvation rate constants ( k). An alternative approach produced an affinity scale based on the extent of ion hydration occurred during the free jet expansion. It was found that the addition of a polar solvent vapor to the bath gas at low concentrations substantially enhanced the production of the bare solute ions from the evaporating charged droplets. This remarkable result not only provided a means to increase the ion production and thus detection sensitivity of mass spectrometric analyses, but also yielded important information

  3. Determination of volatile fatty acids in landfill leachates by ion-exclusion chromatography.

    PubMed

    Yamamoto, Atsushi; Yasuhara, Akio; Kodama, Shuji; Matsunaga, Akinobu; Suzuki, Shigeru; Mohri, Shino; Yamada, Masato

    2004-03-01

    An ion-exclusion chromatographic method with on-line desalinization for the determination of volatile fatty acids in landfill leachates is described. Highly sensitive conductivity detection of the organic acids was achieved by using dilute p-hydroxybenzoic acid solution as an eluent. Interference with mineral acids was reduced by treatment with barium chloride solution prior to desalinization. A silver-loaded cation-exchange guard column for the desalinization was installed in series with the analytical column to avoid the contamination of organic acids. This method features detection limits of 0.01 mg L(-1) formic acid, 0.02 mg L(-1) acetic acid, 0.05 mg L(-1) propionic acid, and 0.1 mg L(-1) butyric acid, respectively, with an injection of 20 microL sample. Application of the on-line desalinization LC method is illustrated for leachate samples from a Japanese sanitary landfill. PMID:15334921

  4. Role for Ion Transport in Porcine Vocal Fold Epithelial Defense to Acid Challenge

    PubMed Central

    Erickson-Levendoski, Elizabeth; Sivasankar, M. Preeti

    2012-01-01

    Objective The vocal fold epithelium is routinely exposed to gastric contents, including acid and pepsin, during laryngopharyngeal reflux events. The epithelium may possess intrinsic defenses to reflux. The first objective of the current study was to examine whether vocal fold epithelial ion transport is one potential mechanism of defense to gastric contents. The second objective was to determine whether ion transport in response to gastric contents is associated with the secretion of bicarbonate. Study Design Prospective design in excised porcine larynges. Setting Laboratory. Subjects and Methods Porcine vocal folds (N = 56) were exposed on the luminal surface to acid, pepsin, or sham challenges. Ion transport at baseline and following challenge exposure was measured using electrophysiological techniques. To examine specific ion transport mechanisms, vocal folds were pretreated with either a sodium channel blocker or bicarbonate channel blocker. Results Within 60 seconds of acid but not pepsin exposure, there was a significant increase in ion transport. This rapid increase in ion transport was transient and related to bicarbonate secretion. Conclusion The current data suggest that porcine vocal folds immediately increase bicarbonate secretion following exposure to acid. Bicarbonate secretion may act to neutralize acid. These findings contribute to the identification of the mechanisms underlying vocal fold defense to reflux and offer implications for the development of treatments for reflux-induced vocal fold injury. PMID:22086905

  5. Brayton-Cycle Power-Conversion Unit Tested With Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hervol, David S.

    2005-01-01

    Nuclear electric propulsion has been identified as an enabling technology for future NASA space science missions, such as the Jupiter Icy Moons Orbiter (JIMO) now under study. An important element of the nuclear electric propulsion spacecraft is the power conversion system, which converts the reactor heat to electrical power for use by the ion propulsion system and other spacecraft loads. The electrical integration of the power converter and ion thruster represents a key technical challenge in making nuclear electric propulsion technology possible. This technical hurdle was addressed extensively on December 1, 2003, when a closed- Brayton-cycle power-conversion unit was tested with a gridded ion thruster at the NASA Glenn Research Center. The test demonstrated end-to-end power throughput and marked the first-ever coupling of a Brayton turbo alternator and a gridded ion thruster, both of which are candidates for use on JIMO-type missions. The testing was conducted at Glenn's Vacuum Facility 6, where the Brayton unit was installed in the 3-m-diameter vacuum test port and the ion thruster was installed in the 7.6-m-diameter main chamber.

  6. Ion exhange and molecular sorption of oxalic acid with a highly basic anion exchanger

    NASA Astrophysics Data System (ADS)

    Krisilova, E. V.; Oros, G. Yu.; Krisilov, A. V.; Selemenev, V. F.

    2014-04-01

    Ab initio modeling of a matrix fragment of resin and geometry optimization of the molecular structure of oxalic acid were performed. The isotherm of oxalic acid sorption with AV-17-8 anion exchange resin was obtained by the variable concentrations technique. The ion-exchange and molecular components of sorbate fixation with the ion exchanger were determined. The hydration of the highly basic anion exchanger that absorbed different quantities of dicarboxylic acid was evaluated by the centrifuging method. The dependence of the amount of water and sorbate concentration in the resin was linear antibatic.

  7. Traveling Wave Ion Mobility Mass Spectrometry and Ab Initio Calculations of Phosphoric Acid Clusters

    NASA Astrophysics Data System (ADS)

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH] z+ or [(H3PO4)n - zH] z- , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  8. Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels

    SciTech Connect

    Saraydin, D.; Karadag, E.; Gueven, O.

    1995-10-01

    In this study, acrylamide-maleic acid (AAm/MA) hydrogels in the form of rod have been prepared by {gamma}-radiation. They have been used for adsorption of some heavy metal ions such as uranium, iron, and copper. For the hydrogel containing 40 mg of maleic acid and irradiated at 3.73 kGy, maximum and minimum swellings in the aqueous solutions of the heavy metal ions have been observed with water (1480%) and the aqueous solution of iron(III) nitrate (410%), respectively. Diffusions of water and heavy metal ions onto hydrogels have been found to be of the non-Fickian type of diffusion. In experiments of uranyl ions adsorption, Type II adsorption has been found. One gram of AAa/MA hydrogels sorbed 14-86 mg uranyl ions from solutions of uranyl acetate, 14-90 mg uranyl ions from solutions of uranyl nitrate, 16-39 mg iron ions from solutions of iron(IV) nitrate, and 28-81 mg copper ions from solutions of copper acetate, while acrylamide hydrogel did not sorb any heavy metals ions.

  9. Separation of ions in acidic solution by capillary electrophoresis

    SciTech Connect

    Thornton, M.

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  10. The Role of Lactic Acid Adsorption by Ion Exchange Chromatography

    PubMed Central

    Zhang, Tongcun; Zhang, Jian; Jia, Shiru; Yu, Changyan; Jiang, Kunyu; Gao, Nianfa

    2010-01-01

    Background The polyacrylic resin Amberlite IRA-67 is a promising adsorbent for lactic acid extraction from aqueous solution, but little systematic research has been devoted to the separation efficiency of lactic acid under different operating conditions. Methodology/Principal Findings In this paper, we investigated the effects of temperature, resin dose and lactic acid loading concentration on the adsorption of lactic acid by Amberlite IRA-67 in batch kinetic experiments. The obtained kinetic data followed the pseudo-second order model well and both the equilibrium and ultimate adsorption slightly decreased with the increase of the temperature at 293–323K and 42.5 g/liter lactic acid loading concentration. The adsorption was a chemically heterogeneous process with a mean free energy value of 12.18 kJ/mol. According to the Boyd_plot, the lactic acid uptake process was primarily found to be an intraparticle diffusion at a lower concentration (<50 g/liter) but a film diffusion at a higher concentration (>70 g/liter). The values of effective diffusion coefficient Di increased with temperature. By using our Equation (21), the negative values of ΔG° and ΔH° revealed that the adsorption process was spontaneous and exothermic. Moreover, the negative value of ΔS° reflected the decrease of solid-liquid interface randomness at the solid-liquid interface when adsorbing lactic acid on IRA-67. Conclusions/Significance With the weakly basic resin IRA-67, in situ product removal of lactic acid can be accomplished especially from an open and thermophilic fermentation system without sterilization. PMID:21085600

  11. SOURCES OF ACIDITY IN LAKES AND STREAMS OF THE UNITED STATES

    EPA Science Inventory

    Acidic surface waters in the United States sampled in the National Surface Water Survey (NSWS) were classified into three groups according to their probable sources of acidity: (1) organic-dominated waters, (2) watershed sulphate-dominated waters, and (3) deposition-dominated wat...

  12. A structural and thermal packaging approach for power processing units for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Sharp, G. R.

    1975-01-01

    Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near earth and planetary missions. The thruster subsystem for these missions would consist of 30 centimeter ion thrusters with Power Processor Units (PPU) clustered in assemblies of from two to ten units. A preliminary design study of the electronic packaging of the PPU has been completed at Lewis Research Center of NASA. This study evaluates designs meeting the competing requirements of low system weight and overall mission flexibility. These requirements are evaluated regarding structural and thermal design, electrical efficiency, and integration of the electrical circuits into a functional PPU layout.

  13. Sensitization of the luminescence of europium and terbium ions by orotic acids in aqueous solutions

    SciTech Connect

    Davidenko, N.K.; Bukivskaya, G.A.

    1988-03-01

    The stability constants of the complexes of Eu/sup 3 +/ and Tb/sup 3 +/ with the dianions of orotic acid, 2-thioorotic acid, and 3-N-methylorotic acid have been determined at 20/sup 0/C and ..mu.. = 0.15 by a pH-potentiometric method. The influence of orotic acids on the luminescence properties of Eu/sup 3 +/ and Tb/sup 3 +/ has been studied. It has been shown as a result of a study of the excited states of orotic acid and its derivatives by a method based on the sensitized luminescence of the lanthanides that it is preferable to use the Tb/sup 3 +/ ion as an energy acceptor, since quenching of the luminescence by means of a charge-transfer process is observed in the complexes formed by the Eu/sup 3 +/ ion.

  14. Potentiometric determination of free acidity in presence of hydrolysable ions and a sequential determination of hydrazine.

    PubMed

    Ganesh, S; Khan, Fahmida; Ahmed, M K; Pandey, S K

    2011-08-15

    A simple potentiometric method for the determination of free acidity in presence of hydrolysable ions and sequential determination of hydrazine is developed and described. Both free acid and hydrazine are estimated from the same aliquot. In this method, free acid is titrated with standard sodium carbonate solution after the metal ions in solutions are masked with EDTA. Once the end point for the free acid is determined at pH 3.0, an aliquot of formaldehyde is added to liberate the acid equivalent to hydrazine which is then titrated with the same standard sodium carbonate solution using an automatic titration system. The described method is simple, accurate and reproducible. This method is especially applicable to all ranges of nitric acid and heavy metal ion concentration relevant to Purex process used for nuclear fuel reprocessing. The overall recovery of nitric acid is 98.9% with 1.2% relative standard deviation. Hydrazine content has also been determined in the same aliquot with a recovery of nitric acid is 99% with 2% relative standard deviation. The major advantage of the method is that generation of corrosive analytical wastes containing oxalate or sulphate is avoided. Valuable metals like uranium and plutonium can easily be recovered from analytical waste before final disposal. PMID:21726724

  15. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  16. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells.

    PubMed

    Adhikari, Ananta Raj; Geranpayeh, Tanya; Chu, Wei Kan; Otteson, Deborah C

    2016-03-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1×10(12) to 1×10(14) ions/cm(2)), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. PMID:26706518

  17. Metal ion-humic acid nanoparticle interactions: role of both complexation and condensation mechanisms.

    PubMed

    Town, Raewyn M; van Leeuwen, Herman P

    2016-07-21

    Purely Donnan type models for electrostatic binding by humic acid (HA) nanoparticles are shown to be physically incomplete. To describe the extent of ion binding by HA, such models need to invoke parameters that are not consistent with experimental observations. These disparate parameters include anomalously high Donnan potentials, as well as intrinsic affinity constants for electrostatically associating ions such as Ca(2+). In contrast, the recently introduced counterion condensation - Donnan model (CCD) provides a physicochemically realistic description of the electrostatic contribution to metal ion binding by humic acid nanoparticles. The extent of Ca(2+)-HA association can be adequately described solely in terms of electrostatics only, including counterion condensation in the intraparticulate double layer in addition to Donnan partitioning in the remainder of the particle body. The binding of Cd(ii), Pb, (ii) and Cu(ii) by HA also involves inner-sphere complex formation leading to intraparticulate metal species distributions with major proportions of condensed and complexed ions. PMID:27327433

  18. Structure and simulation of a Zundel ion stabilized by 8-hydroxyquinoline-5, 7 disulphonic acid

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, Hasthi Annapurna; Venkatakrishnan, Ramaseshan; Pennathur, Anuj Krishnasundar; Pennathur, Gautam

    2016-07-01

    8-hydroxyquinoline-5, 7 disulphonic was synthesized and recrystallized in methanol to strip away molecules of water. The structure of the molecule revealed that Zundel ion was stabilized in the crystal. Ab-initio molecular dynamics simulation was then carried out to understand the dynamics of proton hopping in this complex. During the course of simulation, the Zundel ion coordinates with a water molecule to form an open H7O3+ structure. This transition state structure de-solvated rapidly forming Zundel ion facilitating proton hopping in the first solvation shell. One of the sulphonic acid groups in the 5 or 7 position of the 8-hydroxyquinoline 5,7 disulphonic acid bonds with the Zundel ion favoring the proton to be transferred to the nearby water molecule through the formation of proton defects. The simulation results support the structural diffusion mechanism and that charged complex migrates through the hydrogen bond network.

  19. Gas Cluster Ion Beam Etching under Acetic Acid Vapor for Etch-Resistant Material

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akira; Hinoura, Ryo; Toyoda, Noriaki; Hara, Ken-ichi; Yamada, Isao

    2013-05-01

    Gas cluster ion beam (GCIB) etching of etch-resistant materials under acetic acid vapor was studied for development of new manufacturing process of future nonvolatile memory. Etching depths of various etch-resistant materials (Pt, Ru, Ta, CoFe) with acetic acid vapor during O2-GCIB irradiations were 1.8-10.7 times higher than those without acetic acid. Also, etching depths of Ru, Ta, CoFe by Ar-GCIB with acetic acid vapor were 2.2-16.1 times higher than those without acetic acid. Even after etching of Pt, smoothing of Pt was realized using O2-GCIB under acetic acid. From XPS and angular distribution of sputtered Pt, it was shown that PtOx layer was formed on Pt after O2-GCIB irradiation. PtOx reacted with acetic acid by GCIB bombardments; as a result, increase of etching depth was observed.

  20. Untargeted fatty acid profiles based on the selected ion monitoring mode.

    PubMed

    Zhang, Liangxiao; Li, Peiwu; Sun, Xiaoman; Hu, Wei; Wang, Xiupin; Zhang, Qi; Ding, Xiaoxia

    2014-08-11

    Fatty acids are potential biomarkers of some diseases and also key markers and quality parameters of different dietary fats and related products. Thus, untargeted fatty acid profiles are important in the study of dietary fat quality and fat-related diseases, as well as in other fields such as bioenergy. In addition, accurate identification of unknown components is a technological breakthrough for the selected ion monitoring (SIM) mode for untargeted profiles. In this study, we developed untargeted fatty acid profiles based on SIM. We also investigated mass spectral characteristics and equivalent chain lengths (ECL) to eliminate the influence of non-FAMEs for identifying fatty acids in samples. As an application example, fatty acid profiles were used to classify three edible vegetable oils. The results indicated that SIM-based untargeted fatty acid profiles could yield accurate qualitative and quantitative results for more fatty acids and benefit related studies of metabolite profiles. PMID:25066717

  1. Method of inhibiting crosslinking of aqueous xanthan gums in the presence of ferric acid ions

    SciTech Connect

    Crowe, C.W.

    1982-03-02

    The cross linking of aqueous xanthan gums in the presence of ferric ions is inhibited or prevented by adding a soluble alkanoic and/or alkenoic acid having at least 4 carbon atoms and bearing at least 2 hydroxyl groups per molecule, and/or a soluble salt of ..gamma..-lactone. This combination of ingredients forms gelled acid compositions which are useful in acidizing treatments of wells. The gelled acid compositions are viscous fluids which have increased stability against shear and thermal degradation and other properties which result in retarded reaction rates and reduced fluid leak-off during acidizing treatments of subterranean formations surrounding well bores. The aqueous gelled acids have the further advantage of inhibiting or preventing the formation of insoluble compounds, such as ferric hydroxide, during such acidizing treatments. 13 claims.

  2. Airway irritation and cough evoked by acid: from human to ion channel

    PubMed Central

    Gu, Qihai; Lee, Lu-Yuan

    2011-01-01

    Inhalation or aspiration of acid solution evokes airway defense responses such as cough and reflex bronchoconstriction, resulting from activation of vagal bronchopulmonary C-fibers and Aδ afferents. The stimulatory effect of hydrogen ion on these sensory nerves is generated by activation of two major types of ion channels expressed in these neurons: a rapidly activating and inactivating current mediated through ASICs, and a slow sustaining current via activation of TRPV1. Recent studies have shown that these acid-evoked responses are elevated during airway inflammatory reaction, revealing the potential convergence of a wide array of inflammatory signaling on these ion channels. Since pH in the airway fluid drops substantially in patients with inflammatory airway diseases, these heightened stimulatory effects of acid on airway sensory nerves may play a part in the manifestation of airway irritation and excessive cough under those pathophysiological conditions. PMID:21543258

  3. Production of concentrated caustic soda and hydrochloride acid solutions from sodium chloride by electrodialysis with the aid of bipolar ion-exchange membranes

    SciTech Connect

    Greben', V.P.; Pivovarov, N.Ya.; Latskov, V.L.

    1988-10-20

    This paper gives a comparative analysis of the action of electrodialyzers containing three and five compartments in the structural unit, and equipped with bipolar, cation-exchange, and anion-exchange membranes, used for production of hydrochloric acid and caustic soda from sodium chloride solutions. It was shown that an electrodialyzer with five compartments gives hydrochloric acid and caustic soda for 2.5-3 M concentration with 0.2-0.3 current efficiency, whereas an electrodialyzer with three compartments in the structural unit gives hydrochloric acid and caustic soda concentrations of about 1.2 M at the same current efficiency. The performance of the electrodialyzers was analyzed and equations were derived for calculating the current efficiencies for acid and alkali under conditions of acidification of the salt solution; this was based on determination of the transport numbers of ions passing through the membranes.

  4. Reactions of Thiocyanate Ions with Acid: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1984-01-01

    Background information, procedures, and typical results are provided for a three-part experiment involving reactions of potassium thiocynate (KNCS) with sulfuric acid. The experiment represents the final stage of structured work prior to students' research projects during their final year. (JM)

  5. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    PubMed Central

    2011-01-01

    Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose. PMID:22074910

  6. Elucidating the Role of Ferrous Ion Cocatalyst in Enhancing Dilute Acid Pretreatment of Lignocellulosic Biomass

    SciTech Connect

    Wei, H.; Donohoe, B. S.; Vinzant, T. B.; Ciesielski, P. N.; Wang, W.; Gedvilas, L. M.; Zeng, Y.; Johnson, D. K.; Ding, S. Y.; Himmel, M. E.; Tucker, M. P.

    2011-01-01

    Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe{sup 2+} ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe{sup 2+} ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe{sup 2+} ion pretreatment, in which delamination and fibrillation of the cell wall were observed. By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  7. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  8. Acid Rain and Friendly Neighbors. The policy dispute between Canada and the United States

    SciTech Connect

    Schmandt, J.; Roderick, H.

    1986-01-01

    Acid Rain and Friendly Neighbors is a source book that summarizes the results of the various studies of acid rain and traces the issues historically. Contents: Part One: The Search for a Bilateral Agreement. Acid rain is different; The nature and effects of acid rain: a comparison of assessments; U.S.-Canadian negotiations on acid rain; Part Two: Domestic Policy Development. Canada's acid rain policy: federal and provincial roles; The U.S. policy response to acid rain; Environmental and economic interests in Canada and the United States; Part Three: Supportive Structures. The international joint commission: the role it might play; Lessons from the Great Lakes water quality agreements; Supporting structures for resolving environmental disputes among friendly neighbors.

  9. The effects of acid treatment and calcium ions on the solubility of concanavalin A

    NASA Technical Reports Server (NTRS)

    Cacioppo, Elizabeth; Pusey, Marc L.

    1992-01-01

    The effects of acid treatment (which removes Mn and Ca ions) and Ca(2+) ions on the solubility of jack-bean-meal concanavalin A were investigated using two techniques: the sitting drop technique and the microcolumn technique. It was found that the solubility of concanavalin A varied with the protein preparation procedures and with measurement techniques. Addition of Ca(2+) resulted in greatly lowered solubilities compared with the acid treated protein. The sitting drop solubilities for the recalcified protein agreed better with those reported by Mikol and Giege (1989) than with solubilities determined from column data.

  10. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    PubMed

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression. PMID:12830884

  11. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality.

    PubMed

    Mrvčić, Jasna; Stanzer, Damir; Solić, Ema; Stehlik-Tomas, Vesna

    2012-09-01

    Certain species of lactic acid bacteria (LAB), as well as other microorganisms, can bind metal ions to their cells surface or transport and store them inside the cell. Due to this fact, over the past few years interactions of metal ions with LAB have been intensively investigated in order to develop the usage of these bacteria in new biotechnology processes in addition to their health and probiotic aspects. Preliminary studies in model aqueous solutions yielded LAB with high absorption potential for toxic and essential metal ions, which can be used for improving food safety and quality. This paper provides an overview of results obtained by LAB application in toxic metal ions removing from drinking water, food and human body, as well as production of functional foods and nutraceutics. The biosorption abilities of LAB towards metal ions are emphasized. The binding mechanisms, as well as the parameters influencing the passive and active uptake are analyzed. PMID:22806724

  12. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    PubMed

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice

  13. Potentiometric Determination of Phytic Acid and Investigations of Phytate Interactions with Some Metal Ions.

    PubMed

    Marolt, Gregor; Pihlar, Boris

    2015-01-01

    Determination of correct amount (concentration) of phytic acid is of vital importance when dealing with protonation and/or metal complexation equilibria. A novel approach for precise and reliable assay of phytic acid, based on the difference between end points by potentiometric titration, has been presented. Twelve phytic acid protons are classified into three groups of acidity, which enables detection of 2 to 3 distinct equivalent points (EPs) depending on experimental conditions, e.g. counter-ion concentration. Using the differences between individual EPs enables correct phytate determination as well as identification of potential contamination and/or determination of initial protonation degree. Impact of uncertainty of phytate amount on the calculation of protonation constants has been evaluated using computer simulation program (Hyperquad2013). With the analysis of titration curves different binding sites on phytate ligand have been proposed for complexation of Ca2+ and Fe3+ ions. PMID:26085413

  14. Ion-pair chromatography of acidic drug metabolites and endogenic compounds.

    PubMed

    Fransson, B; Wahlund, K G; Johansson, I M; Schill, G

    1976-09-29

    Liquid-liquid chromatographic systems based on ion-pair partition with silica microparticles as the support for the stationary phase have been used for the separation of anionic compounds of biochemical and pharmacological interest. A high separating efficiency can be obtained with both aqueous and organic mobile phases and the retention is easily regulated by the nature and the concentration of the quaternary ammonium counter ion, present in the aqueous phase. The influence of the composition of the liquid phases on the selectivity and separating efficiency has been studied, as well as equilibration methods and the stability of the systems. Examples are given of separations of sulphonamides, barbiturates, glucuronic and sulphuric acid conjugates of steroidal compounds and phenols glycine conjugates of carboxylic acids (hippuric, nicotinuric and salicyluric acid) and anionic metabolites of biogenic amines (indoleacetic, benzoic, mandelic and phenylacetic acid derivatives). PMID:10314

  15. Standard addition method for free acid determination in solutions with hydrolyzable ions

    SciTech Connect

    Baumann, E.W.

    1981-01-01

    The free acid content of solutions containing hydrolyzable ions has been determined potentiometrically by a standard addition method. Two increments of acid are added to the sample in a 1M potassium thiocyanate solution. The sample concentration is calculated by solution of three simultaneous Nernst equations. The method has been demonstrated for solutions containing Al/sup 3 +/, Cr/sup 3 +/, Fe/sup 3 +/, Ni/sup 2 +/, Th/sup 4 +/, or UO/sub 2//sup 2 +/ with a metal-to-acid ratio of < 2.5. The method is suitable for determination of 10 ..mu..moles acid in 10 mL total volume. The accuracy is verifiable by reasonable agreement of the Nerst slopes found in the presence and absence of hydrolyzable ions. The relative standard deviation is < 2.5 percent.

  16. The removal of uranium from acidic media using ion exchange and/or extraction chromatography

    SciTech Connect

    FitzPatrick, J.R.; Schake, B.S.; Murphy, J.; Holmes, K; West, M.H.

    1996-06-01

    The separation and purification of uranium from either nitric acid or hydrochloric acid media can be accomplished by using either solvent extraction or ion-exchange. Over the past two years at Los Alamos, emerging programs are focused on recapturing the expertise required to do limited, small-quantity processing of enriched uranium. During this period of time, we have been investigating ion-addition, waste stream polishing is associated with this effort in order to achieve more complete removal of uranium prior to recycle of the acid. Extraction chromatography has been demonstrated to further polish the uranium from both nitric and hydrochloric acid media thus allowing for a more complete recovery of the actinide material and creation of less waste during the processing steps.

  17. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  18. ATR-FTIR characterization of transport properties of benzoic acid ion-pairs in silicone membranes.

    PubMed

    Tantishaiyakul, Vimon; Phadoongsombut, Narubodee; Wongpuwarak, Wibul; Thungtiwachgul, Jatupit; Faroongsarng, Damrongsak; Wiwattanawongsa, Kamonthip; Rojanasakul, Yon

    2004-09-28

    A novel technique based on Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to study the transport of benzoic acid ion-pairs/salts in silicone membranes. The benzoic acid ion-pairs were prepared using various counter-ions with different degrees of lipophilicity, e.g. triethylamine (TA), diethylamine (DE), tert-butylamine (t-BA), 2-amino-2-methyl-propanol (AMP), and 2-amino-2-methyl-propanediol (AMPD). Silicone membrane, treated or untreated with propylene glycol (PG), was placed on the surface of a ZnSe crystal and the transport solution was applied to the upper surface of the membrane. A mathematical model, based on Fick's second law describing the build up of permeant concentration at the membrane/crystal interface with time was applied to determine diffusion coefficients. Absorption due to the acid (1700 cm(-1)) or benzoate anion (1555 cm(-1)) was observed at different regions without the interference from PG or silicone membrane. Benzoate anion, a charged species, was observed to permeate the membrane. The permeation of benzoate anion from sodium benzoate and polar ion-pairs of AMP and AMPD was very low in contrast to their high-saturated concentrations in PG as compared to the t-BA ion-pair. This indicated that benzoate anion preferentially permeates the membrane as an ion-pair rather than a single anion; otherwise its permeation should correspond to its concentration in PG instead of the lipophilicity of the ion-pairs. Additionally, the diffusion coefficient values of benzoic acid and benzoate anions through the treated and untreated membranes were not statistically different. PMID:15363507

  19. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  20. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  1. Ion Transport Dynamics in Acid Variable Charge Subsoils

    SciTech Connect

    Qafoku, Nik; Sumner, Malcolm E.; Toma, Mitsuru

    2005-06-06

    This is a mini-review of the research work conducted by the authors with the objective of studying ion transport in variable charge subsoils collected from different areas around the world. An attempt is made in these studies to relate the unique behavior manifested during ionic transport in these subsoils with their mineralogical, physical and chemical properties, which are markedly different from those in soils from temperate regions. The variable charge subsoils have a relatively high salt sorption capacity and anion exchange capacity (AEC) that retards anions downward movement. The AEC correlates closely with the anion retardation coefficients. Ca2+ applied with gypsum in topsoil may be transported to the subsoil and may improve the subsoil chemical properties. These results may help in developing appropriate management strategies under a range of mineralogical, physical, and chemical conditions.

  2. Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons

    NASA Astrophysics Data System (ADS)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2014-12-01

    For the comprehensive description of the acidity of a two-phase ion-exchange system, we should analyze two curves of the ionite titration by a strong base in water and salt solutions and find the quantitative relationships between the corresponding pH characteristics. An idea of the three-dimensional field of acidity of ion-exchange systems (the phase space of the soil acidity characteristics) and its three two-dimensional projections is suggested. For soils, three interrelated characteristics—the pH values of the salt and water extracts and the degree of base saturation—can serve as spatial coordinates for the acidity field. Representation of factual data in this field makes it possible to compare and analyze the acidity characteristics of different soils and soil horizons and to determine their specific features. Differentiation of the field into separate volumes allows one to present the data in a discrete form. We have studied the distribution patterns of the groups of soil horizons from Leningrad oblast and other regions of northwestern Russia in the acidity field. The studied samples are grouped in different partially overlapping areas of the projections of the acidity field. The results of this grouping attest to the correctness of the modern classification of Russian soils. A notion of the characteristic soil area in the acidity field is suggested; it can be applied to all the soils with a leaching soil water regime.

  3. Radioactive Ion Beam Monitoring System and Simulation of the DRIB's Complex Target - Catcher Unit

    SciTech Connect

    Oganessian, Yu. Ts.; Gulbekian, G. G.; Mitrofanov, S. V.; Denisov, S. V.; Tarasov, O. B.

    2007-05-22

    The Dubna Radioactive Ion Beams accelerator complex (DRIBs) is based on two U-400 and U-400M isochronous cyclotrons, which are equipped with two ECR ion sources. We use to 7Li as primary beam with energy equal to 32 AMeV. The results are showed here was obtained with interaction of 7Li with carbon target for 6He isotope. Productive carbon target and catcher was combined into one unit. The catcher unit located in front of the ECR source and consists of the generating target and gas-vacuum system. In this review the results a number of tests of the DRIBs project are described. During the tests some of defects in catcher unit had been found and have been removed in the new module witch are gave us increasing of secondary beam current. The system of the DRIBs beam monitoring have been improved and completed. Also the new subroutine of the Lise++ simulation toolkit for modeling catchers properties has been designed.

  4. Transport of trivalent and hexavalent chromium through different ion-selective membranes in acidic aqueous media

    SciTech Connect

    Costa, R.F.D.; Rodrigues, M.A.S.; Ferreira, J.Z.

    1998-06-01

    The aim of this work was to evaluate the transport of trivalent and hexavalent chromium through anion- and cation-selective membranes using two- and three-compartment electrodialysis cells. Tests were done with acidic solutions of trivalent chromium ions, Cr{sup 3+}, and hexavalent chromium ions, Cr{sub 2}O{sub 7}{sup 2{minus}}. In each situation the transport of metallic ions through the membrane was evaluated. In the tests with trivalent chromium, Nafion 417 and Selemion CMT cation-selective membranes were used, and in the tests with hexavalent chromium, Selemion AMT membrane was used. The influence of SO{sub 4}{sup 2{minus}} ions and of the concentration of H{sup +} ions in the solutions was also analyzed. Results showed the oxidation of the Cr{sup 3+} ion at the anode and the reduction of the Cr{sub 2}O{sub 7}{sup 2{minus}} ion at the cathode. The maximum yield in the process was reached when hexavalent chromium solutions were used in the absence of sulfate ions and a Selemion AMT membrane in a three-compartment cell.

  5. Role of ion transporters in the bile acid-induced esophageal injury.

    PubMed

    Laczkó, Dorottya; Rosztóczy, András; Birkás, Klaudia; Katona, Máté; Rakonczay, Zoltán; Tiszlavicz, László; Róka, Richárd; Wittmann, Tibor; Hegyi, Péter; Venglovecz, Viktória

    2016-07-01

    Barrett's esophagus (BE) is considered to be the most severe complication of gastro-esophageal reflux disease (GERD), in which the prolonged, repetitive episodes of combined acidic and biliary reflux result in the replacement of the squamous esophageal lining by columnar epithelium. Therefore, the acid-extruding mechanisms of esophageal epithelial cells (EECs) may play an important role in the defense. Our aim was to identify the presence of acid/base transporters on EECs and to investigate the effect of bile acids on their expressions and functions. Human EEC lines (CP-A and CP-D) were acutely exposed to bile acid cocktail (BAC) and the changes in intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i) were measured by microfluorometry. mRNA and protein expression of ion transporters was investigated by RT-PCR, Western blot, and immunohistochemistry. We have identified the presence of a Na(+)/H(+) exchanger (NHE), Na(+)/HCO3 (-) cotransporter (NBC), and a Cl(-)-dependent HCO3 (-) secretory mechanism in CP-A and CP-D cells. Acute administration of BAC stimulated HCO3 (-) secretion in both cell lines and the NHE activity in CP-D cells by an inositol triphosphate-dependent calcium release. Chronic administration of BAC to EECs increased the expression of ion transporters compared with nontreated cells. A similar expression pattern was observed in biopsy samples from BE compared with normal epithelium. We have shown that acute administration of bile acids differently alters ion transport mechanisms of EECs, whereas chronic exposure to bile acids increases the expression of acid/base transporters. We speculate that these adaptive processes of EECs represent an important mucosal defense against the bile acid-induced epithelial injury. PMID:27198194

  6. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  7. Direct Sensing of Total Acidity by Chronopotentiometric Flash Titrations at Polymer Membrane Ion-Selective Electrodes

    PubMed Central

    Gemene, Kebede L.; Bakker, Eric

    2008-01-01

    Polymer membrane ion-selective electrodes containing lipophilic ionophores are traditionally interrogated by zero current potentiometry, which, ideally, gives information on the sample activity of ionic species. It is shown here that a discrete cathodic current pulse across an H+-selective polymeric membrane doped with the ionophore ETH 5294 may be used for the chronopotentiometric detection of pH in well buffered samples. However, a reduction in the buffer capacity leads to large deviations from the expected Nernstian response slope. This is explained by the local depletion of hydrogen ions at the sample-membrane interface as a result of the galvanostatically imposed ion flux in direction of the membrane. This depletion is found to be a function of the total acidity of the sample and can be directly monitored chronopotentiometrically in a flash titration experiment. The subsequent application of a baseline potential pulse reverses the extraction process of the current pulse, allowing one to interrogate the sample with minimal perturbation. In one protocol, total acidity is found to be proportional to the magnitude of applied current at the flash titration endpoint. More conveniently, the square root of the flash titration endpoint time observed at a fixed applied current is a linear function of the total acid concentration. This suggests that it is possible to perform rapid localized pH titrations at ion-selective electrodes without the need for volumetric titrimetry. The technique is explored here for acetic acid, MES and citric acid with promising results. Polymeric membrane electrodes on the basis of poly(vinyl chloride) plasticized with o-nitrophenyloctylether in a 1:2 mass ratio may be used for the detection of acids of up to ca. 1 mM concentration, with flash titration times on the order of a few seconds. Possible limitations of the technique are discussed, including variations of the acid diffusion coefficients and influence of electrical migration. PMID

  8. IMPROVEMENT UPON THE CARRIER PRECIPITATION OF PLUTONIUM IONS FROM NITRIC ACID SOLUTIONS

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-23

    A process is reported for improving the removal of plutonlum by carrier precipitation by the addition of nitrite ions to a nitrlc acid solutlon of neutronirradiated unanium so as to destroy any hydrazine that may be present in the solution since the hydrazine tends to complex the tetravalent plutonium and prevents removal by the carrier precipltate, such as bismuth phospbate.

  9. Formation and Fragmentation of Unsaturated Fatty Acid [M - 2H + Na]- Ions: Stabilized Carbanions for Charge-Directed Fragmentation

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Kirk, Benjamin B.; Altvater, Jens; Blanksby, Stephen J.; Nette, Geoffrey W.

    2013-12-01

    Fatty acids are long-chain carboxylic acids that readily produce [M - H]- ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H + FeIICl]-. In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H + Na]-). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H + NaF]- ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H + Na]- ion via the neutral loss of HF. (2) Direct formation of the [M - 2H + Na]- ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H + Na]- ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.

  10. The reduction process of phytic acid silver ion system: A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Mukherjee, Tulsi

    2007-05-01

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag +→Ag 0→Ag 2+→Ag 32+, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size ( Rav=100 nm).

  11. Hydrogen-ion titrations of amino acids and proteins in solutions containing concentrated electrolyte

    SciTech Connect

    Fergg, F.; Kuehner, D.E.; Blanch, H.W.; Prausnitz, J.M.

    1994-12-01

    This report describes a first attempt to quantify the net charge as a function of solution pH for lysozyme and {alpha}-chymotrypsin at 0.1 M, 1.0 M and 3.0 M ionic strength, (IS). The calculations are based on the residue (titratable group) pK{sub a}`s in the amino-acid sequence of the protein. To determine these pK{sub a}`s, a simple theory was used which assumes that the pK{sub a}`s are independent from each other in the protein and are equal to their pK{sub a} values in free amino-acid solution (Independent-Site Theory, IST). Residue pK{sub a}`s were obtained from amino-acid hydrogen-ion titrations at three different KCl concentrations corresponding to 0.1M, 1.0M and 3.0M ionic strength. After construction of a suitable apparatus, the experimental procedure and data reduction were computerized to perform a large number of titrations. Most measured pK{sub a}`s showed high reproducibility (the difference of pK{sub a} values observed between two experiments was less than 0.05). For IS = 0.1M, observed pK{sub a}`s agreed with literature values to within a few hundredths of a pH unit. Furthermore, the ionic-strength dependence of the pK{sub a}`s followed the trends reported in the literature, viz. pK{sub a} values decrease with increasing ionic strength until they reach a minimum at about IS = 0.5M. At still higher IS, pK{sub a}`s increase as the ionic strength rises to 3M. The known pK{sub a}`s of all titratable groups in a protein were used with the IST to give a first approximation of how the protein net charge varies with pH at high ionic strength. A comparison of the titration curves based on the IST with experimental lysozyme and {alpha}-chymotrypsin titration data indicates acceptable agreement at IS = 0.1M. However, comparison of measured and calculated titration curves at IS = 1M and IS = 3M indicates only quantitative agreement.

  12. Study of a lithium-ion battery charge-discharge test unit characteristics*

    NASA Astrophysics Data System (ADS)

    Kopylov, E. A.; Mizrah, E. A.; Fedchenko, A. S.; Lobanov, D. K.

    2016-04-01

    The article describes the structure of a charge-discharge unit which allows to perform electrical, resource and thermal testing of several lithium-ion batteries simultaneously. The principle of operation of a one battery research channel (BRC) is shown. This study evaluated the stabilization error and rate of change of charge/discharge currents, the switching time from the charge mode to the discharge mode and vice versa for a single BRC and parallel BRCs. The possibility of increasing the maximum battery testing current due to the parallel connection of multiple BRCs without using a current alignment device between channels was discussed.

  13. Influence of phosphate ions on buffer capacity of soil humic acids

    NASA Astrophysics Data System (ADS)

    Boguta, P.; Sokołowska, Z.

    2012-02-01

    The object of this study was to determine change of natural buffer capacity of humic acids by strong buffering agents, which were phosphate ions. Studies were carried out on the humic acids extracted from peat soils. Additional information was obtained by determination of water holding capacity, density, ash and pH for peats and optical parameter Q4/6 for humic acids. Humic acid suspensions exhibited the highest buffer properties at low pH and reached maximum at pH ~ 4. Phosphates possessed buffer properties in the pH range from 4.5 to 8.0. The maximum of buffering was at pH~6.8 and increased proportionally with an increase in the concentration of phosphate ions. The study indicated that the presence of phosphate ions may strongly change natural buffer capacity of humic acids by shifting buffering maximum toward higher pH values. Significant correlations were found for the degree of the secondary transformation with both the buffer capacity and the titrant volume used during titration.

  14. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode.

    PubMed

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low pK a1 and pK a2) and to have high hydrophobicity (logP ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions. Graphical Abstract ᅟ. PMID:27044024

  15. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode

    NASA Astrophysics Data System (ADS)

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.

  16. [Ion pair-HPLC of some aromatic amino- and hydroxycarboxylic acids].

    PubMed

    Jira, T; Beyrich, T; Reinhardt, K

    1988-06-01

    Various factors influencing the ion-pair-HPLC separation of some aromatic amino- and hydroxycarbon acids were described and discussed. Distinct effects of the ion pair formation of organic acids with quarternary alkylammonium salts (CTAB) are recognized on condition that the carboxylic group is not blocked by intramolecular H-bonding or partial betain structure. If the carboxylic group is unconnected the retention time increases depending on the pka of the acid with increasing pH if no complete ionization exists. In order to separate similar compounds at low retention time with distinct resolution an organic modifier of suitable strength and high selectivity have to be added to the mobile phase. PMID:3212029

  17. Effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Hirai, Nobumitsu; Yamamoto, Yui

    2015-10-01

    The effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution has been investigated. It was found that "the specific anodic oxidation peak" appears at the cathodic scan in cyclic voltammogram of lead electrode in sulfuric acid solution containing Li2SO4, K2SO4, Na2SO4, Rb2SO4, or Cs2SO4. The height of the specific anodic oxidation peak varies with the alkaline sulfate in the solution; K2SO4 >> Na2SO4 > Cs2SO4 > Rb2SO4 > Li2SO4. It should be note that alkaline ions exist in lead sulfate formed on lead electrode in sulfuric acid solution containing potassium sulfate when the electrode was immersed in the solution at the rest potential for more than 1 h.

  18. Effect of Magnesium Ion on the Zinc Electrodeposition from Acidic Sulfate Electrolyte

    NASA Astrophysics Data System (ADS)

    Tian, Lin; Xie, Gang; Yu, Xiao-Hua; Li, Rong-Xing; Zeng, Gui-Sheng

    2012-02-01

    The effects of Mg2+ ion on the zinc electrodeposition were systematically investigated in sulfuric acid solution through the characterizations of current efficiency (CE), power consumption (PC), deposit morphology, cathodic polarization, and cyclic voltammetry. The results demonstrate that there is no significant influence on CE and PC in the Mg2+ concentration range of 1 to 10 g L-1, but with a drastic decrease of the CE and rapid increase of PC at Mg2+ ion concentration above 15 g L-1. Based on the morphology observation and polarization curves, the presence of Mg2+ ions could also induce the coarse surface on the electrodeposited zinc accompanying the enhancement of the cathodic polarization, which becomes more distinct at a high concentration above 15 g L-1. Furthermore, hydrogen evolution could be promoted with the existence of Mg2+ ions according to cyclic voltammograms.

  19. Site-Specific Characterization of d-Amino Acid Containing Peptide Epimers by Ion Mobility Spectrometry

    PubMed Central

    2013-01-01

    Traditionally, the d-amino acid containing peptide (DAACP) candidate can be discovered by observing the differences of biological activity and chromatographic retention time between the synthetic peptides and naturally occurring peptides. However, it is difficult to determine the exact position of d-amino acid in the DAACP candidates. Herein, we developed a novel site-specific strategy to rapidly and precisely localize d-amino acids in peptides by ion mobility spectrometry (IMS) analysis of mass spectrometry (MS)-generated epimeric fragment ions. Briefly, the d/l-peptide epimers were separated by online reversed-phase liquid chromatography and fragmented by collision-induced dissociation (CID), followed by IMS analysis. The epimeric fragment ions resulting from d/l-peptide epimers exhibit conformational differences, thus showing different mobilities in IMS. The arrival time shift between the epimeric fragment ions was used as criteria to localize the d-amino acid substitution. The utility of this strategy was demonstrated by analysis of peptide epimers with different molecular sizes, [d-Trp]-melanocyte-stimulating hormone, [d-Ala]-deltorphin, [d-Phe]-achatin-I, and their counterparts that contain all-l amino acids. Furthermore, the crustacean hyperglycemia hormones (CHHs, 8.5 kDa) were isolated from the American lobster Homarus americanus and identified by integration of MS-based bottom-up and top-down sequencing approaches. The IMS data acquired using our novel site-specific strategy localized the site of isomerization of l- to d-Phe at the third residue of the CHHs from the N-terminus. Collectively, this study demonstrates a new method for discovery of DAACPs using IMS technique with the ability to localize d-amino acid residues. PMID:24328107

  20. Negative Ion Photoelectron Spectroscopy Reveals Thermodynamic Advantage of Organic Acids in Facilitating Formation of Bisulfate Ion Clusters: Atmospheric Implications

    SciTech Connect

    Hou, Gao-Lei; Lin, Wei; Deng, Shihu; Zhang, Jian; Zheng, Weijun; Paesani, Francesco; Wang, Xue B.

    2013-03-07

    Recent lab and field measurements have indicated critical roles of organic acids in enhancing new atmospheric aerosol formation. Such findings have stimulated theoretical studies with the aim of understanding interaction of organic acids with common aerosol nucleation precursors like bisulfate (HSO4-). In this Letter, we report a combined negative ion photoelectron spectroscopic and theoretical investigation of molecular clusters formed by HSO4- with succinic acid (SUA, HO2C(CH2)2CO2H), HSO4-(SUA)n (n = 0-2), along with HSO4-(H2O)n and HSO4-(H2SO4)n. It is found that one SUA molecule can stabilize HSO4- by ca. 39 kcal/mol, triple the corresponding value that one water molecule is capable of (ca. 13 kcal/mol). Molecular dynamics simulations and quantum chemical calculations reveal the most plausible structures of these clusters and attribute the stability of these clusters due to formation of strong hydrogen bonds. This work provides direct experimental evidence showing significant thermodynamic advantage by involving organic acid molecules to promote formation and growth in bisulfate clusters and aerosols.

  1. Proton and metal ion binding to natural organic polyelectrolytes-II. Preliminary investigation with a peat and a humic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.

  2. Using problem based learning and guided inquiry in a high school acid-base chemistry unit

    NASA Astrophysics Data System (ADS)

    McKinley, Katie

    The purpose of this investigation was to determine if incorporating problem based learning and guided inquiry would improve student achievement in an acid base unit for high school chemistry. The activities and labs in the unit were modified to be centered around the problem of a fish kill that students investigated. Students also participated in guided inquiry labs to increase the amount of critical thinking and problem solving being done in the classroom. The hypothesis was that the implementation of problem based learning and guided inquiry would foster student learning. Students took a pre-test and post-test on questions covering the objectives of the acid base unit. These assessments were compared to determine the effectiveness of the unit. The results indicate that the unit was effective in increasing student performance on the unit test. This study also analyzed the process of problem based learning. Problem based learning can be an effective method of engaging students in inquiry. However, designing an effective problem based learning unit requires careful design of the problem and enough structure to assure students learn the intended content.

  3. Structural mechanisms underlying the function of epithelial sodium channel/acid-sensing ion channel

    PubMed Central

    Carattino, Marcelo D.

    2013-01-01

    Purpose of review The epithelial sodium channel/degenerin family encompasses a group of cation-selective ion channels that are activated or modulated by a variety of extracellular stimuli. This review describes findings that provide new insights into the molecular mechanisms that control the function of these channels. Recent findings Epithelial sodium channels facilitate Na+ reabsorption in the distal nephron and hence have a role in fluid volume homeostasis and arterial blood pressure regulation. Acid-sensing ion channels are broadly distributed in the nervous system where they contribute to the sensory processes. The atomic structure of acid-sensing ion channel 1 illustrates the complex trimeric architecture of these proteins. Each subunit has two transmembrane spanning helices, a highly organized ectodomain and intracellular N-terminus and C-terminus. Recent findings have begun to elucidate the structural elements that allow these channels to sense and respond to extracellular factors. This review emphasizes the roles of the extracellular domain in sensing changes in the extracellular milieu and of the residues in the extracellular–transmembrane domains interface in coupling extracellular changes to the pore of the channel. Summary Epithelial sodium channels and acid-sensing ion channels have evolved to sense extracellular cues. Future research should be directed toward elucidating how changes triggered by extracellular factors translate into pore opening and closing events. PMID:21709553

  4. Formation of complex precursors of amino acids by irradiation of simulated interstellar media with heavy ions

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Suzuki, N.; Taniuchi, T.; Kaneko, T.; Yoshida, S.

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as meteorites and comets Amino acids were identified in the extracts from Murchison meteorite and other carbonaceous chondrites It is hypothesized that these compounds are originally formed in ice mantles of interstellar dusts ISDs in molecular clouds by cosmic rays and ultraviolet light UV Formation of amino acid precursors by high energy protons or UV irradiation of simulated ISDs was reported by several groups The amino acid precursors were however not well-characterized We irradiated a frozen mixture of methanol ammonia and water with heavy ions to study possible organic compounds abiotically formed in molecular clouds by cosmic rays A mixture of methanol ammonia and water was irradiated with carbon beams 290 MeV u from a heavy ion accelerator HIMAC of National Institute of Radiological Sciences Japan Irradiation was performed either at room temperature liquid phase or at 77 K solid phase The products were characterized by gel filtration chromatography GFC FT-IR pyrolysis PY -GC MS etc Amino acids were analyzed by HPLC and GC MS after acid hydrolysis or the products Amino acids such as glycine and alanine were identified in the products in both the cases of liquid phase and solid phase irradiation Energy yields G-values of glycine were 0 014 liquid phase and 0 007 solid phase respectively Average molecular weights of the products were estimated as to 2300 in both the case Aromatic hydrocarbons N-containing heterocyclic

  5. Acids and Alkalis. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 9.

    ERIC Educational Resources Information Center

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on: (1) the uses of acids and bases (alkalis) in students' everyday lives, stressing their…

  6. Separation of acid and sugar by ion exclusion chromatography. An application in the conversion of cellulose to ethanol

    SciTech Connect

    Hartfield, S.; Hester, R.

    1993-12-31

    The production of fuel grade alcohol by fermentation from sugars obtained by the acid hydrolysis of cellulose has been hindered by costly methods of cleansing the acid in the sugar stream. An economical and environmentally acceptable acid-sugar separation process based on ion exclusion chromatography has been developed and analyzed. This process recovers the acid for reuse in hydrolysis without producing landfill waste allowing a concentrated acid hydrolysis process to be commercially feasible.

  7. The Prebiotic Synthesis of Ethylenediamine Monoacetic Acid, The Repeating Unit of Peptide Nucleic Acids

    NASA Technical Reports Server (NTRS)

    Nelson, Kevin E.; Miller, Stanley L.

    1992-01-01

    The polymerization of ribonucleic acids or their precursors constitutes an important event in prebiotic chemistry. The various problems using ribonucleotides to make RNA suggest that there may have been a precursor. An attractive possibility are the peptide nucleic acids (PNA). PNAs are nucleotide analogs that make use of a polymer of ethylenediamine monoacetic acid (EDMA or 2-amninoethyl glycine) with the bases attached by an acetic acid. EDMA is an especially attractive alternative to the ribose phosphate or deoxyribose phosphate backbone because it contains no chiral centers and is potentially prebiotic, but there is no reported prebiotic synthesis. We have synthesized both EDMA and ethylenediamine diacetic acid (EDDA) from the prebiotic compounds ethylenediamine, formaldehyde, and hydrogen cyanide. The yields of EDMA range from 11 to 79% along with some sEDDA and uEDDA. These reactions work with concentrations of 10(exp -1)M and as low as 10(exp -4)M, and the reaction is likely to be effective at even lower concentrations. Ethylenediamine is a likely prebiotic compound, but it has not yet been demonstrated, although compounds such as ethanolamine and cysteamine have been proven to be prebiotic. Under neutral pH and heating at l00 C, EDMA is converted to the lactam, monoketopiperazine (MKP). The cyclization occurs and has an approximate ratio of MKP/EDMA = 3 at equilibrium. We have measured the solubilities of EDMA center dot H20 as 6.4 m, EDMA center dot HCl center dot H20 as 13.7 m, and EDMA center dot 2HCl center dot H20 as 3.4 m. These syntheses together with the high solubility of EDMA suggest that EDMA would concentrate in drying lagoons and might efficiently form polymers. Given the instability of ribose and the poor polymerizability of nucleotides, the prebiotic presence of EDMA and the possibility of its polymerization raises the possibility that PNAs are the progenitors of present day nucleic acids. A pre-RNA world may have existed in which PNAs or

  8. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. PMID:25084579

  9. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    NASA Astrophysics Data System (ADS)

    Popescu (Hoştuc), Ioana-Carmen; Petru, Filip; Humelnicu, Ionel; Mateescu, Marina; Militaru, Ecaterina; Humelnicu, Doina

    2014-10-01

    Radioactive pollution is a significant threat for the people’s health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives’ utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.

  10. A Metal-Organic Framework Containing Unusual Eight-Connected Zr–-Oxo Secondary Building Units and Orthogonal Carboxylic Acids for Ultra-sensitive Metal Detection

    SciTech Connect

    Carboni, Michaël; Lin, Zekai; Abney, Carter W.; Zhang, Teng; Lin, Wenbin

    2015-08-21

    Two metal-organic frameworks (MOFs) with Zr-oxo secondary building units (SBUs) were prepared by using p,p'-terphenyldicarboxylate (TPDC) bridging ligands pre-functionalized with orthogonal succinic acid (MOF-1) and maleic acid groups (MOF-2). Single-crystal X-ray structure analysis of MOF-1 provides the first direct evidence for eight-connected SBUs in UiO-type MOFs. In contrast, MOF-2 contains twelve-connected SBUs as seen in the traditional UiO MOF topology. These structural assignments were confirmed by extended X-ray absorption fine structure (EXAFS) analysis. The highly porous MOF-1 is an excellent fluorescence sensor for metal ions with the detection limit of <0.5 ppb for Mn2+ and three to four orders of magnitude greater sensitivity for metal ions than previously reported luminescent MOFs.

  11. Water ICE: Ion Exclusion Chromatography of Very Weak Acids with a Pure Water Eluent.

    PubMed

    Liao, Hongzhu; Shelor, C Phillip; Dasgupta, Purnendu K

    2016-05-01

    Separation of ions or ionizable compounds with pure water as eluent and detecting them in a simple fashion has been an elusive goal. It has been known for some time that carbonic acid can be separated from strong acids by ion chromatography in the exclusion mode (ICE) using only water as the eluent. The practice of water ICE was shown feasible for very weak acids like silicate and borate with a dedicated element specific detector like an inductively coupled plasma mass spectrometer (ICPMS), but this is rarely practical in most laboratories. Direct conductometric detection is possible for H2CO3 but because of its weak nature, not especially sensitive; complex multistep ion exchange methods do not markedly improve this LOD. It will clearly be impractical in acids that are weaker still. By using a permeative amine introduction device (PAID, Anal. Chem. 2016 , 88 , 2198 - 2204 ) as a conductometric developing agent, we demonstrate that a variety of weak acids (silicate, borate, arsenite, cyanide, carbonate, and sulfide) cannot only be separated on an ion exclusion column, they can be sensitively detected (LODs 0.2-0.4 μM). We observe that the elution order is essentially the same as that on a nonfunctionalized poly(styrene-divinylbenzene) column using 1-10% acetonitrile as eluent and follows the reverse order of the polar surface area (PSA) of the analyte molecules. PSA values have been widely used to predict biological transport of pharmaceuticals across a membrane but never to predict chromatographic behavior. We demonstrate the application of the technique by measuring the silicate and borate depth profiles in the Pacific Ocean; the silicate results show an excellent match with results from a reference laboratory. PMID:27075932

  12. Modification of Hydroxyapatite with Ion-Selective Complexants: 1-Hydroxyethane-1,1-diphosphonic Acid

    PubMed Central

    2015-01-01

    Hydroxyapatite (HAP) was modified with 1-hydroxyethane-1,1-diphosphonic acid (HEDP), and its effect on divalent metal ion binding was determined. HAP was synthesized from calcium hydroxide and phosphoric acid. After calcination, it was modified with HEDP, and the influence of time and temperature on the modification was investigated. HEDP incorporation increased as its initial solution concentration increased from 0.01 to 0.50 M. Unmodified and modified HAP were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and specific surface area analysis. Ca/P ratios, acid capacities, and phosphorus elemental analyses gave the effect of modification on composition and surface characteristics. A high reaction temperature produced new phosphonate bands at 993, 1082, and 1144 cm–1 that indicated the presence of HEDP. HAP modification at a high temperature–long reaction time had the highest HEDP loading and gave the sharpest XRD peaks. The emergence of new HAP–HEDP strands was observed in SEM images for treated samples while EDS showed high phosphorus contents in these strands. Modified HAP had a high acid capacity from the additional P–OH groups in HEDP. The P(O)OH groups maintain their ability to bind metal ions within the HAP matrix: contacting the modified HAP with 10–4 N nitrate solutions of five transition metal ions gives an affinity sequence of Pb(II) > Cd(II) > Zn(II) > Ni(II) > Cu(II). This result is comparable to that of commercially available di(2-ethylhexyl)phosphoric acid, a common solvent extractant, and the trend is consistent with the Misono softness parameter of metal ion polarizabilities. PMID:25678741

  13. Complexation of Hg (II) ions with humic acids of tundra soils

    NASA Astrophysics Data System (ADS)

    Vasilevich, Roman

    2013-04-01

    Humic acids (HA) play an important role in processes of heavy metals migration, controlling their geochemical streams in environment. Accumulative and detoxification abilities of HA to heavy metals are realized by means of formation of steady complexes salycylate and pyrocatechin types. Modern researches show that HA of the Arctic and Subarctic areas are poorly enriched by aromatic frames, so and metalbinding centres. The work purpose is to study interaction mechanisms of Hg (II) ions with HA and to define tread possibilities of a tundra soils humic acids. It is established that binding ability of Hg (II) ions depends on concentration of an element, on quantity of functional groups in peripheral and nuclear parts of HA molecule as well as on a solution pH. coomplexation proceeds at pH 2.5-3.5 efficiently. On the basis of kinetic models it is shown that HA interaction with Hg (II) ions, at microconcentration of a pollutant (0.025-5.0 mkmol/dm3), has a zero order of reaction. Rate of a reaction does not depend on initial components concentration and is defined by process of Hg (II) ions diffusion to organic ligands. High correlation of a HA sorption capacity to Hg (II) ions is observed: with the nitrogen content and maintenance of amino groups (according to a 13C-NMR, element composition) and negative correlation - with degree of HA aromaticity. It testifies to primary binding of Hg (II) ions by amino-acid fragments of a HA molecule peripheral part. When concentration of Hg (II) ions increases, binding proceeds on carboxylic and phenolic groups of a molecule nuclear part. Higher order of kinetic models reaction and FTIR spectroscopy data testify to it. Comparison of FTIR spectra of HA preparations and mercury humates, shows that Hg (II) ions binding in humate complexes is carried out mainly by -COOH. Reduction of a spectral line intensity not ionized -COOH at 1700-1720 sm-1 and intensity increases of dissymetric valency vibration at 1610-1650 sm-1 diagnose increase

  14. Ruthenium oxide ion selective thin-film electrodes for engine oil acidity monitoring

    NASA Astrophysics Data System (ADS)

    Maurya, D. K.; Sardarinejad, A.; Alameh, K.

    2015-06-01

    We demonstrate the concept of a low-cost, rugged, miniaturized ion selective electrode (ISE) comprising a thin film RuO2 on platinum sensing electrode deposited using RF magnetron sputtered in conjunction with an integrated Ag/AgCl and Ag reference electrodes for engine oil acidity monitoring. Model oil samples are produced by adding nitric acid into fresh fully synthetic engine oil and used for sensor evaluation. Experimental results show a linear potential-versus-acid-concentration response for nitric acid concentration between 0 (fresh oil) to 400 ppm, which demonstrate the accuracy of the RuO2 sensor in real-time operation, making it attractive for use in cars and industrial engines.

  15. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  16. Prokineticin 2 potentiates acid-sensing ion channel activity in rat dorsal root ganglion neurons

    PubMed Central

    2012-01-01

    Background Prokineticin 2 (PK2) is a secreted protein and causes potent hyperalgesia in vivo, and is therefore considered to be a new pronociceptive mediator. However, the molecular targets responsible for the pronociceptive effects of PK2 are still poorly understood. Here, we have found that PK2 potentiates the activity of acid-sensing ion channels in the primary sensory neurons. Methods In the present study, experiments were performed on neurons freshly isolated from rat dorsal root ganglion by using whole-cell patch clamp and voltage-clamp recording techniques. Results PK2 dose-dependently enhanced proton-gated currents with an EC50 of 0.22 ± 0.06 nM. PK2 shifted the proton concentration-response curve upwards, with a 1.81 ± 0.11 fold increase of the maximal current response. PK2 enhancing effect on proton-gated currents was completely blocked by PK2 receptor antagonist. The potentiation was also abolished by intracellular dialysis of GF109203X, a protein kinase C inhibitor, or FSC-231, a protein interacting with C-kinase 1 inhibitor. Moreover, PK2 enhanced the acid-evoked membrane excitability of rat dorsal root ganglion neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, PK2 exacerbated nociceptive responses to the injection of acetic acid in rats. Conclusion These results suggest that PK2 increases the activity of acid-sensing ion channels via the PK2 receptor and protein kinase C-dependent signal pathways in rat primary sensory neurons. Our findings support that PK2 is a proalgesic factor and its signaling likely contributes to acidosis-evoked pain by sensitizing acid-sensing ion channels. PMID:22642848

  17. Fragmentation of amino acids induced by collisions with low-energy highly charged ions

    NASA Astrophysics Data System (ADS)

    Piekarski, D. G.; Maclot, S.; Domaracka, A.; Adoui, L.; Alcamí, M.; Rousseau, P.; Díaz-Tendero, S.; Huber, B. A.; Martín, F.

    2014-04-01

    Fragmentation of amino acids NH2-(CH2)n-COOH (n=1 glycine; n=2 β-alanine and n=3 γ-aminobutyric acid GABA) following collisions with slow highly charged ions has been studied in the gas phase by a combined experimental and theoretical approach. In the experiments, a multi-coincidence detection method was used to deduce the charge state of the molecules before fragmentation. Quantum chemistry calculations have been carried out in the basis of the density functional theory and ab initio molecular dynamics. The combination of both methodologies is essential to unambiguously unravel the different fragmentation pathways.

  18. Genetic exploration of the role of acid-sensing ion channels.

    PubMed

    Lin, Shing-Hong; Sun, Wei-Hsin; Chen, Chih-Cheng

    2015-07-01

    Advanced gene targeting technology and related tools in mice have been incorporated into studies of acid-sensing ion channels (ASICs). A single ASIC subtype can be knocked out specifically and screened thoroughly for expression in the nervous system at the cellular level. Mapping studies have further shed light on the initiation and identification of related behavioral phenotypes. Here we review studies involving genetically engineered mouse models used to investigate the physiological function of individual ASIC subtypes: ASIC1 (and ASIC1a), ASIC2, ASIC3 and ASIC4. We discuss the detailed expression studies and significant phenotypes revealed with gene knockout for most known Asic subtypes. Each strategy designed to manipulate mouse genetics has advantages and disadvantages. We discuss the limitations of these Asic-knockout models and propose future directions to solve the genetic issues. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. PMID:25582292

  19. Micro/nanofabrication of poly(L-lactic acid) using focused ion beam direct etching

    NASA Astrophysics Data System (ADS)

    Oyama, Tomoko Gowa; Hinata, Toru; Nagasawa, Naotsugu; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi; Taguchi, Mitsumasa

    2013-10-01

    Micro/nanofabrication of biocompatible and biodegradable poly(L-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachment properties.

  20. Comparative study of abiogenesis of cysteine and other amino acids catalyzed by various metal ions.

    PubMed

    Bahadur, K; Sen, P

    1975-01-01

    The present work pertains to the study of the influence of nickel, cobalt, thorium, vanadium, molybdate, ferrous ions on the formation of cysteine which is synthesized abiogenically together with other amino acids in sterilized aqueous mixtures of ammonium thiocyanate, formaldehyde, potassium dihydrogen phosphate, calcium acetate, and biological minerals after irradiating by artificial light. The effect of these catalysts on cysteine formation was of the order: Fe++ greater than Mo++ greater than Th++++ greater than V++ greater than Co++ greater than Ni. PMID:1189468

  1. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    PubMed

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor. PMID:25619126

  2. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-06-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  3. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    PubMed

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer. PMID:27061365

  4. Use of vitamins containing folic acid among women of childbearing age--United States, 2004.

    PubMed

    2004-09-17

    Neural tube defects (NTDs) are serious birth defects of the spine (spina bifida) and brain (anencephaly), affecting approximately 3,000 pregnancies each year in the United States. Periconceptional consumption of the B vitamin folic acid reduces the occurrence of NTDs by 50%-70%. To prevent these defects, the U.S. Public Health Service (1992) and Institute of Medicine (1998) issued separate recommendations that all women capable of becoming pregnant consume 400 micro g of folic acid daily, and the Food and Drug Administration mandated fortification of cereal grain products with folic acid to increase women's daily intake. Fortification of the U.S. food supply with folic acid has resulted in a 26% reduction in NTDs. However, even with fortification, not all women receive adequate levels of folic acid from their diets. Therefore, increasing the use of vitamins containing folic acid remains an important component of NTD prevention. To monitor the use of vitamins containing folic acid among women of childbearing age, the Gallup Organization has conducted a series of surveys for the March of Dimes Birth Defects Foundation since 1995. This report presents results from the 2004 survey, which indicated that although no substantial increase in the proportion of women who use vitamins containing folic acid daily occurred during 1995-2003, a substantial increase was observed in 2004, with 40% of women aged 18-45 years reporting daily consumption of a vitamin containing folic acid. This report also presents information about women's dieting behaviors. Regardless of dieting status, public health programs should stress the importance of women in their childbearing years consuming 400 micro g of folic acid daily through supplements, fortified foods, and a diet containing folate-rich foods. PMID:15371968

  5. Development Status of a Power Processing Unit for Low Power Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.; Lafontaine, Eric M.

    2000-01-01

    An advanced breadboard Power Processing Unit (PPU) for a low power ion propulsion system incorporating mass reduction techniques was designed and fabricated. As a result of similar output current requirements, the discharge supply was also used to provide the neutralizer heater and discharge heater functions by using three relays to switch the output connections. This multi-function supply reduces to four the number of power converters needed to produce the required six electrical outputs. Switching frequencies of 20 and 50 kHz were chosen as a compromise between the size of the magnetic components and switching losses. The advanced breadboard PPU is capable of a maximum total output power of 0.47 kW. Its component mass is 0.65 kg and its total mass 1.9 kg. The total efficiency at full power is 0.89.

  6. Force Field for Mg(2+), Mn(2+), Zn(2+), and Cd(2+) Ions That Have Balanced Interactions with Nucleic Acids.

    PubMed

    Panteva, Maria T; Giambaşu, George M; York, Darrin M

    2015-12-17

    Divalent metal ions are of fundamental importance to the function and folding of nucleic acids. Divalent metal ion-nucleic acid interactions are complex in nature and include both territorial and site specific binding. Commonly employed nonbonded divalent ion models, however, are often parametrized against bulk ion properties and are subsequently utilized in biomolecular simulations without considering any data related to interactions at specific nucleic acid sites. Previously, we assessed the ability of 17 different nonbonded Mg(2+) ion models to reproduce different properties of Mg(2+) in aqueous solution including radial distribution functions, solvation free energies, water exchange rates, and translational diffusion coefficients. In the present work, we depart from the recently developed 12-6-4 potential models for divalent metal ions developed by Li and Merz and tune the pairwise parameters for Mg(2+), Mn(2+), Zn(2+), and Cd(2+) binding dimethyl phosphate, adenosine, and guanosine in order to reproduce experimental site specific binding free energies derived from potentiometric pH titration data. We further apply these parameters to investigate a metal ion migration previously proposed to occur during the catalytic reaction of the hammerhead ribozyme. The new parameters are shown to be accurate and balanced for nucleic acid binding in comparison with available experimental data and provide an important tool for molecular dynamics and free energy simulations of nucleic acids where these ions may exhibit different binding modes. PMID:26583536

  7. Force Field for Mg2+, Mn2+, Zn2+ and Cd2+ Ions That Have Balanced Interactions with Nucleic Acids

    PubMed Central

    Panteva, Maria T.; Giambaşu, George M.; York, Darrin M.

    2016-01-01

    Divalent metal ions are of fundamental importance to the function and folding of nucleic acids. Divalent metal ion - nucleic acid interactions are complex in nature and include both territorial, as well as site specific binding. Commonly employed non-bonded divalent ion models, however, are often parametrized against bulk ion properties and are subsequently utilized in biomolecular simulations without considering any data related to interactions at specific nucleic acid sites. Previously, we assessed the ability of 17 different non-bonded Mg2+ ion models to reproduce different properties of Mg2+ in aqueous solution including radial distribution functions, solvation free energies, water exchange rates and translational diffusion coefficients. In the present work, we depart from the recently developed 12-6-4 potential models for divalent metal ions developed by Li and Merz and tune the pairwise parameters for Mg2+, Mn2+, Zn2+ and Cd2+ binding dimethyl phosphate, adenosine and guanosine in order to reproduce experimental site specific binding free energies derived from potentiometric pH titration data. We further apply these parameters to investigate a metal ion migration previously proposed to occur during the catalytic reaction of the hammerhead ribozyme. The new parameters are shown to be accurate and balanced for nucleic acid binding in comparison with available experimental data, and provide an important tool for molecular dynamics and free energy simulations of nucleic acids where these ions may exhibit different binding modes. PMID:26583536

  8. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  9. Proposal for a novel method of precisely determining the atomic mass unit by the accumulation of ions

    NASA Astrophysics Data System (ADS)

    Gläser, Michael

    1991-10-01

    An experiment for direct measurement of the atomic mass unit is proposed. A mononuclidic ion flux is collected and accumulated to an amount that can be weighed with high accuracy. Simultaneously, the ion current is measured and integrated. By means of voltage and resistance references based on the Josephson and the quantum Hall effect, the mass is then related to atomic mass by frequency counting over a certain time interval. This experiment may enable a new, physical definition of the kilogram.

  10. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion.

    PubMed

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2015-01-01

    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread. PMID:25523885

  11. Preparation and Microbiological Evaluation of Amphiphilic Kanamycin-Lipoamino Acid Ion-Pairs

    PubMed Central

    Pignatello, Rosario; Leonardi, Antonio; Petronio Petronio, Giulio; Ruozi, Barbara; Puglisi, Giovanni; Furneri, Pio Maria

    2014-01-01

    Amphiphilic ion-pairs of kanamycin (KAN) were prepared by evaporation of a water-ethanol co-solution of KAN base and a lipoamino acid bearing a 12-carbon atoms alkyl side chain (LAA12), at different molar ratios. Infrared spectroscopy confirmed the structure of ion-pairs, while differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) studies supported the formation of new saline species with a different crystalline structure than the starting components. The solubility pattern shown in a range of both aqueous and organic solvents confirmed that the ion-pairs possess an amphiphilic character. The LAA12 counter-ion showed not to improve the antibacterial activity of KAN, suggesting that such chemical strategy is not able to favor the penetration of this drug inside the bacteria cells. Nevertheless, a slight improving, i.e., a one-fold dilution, was observed in E. coli. The present study can also serve as the basis for a further evaluation of LAA ion-pairing of antibiotics, as a means to improve the loading of hydrophilic drugs into lipid-based nanocarriers. PMID:27025745

  12. Neuron attachment properties of carbon negative-ion implanted bioabsorbable polymer of poly-lactic acid

    NASA Astrophysics Data System (ADS)

    Tsuji, Hiroshi; Sasaki, Hitoshi; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    2002-05-01

    Modification of a bioabsorbable polymer of poly-lactic acid (PLA) by negative carbon ion implantation was investigated with resect to radiation effects on surface physical properties and nerve-cell attachment properties. Carbon negative ions were implanted to PLA at energy of 5-30 keV with a dose of 10 14-10 16 ions/cm 2. Most C-implanted PLA samples showed contact angles near 80° and almost same as that of unimplanted PLA, although a few samples at 5 keV and less 3×10 14 ions/cm 2 had contact angles larger than 90°. The attachment properties of nerve cells of PC-12h (rat adrenal phechromocytoma) in vitro were studied. PC-12h cells attached on the unimplanted region in C-implanted PLA samples at 5 and 10 keV. On the contrary, the nerve cells attached on only implanted region for the C-implanted PLA sample at 30 keV and 1×10 15 ions/cm 2.

  13. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure

    PubMed Central

    D'Atri, Valentina; Porrini, Massimiliano; Rosu, Frédéric; Gabelica, Valérie

    2015-01-01

    Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section ΩEXP. Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting ΩCALC are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with ΩEXP determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial. © 2015 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26259654

  14. Poly(2-thiophen-3-yl-malonic acid), a polythiophene with two carboxylic acids per repeating unit.

    PubMed

    Bertran, Oscar; Armelin, Elaine; Estrany, Francesc; Gomes, Alex; Torras, Juan; Alemán, Carlos

    2010-05-20

    A new substituted polythiophene derivative bearing malonic acid, poly(2-thiophen-3-yl-malonic acid), has been prepared and characterized using a strategy that combines both experimental and theoretical methodologies. The chemical structure of this material has been investigated using FTIR and (1)H NMR, and its molecular conformation has been determined using quantum mechanical calculations. Interestingly, the arrangement of the inter-ring dihedral angles was found to depend on the ionization degree of the material, that is, on the pH, which has been found completely soluble in aqueous base solution. Thus, the preferred anti-gauche conformation changes to syn-gauche when the negatively charged carboxylate groups transforms into neutral carboxylic acid. UV-vis experiments and quantum mechanical calculations on model systems with a head-to-tail regiochemistry showed that the lowest pi-pi* transition energy is 2.25 and 2.39 eV for the negatively charged and the neutral polymer, respectively. These values are slightly larger than those previously reported for other polythiophenes with bulky polar side groups. The polymer presents a good thermal stability with a decomposition temperature above 215 degrees C and an electrical conductivity of 10(-5) S/cm, which is characteristic of semiconductor materials. Scanning electron microscopy micrographs showed that, after doping, the surface of this material displays regular distribution pores with irregular sizes. This surface suggests that poly(2-thiophen-3-yl-malonic acid) is a candidate for potential applications such as selective membranes for electrodialysis, wastewater treatment, or ion-selective membranes for biomedical uses. PMID:20411968

  15. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X− = Cl−, Br−) generates ethyl halides via halogen atom abstraction from FeXn3−n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ≥0.05 M X−. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M−1 s−1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M−1 s−1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  16. The effect of the use of NP305 masks in improving respiratory symptoms in workers exposed to sulfuric acid mists in plating and pickling units

    PubMed Central

    Rafieepour, Athena; Dolatshahi, Narges Gholamzadeh Taj; Ghasemkhan, Alireza Haj; Asghari, Mehdi; Sadeghian, Marzieh; Asadi, Ali

    2013-01-01

    Background: Plating and pickling processes are the most effective ways for increasing the strength of metal structures, and workers in these units are exposed to various contaminants, including acid mists. The aim of this study was to investigate the effect of protective masks in decreasing the respiratory symptoms and the aerobic capacity of workers that are exposed sulfuric acid mist. Methods: This interventional study was based on National Institute for Occupational Safety and Health (NIOSH) standard 7903 in which silica gel tubes are used for sampling the air in plating and pickling units for eight hours. After the samples were acquired and prepared, they were analyzed by ion chromatography and were compared with the American Conference of Governmental Industrial Hygienists (ACGIH) exposure limits. Respiratory symptoms were evaluated among two sets of test subjects, i.e., those who used NP305 masks in the workplace and those who did not use the mask. Results: The results showed that the concentration of sulfuric acid mist in the plating units was greater than the exposure limits, and concentrations at this level can cause an increase in symptoms related to irritation of the airway and a slight decrease in respiratory capacity. In this study, smoking had no significant effect on the severity of pulmonary dysfunction. Conclusion: The results indicated that the use of an NP305 mask is effective for decreasing symptoms resulting from exposure to sulfuric acid mist and improving respiratory capacity. PMID:26120392

  17. Multi-shell model of ion-induced nucleic acid condensation.

    PubMed

    Tolokh, Igor S; Drozdetski, Aleksander V; Pollack, Lois; Baker, Nathan A; Onufriev, Alexey V

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregationfree energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregationfree energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNAcondensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NAcondensation lends support to proposed NAcondensation picture based on the multivalent "ion binding shells

  18. Multi-shell model of ion-induced nucleic acid condensation

    NASA Astrophysics Data System (ADS)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding

  19. Density Functional Theory Study on the Interactions of Metal Ions with Long Chain Deprotonated Carboxylic Acids.

    PubMed

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Koch, Henrik; Åstrand, Per-Olof; Trinh, Thuat T; Grimes, Brian A

    2015-10-01

    In this work, interactions between carboxylate ions and calcium or sodium ions are investigated via density functional theory (DFT). Despite the ubiquitous presence of these interactions in natural and industrial chemical processes, few DFT studies on these systems exist in the literature. Special focus has been placed on determining the influence of the multibody interactions (with up to 4 carboxylates and one metal ion) on an effective pair-interaction potential, such as those used in molecular mechanics (MM). Specifically, DFT calculations are employed to quantify an effective pair-potential that implicitly includes multibody interactions to construct potential energy curves for carboxylate-metal ion pairs. The DFT calculated potential curves are compared to a widely used molecular mechanics force field (OPLS-AA). The calculations indicate that multibody effects do influence the energetic behavior of these ionic pairs and the extent of this influence is determined by a balance between (a) charge transfer from the carboxylate to the metal ions which stabilizes the complex and (b) repulsion between carboxylates, which destabilizes the complex. Additionally, the potential curves of the complexes with 1 and 2 carboxylates and one counterion have been examined to higher separation distance (20 Å) by the use of relaxed scan optimization and constrained density functional theory (CDFT). The results from the relaxed scan optimization indicate that near the equilibrium distance, the charge transfer between the metal ion and the deprotonated carboxylic acid group is significant and leads to non-negligible differences between the DFT and MM potential curves, especially for calcium. However, at longer separation distances the MM calculated interaction potential functions converge to those calculated with CDFT, effectively indicating the approximate domain of the separation distance coordinate where charge transfer between the ions is occurring. PMID:26331433

  20. Mercury(II) ion-selective electrodes based on p-tert-butyl calix[4]crowns with imine units.

    PubMed

    Mahajan, Rakesh Kumar; Kaur, Ravneet; Kaur, Inderpreet; Sharma, Vandana; Kumar, Manoj

    2004-05-01

    A PVC membrane incorporating p-tert-butyl calix[4]crown with imine units as an ionophore was prepared and used in an ion-selective electrode for the determination of mercury(II) ions. An electrode based on this ionophore showed a good potentiometric response for mercury(II) ions over a wide concentration range of 5.0 x 10(-5) - 1.0 x 10(-1) M with a near-Nernstian slope of 27.3 mV per decade. The detection limit of the electrode was 2.24 x 10(-5) M and the electrode worked well in the pH range of 1.3 - 4.0. The electrode showed a short response time of less than 20 s. The electrode also showed better selectivity for mercury(II) ions over many of the alkali (Na+, -1.69; K+, -1.54), alkaline-earth (Ca2+, -3.30; Ba2+, -3.32), and heavy metal ions (Co2+, -3.67; Ni2+, -3.43; Pb2+, -3.31; Fe3+, -1.82). Ag+ ion was found to be the strongest interfering ion. Also, sharp end points were obtained when the sensor was used as an indicator electrode for the potentiometric titration of mercury(II) ions with iodide and dichromate ions. PMID:15171285

  1. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences. PMID:15250416

  2. DDQ-promoted dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones by a radical ion mechanism.

    PubMed

    Ding, Ye; Huang, Zhangjian; Yin, Jian; Lai, Yisheng; Zhang, Shibo; Zhang, Zhiguo; Fang, Lei; Peng, Sixun; Zhang, Yihua

    2011-09-01

    A novel and facile DDQ-mediated dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones is described. The formation of lactones proceeds by a radical ion mechanism, which has been established by DPPH˙-mediated chemical identification, ESR spectroscopy and an enol intermediate trapping. PMID:21766102

  3. IR-spectroscopic investigation of the acid properties of the surface of zirconium oxide modified by sulfate ions

    SciTech Connect

    Komarov, V.S.; Sinilo, M.F.

    1988-12-01

    The methods of IR spectroscopic and gravimetric measurements of the adsorption of pyridine and ammonia were used to study the acid properties of zirconium oxide, modified by sulfate ions. It was shown that the total acidity and the ratio of the numbers of Lewis and Broensted acid centers depend on the content of sulfate ions and the temperature of vacuum conditioning of the samples. It was established that the function of Broensted centers is performed by hydroxyl groups. It was shown that pyridine and ammonia molecules, chemisorbed on acid centers, are additionally coordinated by SO/sub 4//sup 2/minus// anions.

  4. Non-enzymic phosphorylation of polyphosphoinositides and phosphatidic acid is catalysed by bivalent metal ions.

    PubMed Central

    Gumber, S C; Lowenstein, J M

    1986-01-01

    Phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate and phosphatidic acid undergo non-enzymic phosphorylation by ATP in the presence of bivalent metal ions. The non-enzymic reaction is more rapid in a mixture of water, chloroform and methanol than in water alone. Chemical evidence indicates that the product formed from phosphatidylinositol 4-phosphate is the corresponding 4-pyrophosphate. This product shows an RF value very close to that of phosphatidylinositol 4,5-bisphosphate on t.l.c. with an acidic solvent commonly used to characterize and measure the latter; however, it can be separated readily with an alkaline solvent. Chemical evidence indicates that the products formed from phosphatidylinositol 4,5-bisphosphate and phosphatidic acid are also pyrophosphates. Images Fig. 1. Fig. 2. PMID:3017309

  5. Effects of ion substitution on bile acid-dependent and -independent bile formation by rat liver.

    PubMed Central

    Van Dyke, R W; Stephens, J E; Scharschmidt, B F

    1982-01-01

    To characterize the transport mechanisms responsible for formation of canalicular bile, we have examined the effects of ion substitution on bile acid-dependent and bile acid-independent bile formation by the isolated perfused rat liver. Complete replacement of perfusate sodium with choline and lithium abolished taurocholate-induced choleresis and reduced biliary taurocholate output by greater than 70%. Partial replacement of perfusate sodium (25 of 128 mM) by choline reduced bile acid-independent bile formation by 30% and replacement of the remaining sodium (103 mM) by choline reduced bile acid-independent bile formation by an additional 64%. In contrast, replacement of the remaining sodium (103 mM) by lithium reduced bile acid-independent bile formation by only an additional 20%, while complete replacement of sodium (128 mM) by lithium reduced bile formation by only 17%, and lithium replaced sodium as the predominant biliary cation. Replacement of perfusate bicarbonate by Tricine, a zwitterionic amino acid buffer, decreased bile acid-independent bile formation by greater than or equal to 50% and decreased biliary bicarbonate output by approximately 60%, regardless of the accompanying cation. In separate experiments, replacement of sodium by lithium essentially abolished Na,K-ATPase activity measured either as ouabain-suppressible ATP hydrolysis in rat liver or kidney homogenates, or as ouabain-suppressible 86Rb uptake by cultured rat hepatocytes. These studies indicate that bile acid(taurocholate)-dependent bile formation by rat liver exhibits a specific requirement for sodium, a finding probably attributable to the role(s) of sodium in hepatic sodium-coupled taurocholate uptake and/or in maintenance of Na,K-ATPase activity. The surprising finding that bile acid-independent bile formation was substantially unaltered by complete replacement of sodium with the permeant cation lithium does not appear to be explained by Na,K-ATPase-mediated lithium transport. Although

  6. Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Shim, Jimin; Bae, Ki Yoon; Kim, Hee Joong; Lee, Jin Hong; Kim, Dong-Gyun; Yoon, Woo Young; Lee, Jong-Chan

    2015-12-21

    Solid polymer electrolytes (SPEs) for all-solid-state lithium-ion batteries are prepared by simple one-pot polymerization induced by ultraviolet (UV) light using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as an ion-conducting monomeric unit and tannic acid (TA)-based crosslinking agent and plasticizer. The crosslinking agent and plasticizer based on natural resources are obtained from the reaction of TA with glycidyl methacrylate and glycidyl poly(ethylene glycol), respectively. Dimensionally stable free-standing SPE having a large ionic conductivity of 5.6×10(-4)  Scm(-1) at room temperature can be obtained by the polymerization of PEGMA into P(PEGMA) with a very small amount (0.1 wt %) of the crosslinking agent and 2.0 wt % of the plasticizer. The ionic conductivity value of SPE with a crosslinked structure is one order of magnitude larger than that of linear P(PEGMA) in the waxy state. PMID:26609912

  7. Metal ion complexation properties of fulvic acids extracted from composted sewage sludge as compared to a soil fulvic acid.

    PubMed

    Esteves da Silva, Joaquim C G; Oliveira, César J S

    2002-07-01

    Complexation properties of an anthropogenic fulvic acid (FA) extracted from a composted sewage sludge (csFA) for Cu(II), Pb(II) and Cd(II) were studied at pH=6 and at a concentration of 25 mg L(-1). For the case of Cu(II), a particular analysis of the complexation phenomena was done at pH values of 3, 4, 5 and 6 and at aqueous FA concentrations of 25, 50 and 100 mg L(-1) by synchronous excitation molecular fluorescence spectroscopy (SyF). Potentiometric titrimetry with Cu(II), Pb(II), Cd(II) and H+ ion-selective electrodes and acid-base conductimetric titrations were used to obtain experimental information about the acid properties and complexation phenomena. A comparison of the results obtained for csFA with a natural soil FA (sFA) was made. Differences have been detected in the structural composition of the two samples and in the structure of the binding sites. In the csFA, binding site structures containing nitrogen probably play an important role in the complexation, besides oxygen containing structures. Complexation by sFA is mainly due to carboxylic and phenolic structures. Nevertheless, this work shows that csFA have macroscopic complexation properties (magnitude of the conditional stability constant and binding sites concentration) somewhat similar to the natural sFA samples. PMID:12188141

  8. A novel sea anemone peptide that inhibits acid-sensing ion channels.

    PubMed

    Rodríguez, Armando Alexei; Salceda, Emilio; Garateix, Anoland Georgina; Zaharenko, André Junqueira; Peigneur, Steve; López, Omar; Pons, Tirso; Richardson, Michael; Díaz, Maylín; Hernández, Yasnay; Ständker, Ludger; Tytgat, Jan; Soto, Enrique

    2014-03-01

    Sea anemones produce ion channels peptide toxins of pharmacological and biomedical interest. However, peptides acting on ligand-gated ion channels, including acid-sensing ion channel (ASIC) toxins, remain poorly explored. PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by gel filtration, ion-exchange and reversed-phase chromatography followed by biological evaluation on ion channels of isolated rat dorsal root ganglia (DRG) neurons using patch clamp techniques. PhcrTx1 partially inhibited ASIC currents (IC50∼100 nM), and also voltage-gated K(+) currents but the effects on the peak and on the steady state currents were lower than 20% in DRG neurons, at concentrations in the micromolar range. No significant effect was observed on Na(+) voltage-gated currents in DRG neurons. The N-terminal sequencing yielded 32 amino acid residues, with a molecular mass of 3477 Da by mass spectrometry. No sequence identity to other sea anemone peptides was found. Interestingly, the bioinformatic analysis of Cys-pattern and secondary structure arrangement suggested that this peptide presents an Inhibitor Cystine Knot (ICK) scaffold, which has been found in other venomous organisms such as spider, scorpions and cone snails. Our results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASIC and, with much lower potency, on Kv channels. Moreover, this is the first report of an ICK peptide in cnidarians, suggesting that the occurrence of this motif in venomous animals is more ancient than expected. PMID:23764262

  9. Structure-forming units of amino acid maleates. Case study of L-valinium hydrogen maleate.

    PubMed

    Rychkov, Denis; Arkhipov, Sergey; Boldyreva, Elena

    2016-02-01

    A new salt of L-valinium hydrogen maleate was used as an example to study structure-forming units in amino acid maleates. This compound was crystallized, its structure solved from single-crystal X-ray diffraction data, and the phase purity of the bulk powder sample confirmed by X-ray powder diffraction and FT-IR spectra. The stability of the new salt was analyzed using density functional theory and PIXEL calculations with focus on the C(2)2(12) structure-forming crystallographic motif. This motif was of particular interest as it is common for almost all maleates. The exceptionally high ability of maleic acid to form salts with various amino acids was rationalized. PMID:26830808

  10. Factors contributing to differences in acid-neutralizing capacity among lakes in the western United States

    SciTech Connect

    Eilers, J.M.; Landers, D.H.; Brakke, D.F.; Linthurst, R.A.

    1987-09-01

    A survey of lakes in mountainous areas of the Western United States was conducted in fall 1985 by the US Environmental Protection Agency (EPA) in cooperation with the USDA - Forest Service. Of the 719 probability sample lakes, only one was acidic; 99% of the lakes were estimated to have pH>6.0. However, acid-neutralizing capacity (ANC) was < or = 50 microeq L-1 for an estimated 16.8% of the lakes in the study area. Of the five subregions in the West, California had the highest proportion of lakes with ANC < or = 50 microeq L-1 (36.7%) and the Southern Rocky Mountains had the lowest proportion (4.6%). The lakes in the West were post-stratified into geomorphic units corresponding to major mountain ranges. Watershed factors, including watershed area, lake area, watershed area: lake area ratio, lake depth, watershed slope, percent exposed bedrock, elevation, and hydraulic residence time, were examined within six geomorphic units in order to evaluate their relationship to lake ANC. These watershed variables had poor predictive capability with respect to ANC. The results suggest that higher-resolution information for factors such as mineralogy and hydrology are required for prediction of lake ANC within a given geomorphic unit.

  11. Study of coagulation processes of selected humic acids under copper ions influence*

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja; Sokolowska, Zofia

    2013-04-01

    Humic acids have limited sorption capacity and big dose of metal or other mineral component which can be sorbed on humic acids, can cause saturation of negative, surface charge of humic acids leading to destabilization of dissolved humic acids compounds. Destabilisation can be observed as coagulation and floculation proces of humic acids. However there are a lot of mechanisms which causing precipitation of humic acids. Thereby, in order to full description of coagulation process, different methods should be applied. Ordinarily, humic acids coagulation is studied by measurement of absorbance, transmittance or carbon loss in solution. Meanwhile, very significant information is also variation of metal content in soil solution and information whether metal goes to precipitate together with humic acids or stays in dissolved form in solution. So, that, from one side, processes of stronger accumulation of metal can lead to soil degradation and micronutrient deficiency for plants. However, there is also possibility to stay metal in solution in toxic and bioavailable form for plants. Main aim of this paper was to study coagulation process of different humic acids extracted from mucking peats under copper ions influence at adjusted pH to 5. In order to this, four peaty-muck soils were taken from selected places in east part of Poland (meadows and river valleys). These soils differed by humification degree, secondary transformation, density and pH. At next step, humic acids were extracted from soils using sodium hydroxide (NaOH) extractant. After exact purification by washing with HF-HCl mixture and water, humic acids were liofilized. Solutions of humic acids were prepared at concentration 40 mg/dm3 with addition of different amount of copper ions to obtain final concentration of Cu(II) ranged from 0-40mg/dm3. After 24 hours solutions were investigated using measurements of absorbance at 470nm (UV-VIS spectrometer Jasco V-530), measurements of organic carbon in solution

  12. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl- L-proline methyl ester)- graft-poly(acrylic acid) for selective permeation of metal ions

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shin; Ohashi, Hitoshi; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru

    2005-04-01

    Thermo- and pH-responsive gel membranes were synthesized by γ-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl- L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30°C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved.

  13. Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1

    PubMed Central

    Hiatt, A. J.

    1967-01-01

    Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506

  14. Implications of a gradient in acid and ion deposition across the northern Great Lakes states

    SciTech Connect

    Glass, G.E.; Loucks, O.L.

    1986-01-01

    Average precipitation pH, 1979-1982, declines from west to east from 5.3 to 4.3 along a cross section of sites in Minnesota, Wisconsin, and Michigan. This answers questions about the seasonal and geographic pattern of anthropogenic acid precursor emissions and reaction products (SO/sub 4//sup 2 -/, NO/sub 3//sup -/, H/sup +/, NH/sub 2//sup +/) that increase from west to east. Except for higher concentrations of Ca/sup 2 +/ and Mg/sup 2 +/ observed at one site in the cultivated areas of southwestern Minnesota, the contribution of soil-related metal cations to the total ions in solution is small (17%) and relatively uniform across the region. Significant seasonal and geographic patterns in precipitation chemistry and deposition values are observed. Close correspondence of the sums of strong acid anions with the sums of hydrogen and ammonium ions in precipitation is observed, indicating anthropogenic sources of sulfur and nitrogen oxides. Present atmospheric inputs show close chemical correspondence when precipitation chemistry values are compared to the resulting ionic composition of weakly buffered lakes in north central Wisconsin and northern Michigan. The wet deposition of total acidity in the middle and eastern part of the region is comparable to that of impacted sites in the Adirondacks and in regions of Scandinavia. 39 references, 3 figures, 6 tables.

  15. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

    SciTech Connect

    Ugawa, Shinya Ishida, Yusuke; Ueda, Takashi; Yu, Yong; Shimada, Shoichi

    2008-03-14

    Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K{sup +} (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC{sub 50} (inhibition constant) = approximately 48.3 {mu}M) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction.

  16. Structural Domains Underlying the Activation of Acid-Sensing Ion Channel 2a

    PubMed Central

    Schuhmacher, Laura-Nadine; Srivats, Shyam; Smith, Ewan St. John

    2015-01-01

    The acid-sensing ion channels (ASICs) are a family of ion channels expressed throughout the mammalian nervous system. The principal activator of ASICs is extracellular protons, and ASICs have been demonstrated to play a significant role in many physiologic and pathophysiologic processes, including synaptic transmission, nociception, and fear. However, not all ASICs are proton-sensitive: ASIC2a is activated by acid, whereas its splice variant ASIC2b is not. We made a series of chimeric ASIC2 proteins, and using whole-cell electrophysiology we have identified the minimal region of the ASIC2a extracellular domain that is required for ASIC2 proton activation: the first 87 amino acids after transmembrane domain 1. We next examined the function of different domains within the ASIC2b N-terminus and identified a region proximal to the first transmembrane domain that confers tachyphylaxis upon ASIC2a. We have thus identified domains of ASIC2 that are crucial to channel function and may be important for the function of other members of the ASIC family. PMID:25583083

  17. EXAFS determinations of uranium structures: The uranyl ion complexed with tartaric, citric, and malic acids

    SciTech Connect

    Allen, P.G.; Shuh, D.K.; Bucher, J.J.

    1996-01-31

    Studies of the coordination chemistry of uranium in aqueous solutions are increasingly important for understanding the behavior of uranium in the environment. Actinide speciation information is essential for assessing and developing long-term strategies addressing problems such as migration in nuclear waste repositories or improvements in the processing of nuclear waste and materials. Relative to the latter, one method for removing uranium contamination from soils involves extraction using a chelating agent such as Tiron, or citrate. These types of extractants are quite efficient at binding the uranyl ion and thus are suitable for removing uranium contamination when it is in the hexavalent uranyl ion form. Martell et al. and Markovits et al. have published a series of articles detailing the complexation of the uranyl ion with tartaric, malic, and citric acids as a function of pH. Using the functional dependencies of potentiometric titration results, they showed that, in the pH range 2-4, the uranyl ion forms a 2:2 dimeric species, (UO{sub 2}){sub 2-} (L){sub 2}, where L = tartrate, malate, or citrate ligands. The authors have reinvestigated the solution structures of the uranyl complexes formed in these systems with the structural technique extended X-ray absorption fine-structure (EXAFS) spectroscopy.

  18. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    PubMed

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange. PMID:27082258

  19. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  20. Elution profiles of lanthanides with α-hydroxyisobutyric acid by ion exchange chromatography using fine resin.

    PubMed

    Trikha, Rahul; Sharma, Bal Krishan; Sabharwal, Kanwal Nain; Prabhu, Krishan

    2015-11-01

    Experiments were carried out using a strong acid cation exchange resin with a particle size of 75-150 μm, termed as "fine resin" in hydrogen ion form for the elution of individual lanthanides Sm, Eu, Gd, Tb, and Dy that are produced as fission products in the spent nuclear fuel and generated in the effluent during reprocessing of spent nuclear fuel. Batch experiments were carried out to study the effect of concentration of nitric acid on distribution coefficient. The distribution coefficient values for these individual lanthanides were determined in nitric acid medium in the concentration range of 0.01-4.0 N. Uptake of each individual lanthanide by resin was increased with increased nitric acid concentration from 0.01 to 0.5 N and remained similar from 0.5 to 1.0 N and decreased thereafter up to 4.0 N. Column experiments were also carried out using the same resin to study the parameters like pH of the eluent, flow rate, and resin bed height under isocratic elution conditions for eluting lanthanide elements using α-hydroxyisobutyric acid as eluent. The results of this study have indicated the possibility for the elution of individual lanthanides. PMID:26333182

  1. Evaluation of environmental factors affecting yields of major dissolved ions of streams in the United States

    USGS Publications Warehouse

    Peters, Norman E.

    1984-01-01

    The seven major dissolved ions in streams-sodium, potassium, magnesium, calcium, chloride, sulfate, and bicarbonate and their sum dissolved solids from 56 basins in the conterminous United States and Hawaii were correlated with bedrock type, annual precipitation, population density, and average stream temperature of their respective basins through multiple linear-regression equations to predict annual yields. The study was restricted to basins underlain by limestone, sandstone, or crystalline rock. Depending on the constituent, yields ranged from about 10 to 100,000 kilograms per square kilometer. Predicted yields were within 1 order of magnitude of measured yields. The most important factor in yield prediction was annual precipitation, which accounted for 58 to 71 percent of all yields. Rock type was second in importance. Yields of magnesium, calcium, bicarbonate, and dissolved solids from limestone basins were 4 to 10 times larger than those from sandstone or crystalline basins as a result of carbonate weathering. Population density was an ineffective indicator of all constituents except sodium and chloride; it accounted for 13 percent of the annual sodium yield and 20 percent of the annual chloride yield. Average stream temperature was significant only for calcium and bicarbonate in limestone basins. Its relationship with yields was consistently negative. Either carbonate dissolution increases at low temperatures, or weathering in northern basins, which contain glacial deposits and have the lowest stream temperatures, is greater than in southern basins. Average ion contributions from atmospheric deposition accounted for 30 percent of the sodium and chloride and 60 percent of the sulfate in annual yields. The amount of sulfate derived from atmospheric contributions was higher in sandstone and crystalline basins (65 and 80 percent, respectively) than limestone basins (38 percent). This disparity is attributed to the lack of available sulfate in crystalline rock

  2. Parallel transport of an organic acid by solid-phase and macropore diffusion in a weakly basic ion exchanger

    SciTech Connect

    Yoshida, Hiroyuki; Takatsuji; Wataru

    2000-04-01

    The parallel transport of an organic acid by solid-phase and macropore diffusion within a porous ion exchanger was studied by measuring equilibrium isotherms and uptake curves for adsorption of acetic acid and lactic acid on a weakly basic ion exchanger, DIAION WA30. Experimental adsorption isotherms were correlated by the Langmuir equation. The Langmuir equilibrium constant of acetic acid was close to that of lactic acid, and the saturation capacity of acetic acid was about 84% that of lactic acid. Intraparticle effective diffusivity D{sub eff} was determined using the homogeneous Fickian diffusion model. The value of D{sub eff} for acetic acid was about 1.5 times lactic acid. Because D{sub eff} increased with linearly increasing bulk phase concentration C{sub 0}, D{sub eff} was separated to the solid-phase diffusivity D{sub s} and the macropore diffusivity D{sub P} by applying the parallel diffusion model. The model agreed well with the experimental curves. The values of D{sub S} and D{sub P} for acetic acid were about 2 and 1.5 times those of lactic acid, respectively. The acetic acid and the lactic acid may be separated by the difference of the diffusion rates.

  3. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions.

    PubMed

    Huang, Xiujie; Shen, Jing; Qian, Xueren

    2013-10-15

    To mitigate the negative effect of filler addition on paper strength and improve filler retention, filler modification with hydrogen bonding polymers (e.g., starch) or their composites is an interesting research topic. Differing from previous reports, the concept related to the deposition of starch/oleic acid complexes on precipitated calcium carbonate (PCC) with the aid of calcium ions was demonstrated. The introduction of calcium ions resulted in effective starch deposition. As a result of filler modification, filler retention and the tensile strength of the filled paper were simultaneously improved essentially due to the aggregation of PCC particles in filler modification process as well as improved filler bondability. The concept demonstrated in this brief study may provide an alternative approach to filler bondability enhancement for improved papermaking performances. PMID:23987430

  4. Colorimetric Detection of Cadmium Ions Using DL-Mercaptosuccinic Acid-Modified Gold Nanoparticles.

    PubMed

    Chen, Na; Chen, Jun; Yang, Jing-Hua; Bai, Lian-Yang; Zhang, Yu-Ping

    2016-01-01

    A colorimetric assay has been developed for detection of Cd²⁺ utilizing DL-mercaptosuccinic acid-modified gold nanoparticles (MSA-AuNPs). The method showed good selectivity for Cd²⁺ over other metal ions. As a result, the linear relationships (r > 0.9606) between concentration 0.07 mM and 0.20 mM for cadmium ion were obtained. The detection limit was as low as 0.07 mM by the naked eye. The effect of pH on the aggregation was optimized. The MSA-AuNPs probe could be used to detect Cd²⁺ in an aqueous solution based on the aggregation-induced color change of MSA-AuNPs. PMID:27398533

  5. Monolithic octadecylsilyl-silica gel column for the high-speed ion chromatographic determination of acidity.

    PubMed

    Xu, Qun; Tanaka, Kazuhiko; Mori, Masanobu; Helaleh, Murad I H; Hu, Wenzhi; Hasebe, Kiyoshi; Toada, Hiroshi

    2003-05-16

    A monolithic ODS-silica gel column modified by saturating it with lithium dodecylsulfate (Li-DS) was used to demonstrate the high-speed separation of H+ from other mono- and divalent cations, such as Na+, NH4+, K+, Mg2+ and Ca2+ using ion chromatography (IC). Using a 5 mM EDTA-2K solution containing 0.10 mM Li-DS (pH 4.80) as eluent, H+ was eluted with a sharp and symmetrical peak within 1.0 min before other cations at a flow-rate of 1.5 ml min(-1). The rapid elution of H+ and its conductimetric detection could be attributed to the presence of EDTA (HY2-), which can convert H+ ions as anions. i.e. H(+) + H2Y(2-) --> H3Y(-). The acidity of rainwater and deionized water samples was determined using this IC system with satisfactory results. PMID:12830891

  6. Novel Insights into Acid-Sensing Ion Channels: Implications for Degenerative Diseases

    PubMed Central

    Zhou, Ren-Peng; Wu, Xiao-Shan; Wang, Zhi-Sen; Xie, Ya-Ya; Ge, Jin-Fang; Chen, Fei-Hu

    2016-01-01

    Degenerative diseases often strike older adults and are characterized by progressive deterioration of cells, eventually leading to tissue and organ degeneration for which limited effective treatment options are currently available. Acid-sensing ion channels (ASICs), a family of extracellular H+-activated ligand-gated ion channels, play critical roles in physiological and pathological conditions. Aberrant activation of ASICs is reported to regulate cell apoptosis, differentiation and autophagy. Accumulating evidence has highlighted a dramatic increase and activation of ASICs in degenerative disorders, including multiple sclerosis, Parkinson’s disease, Huntington’s disease, intervertebral disc degeneration and arthritis. In this review, we have comprehensively discussed the critical roles of ASICs and their potential utility as therapeutic targets in degenerative diseases. PMID:27493834

  7. Chemiluminescence involving acidic and ambient ion light emitters. The chemiluminescence of the 9-acridinepercarboxylate anion

    SciTech Connect

    White, E.H.; Roswell, D.F.; Dupont, A.C.; Wilson, A.A.

    1987-08-19

    The reaction of phenyl 9-acridinecarboxylate with an excess of peroxide ion in THF/water (67/33 mol %) leads to the emission of either bright yellow-green light or bright blue light, depending on the reaction conditions. The blue emission is favored by high concentrations of hydrogen peroxide and water, for example. 9-Acridinepercarboxylic acid is a common intermediate in the reactions. The light emitter responsible for the blue chemiluminescence is acridone, whereas that responsible for the yellow-green chemiluminescence is the anion of acridone. The effects of base concentration and solvent composition on the relative proportions of these two emitters have produced evidence that, contrary to the expectation of simple theory, a dioxetanone is not an intermediate in the reaction. Other cases where chemiluminescence may involve percarboxylate and peroxide ions are discussed.

  8. Role of transient receptor potential and acid-sensing ion channels in peripheral inflammatory pain.

    PubMed

    White, John P M; Cibelli, Mario; Rei Fidalgo, Antonio; Paule, Cleoper C; Noormohamed, Faruq; Urban, Laszlo; Maze, Mervyn; Nagy, Istvan

    2010-03-01

    Pain originating in inflammation is the most common pathologic pain condition encountered by the anesthesiologist whether in the context of surgery, its aftermath, or in the practice of pain medicine. Inflammatory agents, released as components of the body's response to peripheral tissue damage or disease, are now known to be collectively capable of activating transient receptor potential vanilloid type 1, transient receptor potential vanilloid type 4, transient receptor potential ankyrin type 1, and acid-sensing ion channels, whereas individual agents may activate only certain of these ion channels. These ionotropic receptors serve many physiologic functions-as, indeed, do many of the inflammagens released in the inflammatory process. Here, we introduce the reader to the role of these ionotropic receptors in mediating peripheral pain in response to inflammation. PMID:20179512

  9. Novel Insights into Acid-Sensing Ion Channels: Implications for Degenerative Diseases.

    PubMed

    Zhou, Ren-Peng; Wu, Xiao-Shan; Wang, Zhi-Sen; Xie, Ya-Ya; Ge, Jin-Fang; Chen, Fei-Hu

    2016-08-01

    Degenerative diseases often strike older adults and are characterized by progressive deterioration of cells, eventually leading to tissue and organ degeneration for which limited effective treatment options are currently available. Acid-sensing ion channels (ASICs), a family of extracellular H(+)-activated ligand-gated ion channels, play critical roles in physiological and pathological conditions. Aberrant activation of ASICs is reported to regulate cell apoptosis, differentiation and autophagy. Accumulating evidence has highlighted a dramatic increase and activation of ASICs in degenerative disorders, including multiple sclerosis, Parkinson's disease, Huntington's disease, intervertebral disc degeneration and arthritis. In this review, we have comprehensively discussed the critical roles of ASICs and their potential utility as therapeutic targets in degenerative diseases. PMID:27493834

  10. Tannic-Acid-Coated Polypropylene Membrane as a Separator for Lithium-Ion Batteries.

    PubMed

    Pan, Lei; Wang, Haibin; Wu, Chaolumen; Liao, Chenbo; Li, Lei

    2015-07-29

    To solve the wetting capability issue of commercial polypropylene (PP) separators in lithium-ion batteries (LIBs), we developed a simple dipping surface-coating process based on tannic acid (TA), a natural plant polyphenol. Fourier transform infrared and X-ray photoelectron measurements indicate that the TA is coated successfully on the PP separators. Scanning electron microscopy images show that the TA coating does not destroy the microporous structure of the separators. After being coated with TA, the PP separators become more hydrophilic, which not only enhances the liquid electrolyte retention ability but also increases the ionic conductivity. The battery performance, especially for power capability, is improved after being coated with TA. It indicates that this TA-coating method provides a promising process by which to develop an advanced polymer membrane separator for lithium-ion batteries. PMID:26177514

  11. The Interaction of Positively-charged Ions with Nucleic Acid Systems

    NASA Technical Reports Server (NTRS)

    Pollack, Lois

    2003-01-01

    The successful development of extremely low background sample cells for x-ray scattering studies has enabled experiments designed to elucidate some of the fundamental physical interactions involved in macromolecular folding. Microfabrication techniques were used to fabricate low volume (50 micro-liter) sample cells with silicon nitride membranes (sub micron in thickness) as x-ray windows. Scientifically, these studies focus on the interaction of negatively charged nucleic acid systems, RNA and DNA, with their surrounding (positively charged) ion atmospheres. Understanding the structure of the ion atmosphere and its influence on the shape/conformation of the macromolecule will help reveal the underlying physical forces employed by nature in the self-assembly of these important molecules.

  12. Structural and optical properties of Cd2+ ion on the growth of sulphamic acid single crystals

    NASA Astrophysics Data System (ADS)

    Rajyalakshmi, S.; Rao, Valluru Srinivasa; Reddy, P. V. S. S. S. N.; Krishna, V. Y. Rama; Samatha, K.; Rao, K. Ramachandra

    2016-05-01

    Transparent single crystals of Cadmium doped Sulphamic acid (SA) was grown by Conventional slow evaporation solution technique (SEST) which had the size of 13 × 8 × 7 mm3. The grown single crystals have been characterized using single crystal X-ray diffraction UV-visible Spectral studies and Second harmonic generation (SHG) efficiency and the results were discussed. The lattice parameters of the grown Cd2+ ion doped SA crystal are confirmed by single crystal X-ray diffraction and belong to orthorhombic system. Optical transmittance of the crystal was recorded using UV-vis NIR spectrophotometer with its lower cut off wavelength around 259nm. SHG measurements indicate that the SHG efficiency of the grown Cd2+ ion doped SA crystal at a fundamental wavelength of 1064 nm is approximately equal to KDP.

  13. Neutrophil chemotaxis and arachidonic acid metabolism are not linked: evidence from metal ion probe studies

    SciTech Connect

    Turner, S.R.; Turner, R.A.; Smith, D.M.; Johnson, J.A.

    1986-03-05

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup 3 +/, Zn/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/ and Cu/sup 2 +/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-met-leu-phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid release. In contrast to previous reports, no correlation between AA metabolism and chemotaxis was demonstrated, suggesting that these 2 processes are not linked.

  14. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    SciTech Connect

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  15. Inhibition of acid sensing ion channel by ligustrazine on angina model in rat

    PubMed Central

    Zhang, Zhi-Gang; Zhang, Xiao-Lan; Wang, Xian-Yue; Luo, Zhu-Rong; Song, Jing-Chun

    2015-01-01

    Ligustrazine, a compound extracted from roots of Ligusticum chuanxiong, is widely used in Chinese traditional medicine to treat cardiac and cerebrovascular diseases and pain, including angina. The mechanism(s) of ligustrazine’s effect to reduce angina is not clear. Angina is mediated by cardiac afferent sensory neurons. These neurons display a large acid-evoked depolarizing sodium current that can initiate action potentials in response to acidification that accompanies myocardial ischemia. Acid-sensing ion channels (ASICs) mediate this current. Here we tested the hypothesis that ligustrazine reduces ischemia-induced cardiac dysfunction and acid-evoked pain by an action to inhibit ASIC-mediated current. The effects of ligustrazine to attenuate ischemia-induced ST-segment depression, T wave changes, and myocardial infarct size in hearts of anesthetized rats were determined. Effects of ligustrazine on currents mediated by ASICs expressed in cultured Chinese hamster ovary cells, and effects of the drug on acid-induced nociceptive behavior and acid-induced currents in isolated dorsal root ganglions cells were measured. Ligustrazine significantly attenuated acid-induced ASIC currents, reduced cardiac ischemia-induced electrical dysfunction and infarct size, and decreased the nociceptive response to injection of acid into the paw of the rat hindlimb. The ASIC channel inhibitor A-317567 similarly reduced electrical dysfunction, infarct size, and nociceptive behavior in the rat. Inhibition of ASICs by ligustrazine may explain at least in part the beneficial effects of the drug that are observed in patients with ischemic heart disease and angina. PMID:26692925

  16. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    PubMed

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function. PMID:18459164

  17. The Effect of Hydrophobic Monoamines on Acid-Sensing Ion Channels ASIC1B

    PubMed Central

    Nagaeva, E. I.; Potapieva, N. N.; Tikhonov, D. B.

    2015-01-01

    Acid-sensing ion channels (ASICs) are widely distributed in both the central and peripheral nervous systems of vertebrates. The pharmacology of these receptors remains poorly investigated, while the search for new ASIC modulators is very important. Recently, we found that some monoamines, which are blockers of NMDA receptors, inhibit and/or potentiate acid-sensing ion channels, depending on the subunit composition of the channels. The effect of 9-aminoacridine, IEM-1921, IEM-2117, and memantine both on native receptors and on recombinant ASIC1a, ASIC2a, and ASIC3 homomers was studied. In the present study, we have investigated the effect of these four compounds on homomeric ASIC1b channels. Experiments were performed on recombinant receptors expressed in CHO cells using the whole-cell patch clamp technique. Only two compounds, 9-aminoacridine and memantine, inhibited ASIC1b channels. IEM-1921 and IEM-2117 were inactive even at a 1000 μM concentration. In most aspects, the effect of the compounds on ASIC1b was similar to their effect on ASIC1a. The distinguishing feature of homomeric ASIC1b channels is a steep activation-dependence, indicating cooperative activation by protons. In our experiments, the curve of the concentration dependence of ASIC1b inhibition by 9-aminoacridine also had a slope (Hill coefficient) of 3.8, unlike ASIC1a homomers, for which the Hill coefficient was close to 1. This finding indicates that the inhibitory effect of 9-aminoacridine is associated with changes in the activation properties of acid-sensing ion channels. PMID:26085950

  18. Formation of Amino Acid Precursors by Bombardment of Interstellar Ice Analogs with High Energy Heavy Ions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Mita, Hajime; Yoshida, Satoshi; Shibata, Hiromi; Enomoto, Shingo; Matsuda, Tomoyuki; Fukuda, Hitoshi; Kondo, Kotaro; Oguri, Yoshiyuki; Kebukawa, Yoko

    2016-07-01

    A wide variety of organic compounds have been detected in extraterrestrial bodies. It has been recognized that carbonaceous chondrites contain pristine amino acids [1]. There are several scenarios of the formation of such extraterrestrial amino acids or their precursors. Greenberg proposed a scenario that complex organic compounds were formed in interstellar ices in dense clouds, which were brought into solar system small bodies when the solar system was formed [2]. The ice mantles of interstellar dust particles (ISDs) in dense clouds are composed of H2O, CO, CH3OH, CH4, CO2, NH3, etc. In order to verify the scenario, a number of laboratory experiments have been conducted where interstellar ice analogs were irradiated with high-energy particles [3,4] or UV [5,6], and formation of complex organic compounds including amino acid precursors were detected in the products. Though ion-molecular reactions in gaseous phase and surface reactions on the ice mantles have been studied intensively, much less works on cosmic rays-induced reaction have been reported. In order to study possible formation of complex molecules in interstellar ices, frozen mixtures of water, methanol and ammonia with various mixing ratios were irradiated with high-energy heavy ions such as carbon ions (290 MeV/u) and neon ions (400 MeV/u) from HIMAC, NIRS, Japan. For comparison, gaseous mixtures of water, ammonia, carbon monoxide, carbon dioxide, and/or methane were irradiated with protons (2.5 MeV) from a Tandem accelerator, Tokyo Tech, Japan. Amino acids in the products were determined by cation exchange HPLC after acid hydrolysis. Products, both before and after acid hydrolysis, were also characterized by FT-IR and other techniques. Amino acids were detected in the hydrolyzed products after mixture of CH3OH, NH3 and H2O with various mixing ratios were irradiated with heavy ions, including when their mixing ratio was set close to the reported value of the interstellar ices (10:1:37). In the HIMAC

  19. Uneven distribution of metallic ions in deposits precipitated in the Koshijihara DGA CO{sub 2} removal units

    SciTech Connect

    Tomoe, Y.; Sato, K.

    1997-08-01

    304 stainless steel has been suffering from general corrosion in CO{sub 2} removal units using a high concentration DGA solution in a natural gas processing plant. Deposits precipitated in the DGA units were sampled during annual inspections and analyzed for metallic ions and their compounds. It was found that Fe and Cr were rich in the deposits along the lean DGA lines and Ni was rich along the rich DGA lines. Fe and Cr precipitated as oxides and Ni precipitated as sulfides. This uneven distribution of metallic ions in the units was due to the differences in metal chelate stability with DGA and/or DGA carbamate and also due to the trace amount of H{sub 2}S in the raw natural gas. There has not been a direct proof of carbamates playing some roles in an actual amine unit, this uneven distribution of metallic ions is one evidence that DGA carbamate really plays some roles in actual DGA units.

  20. Covalent and non-covalent binding in the ion/ion charge inversion of peptide cations with benzene-disulfonic acid anions.

    PubMed

    Stutzman, John R; Luongo, Carl A; McLuckey, Scott A

    2012-06-01

    Protonated angiotensin II and protonated leucine enkephalin-based peptides, which included YGGFL, YGGFLF, YGGFLH, YGGFLK and YGGFLR, were subjected to ion/ion reactions with the doubly deprotonated reagents 4-formyl-1,3-benzenedisulfonic acid (FBDSA) and 1,3-benzenedisulfonic acid (BDSA). The major product of the ion/ion reaction is a negatively charged complex of the peptide and reagent. Following dehydration of [M + FBDSA-H](-) via collisional-induced dissociation (CID), angiotensin II (DRVYIHPF) showed evidence for two product populations, one in which a covalent modification has taken place and one in which an electrostatic modification has occurred (i.e. no covalent bond formation). A series of studies with model systems confirmed that strong non-covalent binding of the FBDSA reagent can occur with subsequent ion trap CID resulting in dehydration unrelated to the adduct. Ion trap CID of the dehydration product can result in cleavage of amide bonds in competition with loss of the FBDSA adduct. This scenario is most likely for electrostatically bound complexes in which the peptide contains both an arginine residue and one or more carboxyl groups. Otherwise, loss of the reagent species from the complex, either as an anion or as a neutral species, is the dominant process for electrostatically bound complexes. The results reported here shed new light on the nature of non-covalent interactions in gas phase complexes of peptide ions that can be used in the rationale design of reagent ions for specific ion/ion reaction applications. PMID:22707160

  1. Effect of metal ions in a heated nitric acid solution on the corrosion behavior of a titanium-5% tantalum alloy in the hot nitric acid condensate

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Takeuchi, M.; Nakajima, Y.; Hirano, H.; Uchiyama, G.; Nojima, Y.; Fujine, S.; Matsumoto, S.

    2013-01-01

    For evaluating the application of titanium and its alloys as components of equipment for storing nitric acid condensate in spent nuclear fuel reprocessing plants, the corrosion behavior of titanium-5% tantalum alloy (Ti-5Ta) in a continuously renewed hot nitric acid condensate, and particularly the effect of metal ions in the heated nitric acid solution, was investigated. Corrosion experiments in an apparatus designed to renew the condensate at regular intervals showed that the corrosion rate of Ti-5Ta in the condensate increased linearly with the nitric acid concentration. The surface morphology of Ti-5Ta coupons after the corrosion experiments indicated uniform corrosion under any condition. The oxide film on the coupons had nearly constant thickness, and it was composed of mainly lower Ti oxides, such as TiO and Ti2O3, regardless of the nitric acid concentration in the condensate. The experimental results also showed that the addition of metal ions into the heated nitric acid solution increased the nitric acid concentration in the condensate, which resulted in a higher corrosion rate of Ti-5Ta. The corrosion rate increased noticeably as the valence of the metal ion increased and its ionic radius decreased. This effect of metal ions in the heated nitric acid solution on the corrosion rate of Ti-5Ta in the condensate was evaluated quantitatively based on the Gibbs free energy of hydration of the metal ions, and the calculated corrosion rates of Ti-5Ta in the condensate were found to be in good agreement with the experimental values.

  2. A preliminary study of the hydrolysis of hydroxamic acid complexants in the presence of oxidising metal ions

    NASA Astrophysics Data System (ADS)

    Andrieux, Fabrice P. L.; Boxall, Colin; May, Iain; Taylor, Robin J.

    2010-03-01

    Simple hydroxamic acids (XHAs) are salt free, organic compounds with affinities for cations such as Np4+, Pu4+ and Fe3+. As such they have been identified as suitable reagents for the separation of either Pu and/or Np from U in modified or single cycle Purex based solvent extraction processes designed to meet the emerging requirements of Advanced Fuel Cycles. Acid catalyzed hydrolysis of free XHAs is well known and may impact negatively on reprocessing applications. The hydrolysis of metal-bound XHAs within metal ion-XHA complexes is less understood. Using a model derived for the study of hydroxamic acid hydrolysis in the presence of non-oxidising metal ions (Np (IV) and Fe(III)), we review data pertaining to the hydrolysis of hydroxamic acids in the presence of the oxidising Pu4+ ion, under conditions where the influence of the redox processes may potentially be neglected.

  3. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.

    PubMed

    Sener, Gulsu; Uzun, Lokman; Denizli, Adil

    2014-01-01

    A facile colorimetric sensor array for detection of multiple toxic heavy metal ions (Hg(2+), Cd(2+), Fe(3+), Pb(2+), Al(3+), Cu(2+), and Cr(3+)) in water is demonstrated using 11-mercaptoundecanoic acid (MUA)-capped gold nanoparticles (AuNPs) and five amino acids (lysine, cysteine, histidine, tyrosine, and arginine). The presence of amino acids (which have functional groups that can form complexes with metal ions and MUA) regulates the aggregation of MUA-capped particles; it can either enhance or diminish the particle aggregation. The combinatorial colorimetric response of all channels of the sensor array (i.e., color change in each of AuNP and amino acid couples) enables naked-eye discrimination of all of the metal ions tested in this study with excellent selectivity. PMID:25330256

  4. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies

    USGS Publications Warehouse

    Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C.

    2001-01-01

    North America and Europe are in the midst of a large-scale experiment. Sulfuric and nitric acids have acidified soils, lakes, and streams, thereby stressing or killing terrestrial and aquatic biota. It is therefore critical to measure and to understand the recovery of complex ecosystems in response to decreases in acidic deposition. Fortunately, the NADP, CASTNet, and AIRMoN-dry networks are in place to measure anticipated improvements in air quality and in atmospheric deposition. Unfortunately, networks to measure changes in water quality are sparse, and networks to monitor soil, vegetation, and fish responses are even more limited. There is an acute need to assess the response of these resources to decreases in acid loading. It would be particularly valuable to assess the recovery of aquatic biota - which respond directly to acid stress - to changes in surface water chemistry (Gunn and Mills 1998). We used long-term research from the HBEF and other sites across the northeastern United States to synthesize data on the effects of acidic deposition and to assess ecosystem responses to reductions in emissions. On the basis of existing data, it is clear that in the northeastern United States ??? reductions of SO2 emissions since 1970 have resulted in statistically significant decreases in SO42- in wet and bulk deposition and in surface waters ??? emissions of NOX and concentrations of NO3- in wet and bulk deposition and in surface waters have shown no increase or decrease since the 1980s ??? estimates of NH3 emissions are uncertain, although atmospheric deposition of NH4+ remains important for forest management and stream NO3- loss ??? acidic deposition has accelerated the leaching of base cations from soils, thus delaying the recovery of ANC in lakes and streams from decreased emissions of SO2 (at the HBEF the available soil Ca pool appears to have declined 50% over the past 50 years) ???sulfur and N from atmospheric deposition have accumulated in forest soils across

  5. Adsorption of four perfluorinated acids on non ion exchange polymer sorbents.

    PubMed

    Senevirathna, S T M L D; Tanaka, S; Fujii, S; Kunacheva, C; Harada, H; Shivakoti, B R; Dinh, H; Ariyadasa, T

    2011-01-01

    Perfluorinated compounds (PFCs) have attracted global concern due to their ubiquitous distribution and properties of persistence, bio accumulation and toxicity. The process of adsorption has been identified as an effective technique to remove PFCs in water. Different non ion-exchange polymeric adsorbents were tested with regard to their sorption kinetics and isotherms at low PFCs concentrations. Selected PFCs were perfluorobutanoic acid (PFBA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) and the tested polymers were three types of Dowex optopores (V-493, V503, and L493), Amberlite XAD-4, and Filtrasorb 400 (Granular Activated Carbon-GAC). We observed the selective adsorption of PFCs on synthetic polymers. For PFDA, Amberlite XAD-4 gave the Freundlich adsorption constant of 2,965 (microg PFCs/g sorbent)(microg PFCs/L)(-n), which was higher than that of GAC (121.89 (microg PFCs/g sorbent) (microg PFCS/L)(-n)). In the case of PFBA, GAC showed better performance (13.36) (microg PFCs/g sorbent) microg PFCS/L)(-n) than synthetic polymers (0.62-5.23) (microg PFCs/g sorbent) (microg PFCS/L)(-n). Adsorption kinetics of all adsorbents were well described (R2 = 0.85-1) by pseudo-second order kinetic model. Sorption capacity was influenced by initial PFCs concentration for all adsorbents. GAC reached the equilibrium concentration within 4 hours, Amberlite XAD 4 reached it within 10 hours and other polymers took more than 70 hours. PMID:21977627

  6. Physical Property Requirements of Ion-exchange Polymer Membranes for Acid-base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Thayer, Peter; Jorne', Jacob; Anthamatten, Mitchell

    2013-03-01

    Flow batteries offer feasible solutions to grid-scale storage of intermittent power. We are developing a new type of flow battery that reversibly controls an acid-base neutralization reaction. The battery consists of two highly reversible hydrogen gas electrodes that are exposed to low and high pH process streams. A brine solution runs between the acid and base streams and is separated by cationic and anionic exchange membranes. For both charge and discharge phases, hydrogen gas is produced at one electrode and consumed at the other. During charging, an external potential is applied across the two electrodes to electrochemically produce acid and base from the fed brine solution. Discharge involves electrochemical neutralization of acid and base streams, resulting in current flow through an external load. Several charge and discharge cycles were performed to demonstrate proof of concept. Experiments were conducted to determine the physical property requirements of the ionic exchange polymer layers. Properties including ion conductivity, permselectivity, and membrane stability will be discussed.

  7. Soil water samplers in ion balance studies on acidic forest soils

    SciTech Connect

    Rasmussen, L.; Joergensen, P.; Kruse, S.

    1986-04-01

    During the last years an increasing consciousness has appeared of the injurious effects of acid rain on the forest ecosystems both in Europe and North America. At several localities ion balance studies have been implemented in order to evaluate the impact of the atmospheric deposition of acidic substances and heavy metals on the forest ecosystem. In many localities the leaching of material to the ground water or output from the ecosystem has to be determined by means of tensiometer measurements and soil water sampling. Many different soil water samplers are available on the market and they show useful applicability under the given circumstances. But in many cases soil water samples taken with different equipment give incommensurable results leading to differing explanations of the effects of acid precipitation on elements and their cycling in the ecosystem. The purpose of the present study is twofold. Firstly, the sorption characteristics of different types of soil water samplers are examined under acidic soil conditions both by installation in the field and by laboratory experiments. Secondly, a new method is introduced for current and constant soil water sampling under varying soil suctions in the unsaturated zone.

  8. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.

    PubMed

    Wang, Yanliang; Deng, Weiping; Wang, Binju; Zhang, Qinghong; Wan, Xiaoyue; Tang, Zhenchen; Wang, Ye; Zhu, Chun; Cao, Zexing; Wang, Guichang; Wan, Huilin

    2013-01-01

    The direct transformation of cellulose, which is the main component of lignocellulosic biomass, into building-block chemicals is the key to establishing biomass-based sustainable chemical processes. Only limited successes have been achieved for such transformations under mild conditions. Here we report the simple and efficient chemocatalytic conversion of cellulose in water in the presence of dilute lead(II) ions, into lactic acid, which is a high-value chemical used for the production of fine chemicals and biodegradable plastics. The lactic acid yield from microcrystalline cellulose and several lignocellulose-based raw biomasses is >60% at 463 K. Both theoretical and experimental studies suggest that lead(II) in combination with water catalyses a series of cascading steps for lactic acid formation, including the isomerization of glucose formed via the hydrolysis of cellulose into fructose, the selective cleavage of the C3-C4 bond of fructose to trioses and the selective conversion of trioses into lactic acid. PMID:23846730

  9. Continuous ion-exclusion chromatography system for acid/sugar separation

    SciTech Connect

    Springfield, R.M.; Hester, R.D.

    1999-04-01

    A simulated moving bed ion exclusion chromatography system was constructed for the continuous separation of the components in an aqueous feed solution of sucrose and sulfuric acid. A system of 18 columns was arrayed about a central manifold system. Each column was packed with approximately 820 mL of porous cationic exchange resin. The system was designed for the flexibility to use fluid recycle loops and unrestricted placement of all inlet and outlet streams. Monitoring and control functions were performed using a Camile 2000 process controller integrated with a custom-built control computer. The aqueous feed solution, usually containing 10 wt.% sucrose and 10 wt.% sulfuric acid, was generally introduced into the system at a rate of roughly 2 L/hr. Approximately 4 L/hr of water was used to elute materials through the separation system. After optimization, the separation system allowed greater than 95% recovery of the feed sucrose in an exit stream containing 8.8 wt.% sucrose and 98% recovery of the feed acid in a second exit stream containing 5 wt.% acid.

  10. Phenolic acid content and composition in leaves and roots of common commercial sweetpotato (Ipomea batatas L.) cultivars in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic acids in commercially important sweetpotato cultivars grown in the United States were analyzed using the reversed phase HPLC. Caffeic acid, chlorogenic acid, 4,5-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 3,4-di-O-caffeoylquinic acid were well separated with an isocratic el...

  11. Depth profiling of 4-acetamindophenol-doped poly(lactic acid) films using cluster secondary ion mass spectrometry.

    PubMed

    Mahoney, Christine M; Roberson, Sonya V; Gillen, Greg

    2004-06-01

    The feasibility of using cluster secondary ion mass spectrometry for depth profiling of drug delivery systems is explored. The behavior of various biodegradable polymer films under dynamic SF(5)(+) primary ion bombardment was investigated, including several films doped with model drugs. The SF(5)(+) depth profiles obtained from these biodegradable polymer films showed very little degradation in secondary ion signal as a function of increasing primary ion dose, and it was discovered that the characteristic ion signals for the polymers remained constant for ion doses up to approximately 5 x 10(15) ions/cm(2). These results suggest that the polyester structure of the biodegradable polymers studied here allows for a greater ability to depth profile due to ease of main chain scission. Attempts were also made to depth profile through a series of poly(lactic acid) (PLA) films containing varying concentrations of the drug 4-acetamidophenol. The depth profiles obtained from these films show very little decrease in both the 4-acetamidophenol molecular ion and PLA fragment ion signals as a function of increasing SF(5)(+) primary ion dose. Similar results were obtained with theophylline-doped PLA films. These results show that, in some drug delivery devices, it is possible to monitor the distribution of a drug as a function of depth by using cluster primary ion beams. PMID:15167802

  12. Environmental and biological monitoring in a lead acid battery manufacturing unit in India.

    PubMed

    Ravichandran, B; Ravibabu, K; Raghavan, S; Krishnamurthy, V; Rajan, B K; Rajmohan, H R

    2005-07-01

    An environmental and biological monitoring of a lead acid battery manufacturing unit was carried out to measure the respirable particulate matter, lead content in working atmosphere and blood lead levels of workers employed in different sections. The results showed high mean air lead concentration in buffing (1444.45 microg/m(3)), plate cutting (430.14 microg/m(3)) and pasting (277.48 microg/m(3)) sections. The mean blood lead levels of employees in these sections were also higher than the values prescribed by ACGIH. PMID:16096364

  13. Separation of nucleic acids by high-performance ion-exchange chromatography.

    PubMed

    Yamazaki, K; Tomizawa, H; Miyanaga, A; Ishikawa, O; Nakatani, S; Moriyama, H

    1995-01-01

    Separation of various nucleic acids was evaluated by high-performance ion-exchange chromatography on non-porous resin, TSKgel DNA-NPR. A 1 kb ladder DNA was studied as a model DNA on operational variables like flow rate, gradient time, temperature, sample load, etc.. As results, various DNA fragments were well separated within 15 min by 20 min linear gradient at a flow rate between 0.5 and 0.75 ml/min at room temperature while the resolutin was dependent on molecular weight of the sample. The relationship between sample load and its peak area was examined on polymerase chain reaction (PCR) product. The product was found to be quantitatively recovered even with nanogram loads. The detection limit was 3.8 ng at signal to noise level (S/N) of 3. This non-porous ion-exchanger also showed high resolution on separation of ther nucleic acids like transfer RNA, oligonucleotides (single-stranded) DNA. PMID:8841596

  14. Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres.

    PubMed

    Laus, Rogério; Geremias, Reginaldo; Vasconcelos, Helder L; Laranjeira, Mauro C M; Fávere, Valfredo T

    2007-10-22

    Effluents from coal mining operations are not only highly acid but also depict elevated concentrations of metals which may contaminate the environment. Due to the polybasic characteristic of chitosan, this biopolymer is capable of both neutralizing and removing iron, aluminum and copper ions from such effluents. The present study aimed at evaluating the use of chitosan microspheres for their importance in continuous systems. The microspheres were prepared by the phase inversion method. Their average diameter and morphology were determined. Water samples from decantation pool (DP) and acidic mine drainage (AMD) effluents were treated using different amounts of microspheres. The pH and concentration of Fe, Al and Cu ions were evaluated both before and after treatment of effluent samples. The results revealed that the microspheres were capable of increasing the pH of DP and AMD samples from 2.34 and 2.58, respectively, to 6.20, i.e., close to neutrality. The treatment also resulted in full removal of the metals investigated. PMID:17499431

  15. [Acid-sensing ion channels as a target for neuroprotection: acidotoxicity revisited].

    PubMed

    Wang, Jing-Jing; Xu, Tian-Le

    2016-08-25

    Protons are widespread in cells and serve a variety of important functions. In certain pathological conditions, acid-base balance was disrupted and therefore excessive protons were generated and accumulated, which is termed acidosis and proved toxic to the organism. In the nervous system, it has been reported that acidosis was a common phenomenon and contributed to neuronal injury in various kinds of neurological diseases, such as ischemic stroke, multiple sclerosis and Huntington's disease. Acid-sensing ion channels (ASICs) is the key receptor of protons and mediates acidosis-induced neuronal injury, but the underlying mechanism remains unclear. Traditionally, Ca(2+) influx through homomeric ASIC1a channels has been considered to be the main cause of acidotoxicity. Recent research showed that extracellular protons trigger a novel form of necroptosis in neurons via ASIC1a-mediated serine/threonine kinase receptor interaction protein 1 (RIP1) activation, independent of ion-conducting function of ASIC1a. In addition, ASIC1a was found in mitochondria and regulated mitochondrial permeability transition-dependent neuronal death. In this article, we will review the recent progresses on the mechanisms underlying ASIC-mediated neuronal death and discuss ASIC modulators involved in this process. PMID:27546501

  16. Molecular mechanism of the assembly of an acid-sensing receptor ion channel complex.

    PubMed

    Yu, Yong; Ulbrich, Maximilian H; Li, Ming-Hui; Dobbins, Scott; Zhang, Wei K; Tong, Liang; Isacoff, Ehud Y; Yang, Jian

    2012-01-01

    Polycystic kidney disease (PKD) family proteins associate with transient receptor potential (TRP) channel family proteins to form functionally important complexes. PKD proteins differ from known ion channel-forming proteins and are generally thought to act as membrane receptors. Here we find that PKD1L3, a PKD protein, functions as a channel-forming subunit in an acid-sensing heteromeric complex formed by PKD1L3 and TRPP3, a TRP channel protein. Single amino-acid mutations in the putative pore region of both proteins alter the channel's ion selectivity. The PKD1L3/TRPP3 complex in the plasma membrane of live cells contains one PKD1L3 and three TRPP3. A TRPP3 C-terminal coiled-coil domain forms a trimer in solution and in crystal, and has a crucial role in the assembly and surface expression of the PKD1L3/TRPP3 complex. These results demonstrate that PKD subunits constitute a new class of channel-forming proteins, enriching our understanding of the function of PKD proteins and PKD/TRPP complexes. PMID:23212381

  17. Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol-Acid Reductoisomerase.

    PubMed

    Tadrowski, Sonya; Pedroso, Marcelo M; Sieber, Volker; Larrabee, James A; Guddat, Luke W; Schenk, Gerhard

    2016-05-23

    Ketol-acid reductoisomerase (KARI) is a Mg(2+) -dependent enzyme in the branched-chain amino acid biosynthesis pathway. It catalyses a complex two-part reaction: an alkyl migration followed by a NADPH-dependent reduction. Both reactions occur within the one active site, but in particular, the mechanism of the isomerisation step is poorly understood. Here, using a combination of kinetic, thermodynamic and spectroscopic techniques, the reaction mechanisms of both Escherichia coli and rice KARI have been investigated. We propose a conserved mechanism of catalysis, whereby a hydroxide, bridging the two Mg(2+) ions in the active site, initiates the reaction by abstracting a proton from the C2 alcohol group of the substrate. While the μ-hydroxide-bridged dimetallic centre is pre-assembled in the bacterial enzyme, in plant KARI substrate binding leads to a reduction of the metal-metal distance with the concomitant formation of a hydroxide bridge. Only Mg(2+) is capable of promoting the isomerisation reaction, likely to be due to non-competent substrate binding in the presence of other metal ions. PMID:27136273

  18. D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor.

    PubMed

    Lin, Shu Min; Geng, Shuo; Li, Na; Li, Nian Bing; Luo, Hong Qun

    2016-05-01

    Mercury ion is one of the most hazardous metal pollutants that can cause deleterious effects on human health and the environment even at low concentrations. It is necessary to develop new mercury detection methods with high sensitivity, specificity and rapidity. In this study, a novel and green strategy for synthesizing D-penicillamine-capped copper nanoparticles (DPA-CuNPs) was successfully established by a chemical reduction method, in which D-penicillamine and ascorbic acid were used as stabilizing agent and reducing agent, respectively. The as-prepared DPA-CuNPs showed strong red fluorescence and had a large Stoke's shift (270nm). Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, fluorescence spectroscopy, and ultraviolet-visible spectrophotometry were utilized to elucidate the possible fluorescence mechanism, which could be aggregation-induced emission effect. Based on the phenomenon that trace mercury ion can disperse the aggregated DPA-CuNPs, resulting in great fluorescence quench of the system, a sensitive and selective assay for mercury ion in aqueous solution with the DPA-CuNPs was developed. Under optimum conditions, this assay can be applied to the quantification of Hg(2+) in the 1.0-30μM concentration range and the detection limit (3σ/slope) is 32nM. The method was successfully applied to determine Hg(2+) in real water samples. PMID:26946016

  19. Complexation of mercury(II) ions with humic acids in tundra soils

    NASA Astrophysics Data System (ADS)

    Vasilevich, R. S.; Beznosikov, V. A.; Lodygin, E. D.; Kondratenok, B. M.

    2014-03-01

    The interaction mechanisms of mercury(II) ions with preparations of humic acids (HAs) isolated from organic horizons of surface-gleyed soils (Haplic Stagnosol (Gelic, Siltic)) of shrub tundra and hydromorphic peat gley soils (Histic Cryosol (Reductaquic, Siltic)) of moss-lichen tundra have been studied. The particular features of the interactions between the mercury(II) ions and the HAs are related to the molecular structure of the HAs, the mercury concentration range, and the environmental parameters. The fixation of mercury(II) ions into stable coordination compounds is most efficient in the pH range of 2.5-3.5. At the element concentrations below 0.50 μmol/dm3, the main complexing sites of HAs are their peripheral aminoacid functional groups. Pyrocatechol, salicylate, and phenolic groups from the nuclear moiety of molecules interact in the concentration range of 0.0005-0.50 mmol/dm3; the physical sorption of mercury hydroxo complexes by the surface of HAs is the main process occurring in the system.

  20. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes

    SciTech Connect

    Baconguis, Isabelle; Gouaux, Eric

    2012-07-29

    Acid-sensing ion channels (ASICs) are voltage-independent, amiloride-sensitive channels involved in diverse physiological processes ranging from nociception to taste. Despite the importance of ASICs in physiology, we know little about the mechanism of channel activation. Here we show that psalmotoxin activates non-selective and Na+-selective currents in chicken ASIC1a at pH7.25 and 5.5, respectively. Crystal structures of ASIC1a–psalmotoxin complexes map the toxin binding site to the extracellular domain and show how toxin binding triggers an expansion of the extracellular vestibule and stabilization of the open channel pore. At pH7.25 the pore is approximately 10Å in diameter, whereas at pH5.5 the pore is largely hydrophobic and elliptical in cross-section with dimensions of approximately 5 by 7Å, consistent with a barrier mechanism for ion selectivity. These studies define mechanisms for activation of ASICs, illuminate the basis for dynamic ion selectivity and provide the blueprints for new therapeutic agents.

  1. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    NASA Astrophysics Data System (ADS)

    Türk, Hülya; Genişel, Mucip; Erdal, Serkan

    2016-04-01

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K+/Na+ ratio was reduced by salt stress, ALA application changed this ratio in favor of K+. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  2. Laser ion beam photodissociation studies of model amino acids and peptides

    SciTech Connect

    Techlenburg, R.E. Jr.; Miller, M.N.; Russell, D.H. )

    1989-02-15

    Visible (458-514.5 nm) and uv (333-385 nm) photodissociation of the (M + H){sup +} ions of dinitrophenyl (DNP) derivatized amino acids and peptides is reported. Photoexcitation of the DNP peptides by a visible proton results in fragmentation of the peptide chain with little fragmentation within the chromophore. Conversely, uv photoexcitation of the DNP peptides results in fragmentation of the chromophore as well as the peptide chain, but loss of NO or NO{sub 2} (within the chromophore) often dominates the photofragment ion spectrum. These results are rationalized with particular emphasis on energy-selective dissociation channels of large ionic systems. DNP-leucine and DNP-isoleucine (M + H){sup +} can be differentiated on the basis of photodissociation reactions which yield distonic radical cations. The rate of dissociation of photoexcited ions of DNP peptides is shown to decrease with increasing molecular weight (degrees of freedom). Lastly, comparisons between photodissociation and collision-induced dissociation as a structural probe are presented. 55 refs., 8 figs., 3 tabs.

  3. Investigation of metal ion extraction and aggregate formation combining acidic and neutral organophosphorous reagents

    SciTech Connect

    Braatz, A.D.; Nilsson, M.; Ellis, R.; Antonio, M.

    2013-07-01

    In the present study, we investigate how varying mixtures of tri-n-butyl phosphate (TBP) and dibutyl phosphate (HDBP) results in enhanced extraction of lanthanum(III), La{sup 3+}, and dysprosium(III), Dy{sup 3+}. Water and metal ion extraction were carefully monitored as a function of TBP:HDBP mole ratio.In addition to these techniques, EXAFS was used to determine the coordination environment of the metal ion in this system. To produce the necessary signal, a concentration of 1.25*10{sup -3} M La{sup 3+} and Dy{sup 3+} was used. Although previous studies of synergistic extraction of metal cations using combinations of neutral and acidic reagents explain the enhanced extraction by increased dehydration of the metal ion and the formation of mixed extractant complexes, our evidence for the increased water extraction coupled with the aggregate formation suggests a reverse micellar aspect to synergism in the system containing TBP and HDBP. It is quite possible that both of these phenomena contribute to our system behavior. The EXAFS data shows that, based on coordination numbers alone, several possible structures may exist. From this study, we cannot provide a definitive answer as to the nature of extraction in this system or the exact complex formed during extraction.

  4. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  5. Internal energy distribution of carboxylate negative-ions of the herbicide diclofop acid in the gas-phase

    NASA Astrophysics Data System (ADS)

    Headley, J. V.; Peru, K. M.

    1997-11-01

    Unimolecular dissociations of diclofop acid and three of its esters were studied using electron capture negative-ion mass spectrometry, to determine to what extent the gas-phase chemistry correlated with transformation products reported for the herbicide in soils and microbial biofilms. Electron capture of the trimethylsilyl (TMS) and pentafluorobenzyl (PFB) esters along with H+ abstraction of diclofop acid were used to form the carboxylate ion at m / z 325. The degree of dissociation of this ion was strongly dependent on the relative distribution of internal energies, chemical nature and size of the ester group. For carboxylate ions formed with relatively low distribution of internal energies (PFB ester), elimination of HCl only was the preferred pathway. In contrast, m / z 325 from the TMS ester and diclofop acid, underwent loss of Cl, followed by loss of HCl to give m / z 254 with some direct loss of HCl for the TMS ester. For carboxylate ions formed with little or no internal energy under electrospray ionization, no unimolecular dissociations were observed. However, a wide range of product-ions were observed for the latter using collision-induced dissociations. For the methyl ester there was a preponderance for initial formation of a chlorodibenzofuran oxide ion (m / z 217) instead of electron attachment on the carbonyl function. The ion (m / z 217) was also prevalent for fragmentation of m / z 253 produced directly by electron capture of diclofop acid and the TMS ester. In general, the gas-phase ion chemistry correlated well with the distribution of some transformation products reported in the literature for the herbicide in soils and microbial biofilms.

  6. STREAM CHEMISTRY IN THE EASTERN UNITED STATES: I. SYNOPTIC SURVEY DESIGN, ACID-BASE STATUS, AND REGIONAL PATTERNS

    EPA Science Inventory

    To assess the regional acid-base status of streams in the Mid-Atlantic and Southeastern United States, spring baseflow chemistry was surveyed in a probability sample of 500 stream reaches representing a population of 64,300 reaches. Approximately half of the streams had acid neut...

  7. EFFECTS OF ACIDIC DEPOSITION ON STREAMS IN THE APPALACHIAN MOUNTAINS AND PIEDMONT REGION OF THE MID-ATLANTIC UNITED STATES

    EPA Science Inventory

    Streams in the Appalachian Mountain area of the Mid-Atlantic receive some of the largest acidic deposition loadings of any region of the United States. ompilation of survey data from the Mid-Appalachians yields a consistent picture of the acid-base status of streams. cidic stream...

  8. Investigation of the gas-phase hydrogen/deuterium exchange behavior of aromatic dicarboxylic acids in a quadrupole ion trap

    NASA Astrophysics Data System (ADS)

    Chipuk, Joseph E.; Brodbelt, Jennifer S.

    2007-11-01

    Gas-phase hydrogen/deuterium (H/D) exchange reactions of four deprotonated aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid and 2,6-naphthalic acid) with D2O were performed in a quadrupole ion trap mass spectrometer. Experimental results showed significant differences in the rate and extent of exchange when the relative position of the carboxylic acid groups varied. Spontaneous and near complete exchange of one aromatic hydrogen atom occurred when the carboxylic acid groups were in the meta-position, whereas no additional exchange was observed for either the ortho- or para-isomers or for the structurally similar naphthalic acid. Computational investigations support the participation of several possible exchange mechanisms with the contribution of each relying heavily on the relative orientation of the acid moieties. A relay mechanism that bridges the deprotonation site and the labile hydrogen site appears to be responsible for the H/D exchange of not only the labile hydrogen atom of isophthalic acid, but also for the formation of a stable carbanion and corresponding subsequent exchange of one aromatic hydrogen atom. The impact of hydrogen bonding on the relay mechanism is demonstrated by the reaction of phthalic acid as the extent and rate of reaction are greatly retarded by the favorable interaction of the two carboxylic acid groups. Finally, a flip-flop mechanism is likely responsible for the exchange of both terephthalic acid and 2,6-naphthalic acid where the reactive sites are too remote for exchange via relay.

  9. Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/chlorite ion reaction at pH 6-10

    SciTech Connect

    Gordon, G.; Tachiyashiki, Satoshi )

    1991-03-01

    The reaction between free chlorine (HOCl/OCl{sup {minus}}) and chlorite ion (ClO{sub 2}{sup {minus}}) has been studied in the pH 6.4-10.0 region. The reaction proceeds through the Cl{sub 2}O{sub 2} intermediate followed by a direct reaction of the intermediate with hypochlorous acid to form chlorate ion. Time-concentration profiles were measured for each chlorine species, resulting in both total chlorine and redox balance. Negligibly small amounts of chlorine dioxide are formed above pH 7. Indirect evidence suggests that, in this pH region, the formation of any chlorine dioxide is primarily due to the presence of concentration gradients or because of the adventitious presence of catalytic metal ion impurities. Details of the overall reaction mechanism for the formation of chlorate ion are presented.

  10. Use of weak acids to determine the bulk diffusion limitation of H+ ion conductance through the gramicidin channel.

    PubMed Central

    Decker, E R; Levitt, D G

    1988-01-01

    The addition of 2 M formic acid at pH 3.75 increased the single channel H+ ion conductance of gramicidin channels 12-fold at 200 mV. Other weak acids (acetic, lactic, oxalic) produce a similar, but smaller increase. Formic acid (and other weak acids) also blocks the K+ conductance at pH 3.75, but not at pH 6.0 when the anion form predominates. This increased H+ conductance and K+ block can be explained by formic acid (HF) binding to the mouth of the gramicidin channel (Km = 1 M) and providing a source of H+ ions. A kinetic model is derived, based on the equilibrium binding of formic acid to the channel mouth, that quantitatively predicts the conductance for different mixtures of H+, K+, and formic acid. The binding of the neutral formic acid to the mouth of the gramicidin channel is directly supported by the observation that a neutral molecule with a similar structure, formamide (and malonamide and acrylamide), blocks the K+ conductance at pH 6.0. The H+ conductance in the presence of formic acid provides a lower bound for the intrinsic conductance of the gramicidin channel when there is no diffusion limitation at the channel mouth. The 12-fold increase in conductance produced by formic acid suggests that greater than 90% of the total resistance to H+ results from diffusion limitation in the bulk solution. PMID:2449253

  11. Binary and ternary complexes of some inner transition metal ions with amino acids and acetyl acetone

    NASA Astrophysics Data System (ADS)

    Abu-Eittah, R. H.; Abdou, M. M.; Salem, M. B.

    1998-05-01

    The stability constants of the 1:1 and 1:2 (whenever possible) complexes formed between La3+, Ce3+, Th4+ and the amino acid anions L-alaninate, L-phenylalaninate and L-histidinate were determined by potentiometric titration in aqueous solution (25± 1 ^circC, I = 0.1 M KCl) and compared together with the constants previously determined. The various formation degree of the resulting M(L) and M(L)2 were determined. In order to relate the formation degree of M(L) and M(L)2 with the basicity of the amino acid anion (L^-), the acidity constants of the protonated amino acids, H2L^+, were also measured. The main results of this work prove that Th4+ ion forms the strongest complex with the studied amino acids. It is the only ion which forms a 1:2 complex. The heterocyclic ring of histidine plays a significant role in complexing with the studied metal ions as is clearly seen from the distribution of the degree of formation of the different complexes. The stability constants of the 1:1:1, 1:2:1 and 1:1:2 complexes formed between La3+, Ce3+, Th4+ and the anions L-alaninate, L-phenylalaninate and L-histidinate together with the acetyl acetonate ion were also determined following the same experimental set up used in the study of the simple complexes. The mixed-ligand complexes turned out to be very much stronger than the simple ligand complexes. Formation of a mixed ligand complex can be considered as a type of senergism. Les constantes de stabilité des complexes 1:1 et 2:2 (lorsque cela est possible) formés entre La3+, Ce3+, Th4+ et les anions aminoacides L-alaninate, L-phénylalaninate et L-histidinate ont été déterminées par dosage potentiométrique en solution aqueuse (25± 1 ^circC, I = 0,1 M KCl), et comparées à celles de la littérature. Les différents degrés de formation de M(L) et M(L)2 ont été quantifiés. Pour mettre en évidence la relation entre le degré de formation de M(L) et M(L)2 et la basicité des anions aminoacides (L^-), les constantes d

  12. Role of Ammonium Ion in the Biosynthesis of β-Nitropropionic Acid

    PubMed Central

    Shaw, Paul D.; DeAngelo, Anthony B.

    1969-01-01

    The metabolism of inorganic nitrogen compounds was studied in extracts of Penicillium atrovenetum which had been grown under conditions in which β-nitropropionic acid (BNP) synthesis varied from 0 to 12.5 μmoles per ml. None of the extracts was able to oxidize ammonium ion or nitrite. An enzyme was detected which catalyzed the oxidation of hydroxylamine with cytochrome c as the electron acceptor. The activity of this enzyme was not related to the ability of the organism to produce BNP. Nitrate and nitrite reductase activities were detected only in P. atrovenetum cultures grown on nitrate as a nitrogen source. These results indicated that BNP synthesis is probably not directly associated with the metabolism of inorganic nitrogen compounds and that an organic pathway for the formation of the nitro group is more likely. The activities of certain enzymes related to the metabolism of aspartic acid were investigated. Aspartate ammonia-lyase activity could not be detected in P. atrovenetum extracts. Aspartate aminotransferase and glutamate dehydrogenase activities were found in the extracts but were highest in the cultures which did not produce BNP. β-Nitroacrylic acid reductase activity was highest in extracts of cultures which were actively synthesizing BNP. PMID:5808074

  13. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    PubMed

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia. PMID:26946972

  14. Proton-Binding Sites of Acid-Sensing Ion Channel 1

    PubMed Central

    Ishikita, Hiroshi

    2011-01-01

    Acid-sensing ion channels (ASICs) are proton-gated cation channels that exist throughout the mammalian central and peripheral nervous systems. ASIC1 is the most abundant of all the ASICs and is likely to modulate synaptic transmission. Identifying the proton-binding sites of ASCI1 is required to elucidate its pH-sensing mechanism. By using the crystal structure of ASIC1, the protonation states of each titratable site of ASIC1 were calculated by solving the Poisson-Boltzmann equation under conditions wherein the protonation states of all these sites are simultaneously in equilibrium. Four acidic-acidic residue pairs—Asp238-Asp350, Glu220-Asp408, Glu239-Asp346, and Glu80-Glu417—were found to be highly protonated. In particular, the Glu80-Glu417 pair in the inner pore was completely protonated and possessed 2 H+, implying its possible importance as a proton-binding site. The pKa of Glu239, which forms a pair with a possible pH-sensing site Asp346, differs among each homo-trimer subunit due to the different H-bond pattern of Thr237 in the different protein conformations of the subunits. His74 possessed a pKa of ≈6–7. Conservation of His74 in the proton-sensitive ASIC3 that lacks a residue corresponding to Asp346 may suggest its possible pH-sensing role in proton-sensitive ASICs. PMID:21340031

  15. Uranyl ion uptake capacity of poly (N-isopropylacrylamide/maleic acid) copolymeric hydrogels prepared by gamma rays

    NASA Astrophysics Data System (ADS)

    Kam, Erol; Taşdelen, Betul; Osmanlioglu, A. Erdal

    2012-06-01

    The effect of gel composition, absorbed dose and pH of the solution on the uranyl ion uptake capacity of N-isopropylacrylamide/maleic acid copolymeric hydrogels containing 0-3 mol% of maleic acid at 48 kGy have been investigated. Uranyl uptake capacity of hydrogels are found to increase from 18.5 to 94.8 mg [UO22+]/g dry gel as the mole % of maleic acid content in the gel structure increased from 0 to 3. The percent swelling, equilibrium swelling and diffusion coefficient values have been evaluated for poly(N-isopropylacrylamide/maleic acid) hydrogels at 500 ppm of uranyl nitrate solution.

  16. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  17. Measurements of tropospheric nitric acid over the western United States and northeastern Pacific Ocean

    SciTech Connect

    LeBel, P.J.; Vay, S.A. ); Huebert, B.J. ); Schiff, H.I.; Hastie, D.R. ); Van Bramer, S.E. )

    1990-06-20

    During the August-September 1986 GTE/CITE 2 aircraft mission, more than 240 measurements of nitric acid (HNO{sub 3}) were made in the free troposphere as well as in the boundary layer over the northeastern Pacific Ocean and western continental United States. Marine HNO{sub 3} measurement results were strikingly similar to results from GAMETAG and other past atmospheric field experiments. The marine boundary layer HNO{sub 3} average, 62 parts per trillion by volume (pptv), was one third lower than the marine free tropospheric average, 108 pptv, suggesting that the boundary layer is a sink for tropospheric nitric acid, probably by dry deposition. Nitric acid measurements on a nighttime continental flight gave a free tropospheric average of 218 pptv, substantially greater than the daytime continental free tropospheric five-flight average of 61 pptv. However, the nighttime results may have been influenced by highly convective conditions that existed from thunderstorms in the vicinity during that night flight. Our continental boundary layer HNO{sub 3} average of 767 pptv is an order of magnitude greater than the free tropospheric average, indicating that the boundary layer is a source of free tropospheric HNO{sub 3}. The distribution of continental boundary layer HNO{sub 3} data, from averages of 123 pptv over rural Nevada and Utah to 1,057 pptv in the polluted San Joaquin Valley of California suggests a close tie between boundary layer HNO{sub 3} and anthropogenic activity.

  18. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  19. Fortification of corn masa flour with folic acid in the United States: an overview of the evidence

    PubMed Central

    Hamner, Heather C.; Tinker, Sarah C.

    2015-01-01

    Corn masa flour, used to make products such as corn tortillas, is a staple food for Hispanic populations residing in the United States, particularly among Mexican Americans and Central Americans. Research has indicated that Hispanic women in the United States continue to be at a higher risk of having a neural tube defect–affected pregnancy than women of other races/ethnicities, even after the introduction of folic acid fortification of cereal grain products labeled as “enriched.” Corn masa flour has, therefore, been suggested as a potential food vehicle for folic acid in the United States. This paper explores the potential impact that folic acid fortification of corn masa flour could have on the Hispanic population in the United States. PMID:24494975

  20. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries.

    PubMed

    Nayaka, Girish Praveen; Pai, Karkala Vasantakumar; Manjanna, Jayappa; Keny, Sangita J

    2016-05-01

    New organic acid mixtures have been investigated to recover the valuable metal ions from the cathode material of spent Li-ion batteries. The cathodic active material (LiCoO2) collected from spent Li-ion batteries (LIBs) is dissolved in mild organic acids, iminodiacetic acid (IDA) and maleic acid (MA), to recover the metals. Almost complete dissolution occurred in slightly excess (than the stoichiometric requirement) of IDA or MA at 80°C for 6h, based on the Co and Li released. The reducing agent, ascorbic acid (AA), converts the dissolved Co(III)- to Co(II)-L (L=IDA or MA) thereby selective recovery of Co as Co(II)-oxalate is possible. The formation of Co(III)- and Co(II)-L is evident from the UV-Vis spectra of the dissolved solution as a function of dissolution time. Thus, the reductive-complexing dissolution mechanism is proposed here. These mild organic acids are environmentally benign unlike the mineral acids. PMID:26709049

  1. Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1.

    PubMed

    Dawson, Roger J P; Benz, Jörg; Stohler, Peter; Tetaz, Tim; Joseph, Catherine; Huber, Sylwia; Schmid, Georg; Hügin, Daniela; Pflimlin, Pascal; Trube, Gerd; Rudolph, Markus G; Hennig, Michael; Ruf, Armin

    2012-01-01

    Venom-derived peptide toxins can modify the gating characteristics of excitatory channels in neurons. How they bind and interfere with the flow of ions without directly blocking the ion permeation pathway remains elusive. Here we report the crystal structure of the trimeric chicken Acid-sensing ion channel 1 in complex with the highly selective gating modifier Psalmotoxin 1 at 3.0 Å resolution. The structure reveals the molecular interactions of three toxin molecules binding at the proton-sensitive acidic pockets of Acid-sensing ion channel 1 and electron density consistent with a cation trapped in the central vestibule above the ion pathway. A hydrophobic patch and a basic cluster are the key structural elements of Psalmotoxin 1 binding, locking two separate regulatory regions in their relative, desensitized-like arrangement. Our results provide a general concept for gating modifier toxin binding suggesting that both surface motifs are required to modify the gating characteristics of an ion channel. PMID:22760635

  2. Effects of matrix structure/acidity on ion formation in matrix-assisted laser desorption ionization mass spectrometry

    SciTech Connect

    Gimon-Kinsel, M.; Preston-Schaffter, L.M.; Kinsel, G.R.; Russell, D.H.

    1997-03-12

    The involvement of ground and excited state proton transfer reactions in matrix-assisted laser desorption ionization (MALDI) of bradykinin and bovine insulin is examined using a series of p-substituted aniline compounds as matrices. Semiempirical calculations of ground and excited state acidity of the p-substituted aniline and anilinium ions are presented. A linear correlation between log (analyte [A + H]{sup +} ion yield) and matrix acidity is obtained. The behavior of the seven p-substituted anilines is discussed in terms of the relationship between matrix compound structure, reactivity, and ability to act as a MALDI matrix. 44 refs., 4 figs., 5 tabs.

  3. Cannabinoids Inhibit Acid-Sensing Ion Channel Currents in Rat Dorsal Root Ganglion Neurons

    PubMed Central

    Qiu, Chun-Yu; Cai, Qi; Zou, Pengcheng; Wu, Heming; Hu, Wang-Ping

    2012-01-01

    Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration–response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids. PMID:23029075

  4. kinetics and mechanism of the oxidation of uranium(iv) by persulfate ions in perchloric acid solutions

    SciTech Connect

    Ermakov, V.A.

    1986-07-01

    The kinetics of the oxidation of uranium(IV) by persulfate ions in perchloric acid solutions was studied by a spectrophotometric method. It was established that the oxidation of uranium(IV) ions occurs along three pathways: directly by S/sub 2/O /SUP 2/8/ /sup -/ ions, by products of their thermal decomposition, and intramolecularly in a persulfate complex. It was shown that the contribution of each of the three pathways to the overall rate of oxidation of uranium(IV) depends on the initial reagent concentrations, the hydrogen ion concentration, and the temperature. The activation energies of the oxidation of uranium(IV) directly by persulfate ions, by products of their thermal decomposition, as well as in a persulfate complex, were determined.

  5. Formation constants of ternary complexes of some heavy metal ions with N-(2-acetamido)iminodiacetic acid and aliphatic or aromatic acids

    SciTech Connect

    Hamed, M.M.A.; Mahmoud, M.R. . Dept. of Chemistry); Saleh, M.B.; Ahmed, I.T. . Dept. of Chemistry)

    1994-07-01

    N-(2-Acetamido)iminodiacetic acid (H[sub 2]ADA) is considered as one of the biologically important ligands. It is used as a complexing agent in the field of metal ion buffers working at the physiological pH range. Furthermore, it is widely used as an analytical chelating agent for the spectrophotometric determination of metal ions. Solution equilibria of the ternary systems involving La(III), Y(III), Ce(III), and UO[sub 2][sup 2+], N-(2-acetamido)iminodiacetic acid, and some aliphatic or aromatic acids have been investigated potentiometrically. The formation of 1:1:1 mixed ligand complexes is inferred from the potentiometric titration curves. Formation constants of the different binary and ternary complexes formed in such systems were determined at 25 [+-] 0.1 C and [mu] = 0.1 mol dm[sup [minus]3] (KNO[sub 3]). It is deduced that the mixed ligand complexes are more stable than the corresponding binary complexes containing the aliphatic or aromatic acidate moiety. The order of stability of the binary and ternary complexes is investigated and discussed in terms of the nature of both the metal ion and the secondary ligand (aliphatic or aromatic acid).

  6. A method to study polydispersity of humic acid from fluorescence quenching by Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2011-11-01

    The spectral dependence of Stern-Volmer constants (K_{SV}^{λ} ) for fluorescence quenching by Cu2+ ions in a standard sample of humic acid (HA) (IHSS) with monochromatic excitation (λex = 337.1 nm) conditions has been studied in the spectral range 400-600 nm. This is interpreted within a concept implying that HA macromolecules possess the property of polydispersity, which means that fluorophore-containing sites are different in terms of chemical nature and spatial accessibility. Modeling data show that the minimum number of spectral components required for the simulated spectral dependence of K_{SV}^{λ} to agree as closely as possible with that observed experimentally is three.

  7. Site-Specific Mapping of Sialic Acid Linkage Isomers by Ion Mobility Spectrometry.

    PubMed

    Guttman, Miklos; Lee, Kelly K

    2016-05-17

    Detailed structural elucidation of protein glycosylation is a tedious process often involving several techniques. Glycomics and glycoproteomics approaches with mass spectrometry offer a rapid platform for glycan profiling but are limited by the inability to resolve isobaric species such as linkage and positional isomers. Recently, ion mobility spectrometry (IMS) has been shown to effectively resolve isobaric oligosaccharides, but the utility of IMS to obtain glycan structural information on a site-specific level with proteomic analyses has yet to be investigated. Here, we report that the addition of IMS to conventional glycoproteomics platforms adds additional information regarding glycan structure and is particularly useful for differentiation of sialic acid linkage isomers on both N- and O-linked glycopeptides. With further development IMS may hold the potential for rapid and complete structural elucidation of glycan chains at a site-specific level. PMID:27089023

  8. Translational strategies for neuroprotection in ischemic stroke - focusing on Acid Sensing Ion Channel 1a

    PubMed Central

    O'Bryant, Zaven; Vann, Kiara T.; Xiong, Zhi-Gang

    2014-01-01

    Ischemic stroke contributes to the majority of brain injuries and remains to be a leading cause of death and long-term disability. Despite the devastating pathology and high incidence of disease, there remain only few treatment options (tPA and endovascular procedures), which may be hampered by time dependent administration among a variety of other factors. Promising research of glutamate receptor antagonists has been unsuccessful in clinical trial. But, the mechanism by which glutamate receptors initiate injury by excessive calcium overload has spurred investigation of new and potentially successful candidates for stroke therapy. Acid sensing ion channels (ASICs) may contribute to poor stroke prognosis due to localized drop in brain pH, resulting in excessive calcium overload, independent of glutamate activation. Accumulating studies targeting ASICs have underscored the importance of understanding inhibition, regulation, desensitization and trafficking of this channel and its role in disease. This review will discuss potential directions in translational ASIC research for future stroke therapies. PMID:24390970

  9. A new member of acid-sensing ion channels from pituitary gland.

    PubMed

    Gründer, S; Geissler, H S; Bässler, E L; Ruppersberg, J P

    2000-06-01

    Acid-sensing ion channels (ASICs) constitute a branch of the super-gene family of amiloride-sensitive sodium channels. So far five different ASICs have been cloned from mammalian tissues. They are activated by a drop of extracellular pH but differ with respect to effective agonist concentration, desensitization and mRNA expression pattern. Here we report cloning of ASIC4, a new protein showing about 45% identity to other ASICs. ASIC4 is 97% identical between rat and human and shows strongest expression in pituitary gland. Moreover, we detected expression throughout the brain, in spinal cord, and inner ear. ASIC4 cannot be activated by a drop of extracellular pH in Xenopus oocytes, suggesting association with other subunits or activation by a ligand different from protons. Our results suggest a role for ASICs also in endocrine glands. PMID:10852210

  10. Cesium removal from liquid acidic wastes with the primary focus on ammonium molybdophosphate as an ion exchanger: A literature review

    SciTech Connect

    Miller, C.J.

    1995-03-01

    Many articles have been written concerning the selective removal of cesium from both acidic and alkaline defense wastes. The majority of the work performed for cesium removal from defense wastes involves alkaline feed solutions. Several different techniques for cesium removal from acidic solutions have been evaluated such as precipitation, solvent extraction, and ion exchange. The purpose of this paper is to briefly review various techniques for cesium removal from acidic solutions. The main focus of the review will be on ion exchange techniques, particularly those involving ammonium molybdophosphate as the exchanger. The pertinent literature sources are condensed into a single document for quick reference. The information contained in this document was used as an aid in determining techniques to evaluate cesium removal from the acidic Idaho Chemical Processing Plant waste matrices. 47 refs., 2 tabs.

  11. Supramolecular complexes obtained from the interaction of violuric acid with manganese ion and nitrogenous ligands

    NASA Astrophysics Data System (ADS)

    Garcia, Humberto C.; Diniz, Renata; Speziali, Nivaldo L.; de Oliveira, Luiz Fernando C.

    2014-07-01

    This work describes the synthesis, spectroscopic characterization (Raman and infrared) and structural arrangement of three new supramolecular complexes named [Mn(H2Vi)2(H2O)4)](bpy)2(1), [Mn(bpa)2(H2O)4](H2Vi)2(2) and [Mn(bpp)2(H2Vi)2]·(bpp)2(H2O)2(3); these compounds have been obtained making use of different building blocks such as 4,4‧-bipyridyne (bpy), 1,2-bis(4-pyridyl)ethane (bpa) and 4,4‧-trimethylene-dipyridine (bpp) acting as spacers with violuric acid and manganese ion, presenting behavior related to processes of molecular self-assembling and self-organization, very common in studies of supramolecular systems. In all these compounds the violurate anion appears in the crystalline arrangement as monodentate, anionic and chelate forms for 1, 2 and 3, respectively. The important to note is that monodentate coordination in 1 and chelate in 3 through O2 and O3 oxygen atoms from the oxime group can be considered the first example in literature involving violuric acid, both in coordination or interaction with manganese ion. Moreover, it can be seen a good agreement between the structural results and the spectroscopic data; for instance the presence of an intense band in the Raman spectrum around 1603 and 1012 cm-1 in all obtained compounds, assigned to the ν(CC)/ν(CN) and ν(ring)modes of the pyridyl ligand, respectively. Other important band can be observed in 1031 cm-1 only for compound 3, assigned to the ν(Nsbnd O) mode of the violurate ligand; the band at 1284 cm-1 referring to the ν(Ndbnd O) mode, very characteristic of violurate species is not seen in the spectrum, thus confirming the coordination of this building block by the oxime moiety.

  12. Acid-sensing ion channels in healthy and degenerated human intervertebral disc.

    PubMed

    Cuesta, Antonio; Del Valle, Miguel E; García-Suárez, Olivia; Viña, Eliseo; Cabo, Roberto; Vázquez, Gorka; Cobo, Juan L; Murcia, Antonio; Alvarez-Vega, Marco; García-Cosamalón, José; Vega, José A

    2014-06-01

    Acid-sensing ion channels (ASICs) are a family of H(+)-gated voltage-insensitive ion channels that respond to extracellular acidification by regulating transmembrane Ca(2+) flux. Moreover, ASICs can also be gated by mechanical forces and may function as mechanosensors. The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. Changes in the pH and osmolarity determine the viability of IVD cells and the composition of the extracellular matrix, and both are the basis of IVD degeneration. In this study, the expression of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) mRNAs and proteins in human healthy and degenerated IVD was evaluated by quantitative reverse transcription-quantitative polymerase chain reaction and Western blot. The distribution of ASIC proteins was determined by immunohistochemistry. The mRNAs for all ASICs were detected in normal human IVD, and significantly increased levels were found in degenerated IVD. Western blots demonstrated the presence of proteins with estimated molecular weights of approximately 68-72 kDa. In both the annulus fibrosus (AF) and nucleus pulposus (NP) of normal IVD, ASIC2 is the most frequently expressed ASIC followed by ASIC3, ASIC1 and ASIC4. In the AF of degenerated IVD, there was a significant increase in the number of ASIC1 and ASIC4 positive cells, whereas in the NP, we found significant increase of expression of ASIC1, ASIC2 and ASIC3. These results describe the occurrence and localization of different ASICs in human healthy IVD, and their increased expression in degenerated IVD, thus suggesting that ASICs may be involved in IVD degeneration. PMID:24432912

  13. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end. PMID:26077317

  14. Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Z.; Urso, R. G.; Baratta, G. A.; Brucato, J. R.; Palumbo, M. E.; Strazzulla, G.

    2016-01-01

    Context. Formamide (NH2HCO) and isocyanic acid (HNCO) have been observed as gaseous species in several astronomical environments such as cometary comae and pre- and proto-stellar objects. A debate is open on the formation route of those molecules, in particular if they are formed by chemical reactions in the gas phase and/or on grains. In this latter case it is relevant to understand if the formation occurs through surface reactions or is induced by energetic processing. Aims: We present arguments that support the formation of formamide in the solid phase by cosmic-ion-induced energetic processing of ices present as mantles of interstellar grains and on comets. Formamides, along with other molecules, are expelled in the gas phase when the physical parameters are appropriate to induce the desorption of ices. Methods: We have performed several laboratory experiments in which ice mixtures (H2O:CH4:N2, H2O:CH4:NH3, and CH3OH:N2) were bombarded with energetic (30-200 keV) ions (H+ or He+). FTIR spectroscopy was performed before, during, and after ion bombardment. In particular, the formation of HNCO and NH2HCO was measured quantiatively. Results: Energetic processing of ice can quantitatively reproduce the amount of NH2HCO observed in cometary comae and in many circumstellar regions. HNCO is also formed, but additional formation mechanisms are requested to quantitatively account for the astronomical observations. Conclusions: We suggest that energetic processing of ices in the pre- and proto-stellar regions and in comets is the main mechanism to produce formamide, which, once it is released in the gas phase because of desorption of ices, is observed in the gas phase in these astrophysical environments.

  15. Modular calibrant sets for the structural analysis of nucleic acids by ion mobility spectrometry mass spectrometry.

    PubMed

    Lippens, Jennifer L; Ranganathan, Srivathsan V; D'Esposito, Rebecca J; Fabris, Daniele

    2016-06-20

    This study explored the use of modular nucleic acid (NA) standards to generate calibration curves capable of translating primary ion mobility readouts into corresponding collision cross section (CCS) data. Putative calibrants consisted of single- (ss) and double-stranded (ds) oligo-deoxynucleotides reaching up to ∼40 kDa in size (i.e., 64 bp) and ∼5700 Å(2) in CCS. To ensure self-consistency among reference CCS values, computational data obtained in house were preferred to any experimental or computational data from disparate sources. Such values were obtained by molecular dynamics (MD) simulations and either the exact hard sphere scattering (EHSS) or the projection superposition approximation (PSA) methods, and then plotted against the corresponding experimental values to generate separate calibration curves. Their performance was evaluated on the basis of their correlation coefficients and ability to provide values that matched the CCS of selected test samples mimicking typical unknowns. The results indicated that the predictive power benefited from the exclusion of higher charged species that were more susceptible to the destabilizing effects of Coulombic repulsion. The results revealed discrepancies between EHSS and PSA data that were ascribable to the different approximations used to describe the ion mobility process. Within the boundaries defined by these approximations and the challenges of modeling NA structure in a solvent-free environment, the calibrant sets enabled the experimental determination of CCS with excellent reproducibility (precision) and error (accuracy), which will support the analysis of progressively larger NA samples of biological significance. PMID:27152369

  16. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1

    PubMed Central

    Kozlenkov, Alexey; Lapatsina, Liudmila; Lewin, Gary R; Smith, Ewan St John

    2014-01-01

    There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1. PMID:24247984

  17. Role of ion-pair interactions on asphaltene stabilization by alkylbenzenesulfonic acids.

    PubMed

    Goual, Lamia; Sedghi, Mohammad

    2015-02-15

    The dispersion of asphaltenes by dodecylbenzenesulfonic acid (DBSA) has been the subject of several studies in the past. However, it is unclear how these interactions affect the structure of asphaltenes and why asphaltene aggregates are larger in the presence of ionic DBSA. The main goal of this study was to address these points using a combination of high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations. Another objective was to compare ionic DBSA (i.e., dodecylbenzenesulfonate or DBS(-)) to nonionic amphiphiles such as alkylphenols. A striking similarity between dodecylbenzenesulfonate and alkylphenols was that both favored the formation of filamentary rather than globular asphaltene flocculates. However the mechanism by which those filaments formed was very different. Two strong electrostatic interactions between DBSA and asphaltenes were found: (i) those between protonated asphaltenes (i.e., AH(+)) and DBS(-) molecules, which were fifteen times stronger than asphaltene-alkylphenol interactions, and (ii) those between two asphaltene-dispersant pairs (i.e., AH(+)-DBS(-) ion pairs), which did not exist with alkylphenols. These interactions promoted the formation of large and compact asphaltene flocculates, as compared to small and loose ones formed without DBSA. Flocculates with DBSA could further bind to each other through ion-pair interactions. The binding occurred in series (generating long filaments) or in parallel (generating lateral ramifications). However the series configuration was energetically favored due to less steric effects generated by the side aliphatic chains of asphaltenes and DBSA. PMID:25460685

  18. Acid-sensing ion channels: a novel therapeutic target for pain and anxiety.

    PubMed

    Li, Wei-Guang; Xu, Tian-Le

    2015-01-01

    The acid-sensing ion channel (ASIC) has emerged as a novel type of ion channel that is activated by extracellular protons as well as nonproton ligands. Advances in ASIC research have resolved its multifaceted structural and functional properties, including its widespread distribution, polymodal activation, and activity-dependent regulation of its expression. All of these properties promote a better understanding of the roles played by pH dynamics as well as damage-related signals through activation of ASICs in pain and anxiety. Importantly, even more studies have provided strong evidence supporting the effectiveness of targeting ASICs with pharmacological agents or gene knockdown for treating pain and anxiety. Here we review the contribution of ASICs at the peripheral and central levels to the development of acute pain, inflammatory pain, neuropathic pain, and anxiety-related disorders, as well as their potential underlying mechanisms. Accumulating evidence suggests that ASICs represent a novel class of promising targets for developing effective therapies for pain and anxiety. PMID:25345607

  19. Black mamba venom peptides target acid-sensing ion channels to abolish pain.

    PubMed

    Diochot, Sylvie; Baron, Anne; Salinas, Miguel; Douguet, Dominique; Scarzello, Sabine; Dabert-Gay, Anne-Sophie; Debayle, Delphine; Friend, Valérie; Alloui, Abdelkrim; Lazdunski, Michel; Lingueglia, Eric

    2012-10-25

    Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia. PMID:23034652

  20. Effect of heavy metal ions on neutrophil arachidonic acid metabolism and chemotaxis

    SciTech Connect

    Smith, D.M.; Turner, S.R.; Johnson, J.A.; Turner, R.A.

    1986-05-01

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism, protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup +3/, Zn/sup +2/, Cr/sup +3/, Mn/sup +2/, and Cu/sup +2/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored both qualitatively by thin-layer chromatography of /sup 3/H-AA metabolities and quantitatively by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-Met-Leu-Phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid production. In contrast to previous reports, the data obtained using Au/sup +3/ and Cu/sup +2/ demonstrates no correlation between AA metabolism and chemotaxis, suggesting that these 2 processes are not linked.

  1. Acid Sensing Ion Channels (ASICs) in NS20Y cells - potential role in neuronal differentiation.

    PubMed

    O'Bryant, Zaven; Leng, Tiandong; Liu, Mingli; Inoue, Koichi; Vann, Kiara T; Xiong, Zhi-Gang

    2016-01-01

    Cultured neuronal cell lines can express properties of mature neurons if properly differentiated. Although the precise mechanisms underlying neuronal differentiation are not fully understood, the expression and activation of ion channels, particularly those of Ca(2+)-permeable channels, have been suggested to play a role. In this study, we explored the presence and characterized the properties of acid-sensing ion channels (ASICs) in NS20Y cells, a neuronal cell line previously used for the study of neuronal differentiation. In addition, the potential role of ASICs in cell differentiation was explored. Reverse Transcription Polymerase Chain Reaction and Western blot revealed the presence of ASIC1 subunits in these cells. Fast drops of extracellular pH activated transient inward currents which were blocked, in a dose dependent manner, by amiloride, a non-selective ASIC blocker, and by Psalmotoxin-1 (PcTX1), a specific inhibitor for homomeric ASIC1a and heteromeric ASIC1a/2b channels. Incubation of cells with PcTX1 significantly reduced the differentiation of NS20Y cells induced by cpt-cAMP, as evidenced by decreased neurite length, dendritic complexity, decreased expression of functional voltage gated Na(+) channels. Consistent with ASIC1a inhibition, ASIC1a knockdown with small interference RNA significantly attenuates cpt-cAMP-induced increase of neurite outgrowth. In summary, we described the presence of functional ASICs in NS20Y cells and demonstrate that ASIC1a plays a role in the differentiation of these cells. PMID:27342076

  2. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated. PMID:23328442

  3. Insights into the Mechanism of Pore Opening of Acid-sensing Ion Channel 1A*

    PubMed Central

    Tolino, Lindsey A.; Okumura, Sora; Kashlan, Ossama B.; Carattino, Marcelo D.

    2011-01-01

    Acid-sensing ion channels (ASICs) are trimeric cation channels that undergo activation and desensitization in response to extracellular acidification. The underlying mechanism coupling proton binding in the extracellular region to pore gating is unknown. Here we probed the reactivity toward methanethiosulfonate (MTS) reagents of channels with cysteine-substituted residues in the outer vestibule of the pore of ASIC1a. We found that positively-charged MTS reagents trigger pore opening of G428C. Scanning mutagenesis of residues in the region preceding the second transmembrane spanning domain indicated that the MTSET-modified side chain of Cys at position 428 interacts with Tyr-424. This interaction was confirmed by double-mutant cycle analysis. Strikingly, Y424C-G428C monomers were associated by intersubunit disulfide bonds and were insensitive to MTSET. Despite the spatial constraints introduced by these intersubunit disulfide bonds in the outer vestibule of the pore, Y424C-G428C transitions between the resting, open, and desensitized states in response to extracellular acidification. This finding suggests that the opening of the ion conductive pathway involves coordinated rotation of the second transmembrane-spanning domains. PMID:21388961

  4. Laboratory study of isocyanic acid ions: Rotational spectroscopy of NCO-, H2NCO+, and HNCOH+

    NASA Astrophysics Data System (ADS)

    Lattanzi, Valerio; Gottlieb, Carl A.; Thaddeus, Patrick; Thorwirth, Sven; McCarthy, Michael C.

    2015-01-01

    We report detection of protonated isocyanic acid in two isomeric forms, H2NCO+ and HNCOH+, by high-resolution spectroscopy. The two ions were first observed at centimeter wavelengths by Fourier Transform (FT) microwave spectroscopy, in a discharge through HNCO heavily diluted in hydrogen in the throat of a supersonic nozzle. Spectroscopic constants derived from the two lowest rotational transitions of both isomers agree very well with those derived from theoretical structures computed at the coupled cluster level of theory. In the same molecular beam, the fundamental rotational transition of NCO- was observed with well-resolved nitrogen quadrupole hyperfine structure. Detection of NCO- and H2NCO+ in our beam was subsequently confirmed by observation of several millimeter-wave transitions in a low pressure discharge through cyanogen and water. The spectroscopic constants of NCO- obtained earlier by infrared laser spectroscopy are in good agreement with the highly accurate constants derived here. Owing to the high abundance of HNCO in many galactic molecular sources, both ions are excellent candidates for astronomical detection in the radio band.

  5. Determination of arsenic(III) and arsenic(V) in ferric chloride-hydrochloric acid leaching media by ion chromatography

    SciTech Connect

    Tan, L.K.; Dutrizac, J.E.

    1985-05-01

    An analytical method has been developed to determine arsenic(V) in ferric chloride-hydrochloric acid leaching media using ion chromatography with conductivity detection. Oxidation of As(III) by aqua regia allows arsenic(III) to be determined by difference. The method involves a preseparation of trace quantities of arsenic from the relatively large concentrations of ferric chloride and hydrochloric acid prior to the ion chromatography measurement. Iron(III) is separated by passing through a hydrogen-form cation exchange column, and arsenic(III) and arsenic(V) are then eluted with water. The effect of the concentration of acid in this separation is discussed. The effluent collected from the cation exchange column is evaporated to remove the hydrochloric acid. The accuracy and precision of the method were determined from the analysis of various synthetic solutions and are discussed; an accuracy of +/-4% was obtained even at arsenic(V) concentrations as low as 10 ppm. The extent of oxidation of arsenic(III) in acidic ferric chloride solution and the reduction of arsenic(V) in acidic ferrous chloride solution were measured. The results obtained by ion chromatography are compared to the values realized using colorimetry after the preseparation step. 13 references, 3 figures, 4 tables.

  6. Protons and Psalmotoxin-1 reveal nonproton ligand stimulatory sites in chicken acid-sensing ion channel

    PubMed Central

    Smith, Rachel N; Gonzales, Eric B

    2014-01-01

    Acid-sensing ion channels (ASICs) are proton-sensitive, sodium-selective channels expressed in the nervous system that sense changes in extracellular pH. These ion channels are sensitive to an increasing number of nonproton ligands that include natural venom peptides and guanidine compounds. In the case of chicken ASIC1, the spider toxin Psalmotoxin-1 (PcTx1) activates the channel, resulting in an inward current. Furthermore, a growing class of ligands containing a guanidine group has been identified that stimulate peripheral ASICs (ASIC3), but exert subtle influence on other ASIC subtypes. The effects of the guanidine compounds on cASIC1 have not been the focus of previous study. Here, we investigated the interaction of the guanidine compound 2-guanidine-4-methylquinazoline (GMQ) on cASIC1 proton activation and PcTx1 stimulation. Exposure of expressed cASIC1 to PcTx1 resulted in biphasic currents consisting of a transient peak followed by an irreversible cASIC1 PcTx1 persistent current. This cASIC1 PcTx1 persistent current may be the result of locking the cASIC1 protein into a desensitized transition state. The guanidine compound GMQ increased the apparent affinity of protons on cASIC1 and decreased the half-maximal constant of the cASIC1 steady-state desensitization profile. Furthermore, GMQ stimulated the cASIC1 PcTx1 persistent current in a concentration-dependent manner, which resulted in a non-desensitizing inward current. Our data suggests that GMQ may have multiple sites within cASIC1 and may act as a “molecular wedge” that forces the PcTx1-desensitized ASIC into an open state. Our findings indicate that guanidine compounds, such as GMQ, may alter acid-sensing ion channel activity in combination with other stimuli, and that additional ASIC subtypes (along with ASIC3) may serve to sense and mediate signals from multiple stimuli. PMID:24262969

  7. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption. PMID:24522611

  8. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid.

    PubMed

    Magasinski, Alexandre; Zdyrko, Bogdan; Kovalenko, Igor; Hertzberg, Benjamin; Burtovyy, Ruslan; Huebner, Christopher F; Fuller, Thomas F; Luzinov, Igor; Yushin, Gleb

    2010-11-01

    Si-based Li-ion battery anodes offer specific capacity an order of magnitude beyond that of conventional graphite. However, the formation of stable Si anodes is a challenge because of significant volume changes occurring during their electrochemical alloying and dealloying with Li. Binder selection and optimization may allow significant improvements in the stability of Si-based anodes. Most studies of Si anodes have involved the use of carboxymethylcellulose (CMC) and poly(vinylidene fluoride) (PVDF) binders. Herein, we show for the first time that pure poly(acrylic acid) (PAA), possessing certain mechanical properties comparable to those of CMC but containing a higher concentration of carboxylic functional groups, may offer superior performance as a binder for Si anodes. We further show the positive impact of carbon coating on the stability of the anode. The carbon-coated Si nanopowder anodes, tested between 0.01 and 1 V vs Li/Li+ and containing as little as 15 wt % of PAA, showed excellent stability during the first hundred cycles. The results obtained open new avenues to explore a novel series of binders from the polyvinyl acids (PVA) family. PMID:21053920

  9. Integrated li-ion ultracapacitor with lead acid battery for vehicular start-stop

    NASA Astrophysics Data System (ADS)

    Manla, Emad

    Advancements in automobile manufacturing aim at improving the driving experience at every level possible. One improvement aspect is increasing gas efficiency via hybridization, which can be achieved by introducing a feature called start-stop. This feature automatically switches the internal combustion engine off when it idles and switches it back on when it is time to resume driving. This application has been proven to reduce the amount of gas consumption and emission of greenhouse effect gases in the atmosphere. However, the repeated cranking of the engine puts a large amount of stress on the lead acid battery required to perform the cranking, which effectively reduces its life span. This dissertation presents a hybrid energy storage system assembled from a lead acid battery and an ultracapacitor module connected in parallel. The Li-ion ultracapacitor was tested and modeled to predict its behavior when connected in a system requiring pulsed power such as the one proposed. Both test and simulation results show that the proposed hybrid design significantly reduces the cranking loading and stress on the battery. The ultracapacitor module can take the majority of the cranking current, effectively reducing the stress on the battery. The amount of cranking current provided by the ultracapacitor can be easily controlled via controlling the resistance of the cable connected directly between the ultracapacitor module and the car circuitry.

  10. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

    PubMed

    Zeng, Xianlai; Li, Jinhui; Shen, Bingyu

    2015-09-15

    With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle. PMID:25897692

  11. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed. PMID:26920689

  12. Acid-sensing ion channel 2 (asic 2) and trkb interrelationships within the intervertebral disc

    PubMed Central

    Cuesta, Antonio; Viña, Eliseo; Cabo, Roberto; Vázquez, Gorka; Cobo, Ramón; García-Suárez, Olivia; García-Cosamalón, José; Vega, José A

    2015-01-01

    The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. They express acid-sensing ion channels (ASICs), gated by extracellular protons and mechanical forces, as well as neurotrophins and their signalling receptors. In the nervous tissues some neurotrophins regulate the expression of ASICs. The expression of ASIC2 and TrkB in human normal and degenerated IVD was assessed using quantitative-PCR, Western blot, and immunohistochemistry. Moreover, we investigated immunohistochemically the expression of ASIC2 in the IVD of TrkB-deficient mice. ASIC2 and TrkB mRNAs were found in normal human IVD and both increased significantly in degenerated IVD. ASIC2 and TrkB proteins were also found co-localized in a variable percentage of cells, being significantly higher in degenerated IVD than in controls. The murine IVD displayed ASIC2 immunoreactivity which was absent in the IVD of TrkB-deficient mice. Present results demonstrate the occurrence of ASIC2 and TrkB in the human IVD, and the increased expression of both in pathological IVD suggest their involvement in IVD degeneration. These data also suggest that TrkB-ligands might be involved in the regulation of ASIC2 expression, and therefore in mechanisms by which the IVD cells accommodate to low pH and hypertonicity. PMID:26617738

  13. A process for separating acid-sugar mixtures using ion exclusion chromatography

    SciTech Connect

    Hester, R.D.; Hartfield, S.W.; Farina, G.E.

    1994-10-01

    Work using a low-temperature concentrated sulfuric acid hydrolysis process to convert the cellulosic fraction of corn stover to monomeric sugars demonstrated the high conversion efficiencies possible with that process. The TVA work also confirmed the need for a cost-effective acid-sugar separation process. A preparative-scale ion-exclusion chromatography (IEC) system was designed, constructed, and tested with a variety of synthetic solutions and actual hydrolyzates. Although significant dispersion was observed initially, design changes were effective in minimizing this phenomenon. Data collected during the operation of the preparative-scale system were used in the design and construction of an IEC miniplant capable of processing larger volumes of synthetic solutions or hydrolyzates and in the design of an extraction-assisted IEC system. The data were also used to assess the viability of a continuous feed IEC system. This paper includes a discussion of the IEC process, provides overall material balances for various IEC process scenarios, and presents a discussion on process economics.

  14. Inherent Dynamics of the Acid-Sensing Ion Channel 1 Correlates with the Gating Mechanism

    PubMed Central

    Li, Wei-Guang; Yu, Fang; Cao, Hui; Xu, Tian-Le; Jiang, Hualiang

    2009-01-01

    The acid-sensing ion channel 1 (ASIC1) is a key receptor for extracellular protons. Although numerous structural and functional studies have been performed on this channel, the structural dynamics underlying the gating mechanism remains unknown. We used normal mode analysis, mutagenesis, and electrophysiological methods to explore the relationship between the inherent dynamics of ASIC1 and its gating mechanism. Here we show that a series of collective motions among the domains and subdomains of ASIC1 correlate with its acid-sensing function. The normal mode analysis result reveals that the intrinsic rotation of the extracellular domain and the collective motions between the thumb and finger induced by proton binding drive the receptor to experience a deformation from the extracellular domain to the transmembrane domain, triggering the channel pore to undergo “twist-to-open” motions. The movements in the transmembrane domain indicate that the likely position of the channel gate is around Leu440. These motion modes are compatible with a wide body of our complementary mutations and electrophysiological data. This study provides the dynamic fundamentals of ASIC1 gating. PMID:19597538

  15. Expression and Activity of Acid-Sensing Ion Channels in the Mouse Anterior Pituitary

    PubMed Central

    Du, Jianyang; Reznikov, Leah R.; Welsh, Michael J.

    2014-01-01

    Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide), suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function. PMID:25506946

  16. Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice

    PubMed Central

    Lino, Noelia G.; González-Inchauspe, Carlota M. F.; González, Laura E.; Colettis, Natalia; Vattino, Lucas G.; Wunsch, Amanda M.; Wemmie, John A.; Uchitel, Osvaldo D.

    2013-01-01

    Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a −/− knockout). Our results showed that 1) ASIC1a −/− female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2) spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice. PMID:24336653

  17. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary.

    PubMed

    Du, Jianyang; Reznikov, Leah R; Welsh, Michael J

    2014-01-01

    Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide), suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function. PMID:25506946

  18. Fluxionate Lewis acidity of the Zn2+ ion in carboxypeptidase A.

    PubMed Central

    Mock, W L; Freeman, D J; Aksamawati, M

    1993-01-01

    Competitive inhibition constants Ki for a series of phenol-ring-substituted derivatives of alpha-(2-hydroxyphenyl)benzenepropanoic acid have been ascertained by observing their influence on the catalytic hydrolysis of a peptide substrate by the zinc enzyme carboxypeptidase A. The pH-dependence of Ki shows that binding is maximal between two pKa values: one is that of the phenol group of the inhibitor, and the other uniformly has a value of 6, the pKa of a Zn(2+)-bound water molecule on the enzyme in the absence of substrate or inhibitor. This is the dependence expected if phenolate binds to the Zn2+ displacing its bound H2O/HO-. A log-log plot of the dissociation constants for the productive forms of inhibitor plus enzyme versus the acid dissociation constants of the phenolic residues in the inhibitors yields a straight line with a slope of +0.76. This number indicates that the active-site metal ion has special capacity for dispersing negative charge, such as builds up on the oxygen atom of a carboxamide group undergoing nucleophilic addition. PMID:8424757

  19. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent. PMID:12830881

  20. Patterns of acid deposition variability in the Eastern United States, 1981-84

    USGS Publications Warehouse

    Lins, H.F.; Lanfear, K.J.; Schertz, T.L.

    1987-01-01

    An increase in pH and a decrease in sulfate concentration of precipitation were recorded at National Atmospheric Deposition Program and National Trends Network (NADP/NTN) monitoring sites in the Eastern United States between 1981 and 1984. The decline in acidity, however, was not spatially or temporally uniform. The range in acidity and sulfate concentrations decreased during the four-yr period. Variations in the area of constant pH surfaces take the general form of area reductions in both the lower (pH 4.01-4.40) and upper (pH 4.91-5.40) range of values with concomitant area increases in the middle (pH 4.41-4.90) range. The pattern for sulfate is simpler, with area increases occurring in the lower (1.0-1.9 mg/L) range, decreases in the upper (2.5-4.4 mg/L) range, with approximate stability in the middle (2.0-2.4 mg/L) range of values. (Author 's abstract)

  1. The distribution of common construction materials at risk to acid deposition in the United States

    NASA Astrophysics Data System (ADS)

    Lipfert, Frederick W.; Daum, Mary L.

    Information on the geographic distribution of various types of exposed materials is required to estimate the economic costs of damage to construction materials from acid deposition. This paper focuses on the identification, evaluation and interpretation of data describing the distributions of exterior construction materials, primarily in the United States. This information could provide guidance on how data needed for future economic assessments might be acquired in the most cost-effective ways. Materials distribution surveys from 16 cities in the U.S. and Canada and five related databases from government agencies and trade organizations were examined. Data on residential buildings are more commonly available than on nonresidential buildings; little geographically resolved information on distributions of materials in infrastructure was found. Survey results generally agree with the appropriate ancillary databases, but the usefulness of the databases is often limited by their coarse spatial resolution. Information on those materials which are most sensitive to acid deposition is especially scarce. Since a comprehensive error analysis has never been performed on the data required for an economic assessment, it is not possible to specify the corresponding detailed requirements for data on the distributions of materials.

  2. Temperature Rise Induced by Light Curing Unit Can Shorten Enamel Acid-Etching Time

    PubMed Central

    Najafi Abrandabadi, Ahmad; Sheikh-Al-Eslamian, Seyedeh Mahsa; Panahandeh, Narges

    2015-01-01

    Objectives: The aim of this in-vitro study was to assess the thermal effect of light emitting diode (LED) light curing unit on the enamel etching time. Materials and Methods: Three treatment groups with 15 enamel specimens each were used in this study: G1: Fifteen seconds of etching, G2: Five seconds of etching, G3: Five seconds of etching plus LED light irradiation (simultaneously). The micro shear bond strength (μSBS) of composite resin to enamel was measured. Results: The mean μSBS values ± standard deviation were 51.28±2.35, 40.47±2.75 and 50.00±2.59 MPa in groups 1, 2 and 3, respectively. There was a significant difference between groups 1 and 2 (P=0.013) and between groups 2 and 3 (P=0.032) in this respect, while there was no difference between groups 1 and 3 (P=0.932). Conclusion: Simultaneous application of phosphoric acid gel over enamel surface and light irradiation using a LED light curing unit decreased enamel etching time to five seconds without compromising the μSBS. PMID:27559352

  3. Distribution of Components in Ion Exchange Materials Taken from the K East Basin and Leaching of Ion Exchange Materials by Nitric/Hydrofluoric Acid and Nitric/Oxalic Acid

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.; Hoopes, F.V.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of mixed nitric/hydrofluoric acid followed by mixed nitric/oxalic acid leach treatments to decontaminate ion exchange materials that have been found in a number of samples retrieved from K East (KE)Basin sludge. The ion exchange materials contain organic ion exchange resins and zeolite inorganic ion exchange material. Based on process records, the ion exchange resins found in the K Basins is a mixed-bed, strong acid/strong base material marketed as Purolite NRW-037. The zeolite material is Zeolon-900, a granular material composed of the mineral mordenite. Radionuclides sorbed or associated with the ion exchange material can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). Elutriation and washing steps are designed to remove the organic resins from the K Basin sludge. To help understand the effects of the anticipated separation steps, tests were performed with well-rinsed ion exchange (IX) material from KE Basin floor sludge (sample H-08 BEAD G) and with well-rinsed IX having small quantities of added KE canister composite sludge (sample KECOMP). Tests also were performed to determine the relative quantities of organic and inorganic IX materials present in the H-08 K Basin sludge material. Based on chemical analyses of the separated fractions, the rinsed and dry IX material H-08 BEAD G was found to contain 36 weight percent inorganic material (primarily zeolite). The as-received (unrinsed) and dried H-08 material was estimated to contain 45 weight percent inorganic material.

  4. Regulation of the synthesis of barley aleurone. cap alpha. -amylase by gibberellic acid and calcium ions

    SciTech Connect

    Jones, R.L.; Carbonell, J.

    1984-09-01

    The effects of gibberellic acid (GA/sub 3/) and calcium ions on the production of ..cap alpha..-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA/sub 3/ or CA/sup 2 +/ show qualitative and quantitative changes in hydrolase production following incubation in either GA/sub 3/ or CA/sup 2 +/ or both. In cubation in H/sub 2/O or CA/sup 2 +/ results in the production of low levels of ..cap alpha..-amylase or acid phosphatase. The addition of GA/sub 3/ to the incubation medium causes 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of CA/sup 2 +/ at 10 millimolar causes a further 8- to 9-fold increase in ..cap alpha..-amylase release and a 75% increase in phosphatase release. Production of ..cap alpha..-amylase isoenzymes is also modified by the levels of GA/sub 3/ and CA/sup 2 +/ in the incubation medium. ..cap alpha..-amylase 2 is produced under all conditions of incubation, while ..cap alpha..-amylase 1 appears only when layers are incubated in GA/sub 3/ or GA/sub 3/ plus CA/sup 2 +/. The synthesis of ..cap alpha..-amylases 3 and 4 requires the presence of both GA/sub 3/ and CA/sup 2 +/ in the incubation medium. Laurell rocket immunoelectrophoresis shows that two distinct groups of ..cap alpha..-amylase antigens are present in incubation media of aleurone layers incubated with both GA/sub 3/ and CA/sup 2 +/, while only one group of antigens is found in media of layers incubated in GA/sub 3/ alone. Strontium ions can be substituted for CA/sup 2 +/ in increasing hydrolase production, although higher concentrations of Sr/sup 2 +/ are requried for maximal response. We conclude that GA/sub 3/ is required for the production of ..cap alpha..-amylase 1 and that both GA/sub 3/ and either CA/sup 2 +/ or Sr/sup 2 +/ are required for the production of isoenzymes 3 and 4 of barley aleurone ..cap alpha..-amylase. 22 references, 8

  5. The retention of calcium, barium, and strontium ions by a mollisol humic acid: Spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Oufqir, Sofia; Bloom, Paul R.; Torner, Brandy M.

    2014-05-01

    Humic substances have a major role in controlling the mobility and bioavailability of metallic ions in soils and natural waters. The alkaline earth metals, calcium, barium, and strontium, are broadly abundant in the crust of the earth, and Ca2+ ions are known to be important in the formation of structural aggregates in soils. Yet, direct spectroscopic evidence of how Ca, Ba, and Sr ions interact with soil organic matter, is minimal. To develop a deeper understanding of the interaction of the alkaline earth cations in soil, we studied the complexation behavior of strontium, barium and calcium by humic acid (HA) using solid-state 13C CP-MAS NMR, FTIR and extended x-ray absorption fine structure (EXAFS) spectroscopy. A HA sample was extracted from an agricultural mollisol (pH 6, 32.5% clay content, 3.7% organic carbon) located in southwestern Minnesota, USA, by the standard NaOH method. The HA sample was treated with chloride salts of Ca, Sr or Ba, then freeze-dried prior to spectroscopic measurements. The FTIR spectra, obtained using pressed KBr disks, and the 13C NMR spectra revealed spectral differences, stemming mainly from deprotonation reactions of the carboxylic and phenolic groups of the HA. The association of Ca, Ba, and Sr ions with the HA caused a marked FTIR shift of the carboxylate band, with the Ba shift being the most pronounced (HA 1604.7; HA-Ca 1595.1; HA-Sr 1597; HA-Ba 1579.6), which seems to imply that Ba is the strongest bound element. An NMR shift of the carbonyl peak at 171.8 ppm was also observed to 174.5 for Ca, 173.7 for Sr, and 174.4 for Ba confirming that these cations are behaving differently towards soil HA. The EXAFS spectra indicated back-scattering from oxygen atoms, in the first shell, for Ca, Sr, and Ba with varied coordination number. Our data prove that (1) the carboxylates and phenolates are the prevailing functional groups involved in the interactions between the extracted HA and alkali metal cations, (2) barium forms the

  6. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain.

    PubMed

    Bohlen, Christopher J; Chesler, Alexander T; Sharif-Naeini, Reza; Medzihradszky, Katalin F; Zhou, Sharleen; King, David; Sánchez, Elda E; Burlingame, Alma L; Basbaum, Allan I; Julius, David

    2011-11-17

    Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH < 6.5), MitTx massively potentiates (>100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception. PMID:22094702

  7. Prolactin potentiates the activity of acid-sensing ion channels in female rat primary sensory neurons.

    PubMed

    Liu, Ting-Ting; Qu, Zu-Wei; Ren, Cuixia; Gan, Xiong; Qiu, Chun-Yu; Hu, Wang-Ping

    2016-04-01

    Prolactin (PRL) is a polypeptide hormone produced and released from the pituitary and extrapituitary tissues. It regulates activity of nociceptors and causes hyperalgesia in pain conditions, but little is known the molecular mechanism. We report here that PRL can exert a potentiating effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons. First, PRL dose-dependently increased the amplitude of ASIC currents with an EC50 of (5.89 ± 0.28) × 10(-8) M. PRL potentiation of ASIC currents was also pH dependent. Second, PRL potentiation of ASIC currents was blocked by Δ1-9-G129R-hPRL, a PRL receptor antagonist, and removed by intracellular dialysis of either protein kinase C inhibitor GF109203X, protein interacting with C-kinase 1(PICK1) inhibitor FSC-231, or PI3K inhibitor AS605240. Third, PRL altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Four, PRL exacerbated nociceptive responses to injection of acetic acid in female rats. Finally, PRL displayed a stronger effect on ASIC mediated-currents and nociceptive behavior in intact female rats than OVX female and male rats and thus modulation of PRL may be gender-dependent. These results suggest that PRL up-regulates the activity of ASICs and enhances ASIC mediated nociceptive responses in female rats, which reveal a novel peripheral mechanism underlying PRL involvement in hyperalgesia. PMID:26188144

  8. Quantifying the ion atmosphere of unfolded, single-stranded nucleic acids using equilibrium dialysis and single-molecule methods

    PubMed Central

    Jacobson, David R.; Saleh, Omar A.

    2016-01-01

    To form secondary structure, nucleic acids (NAs) must overcome electrostatic strand–strand repulsion, which is moderated by the surrounding atmosphere of screening ions. The free energy of NA folding therefore depends on the interactions of this ion atmosphere with both the folded and unfolded states. We quantify such interactions using the preferential ion interaction coefficient or ion excess: the number of ions present near the NA in excess of the bulk concentration. The ion excess of the folded, double-helical state has been extensively studied; however, much less is known about the salt-dependent ion excess of the unfolded, single-stranded state. We measure this quantity using three complementary approaches: a direct approach of Donnan equilibrium dialysis read out by atomic emission spectroscopy and two indirect approaches involving either single-molecule force spectroscopy or existing thermal denaturation data. The results of these three approaches, each involving an independent experimental technique, are in good agreement. Even though the single-stranded NAs are flexible polymers that are expected to adopt random-coil configurations, we find that their ion atmosphere is quantitatively described by rod-like models that neglect large-scale conformational freedom, an effect that we explain in terms of the competition between the relevant structural and electrostatic length scales. PMID:27036864

  9. Studies of endothelial monolayer formation on irradiated poly-L-lactide acid with ions of different stopping power and velocity

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Ibañez, Irene L.; Behar, Moni; Grasselli, Mariano; Bermúdez, Gerardo García

    2015-12-01

    In this work we study cell viability, proliferation and morphology of bovine aortic endothelial cells (BAEC) cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. In a previous study comparing ions beams with the same stopping power we observed an increase in cell density and a better cell morphology at higher ion velocities. In the present work we continued this study using heavy ions beam with different stopping power and ion velocities. To this end thin films of 50 μm thickness were irradiated with 2 MeV/u and 0.10 MeV/u ion beams provided the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The results suggest that a more dense and elongated cell shapes, similar to the BAEC cells on the internal surface of bovine aorta, was obtained for stopping power of 18.2-22.1 MeV cm2 mg-1 and ion velocity of 2 MeV/u. On the other hand, for low ion velocity 0.10 MeV/u the cells present a more globular shapes.

  10. Qualitative analysis of some carboxylic acids by ion-exclusion chromatography with atmospheric pressure chemical ionization mass spectrometric detection.

    PubMed

    Helale, Murad I H; Tanaka, Kazuhiko; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Haddad, Paul R

    2002-05-17

    A simple, selective and sensitive method for the determination of carboxylic acids has been developed. A mixture of formic, acetic, propionic, valeric, isovaleric, isobutyric, and isocaproic acids has been separated on a polymethacrylate-based weak acidic cation-exchange resin (TSK gel OA pak-A) based on an ion-exclusion chromatographic mechanism with detection using UV-photodiode array, conductivity and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). A mobile phase consisting of 0.85 mM benzoic acid in 10% aqueous methanol (pH 3.89) was used to separate the above carboxylic acids in about 40 min. For LC-MS, the APCI interface was used in the negative ionization mode. Linear plots of peak area versus concentration were obtained over the range 1-30 mM (r2=0.9982) and 1-30 mM (r2=0.9958) for conductimetric and MS detection, respectively. The detection limits of the target carboxylic acids calculated at S/N=3 ranged from 0.078 to 2.3 microM for conductimetric and photometric detection and from 0.66 to 3.82 microM for ion-exclusion chromatography-APCI-MS. The reproducibility of retention times was 0.12-0.16% relative standard deviation for ion-exclusion chromatography and 1.21-2.5% for ion-exclusion chromatography-APCI-MS. The method was applied to the determination of carboxylic acids in red wine, white wine, apple vinegar, and Japanese rice wine. PMID:12108651

  11. Measuring Gas-Phase Basicities of Amino Acids Using an Ion Trap Mass Spectrometer: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.

    2005-01-01

    An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.

  12. Chemical Speciation Analysis of Sports Drinks by Acid-Base Titrimetry and Ion Chromatography: A Challenging Beverage Formulation Project

    ERIC Educational Resources Information Center

    Drossman, Howard

    2007-01-01

    Students have standardized a sodium hydroxide solution and analyzed commercially available sports drinks by titrimetric analysis of the triprotic citric acid, dihydrogen phosphate, and dihydrogen citrate and by ion chromatography for chloride, total phosphate and citrate. These experiments are interesting examples of analyzing real-world food and…

  13. DETERMINATION OF CHLORINATED ACID HERBICIDES AND RELATED COMPOUNDS IN WATER BY CAPILLARY ELECTROPHORESIS-ELECTROSPRAY NEGATIVE ION MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis electrospray negative ion mass spectrometry was investigated for the determination of chlorinated acid herbicides and several phenols in water. Sixteen analytes were separated as their anions in less than 40 min with a buffer consisting of 5 mM ammonium ...

  14. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.

    PubMed

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hasunuma, Tomohisa; Zhao, Xin-Qing; Kondo, Akihiko

    2014-12-01

    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae. PMID:24924214

  15. Correlation between stabilities of uranyl ion complexes with various monocarboxylic acids and Hammett-Taft substituent constants

    SciTech Connect

    Poluektov, N.S.; Perfil'ev, V.A.; Meshkova, S.B.; Mishchenko, V.T.

    1987-01-01

    A correlation has been observed between the stabilities of uranyl ion complexes (1:1 composition) and the substituent inductive constants in formic and acetic acid derivatives. For substituents which are not directly involved in couples formation the parameters of the Hammett-Taft equation log K/sub 1/ = A + B have the following values: A = 1.311, B = -2.360. For substituents which form a coordination bond with the uranyl ion, A = 7.0077 and B = - 17.321. In the case of complexes formed between the uranyl ion and salicylic acid and its derivatives, there is a correlation between complex stability and sigma/sub m/ and sigma/sub p/ substituent constants for the meta- and para-positions, respectively (A = 12.72, B = -4.41).

  16. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    PubMed

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena. PMID:23895531

  17. [Determination of succinic acid in desvenlafaxine succinate by high performance ion-exclusion chromatography and high performance ion-exchange chromatography].

    PubMed

    Zong, Yanping; Li, Jinghua; Sun, Wei; Liu, Guixia; Lu, Jinghua; Shan, Guangzhi

    2016-02-01

    New methods were developed for the determination of succinic acid in desvenlafaxine succinate (DVS) by high performance ion-exclusion chromatography (HPIEC) and high performance ion-exchange chromatography (HPIC). HPIEC and HPIC methods were used separately to determinate the succinic acid in DVS. With HPIEC, the sample was diluted with 2. 50 x 10(-3) mol/L sulfuric acid solution and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIEC directly without any further pretreatment. The analytical column was Phenomenex Rezex ROA-organic Acid H+(8%) (300 mmx7. 8 mm). The mobile phase was 2. 50x10(-3) mol/L sulfuric acid solution at the flow rate of 0. 5 mL/min. The column temperature was set at 40 °C, and the detection wavelength was 210 nm. The injection volume was 10 KL. The assay was quantified by external standard method. With HPIC, the sample was diluted with ultrapure water and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIC directly without any further pretreatment. The analytical column was Dionex IonPac AS11-HC (250 mm x 4 mm) with a guard column IonPacAG11-HC (50 mm x 4 mm). Isocratic KOH elute generator was used at the flow rate of 1. 0 mL/min. The detection was performed by a Dionex suppressed (DIONEX AERS 500 4-mm) conductivity detector. The injection volume was 10 µL. The content computation was performed with peak area external reference method. The results of HPIEC method for succinic acid were 28. 8%, 28. 9% and 28. 9%, while the results of HPIEC method were 28. 2%, 28. 6% and 28. 6%. The results of HPIEC and HPIC methods were not significantly different. The two methods can both be used to determine the contents of succinic acid in DVS. The surveillance analytical method should be chosen according to the situation. PMID:27382725

  18. Analysis of Triacylglycerol and Fatty Acid Isomers by Low-Temperature Silver-Ion High Performance Liquid Chromatography with Acetonitrile in Hexane as Solvent: Limitations of the Methodology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silver ion HPLC (Ag HPLC), utilizing columns containing silver ions bonded to a silica substrate and acetonitrile in hexane as solvent, has proven to be a powerful technology for the analysis of geometric (cis or trans) or positional fatty acids, fatty acid ester (primarily methyl ester; FAME), or t...

  19. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    PubMed

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method. PMID:21558657

  20. The Energetic Heavy Ion Sensor (EHIS) for GOES-R: Accelerator Calibrations of Flight Unit 1

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2013-12-01

    The Energetic Heavy Ion Sensor (EHIS) instruments for GOES-R will provide high resolution measurement of energetic ions (Solar energetic particles and cosmic rays) from hydrogen (H) through nickel (Ni) for space weather monitoring and scientific research. Measurements are taken in five approximately logarithmically spaced energy intervals from 10-200 MeV/u for hydrogen and helium (He) and comparable penetrations for heavier elements. The Angle Detecting Inclined Sensors (ADIS) technique is used to provide single element resolution by determining the angle of incidence with a very simple telescope design using Si solid state detectors. The ADIS system also facilitates on-board event identification of ion species. During high flux conditions, EHIS can identify the elemental composition of ~2000 events per seconds. Elemental charge histograms are compiled on-board and reported via telemetry once per minute providing an unprecedented combination of statistical resolution and high cadence. The first of four flight instruments (FM1) has been completed. FM1 underwent heavy ion accelerator calibration at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF) at Michigan State University in February 2013 and proton calibration at the Massachusetts General Hospital's (MGH) Burr Proton Therapy Center in April 2013. The heavy ion calibration included both Ni primary and secondary fragments runs down to H. Results of these calibration runs will be presented. This work is supported by NASA under the contract NNG06HX01C.

  1. The Energetic Heavy Ion Sensor (EHIS) for GOES-R: Accelerator Calibrations of Flight Unit 1

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2014-12-01

    The Energetic Heavy Ion Sensor (EHIS) instruments for GOES-R will provide high resolution measurement of energetic ions (Solar energetic particles and cosmic rays) from hydrogen (H) through nickel (Ni) for space weather monitoring and scientific research. Measurements are taken in five approximately logarithmically spaced energy intervals from 10-200 MeV/u for hydrogen and helium (He) and comparable penetrations for heavier elements. The Angle Detecting Inclined Sensors (ADIS) technique is used to provide single element resolution by determining the angle of incidence with a very simple telescope design using Si solid state detectors. The ADIS system also facilitates on-board event identification of ion species. During high flux conditions, EHIS can identify the elemental composition of ~2000 events per seconds. Elemental charge histograms are compiled on-board and reported via telemetry once per minute providing an unprecedented combination of statistical resolution and high cadence. The first of four flight instruments (FM1) has been completed. FM1 underwent heavy ion accelerator calibration at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF) at Michigan State University in February 2013, and proton calibration at the Massachusetts General Hospital's (MGH) Burr Proton Therapy Center in April 2013. The heavy ion calibration included both Ni primary and secondary fragments runs down to H. Results of these calibration runs will be presented.

  2. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    PubMed

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  3. Removal and recovery of metal ions from acid mine drainage using lignite--A low cost sorbent.

    PubMed

    Mohan, Dinesh; Chander, Subhash

    2006-10-11

    Acid mine drainage (AMD), has long been a significant environmental problem resulting from the microbial oxidation of iron pyrite in presence of water and air, affording an acidic solution that contains toxic metal ions. The main objective of this study was to remove and recover metal ions from acid mine drainage (AMD) by using lignite, a low cost sorbent. Lignite has been characterized and used for the AMD treatment. Sorption of ferrous, ferric, manganese, zinc and calcium in multi-component aqueous systems was investigated. Studies were performed at different pH to find optimum pH. To simulate industrial conditions for acid mine wastewater treatment, all the studies were performed using single and multi-columns setup in down flow mode. The empty bed contact time (EBCT) model was used for minimizing the sorbent usage. Recovery of the metal ions as well as regeneration of sorbent was achieved successfully using 0.1 M nitric acid without dismantling the columns. PMID:16784810

  4. SBA-15 mesoporous silica free-standing thin films containing copper ions bounded via propyl phosphonate units - preparation and characterization

    NASA Astrophysics Data System (ADS)

    Laskowski, Lukasz; Laskowska, Magdalena; Jelonkiewicz, Jerzy; Dulski, Mateusz; Wojtyniak, Marcin; Fitta, Magdalena; Balanda, Maria

    2016-09-01

    The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUID magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined.

  5. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  6. The bile acid-sensitive ion channel (BASIC), the ignored cousin of ASICs and ENaC

    PubMed Central

    Wiemuth, Dominik; Assmann, Marc; Gründer, Stefan

    2014-01-01

    The DEG/ENaC gene family of ion channels is characterized by a high degree of structural similarity and an equally high degree of diversity concerning the physiological function. In humans and rodents, the DEG/ENaC family comprises 2 main subgroups: the subunits of the epithelial Na+ channel (ENaC) and the subunits of the acid sensing ion channels (ASICs). The bile acid-sensitive channel (BASIC), previously known as BLINaC or INaC, represents a third subgroup within the DEG/ENaC family. Although BASIC was identified more than a decade ago, very little is known about its physiological function. Recent progress in the characterization of this neglected member of the DEG/ENaC family, which is summarized in this focused review, includes the discovery of surprising species differences, its pharmacological characterization, and the identification of bile acids as putative natural activators. PMID:24365967

  7. Positional isomeric tunable two Co(II) 6-connected 3-D frameworks with pentanuclear to binuclear units: structures, ion-exchange and magnetic properties.

    PubMed

    Han, Min-Le; Duan, Ya-Ping; Li, Dong-Sheng; Wang, Hai-Bin; Zhao, Jun; Wang, Yao-Yu

    2014-11-01

    Two new Co(II) based metal-organic frameworks, namely {[Co5(μ3-OH)2(m-pda)3(bix)4]·2ClO4}n (1) and {[Co2(p-pda)2(bix)2(H2O)]·H2O}n (2), were prepared by hydrothermal reactions of Co(II) salt with two isomeric dicarboxyl tectons 1,3-phenylenediacetic acid (m-pda) and 1,4-phenylenediacetic acid (p-pda), along with 1,3-bis(imidazol-L-ylmethyl)benzene (bix). Both complexes 1 and 2 have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). 1 shows a 6-connected 3-D pcu cationic framework with pentanuclear [Co5(μ3-OH)2(COO)6(bix)2](2+) units, while 2 exhibits a 6-connected 3-D msw net based on [Co2(μ2-H2O)(COO)2](2+) clusters. The results indicate that the different dispositions of the carboxylic groups of dicarboxylates have an important effect on the overall coordination frameworks. Perchlorate anions in 1 can be partly exchanged by thiocyanate and azide anions, however they are unavailable to nitrate anions. Magnetic susceptibility measurements indicate that both 1 and 2 show weak antiferromagnetic interactions between the adjacent Co(II) ions. PMID:25190003

  8. Inositol Metabolism in Plants. V. Conversion of Myo-inositol to Uronic Acid and Pentose Units of Acidic Polysaccharides in Root-tips of Zea mays 1

    PubMed Central

    Roberts, R. M.; Deshusses, J.; Loewus, F.

    1968-01-01

    The metabolism of myo-inositol-2-14C, d-glucuronate-1-14C, d-glucuronate-6-14C, and l-methionine-methyl-14C to cell wall polysaccharides was investigated in excised root-tips of 3 day old Zea mays seedlings. From myo-inositol, about one-half of incorporated label was recovered in ethanol insoluble residues. Of this label, about 90% was solubilized by treatment, first with a preparation of pectinase-EDTA, then with dilute hydrochloric acid. The only labeled constituents in these hydrolyzates were d-galacturonic acid, d-glucuronic acid, 4-O-methyl-d-glucuronic acid, d-xylose, and l-arabinose, or larger oligosaccharide fragments containing these units. Medium external to excised root-tips grown under sterile conditions in myo-inositol-2-14C contained labeled polysaccharide. When label was supplied in the form of d-glucuronate, the pattern of labeled uronic acid and pentose units in cell wall polysaccharides resembled that obtained from labeled myo-inositol, indicating that both substances were metabolized along a common path during polysaccharide formation, and that methylation occurred at a step subsequent to uronic acid formation. When label was supplied in the form of l-methionine-methyl-14C, 4-O-methyl-d-glucuronic acid was the only labeled monosaccharide component that survived enzymatic or acid hydrolysis. Zea mays endosperm, a known source of phytin, developed maximal phytase activity after the third day of germination. Results obtained here suggest that myo-inositol released by hydrolysis of phytin represents the initial precursor of a normal, possibly predominant pathway for the formation of uronic acids in plants. PMID:16656871

  9. Subunit and frequency-dependent inhibition of Acid Sensing Ion Channels by local anesthetic tetracaine

    PubMed Central

    2013-01-01

    Background Extracellular acidosis is a prominent feature of multiple pathological conditions, correlating with pain sensation. Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are distributed throughout the central and peripheral nervous systems. Activation of ASICs, particularly ASIC3 and ASIC1a channels, by acidic pH and the resultant depolarization of nociceptive primary sensory neurons, participates in nociception. Agents that inhibit the activation of ASICs are thus expected to be analgesic. Here, we studied the effect of local anesthetic tetracaine on ASIC currents. Results Tetracaine inhibited the peak ASIC3 current in a concentration-dependent manner with an IC50 of 9.96 ± 1.88 mM. The degree of inhibition by tetracaine was dependent on the extracellular pH but independent of the membrane potential. Furthermore, 3 mM tetracaine also inhibited 29.83% of the sustained ASIC3 current. In addition to ASIC3, tetracaine inhibited the ASIC1a and ASIC1β currents. The inhibition of the ASIC1a current was influenced by the frequency of channel activation. In contrast to ASIC3, ASIC1a, and ASIC1β currents, ASIC2a current was not inhibited by tetracaine. In cultured mouse dorsal root ganglion neurons, 1–3 mM tetracaine inhibited both the transient and sustained ASIC currents. At pH4.5, 3 mM tetracaine reduced the peak ASIC current to 60.06 ± 4.51%, and the sustained current to 48.24 ± 7.02% of the control values in dorsal root ganglion neurons. In contrast to ASICs, voltage-gated sodium channels were inhibited by acid, with 55.15% inhibition at pH6.0 and complete inhibition at pH5.0. Conclusions These findings disclose a potential new mechanism underlying the analgesic effects of local anesthetics, particularly in acidic conditions where their primary target (i.e. voltage-gated Na+ channel) has been suppressed by protons. PMID:23758830

  10. Acid-sensing ion channels interact with and inhibit BK K+ channels

    PubMed Central

    Petroff, Elena Yermolaieva; Price, Margaret P.; Snitsarev, Vladislav; Gong, Huiyu; Korovkina, Victoria; Abboud, Francois M.; Welsh, Michael J.

    2008-01-01

    Acid-sensing ion channels (ASICs) are neuronal non-voltage-gated cation channels that are activated when extracellular pH falls. They contribute to sensory function and nociception in the peripheral nervous system, and in the brain they contribute to synaptic plasticity and fear responses. Some of the physiologic consequences of disrupting ASIC genes in mice suggested that ASIC channels might modulate neuronal function by mechanisms in addition to their H+-evoked opening. Within ASIC channel's large extracellular domain, we identified sequence resembling that in scorpion toxins that inhibit K+ channels. Therefore, we tested the hypothesis that ASIC channels might inhibit K+ channel function by coexpressing ASIC1a and the high-conductance Ca2+- and voltage-activated K+ (BK) channel. We found that ASIC1a associated with BK channels and inhibited their current. Reducing extracellular pH disrupted the association and relieved the inhibition. BK channels, in turn, altered the kinetics of ASIC1a current. In addition to BK, ASIC1a inhibited voltage-gated Kv1.3 channels. Other ASIC channels also inhibited BK, although acidosis-dependent relief of inhibition varied. These results reveal a mechanism of ion channel interaction and reciprocal regulation. Finding that a reduced pH activated ASIC1a and relieved BK inhibition suggests that extracellular protons may enhance the activity of channels with opposing effects on membrane voltage. The wide and varied expression patterns of ASICs, BK, and related K+ channels suggest broad opportunities for this signaling system to alter neuronal function. PMID:18287010

  11. Spectrophotometric Determination and Removal of Unchelated Europium Ions from Solutions Containing Eu-Diethylenetriaminepentaacetic Acid Chelate-Peptide Conjugates1

    PubMed Central

    Dayan Elshan, N. G. R.; Patek, Renata; Vagner, Josef; Mash, Eugene A.

    2014-01-01

    Europium chelates conjugated with peptide ligands are routinely used as probes for conducting in vitro binding experiments. The presence of unchelated Eu ions in these formulations gives high background luminescence and can lead to poor results in binding assays. In our experience, the reported methods for purification of these probes do not achieve adequate removal of unchelated metal ions in a reliable manner. In this work, a xylenol orange-based assay for the quantification of unchelated metal ions was streamlined and used to determine levels of metal ion contamination, as well as the success of metal ion removal upon attempted purification. We compared the use of Empore™ chelating disks and Chelex® 100 resin for the selective removal of unchelated Eu ions from several Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates. Both purification methods gave complete and selective removal of the contaminant metal ions. However, Empore™ chelating disks were found to give much higher recoveries of the probes under the conditions utilized. Related to the issue of probe recovery, we also describe a significantly more efficient method for the synthesis of one such probe using Rink amide AM resin in place of Tentagel S resin. PMID:25058927

  12. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling

    NASA Astrophysics Data System (ADS)

    Duncan, Kyle D.; Volmer, Dietrich A.; Gill, Chris G.; Krogh, Erik T.

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H]-) ions with limited selective fragmentation. However, carboxylates cationized with Ba2+ have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba]+ precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH]+ and [BaOH]+). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  13. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    PubMed

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization. PMID:26689207

  14. Involvements of chloride ion in decolorization of Acid Orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation.

    PubMed

    Wang, Ping; Yang, Shiying; Shan, Liang; Niu, Rui; Shao, Xueting

    2011-01-01

    The effects of chloride anion (Cl-) (up to 1.0 mol/L) on the decolorization of a model compound, azo dye Acid Orange 7 (AO7), by sulfate radical (SO4-*) based-peroxydisulfate (PS) or peroxymonosulfate (PMS) oxidation under various activated conditions (UV254 nm/PS, Thermal (70 degrees C/PS, UV254 nm/PMS, Co2+/PMS) were investigated. Methanol and NH4+ were used as quenching reagents to determine the contributions of active chlorine species (dichloride radical (Cl2-*) and hypochlorous acid (HClO)). The results indicated that the effects of Cl- on the reaction mechanism were different under various activated conditions. For UV/PS and Thermal/PS, the inhibition tendency became more clear as the Cl- concentration increased, probably due to the reaction between Cl- and SO4-* and the generation of Cl2-* or HCIO. For UV/PMS, Cl- did not exhibit inhibition when the concentration was below 0.1 mol/L. As Cl- concentration reached to 1.0 mol/L, the decolorization rate of AO7 was, however, accelerated, possibly because PMS directly reacts with Cl- to form HClO. For Co2+/PMS, Cl- exhibited a significant inhibiting effect even at low concentration (< or = 0.01 mol/L). When Cl- concentration exceeded 0.1 mol/L, the activation of PMS by Co2+ was almost completely inhibited. Under this condition, HClO maybe played a major role in decolorization of AO7. The results implicated that chloride ion is an important factor in SO4(-*) -based degradation of organic contamination in chloride-containing water. PMID:22432303

  15. Altered Expression Pattern of Acid-Sensing Ion Channel Isoforms in Piriform Cortex After Seizures.

    PubMed

    Wu, Hao; Wang, Chao; Liu, Bei; Li, Huanfa; Zhang, Yu; Dong, Shan; Gao, Guodong; Zhang, Hua

    2016-04-01

    The piriform cortex (PC) is highly susceptible to chemical and electrical seizure induction. Epileptiform activity is associated with an acid shift in extracellular pH, suggesting that acid-sensing ion channels (ASICs) expressed by PC neurons may contribute to this enhanced epileptogenic potential. In epileptic rats and surgical samples from patients with medial temporal lobe epilepsy (TLE), PC layer II ASIC1a-immunopositive neurons appeared swollen with dendritic elongation, and there was loss of ASIC1a-positive neurons in layer III, consistent with enhanced vulnerability to TLE-induced plasticity and cell death. In rats, pilocarpine-induced seizures led to transient downregulation of ASIC1a and concomitant upregulation of ASIC2a in the first few days post-seizure. These changes in expression may be due to seizure-induced oxidative stress as a similar reciprocal change in ASIC1a, and ASIC2a expression was observed in PC12 cells following H2O2 application. The proportion of ASIC1a/ASIC2a heteromers was reduced in the acute phase following status epilepticus (SE) but increased during the latent phase when rats developed spontaneous seizures. Knockdown of ASIC2a by RNAi reduced dendritic length and spine density in primary neurons, suggesting that seizure-induced upregulation of ASIC2a contributes to dendritic lengthening in PC layer II in rats. Administration of the ASIC inhibitor amiloride before pilocarpine reduced the proportion of rats reaching Racine level IV seizures, protected layer II and III neurons, and prolonged survival in the acute phase following SE. Our findings suggest that ASICs may enhance susceptibility to epileptogenesis in the PC. Inhibition of ASICs, particularly ASIC2a, may suppress seizures originating in the PC. PMID:25744567

  16. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle.

    PubMed

    Gibbons, David D; Kutschke, William J; Weiss, Robert M; Benson, Christopher J

    2015-10-15

    Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure. PMID:26314284

  17. Acid Sensing Ion Channel 1 in Lateral Hypothalamus Contributes to Breathing Control

    PubMed Central

    Song, Nana; Zhang, Guihong; Geng, Wenye; Liu, Zibing; Jin, Weizhong; Li, Li; Cao, Yinxiang; Zhu, Danian; Yu, Jerry; Shen, Linlin

    2012-01-01

    Acid-sensing ion channels (ASICs) are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH) have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND) in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5∶1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001) and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti) by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05). This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM), a selective inhibitor (PcTX1, 10 nM) or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management. PMID:22792205

  18. Characterization of acid-sensing ion channel expression in oligodendrocyte-lineage cells.

    PubMed

    Feldman, Daniel H; Horiuchi, Makoto; Keachie, Krista; Mccauley, Erica; Bannerman, Peter; Itoh, Aki; Itoh, Takayuki; Pleasure, David

    2008-08-15

    Acid-sensing ion channels (ASICs) are widely expressed in neurons, where they serve in pain and mechanical sensation, and contribute to learning and memory. Six ASIC subunit proteins form homo- or heteromeric channel complexes with distinct physiological properties. Of such complexes, only monomeric ASIC1a channels are Ca2+ permeable. Prior pharmacologic and genetic studies have shown that ASIC1a channel inactivation markedly diminishes CNS susceptibility to ischemic damage. Here, we characterize ASIC expression in oligodendrocyte lineage cells (OLC) by molecular, electrophysiological, calcium imaging, and immunofluorescence techniques. ASIC1a, ASIC2a, and ASIC4 mRNAs were expressed in cultured rat OLC, with steady-state levels of each of these mRNAs several-fold higher in oligodendroglial progenitors than in mature oligodendroglia. ASIC transcripts were also detected in brain white matter, and ASIC1a protein expression was detected in white matter oligodendroglia. Inactivating, proton-gated, amiloride-sensitive OLC currents were detected by whole-cell voltage clamp. These currents showed profound tachyphylaxis with slow recovery, and were predominantly blocked by psalmotoxin, indicating that homomeric ASIC1a comprised a large fraction of functional ASIC in the cultured OLC. ASIC activation substantially depolarized OLC plasma membrane in current clamp studies, and elicited transient elevations in intracellular Ca2+ in imaging studies. Thus, OLC ASIC1a channels provide a means by which an acid shift in CNS extracellular pH, by diminishing plasma membrane potential and increasing Ca2+ permeability, can activate OLC signaling pathways, and may contribute to OLC vulnerability to CNS ischemia. PMID:18452213

  19. Characterization of Acid-Sensing Ion Channel Expression in Oligodendrocyte-Lineage Cells

    PubMed Central

    FELDMAN, DANIEL H.; HORIUCHI, MAKOTO; KEACHIE, KRISTA; MCCAULEY, ERICA; BANNERMAN, PETER; ITOH, AKI; ITOH, TAKAYUKI; PLEASURE, DAVID

    2010-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in neurons, where they serve in pain and mechanical sensation, and contribute to learning and memory. Six ASIC subunit proteins form homo- or heteromeric channel complexes with distinct physiological properties. Of such complexes, only monomeric ASIC1a channels are Ca2+ permeable. Prior pharmacologic and genetic studies have shown that ASIC1a channel inactivation markedly diminishes CNS susceptibility to ischemic damage. Here, we characterize ASIC expression in oligodendrocyte lineage cells (OLC) by molecular, electrophysiological, calcium imaging, and immunofluorescence techniques. ASIC1a, ASIC2a, and ASIC4 mRNAs were expressed in cultured rat OLC, with steady-state levels of each of these mRNAs several-fold higher in oligodendroglial progenitors than in mature oligodendroglia. ASIC transcripts were also detected in brain white matter, and ASIC1a protein expression was detected in white matter oligodendroglia. Inactivating, proton-gated, amiloride-sensitive OLC currents were detected by whole-cell voltage clamp. These currents showed profound tachyphylaxis with slow recovery, and were predominantly blocked by psalmotoxin, indicating that homomeric ASIC1a comprised a large fraction of functional ASIC in the cultured OLC. ASIC activation substantially depolarized OLC plasma membrane in current clamp studies, and elicited transient elevations in intracellular Ca2+ in imaging studies. Thus, OLC ASIC1a channels provide a means by which an acid shift in CNS extracellular pH, by diminishing plasma membrane potential and increasing Ca2+ permeability, can activate OLC signaling pathways, and may contribute to OLC vulnerability to CNS ischemia. PMID:18452213

  20. Effect of bromide ions on genotoxicity of halogenated by-products from chlorination of humic acid in water.

    PubMed

    Nobukawa, T; Sanukida, S

    2001-12-01

    Genotoxicity of halogenated by-products obtained by chlorination of humic acid in water was evaluated in the presence of bromide ions (Br-). After the halogenated humic acid solution was made to flow through CSP800 cartridge, absorbed substances were eluted with dimethyl sulfoxide or acetone, and subjected to mutagenicity assays and to analysis of trihalomethanes (THMs). Mutagenic activity was measured by Ames tests using S. typhimurium TA100 strain without metabolic activation, and by the frequencies of micronuclei formation using cultured Chinese hamster lung cells (CHL/IU) in vitro. A powerful effect of bromide ions in chlorinated humic acid solutions was observed on the reverse mutation and micronuclei formations. The formations of total THMs and more brominated THMs were also enhanced in the presence of bromide ions. The ratio of [Br-/Cl-] regulated the composition and concentrations of THMs intensely, and the rate of substitution of Br- was greater than that of chloride ions (Cl-). The increments of the mutagenicity and total THMs formed in chlorinated solutions were observed in parallel with the concentration of Br- or Cl-. From the observations, it was concluded that the increasing mutagenicity might be caused by the increasing chlorinated and/or brominated by-products. PMID:11763030

  1. Structure of Acid-Sensing Ion Channel 1 at 1.9 angstrom Resolution and Low pH

    SciTech Connect

    Jasti,J.; Furukawa, H.; Gonzales, E.; Gouaux, E.

    2007-01-01

    Acid-sensing ion channels (ASICs) are voltage-independent, proton-activated receptors that belong to the epithelial sodium channel/degenerin family of ion channels and are implicated in perception of pain, ischaemic stroke, mechanosensation, learning and memory. Here we report the low-pH crystal structure of a chicken ASIC1 deletion mutant at 1.9 Angstroms resolution. Each subunit of the chalice-shaped homotrimer is composed of short amino and carboxy termini, two transmembrane helices, a bound chloride ion and a disulphide-rich, multidomain extracellular region enriched in acidic residues and carboxyl-carboxylate pairs within 3 Angstroms, suggesting that at least one carboxyl group bears a proton. Electrophysiological studies on aspartate-to-asparagine mutants confirm that these carboxyl-carboxylate pairs participate in proton sensing. Between the acidic residues and the transmembrane pore lies a disulphide-rich 'thumb' domain poised to couple the binding of protons to the opening of the ion channel, thus demonstrating that proton activation involves long-range conformational changes.

  2. Formulation and physicochemical properties of macro- and microemulsions prepared by interfacial ion-pair formation between amino acids and fatty acids

    SciTech Connect

    Woo, G.T.P.

    1987-01-01

    Emulsions were prepared by dissolving an amino acid in the aqueous phase and a fatty acid in the oil phase of the emulsions. When the two phases were mixed, the amino acid and fatty acid formed an ion pair at the oil-water interface which stabilized one phase as small droplets within the other to give a stable emulsion. NMR spectra indicated protonation on the amino groups when a carboxylic acid was added to an aqueous solution of an amino acid. Various hydrocarbons and mineral oil could be emulsified into oil-in-water emulsions with a high volume ratio containing up to 75% internal oil phase. Vegetable oils such as soybean oil, safflower seed oil and cottonseed oil were emulsified to a lesser extent. Both oil-in-water and water-in-oil emulsions could be formed with the same emulsifying agents depending on the phase volume ratio and the order of addition of oil phase to water phase or the reverse. Particle size measurements using laser light-scattering techniques indicated an oil-in-water emulsion mixed by a magnetic stirring bar had an internal droplet size in the range of 0.1 to 0.3 micron. Such emulsions were stable at 50/degrees/ and 60/degrees/C for three to six months. In addition to the macroemulsions described above, completely clear water-in-oil microemulsions can be prepared from the above systems by the addition of long-chain fatty alcohols such as oleyl alcohol. Clear regions of such clear microemulsions were characterized. Microemulsion systems suitable for tertiary oil recovery were also studied. Clear microemulsions prepared by ion-pairing between ammonia and hexanoic acid could contain octane or tetradecane in the form of oil-in-water or water-in-oil microemulsions at a wide range of oil to aqueous ratio.

  3. P Limitation and Microbial Biogeochemistry in Acidic Forest Soils of the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Deforest, J. L.; Burke, D. J.; Elliot, H. L.; Kluber, L. A.; Carrino-Kyker, S. R.

    2010-12-01

    In forest ecosystems with acidic soils, such as many hardwood forests of the Northeastern United States, net primary productivity should be limited by phosphorus (P) because P is biologically less available at pH < 5 and nitrogen (N) has become more abundant in response to anthropogenic inputs. However, previous studies have failed to demonstrate widespread P limitation in temperate forests that have naturally acidic soil or are exposed to chronic acid deposition; such findings are contrary to biogeochemical expectations. We hypothesize that many eastern forests possess an underlying P limitation not realized at the ecosystem level. Instead, shifts in the composition, structure and function of soil microbial communities compensate by acquiring more P from organic sources and P limitation is therefore not manifested at the aboveground (plant) level. To test this hypothesis, we manipulated soil pH and P availability in 72 20 x 40 m mature hardwood forest plots across northeastern (glaciated) and southeastern (unglaciated) Ohio beginning in late summer 2009. Ten months after treatment initiation, soil pH has increased from 4.5 to 5.5 and soil P has increased from 3 to ~25 mg P/kg soil on glaciated soils and from 0.5 to ~5 mg P/kg soil on unglaciated soils. To quantify treatment responses, we measured the activity of soil extracellular enzymes associated with liberation of P, N, and C from organic matter, as well as pools of N and N cycling processes. We saw no significant effects of our treatments on pools of available ammonium or nitrate, nor did we see effects on net N mineralization and net nitrification rates. However, glaciated soils had significantly greater nitrate pools and higher N cycling rates than older unglaciated soils. Nitrogen and C cycling enzymes in treatment plots were not significantly different than control plots, but N-acetylglucosaminidase activity (N acquisition) was significantly greater in the unglaciated soils and β-glucosidase and

  4. A human dietary arachidonic acid supplementation study conducted in a metabolic research unit: rationale and design.

    PubMed

    Nelson, G J; Kelley, D S; Emken, E A; Phinney, S D; Kyle, D; Ferretti, A

    1997-04-01

    While there are many reports of studies that fed arachidonic acid (AA) to animals, there are very few reports of AA feeding to humans under controlled conditions. This 130-d study was conceived as a controlled, symmetrical crossover design with healthy, adult male volunteers. They lived in the metabolic research unit (MRU) of the Western Human Nutrition Research (WHNRC) for the entire study. All food was prepared by the WHNRC kitchen. The basal (low-AA) diet consisted of natural foods (30 en% fat, 15 en% protein, and 55 en% carbohydrate), containing 210 mg/d of AA, and met the recommended daily allowance for all nutrients. The high-AA (intervention) diet was similar except that 1.5 g/d of AA in the form of a triglyceride containing 50% AA replaced an equal amount of high-oleic safflower oil in the basal diet. The subjects (ages 20 to 39) were within -10 to +20% of ideal body weight, nonsmoking, and not allowed alcohol in the MRU. Their exercise level was constant, and their body weights were maintained within 2% of entry level. Subjects were initially fed the low-AA diet for 15 d. On day 16, half of the subjects (group A) wee placed on the high-AA diet, and the other group (B) remained on the low-AA diets. On day 65, the two groups switched diets. On day 115, group B returned to the low-AA diet. This design, assuming no carryover effect, allowed us to merge the data from the two groups, with the data comparison days being 65 (low-AA) and 115 (high-AA) for group B and 130 (low-AA) and 65 (high-AA) for group A. The main indices studied were the fatty acid composition of the plasma, red blood cells, platelets, and adipose tissue; in vitro platelet aggregation, bleeding times, clotting factors; immune response as measured by delayed hypersensitivity skin tests, cellular proliferation of peripheral blood mononuclear cells in response to various mitogens and antigens, natural killer cell activity, and response to measles/mumps/rubella and influenza vaccines; the

  5. CHARACTERIZATION OF PAINTED SURFACES IN THE UNITED STATES FROM THE PERSPECTIVE OF POTENTIAL DAMAGE FROM ACIDIC DEPOSITION

    EPA Science Inventory

    Data on the types and applications of exterior paints used in the United States are reviewed from the perspective of potential damage by air pollution or acidic deposition. The data indicate that, of the painted structures in the U.S., the costs of painting residential buildings ...

  6. Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Chronic Epileptogenesis

    PubMed Central

    Yang, Feng; Sun, Xiaolong; Ding, Yinxiu; Ma, Hui; Yang, Tangpeng Ou; Ma, Yue; Wei, Dong; Li, Wen; Xu, Tianle; Jiang, Wen

    2016-01-01

    Unraveling mechanisms underlying epileptogenesis after brain injury is an unmet medical challenge. Although histopathological studies have revealed that reactive astrogliosis and tissue acidosis are prominent features in epileptogenic foci, their roles in epileptogenesis remain unclear. Here, we explored whether astrocytic acid-sensing ion channel-1a (ASIC1a) contributes to the development of chronic epilepsy. High levels of ASIC1a were measured in reactive astrocytes in the hippocampi of patients with temporal lobe epilepsy (TLE) and epileptic mice. Extracellular acidosis caused a significant Ca2+ influx in cultured astrocytes, and this influx was sensitive to inhibition by the ASIC1a-specific blocker psalmotoxin 1 (PcTX1). In addition, recombinant adeno-associated virus (rAAV) vectors carrying a GFAP promoter in conjunction with ASIC1a shRNA or cDNA were generated to suppress or restore, respectively, ASIC1a expression in astrocytes. Injection of rAAV-ASIC1a-shRNA into the dentate gyrus of the wide type TLE mouse model resulted in the inhibition of astrocytic ASIC1a expression and a reduction in spontaneous seizures. By contrast, rAAV-ASIC1a-cDNA restored astrocytic ASIC1a expression in an ASIC1a knock-out TLE mouse model and increased the frequency of spontaneous seizures. Taken together, our results reveal that astrocytic ASIC1a may be an attractive new target for the treatment of epilepsy. PMID:27526777

  7. Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor.

    PubMed

    Feng, Jie; Ju, Yuyun; Liu, Juanjuan; Zhang, Huige; Chen, Xingguo

    2015-01-01

    In this report we reported a facile one-pot method for synthesis of water-soluble and stable fluorescent CuNCs at room temperature, in which branched polyethyleneimine (BPEI) served as capping scaffold and ascorbic acid as reducing agent. The prepared BPEI-CuNCs exhibited excellent properties such as good water-solubility, photostability and high stability toward high ionic strength. Based on the electron transfer induced fluorescence quenching mechanism, this fluorescence probe was used for the sensitive and selective determination of ferric ions (Fe(3+)) in aqueous solution. The limit of detection was 340 nM in the linear range of 0.5-1000 μM, which was lower than the maximum level of Fe(3+) permitted in drinking water by the U.S. Environmental Protection Agency. The method was successfully applied to the detection of Fe(3+) in tap water, Yellow River water and human urine samples with the quantitative spike recoveries ranging from 95.3% to 112.0%. PMID:25479879

  8. Nicotinic acid is a common regulator of heat-sensing TRPV1-4 ion channels.

    PubMed

    Ma, Linlin; Lee, Bo Hyun; Clifton, Heather; Schaefer, Saul; Zheng, Jie

    2015-01-01

    Nicotinic acid (NA, a.k.a. vitamin B3 or niacin) can reduce blood cholesterol and low-density lipoproteins whereas increase high-density lipoproteins. However, when NA is used to treat dyslipidemias, it causes a strong side effect of cutaneous vasodilation, commonly called flushing. A recent study showed that NA may cause flushing by lowering activation threshold temperature of the heat-sensitive capsaicin receptor TRPV1 ion channel, leading to its activation at body temperature. The finding calls into question whether NA might also interact with the homologous heat-sensitive TRPV2-4 channels, particularly given that TRPV3 and TRPV4 are abundantly expressed in keratinocytes of the skin where much of the flushing response occurs. We found that NA indeed potentiated TRPV3 while inhibited TRPV2 and TRPV4. Consistent with these gating effects, NA lowered the heat-activation threshold of TRPV3 but elevated that of TRPV4. We further found that activity of TRPV1 was substantially prolonged by extracellular NA, which may further enhance the direct activation effect. Consistent with the broad gating effect on TRPV1-4 channels, evidence from the present study hints that NA may share the same activation pathway as 2-aminoethoxydiphenyl borate (2-APB), a common agonist for these TRPV channels. These findings shed new light on the molecular mechanism underlying NA regulation of TRPV channels. PMID:25752528

  9. Nicotinic Acid is a Common Regulator of Heat-Sensing TRPV1-4 Ion Channels

    PubMed Central

    Ma, Linlin; Lee, Bo Hyun; Clifton, Heather; Schaefer, Saul; Zheng, Jie

    2015-01-01

    Nicotinic acid (NA, a.k.a. vitamin B3 or niacin) can reduce blood cholesterol and low-density lipoproteins whereas increase high-density lipoproteins. However, when NA is used to treat dyslipidemias, it causes a strong side effect of cutaneous vasodilation, commonly called flushing. A recent study showed that NA may cause flushing by lowering activation threshold temperature of the heat-sensitive capsaicin receptor TRPV1 ion channel, leading to its activation at body temperature. The finding calls into question whether NA might also interact with the homologous heat-sensitive TRPV2–4 channels, particularly given that TRPV3 and TRPV4 are abundantly expressed in keratinocytes of the skin where much of the flushing response occurs. We found that NA indeed potentiated TRPV3 while inhibited TRPV2 and TRPV4. Consistent with these gating effects, NA lowered the heat-activation threshold of TRPV3 but elevated that of TRPV4. We further found that activity of TRPV1 was substantially prolonged by extracellular NA, which may further enhance the direct activation effect. Consistent with the broad gating effect on TRPV1–4 channels, evidence from the present study hints that NA may share the same activation pathway as 2-aminoethoxydiphenyl borate (2-APB), a common agonist for these TRPV channels. These findings shed new light on the molecular mechanism underlying NA regulation of TRPV channels. PMID:25752528

  10. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possible implications for epilepsy.

    PubMed

    Ievglevskyi, O; Isaev, D; Netsyk, O; Romanov, A; Fedoriuk, M; Maximyuk, O; Isaeva, E; Akaike, N; Krishtal, O

    2016-08-01

    Acid-sensing ion channels (ASICs) play an important role in numerous functions in the central and peripheral nervous systems ranging from memory and emotions to pain. The data correspond to a recent notion that each neuron and many glial cells of the mammalian brain express at least one member of the ASIC family. However, the mechanisms underlying the involvement of ASICs in neuronal activity are poorly understood. However, there are two exceptions, namely, the straightforward role of ASICs in proton-based synaptic transmission in certain brain areas and the role of the Ca(2+)-permeable ASIC1a subtype in ischaemic cell death. Using a novel orthosteric ASIC antagonist, we have found that ASICs specifically control the frequency of spontaneous inhibitory synaptic activity in the hippocampus. Inhibition of ASICs leads to a strong increase in the frequency of spontaneous inhibitory postsynaptic currents. This effect is presynaptic because it is fully reproducible in single synaptic boutons attached to isolated hippocampal neurons. In concert with this observation, inhibition of the ASIC current diminishes epileptic discharges in a low Mg(2+) model of epilepsy in hippocampal slices and significantly reduces kainate-induced discharges in the hippocampus in vivo Our results reveal a significant novel role for ASICs.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377725

  11. A theoretical study of the reaction of hypochlorous acid with the bromite ion

    NASA Astrophysics Data System (ADS)

    Guha, S.; Francisco, J. S.

    2001-07-01

    The structures, vibrational spectra, and relative energetics of possible HClBrO -3 isomers and the HOClOBrO -→HOBrOClO - isomerization transition state existing during the reaction between hypochlorous acid (HOCl) and bromite ions (OBrO -) have been examined by using the Becke's non-local three-parameter exchange with the Lee-Yang-Parr correlation density functional method, in conjunction with two different basis sets. The HOBrOClO - structural form is found to be the most stable among the isomers. The energy required for the formation of HOBrOClO - from the HOCl+OBrO - reaction is 25.2 kcal mol -1, while the energy required for the dissociation of HOBrOClO - to HOBr+OClO - is 22.6 kcal mol -1. The barrier for the isomerization of HOClOBrO - to HOBrOClO - is sufficiently high (30.0 kcal mol -1) to not allow the interconversion between the isomeric forms.

  12. Structure, function, and pharmacology of acid-sensing ion channels (ASICs): focus on ASIC1a

    PubMed Central

    Gründer, Stefan; Chen, Xuanmao

    2010-01-01

    Acid-sensing ion channels (ASICs) are H+-gated Na+ channels, which are present in most, if not all, neurons. The typical ASIC current is transient and is elicited by a rapid drop in the extracellular pH. In the human genome, four genes for ASICs are present: asic1 – 4. In this review, we will focus on ASIC1a, one of the key subunits in the central nervous system. We will describe the structure of this channel, a topic that has enormously profited from the recent elucidation of the first crystal structure of an ASIC. We will then relate the ASIC1 structure to current models of the gating mechanism of ASICs. Finally, we will review the pharmacology of ASIC1a. Advances in the pharmacological inhibition of individual ASIC currents have greatly contributed to our current knowledge of the functional roles of this channel in physiology, including learning, memory, and fear conditioning, and in pathophysiological states, including the neurodegeneration accompanying stroke, and axonal degeneration in autoimmune inflammation. PMID:21383888

  13. Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms

    PubMed Central

    Liu, Ming-Gang; Li, Hu-Song; Li, Wei-Guang; Wu, Yan-Jiao; Deng, Shi-Ning; Huang, Chen; Maximyuk, Oleksandr; Sukach, Volodymyr; Krishtal, Oleg; Zhu, Michael X.; Xu, Tian-Le

    2016-01-01

    The exact roles of acid-sensing ion channels (ASICs) in synaptic plasticity remain elusive. Here, we address the contribution of ASIC1a to five forms of synaptic plasticity in the mouse hippocampus using an in vitro multi-electrode array recording system. We found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term potentiation (LTP) induction by either single or repeated high frequency stimulation or theta burst stimulation in the CA1 region. However, these treatments did not affect hippocampal long-term depression induced by low frequency electrical stimulation or (RS)-3,5-dihydroxyphenylglycine. We also show that ASIC1a exerts its action in hippocampal LTP through multiple mechanisms that include but are not limited to augmentation of NMDA receptor function. Taken together, these results reveal new insights into the role of ASIC1a in hippocampal synaptic plasticity and the underlying mechanisms. This unbiased study also demonstrates a novel and objective way to assay synaptic plasticity mechanisms in the brain. PMID:26996240

  14. Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms.

    PubMed

    Liu, Ming-Gang; Li, Hu-Song; Li, Wei-Guang; Wu, Yan-Jiao; Deng, Shi-Ning; Huang, Chen; Maximyuk, Oleksandr; Sukach, Volodymyr; Krishtal, Oleg; Zhu, Michael X; Xu, Tian-Le

    2016-01-01

    The exact roles of acid-sensing ion channels (ASICs) in synaptic plasticity remain elusive. Here, we address the contribution of ASIC1a to five forms of synaptic plasticity in the mouse hippocampus using an in vitro multi-electrode array recording system. We found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term potentiation (LTP) induction by either single or repeated high frequency stimulation or theta burst stimulation in the CA1 region. However, these treatments did not affect hippocampal long-term depression induced by low frequency electrical stimulation or (RS)-3,5-dihydroxyphenylglycine. We also show that ASIC1a exerts its action in hippocampal LTP through multiple mechanisms that include but are not limited to augmentation of NMDA receptor function. Taken together, these results reveal new insights into the role of ASIC1a in hippocampal synaptic plasticity and the underlying mechanisms. This unbiased study also demonstrates a novel and objective way to assay synaptic plasticity mechanisms in the brain. PMID:26996240

  15. Ion chromatographic analysis of tetracyclines using polymeric column and acidic eluent.

    PubMed

    Ding, X; Mou, S

    2000-11-01

    High-performance ion chromatography (HPIC) is first successfully used to analyze tetracycline antibiotics (TCs) in this work. The TCs are well separated on a solvent compatible polymeric cation-exchange column within 12 min. Isocratic elution with acetonitrile-hydrochloride is very advantageous for routine analysis. HPIC may be seen as a specific variant of the more common high-performance liquid chromatography (HPLC) for water-soluble and polar pharmaceuticals with low hydrophobicity. The detection limits (signal-to-noise ratio=3:1) of oxytetracycline (OTC), tetracycline (TC), chlortetracycline (CTC), doxycycline (DC) are 10, 10, 20 and 20 microg l(-1), respectively. Samples are prepared by vortex mixing with an ethylenediaminetetraacetic acid disodium salt (Na2EDTA)-McIlvaine buffer (pH 4.0) solution and the mixture filtrates through a molecular weight cut-off filter. The method has been successfully applied to monitor the OTC removal rate through every reactor in the process of OTC manufacturing wastewater treatment by bio-chemical technology. It is also applicable to determine the TCs residues in milk and milk powder with satisfying results. PMID:11128204

  16. Contamination monitoring for ammonia, amines, and acid gases utilizing ion mobility spectroscopy (IMS)

    NASA Astrophysics Data System (ADS)

    Bacon, Tad; Webber, Kurt; Carpio, Ronald A.

    1998-06-01

    The effect of ammonia (NH3) and n-methyl pyrrolidinone (NMP) contamination on chemically amplified DUV resists is well documented. Other amines and related compounds are under suspicion as well. In addition, the concentration levels that are of concern have steadily decreased from approximately 10 ppbv down to levels as low as 0.1 ppbv. While some techniques such as ion chromotagraphy (IC) have been demonstrated to have limits of detection at these levels, the analysis times are rather long and cumbersome. This paper describes the use of IMS to perform these measurements, in a totally automated, continuous instrument. IMS is a simplified time-of-flight technique that requires no liquid reagents and has been demonstrated to be a reliable method for monitoring for ammonia and NMP in cleanrooms. This paper demonstrates the ability of the technique to monitor for amines such as dimethylamine, methylamine, methanolamine, ethanolamine, diethanolamine, butylamine and others. Detection limits of 0.1 ppbv and below are clearly demonstrated. Also discussed are methods of monitoring multiple points with a single analyzer. Ability to detect corrosive gases such as hydrogen fluoride (HF), hydrogen chloride (HCl), sulfur dioxide (SO2), sulfur trioxide (SO3), nitrogen dioxide (NO2), chlorine (Cl2), bromine (Br2), phosphoric acid (H3PO4) are also demonstrated.

  17. Acid-sensing ion channels (ASICs) are differentially modulated by anions dependent on their subunit composition

    PubMed Central

    Kusama, Nobuyoshi; Gautam, Mamta; Harding, Anne Marie S.; Snyder, Peter M.

    2013-01-01

    Acid-sensing ion channels (ASICs) are sodium channels gated by extracellular protons. ASIC1a channels possess intersubunit Cl−-binding sites in the extracellular domain, which are highly conserved between ASIC subunits. We previously found that anions modulate ASIC1a gating via these sites. Here we investigated the effect of anion substitution on native ASICs in rat sensory neurons and heterologously expressed ASIC2a and ASIC3 channels by whole cell patch clamp. Similar to ASIC1a, anions modulated the kinetics of desensitization of other ASIC channels. However, unlike ASIC1a, anions also modulated the pH dependence of activation. Moreover, the order of efficacy of different anions to modulate ASIC2a and -3 was very different from that of ASIC1a. More surprising, mutations of conserved residues that form an intersubunit Cl−-binding site in ASIC1a only partially abrogated the effects of anion modulation of ASIC2a and had no effect on anion modulation of ASIC3. The effects of anions on native ASICs in rat dorsal root ganglion neurons mimicked those in heterologously expressed ASIC1a/3 heteromeric channels. Our data show that anions modulate a variety of ASIC properties and are dependent on the subunit composition, and the mechanism of modulation for ASIC2a and -3 is distinct from that of ASIC1a. We speculate that modulation of ASIC gating by Cl− is a novel mechanism to sense shifts in extracellular fluid composition. PMID:23135698

  18. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation

    PubMed Central

    Kweon, Hae-Jin; Suh, Byung-Chang

    2013-01-01

    Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, Zn2+, and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel’s large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-HT2. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated. [BMB Reports 2013; 46(6): 295-304] PMID:23790972

  19. Inhibition of human acid-sensing ion channel 1b by zinc

    PubMed Central

    Jiang, Qian; Zha, Xiang-Ming; Chu, Xiang-Ping

    2012-01-01

    Acid-sensing ion channel 1b (ASIC1b) is expressed in peripheral sensory neurons and has been implicated in nociception. Understanding the modulation of ASIC1b will provide important insight into how ASIC1b contributes to pain sensation. In our previous study, we showed that zinc, an important modulator of pain sensation, reduces rat ASIC1b current. However, rat ASIC1b shows several important differences from its recently identified human homolog. Most noticeably, human ASIC1b (hASIC1b) has a sustained component, which may play a role in persistent pain. Therefore, we tested here the hypothesis that zinc modulates the current properties of hASIC1b. Bath application of zinc suppressed the peak amplitude of hASIC1b currents, with a half-maximum inhibitory concentration of 37 μM. However, zinc did not affect the sustained component of hASIC1b currents. The effect of zinc was independent of pH-dependent activation, steady-state desensitization, and extracellular Ca2+, suggesting noncompetitive mechanisms. Further, we found that extracellular site(s) of the hASIC1b subunit is important for the effect of zinc. Mutating cysteine 196, but not cysteine 309, in the extracellular domain of the hASIC1b abolished the zinc inhibition. These results suggest that, through modulating cysteine196, zinc may have a modulatory role in acute pain. PMID:22837807

  20. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b.

    PubMed

    Bässler, E L; Ngo-Anh, T J; Geisler, H S; Ruppersberg, J P; Gründer, S

    2001-09-01

    Acid-sensing ion channels (ASICs) are activated by extracellular protons and are involved in neurotransmission in the central nervous system, in pain perception, as well as in mechanotransduction. Six different ASIC subunits have been cloned to date, which are encoded by four genes (ASIC1-ASIC4). Proton-gated currents have been described in isolated neurons from sensory ganglia as well as from central nervous system. However, it is largely unclear which of the cloned ASIC subunits underlie these native proton-gated currents. Recently, a splice variant, ASIC-beta, has been described for ASIC1a. In this variant about one-third of the protein is exchanged at the N terminus. Here we show that ASIC-beta has a longer N terminus than previously reported, extending the sequence divergence between ASIC1a and this new variant (ASIC1b). We investigated in detail kinetic and selectivity properties of ASIC1b in comparison to ASIC1a. Kinetics is similar for ASIC1b and ASIC1a. Ca(2+) permeability of ASIC1a is low, whereas ASIC1b is impermeable to Ca(2+). Currents through ASIC1a resemble currents, which have been described in sensory and central neurons, whereas the significance of ASIC1b remains to be established. Moreover, we show that a pre-transmembrane 1 domain controls the permeability to divalent cations in ASIC1, contributing to our understanding of the pore structure of these channels. PMID:11448963

  1. Human odontoblasts express transient receptor protein and acid-sensing ion channel mechanosensor proteins.

    PubMed

    Solé-Magdalena, Antonio; Revuelta, Enrique G; Menénez-Díaz, Ivan; Calavia, Marta G; Cobo, Teresa; García-Suárez, Olivia; Pérez-Piñera, Pablo; De Carlos, Felix; Cobo, Juan; Vega, Jose A

    2011-05-01

    Diverse proteins of the denegerin/epithelial sodium channel (DEG/ENa(+) C) superfamily, in particular those belonging to the acid-sensing ion channel (ASIC) family, as well as some members of the transient receptor protein (TRP) channel, function as mechanosensors or may be required for mechanosensation in a diverse range of species and cell types. Therefore, we investigated the putative mechanosensitive function of human odontoblasts using immunohistochemistry to detect ENa(+) C subunits (α, β, and γ) and ASIC (1, 2, 3, and 4) proteins, as well as TRPV4, in these cells. Positive and specific immunoreactivity in the odontoblast soma and/or processes was detected for all proteins studied except α-ENa(+) C. The intensity of immunostaining was high for β-ENa(+) C and ASIC2, whereas it was low for ASIC1, ASIC3, γ-ENa(+) C, and TRPV4, being absent for α-ENa(+) C and ASIC4. These results suggest that human odontoblasts in situ express proteins related to mechanosensitive channels that probably participate in the mechanisms involved in teeth sensory transmission. PMID:20836083

  2. Updated estimates of neural tube defects prevented by mandatory folic Acid fortification - United States, 1995-2011.

    PubMed

    Williams, Jennifer; Mai, Cara T; Mulinare, Joe; Isenburg, Jennifer; Flood, Timothy J; Ethen, Mary; Frohnert, Barbara; Kirby, Russell S

    2015-01-16

    In 1992, the U.S. Public Health Service recommended that all women capable of becoming pregnant consume 400 µg of folic acid daily to prevent neural tube defects (NTDs). NTDs are major birth defects of the brain and spine that occur early in pregnancy as a result of improper closure of the embryonic neural tube, which can lead to death or varying degrees of disability. The two most common NTDs are anencephaly and spina bifida. Beginning in 1998, the United States mandated fortification of enriched cereal grain products with 140 µg of folic acid per 100 g. Immediately after mandatory fortification, the birth prevalence of NTD cases declined. Fortification was estimated to avert approximately 1,000 NTD-affected pregnancies annually. To provide updated estimates of the birth prevalence of NTDs in the period after introduction of mandatory folic acid fortification (i.e., the post-fortification period), data from 19 population-based birth defects surveillance programs in the United States, covering the years 1999-2011, were examined. After the initial decrease, NTD birth prevalence during the post-fortification period has remained relatively stable. The number of births occurring annually without NTDs that would otherwise have been affected is approximately 1,326 (95% confidence interval = 1,122-1,531). Mandatory folic acid fortification remains an effective public health intervention. There remain opportunities for prevention among women with lower folic acid intakes, especially among Hispanic women, to further reduce the prevalence of NTDs in the United States. PMID:25590678

  3. Effects of starvation for potassium and other inorganic ions on protein degradation and ribonucleic acid synthesis in Escherichia coli.

    PubMed

    St John, A C; Goldberg, A L

    1980-09-01

    Starvation of Escherichia coli for potassium, phosphate, or magnesium ions leads to a reversible increase in the rate of protein degradation and an inhibition of ribonucleic acid (RNA) synthesis. In cells deprived of potassium, the breakdown of the more stable cell proteins increased two- to threefold, whereas the hydrolysis of short-lived proteins, both normal ones and analog-containing polypeptides, did not change. The mechanisms initiating the enhancement of proteolysis during starvation for these ions were examined. Upon starvation for amino acids or amino acyl-transfer RNA (tRNA), protein breakdown increases in relA+ (but not relA) cells as a result of the rapid synthesis of guanosine-5'-diphosphate-3'-diphosphate (ppGpp). However, a lack of amino acyl-tRNA does not appear to be responsible for the increased protein breakdown in cells starved for inorganic ions, since protein breakdown increased in the absence of these ions in both relA+ and relA cultures, and since a large excess of amino acids did not affect this response. In bacteria in which energy production is restricted, ppGpp levels also rise, and protein breakdown increases. The ion-deprived cultures did show a 40 to 75% reduction in adenosine-5'-triphosphate levels,l similar to that seen upon glucose starvation. However, this decrease in ATP content does not appear to cause the increase in protein breakdown or lead to an accumulation of ppGpp. No consistent change in intracellular ppGpp levels was found in relA+ or relA cells starved for these ions. In addition, in relX mutants, removal of these ions led to accelerated protein degradation even though relX cells are unable to increase ppGpp levels or proteolysis when deprived of a carbon source. In the potassium-, phosphate-, and magnesium-deprived cultures, the addition of choramphenicol or tetracycline caused a reduction in protein breakdown toward basal levels. Such findings, however, do not indicate that protein synthesis is essential for the

  4. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing capacity streams

    SciTech Connect

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E. )

    1991-04-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probably sources of current acidity in acidic and low acid-neutralizing capacity (ANC) streams in the eastern US. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small (<30 km{sup 2}) forested watersheds in the Mid-Atlantic Highlands (an estimated 1,950 km of stream length) and in the Mid-Atlantic Coastal Plain (1,250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1,180 km of acidic stream length, and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4,590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4,380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  5. CHARACTERISTICS OF ACIDITY AND MAJOR ION CONCENTRATION OF SNOWFALL, SNOWPACK AND SNOWMELT WATER IN THE TEMPERATE SNOW AREA

    NASA Astrophysics Data System (ADS)

    Asaoka, Yoshihiro; Takeuchi, Yukari

    This paper describes the acidity and main ion concentration of snowfall, snowpack and snowmelt water in the temperate snow area. In order to understand the variation of snow water quality and its relationship among snow, snowpack and snowmelt, snow monitoring and chemical measurement were conducted from December 2008 to March 2009 at Tohkamachi experiment site. As a result, the both of snowfall and snowmelt were high acidity and their average were around 4.6 and 5.0, individually. However, high frequencies of rainfall and snowmelt occurrence during winter decrease the high acidity of snowpack and snowmelt water since they prevent the chemical matter from depositing in the snowpack layer. Moreover, it is suspected that the soil component from Eurasia continent contained in the snow particle also decrease the high acidity of snowfall and snowpack.

  6. Simultaneous determination of amino acids and carbohydrates in culture media of Clostridium thermocellum by valve-switching ion chromatography.

    PubMed

    Fa, Yun; Yang, Haiyan; Ji, Chengshuai; Cui, He; Zhu, Xinshu; Du, Juan; Gao, Jun

    2013-10-10

    An improved method for the simultaneous determination of 20 amino acids and 7 carbohydrates using one-valve switching after injection, ion chromatography, and integrated pulsed amperometric detection is proposed. The resolution of the amino acids and carbohydrates in the cation trap column was investigated. In addition, parameters including flow liquid type, flow rate, concentration, and valve-switch timing were optimized. The method is time-saving, effective, and accurate for the simultaneous separation of amino acids and carbohydrates, with a mean correlation coefficient of >0.99 and repeatability of 0.5-4.6% for eight replicates. The method was successfully applied in the analysis of amino acids and carbohydrates in aseptic media and in extracellular culture media of three phenotypes of Clostridium thermocellum. PMID:24070489

  7. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles

    NASA Astrophysics Data System (ADS)

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-05-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  8. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    NASA Astrophysics Data System (ADS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials.

  9. A multinuclear NMR relaxation study of the interaction of divalent metal ions with L-aspartic acid.

    PubMed

    Khazaeli, S; Viola, R E

    1984-09-01

    Carbon-13 spin-lattice relaxation times, T1, have been measured for aqueous solutions of L-aspartic acid, L-alanine, O-phospho-L-serine, and 2-mercapto-L-succinic acid in the presence of the paramagnetic metal ions, Cu2+ and Mn2+, and Mg2+ as a diamagnetic control, at ambient temperature and neutral pH. Nitrogen-15, oxygen-17 and proton relaxation times were also obtained for L-aspartic acid and phosphorus-31 relaxation times for O-phospho-L-serine under similar conditions. The structures of these complexes in solution were determined from the various metal ion-nuclei distances calculated from the paramagnetically-induced relaxation. These results indicate that the Cu2+ interaction with L-aspartic acid is through alpha-amino and beta-carboxyl groups while Mn2+ coordinates most strongly through alpha- and beta-carboxyl groups, with the possibility of a weak interaction through the amino group. An examination of the coordination of these divalent metal ions to an analog of L-aspartic acid in which the beta-carboxyl group is replaced by a phosphate group (O-phospho-L-serine) indicated that Cu2+ coordination is now probably through the alpha-amino and phosphate groups, while this analog is a monodentate ligand for Mn2+ coordinating through the phosphate group. Removal of the beta-carboxyl group (L-alanine) also results in Cu2+ coordination through the alpha-carboxyl and alpha-amino groups, and the same ligand interactions are observed with Mn2+. Replacement of the alpha-amino group of L-aspartic acid with an -SH group (2-mercapto-L-succinate) is sufficient to eliminate any specific coordination with either Cu2+ or Mn2+. PMID:6491655

  10. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups.

    PubMed

    Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar

    2015-11-28

    The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties. PMID:26489595

  11. Gas chromatography with tandem differential mobility spectrometry of fatty acid alkyl esters and the selective detection of methyl linolenate in biodiesels by dual-stage ion filtering.

    PubMed

    Pasupuleti, D; Pierce, K; Eiceman, G A

    2015-11-20

    Alkyl esters of fatty acids (FAAEs) with carbon numbers from 8 to 20 formed protonated monomers and proton bound dimers through atmospheric pressure chemical ionization reactions and these gas ions were characterized for their field dependent mobility coefficients using differential mobility spectrometry (DMS). Separation of ion peaks with a vapor modifier was achieved for ions with masses of 317-1033 Da though the differences in these coefficients and the resolution of ion peaks decreased proportionally with increased ion mass. Differences in dispersion curves were sufficient to isolate ions from specific FAAEs in the effluent of a gas chromatograph by dual stage ion filtering using a tandem DMS detector. Methyl linolenate was isolated from nearby eluting methyl oleate, methyl stearate and methyl linoleate within analysis times of 10s without measureable complications from charge suppression in the ion source or leakage in filtering of ions with close proximity of dispersion behavior. PMID:26427321

  12. Di- and triarylmethylium ions as probes for the ambident reactivities of carbanions derived from 5-benzylated Meldrum's acid.

    PubMed

    Chen, Xi; Tan, Yue; Berionni, Guillaume; Ofial, Armin R; Mayr, Herbert

    2014-08-25

    The kinetics of the reactions of carbocations with carbanions 1 derived from 5-benzyl-substituted Meldrum's acids 1-H (Meldrum's acid = 2,2-dimethyl-1,3-dioxane-4,6-dione) were investigated by UV/Vis spectroscopic methods. Benzhydryl cations Ar2CH(+) added exclusively to C-5 of the Meldrum's acid moiety. As the second-order rate constants (kC) of these reactions in DMSO followed the linear free-energy relationship lg k = sN (N+E), the nucleophile-specific reactivity parameters N and sN for the carbanions 1 could be determined. In contrast, trityl cations Ar3C(+) reacted differently. While tritylium ions of low electrophilicity (E<-2) reacted with 1 through rate-determining β-hydride abstraction, more Lewis acidic tritylium ions initially reacted at the carbonyl oxygen of 1 to form trityl enolates, which subsequently reionized and eventually yielded triarylmethanes and 5-benzylidene Meldrum's acids by hydride transfer. PMID:25099696

  13. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a

    PubMed Central

    Duanmu, Wang-sheng; Cao, Liu; Chen, Jing-yu; Ge, Hong-fei; Hu, Rong; Feng, Hua

    2016-01-01

    Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury. PMID:27212927

  14. Micro/nanofabrication of poly({sub L}-lactic acid) using focused ion beam direct etching

    SciTech Connect

    Oyama, Tomoko Gowa; Nagasawa, Naotsugu; Taguchi, Mitsumasa; Hinata, Toru; Washio, Masakazu; Oshima, Akihiro; Tagawa, Seiichi

    2013-10-14

    Micro/nanofabrication of biocompatible and biodegradable poly({sub L}-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachment properties.

  15. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol

    NASA Astrophysics Data System (ADS)

    Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Tsai, Ying I.

    The distribution of nano/micron dicarboxylic acids and inorganic ions in size-segregated suburban aerosol of southern Taiwan was studied for a PM episode and a non-episodic pollution period, revealing for the first time the distribution of these nanoscale particles in suburban aerosols. Inorganic species, especially nitrate, were present in higher concentrations during the PM episode. A combination of gas-to-nuclei conversion of nitrate particles and accumulation of secondary photochemical products originating from traffic-related emissions was likely a crucial cause of the PM episode. Sulfate, ammonium, and oxalic acid were the dominant anion, cation, and dicarboxylic acid, respectively, accounting for a minimum of 49% of the total anion, cation or dicarboxylic acid mass. Peak concentrations of these species occurred at 0.54 μm in the droplet mode during both non-episodic and PM episode periods, indicating an association with cloud-processed particles. On average, sulfate concentration was 16-17 times that of oxalic acid. Oxalic acid was nevertheless the most abundant dicarboxylic acid during both periods, followed by succinic, malonic, maleic, malic and tartaric acid. The mass median aerodynamic diameter (MMAD) of oxalic acid was 0.77 μm with a bi-modal presence at 0.54 μm and 18 nm during non-episodic pollution and an MMAD of 0.67 μm with mono-modal presence at 0.54 μm in PM episode aerosol. The concomitant formation of malonic acid and oxalic acid was attributed to in-cloud processes. During the PM episode in the 5-100 nm nanoscale range, an oxalic acid/sulfate mass ratio of 40.2-82.3% suggested a stronger formation potential for oxalic acid than for sulfate in the nuclei mode. For total cations (TC), total inorganic anions (TIA) and total dicarboxylic acids (TDA), major contributing particles were in the droplet mode, with least in the nuclei mode. The ratio of TDA to TIA in the nuclei mode increased greatly from 8.40% during the non-episodic pollution

  16. Meteorological support to the West German-United States Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Westfall, R. R.; Chamberlain, L. W.

    1972-01-01

    The objective of the Barium Ion Cloud Project was to study a barium ionized cloud released at an altitude of 5 earth radii. Accurate forecasting of weather conditions to prevail during the experiment period was critical to the project success. Good seeing conditions were required at all optical sites during the experiment. All meteorological support was the responsibility of the National Weather Service at Wallops Station, Virginia. Preliminary results confirm the scientists' theories of the magnetic fields and the existence of electric fields in the magnetosphere.

  17. Avogadro constant and ion accumulation: steps towards a redefinition of the SI unit of mass

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Gläser, Michael

    2003-08-01

    This paper summarizes the activities of the several national metrology institutes and one transnational institute in replacing the kilogram artefact by the mass of a certain number of atoms. This task is based on two different experiments: a very accurate determination of the Avogadro constant, NA, and the accumulation of decelerated gold ions, which lead to the atomic mass of silicon and gold respectively. The relative uncertainties reached so far are in the first case two parts in 107, and in the latter of the order of 1% due to the early state of the research work.

  18. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (˜0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to ˜9.7 NCPS pptv-1), but because of a much lower and more stable background (3 ± 4 compared to a range of ˜2 × 103 to ˜6 × 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from <12 to 94 pptv (median 34 pptv), were marginally higher at night than during day, and correlated with nitrogen oxide (NOx = NO + NO2) mixing ratios and submicron particle volume. The ratios of HNCO to NOx observed are within the range of emission ratios reported for gasoline-powered motor vehicles.

  19. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    PubMed

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine. PMID:26304742

  20. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate.

    PubMed

    Habraken, Wouter J E M; Tao, Jinhui; Brylka, Laura J; Friedrich, Heiner; Bertinetti, Luca; Schenk, Anna S; Verch, Andreas; Dmitrovic, Vladimir; Bomans, Paul H H; Frederik, Peter M; Laven, Jozua; van der Schoot, Paul; Aichmayer, Barbara; de With, Gijsbertus; DeYoreo, James J; Sommerdijk, Nico A J M

    2013-01-01

    Despite its importance in many industrial, geological and biological processes, the mechanism of crystallization from supersaturated solutions remains a matter of debate. Recent discoveries show that in many solution systems nanometre-sized structural units are already present before nucleation. Still little is known about the structure and role of these so-called pre-nucleation clusters. Here we present a combination of in situ investigations, which show that for the crystallization of calcium phosphate these nanometre-sized units are in fact calcium triphosphate complexes. Under conditions in which apatite forms from an amorphous calcium phosphate precursor, these complexes aggregate and take up an extra calcium ion to form amorphous calcium phosphate, which is a fractal of Ca(2)(HPO(4))(3)(2-) clusters. The calcium triphosphate complex also forms the basis of the crystal structure of octacalcium phosphate and apatite. Finally, we demonstrate how the existence of these complexes lowers the energy barrier to nucleation and unites classical and non-classical nucleation theories. PMID:23422675

  1. Ion-transfer voltammetric determination of folic acid at meso-liquid-liquid interface arrays.

    PubMed

    Jiang, Xuheng; Gao, Kui; Hu, Daopan; Wang, Huanhuan; Bian, Shujuan; Chen, Yong

    2015-04-21

    Voltammetric studies on the simple ion transfer (IT) behaviors of an important water-soluble B-vitamin, folic acid (FA), at the liquid-liquid (L-L) interface were firstly performed and then applied as a novel detection method for FA under physiological conditions. Meso-water-1,6-dichlorohexane (W-DCH) and meso-water-organogel interface arrays were built by using a hybrid mesoporous silica membrane (HMSM) with a unique structure of pores-in-pores and employed as the new platforms for the IT voltammetric study. In view of the unique structure of the HMSM, the impact of the ionic surfactant cetyltrimethylammonium bromide (CTAB), self-assembled within the silica nanochannels of the HMSM, was investigated. In particular, its effect on the IT voltammetric behavior and detection of FA at meso-L-L interface arrays was systematically examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and differential pulse stripping voltammetry (DPSV). It was found that all the voltammetric responses of CV, DPV, and DPSV and the corresponding detection limit of FA at such meso-L-L interface arrays are closely related to the CTAB in the HMSM. Significantly, the calculated detection limit of FA could be improved to 80 nM after the combination of the DPSV technique with the additional preconcentration of FA in the silica-CTAB nanochannels, achieved through an anion-exchange process between FA(-) and the bromide of CTAB in HMSM. This provides a new and attractive strategy for the detection of those biological anions. PMID:25730302

  2. Functional reconstitution of the. gamma. -aminobutyric acid transporter from synaptic vesicles using artificial ion gradients

    SciTech Connect

    Hell, J.W.; Edelmann, L.; Hartinger, J.; Jahn, R. )

    1991-12-24

    The {gamma}-aminobutyric acid transporter of rat brain synaptic vesicles was reconstituted in proteoliposomes, and its activity was studied in response to artificially created membrane potentials or proton gradients. Changes of the membrane potential were monitored using the dyes oxonol VI and 3,3{prime}-diisopropylthiodicarbocyanine iodide, and changes of the H{sup +} gradient were followed using acridine orange. An inside positive membrane potential was generated by the creation of an inwardly directed K{sup +} gradient and the subsequent addition of valinomycin. Under these conditions, valinomycin evoked uptake of ({sup 3}H)GABA which was saturable. Similarly, ({sup 3}H)glutamate uptake was stimulated by valinomycin, indicating that both transporters can be driven by the membrane potential. Proton gradients were generated by the incubation of K{sup +}-loaded proteoliposomes in a buffer free of K{sup +} or Na{sup +} ions and the subsequent addition of nigericin. Proton gradients were also generated via the endogenous H{sup +} ATPase by incubation of K{sup +}-loaded proteoliposomes in equimolar K{sup +} buffer in the presence of valinomycin. These proton gradients evoked nonspecific, nonsaturable uptake of GABA and {beta}-alanine but not of glycine in proteoliposomes as well as protein-free liposomes. Therefore, transporter activity was monitored using glycine as an alternative substrate. Proton gradients generated by both methods elicited saturable glycine uptake in proteoliposomes. Together, these data confirm that the vesicular GABA transporter can be energized by both the membrane potential and the pH gradient and show that transport can be achieved by artificial gradients independently of the endogenous proton ATPase.

  3. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.

    PubMed

    Schmidt, Ruth K; Müther, Kristine; Mück-Lichtenfeld, Christian; Grimme, Stefan; Oestreich, Martin

    2012-03-01

    The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Brønsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Brønsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the

  4. New insights into ion regulation of cephalopod molluscs: a role of epidermal ionocytes in acid-base regulation during embryogenesis.

    PubMed

    Hu, Marian Y; Tseng, Yung-Che; Lin, Li-Yih; Chen, Po-Yen; Charmantier-Daures, Mireille; Hwang, Pung-Pung; Melzner, Frank

    2011-12-01

    The constraints of an active life in a pelagic habitat led to numerous convergent morphological and physiological adaptations that enable cephalopod molluscs and teleost fishes to compete for similar resources. Here, we show for the first time that such convergent developments are also found in the ontogenetic progression of ion regulatory tissues; as in teleost fish, epidermal ionocytes scattered on skin and yolk sac of cephalopod embryos appear to be responsible for ionic and acid-base regulation before gill epithelia become functional. Ion and acid-base regulation is crucial in cephalopod embryos, as they are surrounded by a hypercapnic egg fluid with a Pco(2) between 0.2 and 0.4 kPa. Epidermal ionocytes were characterized via immunohistochemistry, in situ hybridization, and vital dye-staining techniques. We found one group of cells that is recognized by concavalin A and MitoTracker, which also expresses Na(+)/H(+) exchangers (NHE3) and Na(+)-K(+)-ATPase. Similar to findings obtained in teleosts, these NHE3-rich cells take up sodium in exchange for protons, illustrating the energetic superiority of NHE-based proton excretion in marine systems. In vivo electrophysiological techniques demonstrated that acid equivalents are secreted by the yolk and skin integument. Intriguingly, epidermal ionocytes of cephalopod embryos are ciliated as demonstrated by scanning electron microscopy, suggesting a dual function of epithelial cells in water convection and ion regulation. These findings add significant knowledge to our mechanistic understanding of hypercapnia tolerance in marine organisms, as it demonstrates that marine taxa, which were identified as powerful acid-base regulators during hypercapnic challenges, already exhibit strong acid-base regulatory abilities during embryogenesis. PMID:21975645

  5. Early smelter sites: A neglected chapter in the history and geography of acid rain in the United States

    NASA Astrophysics Data System (ADS)

    Quinn, M.-L.

    Dominant spatial and temporal theories of acid rain in the U.S. are identified, followed by brief comments on how historical data have generally been used in modern acid rain research. A frequently-cited 1982 article by E.B. Cowling is examined, one that has influenced much thinking on the history of acid rain. The article overlooks early American smelters, however, and the role they played in the true history and geography of acid rain in the United States. Continuing with this theme, a connection is established between acid rain and turn-of-the-century smelter smoke problems. Literature on the latter subject is discussed, and American and German examples are given. A beginning is then made on writing acid rain's neglected chapter, focusing on Tennessee's Copper Basin (Ducktown District) where copper smelting dates back to the 1850s. A short historical overview of this area's smelting operations is given, with particular attention to the air pollution and other environmental problems resulting from large emissions of sulfur dioxide. Five additional early smelter sites for potential study are mentioned as well. The paper concludes with some observations regarding the way in which expanded research of early smelter sites could affect the general perception of acid rain in the U.S. It is also suggested that such research might contribute to a better atmosphere for making decisions and policies pertaining to the phenomenon as it exists today.

  6. Collision-Induced Dissociation of Fatty Acid [M - 2H + Na]- Ions: Charge-Directed Fragmentation and Assignment of Double Bond Position

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Altvater, Jens; Gallagher, Thomas J.; Nette, Geoffrey W.

    2014-08-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] - ions. In the current manuscript, the CID behavior of these [M - 2H + Na] - ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF]- ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na]- ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na]- ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆9,12,1518:3, ∆6,9,1218:3, and ∆5,8,1118:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  7. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters.

    PubMed

    Thomas, Jikku M; He, Siqin; Larriba-Andaluz, Carlos; DePalma, Joseph W; Johnston, Murray V; Hogan, Christopher J

    2016-08-17

    We applied an atmospheric pressure differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer to examine the stability, mass-mobility relationship, and extent of hydration of dimethylamine-sulfuric acid cluster ions, which are of relevance to nucleation in ambient air. Cluster ions were generated by electrospray ionization and were of the form: [H((CH3)2NH)x(H2SO4)y](+) and [(HSO4)((CH3)2NH)x(H2SO4)y](-), where 4 ≤ x ≤ 8, and 5 ≤ y ≤ 12. Under dry conditions, we find that positively charged cluster ions dissociated via loss of both multiple dimethylamine and sulfuric acid molecules after mobility analysis but prior to mass analysis, and few parent ions were detected in the mass spectrometer. Dissociation also occurred for negative ions, but to a lesser extent than for positive ions for the same mass spectrometer inlet conditions. Under humidified conditions (relative humidities up to 30% in the DMA), positively charged cluster ion dissociation in the mass spectrometer inlet was mitigated and occurred primarily by H2SO4 loss from ions containing excess acid molecules. DMA measurements were used to infer collision cross sections (CCSs) for all identifiable cluster ions. Stokes-Millikan equation and diffuse/inelastic gas molecule scattering predicted CCSs overestimate measured CCSs by more than 15%, while elastic-specular collision model predictions are in good agreement with measurements. Finally, cluster ion hydration was examined by monitoring changes in CCSs with increasing relative humidity. All examined cluster ions showed a modest amount of water molecule adsorption, with percentage increases in CCS smaller than 10%. The extent of hydration correlates directly with cluster ion acidity for positive ions. PMID:27485283

  8. An Ion-Exchange Nanomembrane Sensor for Detection of Nucleic Acids using a Surface Charge Inversion Phenomenon

    PubMed Central

    Senapati, Satyajyoti; Slouka, Zdenek; Shah, Sunny S.; Behura, Susanta K.; Shi, Zonggao; Stack, M. Sharon; Severson, David W.; Chang, Hsueh-Chia

    2015-01-01

    We present a novel low-cost biosensor for rapid, sensitive and selective detection of nucleic acids based on an ionic diode feature of an anion exchange nanoporous membrane under DC bias. The ionic diode feature is associated with external surface charge inversion on the positively charged anion exchange nanomembrane upon hybridization of negatively charged nucleic acid molecules to single-stranded oligoprobes functionalized on the membrane surface resulting in the formation of a cation selective monolayer. The resulting bipolar membrane causes a transition from electroconvection-controlled to water-splitting controlled ion conductance, with a large ion current signature that can be used to accurately quantify the hybridized nucleic acids. The platform is capable of distinguishing two base-pair mismatches in a 22-base pairing segment of microRNAs associated with oral cancer, as well as serotype-specific detection of dengue virus. We also show the sensor’s capability to selectively capture target nucleic acids from a heterogeneous mixture. The limit of detection is 1 pM for short 27 base target molecules in a 15-minute assay. Similar hybridization results are shown for short DNA molecules as well as RNAs from Brucella and E.coli. The versatility and simplicity of this low-cost biosensor should enable point-of-care diagnostics in food, medical and environmental safety markets. PMID:24787123

  9. Design of a Modular 5-kW Power Processing Unit for the Next-Generation 40-cm Ion Engine

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bond, Thomas; Okada, Don; Pyter, Janusz; Wiseman, Steve

    2002-01-01

    NASA Glenn Research Center is developing a 5/10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard poster processing unit is being designed and fabricated. The design includes a beam supply consisting of four 1.1 kW power modules connected in parallel, equally sharing the output current. A novel phase-shifted/pulse-width-modulated dual full-bridge topology was chosen for its soft-switching characteristics. The proposed modular approach allows scalability to higher powers as well as the possibility of implementing an N+1 redundant beam supply. Efficiencies in excess of 96% were measured during testing of a breadboard beam power module. A specific mass of 3.0 kg/kW is expected for a flight PRO. This represents a 50% reduction from the state of the art NSTAR power processor.

  10. Behavior of transplutonium elements on ion-exchange materials in mixed aqueous-organic solutions of mineral acids

    SciTech Connect

    Guseva, L.I.; Tikhomirov, G.S.; Stepushkina, V.V.

    1987-03-01

    Systematic studies are reported on the behavior of transplutonium elements (TPE) on cation-exchange and anion-exchange materials in mixed aqueous-organic solutions of mineral acids (HClO/sub 4/, HCl, HNO/sub 3/, H/sub 2/SO/sub 4/, H/sub 3/PO/sub 4/) as affected by solution composition, nature of acid, and nature of organic solvent. With all these acids, replacing most of the water by alcohol increases the TPE uptake on the ion exchangers, and the effect occurs for the cation exchangers at lower contents of the organic component. Optimum conditions have been identified for concentrating and separating TPE from numerous elements. The most effective system consists of anion exchanger with HNO/sub 3/ and alcohol.

  11. Quantitative In Silico Analysis of Retention of Phenylthiohydantoin-Amino Acids in Reversed-Phase Ion-Pair Liquid Chromatography.

    PubMed

    Hanai, Toshihiko

    2016-04-01

    The retention mechanisms of phenylthiohydantoin (PTH)-amino acids in reversed-phase ion-pair liquid chromatography were quantitatively analyzed in silico. The most significant interaction for the retention was the Lewis acid-base interaction between an aromatic ring of a PTH-amino acid and a hydroxyl-group hydrogen of tetra-alkyl ammonium hydroxide. Solvent effects, addition of molecular interaction (MI) energy values between an analyte and solvent molecules, significantly improved the relationship between the MI energy values, calculated using a molecular mechanics program, and logk values, measured via chromatography. The correlation coefficient between the calculated MI energy values and the logk values was 0.98 (n = 19). PMID:26769717

  12. Evidence for Role of Acid-Sensing Ion Channels in Nucleus Ambiguus Neurons: Essential Differences in Anesthetized versus Awake Rats

    PubMed Central

    Brailoiu, G. Cristina; Deliu, Elena; Altmann, Joseph B.; Chitravanshi, Vineet; Brailoiu, Eugen

    2014-01-01

    Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely-labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca2+ concentration by promoting Ca2+ influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats. PMID:24752669

  13. Geochemical investigations of selected Eastern United States watersheds affected by acid deposition.

    USGS Publications Warehouse

    Bricker, O.P.

    1986-01-01

    The effects of acid deposition on surface waters in eastern USA watersheds of similar size, physiography, climate and land-use are related to the composition of the underlying bedrock. Watersheds developed on greenstone, calcareous shale, sandstone, granite and schist differ in their ability to neutralize acid rain; consequently, stream acidity is similar to that of precipitation. Watersheds developed on granite and schist are intermediate in their capacity to neutralize acid deposition. Bedrock composition appears to be the major property controlling surface-water chemistry in these systems; hydrological flowpaths and the nature of surficial materials and vegetation also influence chemical responses to acid deposition in watersheds. 453This and the following 10 abstracts are for papers forming a thematic set on geochemical aspects of acid rain. -P.Br.

  14. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung-Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao-Qing

    2014-12-18

    For LiMO2 (M=Co, Ni, Mn) cathode materials, lattice parameters, a(b), contract during charge. Here we report such changes in opposite directions for lithium molybdenum trioxide (Li2MoO3). A ‘unit cell breathing’ mechanism is proposed based on crystal and electronic structural changes of transition metal oxides during charge-discharge. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of the metal-metal bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking metal-oxygen bond as controlling factor in ‘normal’ materials. The cation mixing caused by migration of molybdenum ions at higher oxidation state provides the benefits of reducing the c expansion range in the early stage of charging and suppressing the structure collapse at high voltage charge. These results may open a new strategy for designing layered cathode materials for high energy density lithium-ion batteries.

  15. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE PAGESBeta

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials.more » The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  16. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  17. Characterizing the interaction between uranyl ion and fulvic acid using regional integration analysis (RIA) and fluorescence quenching.

    PubMed

    Zhu, Bingqi; Ryan, David K

    2016-03-01

    The development of chemometric methods has substantially improved the quantitative usefulness of the fluorescence excitation-emission matrix (EEM) in the analysis of dissolved organic matter (DOM). In this study, Regional Integration Analysis (RIA) was used to quantitatively interpret EEMs and assess fluorescence quenching behavior in order to study the binding between uranyl ion and fulvic acid. Three fulvic acids including soil fulvic acid (SFA), Oyster River fulvic acid (ORFA) and Suwannee River fulvic acid (SRFA) were used and investigated by the spectroscopic techniques. The EEM spectra obtained were divided into five regions according to fluorescence structural features and two distinct peaks were observed in region III and region V. Fluorescence quenching analysis was conducted for these two regions with the stability constants, ligand concentrations and residual fluorescence values calculated using the Ryan-Weber model. Results indicated a relatively strong binding ability between uranyl ion and fulvic acid samples at low pH (log K value varies from 4.11 to 4.67 at pH 3.50). Fluorophores in region III showed a higher binding ability with fewer binding sites than in region V. Stability constants followed the order, SFA > ORFA > SRFA, while ligand concentrations followed the reverse order, SRFA > ORFA > SFA. A comparison between RIA and Parallel Factor Analysis (PARAFAC) data treatment methods was also performed and good agreement between these two methods (less than 4% difference in log K values) demonstrates the reliability of the RIA method in this study. PMID:26736183

  18. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    PubMed Central

    Lee, Hye-Young; Jeong, Young-IL; Choi, Ki-Choon

    2011-01-01

    Background p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. Methods PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Results Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. Conclusion The authors suggest that these microparticles are ideal

  19. A natural protecting group strategy to carry an amino acid starter unit in the biosynthesis of macrolactam polyketide antibiotics.

    PubMed

    Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2011-11-16

    Macrolactam antibiotics are an important class of macrocyclic polyketides that contain a unique nitrogen-containing starter unit. In the present study, a set of starter biosynthetic enzymes in the macrolactam antibiotic vicenistatin was characterized. We found that the protection-deprotection strategy of the aminoacyl-ACP intermediate was critical in this system. On the basis of bioinformatics, the described pathway is also proposed as a common method for carrying amino acids in the biosynthesis of other macrolactam antibiotics. PMID:22010945

  20. Occurrence of acid precipitation on the West Coast of the United States

    SciTech Connect

    Powers, C.F.; Rambo, D.L.

    1981-01-01

    Compilation of published and unpublished data shows acid precipitation to be more widespread in the Pacific coastal states than is generally recognized. Although information is scattered and discontinuous, precipitation is definitely acidic in the Los Angeles Basin and north-central California and in the Puget Sound region in Washington. Acid-rain occurrences were observed in western and eastern Oregon, but data are inadequate for regional generalization. New stations currently being established in Washington and Oregon, largely in response to the recently renewed activity of Mount St. Helens, will greatly facilitate assessment of precipitation acidity in the Northwest.

  1. Ion Clusters in Nucleation Experiments in the CERN Cloud Chamber: Sulfuric Acid + Ammonia + Dimethyl Amine + Oxidized Organics

    NASA Astrophysics Data System (ADS)

    Worsnop, D. R.; Schobesberger, S.; Bianchi, F.; Ehrhart, S.; Junninen, H.; Kulmala, M. T.

    2012-12-01

    Nucleation from gaseous precursors is an important source of aerosol particles in the atmosphere. The CLOUD experiment at CERN provides exceptionally clean and well-defined experimental conditions for studies of atmospheric nucleation and initial growth, in a 26 m3 stainless-steel chamber. In addition, the influence of cosmic rays on nucleation and nanoparticle growth can be simulated by exposing the chamber to a pion beam produced by the CERN Proton Synchrotron. A key to understanding the mechanism by which nucleation proceeds in the CLOUD chamber is the use of state-of-the-art instrumentation, including the Atmospheric Pressure interface Time-Of-Flight (APi-TOF) mass spectrometer. The APi-TOF is developed by Tofwerk AG, and Aerodyne Research, Inc., and typically obtains resolutions between 4000 and 6000 Th/Th and mass accuracies < 10 ppm. Sampling occurs directly from atmospheric pressure through a critical orifice. Ions are then focused and guided to the time-of-flight mass spectrometer, while passing through differentially pumped chambers. No ionization of the sampled aerosol is performed; only ions charged in the chamber are detected in the current configuration. For all studied chemical systems, the APi-TOF detected ion clusters that could directly be linked to nucleation. The composition of these ion clusters could be determined based on their exact masses and isotopic patterns. Aided by the chamber's cleanliness and the possibility of enhancing ion concentrations by using CERN's pion beam, a remarkably large fraction of the ion spectra could be identified, even for more complex chemical systems studied. For the ammonia-sulfuric acid-water system, for instance, growing clusters containing ammonia (NH3) and sulfuric acid (H2SO4) were observed up to 3300 Th. Adding dimethyl amine and/or pinanediol into the CLOUD chamber, altered the chemical compositions of the observed ion clusters accordingly. Cluster growth then included mixtures of sulfuric acid and

  2. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  3. WEAK-ACID ION EXCHANGE FOR REMOVING BARIUM, RADIUM, AND HARDNESS

    EPA Science Inventory

    Weak-acid resin in the hydrogen form was found to effectively remove barium, radium, and hardness, without increasing the sodium content of the product water. The maximum capacity of the weak-acid resin was about 2.3 times that of strong-acid resin, and much less spent regenerant...

  4. Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis

    PubMed Central

    Eddy, A. A.; Nowacki, J. A.

    1971-01-01

    1. Proton uptake into the yeast Saccharomyces carlsbergensis, was studied at pH4.5–5.5 in the presence of both antimycin and 2-deoxyglucose to inhibit energy metabolism. Previous work had shown that the cells then absorbed about 20nmol of glycine or l-phenylalanine against a considerable amino acid concentration gradient. The addition of the amino acid immediately stimulated the rate of uptake of protons two- to three-fold. About 2 extra equivalents of H+ accompanied a given amount of the amino acids into the yeast preparations exposed to the metabolic inhibitors for 2–4min and about 1.2 equivalents after 20min exposure. 2. Analogous observations were made during serial additions of glycine, l-phenylalanine, l-leucine and l-lysine to preparations lacking the metabolic inhibitors and deficient in substrates needed for energy metabolism. In fresh cellular preparations the influx of glycine was then closely coupled to a stimulated flow of 2.1 equiv. of H+ into the yeast. A similar number of K+ ions left the cells. About 30% of the extra protons was subsequently ejected from the yeast. Deoxyglucose and antimycin together inhibited the ejection of protons. When the yeast had been fed with glucose energy metabolism was stimulated and almost as many protons as were absorbed with the amino acid were apparently ejected again. 3. Yeast preparations containing Na+, instead of K+, as the principal cation absorbed about 1 extra equivalent of H+ after the addition of phenylalanine, glycine or leucine. This response was not observed in the presence of both deoxyglucose and antimycin. 4. The observations show that H+ and, in certain circumstances, K+ are co-substrates in the transport of the amino acids into the yeast. An analogy is drawn with the roles of Na+ and K+ as co-substrates in certain mammalian systems. The results lead to various models relating the physical flow of the co-substrate ions on the amino acid carrier to the transduction of chemical energy in an

  5. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity

    PubMed Central

    Moshourab, Rabih A; Wetzel, Christiane; Martinez-Salgado, Carlos; Lewin, Gary R

    2013-01-01

    Acid-sensing ion channels (ASICs) and their interaction partners of the stomatin family have all been implicated in sensory transduction. Single gene deletion of asic3, asic2, stomatin, or stoml3 all result in deficits in the mechanosensitivity of distinct cutaneous afferents in the mouse. Here, we generated asic3−/−:stomatin−/−, asic3−/−:stoml3−/− and asic2−/−:stomatin−/− double mutant mice to characterize the functional consequences of stomatin–ASIC protein interactions on sensory afferent mechanosensitivity. The absence of ASIC3 led to a clear increase in mechanosensitivity in rapidly adapting mechanoreceptors (RAMs) and a decrease in the mechanosensitivity in both Aδ- and C-fibre nociceptors. The increased mechanosensitivity of RAMs could be accounted for by a loss of adaptation which could be mimicked by local application of APETx2 a toxin that specifically blocks ASIC3. There is a substantial loss of mechanosensitivity in stoml3−/− mice in which ∼35% of the myelinated fibres lack a mechanosensitive receptive field and this phenotype was found to be identical in asic3−/−:stoml3−/− mutant mice. However, Aδ-nociceptors showed much reduced mechanosensitivity in asic3−/−:stoml3−/− mutant mice compared to asic3−/− controls. Interestingly, in asic2−/−:stomatin−/− mutant mice many Aδ-nociceptors completely lost their mechanosensitivity which was not observed in asic2−/− or stomatin−/− mice. Examination of stomatin−/−:stoml3−/− mutant mice indicated that a stomatin/STOML3 interaction is unlikely to account for the greater Aδ-nociceptor deficits in double mutant mice. A key finding from these studies is that the loss of stomatin or STOML3 in asic3−/− or asic2−/− mutant mice markedly exacerbates deficits in the mechanosensitivity of nociceptors without affecting mechanoreceptor function. PMID:23959680

  6. Amino acid replacements can selectively affect the interaction energy of autonomous folding units in the alpha subunit of tryptophan synthase.

    PubMed

    Chen, X; Rambo, R; Matthews, C R

    1992-03-01

    Amino acid replacements were made at the interface between two autonomous folding units in the alpha subunit of tryptophan synthase from Salmonella typhimurium to test their mutual interaction energy. The results of equilibrium studies of the urea-induced unfolding reaction of the wild-type and mutant proteins in which phenylalanine 22 is replaced by leucine, isoleucine, and valine can be understood in terms of a selective decrease in the interaction energy between the two folding units; the intrinsic stability of each folding unit is not significantly altered. Kinetic studies of the rate-limiting step in unfolding show that the interaction energy appears in the transition state preceding the native conformation. Comparisons of the individual effects of these nonpolar side chains show that both hydrophobic and steric effects play important roles in the interaction energy between the folding units. The implication of these results is that the high cooperativity observed in the folding of many globular proteins may be reduced by appropriate amino acid replacements. PMID:1540577

  7. OCCURRENCE OF ACID PRECIPITATION ON THE WEST COAST OF THE UNITED STATES

    EPA Science Inventory

    Compilation of published and unpublished data shows acid precipitation to be more widespread in the Pacific coastal states than is generally recognized. Although information is scattered and discontinuous, precipitation is definitely acidic in the Los Angeles Basin and north-cent...

  8. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework.

    PubMed

    Demir, Selvan; Brune, Nicholas K; Van Humbeck, Jeffrey F; Mason, Jarad A; Plakhova, Tatiana V; Wang, Shuao; Tian, Guoxin; Minasian, Stefan G; Tyliszczak, Tolek; Yaita, Tsuyoshi; Kobayashi, Tohru; Kalmykov, Stepan N; Shiwaku, Hideaki; Shuh, David K; Long, Jeffrey R

    2016-04-27

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  9. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

    PubMed Central

    2016-01-01

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr2+, Fe3+, Nd3+, and Am3+, from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  10. Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes.

    PubMed

    Deshmukh, Dhananjay K; Kawamura, Kimitaka; Deb, Manas K

    2016-10-01

    The size distributions of aerosols can provide evidences for their sources and formation processes in the atmosphere. Size-segregated aerosols (9-sizes) were collected in urban site (Raipur: 21.2°N and 82.3°E) in central India during winter of 2012-2013. The samples were analyzed for dicarboxylic acids (C2-C12), ω-oxocarboxylic acids (ωC2-ωC9), pyruvic acid and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC), water-soluble OC (WSOC) and inorganic ions. Diacids showed a predominance of oxalic acid (C2) followed by succinic and azelaic acid whereas ω-oxoacids exhibited a predominance of glyoxylic acid and glyoxal was more abundant than methylglyoxal in all the sizes. Diacids, ω-oxoacids and α-dicarbonyls showed bimodal size distribution with peaks in fine and coarse modes. High correlations of fine mode diacids and related compounds with potassium and levoglucosan suggest that they were presumably due to a substantial contribution of primary emission from biomass burning and secondary production from biomass burning derived precursors. High correlations of C2 with higher carbon number diacids (C3-C9) suggest that they have similar sources and C2 may be produced via the decay of its higher homologous diacids in fine mode. Considerable portions of diacids and related compounds in coarse mode suggest that they were associated with mineral dust particles by their adsorption and photooxidation of anthropogenic and biogenic precursors via heterogeneous reaction on dust surface. This study demonstrates that biomass burning and dust particles are two major factors to control the size distribution of diacids and related compounds in the urban aerosols from central India. PMID:27414241

  11. Estimates of critical acid loads and exceedances for forest soils across the conterminous United States.

    PubMed

    McNulty, Steven G; Cohen, Erika C; Moore Myers, Jennifer A; Sullivan, Timothy J; Li, Harbin

    2007-10-01

    Concern regarding the impacts of continued nitrogen and sulfur deposition on ecosystem health has prompted the development of critical acid load assessments for forest soils. A critical acid load is a quantitative estimate of exposure to one or more pollutants at or above which harmful acidification-related effects on sensitive elements of the environment occur. A pollutant load in excess of a critical acid load is termed exceedance. This study combined a simple mass balance equation with national-scale databases to estimate critical acid load and exceedance for forest soils at a 1-km(2) spatial resolution across the conterminous US. This study estimated that about 15% of US forest soils are in exceedance of their critical acid load by more than 250eqha(-1)yr(-1), including much of New England and West Virginia. Very few areas of exceedance were predicted in the western US. PMID:17629382

  12. Photoinduced proton transfer coupled with energy transfer: Mechanism of sensitized luminescence of terbium ion by salicylic acid doped in polymer.

    PubMed

    Misra, Vinita; Mishra, Hirdyesh

    2008-06-28

    In the present work, excited state intramolecular proton transfer (ESIPT) in salicylic acid (SA) monoanion and subsequent sensitization of Tb(3+) ion in polyvinyl alcohol (PVA) have been studied. The study has been carried out both by steady state and time domain fluorescence measurement techniques at room temperature. It is found that the SA completely ionizes and exists as monoanion in PVA. It exhibits a large Stokes shifted blue emission (10 000 cm(-1)) due to ESIPT and shows a decay time of 6.85 ns. On the other hand, Tb(3+) ion shows a very weak green emission and a decay time of approximately 641 mus in PVA film. Upon incorporating Tb(3+) ion in SA doped PVA film, both intensity and decay time of SA decrease and sensitized emission from Tb(+3) ion along with 3.8 mus rise time is observed. Energy transfer is found to take place both from excited singlet as well as triplet states. A brief description of the properties of the present system from the viewpoint of luminescent solar collector material is addressed. PMID:18601359

  13. Influence of Amino Acid Composition and Phosphorylation on the Ion Yields of Peptides in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Moriguchi, Shohey; Takayama, Mitsuo

    2012-01-01

    The influence of arginine (Arg), lysine (Lys), and phenylalanine (Phe) residues and phosphorylation on the molecular ion yields of model peptides have been quantitatively studied using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry in both positive- and negative-ion mode. The results obtained from these experiments have been interpreted from the standpoint of two different components, namely, desorption and ionization, on the basis of the physicochemical properties of constituent amino acids of the model peptides. The presence of basic residues such as Arg and Lys enhanced the ion yields of protonated molecules [M + H]+. An N-terminal rather than a C-terminal Arg residue was advantageous for the formation of both [M + H]+ and [M - H]-. The presence of the Phe residue resulted in the increase of the ion yields of both [M + H]+ and [M - H]-. In contrast, the presence of phosphate group(s) contributed to the suppression of the yields of both [M + H]+ and [M - H]- due to the loss of phosphate group. The detection limits for both [M + H]+ and [M - H]- of model peptides have been evaluated.

  14. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Li; Qu, Wenjie; Zhang, Xiaoxiao; Lu, Jun; Chen, Renjie; Wu, Feng; Amine, Khalil

    2015-05-01

    A hydrometallurgical method involving natural organic acid leaching has been developed for recovery of lithium and cobalt from the cathode active materials in spent lithium-ion batteries. Succinic acid is employed as leaching agent and H2O2 as reductant. The cobalt and lithium contents from the succinic acid-based treatment of spent batteries are determined by inductively coupled plasma-optical emission spectroscopy to calculate the leaching efficiency. The spent LiCoO2 samples after calcination and the residues after leaching are characterized by X-ray diffraction and scanning electron microscopy. The results show that nearly 100% of cobalt and more than 96% of lithium are leached under optimal conditions: succinic acid concentration of 1.5 mol L-1, H2O2 content of 4 vol.%, solid-to-liquid ratio of 15 g L-1, temperature of 70 °C, and reaction time of 40 min. Results are also given for fitting of the experimental data to acid leaching kinetic models.

  15. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control.

    PubMed

    Kwak, E-J; Lim, S-I

    2004-08-01

    The color intensities was determined of Maillard reaction products (MRPs) prepared by heating each of five sugars (maltose, fructose, glucose, arabinose, and xylose) with each of 12 amino acids (aspartic acid, glutamic acid, alanine, leucine, isoleucine, valine, proline, serine, cysteine, phenylalanine, arginine, and lysine). The remaining percentages of glucose and rate of change of color intensity due to the addition of a metal ion and NaCl were monitored for nine MRPs that had been formed between glucose and each of nine amino acids (aspartic acid, glutamic acid, alanine, valine, serine, cysteine, phenylalanine, arginine, and lysine). Model MRPs were prepared in a block heater at 100 degrees C for 1-12 h with the pH value controlled at 6.5. The resulting color intensity of each MRPs formed from the basic amino acids was greater due to the higher reactivity than those from the acidic amino acids. The remaining percentage of glucose in each MRPs from the basic amino acids was lower than those from the acidic amino acids. The MRPs from the nonpolar amino acids showed an intermediate color intensity and remaining percentages of glucose between those formed from the basic and acidic amino acids. Browning tended to be accelerated in the presence of metal ions, especially Fe2+ and Cu2+, although it was affected by the property of the amino acid and heating time as well as by the type of metal ion. On the other hand, browning was greatly inhibited by a high concentration of NaCl. PMID:15309575

  16. Enriched boric acid for PWR application: Cost evaluation study for a twin-unit PWR

    SciTech Connect

    Battaglia, J.A.; Waters, R.M.; von Hollen, J.M.; Lamatia, L.A.; Bergmann, C.A.; Ditommaso, S.M. . Nuclear and Advanced Technology Div.)

    1989-09-01

    In the nuclear industry boric acid dissolved in the reactor coolant is used as a soluble reactivity control agent. Reactivity control in nuclear plants is also provided by neutron absorbing control rods. This neutron absorbing duty is distributed between the control rods and soluble boric acid in such a way as to provide the most economical split. Typically, the control rods take care of rapid reactivity changes and the boric acid handles the slower long term control of reactivity by varying the boric acid concentrations within the reactor coolant. In PWR reactor plants the dissolved boric acid is referred to as a soluble poison or chemical shim due to the high capacity for thermal neutron capture exhibited by the boron-10 isotope contained in the boric acid molecule. This slow reactivity change or chemical shim control would otherwise have to be performed using control rods, a much more expensive proposition. Reactivity changes are controlled by the B-10 isotope by virtue of its very high cross section (3837 barns) for thermal neutron absorption. However, natural boron contains only 20 atom percent of the B-10 isotope and essentially all the remaining 80 percent as the B-11 isotope. The B-11 isotope of cross section .005 barns is essentially of no use as a neutron absorber. Since B-11 makes up the bulk of the total boron present and contributes little to the nuclear operation it would seem logical to eliminate this isotope of boron from the boric acid molecule. In so doing boric acid concentration in operating PWR plants need only be a fraction of that existing to accomplish identical nuclear operations. However, to achieve the elimination of B-11 from NBA (Natural Boric Acid) an isotope separation must be performed. 4 refs., 25 figs., 17 tabs.

  17. [Interaction of divalent metal ions with four-stranded polyriboinosinic acid].

    PubMed

    Sorokin, V A; Valeev, V A; Gladchenko, G O; Degtiar, M V; Blagoĭ, Iu P

    2000-01-01

    Interaction of Mg2+, Ca2+, Cu2+ ions with the four-stranded poly(I) was studied using differential UV and visible spectroscopies. It was shown that, up to concentrations of approximately 0.1 M, Mg2+ and Ca2+ ions do not bind to heteroatoms of hypoxanthine of the four-stranded poly(I). Cu2+ ions interact with N7 (and/or N1) and O6 (through the water molecule of the hydrate shell of the ion). The latter seems to induce the enolization of hypoxanthine the deprotonation of N1, and, as a result, the transition of the four-stranded helix to single-stranded coils. Single-stranded chains form compact particles with an effective radius of about 100 A. PMID:11094700

  18. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.

    PubMed

    López-Neira, Juan Pablo; Galicia-Hernández, José Mario; Reyes-Coronado, Alejandro; Pérez, Elías; Castillo-Rivera, Francisco

    2015-05-01

    The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration. This scenario was confirmed by solving numerically Maxwell equations, showing an increase of 1 order of magnitude in the local electric scattered field when the Gd(3+) ion is located in between a gold dimer compared with naked gold nanoparticles. PMID:25860315

  19. Soil-calcium depletion linked to acid rain and forest growth in the eastern United States

    USGS Publications Warehouse

    Lawrence, Gregory B.; Huntington, T.G.

    1999-01-01

    Since the discovery of acid rain in the 1970's, scientists have been concerned that deposition of acids could cause depletion of calcium in forest soils. Research in the 1980's showed that the amount of calcium in forest soils is controlled by several factors that are difficult to measure. Further research in the 1990's, including several studies by the U.S. Geological Survey, has shown that (1) calcium in forest soils has decreased at locations in the northeastern and southeastern U.S., and (2) acid rain and forest growth (uptake of calcium from the soil by roots) are both factors contributing to calcium depletion.

  20. New Insight into Metal Ion-Driven Catalysis of Nucleic Acids by Influenza PA-Nter

    PubMed Central

    Kotlarek, Daria; Worch, Remigiusz

    2016-01-01

    PA subunit of influenza RNA-dependent RNA polymerase deserves constantly increasing attention due to its essential role in influenza life cycle. N-terminal domain of PA (PA-Nter) harbors endonuclease activity, which is indispensable in viral transcription and replication. Interestingly, existing literature reports on in vitro ion preferences of the enzyme are contradictory. Some show PA-Nter activity exclusively with Mn2+, whereas others report Mg2+ as a natural cofactor. To clarify it, we performed a series of experiments with varied ion concentrations and substrate type. We observed cleavage in the presence of both ions, with a slight preference for manganese, however PA-Nter activity highly depended on the amount of residual, co-purified ions. Furthermore, to quantify cleavage reaction rate, we applied fluorescence cross-correlation spectroscopy (FCCS), providing highly sensitive and real-time monitoring of single molecules. Using nanomolar ssDNA in the regime of enzyme excess, we estimated the maximum reaction rate at 0.81± 0.38 and 1.38± 0.34 nM/min for Mg2+ and Mn2+, respectively. However, our calculations of PA-Nter ion occupancy, based on thermodynamic data, suggest Mg2+ to be a canonical metal in PA-Nter processing of RNA in vivo. Presented studies constitute a step toward better understanding of PA-Nter ion-dependent activity, which will possibly contribute to new successful inhibitor design in the future. PMID:27300442

  1. NEGATIVE ION ELECTROSPRAY OF BROMO- AND CHLORACETIC ACIDS AND AN EVALUATION OF EXACT MASS MEASUREMENTS WITH A BENCH-TOP TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    The negative ion electrospray mass spectra of six bromo- and chloroacetic acids were measured using two different electrospray interfaces and single quadrupole and bench-top time-of-flight mass spectrometers. With each acid at 50 ug/mL in aqueous methanol at pH 10, the anions ob...

  2. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  3. Seasonal and rainfall-type variations in inorganic ions and dicarboxylic acids and acidity of wet deposition samples collected from subtropical East Asia

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Wu, Pei-Ling

    2011-07-01

    malonic acid to succinic acid (M:S ratio) indicated that both traffic and secondary photochemical reactions are major contributors to all but TOC Rain, for which the M:S ratio of 4.54 indicates a relative abundance of pollutants from secondary photochemical reactions. An ion balance (IB) ratio analysis demonstrated the validity of the results in this research.

  4. Use of liquid chromatography-atmospheric pressure chemical ionization-ion trap mass spectrometry for identification of oleanolic acid and ursolic acid in Anoectochilus roxburghii (wall.) Lindl.

    PubMed

    Huang, Liying; Chen, Tianwen; Ye, Zhao; Chen, Guonan

    2007-07-01

    Oleanolic acid (OA) and ursolic acid (UA) are the two important bioactive compounds in Anoectochilus roxburghii (wall) Lindl (A. roxburghii), which has been used as a traditional Chinese medicine. So far, there has been no report to indicate that A. roxburghii contains these two bioactive compounds. It is necessary to develop an effective method to extract and analyze OA and UA in A. roxburghii. In this paper, a quantitative method, consisting of supercritical fluid extraction (SFE) followed by liquid chromatography-atmospheric pressure chemical ionization-ion trap mass spectrometry (LC-APCI-IT-MS) analysis, was developed for identification of OA and UA in A. roxburghii. The extraction was carried out by using CO(2) as the supercritical fluid and ethanol as the modifier before LC separation. The mobile phase used for LC separation consisted of acetic acid (1%, v/v), water (15%, v/v) and methanol (84%, v/v), and the elution was performed at a flow rate of 0.8 ml/min. The mass spectrometer was operated in APCI(+) mode with selected ion monitoring (SIM) to quantify OA and UA at m/z 439.4. Under optimum conditions, the linear responses of OA and UA were obtained in the concentration range of 0.5-80 (r = 0.9992) and 0.5-50 microg/ml (r = 0.9989) with the detection limits of 0.125 and 0.085 microg/ml, respectively. The proposed method has been used for the identification and quantitation of OA and UA in a real A. roxburghii sample. PMID:17535010

  5. Studies on the effects of gaseous ions on plant growth. II. The construction and operation of an air purification unit for use in studies on the biological effects of gaseous ions.

    PubMed

    KRUEGER, A P; BECKETT, J C; ANDRIESE, P C; KOTAKA, S

    1962-05-01

    Air pollutants seriously interfere with the maintenance of unipolar ionized atmospheres required in experimenting with the biological effects of gaseous ions. The construction and operation of an air purification unit designed to reduce air pollution to tolerable levels are described; it has functioned satisfactorily in conducting experiments with plants and animals. PMID:14459882

  6. Correction: Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry.

    PubMed

    Shi, Hongchang; Wang, Yilei; Hua, Ruimao

    2015-12-28

    Correction for 'Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry' by Hongchang Shi et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp02914g. PMID:26583937

  7. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics.

    PubMed

    Pu, Xiong; Li, Linxuan; Song, Huanqiao; Du, Chunhua; Zhao, Zhengfu; Jiang, Chunyan; Cao, Guozhong; Hu, Weiguo; Wang, Zhong Lin

    2015-04-17

    A novel integrated power unit realizes both energy harvesting and energy storage by a textile triboelectric nanogenerator (TENG)-cloth and a flexible lithium-ion battery (LIB) belt, respectively. The mechanical energy of daily human motion is converted into electricity by the TENG-cloth, sustaining the energy of the LIB belt to power wearable smart electronics. PMID:25736078

  8. How Cation-Pi Interactions Enhance and Structure the Binding of Metal Ions to Amino Acids and Peptides. Dialanine Probed by Irmpd Spectroscopy as a Prime Example

    NASA Astrophysics Data System (ADS)

    Dunbar, Robert C.; Steill, Jeffrey; Oomens, Jos

    2010-06-01

    Spectroscopic examination of metalated amino acids and model peptides in the infrared region gives incisive conformational information. The role of cation-pi interactions of the metal ions with aromatic amino acids in structuring the complexes and enforcing particular architectures is being clarified by such experiments using IRMPD action spectroscopy as the experimental probe. The presence of multiple aromatic groups as in dialanine gives particularly stringent conformational stabilization. Comparing spectroscopic peak shifts across a range of alkali and alkaline earth metal ions, ranging from lithium to cesium, and from calcium to barium, allows us to view the systematic relations between normal mode frequencies and ion/peptide interactions. The spectra of the ions were acquired by irradiating the cell of the Fourier-transform ion cyclotron resonance mass spectrometer with infrared light from the FELIX free electron laser at wavelengths in the approximate range 500 to 1900 cm-1.

  9. Chemical recovery of surface waters across the northeastern united states from reduced inputs of acidic deposition: 1984-2001.

    PubMed

    Warby, Richard A F; Johnson, Chris E; Driscoll, Charles T

    2005-09-01

    Changes in lake water chemistry between 1984 and 2001 at 130 stratified random sites across the northeastern United States were studied to evaluate the population-level effects of decreases in acidic deposition. Surface-water S04(2-) concentrations decreased across the region at a median rate of -1.53 microequiv L(-1) year(-1). Calcium concentrations also decreased, with a median rate of -1.73 microequiv L(-1) year(-1). This decrease in Ca2+ retarded the recovery of surface water acid neutralizing capacity (Gran ANC), which increased at a median rate of 0.66 microequiv L(-1) year(-1). There were small increases in pH in all subregions except central New England and Maine, where the changes were not statistically significant. Median NO3- trends were not significant except in the Adirondacks, where NO3- concentrations increased at a rate of 0.53 microequiv L(-1) year(-1). A regionwide decrease in the concentration of total Al, especially in ponds with low ANC values (ANC < 25 microequiv L(-1)), was observed in the Adirondack subregion. These changes in Al were consistent with the general pattern of increasing pH and ANC. Despite the general pattern of chemical recovery, many ponds remain chronically acidic or are susceptible to episodic acidification. The continued chemical and biological recovery at sites in the northeastern United States will depend on further controls on S and N emissions. PMID:16190211

  10. Likelihood and objective Bayesian modeling of acidity and major ions in rainfall using a bivariate pseudo-Gamma distribution

    NASA Astrophysics Data System (ADS)

    Mohsin, Muhammad; Kazianka, Hannes; Pilz, Jürgen

    2013-04-01

    Modeling the acidity in rainfall at certain locations is a complex task because of different environmental conditions for different rainfall regimes and the large variability in the covariates involved. In this paper, concentration of acidity and major ions in the rainfall in UK is analyzed by assuming a bivariate pseudo-Gamma distribution. The model parameters are estimated by using the maximum likelihood method and the goodness of fit is checked. Furthermore, the non-informative Jeffreys prior for the distribution parameters is derived and a hybrid Gibbs sampling strategy is proposed to sample the corresponding posterior for conducting an objective Bayesian analysis. Finally, related quantities such as the deposition flux density are derived where the general pattern of the observed data appears to follow the fitted densities closely.

  11. The pharmacology and therapeutic potential of small molecule inhibitors of acid-sensing ion channels in stroke intervention

    PubMed Central

    Leng, Tian-dong; Xiong, Zhi-gang

    2013-01-01

    In the nervous system, a decrease in extracellular pH is a common feature of various physiological and pathological processes, including synaptic transmission, cerebral ischemia, epilepsy, brain trauma, and tissue inflammation. Acid-sensing ion channels (ASICs) are proton-gated cation channels that are distributed throughout the central and peripheral nervous systems. Following the recent identification of ASICs as critical acid-sensing extracellular proton receptors, growing evidence has suggested that the activation of ASICs plays important roles in physiological processes such as nociception, mechanosensation, synaptic plasticity, learning and memory. However, the over-activation of ASICs is also linked to adverse outcomes for certain pathological processes, such as brain ischemia and multiple sclerosis. Based on the well-demonstrated role of ASIC1a activation in acidosis-mediated brain injury, small molecule inhibitors of ASIC1a may represent novel therapeutic agents for the treatment of neurological disorders, such as stroke. PMID:22820909

  12. Electrospray mass spectrometry of some proteins and the aqueous solution acid/base equilibrium model in the negative ion detection mode

    NASA Astrophysics Data System (ADS)

    Le Blanc, J. C. Y.; Guevremont, R.; Siu, K. W. M.

    1993-06-01

    Basic solutions of myoglobin, [beta]-lactoglobulin, pepsin and ubiquitin have been examined by means of electrospray mass spectrometry in the negative ion detection mode. The distribution of protein ions in the mass spectra was found to correlate well with the distribution of protein species in solution calculated from published titration data. These results lend further credibility to an earlier proposed aqueous solution acid/base equilibrium model, which relates the "bellshape" ion distribution observed in the electrospray mass spectrometry of proteins to the distribution of protein ions in solution.

  13. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect

    PubMed Central

    Park, Hee Jun; Lee, Ga Hyeon; Jun, Joonho; Son, Miwon; Kang, Myung Joo

    2016-01-01

    The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg), microcrystalline cellulose (Avicel PH102, 37.5 mg), and porous calcium silicate (25 mg) and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp) and disintegration time (14 minutes). The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity) over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function. PMID:27103789

  14. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect.

    PubMed

    Park, Hee Jun; Lee, Ga Hyeon; Jun, Joonho; Son, Miwon; Kang, Myung Joo

    2016-01-01

    The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg), microcrystalline cellulose (Avicel PH102, 37.5 mg), and porous calcium silicate (25 mg) and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp) and disintegration time (14 minutes). The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity) over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function. PMID:27103789

  15. Formation of Iron Complexes from Trifluoroacetic Acid Based Liquid Chromatography Mobile Phases as Interference Ions in LC-ESI-MS Analysis

    PubMed Central

    Shukla, Anil; Zhang, Rui; Orton, Daniel; Zhao, Rui; Clauss, Therese; Moore, Ronald; Smith, Richard

    2011-01-01

    Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid that severely interfered with sample analysis. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are composed of three components; clusters of trifluoroacetic acid, clusters of mass 159 and iron. Formation of these ions is inhibited by removing trifluoroacetic acid from the mobile phases and using formic acid in its place, replacing the stainless steel union with a titanium union or by adding a small blank fused silica capillary column between the chromatography column and the electrospray tip via a stainless steel union without any adverse effects to chromatographic separation, peak broadening or peptide identifications. PMID:21504012

  16. Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Adiguzel, Nezaket

    2012-09-01

    Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mgg(-1) and for Cu(II) 6.15 and 17.8 mgg(-1) dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmolg(-1) for Ni(II) and 0.162 mmolg(-1) for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters. PMID:22608134

  17. Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium-Ion Batteries.

    PubMed

    Wang, Ying; Wang, Caiyun; Wang, Yijing; Liu, Huakun; Huang, Zhenguo

    2016-07-27

    Reduced graphene oxide, an intensively investigated material for Li-ion batteries, has shown mostly unsatisfactory performance in Na-ion batteries, since its d-spacing is believed to be too small for effective insertion/deinsertion of Na(+) ions. Herein, a facile method was developed to produce boron-functionalized reduced graphene oxide (BF-rGO), with an enlarged interlayer spacing and defect-rich structure, which effectively accommodates the sodiation/desodiation and provides more active sites. The Na/BF-rGO half cells exhibit unprecedented long cycling stability, with ∼89.4% capacity retained after 5000 cycles (0.002% capacity decay per cycle) at 1000 mA·g(-1) current density. High specific capacity (280 mAh·g(-1)) and great rate capability were also delivered in the Na/BF-rGO half cells. PMID:27349132

  18. Linear relationships between acidity and stability in mono- and hexahydrated metal ions: a computational study

    NASA Astrophysics Data System (ADS)

    George, Philip; Glusker, Jenny P.; Trachtman, Mendel; Bock, Charles W.

    2002-01-01

    Linear relationships have been established between the dissociation enthalpies of the monohydrates of Li +, Na +, K +, Be 2+, Mg 2-, Ca 2+, Mn 2+, Fe 2+, Co 2+, Ni 2+, Cu 2+, Zn 2+, Al 3+, Sc 3+, Ti 3+, V 3+, Mn 3+, Fe 3+ and Ga 3+ calculated at the MP2(FULL)/6-311++G**//MP2(FULL)/6-311++G** level, the hexahydrates of Na +, K +, Mg 2+, Ca 2+, Mn 2+, Zn 2+, Al 3+, Sc 3+, Fe 3+ and Ga 3+ calculated at the MP2(FULL)/6-311++G**//HF/6-311++G** level, and experimentally reported p Ka values for the first ionization of the corresponding aqua-ions. In contrast to the results of Chang and Wang [Chem. Phys. Lett. 286 (1998) 46], we find that the 3+ ion hexahydrates are more (not less) stable than the 2+ ion hexahydrates.

  19. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. PMID:26618263

  20. Probing metal ion complexation with salicylic acid and its derivatives with excited state proton transfer and luminescence anisotropy

    SciTech Connect

    Wang, Z.; Friedrich, D.M.; Ainsworth, C.C.

    1996-10-01

    Salicylic acid and its derivatives in which the phenolic proton is preserved show a characteristic dual fluorescence: one band in the UV, due to a {open_quotes}normal{close_quotes} excited state emission, and the other in the visible range, is assigned to excited state intramolecular proton transfer (ESIPT). The transition energy, quantum yield and fluorescence lifetime as well as fluorescence anisotropy are sensitive to the solvent environment, temperature and properties of the substituents (complexation) at the phenolic and carboxylic oxygens. The ESIPT band disappears in molecules in which the intramolecular hydrogen bond between phenolic hydrogen and the carbonyl oxygen is prohibited. In this work, the complexation of Na(I), Ca(II), Al(III) and La(III) with salicylic acid, 3-hydroxybenzoic acid, methylsalicylate and anisic acid in both aqueous and non-aqueous solvents has been studied by absorption and steady state luminescence spectroscopy, picosecond to nanosecond luminescence lifetimes and luminescence anisotropy measurements in a range of solvent and in ethanol at 77 K. Speciation in these complex systems, binding characteristics between the metal ion and the ligand, and ligand-centered energetics are discussed in terms of the spectroscopic properties, luminescence and anisotropy decay kinetics.

  1. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles.

    PubMed

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. PMID:27197574

  2. Determination of phytic acid and inositol pentakisphosphates in foods by high-performance ion chromatography.

    PubMed

    Chen, Qingchuan

    2004-07-28

    A high-performance anion exchange chromatographic method was adapted for the quantitative determination of phytic acid and inositol pentakisphosphate isomers (excluding enantiomers) in foods. Because of the cost and limited availability of inositol phosphate standards, a phytic acid sodium salt standard was used for the calculation of an average relative response factor for the quantification of inositol pentakisphosphate isomers, and the purity of phytic acid sodium salt standard was also accurately established. The detection limits (S/N = 3) for phytic acid and inositol pentakisphosphates were in the range of 1.5-3.4 microM (0.1-0.2 microg/100 microL). This method has been successfully applied to the determination of phytic acid and inositol pentakisphosphates in a variety of beans and nuts after extraction with 0.5 M HCl and cleanup with solid phase extraction cartridges. The results demonstrated that there was a strong correlation between either the phytic acid content or the total content of phytic acid together with inositol pentakisphosphates and the total dietary fiber content in the group of all raw dry beans and in the group of raw dry black beans but not in the group of raw dry red kidney beans, which was probably due to the insufficient number of the raw dry red kidney bean samples. PMID:15264889

  3. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column.

    PubMed

    Fasciano, Jennifer M; Mansour, Fotouh R; Danielson, Neil D

    2016-07-01

    Ion exclusion chromatography (IELC) of short chain aliphatic carboxylic acids is normally done using a cation exchange column under standard HPLC conditions but not in the ultra-HPLC (UHPLC) mode. A novel IELC method for the separation of this class of carboxylic acids by either HPLC or UHPLC utilizing a C18 column dynamically modified with sodium dodecyl sulfate has been developed. The sample capacity is estimated to be near 10 mM for a 20 µL injection or 0.2 µmol using a 150 × 4.6 mm column. The optimum mobile phase determined for three standard mixtures of organic acids is 1.84 mM sulfuric acid at pH 2.43 and a flow rate of 0.6 mL/min. Under optimized conditions, a HPLC separation of four aliphatic carboxylic acids such as tartaric, malonic, lactic and acetic can be achieved in under 4 min and in <2 min in the UHPLC mode at 2.1 mL/min. A variety of fruit juice and soft drink samples are analyzed. Stability of the column as measured by the retention order of maleic and fumaric acid is estimated to be ∼4,000 column volumes using HPLC and 600 by UHPLC. Reproducible chromatograms are achieved over at least a 2-month period. This study shows that the utility of a C18 column can be easily extended when needed to IELC under either standard or UHPLC conditions. PMID:27006111

  4. Analysis of Acid Gas Emissions in the Combustion of the Binder Enhanced D-Rdf by Ion Chromatography.

    NASA Astrophysics Data System (ADS)

    Jen, Jen-Fon

    1988-12-01

    Waste-to-energy has become an attractive alternative to landfills. One concern in this development is the release of pollutants in the combustion process. The binder enhanced d-RDF pellets satisfy the requirements of environmental acceptance, chemical/biological stability, and being storeable. The acid gas emissions of combusting d-RDF pellets with sulfur -rich coal were analyzed by ion chromatography and decreased when d-RDF pellets were utilized. The results imply the possibility of using d-RDF pellets to substitute for sulfur -rich coal as fuel, and also substantiate the effectiveness of a binder, calcium hydroxide, in decreasing emissions of SOx. In order to perform the analysis of the combustion sample, sampling and sample pretreatment methods prior to the IC analysis and the first derivative detection mode in IC are investigated as well. At least two trapping reagents are necessary for collecting acid gases: one for hydrogen halides, and the other for NOx and SOx. Factors affecting the absorption of acid gases are studied, and the strength of an oxidizing agent is the main factor affecting the collection of NOx and SOx. The absorption preference series of acid gases are determined and the absorption models of acid gases in trapping reagents are derived from the analytical results. To prevent the back-flushing of trapping reagents between impingers when leak-checking, a design for the sampling train is suggested, which can be adopted in sample collections. Several reducing agents are studied for pretreating the sample collected in alkali -permanganate media. Besides the recommendation of the hydrogen peroxide solution in EPA method, methanol and formic acid are worth considering as alternate reducing agents in the pretreatment of alkaline-permanganate media prior to IC analysis. The first derivative conductivity detection mode is developed and used in IC system. It is efficient for the detection and quantification of overlapping peaks as well as being

  5. Stochastic pumping of ions based on colored noise in bacterial channels under acidic stress.

    PubMed

    López, M Lidón; Queralt-Martín, María; Alcaraz, Antonio

    2016-07-21

    Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells. PMID:27349445

  6. Ion Irradiation of Sulfuric Acid: Implications for its Stability on Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.

    2010-01-01

    The Galileo near-infrared mapping spectrometer (NIMS) detected regions on Europa's surface containing distorted H2O bands. This distortion likely indicates that there are other molecules mixed with the water ice. Based on spectral comparison, some of the leading possibilities are sulfuric acid, salts. or possibly H3O(+). Previous laboratory studies have shown that sulfuric acid can be created by irradiation of H2OSO2 mixtures, and both molecules are present on Europa. In this project, we were interested in investigating the radiation stability of sulfuric acid (H2SO4) and determining its lifetime on the surface of Europa.

  7. A new method for the removal of toxic metal ions from acid-sensitive biomaterial

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1997-06-01

    A new method (competitive adsorption method) for the removal of toxic heavy metals from acid-sensitive biomaterials was proposed and it was applied to the removal of cadmium from the midgut gland (MG) of scallop, Patinopecten yessoensis. Insolubilized humic acid, which has been developed in the laboratory, was used as a competitive adsorbent. A metal-complexation model was used to determine the adsorption characteristics of cadmium onto MG. Furthermore, the model was applied to the competitive adsorption system. The results showed that the competitive adsorption method enabled the simultaneous removal of toxic cadmium from both liquid and MG phase under mild acidic condition (pH 5).

  8. A field test of the effect of acidic rain on ion balance in a woodland salamander

    SciTech Connect

    Frisbie, M.P.; Wyman, R.L. )

    1994-06-01

    Earlier laboratory studies demonstrated that red-backed salamanders, Plethodon cinereus, are susceptible to osmotic disruption by low pH substrates. In natural systems, however, acidic input from precipitation may be mediated by soils before it impacts salamanders. We tested the effect of acidic rain on sodium balance in salamanders by confining individuals in enclosure in two forest types (hemlock, beech) for 34 d. Enclosures received artificial rain of either pH 3 or 5 every 3-4 d. Soils inside enclosures in the hemlock forest were more acidic than those in the beech forest at the outset. At termination, [H[sup +

  9. Optimization of a Nucleic Acids united-RESidue 2-Point model (NARES-2P) with a maximum-likelihood approach

    NASA Astrophysics Data System (ADS)

    He, Yi; Liwo, Adam; Scheraga, Harold A.

    2015-12-01

    Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field.

  10. Optimization of a Nucleic Acids united-RESidue 2-Point model (NARES-2P) with a maximum-likelihood approach

    SciTech Connect

    He, Yi; Scheraga, Harold A.; Liwo, Adam

    2015-12-28

    Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field.

  11. On-line cation exchange for suppression of adduct formation in negative-ion electrospray mass spectrometry of nucleic acids.

    PubMed

    Huber, C G; Buchmeiser, M R

    1998-12-15

    One major difficulty in the analysis of nucleic acids by electrospray mass spectrometry is represented by the affinity of the polyanionic sugar-phosphate backbone for nonvolatile cations, especially ubiquitous sodium and potassium ions. A simple on-line sample preparation system comprising a microflow pumping system and 45 x 0.8-mm-i.d. microcolumns packed with weak or strong cation-exchange resins is described for the efficient removal of cations from nucleic acid samples. Samples were analyzed by flow injection analysis at a 3-5 microL/min flow of 10 mM triethylamine in 50% water-50% acetonitrile. After on-line desalting, mass spectra of oligonucleotides revealed no significant sodium adduct peaks. Moreover, signal-to-noise ratios were greatly enhanced compared to direct injection of the samples. Electrospray mass spectrometry with on-line sample preparation allowed accurate molecular mass determinations of picomole amounts of crude oligonucleotide preparations ranging in size from 8 to 80 nucleotides within a few minutes. The good linearity of the calibration plot (R2 = 0.9988) over at least 2 orders of magnitude and a relative standard deviation in peak areas of less than 9% permitted the sensitive quantitative measurement of oligonucleotides in a concentration range of 0.2-20 microM with selected-ion monitoring. Finally, the on-line sample preparation system was evaluated for the mass spectrometric analysis of complex oligonucleotide mixtures. PMID:9868919

  12. Immobilized chiral tropine ionic liquid on silica gel as adsorbent for separation of metal ions and racemic amino acids.

    PubMed

    Qian, Guofei; Song, Hang; Yao, Shun

    2016-01-15

    Tropine-type chiral ionic liquid with proline anion was immobilized on silica gel by chemical modification method for the first time, which was proved by elemental, infrared spectrum and thermogravimetric analysis. Secondly, the performance of this kind of ionic liquid-modified silica gel was investigated in the adsorption of some metal ions, which included Cu(2+), Fe(3+), Mn(2+) and Ni(2+). Then the effects of time, initial concentration and temperature on adsorption for Cu(2+) ions were studied in detail, which was followed by the further research of adsorption kinetics and thermodynamics. The adsorption could be better described by pseudo-second-order kinetics model and that the process was spontaneous, exothermic and entropy decreasing. In the mode of 'reuse after adsorption', the ionic liquid-modified silica gel with saturated adsorption of Cu(2+) was finally used in resolution of racemic amino acids for the first time. The static experiment showed that adsorption rate of two enantiomers was obviously different. Inspired by this, the complex was packed in chromatographic column for the separation of racemic amino acids and d-enantiomers were firstly eluted by water or ethanol. Steric hindrance was found as one of key influencing factors for its effect on the stability of the complex. PMID:26711153

  13. In silico assessment of interaction of sea anemone toxin APETx2 and acid sensing ion channel 3.

    PubMed

    Rahman, Taufiq; Smith, Ewan St John

    2014-07-18

    Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed throughout the nervous system and have been implicated in mediating sensory perception of noxious stimuli. Amongst the six ASIC isoforms, ASIC1a, 1b, 2a and 3 form proton-gated homomers, which differ in their activation and inactivation kinetics, expression profiles and pharmacological modulation; protons do not gate ASIC2b and ASIC4. As with many other ion channels, structure-function studies of ASICs have been greatly aided by the discovery of some toxins that act in isoform-specific ways. ASIC3 is predominantly expressed by sensory neurons of the peripheral nervous system where it acts to detect acid as a noxious stimulus and thus plays an important role in nociception. ASIC3 is the only ASIC subunit that is inhibited by the sea anemone (Anthopleura elegantissima)-derived toxin APETx2. However, the molecular mechanism by which APETx2 interacts with ASIC3 remains largely unknown. In this study, we made a homology model of ASIC3 and used extensive protein-protein docking to predict for the first time, the probable sites of APETx2 interaction on ASIC3. Additionally, using computational alanine scanning, we also suggest the 'hot-spots' that are likely to be critical for ASIC3-APETx2 interaction. PMID:24942880

  14. Branched Chain Fatty Acid (BCFA) Content of Foods and Estimated Intake in the United States

    PubMed Central

    Bae, SangEun; Lawrence, Peter; Wang, Dong Hao

    2015-01-01

    Branched chain fatty acids (BCFA) are bioactive food components that constitute about 2% of fatty acids in cow’s milk fat. Little systematic information on the BCFA content of other foods is available to estimate dietary intakes. We report BCFA distribution and content of fresh and processed foods representing the major foods of Americans and estimate BCFA intake. BCFA are primarily components of dairy and ruminant foods, and were absent from chicken, pork, and salmon. Dairy and beef delivered most of the 500 mg per day mean intake; in comparison, intake of the widely studied long chain polyunsaturates eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is estimated to average 100 mg per day. Common adjustments in diet can double BCFA daily intake. The fermented foods sauerkraut and miso had appreciable fractions of BCFA but overall are low fat foods providing very small amounts in the diet, and other fermented foods did not contain BCFA as might have been expected from microbial exposure. These data support the quantitative importance of BCFA delivered primarily from dairy and beef and highlight the need for research into their health effects. PMID:24830474

  15. ESTIMATION OF CRITICAL LOADS OF ACIDITY FOR LAKESIN NORTHEASTERN UNITED STATES AND EASTERN CANADA

    EPA Science Inventory

    The New England Governors and Eastern Canadian Premiers (NEG/ECP) adopted the Acid Rain Action Plan in June 1998, and issued a series of action items to support its work toward a reduction of sulfur dioxide (SO2) and nitrogen oxide (NOx ) emissions in northeastern North Americ...

  16. Tunicate-Inspired Gallic Acid/Metal Ion Complex for Instant and Efficient Treatment of Dentin Hypersensitivity.

    PubMed

    Prajatelistia, Ekavianty; Ju, Sung-Won; Sanandiya, Naresh D; Jun, Sang Ho; Ahn, Jin-Soo; Hwang, Dong Soo

    2016-04-20

    Dentin hypersensitivity is sharp and unpleasant pains caused by exposed dentinal tubules when enamel outside of the tooth wears away. The occlusion of dentinal tubules via in situ remineralization of hydroxyapatite is the best method to alleviate the symptoms caused by dentin hypersensitivity. Commercially available dental desensitizers are generally effective only on a specific area and are relatively toxic, and their performance usually depends on the skill of the clinician. Here, a facile and efficient dentin hypersensitivity treatment with remarkable aesthetic improvement inspired by the tunicate-self-healing process is reported. As pyrogallol groups in tunicate proteins conjugate with metal ions to heal the torn body armor of a tunicate, the ingenious mechanism by introducing gallic acid (GA) as a cheap, abundant, and edible alternative to the pyrogallol groups of the tunicate combined with a varied daily intake of metal ion sources is mimicked. In particular, the GA/Fe(3+) complex exhibits the most promising results, to the instant ≈52% blockage in tubules within 4 min and ≈87% after 7 d of immersion in artificial saliva. Overall, the GA/metal ion complex-mediated coating is facile, instant, and effective, and is suggested as an aesthetic solution for treating dentin hypersensitivity. PMID:26867019

  17. Identifying the Types of Ion Channel-Targeted Conotoxins by Incorporating New Properties of Residues into Pseudo Amino Acid Composition

    PubMed Central

    Wu, Yun

    2016-01-01

    Conotoxins are a kind of neurotoxin which can specifically interact with potassium, sodium type, and calcium channels. They have become potential drug candidates to treat diseases such as chronic pain, epilepsy, and cardiovascular diseases. Thus, correctly identifying the types of ion channel-targeted conotoxins will provide important clue to understand their function and find potential drugs. Based on this consideration, we developed a new computational method to rapidly and accurately predict the types of ion-targeted conotoxins. Three kinds of new properties of residues were proposed to use in pseudo amino acid composition to formulate conotoxins samples. The support vector machine was utilized as classifier. A feature selection technique based on F-score was used to optimize features. Jackknife cross-validated results showed that the overall accuracy of 94.6% was achieved, which is higher than other published results, demonstrating that the proposed method is superior to published methods. Hence the current method may play a complementary role to other existing methods for recognizing the types of ion-target conotoxins.

  18. Synthesis of highly photoluminescent carbon dots via citric acid and Tris for iron(III) ions sensors and bioimaging.

    PubMed

    Zhou, Ming; Zhou, Zhulong; Gong, Aihua; Zhang, Yan; Li, Qijun

    2015-10-01

    In this work, high quantum yield and strong photoluminescent carbon quantum dots (C-QDs) are successfully synthesized via a facile and green hydrothermal method using citric acid and Tris as precursors. The as-synthesized C-QDs with a quantum yield (QY) as high as 52% were characterized by UV, FT-IR, TEM, XPS and fluorescence spectroscope. TEM results show that C-QDs are mono-dispersed spherical particles and the diameter distribution of C-QDs is 2.8±1.1 nm. The extraordinary photoluminescent properties and low cytotoxicity of C-QDs were obtained through optical property characterization and cytotoxicity assay. In addition, we found that the as-prepared C-QDs had a high affinity for Fe(3+) ions and the response toward Fe(3+) ions was highly linear (R(2)=0.997) over the concentration range from 2 to 50 μM, which could provide an effective platform for portable detection of Fe(3+) ions. Also, it is demonstrated that the photoluminescent C-QDs display hypotoxicity and are biocompatible for use as biosensors in living cells. PMID:26078136

  19. Acid-sensing ion channel (ASIC) 4 gene: physical mapping, genomic organisation, and evaluation as a candidate for paroxysmal dystonia.

    PubMed

    Gründer, S; Geisler, H S; Rainier, S; Fink, J K

    2001-09-01

    Acid-sensing ion channels (ASICs) are protongated Na(+) channels. They have been implicated with synaptic transmission, pain perception as well as mechanoperception. ASIC4 is the most recent member of this gene family. It shows expression throughout the central nervous system with strongest expression in pituitary gland. ASIC4 is inactive by itself and its function is unknown. Mutations in ion channel subunits, which are homologues of ASICs lead to neurodegeneration in Caenorhabditis elegans. It has, therefore, been speculated that similar mutations in ASICs may be responsible for neurodegeneration in humans. Here, we show that ASIC4 maps to the long arm of chromosome 2 in close proximity to the locus for paroxysmal dystonic choreoathetosis (PDC), a movement disorder with unknown cause. Ion channel genes have been shown to cause several other paroxysmal neurologic disorders and are important candidate genes for PDC. We established the genomic organisation of the ASIC4 gene and screened a PDC pedigree for mutations in the coding region. Although we identified three polymorphisms in the Cterminal part of the ASIC4 protein, these were not present in each affected subject in the PDC kindred we analysed. Therefore, although the ASIC4 gene is physically mapped to the PDC locus, our data indicates that ASIC4 gene mutation is not the cause of PDC. It remains to be established if mutations in ASIC4 or other ASIC subunits may cause neurological disorders. PMID:11571555

  20. Stochastic pumping of ions based on colored noise in bacterial channels under acidic stress

    NASA Astrophysics Data System (ADS)

    López, M. Lidón; Queralt-Martín, María; Alcaraz, Antonio

    2016-07-01

    Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells.Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02638a

  1. Citric Acid Treatment of Flax, Cotton and Blended Nonwoven Mats for Copper Ion Absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The removal of metal ions from polluted wate and wastewater with biodegradeable, natural products is an area of current interest in the environmental arena. The objective of this study is to determine whether nonwoven mats made of biodegradeable, natural fibers of flax and cotton can be used for rem...

  2. CITRIC ACID TREATMENT OF FLAX, COTTON AND BLENDED NONWOVEN MATS FOR COPPER ION ABSORPTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The removal of metal ions from polluted water and wastewater with biodegradable, natural products is an area of current interest in the environmental arena. The objective of this study is to determine whether nonwoven mats made of biodegradable, natural fibers of flax and cotton can be used for rem...

  3. High-Resolution Electrospray Ionization/Ion Mobility Spectrometer for Detection of Abiotic Amino Acids

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Terrell, C. A.; Kim, H.; Kanik, I.

    2003-01-01

    One of the primary goals of the current NASA thrust in Astrobiology is the detection and identification of organic molecules as part of an in-situ lander platform on the surface of Mars or Europa. The identification of these molecules should help determine whether indigenous organisms exist on the surface of Mars or in an undersea environment on Europa. In addition, a detailed organic chemical inventory of surface and near surface molecules will help elucidate the possibilities of life elsewhere in the Universe. Terrestrial life has, as its backbone, the family of molecules known as the amino acids (AA), and while AA can be found in the terrestrial environments as part of more complex molecules, such as peptides, and proteins, they also exist as individual molecules due to of the hydrolyses of biopolymers. In terrestrial biochemistry, there are 20 principal amino acids which are necessary for life. However, some forms of these molecules can be found in nature synthesized via abiotic process. For example, they are known to exist extraterrestrially as a component of carbonaceous meteorites. The idea that amino acids are readily created by abiotic means has been demonstrated by their positive identification in the Murchison CM2 meteorite, which fell in 1969. This meteorite was analyzed before contamination by terrestrial microbes could result. Three laboratories individually tested parts of the meteorite and concluded that the amino acids present in them were indigenous to the meteorite because, among other reasons, they had equal L- and D- enantiomers. Final identification of the constituents of the Murchison included 33 amino acids which have no known biotic source, 11 amino acids which have limited distribution and 8 (Glycine, Alanine, Valine, Proline, Leucine, Isoleucine, Aspartic Acid, and Glutamic Acid), which readily occur in terrestrial proteins.

  4. Diglycolamic acid modified silica gel for the separation of hazardous trivalent metal ions from aqueous solution.

    PubMed

    Suneesh, A S; Syamala, K V; Venkatesan, K A; Antony, M P; Vasudeva Rao, P R

    2015-01-15

    The surface of the silica gel was modified with diglycolamic acid moieties and the product (Si-DGAH) was characterized by elemental analysis, TG-DTA, (1)H and (29)Si NMR and scanning electron microscopy (SEM). The adsorption behavior of hazardous americium (III) and europium (III) in Si-DGAH was studied from aqueous nitric acid medium to examine the feasibility using the modified silica for the separation of Am(III) and Eu(III) from aqueous wastes. In this context, the effect of various parameters such as the duration of equilibration, and concentrations of europium, nitric acid, sodium nitrate and diethylenetriaminepentaacetic acid (DTPA) in aqueous phase, on the distribution coefficient (K(d)) of Am(III) and Eu(III) was investigated. The distribution coefficient of ∼10(3) mL/g (>99.9% extraction) was obtained for both Am(III) and Eu(III) at pH 3, and the K(d) values decreased with increase in the concentration of nitric acid. Rapid kinetics of extraction in the initial stages of equilibration, followed by the establishment of equilibrium occurred within 30 min. The extraction data were fitted into Langmuir adsorption model and the apparent europium extraction capacity was determined. Europium loading capacity of the sorbent was determined at various feed pH by column method. The study indicated the possibility of using diglycolamic acid-modified silica for the separation of Eu(III) and Am(III) from aqueous wastes. PMID:25454425

  5. Complexes of Cu(II) Ions and Noncovalent Interactions in Systems with L-Aspartic Acid and Cytidine-5'-Monophosphate

    PubMed Central

    Bregier-Jarzebowska, Romualda; Gasowska, Anna; Lomozik, Lechosław

    2008-01-01

    Interactions between aspartic acid (Asp) and cytidine-5-monophosphate (CMP) in metal-free systems as well as the coordination of Cu(II) ions with the above ligands were studied. The composition and overall stability constants of the species formed in those systems were determined by the potentiometric method, and the interaction centres in the ligands were identified by the spectral methods UV-Vis, EPR, NMR, and IR. In metal-free systems, the formation of adducts, in which each ligand has both positive and negative reaction centres, was established. The main reaction centres in Asp are the oxygen atoms of carboxyl groups and the nitrogen atom of the amine group, while the main reaction centre in CMP at low pH is the N(3) atom. With increasing pH, the efficiency of the phosphate group of the nucleotide in the interactions significantly increases, and the efficiency of carboxyl groups in Asp decreases. The noncovalent reaction centres in the ligands are simultaneously the potential sites of metal-ion coordination. The mode of coordination in the complexes formed in the ternary systems was established. The sites of coordination depend clearly on the solution pH. In the molecular complexes ML⋯L, metallation involves the oxygen atoms of the carboxyl groups of the amino acid, while the protonated nucleotide is in the outer coordination sphere and interacts noncovalently with the anchoring CuHx(Asp) species. The influence of the metal ions on the weak interactions between the biomolecules was established. PMID:18682818

  6. The role of calcium ions in the photocatalytic oxidation of humic acid at neutral pH.

    PubMed

    Mariquit, Eden G; Salim, Chris; Hinode, Hirofumi

    2008-10-01

    Humic acids (HAs) are natural organic matter derived from the decomposition of plant, algal, and microbial materials. They belong to the group of the most predominant type of natural organic matter present in ground and surface waters. HAs affect the mobility and bioavailability of aquatic contaminants. However, if they are left unremoved from the water before water treatment processes, they can form carcinogenic disinfection by-products, such as trihalomethanes, haloacetic acids, and other halogenated disinfection by-products, that can pose a threat to human beings. An advanced oxidation process using UV light and a commercially available titanium dioxide was used to oxidize HA at a pH that is similar to that of natural water. The effect of adding calcium ions to the adsorption and the photocatalytic oxidation of HAs was studied. The effect of varying the TiO(2) load was also investigated. The experiment was done using a photochemical batch reactor equipped with a mercury lamp emitting light with wavelengths of 310-580 nm. The absorbances by the samples were determined at wavelengths of 254 nm and 436 nm, which represent the aromatic-compound content of and the color of the solution, respectively. Results indicated calcium ions have an effect on both the adsorption and the photocatalytic oxidation of HA at a pH within 8.0 +/- 0.5. Calcium ions facilitated adsorption of HA onto the surface of TiO(2) and resulted to faster photocatalytic oxidation. The data were plotted with respect to the normalized absorbances and irradiation time. PMID:18991939

  7. The acquisition of Clostridium tyrobutyricum mutants with improved bioproduction under acidic conditions after two rounds of heavy-ion beam irradiation

    PubMed Central

    Zhou, Xiang; Yang, Zhen; Jiang, Ting-Ting; Wang, Shu-Yang; Liang, Jian-Ping; Lu, Xi-Hong; Wang, Liang

    2016-01-01

    End-product inhibition is a key factor limiting the production of organic acid during fermentation. Two rounds of heavy-ion beam irradiation may be an inexpensive, indispensable and reliable approach to increase the production of butyric acid during industrial fermentation processes. However, studies of the application of heavy ion radiation for butyric acid fermentation engineering are lacking. In this study, a second 12C6+ heavy-ion irradiation-response curve is used to describe the effect of exposure to a given dose of heavy ions on mutant strains of Clostridium tyrobutyricum. Versatile statistical elements are introduced to characterize the mechanism and factors contributing to improved butyric acid production and enhanced acid tolerance in adapted mutant strains harvested from the fermentations. We characterized the physiological properties of the strains over a large pH value gradient, which revealed that the mutant strains obtained after a second round of radiation exposure were most resistant to harsh external pH values and were better able to tolerate external pH values between 4.5 and 5.0. A customized second round of heavy-ion beam irradiation may be invaluable in process engineering. PMID:27426447

  8. Structure and luminescent property of complexes of aryl carboxylic acid-functionalized polystyrene with Eu(III) and Tb(III) ions.

    PubMed

    Gao, Baojiao; Shi, Nan; Qiao, Zongwen

    2015-11-01

    Via polymer reactions, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polystyrene (PS), respectively, and two aryl carboxylic acid-functionalized polystyrenes, PSNA and PSBA, were obtained. Using PSNA and PSBA as macromolecule ligands and Eu(3+) and Tb(3+) ions as central ions, various luminescent binary polymer-rare earth complexes were prepared. At the same time, with 1,10-phenanthroline (Phen) and 4,4'-bipyridine (Bipy) as small-molecule co-ligands, various ternary polymer-rare earth complexes were also prepared. On the basis of characterizing PSNA, PSBA and complexes, the relationship between structure and luminescent property for these prepared complexes were mainly investigated. The study results show that the macromolecule ligands PSNA and PSBA, or the bonded NA and BA ligands, can strongly sensitize the fluorescence emissions of Eu(3+) ion or Tb(3+) ion, but the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions, namely it is strongly dependent on the matching degree of energy levels. The fluorescence emission of the binary complex PS-(NA)3-Eu(III) is stronger than that PS-(BA)3-Eu(III), indicating ligand NA has stronger sensitization action for Eu(3+) ion than ligand BA; the binary complex PS-(BA)3-Tb(III) emit strong characteristic fluorescence of Tb(3+) ion, displaying that ligand BA can strongly sensitize Tb(3+) ion, whereas the binary complex PS-(NA)3-Tb(III) nearly does not emit the characteristic fluorescence of Tb(3+) ion, showing that ligand NA does not sensitize Tb(3+) ion. The fluorescence intensity of the ternary complexes is much stronger than that of the binary complexes in the same series. PMID:26086996

  9. Fluorescence-Enhanced Sensing of Hypochlorous Acid Based on 2-Pyridylthiazole Unit.

    PubMed

    Zheng, Ming-Hua; Hu, Xiang; Wang, Xiu-Wen; Liu, Xi-Ling; Jin, Jing-Yi

    2016-03-01

    Hypochlorous acid, being one of reactive oxygen species (ROS), is essential to protect the body against invasion of pathogens. Excess of hypochlorous acid (HOCl) is believed to be in tight connection with various inflammation-related diseases. It remains a challenge to detect the ROS in physiological conditions (aqueous buffer and neutral pH) with selectivity. In the presented paper, we have synthesized a ferrocence-modified pyridylthiazole derivatives, 1,4-di{5-[(4'-ferrocenyl-2'-(4"-pyridyl)]thiazinyl}benzene (DFPT). Only HOCl could turn-on the fluorescence of DFPT with enhanced emission at 465 nm. Compared to the other reported HOCl sensors, DFPT could selectively detect HOCl with rapid response (< 60 s) in the aqueous buffer (pH = 7.0). The detection limit at pH = 7.0 was 0.7 μM according to the titration experiment. PMID:26667476

  10. Dietary acid load and chronic kidney disease among adults in the United States

    PubMed Central

    2014-01-01

    Background Diet can markedly affect acid-base status and it significantly influences chronic kidney disease (CKD) and its progression. The relationship of dietary acid load (DAL) and CKD has not been assessed on a population level. We examined the association of estimated net acid excretion (NAEes) with CKD; and socio-demographic and clinical correlates of NAEes. Methods Among 12,293 U.S. adult participants aged >20 years in the National Health and Nutrition Examination Survey 1999–2004, we assessed dietary acid by estimating NAEes from nutrient intake and body surface area; kidney damage by albuminuria; and kidney dysfunction by eGFR < 60 ml/min/1.73m2 using the MDRD equation. We tested the association of NAEes with participant characteristics using median regression; while for albuminuria, eGFR, and stages of CKD we used logistic regression. Results Median regression results (β per quintile) indicated that adults aged 40–60 years (β [95% CI] = 3.1 [0.3–5.8]), poverty (β [95% CI] = 7.1 [4.01–10.22]), black race (β [95% CI] = 13.8 [10.8–16.8]), and male sex (β [95% CI] = 3.0 [0.7- 5.2]) were significantly associated with an increasing level of NAEes. Higher levels of NAEes compared with lower levels were associated with greater odds of albuminuria (OR [95% CI] = 1.57 [1.20–2.05]). We observed a trend toward greater NAEes being associated with higher risk of low eGFR, which persisted after adjustment for confounders. Conclusion Higher NAEes is associated with albuminuria and low eGFR, and socio-demographic risk factors for CKD are associated with higher levels of NAEes. DAL may be an important target for future interventions in populations at high risk for CKD. PMID:25151260

  11. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    SciTech Connect

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  12. Characterization of naphthenic acids by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ortiz, Xavier; Jobst, Karl J; Reiner, Eric J; Backus, Sean M; Peru, Kerry M; McMartin, Dena W; O'Sullivan, Gwen; Taguchi, Vince Y; Headley, John V

    2014-08-01

    During the bitumen extraction from the oil sands of Alberta, large volumes of process water containing naphthenic acids are stored in tailing ponds. The naphthenic acids along with other components in the processed waters are known to be toxic in aquatic environments. In view of the complex matrix and the toxicity of the processed waters, there is a need for complementary analytical techniques for comprehensive characterization of the naphthenic acid mixtures. This study reports the online gas chromatographic separation of naphthenic acid mixtures prior to ultrahigh resolution mass spectrometry detection, using electron and chemical ionization. Two oil sands processed water samples and two groundwater samples were characterized to evaluate the performance of the instrumental technique. The high mass resolution of the system enabled visualization of the data using Kendrick mass defect plots. The addition of gas chromatographic separations enabled visualization of the data as unique compound class elution fingerprints. The technique is demonstrated to be a valuable tool for chemical fingerprinting of naphthenic acids. PMID:25001115

  13. Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869.

    PubMed

    Jeong, Kyung Hun; Israr, Beenish; Shoemaker, Sharon P; Mills, David A; Kim, Jaehan

    2016-07-28

    Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite de-repressed (CCR) phenotype which has ability to consume fermentable sugar simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effect of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration has been reduced. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Moreover; utilization of other compounds were also observed along with hydrogen ion and lactic acid concentration simultaneously. It has been found that substrate preference changes significantly regarding to utilization of compounds in media. That could result into formation of two-carbon products. In particular, acetic acid present in the media as sodium acetate were consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions. PMID:27056470

  14. Measurements of tropospheric nitric acid over the Western United States and Northeastern Pacific Ocean

    SciTech Connect

    Lebel, P.J.; Huebert, B.J.; Schiff, H.I.; Vay, S.A.; Vanbramer, S.E.; Hastie, D.R.

    1990-01-01

    Over 240 measurements of nitric acid (HNO{sub 3}) were made in the free troposphere as well as in the boundary layer. Marine HNO{sub 3} measurement results were strikingly similar to results from GAMETAG and other past atmospheric field experiments. The marine boundary layer HNO{sub 3} average, 62 parts-per-trillion by volume (pptv), was 1/3 lower than the marine free tropospheric average, 108 pptv, suggesting that the boundary layer is a sink for tropospheric nitric acid, probably by dry deposition. Nitric acid measurements on a nighttime continental flight gave a free tropospheric average of 218 pptv, substantially greater than the daytime continental free tropospheric 5-flight average of 61 pptv. However, the nighttime results may be influenced by highly convective conditions that existed from thunderstorms in the vicinity during that night flight. The continental boundary layer HNO{sub 3} average of 767 pptv is an order of magnitude greater than the free tropospheric average, indicating that the boundary layer is a source of free tropospheric HNO{sub 3}. The distribution of continental boundary layer HNO{sub 3} data, from averages of 123 over rural Nevada and Utah to 1057 pptv in the polluted San Joaquin Valley of California suggest a close tie between boundary layer HNO{sub 3} and anthropogenic activity.

  15. Measurements of tropospheric nitric acid over the Western United States and Northeastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Huebert, B. J.; Schiff, H. I.; Vay, S. A.; Vanbramer, S. E.; Hastie, D. R.

    1990-01-01

    Over 240 measurements of nitric acid (HNO3) were made in the free troposphere as well as in the boundary layer. Marine HNO3 measurement results were strikingly similar to results from GAMETAG and other past atmospheric field experiments. The marine boundary layer HNO3 average, 62 parts-per-trillion by volume (pptv), was 1/3 lower than the marine free tropospheric average, 108 pptv, suggesting that the boundary layer is a sink for tropospheric nitric acid, probably by dry deposition. Nitric acid measurements on a nighttime continental flight gave a free tropospheric average of 218 pptv, substantially greater than the daytime continental free tropospheric 5-flight average of 61 pptv. However, the nighttime results may be influenced by highly convective conditions that existed from thunderstorms in the vicinity during that night flight. The continental boundary layer HNO3 average of 767 pptv is an order of magnitude greater than the free tropospheric average, indicating that the boundary layer is a source of free tropospheric HNO3. The distribution of continental boundary layer HNO3 data, from averages of 123 over rural Nevada and Utah to 1057 pptv in the polluted San Joaquin Valley of California suggest a close tie between boundary layer HNO3 and anthropogenic activity.

  16. Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes.

    SciTech Connect

    Robinson, H.; Gao, Y.-G.; Sanishvili, R.; Joachimiak, A.; Wang, A. H.-J.; Univ. of Illinois; Northwestern Univ.

    2000-01-01

    Magnesium ions play important roles in the structure and function of nucleic acids. Whereas the tertiary folding of RNA often requires magnesium ions binding to tight places where phosphates are clustered, the molecular basis of the interactions of magnesium ions with RNA helical regions is less well understood. We have refined the crystal structures of four decamer oligonucleotides, d(ACCGGCCGGT), r(GCG)d(TATACGC), r(GC)d(GTATACGC) and r(G)d(GCGTATACGC) with bound hexahydrated magnesium ions at high resolution. The structures reveal that A-form nucleic acid has characteristic [Mg(H2O)6]2+ binding modes. One mode has the ion binding in the deep major groove of a GpN step at the O6/N7 sites of guanine bases via hydrogen bonds. Our crystallographic observations are consistent with the recent NMR observations that in solution [Co(NH3)6]3+, a model ion of [Mg(H2O)6]2+, binds in an identical manner. The other mode involves the binding of the ion to phosphates, bridging across the outer mouth of the narrow major groove. These [Mg(H2O)6]2+ ions are found at the most negative electrostatic potential regions of A-form duplexes. We propose that these two binding modes are important in the global charge neutralization, and therefore stability, of A-form duplexes.

  17. Structural evolution of trimesic acid (TMA)/Zn2 + ion network on Au(111) to final structure of (10√3 × 10√3)

    NASA Astrophysics Data System (ADS)

    Kim, Jandee; Lee, Jaesung; Rhee, Choong Kyun

    2016-02-01

    Presented is a scanning tunneling microscopy (STM) study of structural evolution of TMA/Zn2 + ion network on Au(111) to the final structure of (10√3 × 10√3) during solution phase post-modification of pristine trimesic acid (TMA) network of a (5√3 × 5√3) structure with Zn2 + ions. Coordination of Zn2 + ions into adsorbed TMA molecules transforms crown-like TMA hexamers in pristine TMA network to chevron pairs in TMA/Zn2 + ion network. Two ordered transient structures of TMA/Zn2 + ion network were observed. One is a (5√7 × 5√7) structure consisting of Zn2 + ion-containing chevron pairs and Zn2 + ion-free TMA dimers. The other is a (5√39 × 5√21) structure made of chevron pairs and chevron-pair-missing sites. An STM image showing domains of different stages of crystallization of chevron pairs demonstrates that the TMA/Zn2 + network before reaching to the final one is quite dynamic. The observed structural evolution of the TMA/Zn2 + ion network is discussed in terms of modification of configurations of adsorbed TMA as accommodating Zn2 + ions and re-ordering of Zn2 + ion-containing chevron pairs.

  18. An aromatic ion platform for enantioselective Brønsted acid catalysis.

    PubMed

    Gheewala, Chirag D; Collins, Bridget E; Lambert, Tristan H

    2016-02-26

    Chiral acid catalysts are useful for the synthesis of enantioenriched small molecules, but the standard catalysts require laborious and expensive preparations. Here, we describe a chiral Brønsted acid prepared in one step from naturally occurring (-)-menthol and readily available 1,2,3,4,5-pentacarbomethoxycyclopentadiene. Aromatic stabilization serves as a key contributing factor to the potent acidity of the resulting compound, which is shown to catalyze both Mukaiyama-Mannich and oxocarbenium aldol reactions with high efficiency and enantioselectivity. Catalyst loadings as low as 0.01 mole percent and preparative scalability (25 grams) are demonstrated. Alternative amide catalysts are also shown to be promising platforms. In addition to proton catalysis, a chiral anion pathway is demonstrated to be viable with this catalyst system. PMID:26917768

  19. Aggregation of dialkyl-substituted diphosphonic acids and its effect on metal ion extraction.

    SciTech Connect

    Chiarizia, R.; Barrans, R. E., Jr.; Ferraro, J. R. Herlinger, A. W.; McAlister, D. R.

    1999-10-22

    Solvent extraction reagents containing the diphosphonic acid group exhibit an extraordinary affinity for tri-, tetra- and hexavalent actinides. Their use has been considered for actinide separation and pre-concentration procedures. Solvent extraction data obtained with P,P{prime}-di(2-ethylhexyl) methane-, ethane- and butanediphosphonic acids exhibit features that are difficult to explain without Knowledge of the aggregation state of the extractants. Information about the aggregation of the dialkyl-substituted diphosphonic acids in aromatic diluents has been obtained using the complementary techniques of vapor pressure osmometry (VPO), small angle neutron scattering (SANS), infrared spectroscopy and molecular mechanics. The results from these techniques provide an understanding of the aggregation behavior of these extractants that is fully compatible with the solvent extraction data. The most important results and their relevance to solvent extraction are reviewed in this paper.

  20. Beneficial role of chloride ions during pickling of steel in sulfuric acid

    SciTech Connect

    Gaur, B.; Singh, T.B.; Singh, D.D.N.

    1996-02-01

    Sodium chloride was shown to have a beneficial effect on the pickling of mild steel in different concentrations of sulfuric acid at various temperatures and ferrous sulfate (FeSO{sub 4}{center_dot}7H{sub 2}O) accumulations in the bath. Addition of this salt to the H{sub 2}SO{sub 4} bath drastically reduced metal loss, enhanced the pickling rate, removed scale quickly, and improved the surface finish of the pickled material. Addition of hydrochloric acid instead of NaCl, however, accelerated the corrosion rate of mild steel in the uninhibited acid solution but had a negligible effect in the inhibited solution. The beneficial effect of NaCl was discussed based upon electrochemical parameters.