Science.gov

Sample records for acid ion units

  1. Ion electric propulsion unit

    DOEpatents

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  2. Acid rain reduced in eastern United States

    SciTech Connect

    Bowersox, V.C.; Lynch, J.A.; Grimm, J.W.

    1997-12-31

    Sulfate and free hydrogen ion concentrations in precipitation decreased 10 to 25 percent over large areas of the eastern United States in 1995. The largest decreases in both ions occurred in and downwind of the Ohio River Valley, the same area where Phase I of the 1990 Clean Air Act Amendments set limitations, effective January 1, 1995, on sulfur dioxide emissions from affected coal-fired sources. Based on our analysis of precipitation chemistry and emissions data, we conclude that substantial declines in acid rain occurred in the eastern United States in 1995 because of large reductions in sulfur dioxide emissions in the same region.

  3. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  4. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  5. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  6. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  7. ION SOURCE UNIT FOR CALUTRON

    DOEpatents

    Sloan, D.H.; Yockey, H.P.; Schmidt, F.H.

    1959-04-14

    An improvement in the mounting arrangement for an ion source within the vacuum tank of a calutron device is reported. The cathode and arc block of the source are independently supported from a stem passing through the tank wall. The arc block may be pivoted and moved longitudinally with respect to the stem to thereby align the arc chamber in the biock with the cathode and magnetic field in the tank. With this arrangement the elements of the ion source are capable of precise adjustment with respect to one another, promoting increased source efficiency.

  8. Lithium-Ion Cell Charge Control Unit

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Button, Robert; Manzo, Michelle; McKissock, Barbara; Miller, Thomas; Gemeiner, Russel; Bennett, William; Hand, Evan

    2006-01-01

    Life-test data of Lithium-Ion battery cells is critical in order to establish their performance capabilities for NASA missions and Exploration goals. Lithium-ion cells have the potential to replace rechargeable alkaline cells in aerospace applications, but they require a more complex charging scheme than is typically required for alkaline cells. To address these requirements in our Lithium-Ion Cell Test Verification Program, a Lithium-Ion Cell Charge Control Unit was developed by NASA Glenn Research Center (GRC). This unit gives researchers the ability to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and results in a substantial reduction in test costs as compared to individual cell testing. The Naval Surface Warfare Center at Crane, Indiana developed a power reduction scheme that works in conjunction with the Lithium-Ion Cell Charge Control Unit. This scheme minimizes the power dissipation required by the circuitry to prolong circuit life and improve its reliability.

  9. Ion exclusion chromatography of aromatic acids.

    PubMed

    Mansour, Fotouh R; Kirkpatrick, Christine L; Danielson, Neil D

    2013-08-01

    The determination of aromatic acids by ion exclusion chromatography is challenging due to peak tailing and the long retention time of hydrophobic solutes. This review discusses the retention mechanisms and the factors affecting retention, eluents and detection methods used in ion exclusion chromatography of aromatic acids such as mono-, di-, tri- and tetra-carboxylic acids, amino acids, sulfonates and phenol. In addition, the different approaches used to improve the chromatographic separation of these compounds are also discussed. These approaches include introducing an internal gradient of the ionic strength, using vacancy ion exclusion chromatography, employing a hydrophilic cation exchange resin or adding a modifier such as heptanol to the dilute sulfuric acid mobile phase. The applications of these methods in the analysis of aromatic acids are provided with a table summarizing the stationary phases, the mobile phases and the detection methods.

  10. Ion Atmosphere Near Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Mohanty, Udayan

    2015-03-01

    We will discuss all­atom structure based model that explicitly includes ionic effects, i.e., electrostatic interactions with explicit magnesium ions and implicit KCl that allow us to carry out explicit solvent molecular dynamics simulations of adenine riboswitch and SAM­I riboswitch. Our predictions for the excess ions around the riboswitch, and the magnesium­RNA interaction free energy will be compared with experimental data. We will provide upper and lower bounds for preferential interaction coefficient, a statistical mechanical quantity that is a measure of excess ion atmosphere around a polyelectrolyte. We will discuss the role of surface charge density of mobile ions from added salt in determining the counterion release entropy associated with chain collapse. Finally, the Poisson's ratio of oligomeric DNA will be determined. (Work done in collaboration with R. Hayes, J. Noel, P. Whitford, S. Hennelly, J. Onuchic, and K. Sanbonmatsu.) Work supported by fellowship from John Simon Guggenheim Memorial Foundation.

  11. A united physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 2. Influence of polyelectrolyte properties and functional group heterogeneity on the protonation equilibria of fulvic acid

    USGS Publications Warehouse

    Ephraim, J.; Alegret, S.; Mathuthu, A.; Bicking, M.; Malcolm, R.L.; Marinsky, J.A.

    1986-01-01

    Potentiometric studies of the neutralization of several fulvic acid sources with standard base in aqueous and nonaqueous media have been conducted. Analysis of the results with a recently developed unified physicochemical model has shown that the protonation behavior of these fulvic acid sources is a reflection of (1) their polyelectrolyte nature and (2) their heterogeneity. It has been possible to ascribe the polyelectrolyte properties observed to a rather inflexible fulvic acid molecule whose variably charged surface is impermeable to simple electrolyte. ?? 1986 American Chemical Society.

  12. Persistent Ion Pairing in Aqueous Hydrochloric Acid

    SciTech Connect

    Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam; Schenter, Gregory K.; Mundy, Christopher J.

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that the Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.

  13. ION SOURCE UNIT FOR A CALUTRON

    DOEpatents

    Brobeck, W.M.

    1958-08-19

    An improvement in the ion-producing mechanism for use in a calutron is described. In its broad aspects the improvement comprises the addition of shieid plates between the electron emitting filannent of the ion source and the ionization chamber. An aperture in one of the shields provides a path for electrons from the filament to enter the ionization chamber of the source block. As the shield members are electrically connected to the negative side of the filament power supply, the favorable action of the upper shield is to prevent the electron bombardment of all the elements of the calutron which overlie the filannent, and the lower shield member con fines the emission of electrons from the filannent to a relatively short segnnent, thereby increasing the life of the filannent.

  14. Acid-sensing ion channels under hypoxia

    PubMed Central

    Yingjun, Guo; Xun, Qu

    2013-01-01

    Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na+ channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on. PMID:23764948

  15. Ion-exchange chromatographic analysis of peroxynitric acid.

    PubMed

    Nakashima, Yoichi; Ikawa, Satoshi; Tani, Atsushi; Kitano, Katsuhisa

    2016-01-29

    Ion-exchange chromatographic analysis of peroxynitric acid (O2NOOH) was performed by combining an acidic eluate with an UV-vis detector and immersing the separation column in an ice-water bath. The decomposition behavior of peroxynitric acid in the solution was also studied using this system. The fraction for the peroxynitric acid peak was collected. Ion-exchange chromatographic analysis of this fraction, after standing at room temperature for 24h, showed that the decomposition products were mainly nitrate ions with a very small amount of nitrous acid. The peroxynitric acid peak area correlated perfectly with the total amount of decomposition products. The ion-exchange chromatographic isolation allowed us to evaluate the molar extinction coefficient of peroxynitric acid precisely in a wider wavelength range than previous reports. The value decreases monotonically from 1729±26M(-1)cm(-1) at 200nm to 12.0±0.5M(-1)cm(-1) at 290nm.

  16. Characterization of metal ion-nucleic acid interactions in solution.

    PubMed

    Pechlaner, Maria; Sigel, Roland K O

    2012-01-01

    Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.

  17. Acid rain reduced in Eastern United States

    SciTech Connect

    Lynch, J.A.; Bowersox, V.C.; Grimm, J.W.

    2000-03-15

    Concentrations of sulfate (SO{sub 4}{sup 2{minus}}) and free hydrogen ions (H{sup +}) in precipitation decreased from 10% to 25% over a large area of the Eastern US from 1995 through 1997 as compared to the previous 12-year (1983--1994) reference period. These decreases were unprecedented in magnitude and spatial extent. In contrast, nitrate (NO{sub 3}{sup {minus}}) concentrations generally did not change over this period. The largest decreases in both H{sup +} and SO{sub 4}{sup 2{minus}} concentrations, which nearly mimicked one another, occurred in and downwind of the Ohio River Valley, the same area where Title 4 of the 1990 Clean Air Act Amendments (CAAA) set limitations on sulfur dioxide (SO{sub 2}) emissions from a large number of utility-owned coal-fired sources. Phase 1 of the CAAA required that these limitations be met by January 1, 1995. On the basis of their analysis of precipitation chemistry and emissions data, the authors conclude that significant declines in acid rain occurred in many parts of the Eastern US from 1995 through 1997 because of large reductions in SO{sub 2} emissions in this region and a corresponding reduction in SO{sub 4}{sup 2{minus}} concentrations in precipitation.

  18. Ion-exchange properties of strontium hydroxyapatite under acidic conditions

    SciTech Connect

    Sugiyama, Shigeru; Nishioka, Hitoshi; Moriga, Toshihiro; Hayashi, Hiromu; Moffat, J.B.

    1998-09-01

    The ion exchange of strontium hydroxyapatite (SrHAp) with Pb{sup 2+} has been investigated under acidic conditions at 293 K. The addition of various acids to the exchanging solution enhanced the exchange capacity in the order HCl > HBr > HF > HNO{sub 3} > no acid, corresponding to the formation of halogen apatites with the former three acids or hydrogen phosphate with HNO{sub 3}. Since the ion-exchange capacity of SrHAp under nonacidic conditions is higher than that of chlorapatite, the aforementioned observations can be attributed to the participation of the protons introduced by the acids.z

  19. How Lewis acidic is your cation? Putting phosphenium ions on the fluoride ion affinity scale.

    PubMed

    Slattery, John M; Hussein, Sharifa

    2012-02-14

    The fluoride ion affinities (FIAs) of 33 phosphenium ions with a range of substituents were calculated using ab inito and DFT methods. The use of these FIA data as a measure of the Lewis acidities of phosphenium ions is described and the FIAs of the species studied here are compared to FIA data for more commonly encountered Lewis acids. Phosphenium ions are often stronger Lewis acids than neutral species, but in many cases are less Lewis acidic than highly electrophilic cations such as [Me(3)C](+) or [Me(3)Si](+). The impact of mesomeric, inductive and steric substituent effects on FIAs are discussed and related to the underlying electronic structures of different cation types. A comparison between the FIAs of known "free" phosphenium ions with those that are currently unknown and other highly electrophilic cations suggests that some diaryl- and dialkylphosphenium ions may yet be accessible under the right conditions. PMID:22159000

  20. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  1. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  2. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  3. Charge-Control Unit for Testing Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Mazo, Michelle A.; Button, Robert M.

    2008-01-01

    A charge-control unit was developed as part of a program to validate Li-ion cells packaged together in batteries for aerospace use. The lithium-ion cell charge-control unit will be useful to anyone who performs testing of battery cells for aerospace and non-aerospace uses and to anyone who manufacturers battery test equipment. This technology reduces the quantity of costly power supplies and independent channels that are needed for test programs in which multiple cells are tested. Battery test equipment manufacturers can integrate the technology into their battery test equipment as a method to manage charging of multiple cells in series. The unit manages a complex scheme that is required for charging Li-ion cells electrically connected in series. The unit makes it possible to evaluate cells together as a pack using a single primary test channel, while also making it possible to charge each cell individually. Hence, inherent cell-to-cell variations in a series string of cells can be addressed, and yet the cost of testing is reduced substantially below the cost of testing each cell as a separate entity. The unit consists of electronic circuits and thermal-management devices housed in a common package. It also includes isolated annunciators to signal when the cells are being actively bypassed. These annunciators can be used by external charge managers or can be connected in series to signal that all cells have reached maximum charge. The charge-control circuitry for each cell amounts to regulator circuitry and is powered by that cell, eliminating the need for an external power source or controller. A 110-VAC source of electricity is required to power the thermal-management portion of the unit. A small direct-current source can be used to supply power for an annunciator signal, if desired.

  4. Recovery of boric acid from ion exchangers

    DOEpatents

    Pollock, Charles W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.

  5. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  6. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  7. Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades

    USGS Publications Warehouse

    Reddy, M.M.; Aiken, G.R.

    2001-01-01

    Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.

  8. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  9. A voltage control unit for ion scattering spectroscopy analyzers

    NASA Astrophysics Data System (ADS)

    Roos, W. D.; Henson, R. P.; van Wyk, G. N.

    1993-04-01

    A voltage control unit for a spherical sector analyzer used in the energy analysis of scattered ions is described. Three modes of operation, namely, automatic, manual, and computer control is possible. The unit is directly calibrated in terms of the scattered energies which is displayed on a liquid crystal unit. The scanning time in the auto mode is adjustable from 1 to 999 s in 1-s steps for any selected energy range. A 0-10-V recorder output is available regardless of the energy window selected. The basic operation and the functioning of the various components are explained with the help of block diagrams and a final evaluation of the system is given. Complete circuit diagrams are available from the Physics Auxiliary Publication Service (PAPS) of the American Institute of Physics.

  10. Ion trap collision-induced dissociation of locked nucleic acids.

    PubMed

    Huang, Teng-yi; Kharlamova, Anastasia; McLuckey, Scott A

    2010-01-01

    Gas-phase dissociation of model locked nucleic acid (LNA) oligonucleotides and functional LNA-DNA chimeras have been investigated as a function of precursor ion charge state using ion trap collision-induced dissociation (CID). For the model LNA 5 and 8 mer, containing all four LNA monomers in the sequence, cleavage of all backbone bonds, generating a/w-, b/x-, c/y-, and d/z-ions, was observed with no significant preference at lower charge states. Base loss ions, except loss of thymine, from the cleavage of N-glycosidic bonds were also present. In general, complete sequence coverage was achieved in all charge states. For the two LNA-DNA chimeras, however, dramatic differences in the relative contributions of the competing dissociation channels were observed among different precursor ion charge states. At lower charge states, sequence information limited to the a-Base/w-fragment ions from cleavage of the 3'C-O bond of DNA nucleotides, except thymidine (dT), was acquired from CID of both the LNA gapmer and mixmer ions. On the other hand, extensive fragmentation from various dissociation channels was observed from post-ion/ion ion trap CID of the higher charge state ions of both LNA-DNA chimeras. This report demonstrates that tandem mass spectrometry is effective in the sequence characterization of LNA oligonucleotides and LNA-DNA chimeric therapeutics.

  11. Weak-acid ion exchange for removing barium, radium, and hardness

    SciTech Connect

    Snyder, D.W.; Snoeyink, V.L.; Pfeffer, J.L.

    1986-01-01

    Weak-acid resin in the hydrogen form was found to effectively remove barium, radium, and hardness, without increasing the sodium content of the product water. The maximum capacity of the weak-acid resin was about 2.3 times that of strong-acid resin, and much less spent regenerant per unit volume of water treated was produced from a weak-acid column than from a strong-acid column. There are, however, some disadvantages to weak-acid ion exchange: swelling of the resin during exhaustion; the need to use acid-resistant materials; the inability to remove noncarbonate hardness; the necessity of stripping carbon dioxide from the product water and adjusting the pH; and the probable higher cost.

  12. Ion-beam-induced deoxyribose nucleic acid transfer

    NASA Astrophysics Data System (ADS)

    Anuntalabhochai, S.; Chandej, R.; Phanchaisri, B.; Yu, L. D.; Vilaithong, T.; Brown, I. G.

    2001-04-01

    We report our observations of the interaction of energetic ions with bacterial cells, inducing direct deoxyribose nucleic acid (DNA) transfer into Escherichia coli (E. coli). Argon- and nitrogen-ion beams were used to bombard the bacteria E. coli in a vacuum with energy of 26 keV and fluence in the range 0.5-4×1015 ions/cm2. Three DNA plasmids, pGEM2, pGEM-T easy, and pGFP, carrying different marker genes, were subsequently transferred (separately) into the appropriately ion-bombarded bacteria and successfully expressed. The results of this study indicate that ion beams with an energy such that the ion range is approximately equal to the cell envelope thickness, at a certain range of fluence, are able to generate pathways for macromolecule transfer through the envelope without irreversible damage.

  13. Ion-exchange chromatographic analysis of peroxynitric acid.

    PubMed

    Nakashima, Yoichi; Ikawa, Satoshi; Tani, Atsushi; Kitano, Katsuhisa

    2016-01-29

    Ion-exchange chromatographic analysis of peroxynitric acid (O2NOOH) was performed by combining an acidic eluate with an UV-vis detector and immersing the separation column in an ice-water bath. The decomposition behavior of peroxynitric acid in the solution was also studied using this system. The fraction for the peroxynitric acid peak was collected. Ion-exchange chromatographic analysis of this fraction, after standing at room temperature for 24h, showed that the decomposition products were mainly nitrate ions with a very small amount of nitrous acid. The peroxynitric acid peak area correlated perfectly with the total amount of decomposition products. The ion-exchange chromatographic isolation allowed us to evaluate the molar extinction coefficient of peroxynitric acid precisely in a wider wavelength range than previous reports. The value decreases monotonically from 1729±26M(-1)cm(-1) at 200nm to 12.0±0.5M(-1)cm(-1) at 290nm. PMID:26748867

  14. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    PubMed Central

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  15. Cation-Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting.

    PubMed

    Gebala, Magdalena; Giambaşu, George M; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M; Herschlag, Daniel

    2015-11-25

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that "count" the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation-anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation-anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4-P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new results leads to

  16. How acidic are monomeric structural units of heparin?

    NASA Astrophysics Data System (ADS)

    Remko, Milan; Broer, Ria; Van Duijnen, Piet Th.

    2013-12-01

    Density functional theory methods with the B3LYP functional have been used to letter the acidity of carboxyl, O-sulfo and N-sulfo groups in six basic monomeric structural units of heparin (1-OMe ΔUA-2S, 1-OMe GlcN-S6S, 1,4-DiOMe GlcA, 1,4-DiOMe GlcN-S3S6S, 1,4-DiOMe IdoA-2S, and 1,4-DiOMe GlcN-S6S). The predicted gas-phase acidity of the acidic functional groups in the monomeric structural units of heparin is: O-sulfo > N-sulfo > carboxyl. The computed pKa values provide the same order of acidity as was observed in water solution. This implies that hydration does not change ordering of acidity of major acidic groups of monomeric structural units of heparin.

  17. Unit: Indicating Acidity, Inspection Pack, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    The introductory core activities in this trial unit, prepared for students in grades seven through nine of Australian schools, use indicators derived from flower pigments to provide a more convenient measure of acidity than taste. Students are offered choices among seven options after completion of the core: "How Acidic is That?"; "What Colour is…

  18. Chemical noise reduction via mass spectrometry and ion/ion charge inversion: amino acids.

    PubMed

    Hassell, Kerry M; LeBlanc, Yves C; McLuckey, Scott A

    2011-05-01

    Charge inversion ion/ion reactions can provide a significant reduction in chemical noise associated with mass spectra derived from complex mixtures for species composed of both acidic and basic sites, provided the ions derived from the matrix largely undergo neutralization. Amino acids constitute an important class of amphoteric compounds that undergo relatively efficient charge inversion. Precipitated plasma constitutes a relatively complex biological matrix that yields detectable signals at essentially every mass-to-charge value over a wide range. This chemical noise can be dramatically reduced using multiply charged reagent ions that can invert the charge of species amenable to the transfer of multiple charges upon a single interaction and by detecting product ions of opposite polarity. The principle is illustrated here with amino acids present in precipitated plasma subjected to ionization in the positive mode, reaction with anions derived from negative nanoelectrospray ionization of poly (amido amine) dendrimer generation 3.5, and mass analysis in the negative ion mode. PMID:21456599

  19. Acidic lakes and streams in the United States: The role of acidic deposition

    SciTech Connect

    Baker, L.A.; Herlihy, A.T.; Kaufmann, P.R.; Eilers, J.M.

    1991-01-01

    A statistically designed survey of lakes and streams in acid-sensitive areas of the United States, the National Surface Water Survey (NSWS), was used to identify the role of acidic deposition, relative to other factors, in causing acidic conditions in 1,181 lakes and 4,668 streams. Atmospheric deposition is the dominant source of acid anions in 75% of the acidic lakes and 47% of the acidic streams. Organic anions are dominant in one-fourth of the acidic lakes and streams; acidic mine drainage is the dominant acid source in 25% of the acidic streams. Other causes of acidic conditions are relatively unimportant on a regional scale. Nearly all the deposition-dominated acidic systems were found in six well-delineated subpopulations that represent about one-fourth of the NSWS lake population and one-third of the NSWS stream population.

  20. Local Dynamics of Acid- and Ion-containing Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Winey, Karen; Middleton, Robert; Tarver, Jacob; Tyagi, Madhusudan; Soles, Christopher; Frischknecht, Amalie

    Interest in acid- and ion-containing polymers arises in part from applications as single-ion conductors for selectively transporting a counter ion for battery applications. Structurally, the low dielectric constant of organic polymers and strong ionic interactions leads to ionic aggregation. Here the polymer backbone motion was investigated through quasi-elastic neutron scattering measurements (QENS) and compared with fully atomistic molecular dynamic simulations of precise poly(ethylene-acrylic acid) copolymers and their ionomers (pxAA-y%Li). The effect of carbon spacer length (x =9, 15, 21) between the acid groups and the degree of neutralization (y) with Li on PE backbone dynamics were considered. Systematic slowing in chain dynamics were observed with increasing neutralization where polymer dynamics appear constrained due to anchoring effects. Simulations provide complementary viewpoints indicating a gradient in chain dynamics as a distance away from acid groups. These results indicate that the addition of pendant acid groups inhibit typical PE backbone motion and the neutralized forms strongly suppress the fraction of mobile PE chain.

  1. Spectroscopic investigations of lanthanide ion binding to nucleic acids.

    PubMed

    Morrow, Janet R; Andolina, Christopher M

    2012-01-01

    Luminescent lanthanide (Ln(III)) ions are valuable spectroscopic probes for metal ion binding sites in nucleic acids. In this chapter, we briefly review Ln(III) luminescence and the information available from these experiments. An emphasis is placed on direct excitation Eu(III) spectroscopy as a tool. Eu(III) excitation spectroscopy is used to show that solutions containing micromolar Eu(III), 100 mM NaCl, and 20 mM MES buffer contain predominantly a mononuclear Eu(III) aqua complex and an Eu(III) hydroxide complexes. The binding of these species to various RNA and DNA sequences are monitored by using Eu(III) excitation spectroscopy. Eu(III) luminescence lifetime data shows that the Eu(III) ion typically loses 1-3 water molecules to form innersphere complexes with RNA and DNA that contain tandem base pair mismatches or hairpin loops. In addition, early studies that used nucleobase-sensitized Eu(III) or Tb(III) luminescence within transfer RNA or in the hammerhead ribozyme are presented. Luminescence resonance energy transfer studies are shown to be useful for determining distances between bound Ln(III) ion and organic fluorophores or between two different Ln(III) ions. To supplement luminescence data, the binding sites of paramagnetic Ln(III) ions are determined by monitoring the chemical shifts of nucleotide protons. Binding sites are identified by following the protons that are influenced by the Ln(III) pseudo-contact shift.

  2. Acid-base titration of streptococci and the physical states of intracellular ions.

    PubMed

    Marquis, R E; Porterfield, N; Matsumura, P

    1973-05-01

    Acid titrations of intact and butanol-treated cells of Streptococcus faecalis revealed that nearly all of the intracellular K(+) ions could diffuse into the suspending medium in association with small anions, including ribonucleic acid breakdown products, when the cell membrane was damaged. In contrast, nearly all of the intracellular Mg(2+) ions appeared to be firmly bound to stable internal cell components but could be displaced reversibly by hydronium ions. The cell membrane acted as a barrier to ion movements, and Mg(2+) displacement from intact cells required more acid conditions, by as much as 2.5 pH units, than did displacement from butanol-damaged cells. Some 15 to 20% of the cell magnesium appeared to be associated with surface structures in that it could be removed at pH 7 with ethylenediaminetetraacetic acid or displaced by Co(2+), Ni(2+), Sr(2+), or La(3+). Magnesium could be displaced from isolated cell walls and membranes by hydronium ions in the pH range from 5 to 3, over which carboxyl groups were titrated. Displacement of magnesium from ribosomes also took place between pH 5 and 3, but it was more difficult to identify the magnesium-releasing groups because both protein carboxyl groups and purine and pyrimidine ring nitrogens can become protonated in this pH range. Isolated protoplast membranes remained structurally intact when completely depleted of magnesium. Furthermore, protoplasts isolated from intact cells were found to have greatly enhanced resistance to osmotic shock in acid media, even when solute loss was not extensive. Osmotic resistance was lost when the protoplasts were again placed in neutral media, and this reversibility suggested that acidification caused changes in the physical properties of membranes as well as solute leakage from cells.

  3. The reduction of actinide ions by hydroxamic acids

    NASA Astrophysics Data System (ADS)

    Taylor, R. J.; May, I.

    1999-01-01

    Simple hydroxamic acids have been shown to have useful applications in an Advanced Purex process for the reprocessing of irradiated nuclear fuel. They are especially suited to the separation of neptunium (IV) from uranium (VI) by the selective formation of a hydrophilic complex with Np(IV). U(VI) extraction in to 30% tributyl phosphate is unaffected. However, they have also been shown to be very fast reducing agents for Np(VI). The timescales of the reduction have been defined under a range of typical Purex Process conditions although the accurate determination of the reaction kinetics was not possible due to the rapidity of the reaction. U(VI) was shown not to be reduced. Therefore, Np(VI) can be efficiently reductively stripped when solvent phase (30% tributyl phosphate in odourless kerosene) solutions of Np(VI) and U(VI) are contacted with aqueous phase hydroxamic acid solutions. The slow reduction of plutonium (IV) to Pu(III) has also been observed and this is apparently enhanced by the presence of U(VI) ions. The observed reactions of these actinide ions was shown to be compatible with experimentally determined onset potentials for hydroxamic acids. The hydrolysis of hydroxamic acids to hydroxylamine in nitric acid also affects the reduction of Pu(IV), particularly by FHA.

  4. Amino acid-sensing ion channels in plants

    SciTech Connect

    Spalding, Edgar P.

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  5. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  6. Metal ion-catalyzed nucleic acid alkylation and fragmentation.

    PubMed

    Browne, Kenneth A

    2002-07-10

    Nucleic acid microarrays are a growing technology in which high densities of known sequences are attached to a substrate in known locations (addressed). Hybridization of complementary sequences leads to a detectable signal such as an electrical impulse or fluorescence. This combination of sequence addressing, hybridization, and detection increases the efficiency of a variety of genomic disciplines including those that profile genetic expression, search for single nucleotide polymorphisms (SNPs), or diagnose infectious diseases by sequencing portions of microbial or viral genomes. Incorporation of reporter molecules into nucleic acids is essential for the sensitive detection of minute amounts of nucleic acids on most types of microarrays. Furthermore, polynucleic acid size reduction increases hybridization because of increased diffusion rates and decreased competing secondary structure of the target nucleic acids. Typically, these reactions would be performed as two separate processes. An improvement to past techniques, termed labeling-during-cleavage (LDC), is presented in which DNA or RNA is alkylated with fluorescent tags and fragmented in the same reaction mixture. In model studies with 26 nucleotide-long RNA and DNA oligomers using ultraviolet/visible and fluorescence spectroscopies as well as high-pressure liquid chromatography and mass spectrometry, addition of both alkylating agents (5-(bromomethyl)fluorescein, 5- or 6-iodoacetamidofluorescein) and select metal ions (of 21 tested) to nucleic acids in aqueous solutions was critical for significant increases in both labeling and fragmentation, with >or=100-fold increases in alkylation possible relative to metal ion-free reactions. Lanthanide series metal ions, Pb(2+), and Zn(2+) were the most reactive ions in terms of catalyzing alkylation and fragmentation. While oligonucleotides were particularly susceptible to fragmentation at sites containing phosphorothioate moieties, labeling and cleavage reactions

  7. United in Diversity: Mechanosensitive Ion Channels in Plants

    PubMed Central

    Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462

  8. Template-directed synthesis of oligoguanylic acids - Metal ion catalysis

    NASA Technical Reports Server (NTRS)

    Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.

    1981-01-01

    The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.

  9. Operation of the radioactive acid digestion test unit

    SciTech Connect

    Blasewitz, A.G.; Allen, C.R.; Lerch, R.E.; Ely, P.C.; Richardson, G.L.

    1980-01-01

    The Radioactive Acid Digestion Test Unit (RADTU) has been constructed at Hanford to demonstrate the application of the Acid Digestion Process for treating combustible transuranic wastes and scrap materials. The RADTU with its original tray digestion vessel has recently completed a six-month campaign processing potentially contaminated nonglovebox wastes from a Hanford plutonium facility. During this campaign, it processed 2100 kg of largely cellulosic wastes at an average sustained processing rate of 3 kg/h as limited by the water boiloff rate from the acid feeds. The on-line operating efficiency was nearly 50% on a twelve hour/day, five day/week basis. Following this campaign, a new annular high rate digester has been installed for testing. In preliminary tests with simulated wastes, the new digester demonstrated a sustained capacity of 10 kg/h with greatly improved intimacy of contact between the digestion acid and the waste. The new design also doubles the heat transfer surface, which with reduced heat loss area, is expected to provide at least three times the water boiloff rate of the previous tray digester design. Following shakedown testing with simulated and low-level wastes, the new unit will be used to process combustible plutonium scrap and waste from Hanford plutonium facilities for the purposes of volume reduction, plutonium recovery, and stabilization of the final waste form.

  10. Thermodynamics of Ion Pair Formations Between Charged Poly(Amino Acid)s.

    PubMed

    Petrauskas, Vytautas; Maximowitsch, Eglė; Matulis, Daumantas

    2015-09-17

    Electrostatic interactions between the positively and negatively charged amino acids in proteins play an important role in macromolecular stability, binding, and recognition. Numerous amino acids in proteins are ionizable and may exist in negatively (e.g., Glu, Asp, Cys, Tyr) or positively (e.g., Arg, Lys, His, Orn) charged form dependent on pH and their pKas. In this work, isothermal titration calorimetry was used to determine the average standard values of thermodynamic parameters (the Gibbs free energy, enthalpy, entropy, and the heat capacity) of interaction between the positively charged amino acid homopolymers (polyarginine, polylysine, and polyornithine) and the negatively charged homopolymers (polyaspartic and polyglutamic acids). These values are of potential use in the computational models of interacting proteins and other biological macromolecules. The study showed that oppositely charged poly(amino acid)s bound each other with the stoichiometry of one positive to one negative charge. Arginine bound to the negatively charged amino acids with exothermic enthalpy and higher affinity than lysine. This result also suggests that positive charges in proteins should not be considered entirely equivalent if carried by lysine or arginine. The difference in binding energy of arginine and lysine association with the negatively charged amino acids was attributed to the enthalpy of the second ionic hydrogen bond formation between the guanidine and carboxylic groups. Despite the favorable enthalpic contribution, all such ion pair formation reactions were largely entropy-driven. Consistent with previously observed ionic interactions, the positive heat capacity was always observed during the amino acid ion pair formation.

  11. Epithelial Sodium and Acid-Sensing Ion Channels

    NASA Astrophysics Data System (ADS)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  12. International Symposium on Ion Therapy: Planning the First Hospital-Based Heavy Ion Therapy Center in the United States

    PubMed Central

    Laine, Aaron; Pompos, Arnold; Story, Michael; Jiang, Steve; Timmerman, Robert; Choy, Hak

    2015-01-01

    Investigation into the use of heavy ions for therapeutic purposes was initially pioneered at Lawrence Berkeley National Laboratory in the 1970s [1, 2]. More recently, however, significant advances in determining the safety and efficacy of using heavy ions in the hospital setting have been reported in Japan and Germany [3, 4]. These promising results have helped to resurrect interest in the establishment of hospital-based heavy ion therapy in the United States. In line with these efforts, world experts in the field of heavy ion therapy were invited to attend the first annual International Symposium on Ion Therapy, which was held at the University of Texas Southwestern Medical Center, Dallas, Texas, from November 12 to 14, 2014. A brief overview of the results and discussions that took place during the symposium are presented in this article. PMID:27110586

  13. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. PMID:27513962

  14. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  15. ION-EXCLUSION CHROMATOGRAPHIC DETERMINATION OF CARBOXYLIC ACIDS USED TO SUPPORT THE MICROBIALLY MEDIATED REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE

    EPA Science Inventory

    An analytical method was developed for the determination of lactic acid, formic acid, acetic acid, propionic acid, and butyric acid in environmental microcosm samples using ion-exclusion chromatography. The chromatographic behavior of various eluents was studied to determine the ...

  16. Acid rain: china, United States, and a remote area.

    PubMed

    Galloway, J N; Dianwu, Z; Jiling, X; Likens, G E

    1987-06-19

    The composition of precipitation in China is highly influenced by fossil fuel combustion and agricultural and cultural practices. Compared to the eastern United States, precipitation in China generally has higher concentrations of sulfate, ammonium, and calcium. Wet deposition rates of sulfur in China are 7 to 130 times higher than those in a remote area in the Southern Hemisphere. In many areas of the world, significant ecological changes have occurred in ecosystems that have acid deposition rates substantially less than those currently existing in China.

  17. Comparative toxicity of hypochlorous acid and hypochlorite ions to mosquitofish

    SciTech Connect

    Mattice, J.S.; Tsai, S.C.; Burch, M.B.

    1981-07-01

    We examined the relative toxicity of hypochlorous acid (HOCl) and the hypochlorite ion (OCl/sup -/) by exposing mosquitofish Gambusia affinis for 1 hour to predominantly free residual chlorine (FRC) at six levels of pH following a 7-day acclimation to the test pH. Median lethal concentrations (LC50), in terms of total residual chlorine (TRC), increased with increasing pH. Because of the influence of hydrogen ion concentration on dissociation of HOCl, the percent of FRC present as HOCl is about 97% and 13%, respectively, at the low and high pH. Cursory examination of toxicity of monochloramine (NH/sub 2/Cl) and mixtures of NH/sub 2/Cl and dichloramine (NHCl/sub 2/) suggested that their contributions to toxicity were negligible at any test pH. Free residual chlorine concentrations at the LC50 for each pH were fitted to a theoretical model derived from an assumption that toxicities of HOCl and OCl/sup -/ were additive.

  18. Acid-sensing ion channels: trafficking and synaptic function

    PubMed Central

    2013-01-01

    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels. PMID:23281934

  19. How Interfaces Affect the Acidity of the Anilinium Ion.

    PubMed

    Sripradite, Jarukorn; Miller, Susannah A; Johnson, Michael D; Tongraar, Anan; Crans, Debbie C

    2016-03-01

    The acidity of a compound is a fundamental property that dictates molecular speciation and reactivity in solution. Measurements of acidity of simple molecules in interfacial environments are rarely carried out but assumptions often are made that the difference is sufficiently small that the change can be ignored. The effect of oil-surfactant-water interfaces in reverse micellar systems on the pKa value of the anilinium ion was measured using titrations by NMR spectroscopy as the size of the bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane reverse micelles decreased. The pKa was observed to drop from 4.85±0.02 to 4.62±0.02 in water as the reverse micelle decreased from w(0) 10 to 4 (that is down to a reverse micellar radius of about 2 nm). NOSEY experiments demonstrated that the aniline moiety resides within the surfactant interface with the amine/ammonium moiety protruding into the waterpool bridging the interface. The presence of the aniline was found to have modest and variable effect on the size of the reverse micelles as observed using dynamic light scattering. Our experimental results provide information important to theoretical studies, which explore interface phenomena and provide a framework for information on such simple molecules. These studies quantitate the small but significant effect on the pKa values upon placement of an aromatic amine molecule at a hydrophilic-hydrophobic interface. PMID:26878992

  20. The Thumb Domain Mediates Acid-sensing Ion Channel Desensitization.

    PubMed

    Krauson, Aram J; Carattino, Marcelo D

    2016-05-20

    Acid-sensing ion channels (ASICs) are cation-selective proton-gated channels expressed in neurons that participate in diverse physiological processes, including nociception, synaptic plasticity, learning, and memory. ASIC subunits contain intracellular N and C termini, two transmembrane domains that constitute the pore, and a large extracellular loop with defined domains termed the finger, β-ball, thumb, palm, and knuckle. Here we examined the contribution of the finger, β-ball, and thumb domains to activation and desensitization through the analysis of chimeras and the assessment of the effect of covalent modification of introduced Cys at the domain-domain interfaces. Our studies with ASIC1a-ASIC2a chimeras showed that swapping the thumb domain between subunits results in faster channel desensitization. Likewise, the covalent modification of Cys residues at selected positions in the β-ball-thumb interface accelerates the desensitization of the mutant channels. Studies of accessibility with thiol-reactive reagents revealed that the β-ball and thumb domains reside apart in the resting state but that they become closer to each other in response to extracellular acidification. We propose that the thumb domain moves upon continuous exposure to an acidic extracellular milieu, assisting with the closing of the pore during channel desensitization. PMID:27015804

  1. Application of partially fluorinated carboxylic acids as ion-pairing reagents in LC/ESI-MS.

    PubMed

    Yamamoto, Eiichi; Ishihama, Yasushi; Asakawa, Naoki

    2014-09-01

    This report describes the application of partially fluorinated carboxylic acids as ion-pairing reagents for basic analytes in high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (LC/ESI-MS) in positive-ion mode. Partially fluoridated carboxylic acids such as difluoroacetic acid, 3,3,3-trifluoropropionic acid and 3,3,3-trifluoromethyl-2-trifluoromethylpropionic acid functioned as volatile paired-ion similarly as trifluoroacetic acid (TFA). These acids provided basic analytes larger retention factor (k) compared to acetic acid or formic acid in LC. The ESI-MS signal strength of analytes with these acids were higher than that of TFA and was analogous to that of acetic acid or formic acid. The performances of partially fluorinated carboxylic acids in LC and ESI-MS for basic analytes were analyzed by multivariate statistical analysis using physicochemical descriptors of acids. Equations obtained in the analysis enabled us the quantitative evaluation of the performance of fluorinated carboxylic acids as ion-pair reagents for basic analytes in LC/ESI-MS.

  2. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    PubMed

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  3. Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces

    NASA Astrophysics Data System (ADS)

    Perry, Thomas D.; Cygan, Randall T.; Mitchell, Ralph

    2006-07-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these cation-organic interactions are well suited for predictive molecular modeling and the analysis of conformation and configuration of polysaccharides and their influence on cation binding. In this study, alginic acid was chosen as a model polymer system and representative disaccharide and polysaccharide subunits were developed. Molecular dynamics simulation of the torsion angles of the ether linkage between various monomeric subunits identified local and global energy minima for selected disaccharides. The simulations indicate stable disaccharide configurations and a common global energy minimum for all disaccharide models at Φ = 274 ± 7°, Ψ = 227 ± 5°, where Φ and Ψ are the torsion angles about the ether linkage. The ability of disaccharide subunits to bind calcium ions and to associate with the (101¯4) surface of calcite was also investigated. Molecular models of disaccharide interactions with calcite provide binding energy differences for conformations that are related to the proximity and residence densities of the electron-donating moieties with calcium ions on the calcite surface, which are controlled, in part, by the torsion of the ether linkage between monosaccharide units. Dynamically optimized configurations for polymer alginate models with calcium ions were also derived.

  4. Acid-sensing ion channel immunoreactivities in the cephalic neuromasts of adult zebrafish.

    PubMed

    Abbate, F; Madrigrano, M; Scopitteri, T; Levanti, M; Cobo, J L; Germanà, A; Vega, J A; Laurà, R

    2016-09-01

    The neuromasts are the morphofunctional unit of the lateral line system serving as mechanosensors for water flow and movement. The mechanisms underlying the detection of the mechanical stimuli in the vertebrate mechanosensory cells remain poorly understood at the molecular level, and no information is available on neuromasts. Mechanotransduction is the conversion of a mechanical stimulus into an electrical signal via activation of ion channels. The acid-sensing ion channels (ASICs) are presumably involved in mechanosensation, and therefore are expected to be expressed in the mechanoreceptors. Here we used immunohistochemistry to investigate the occurrence and distribution of ASICs in the cephalic neuromasts of the adult zebrafish. Specific immunoreactivity for ASIC1 and ASIC4 was detected in the hair cells while ASIC2 was restricted to the nerves supplying neuromasts. Moreover, supporting and mantle cells; i.e., the non-sensory cells of the neuromasts, also displayed ASIC4. For the first time, these results demonstrate the presence of the putative mechanoproteins ASIC1, ASIC2 and ASIC4 in neuromasts, suggesting a role for these ion channels in mechanosensation.

  5. Acid-sensing ion channel immunoreactivities in the cephalic neuromasts of adult zebrafish.

    PubMed

    Abbate, F; Madrigrano, M; Scopitteri, T; Levanti, M; Cobo, J L; Germanà, A; Vega, J A; Laurà, R

    2016-09-01

    The neuromasts are the morphofunctional unit of the lateral line system serving as mechanosensors for water flow and movement. The mechanisms underlying the detection of the mechanical stimuli in the vertebrate mechanosensory cells remain poorly understood at the molecular level, and no information is available on neuromasts. Mechanotransduction is the conversion of a mechanical stimulus into an electrical signal via activation of ion channels. The acid-sensing ion channels (ASICs) are presumably involved in mechanosensation, and therefore are expected to be expressed in the mechanoreceptors. Here we used immunohistochemistry to investigate the occurrence and distribution of ASICs in the cephalic neuromasts of the adult zebrafish. Specific immunoreactivity for ASIC1 and ASIC4 was detected in the hair cells while ASIC2 was restricted to the nerves supplying neuromasts. Moreover, supporting and mantle cells; i.e., the non-sensory cells of the neuromasts, also displayed ASIC4. For the first time, these results demonstrate the presence of the putative mechanoproteins ASIC1, ASIC2 and ASIC4 in neuromasts, suggesting a role for these ion channels in mechanosensation. PMID:27443821

  6. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    NASA Astrophysics Data System (ADS)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  7. Acid-base and metal ion binding properties of 2-thiocytidine in aqueous solution.

    PubMed

    Brasuń, Justyna; Matera, Agnieszka; Sochacka, Elzbieta; Swiatek-Kozlowska, Jolanta; Kozlowski, Henryk; Operschall, Bert P; Sigel, Helmut

    2008-06-01

    The thionucleoside 2-thiocytidine (C2S) occurs in nature in transfer RNAs; it receives attention in diverse fields like drug research and nanotechnology. By potentiometric pH titrations we measured the acidity constants of H(C2S)(+) and the stability constants of the M(C2S)(2+) and M(C2S-H)(+) complexes (M(2+) = Zn(2+), Cd(2+)), and we compared these results with those obtained previously for its parent nucleoside, cytidine (Cyd). Replacement of the (C2)=O unit by (C2)=S facilitates the release of the proton from (N3)H(+) in H(C2S)(+) (pK (a) = 3.44) somewhat, compared with H(Cyd)(+) (pK (a) = 4.24). This moderate effect of about 0.8 pK units contrasts with the strong acidification of about 4 pK units of the (C4)NH(2) group in C2S (pK (a) = 12.65) compared with Cyd (pK (a) approximately 16.7); the reason for this result is that the amino-thione tautomer, which dominates for the neutral C2S molecule, is transformed upon deprotonation into the imino-thioate form with the negative charge largely located on the sulfur. In the M(C2S)(2+) complexes the (C2)S group is the primary binding site rather than N3 as is the case in the M(Cyd)(2+) complexes, though owing to chelate formation N3 is to some extent still involved in metal ion binding. Similarly, in the Zn(C2S-H)(+) and Cd(C2S-H)(+) complexes the main metal ion binding site is the (C2)S(-) unit (formation degree above 99.99% compared with that of N3). However, again a large degree of chelate formation with N3 must be surmised for the M(C2S-H)(+) species in accord with previous solid-state studies of related ligands. Upon metal ion binding, the deprotonation of the (C4)NH(2) group (pK (a) = 12.65) is dramatically acidified (pK (a) approximately 3), confirming the very high stability of the M(C2S-H)(+) complexes. To conclude, the hydrogen-bonding and metal ion complex forming capabilities of C2S differ strongly from those of its parent Cyd; this must have consequences for the properties of those RNAs which contain this

  8. A simplified strong ion model for acid-base equilibria: application to horse plasma.

    PubMed

    Constable, P D

    1997-07-01

    The Henderson-Hasselbalch equation and Stewart's strong ion model are currently used to describe mammalian acid-base equilibria. Anomalies exist when the Henderson-Hasselbalch equation is applied to plasma, whereas the strong ion model does not provide a practical method for determining the total plasma concentration of nonvolatile weak acids ([Atot]) and the effective dissociation constant for plasma weak acids (Ka). A simplified strong ion model, which was developed from the assumption that plasma ions act as strong ions, volatile buffer ions (HCO-3), or nonvolatile buffer ions, indicates that plasma pH is determined by five independent variables: PCO2, strong ion difference, concentration of individual nonvolatile plasma buffers (albumin, globulin, and phosphate), ionic strength, and temperature. The simplified strong ion model conveys on a fundamental level the mechanism for change in acid-base status, explains many of the anomalies when the Henderson-Hasselbalch equation is applied to plasma, is conceptually and algebraically simpler than Stewart's strong ion model, and provides a practical in vitro method for determining [Atot] and Ka of plasma. Application of the simplified strong ion model to CO2-tonometered horse plasma produced values for [Atot] (15.0 +/- 3.1 meq/l) and Ka (2.22 +/- 0.32 x 10(-7) eq/l) that were significantly different from the values commonly assumed for human plasma ([Atot] = 20.0 meq/l, Ka = 3.0 x 10(-7) eq/l). Moreover, application of the experimentally determined values for [Atot] and Ka to published data for the horse (known PCO2, strong ion difference, and plasma protein concentration) predicted plasma pH more accurately than the values for [Atot] and Ka commonly assumed for human plasma. Species-specific values for [Atot] and Ka should be experimentally determined when the simplified strong ion model (or strong ion model) is used to describe acid-base equilibria.

  9. Receptor for protons: First observations on Acid Sensing Ion Channels.

    PubMed

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.

  10. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  11. Tracing the atomic mass unit to the kilogram by ion accumulation

    NASA Astrophysics Data System (ADS)

    Gläser, Michael

    2003-12-01

    An experimental approach for linking the atomic mass unit to the kilogram with an uncertainty sufficiently small for a future re-definition of the kilogram is described. The concept consists of accumulation of ions from an ion beam up to a weighable mass and measurable total charge. The main problems and influencing factors connected with ion beam technology, weighing and current measurement together with the corresponding experimental solutions are discussed in detail. The first experiments with consistent results, but still large uncertainty, are described.

  12. Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions

    SciTech Connect

    Karadag, E.; Saraydin, D.; Gueven, O.

    1995-12-01

    In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with {gamma}-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178-219 mg uranyl ions from the solutions of uranyl acetate, 42-76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.

  13. Computational scheme for the prediction of metal ion binding by a soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.H.; Mathuthu, A.S.

    1995-01-01

    The dissociation and metal ion binding properties of a soil fulvic acid have been characterized. Information thus gained was used to compensate for salt and site heterogeneity effects in metal ion complexation by the fulvic acid. An earlier computational scheme has been modified by incorporating an additional step which improves the accuracy of metal ion speciation estimates. An algorithm is employed for the prediction of metal ion binding by organic acid constituents of natural waters (once the organic acid is characterized in terms of functional group identity and abundance). The approach discussed here, currently used with a spreadsheet program on a personal computer, is conceptually envisaged to be compatible with computer programs available for ion binding by inorganic ligands in natural waters.

  14. Chelation Properties of Modified Humic Acids Toward Some Trivalent Lanthanide Ions

    SciTech Connect

    Yaghmour, Remah N.; Khalili, Fawwaz I.; Mubarak, Mohammad S.

    2007-05-09

    Three kinds of humic acids, Fluka (I), Fluka (II), and Ega-chemie (III) were modified through condensation with formaldehyde to afford polymers I, II, and III, respectively. The chelation behavior of these modified humic acids polymers towards the trivalent lanthanide metal-ions, La3+, Ce3+, Nd3+, Sm3+, and Gd3+ was studied by a batch equilibration technique at 25 deg. C as a function of contact time, pH, counter ion and counter ion concentration. The highest metal-ion uptake of the three polymers was achieved at pH 7.0 and by using perchlorate as a counter ion. Results of the study have revealed that polymer II has the highest metal-ion uptake capacity, and that the metal-ion uptake falls in the order: Gd3+ > Sm3+ > Nd3+ > La3+ {approx_equal} Ce3+.

  15. Processes controlling metal ion attenuation in acid mine drainage streams

    NASA Astrophysics Data System (ADS)

    Chapman, B. M.; Jones, D. R.; Jung, R. F.

    1983-11-01

    Two acid mine drainage streams have been investigated by detailed analysis of their sediments and waters, to obtain an understanding of the dominant processes which control the transport and attenuation of heavy metals under conditions of chronic high-level pollutant input. One of the water-courses has a thick hydrous iron oxide crust on its bed, where biotically mediated oxidation of ferrous iron resulted in precipitation of amorphous ferric hydroxide, along with substantial quantities of adsorbed silica, sulphate and Al and lesser quantities of As. Small amounts of K and Pb (and possibly hydronium) jarosites were also present in the sediments. Changes in pH and in the concentrations of Cu, Zn, and Cd appear to be mainly the result of dilution by seeps and tributaries. Although no sediment was recovered during collection of water samples from the second stream, saturation index calculations imply that precipitation should have been occurring. The observed down-stream loss of a number of elements supported this conclusion. The solids predicted to be precipitating were A1(OH) 3, Cu 2(OH) 2CO 3, and Fe(OH) 3. Observed decreases in the concentrations of Cd, Zn and Mn can be accounted for on the basis of dilution alone. However, the additional mechanism of neutralization by higher pH inflows is required to account for the decrease in hydrogen ion concentration downstream. The basis for a potentially useful new technique (congruent element analysis) which enables the identification of conservative components in streams is presented. Comparison of logarithmic concentration versus distance plots delineates the point where chemical removal mechanisms become important for each element.

  16. Clinical assessment of acid-base status. Strong ion difference theory.

    PubMed

    Constable, P D

    1999-11-01

    The traditional approach to evaluating acid-base balance uses the Henderson-Hasselbalch equation to categorize four primary acid-base disturbances: respiratory acidosis (increased PCO2), respiratory alkalosis (decreased PCO2), metabolic acidosis (decreased extracellular base excess), or metabolic alkalosis (increased extracellular base excess). The anion gap is calculated to detect the presence of unidentified anions in plasma. This approach works well clinically and is recommended for use whenever serum total protein, albumin, and phosphate concentrations are approximately normal; however, when their concentrations are markedly abnormal, the Henderson-Hasselbalch equation frequently provides erroneous conclusions as to the cause of an acid-base disturbance. Moreover, the Henderson-Hasselbalch approach is more descriptive than mechanistic. The new approach to evaluating acid-base balance uses the simplified strong ion model to categorize eight primary acid-base disturbances: respiratory acidosis (increased PCO2), respiratory alkalosis (decreased PCO2), strong ion acidosis (decreased [SID+]) or strong ion alkalosis (increased [SID+]), nonvolatile buffer ion acidosis (increased [ATOT]) or nonvolatile buffer ion alkalosis (decreased [ATOT]), and temperature acidosis (increased body temperature) or temperature alkalosis (decreased body temperature). The strong ion gap is calculated to detect the presence of unidentified anions in plasma. This simplified strong ion approach works well clinically and is recommended for use whenever serum total protein, albumin, and phosphate concentrations are markedly abnormal. The simplified strong ion approach is mechanistic and is therefore well suited for describing the cause of any acid-base disturbance. The new approach should therefore be valuable in a clinical setting and in research studies investigating acid-base balance. The presence of unmeasured strong ions in plasma or serum (such as lactate, ketoacids, and uremic anions

  17. Effect of ions on the measurement of sulphuric acid in the CLOUD experiment at CERN

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Kürten, A.; Ehrhart, S.; Schobesberger, S.; Franchin, A.; Junninen, H.; Petäjä, T.; Sipilä, M.; Worsnop, D. R.; Curtius, J.

    2014-07-01

    Ternary aerosol nucleation experiments were conducted in the CLOUD chamber at CERN in order to investigate the influence of ions on new particle formation. Neutral and ion-induced nucleation experiments, i.e., with and without the presence of ions, were carried out under precisely controlled conditions. The sulphuric acid concentration was measured with a Chemical Ionization Mass Spectrometer (CIMS) during the new particle formation experiments. The added ternary trace gases were ammonia (NH3), dimethylamine (DMA, C2H7N) or oxidised products of pinanediol (PD, C10H18O2). When pinanediol was introduced into the chamber, an increase in the mass spectrometric signal used to determine the sulphuric acid concentration (m/z 97, i.e., HSO4-) was observed due to ions from the CLOUD chamber. The enhancement was only observed during ion-induced nucleation measurements by using either galactic cosmic rays (GCR) or the proton synchrotron (PS) pion beam for the ion generation, respectively. The ion effect typically involved an increase in the apparent sulphuric acid concentration by a factor of ~2 to 3 and was qualitatively verified by the ion measurements by an Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometer. By applying a high voltage (HV) clearing field inside the CLOUD chamber the ion effect on the CIMS measurement was completely eliminated since, under these conditions, small ions are swept from the chamber in about one second. In order to exclude the ion effect and to provide corrected sulphuric acid concentrations during the GCR and PS beam nucleation experiments, a parameterisation was derived that utilizes the trace gas concentrations and the UV light intensity as input parameters. Atmospheric sulphuric acid measurements with a CIMS showed an insignificant ion effect.

  18. Effect of ions on the measurement of sulfuric acid in the CLOUD experiment at CERN

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Kürten, A.; Ehrhart, S.; Schobesberger, S.; Franchin, A.; Junninen, H.; Petäjä, T.; Sipilä, M.; Worsnop, D. R.; Curtius, J.

    2014-11-01

    Ternary aerosol nucleation experiments were conducted in the CLOUD chamber at CERN in order to investigate the influence of ions on new particle formation. Neutral and ion-induced nucleation experiments, i.e. without and with the presence of ions, respectively, were carried out under precisely controlled conditions. The sulfuric acid concentration was measured with a chemical ionisation mass spectrometer (CIMS) during the new particle formation experiments. The added ternary trace gases were ammonia (NH3), dimethylamine (DMA, C2H7N) or oxidised products of pinanediol (PD, C10H18O2). When pinanediol was introduced into the chamber, an increase in the mass spectrometric signal used to determine the sulfuric acid concentration (m/z 97, i.e. HSO4-) was observed due to ions from the CLOUD chamber. The enhancement was only observed during ion-induced nucleation measurements by using either galactic cosmic rays (GCRs) or the proton synchrotron (PS) pion beam for the ion generation, respectively. The ion effect typically involved an increase in the apparent sulfuric acid concentration by a factor of ~ 2 to 3 and was qualitatively verified by the ion measurements with an atmospheric-pressure interface-time of flight (APi-TOF) mass spectrometer. By applying a high-voltage (HV) clearing field inside the CLOUD chamber, the ion effect on the CIMS measurement was completely eliminated since, under these conditions, small ions are swept from the chamber in about 1 s. In order to exclude the ion effect and to provide corrected sulfuric acid concentrations during the GCR and PS beam nucleation experiments, a parameterisation was derived that utilises the trace gas concentrations and the UV light intensity as input parameters. Atmospheric sulfuric acid measurements with a CIMS showed an insignificant ion effect.

  19. An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography.

    PubMed

    Cheng, Peng; Cheng, Yafang; Lu, Keding; Su, Hang; Yang, Qiang; Zou, Yikan; Zhao, Yanran; Dong, Huabing; Zeng, Limin; Zhang, Yuanhang

    2013-05-01

    A new instrument for measuring atmospheric nitrous acid (HONO) was developed, consisting of a double-wall glass stripping coil sampler coupled with ion chromatography (SC-IC). SC-IC is featured by small size (50 x 35 x 25 cm) and modular construction, including three independent parts: the sampling unit, the transfer and supporting unit, and the detection unit. High collection efficiency (> 99%) was achieved with 25 micromol/L Na2CO3 as absorption solution even in the presence of highly acidic compounds. This instrument has a detection limit of 8 pptv at 15 min time resolution, with a measurement uncertainty of 7%. Potential interferences from NO(x), NO2+SO2, NO2+VOCs, HONO+O3, HNO3, peroxyacetyl nitrite (PAN) and particle nitrite were quantified in laboratory studies and were found to be insignificant under typical atmospheric conditions. Within the framework of the 3C-STAR project, inter-comparison between the SC-IC and LOPAP (long path liquid absorption photometer) was conducted at a rural site in the Pearl River Delta. Good agreement was achieved between the two instruments over three weeks. Both instruments determined a clear diurnal profile of ambient HONO concentrations from 0.1 to 2.5 ppbv. However, deviations were found for low ambient HONO concentrations (i.e. < 0.3 ppbv), which cannot be explained by previous investigated interference species. To accurately determine the HONO budget under illuminated conditions, more intercomparison of HONO measurement techniques is still needed in future studies, especially at low HONO concentrations.

  20. Anion Effects on Sodium Ion and Acid Molecule Adduction to Protein Ions in Electrospray Ionization Mass Spectrometry

    PubMed Central

    Flick, Tawnya G.; Merenbloom, Samuel I.; Williams, Evan R.

    2012-01-01

    Gaseous protein–metal ion and protein–molecule complexes can be readily formed by electrospray ionization (ESI) from aqueous solutions containing proteins and millimolar concentrations of sodium salts of various anions. The extent of sodium and acid molecule adduction to multiply charged protein ions is inversely related and depends strongly on the proton affinity (PA) of the anion, with extensive sodium adduction occurring for anions with PA values greater than ~300 kcal·mol−1 and extensive acid molecule adduction occurring for anions with PA values less than 315 kcal·mol−1. The role of the anion on the extent of sodium and acid molecule adduction does not directly follow the Hofmeister series, suggesting that direct protein–ion interactions may not play a significant role in the observed effect of anions on protein structure in solution. These results indicate that salts with anions that have low PA values may be useful solution-phase additives to minimize nonspecific metal ion adduction in ESI experiments designed to identify specific protein-metal ion interactions. PMID:21952761

  1. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  2. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density. PMID:25122405

  3. Determination of nitrite ion and sulfanilic and orthanilic acids by differential pulse polarography

    SciTech Connect

    Sulaiman, S.T.

    1984-11-01

    The nitrite ion can be determined with a high degree of accuracy and sensitivity by differential pulse polarography utilizing the rapid and quantitative reaction between the nitrite ion and sulfanilic acid or orthanilic acid at pH 1.5. The experimental detection limit is shown to be 8.6 X 10/sup -8/ M (as NO/sub 2//sup -/) in simple aqueous solution. The method is further used to determine concentrations of sulfanilic acid down to 4 X 10/sup -7/ M and orthanilic acid down to 1.6 X 10/sup -6/ M under optimum conditions.

  4. Modulation of acid-sensing ion channels: molecular mechanisms and therapeutic potential

    PubMed Central

    Chu, Xiang-Ping; Papasian, Christopher J; Wang, John Q; Xiong, Zhi-Gang

    2011-01-01

    Increases in extracellular proton concentrations, which takes place in physiological conditions such as synaptic signaling and pathological conditions such as tissue inflammation, ischemic stroke, traumatic brain injury, and epileptic seizure, activates a unique family of membrane ion channels; the acid-sensing ion channels (ASICs). All ASICs belong to amiloride-sensitive degenerin/epithelial Na+ channel superfamily. Four genes encoded at seven sub-units have been identified. ASICs are expressed primarily in neurons and have been shown to play critical roles in synaptic plasticity, learning/memory, fear conditioning, sensory transduction, pain perception, ischemic brain injury, seizure, and other neurological as well as psychological disorders. Although protons are the primary activator for ASICs, the properties and/or level of expression of these channels are modulated dramatically by neuropeptides, di-and polyvalent cations, inflammatory mediators, associated proteins, and protein phosphorylations, etc. Modulation of ASICs can result in profound changes in the activities and functions of these channels in both physiological and pathological processes. In this article, we provide an up to date review on the modulations of ASICs by exogenous agents and endogenous signaling molecules. A better understanding of how ASICs can be modulated should help define new strategies to counteract the deleterious effects of dysregulated ASIC activity. PMID:22162785

  5. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  6. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.

    PubMed

    Anupriya; Jones, Chad A; Dearden, David V

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy. Graphical Abstract ᅟ. PMID:27220844

  7. [Determination of organic acids in rice wine by ion-exclusion chromatography].

    PubMed

    Lin, Xiaojie; Wei, Wei; He, Zhigang; Lin, Xiaozi

    2014-03-01

    An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine.

  8. [Determination of organic acids in rice wine by ion-exclusion chromatography].

    PubMed

    Lin, Xiaojie; Wei, Wei; He, Zhigang; Lin, Xiaozi

    2014-03-01

    An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine. PMID:24984473

  9. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  10. Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase.

    PubMed

    Nielsen, J M; Pedersen, P A; Karlish, S J; Jorgensen, P L

    1998-02-17

    Site-directed mutagenesis and assay of Rb+ and Tl+ occlusion in recombinant Na,K-ATPase from yeast were combined to establish structure-function relationships of amino acid side chains involved in high-affinity occlusion of K+ in the E2[2K] form. The wild-type yeast enzyme was capable of occluding 2 Rb+ or Tl+ ions/ouabain binding site or alpha 1 beta 1 unit with high apparent affinity (Kd(Tl+) = 7 +/- 2 microM), like the purified Na,K-ATPase from pig kidney. Mutations of Glu327(Gln,Asp), Asp804(Asn, Glu), Asp808(Asn, Glu) and Glu779(Asp) abolished high-affinity occlusion of Rb+ or Tl+ ions. The substitution of Glu779 for Gln reduced the occlusion capacity to 1 Tl+ ion/alpha 1 beta 1-unit with a 3-fold decrease of the apparent affinity for the ion (Kd(Tl+) = 24 +/- 8 microM). These effects on occlusion were closely correlated to effects of the mutations on K0.5(K+) for K+ displacement of ATP binding. Each of the four carboxylate residues Glu327, Glu779, and Asp804 or Asp808 in transmembrane segments 4, 5, and 6 is therefore essential for high-affinity occlusion of K+ in the E2[2K] form. These residues either may engage directly in cation coordination or they may be important for formation or stability of the occlusion cavity.

  11. Determination of organic acids in biological fluids by ion chromatography: plasma lactate and pyruvate and urinary vanillylmandelic acid.

    PubMed

    Rich, W; Johnson, E; Lois, L; Kabra, P; Stafford, B; Marton, L

    1980-09-01

    We describe the general aspects of ion chromatography and how on-line counted ion-exchange techniques can be utilized to determine pyruvic and lactic acids in plasma and vanillymandelic acid in urine. Pyruvate and lactate are extracted from deproteinized plasma by use of an ion-exclusion resin. After elution from the resin, the plasma extract is chromatographed on an anion-exchange column, with 0.66 mmol/L sodium bicarbonate as the mobile phase. The effluent is detected with an electrical conductivity cell. Vanillylmandelic acid is extracted from diluted urine by use of an anion-exchange resin. After elution from resin, the urine extract is chromatographed on an ion-exclusion column, followed by electrochemical detection. We evaluated the procedures for precision, linearity, analytical recovery, intefering substances, and correlation with an established procedure. the combination of a preliminary resin extraction, an ion chromatographic separation, and a conductivity or electrochemical detector results in rapid, specific methods that can be adapted for use in the clinical laboratory. Preliminary data for other organic acids are presented.

  12. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    PubMed

    Gebala, Magdalena; Bonilla, Steve; Bisaria, Namita; Herschlag, Daniel

    2016-08-31

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na(+) would outcompete Cs(+) by 1.8-2.1-fold; i.e., with Cs(+) in 2-fold excess of Na(+) the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res. 2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na(+) over Cs(+). There is an ∼25% preferential occupancy of Li(+) over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4-P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation-anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the

  13. Hydration studies of electrospray ions from amino acids and small peptides

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong (Steve)

    This project was undertaken to gain a better understanding of the hydration behaviors of gas phase ions from solutions containing amino acids and peptides. In order to characterize their hydration behavior, the molecules of interest in solutions were first converted into gas phase ions by electrospray ionization (ESI). The completely desolvated ions were then deliberately dispersed into an inert bath gas, usually nitrogen, containing accurately known concentrations of solvent vapor. The resulting mixtures of ions and bath gas were subsequently passed into a vacuum chamber by way of an adiabatic supersonic free jet expansion. The cooling during that expansion caused solvation of the ions, the extent of which was determined by a quadrupole mass analyzer. Mass analysis of the solute ions in the absence of vapor showed peaks with the mass to charge ratios corresponding to the desolvated ions. On the other hand, mass spectrometric analyses of ions in the presence of solvent vapor showed sequences of peaks corresponding to the solvated ions with varying numbers of water molecules. The extent of the ion solvation was controlled by varying the concentration of solvent vapor in the bath gas. Two different scales were proposed for the evaluation of the relative affinities of amino acids for water molecules. One was based primarily on the assumption that the affinities of amino acids for water molecules are directly proportional to their gas phase solvation rate constants ( k). An alternative approach produced an affinity scale based on the extent of ion hydration occurred during the free jet expansion. It was found that the addition of a polar solvent vapor to the bath gas at low concentrations substantially enhanced the production of the bare solute ions from the evaporating charged droplets. This remarkable result not only provided a means to increase the ion production and thus detection sensitivity of mass spectrometric analyses, but also yielded important information

  14. Dental unit waterlines disinfection using hypochlorous acid-based disinfectant

    PubMed Central

    Shajahan, Irfana Fathima; Kandaswamy, D; Srikanth, Padma; Narayana, L Lakshmi; Selvarajan, R

    2016-01-01

    Objective: The purpose of the study was to investigate the efficacy of a new disinfectant to disinfect the dental unit waterlines. Materials and Methods: New dental unit waterlines were installed in 13 dental chairs, and biofilm was allowed to grow for 10 days. Disinfection treatment procedure was carried out in the 12 units, and one unit was left untreated. The dental unit waterlines were removed and analyzed using the scanning electron microscope (SEM) (TESCAN VEGA3 SBU). Result: On examination, SEM images showed that there was no slime layer or bacterial cells seen in any of the 12 cut sections obtained from the treated dental waterlines which mean that there was no evident of biofilm formation. Untreated dental unit waterlines showed a microbial colonization with continuous filamentous organic matrix. There was significant biofilm formation in the control tube relative to the samples. Conclusion: The tested disinfectant was found to be effective in the removal of biofilm from the dental unit waterlines. PMID:27563184

  15. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  16. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids.

    PubMed

    Neta, E R D; Johanningsmeier, S D; Drake, M A; McFeeters, R F

    2009-01-01

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on sour taste of equimolar protonated organic acid solutions and to investigate the potential roles of organic anions and sodium ions on sour taste perception. Despite equal concentrations of protonated acid species, sour taste intensity decreased significantly with increased pH for acetic, lactic, malic, and citric acids (P < 0.05). Total organic anion concentration did not explain the suppression of sour taste in solutions containing a blend of 3 organic acids with constant concentration of protonated organic acid species and hydrogen ions and variable organic anion concentrations (R(2)= 0.480, P = 0.12). Sour taste suppression in these solutions seemed to be more closely related to sodium ions added in the form of NaOH (R(2)= 0.861, P = 0.007). Addition of 20 mM NaCl to acid solutions resulted in significant suppression of sour taste (P = 0.016). However, sour taste did not decrease with further addition of NaCl up to 80 mM. Presence of sodium ions was clearly shown to decrease sour taste of organic acid solutions. Nonetheless, suppression of sour taste in pH adjusted single acid solutions was greater than what would be expected based on the sodium ion concentration alone, indicating an additional suppression mechanism may be involved.

  17. Role for Ion Transport in Porcine Vocal Fold Epithelial Defense to Acid Challenge

    PubMed Central

    Erickson-Levendoski, Elizabeth; Sivasankar, M. Preeti

    2012-01-01

    Objective The vocal fold epithelium is routinely exposed to gastric contents, including acid and pepsin, during laryngopharyngeal reflux events. The epithelium may possess intrinsic defenses to reflux. The first objective of the current study was to examine whether vocal fold epithelial ion transport is one potential mechanism of defense to gastric contents. The second objective was to determine whether ion transport in response to gastric contents is associated with the secretion of bicarbonate. Study Design Prospective design in excised porcine larynges. Setting Laboratory. Subjects and Methods Porcine vocal folds (N = 56) were exposed on the luminal surface to acid, pepsin, or sham challenges. Ion transport at baseline and following challenge exposure was measured using electrophysiological techniques. To examine specific ion transport mechanisms, vocal folds were pretreated with either a sodium channel blocker or bicarbonate channel blocker. Results Within 60 seconds of acid but not pepsin exposure, there was a significant increase in ion transport. This rapid increase in ion transport was transient and related to bicarbonate secretion. Conclusion The current data suggest that porcine vocal folds immediately increase bicarbonate secretion following exposure to acid. Bicarbonate secretion may act to neutralize acid. These findings contribute to the identification of the mechanisms underlying vocal fold defense to reflux and offer implications for the development of treatments for reflux-induced vocal fold injury. PMID:22086905

  18. Phase equilibria and distribution constants of metal ions in diantipyryl alkane-organic acid-hydrochloric acid-water systems

    NASA Astrophysics Data System (ADS)

    Degtev, M. I.; Popova, O. N.; Yuminova, A. A.

    2014-08-01

    The ability of antipyrine and its derivatives (diantipyryl alkanes) to form separating systems in the presence of salicylic (sulfosalicylic) acid and hydrochloric acid and water is studied. The optimum volume of the organic phase, the composition of complexes, and the mechanism for the distribution of metal ions are determined, depending on the concentrations of the main components and the salting-out agent. The complex distribution and extraction constants are calculated.

  19. Determination of volatile fatty acids in landfill leachates by ion-exclusion chromatography.

    PubMed

    Yamamoto, Atsushi; Yasuhara, Akio; Kodama, Shuji; Matsunaga, Akinobu; Suzuki, Shigeru; Mohri, Shino; Yamada, Masato

    2004-03-01

    An ion-exclusion chromatographic method with on-line desalinization for the determination of volatile fatty acids in landfill leachates is described. Highly sensitive conductivity detection of the organic acids was achieved by using dilute p-hydroxybenzoic acid solution as an eluent. Interference with mineral acids was reduced by treatment with barium chloride solution prior to desalinization. A silver-loaded cation-exchange guard column for the desalinization was installed in series with the analytical column to avoid the contamination of organic acids. This method features detection limits of 0.01 mg L(-1) formic acid, 0.02 mg L(-1) acetic acid, 0.05 mg L(-1) propionic acid, and 0.1 mg L(-1) butyric acid, respectively, with an injection of 20 microL sample. Application of the on-line desalinization LC method is illustrated for leachate samples from a Japanese sanitary landfill.

  20. Determination of volatile fatty acids in landfill leachates by ion-exclusion chromatography.

    PubMed

    Yamamoto, Atsushi; Yasuhara, Akio; Kodama, Shuji; Matsunaga, Akinobu; Suzuki, Shigeru; Mohri, Shino; Yamada, Masato

    2004-03-01

    An ion-exclusion chromatographic method with on-line desalinization for the determination of volatile fatty acids in landfill leachates is described. Highly sensitive conductivity detection of the organic acids was achieved by using dilute p-hydroxybenzoic acid solution as an eluent. Interference with mineral acids was reduced by treatment with barium chloride solution prior to desalinization. A silver-loaded cation-exchange guard column for the desalinization was installed in series with the analytical column to avoid the contamination of organic acids. This method features detection limits of 0.01 mg L(-1) formic acid, 0.02 mg L(-1) acetic acid, 0.05 mg L(-1) propionic acid, and 0.1 mg L(-1) butyric acid, respectively, with an injection of 20 microL sample. Application of the on-line desalinization LC method is illustrated for leachate samples from a Japanese sanitary landfill. PMID:15334921

  1. [Simultaneous separation of organic acid and organic salts by electrostatic ion chromatography].

    PubMed

    Shen, G J; Yang, R F; Yu, A M

    2001-09-01

    The electrostatic ion chromatographic column was prepared by coating conjugated acid salt micelles on the surface of octadecyl silica stationary phase. Pure water was used as mobile phase, and the conductance detector was connected on-line to electrostatic ion chromatograph. The conditions under which organic acid and organic salts were detected were studied. The mechanism for the above separation is discussed. Sodium benzoate and citric acid in Lichee drink were separated and determined. This method is rapid, simple with little interference and good reproducibility without any pollution since the mobile phase is water. This is an environmental friendly analytical method. PMID:12545440

  2. A structural and thermal packaging approach for power processing units for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Sharp, G. R.

    1975-01-01

    Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near earth and planetary missions. The thruster subsystem for these missions would consist of 30 centimeter ion thrusters with Power Processor Units (PPU) clustered in assemblies of from two to ten units. A preliminary design study of the electronic packaging of the PPU has been completed at Lewis Research Center of NASA. This study evaluates designs meeting the competing requirements of low system weight and overall mission flexibility. These requirements are evaluated regarding structural and thermal design, electrical efficiency, and integration of the electrical circuits into a functional PPU layout.

  3. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  4. Quantitative Assessment of Amino Acid Damage upon keV Ion Beam Irradiation Through FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Ke, Zhigang; Su, Xi; Yuan, Hang; Zhang, Shuqing; Yu, Zengliang

    2010-06-01

    Ion beam irradiation induces important biological effects and it is a long-standing task to acquire both qualitative and quantitative assessment of these effects. One effective way in the investigation is to utilize Fourier transformation infrared (FTIR) spectroscopy because it can offer sensitive and non-invasive measurements. In this paper a novel protocol was employed to prepare biomolecular samples in the form of thin and transversely uniform solid films that were suitable for both infrared and low-energy ion beam irradiation experiments. Under the irradiation of N+ and Ar+ ion beams of 25 keV with fluence ranging from 5×1015 ions/cm2 to 2.5×10 ions/cm2, the ion radio-sensitivity of four amino acids, namely, glycine, tyrosine, methionine and phenylalanine, were evaluated and compared. The ion beam irradiation caused biomolecular decomposition accompanied by molecular desorption of volatile species and the damage was dependent on ion type, fluence, energy and types of amino acids. The effectiveness of application of FTIR spectroscopy to the quantitative assessment of biomolecular damage dose effect induced by low-energy ion radiation was thus demonstrated.

  5. Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels

    SciTech Connect

    Saraydin, D.; Karadag, E.; Gueven, O.

    1995-10-01

    In this study, acrylamide-maleic acid (AAm/MA) hydrogels in the form of rod have been prepared by {gamma}-radiation. They have been used for adsorption of some heavy metal ions such as uranium, iron, and copper. For the hydrogel containing 40 mg of maleic acid and irradiated at 3.73 kGy, maximum and minimum swellings in the aqueous solutions of the heavy metal ions have been observed with water (1480%) and the aqueous solution of iron(III) nitrate (410%), respectively. Diffusions of water and heavy metal ions onto hydrogels have been found to be of the non-Fickian type of diffusion. In experiments of uranyl ions adsorption, Type II adsorption has been found. One gram of AAa/MA hydrogels sorbed 14-86 mg uranyl ions from solutions of uranyl acetate, 14-90 mg uranyl ions from solutions of uranyl nitrate, 16-39 mg iron ions from solutions of iron(IV) nitrate, and 28-81 mg copper ions from solutions of copper acetate, while acrylamide hydrogel did not sorb any heavy metals ions.

  6. Traveling Wave Ion Mobility Mass Spectrometry and Ab Initio Calculations of Phosphoric Acid Clusters

    NASA Astrophysics Data System (ADS)

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH] z+ or [(H3PO4)n - zH] z- , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  7. Traveling wave ion mobility mass spectrometry and ab initio calculations of phosphoric acid clusters.

    PubMed

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH](z+) or [(H3PO4)n - zH](z-), with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  8. Effect of metal ions on decomposition of chlorinated organic substances by ozonation in acetic acid.

    PubMed

    Okawa, Kiyokazu; Tsai, Tsung-Yueh; Nakano, Yoichi; Nishijima, Wataru; Okada, Mitsumasa

    2005-01-01

    The objective of this study is to find metal ions that enhance the ozone decomposition of chlorinated organic substances in acetic acid. Although the pseudo-first order degradation rate constant for 2,4-DCP by ozone in acetic acid in addition of Ca2+, Mg2+, Al3+ and Fe2+ were almost the same as that with no metal ion, the degradation rate in addition of Mn2+ and Fe3+ were 2.4 and 4.5 times as high as that with no metal ion, respectively. The presence of Fe3+ enhanced the degradation of 2,4-DCP by ozone in acetic acid because Fe3+-phenolate complex which have high reactivity with ozone was produced by the reaction between 2,4-DCP and Fe3+ in acetic acid. PMID:15620744

  9. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  10. Separation of ions in acidic solution by capillary electrophoresis

    SciTech Connect

    Thornton, M.

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  11. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing-capacity streams

    SciTech Connect

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E.

    1991-01-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  12. Stream chemistry in the eastern United States, 2, Current sources of acidity in acidic and low acid-neutralizing capacity streams

    NASA Astrophysics Data System (ADS)

    Herlihy, Alan T.; Kaufmann, Philip R.; Mitch, Mark E.

    1991-04-01

    We examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid-neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small (<30 km2) forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  13. Severe leaching of calcium ions from fir needles caused by acid fog.

    PubMed

    Igawa, Manabu; Kase, Toshiyuki; Satake, Kosuke; Okochi, Hiroshi

    2002-01-01

    We have measured the components of the throughfall under fir trees (Abies firma) in the field around Mt. Oyama, where the forest appears to be declining, for the period 1994-1998. Exposure experiments of a simulated acid fog to fir twigs were performed under field conditions. There was a similarity between the acid response in the field and that in the laboratory. In both studies, the severe leaching of calcium ions from the needle surface was caused by exposure to acid fog. We also applied acid fog to fir seedlings over 1 year and observed a decrease in the growth of the seedlings due to this application in the dormant season. These results suggest that the severe leaching of calcium ions due to acid fog may cause the deficiency of calcium and be responsible for the decline of the fir trees.

  14. Potentiometric determination of free acidity in presence of hydrolysable ions and a sequential determination of hydrazine.

    PubMed

    Ganesh, S; Khan, Fahmida; Ahmed, M K; Pandey, S K

    2011-08-15

    A simple potentiometric method for the determination of free acidity in presence of hydrolysable ions and sequential determination of hydrazine is developed and described. Both free acid and hydrazine are estimated from the same aliquot. In this method, free acid is titrated with standard sodium carbonate solution after the metal ions in solutions are masked with EDTA. Once the end point for the free acid is determined at pH 3.0, an aliquot of formaldehyde is added to liberate the acid equivalent to hydrazine which is then titrated with the same standard sodium carbonate solution using an automatic titration system. The described method is simple, accurate and reproducible. This method is especially applicable to all ranges of nitric acid and heavy metal ion concentration relevant to Purex process used for nuclear fuel reprocessing. The overall recovery of nitric acid is 98.9% with 1.2% relative standard deviation. Hydrazine content has also been determined in the same aliquot with a recovery of nitric acid is 99% with 2% relative standard deviation. The major advantage of the method is that generation of corrosive analytical wastes containing oxalate or sulphate is avoided. Valuable metals like uranium and plutonium can easily be recovered from analytical waste before final disposal. PMID:21726724

  15. Folic acid intake from fortification in United States exceeds predictions.

    PubMed

    Choumenkovitch, Silvina F; Selhub, Jacob; Wilson, Peter W F; Rader, Jeanne I; Rosenberg, Irwin H; Jacques, Paul F

    2002-09-01

    In 1996, the U.S. Food and Drug Administration issued a regulation requiring that all enriched cereal-grain products be fortified with folic acid by January 1998. An average increase in folic acid intake of 100 micro g/d was projected as a result of this fortification. The objective of the present study was to estimate the effect of this fortification on the intake of folic acid and total folate, and on the prevalence of individuals with inadequate folate intake and with high folic acid intake. We used data on food and nutrient intake from 1480 individuals who participated in the 5th and 6th examinations of the Framingham Offspring Cohort Study. Fortification was instituted during the 6th examination so that 931 participants were examined before its implementation (nonexposed) and 549 after implementation (exposed). Published data on total folate in enriched cereal-grain products were used to correct folate content in these foods to reflect fortification. Among nonsupplement users, folic acid intake increased by a mean of 190 [95% confidence interval (CI): 176, 204] micro g/d (P < 0.001) and total folate intake increased by a mean of 323 (95% CI: 296-350) micro g dietary folate equivalents (DFE)/d (P < 0.001) in the exposed participants. Similar increases were seen among supplement users exposed to fortification. The prevalence of exposed individuals with total folate intake below the estimated average requirement (320 micro g DFE/d) decreased from 48.6% (95% CI: 44.2-53.1%) before fortification to 7.0% (95% CI: 3.1-10.9%) after fortification in individuals who did not use folic acid supplements. This prevalence was approximately 1% or less for users of supplements both before and after fortification. Prevalence of individuals with folic acid intake above the upper tolerable intake level (1000 micro g folic acid/d) increased only among supplement users exposed to fortification (from 1.3 to 11.3%, P < 0.001). No changes in folic acid intake were observed over time

  16. [Thermodynamic characteristics of nucleic acid complexes with silver ions].

    PubMed

    Minasian, K A; Poletaev, A I; Borob'ev, A F

    1981-01-01

    By means of mixing reaction calorimetry the enthalpy of the complexes formation between Ag+ ions and DNA and dsRNA was measured. It was shown that Ag+ ions are able to form two types of complexes (I and II) with dsRNA. Using the method of the competitive reaction with chloride ions the stability constants of complex formation were obtained for dsRNA-Ag+ complexes for different temperatures. These measurements gave the delta H and delta S values for both complexes: delta HI = -74,9 +/- 7,1 kjouls/mol, delta SI = -100.0 +/- 25.0 jouls/mol deg; delta HII = -39,8 +/- 4,2 kjouls/mol, delta SII = +2 +/- 14 jouls/mol deg. The calorimetric results of delta H determination are the same within the limits of experimental errors. The enthalpy term of dsRNA-Ag+ complexes proved to bring the main contribution into the free energy of complex formation.

  17. Structure and simulation of a Zundel ion stabilized by 8-hydroxyquinoline-5, 7 disulphonic acid

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, Hasthi Annapurna; Venkatakrishnan, Ramaseshan; Pennathur, Anuj Krishnasundar; Pennathur, Gautam

    2016-07-01

    8-hydroxyquinoline-5, 7 disulphonic was synthesized and recrystallized in methanol to strip away molecules of water. The structure of the molecule revealed that Zundel ion was stabilized in the crystal. Ab-initio molecular dynamics simulation was then carried out to understand the dynamics of proton hopping in this complex. During the course of simulation, the Zundel ion coordinates with a water molecule to form an open H7O3+ structure. This transition state structure de-solvated rapidly forming Zundel ion facilitating proton hopping in the first solvation shell. One of the sulphonic acid groups in the 5 or 7 position of the 8-hydroxyquinoline 5,7 disulphonic acid bonds with the Zundel ion favoring the proton to be transferred to the nearby water molecule through the formation of proton defects. The simulation results support the structural diffusion mechanism and that charged complex migrates through the hydrogen bond network.

  18. Ion-exclusion chromatography determination of organic acid in uridine 5'-monophosphate fermentation broth.

    PubMed

    Niu, Huanqing; Chen, Yong; Xie, Jingjing; Chen, Xiaochun; Bai, Jianxin; Wu, Jinglan; Liu, Dong; Ying, Hanjie

    2012-09-01

    Simultaneous determination of organic acids using ion-exclusion liquid chromatography and ultraviolet detection is described. The chromatographic conditions are optimized when an Aminex HPX-87H column (300 × 7.8 mm) is employed, with a solution of 3 mmol/L sulfuric acid as eluent, a flow rate of 0.4 mL/min and a column temperature of 60°C. Eight organic acids (including orotic acid, α-ketoglutaric acid, citric acid, pyruvic acid, malic acid, succinic acid, lactic acid and acetic acid) and one nucleotide are successfully quantified. The calibration curves for these analytes are linear, with correlation coefficients exceeding 0.999. The average recovery of organic acids is in the range of 97.6% ∼ 103.1%, and the relative standard deviation is in the range of 0.037% ∼ 0.38%. The method is subsequently applied to obtain organic acid profiles of uridine 5'-monophosphate culture broth fermented from orotic acid by Saccharomyces cerevisiae. These data demonstrate the quantitative accuracy for nucleotide fermentation mixtures, and suggest that the method may also be applicable to other biological samples. PMID:22634191

  19. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    PubMed

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  20. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    PubMed Central

    2011-01-01

    Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose. PMID:22074910

  1. Elucidating the Role of Ferrous Ion Cocatalyst in Enhancing Dilute Acid Pretreatment of Lignocellulosic Biomass

    SciTech Connect

    Wei, H.; Donohoe, B. S.; Vinzant, T. B.; Ciesielski, P. N.; Wang, W.; Gedvilas, L. M.; Zeng, Y.; Johnson, D. K.; Ding, S. Y.; Himmel, M. E.; Tucker, M. P.

    2011-01-01

    Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe{sup 2+} ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe{sup 2+} ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe{sup 2+} ion pretreatment, in which delamination and fibrillation of the cell wall were observed. By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  2. Reactions of Thiocyanate Ions with Acid: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1984-01-01

    Background information, procedures, and typical results are provided for a three-part experiment involving reactions of potassium thiocynate (KNCS) with sulfuric acid. The experiment represents the final stage of structured work prior to students' research projects during their final year. (JM)

  3. The effects of acid treatment and calcium ions on the solubility of concanavalin A

    NASA Technical Reports Server (NTRS)

    Cacioppo, Elizabeth; Pusey, Marc L.

    1992-01-01

    The effects of acid treatment (which removes Mn and Ca ions) and Ca(2+) ions on the solubility of jack-bean-meal concanavalin A were investigated using two techniques: the sitting drop technique and the microcolumn technique. It was found that the solubility of concanavalin A varied with the protein preparation procedures and with measurement techniques. Addition of Ca(2+) resulted in greatly lowered solubilities compared with the acid treated protein. The sitting drop solubilities for the recalcified protein agreed better with those reported by Mikol and Giege (1989) than with solubilities determined from column data.

  4. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  5. Protein-gold nanoclusters for identification of amino acids by metal ions modulated ratiometric fluorescence.

    PubMed

    Wang, Min; Mei, Qingsong; Zhang, Kui; Zhang, Zhongping

    2012-04-01

    Here we report that the dual fluorescence emissions from protein-gold (Au) nanoclusters can greatly be modulated by metal ions and the resultant fluorescence ratiometric responses provide a novel sensory method for the identification of amino acids. The protein-gold (Au) nanoclusters were simply synthesized by the reduction of chloroauric acid with bovine serum albumin (BSA), which exhibit dual emissions: the blue at 425 nm from the oxides of BSA, and the red at 635 nm from Au nanoclusters. It has been demonstrated that different metal ions react with BSA-Au nanoclusters and thus greatly affect the two emissions in different ways by fluorescence enhancement or quenching. Interestingly, the addition of amino acids leads to fluorescence ratiometric changes through the interactions with the bound metal ions. When BSA-Au nanocluster probes modulated by four different metal ions were used together to construct a sensor array, different amino acids were clearly discriminated by the distinctive patterns of four ratiometric fluorescence responses. Results and methods reported here provide a unique strategy for the determination of amino acids.

  6. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    PubMed

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).

  7. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    PubMed

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice

  8. Standard addition method for free acid determination in solutions with hydrolyzable ions

    SciTech Connect

    Baumann, E.W.

    1981-01-01

    The free acid content of solutions containing hydrolyzable ions has been determined potentiometrically by a standard addition method. Two increments of acid are added to the sample in a 1M potassium thiocyanate solution. The sample concentration is calculated by solution of three simultaneous Nernst equations. The method has been demonstrated for solutions containing Al/sup 3 +/, Cr/sup 3 +/, Fe/sup 3 +/, Ni/sup 2 +/, Th/sup 4 +/, or UO/sub 2//sup 2 +/ with a metal-to-acid ratio of < 2.5. The method is suitable for determination of 10 ..mu..moles acid in 10 mL total volume. The accuracy is verifiable by reasonable agreement of the Nerst slopes found in the presence and absence of hydrolyzable ions. The relative standard deviation is < 2.5 percent.

  9. Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels

    PubMed Central

    Birdsong, William T.; Fierro, Leonardo; Williams, Frank G.; Spelta, Valeria; Naves, Ligia A.; Knowles, Michelle; Marsh-Haffner, Josephine; Adelman, John P.; Almers, Wolfhard; Elde, Robert P.; McCleskey, Edwin W.

    2010-01-01

    SUMMARY Ischemic pain – examples include the chest pain of a heart attack and the leg pain of a 30 second sprint – occurs when muscle gets too little oxygen for its metabolic need. Lactic acid cannot act alone to trigger ischemic pain because the pH change is so small. Here we show that another compound released from ischemic muscle, ATP (adenosine tri-phosphate), works together with acid by increasing the pH sensitivity of ASIC3 (acid sensing ion channel #3), the molecule used by sensory neurons to detect lactic acidosis. Our data argue that ATP acts by binding to P2X receptors that form a molecular complex with ASICs; the receptor on sensory neurons appears to be P2X5, an electrically quiet ion channel. Coincident detection of acid and ATP should confer sensory selectivity for ischemia over other conditions of acidosis. PMID:21092862

  10. Influence of ions on aqueous acid-base reactions.

    PubMed

    Cox, M Jocelyn; Siwick, Bradley J; Bakker, Huib J

    2009-01-12

    We study the effects of bromide salts on the rate and mechanism of the aqueous proton/deuteron-transfer reaction between the photoacid 8-hydroxy-1,3,6-pyrenetrisulfonic acid (HPTS) and the base acetate. The proton/deuteron release is triggered by exciting HPTS with 400 nm femtosecond laser pulses. Probing the electronic and vibrational resonances of the photoacid, the conjugate photobase, the hydrated proton/deuteron and the accepting base with femtosecond visible and mid-infrared pulses monitors the proton transfer. Two reaction channels are identified: 1) direct long-range proton transfer over hydrogen-bonded water bridges that connect the acid and base and 2) acid dissociation to produce fully solvated protons followed by proton scavenging from solution by acetate. We observe that the addition of salt affects the long-range reaction pathway, and reduces both the rate at which protons are released to solution by HPTS and the rate at which solvated protons are scavenged from solution by acetate. We study the dependence of these effects on the nature and concentration of the dissolved salt.

  11. Bactericidal effects of acidic electrolyzed water on the dental unit waterline.

    PubMed

    Kohno, Shinya; Kawata, Toshitsugu; Kaku, Masato; Fuita, Tadashi; Tsutsui, Keisuke; Ohtani, Junji; Tenjo, Kaoru; Motokawa, Masahide; Tohma, Yuiko; Shigekawa, Mao; Kamata, Hiroko; Tanne, Kazuo

    2004-04-01

    Many studies have been conducted in the United States regarding the microbial contamination of dental unit waterline, but not in Japan. Recently, acidic electrolyzed water has been used in the medical and dental fields. In this study, we investigated the bactericidal effects of the temporary inflow of acidic electrolyzed water on microbial contamination of the dental unit waterline. First, in order to observe the daily bacterial contamination of the dental unit waterline, water samples were collected at the end of handpieces and three-way syringes before the inflow of acidic electrolyzed water. They were cultured to detect viable bacteria. Later, the inflow of acidic electrolyzed water was conducted through the piping box of the dental unit. Before starting operation on next day, water samples were collected and cultured, as described above. The mean viable bacteria count was 910 -/+ 190 CFU/ml at the end of handpieces, and 521 -/+ 116 CFU/ml at the end of three-way syringes before the inflow of acidic electrolyzed water. However, bacteria were detected in only small numbers at the end of handpieces and three-way syringes on the next day. These results indicated that acidic electrolyzed water could be applied as an appropriate measure against bacterial contamination of the dental unit waterline.

  12. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  13. Dynamics of lithium ions in borotellurite mixed former glasses: Correlation between the characteristic length scales of mobile ions and glass network structural units

    SciTech Connect

    Shaw, A.; Ghosh, A.

    2014-10-28

    We have studied the mixed network former effect on the dynamics of lithium ions in borotellurite glasses in wide composition and temperature ranges. The length scales of ion dynamics, such as characteristic mean square displacement and spatial extent of sub-diffusive motion of lithium ions have been determined from the ac conductivity and dielectric spectra, respectively, in the framework of linear response theory. The relative concentrations of different network structural units have been determined from the deconvolution of the FTIR spectra. A direct correlation between the ion dynamics and the characteristic length scales and the relative concentration of BO{sub 4} units has been established for different compositions of the borotellurite glasses.

  14. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  15. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  16. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  17. Disulfate ion as an intermediate to sulfuric Acid in Acid rain formation.

    PubMed

    Chang, S G; Littlejohn, D; Hu, K Y

    1987-08-14

    The oxidation of the bisulfite ion by dissolved oxygen to produce sulfate ion involves the formation of a previously undetected intermediate. This intermediate has a fairly strong Raman band at 1090 wave numbers and a weak Raman band at 740 wave numbers, both of which are probably due to sulfur-oxygen stretches. The intermediate is proposed to be the disulfate ion S(2)O(7)(2-), which hydrolyzes into H(+) and either SO(4)(2-) or HSO(4)(2-) with a half-life of about 52 seconds at 25 degrees C.

  18. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting.

    PubMed

    Ajji, Zaki; Ali, Ali M

    2010-01-15

    Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions. PMID:19836882

  19. Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons

    NASA Astrophysics Data System (ADS)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2014-12-01

    For the comprehensive description of the acidity of a two-phase ion-exchange system, we should analyze two curves of the ionite titration by a strong base in water and salt solutions and find the quantitative relationships between the corresponding pH characteristics. An idea of the three-dimensional field of acidity of ion-exchange systems (the phase space of the soil acidity characteristics) and its three two-dimensional projections is suggested. For soils, three interrelated characteristics—the pH values of the salt and water extracts and the degree of base saturation—can serve as spatial coordinates for the acidity field. Representation of factual data in this field makes it possible to compare and analyze the acidity characteristics of different soils and soil horizons and to determine their specific features. Differentiation of the field into separate volumes allows one to present the data in a discrete form. We have studied the distribution patterns of the groups of soil horizons from Leningrad oblast and other regions of northwestern Russia in the acidity field. The studied samples are grouped in different partially overlapping areas of the projections of the acidity field. The results of this grouping attest to the correctness of the modern classification of Russian soils. A notion of the characteristic soil area in the acidity field is suggested; it can be applied to all the soils with a leaching soil water regime.

  20. Formation and Fragmentation of Unsaturated Fatty Acid [M - 2H + Na]- Ions: Stabilized Carbanions for Charge-Directed Fragmentation

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Kirk, Benjamin B.; Altvater, Jens; Blanksby, Stephen J.; Nette, Geoffrey W.

    2013-12-01

    Fatty acids are long-chain carboxylic acids that readily produce [M - H]- ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H + FeIICl]-. In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H + Na]-). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H + NaF]- ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H + Na]- ion via the neutral loss of HF. (2) Direct formation of the [M - 2H + Na]- ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H + Na]- ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.

  1. Formation and fragmentation of unsaturated fatty acid [M - 2H + Na]- ions: stabilized carbanions for charge-directed fragmentation.

    PubMed

    Thomas, Michael C; Kirk, Benjamin B; Altvater, Jens; Blanksby, Stephen J; Nette, Geoffrey W

    2014-02-01

    Fatty acids are long-chain carboxylic acids that readily produce [M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H  +  Fe(II)Cl](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H  +  Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H  +  NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H  +  Na](-) ion via the neutral loss of HF. (2) Direct formation of the [M - 2H  +  Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H  +  Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F(-) and (-)OH), is the lowest energy dissociation pathway. PMID:24338213

  2. IMPROVEMENT UPON THE CARRIER PRECIPITATION OF PLUTONIUM IONS FROM NITRIC ACID SOLUTIONS

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-23

    A process is reported for improving the removal of plutonlum by carrier precipitation by the addition of nitrite ions to a nitrlc acid solutlon of neutronirradiated unanium so as to destroy any hydrazine that may be present in the solution since the hydrazine tends to complex the tetravalent plutonium and prevents removal by the carrier precipltate, such as bismuth phospbate.

  3. Role of ion transporters in the bile acid-induced esophageal injury.

    PubMed

    Laczkó, Dorottya; Rosztóczy, András; Birkás, Klaudia; Katona, Máté; Rakonczay, Zoltán; Tiszlavicz, László; Róka, Richárd; Wittmann, Tibor; Hegyi, Péter; Venglovecz, Viktória

    2016-07-01

    Barrett's esophagus (BE) is considered to be the most severe complication of gastro-esophageal reflux disease (GERD), in which the prolonged, repetitive episodes of combined acidic and biliary reflux result in the replacement of the squamous esophageal lining by columnar epithelium. Therefore, the acid-extruding mechanisms of esophageal epithelial cells (EECs) may play an important role in the defense. Our aim was to identify the presence of acid/base transporters on EECs and to investigate the effect of bile acids on their expressions and functions. Human EEC lines (CP-A and CP-D) were acutely exposed to bile acid cocktail (BAC) and the changes in intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i) were measured by microfluorometry. mRNA and protein expression of ion transporters was investigated by RT-PCR, Western blot, and immunohistochemistry. We have identified the presence of a Na(+)/H(+) exchanger (NHE), Na(+)/HCO3 (-) cotransporter (NBC), and a Cl(-)-dependent HCO3 (-) secretory mechanism in CP-A and CP-D cells. Acute administration of BAC stimulated HCO3 (-) secretion in both cell lines and the NHE activity in CP-D cells by an inositol triphosphate-dependent calcium release. Chronic administration of BAC to EECs increased the expression of ion transporters compared with nontreated cells. A similar expression pattern was observed in biopsy samples from BE compared with normal epithelium. We have shown that acute administration of bile acids differently alters ion transport mechanisms of EECs, whereas chronic exposure to bile acids increases the expression of acid/base transporters. We speculate that these adaptive processes of EECs represent an important mucosal defense against the bile acid-induced epithelial injury. PMID:27198194

  4. Direct sensing of total acidity by chronopotentiometric flash titrations at polymer membrane ion-selective electrodes.

    PubMed

    Gemene, Kebede L; Bakker, Eric

    2008-05-15

    Polymer membrane ion-selective electrodes containing lipophilic ionophores are traditionally interrogated by zero current potentiometry, which, ideally, gives information on the sample activity of ionic species. It is shown here that a discrete cathodic current pulse across an H (+)-selective polymeric membrane doped with the ionophore ETH 5294 may be used for the chronopotentiometric detection of pH in well-buffered samples. However, a reduction in the buffer capacity leads to large deviations from the expected Nernstian response slope. This is explained by the local depletion of hydrogen ions at the sample-membrane interface as a result of the galvanostatically imposed ion flux in direction of the membrane. This depletion is found to be a function of the total acidity of the sample and can be directly monitored chronopotentiometrically in a flash titration experiment. The subsequent application of a baseline potential pulse reverses the extraction process of the current pulse, allowing one to interrogate the sample with minimal perturbation. In one protocol, total acidity is found to be proportional to the magnitude of applied current at the flash titration end point. More conveniently, the square root of the flash titration end point time observed at a fixed applied current is a linear function of the total acid concentration. This suggests that it is possible to perform rapid localized pH titrations at ion-selective electrodes without the need for volumetric titrimetry. The technique is explored here for acetic acid, MES and citric acid with promising results. Polymeric membrane electrodes based on poly(vinyl chloride) plasticized with o-nitrophenyl octyl ether in a 1:2 mass ratio may be used for the detection of acids of up to ca. 1 mM concentration, with flash titration times on the order of a few seconds. Possible limitations of the technique are discussed, including variations of the acid diffusion coefficients and influence of electrical migration.

  5. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. PMID:25084579

  6. Hydrogen-ion titrations of amino acids and proteins in solutions containing concentrated electrolyte

    SciTech Connect

    Fergg, F.; Kuehner, D.E.; Blanch, H.W.; Prausnitz, J.M.

    1994-12-01

    This report describes a first attempt to quantify the net charge as a function of solution pH for lysozyme and {alpha}-chymotrypsin at 0.1 M, 1.0 M and 3.0 M ionic strength, (IS). The calculations are based on the residue (titratable group) pK{sub a}`s in the amino-acid sequence of the protein. To determine these pK{sub a}`s, a simple theory was used which assumes that the pK{sub a}`s are independent from each other in the protein and are equal to their pK{sub a} values in free amino-acid solution (Independent-Site Theory, IST). Residue pK{sub a}`s were obtained from amino-acid hydrogen-ion titrations at three different KCl concentrations corresponding to 0.1M, 1.0M and 3.0M ionic strength. After construction of a suitable apparatus, the experimental procedure and data reduction were computerized to perform a large number of titrations. Most measured pK{sub a}`s showed high reproducibility (the difference of pK{sub a} values observed between two experiments was less than 0.05). For IS = 0.1M, observed pK{sub a}`s agreed with literature values to within a few hundredths of a pH unit. Furthermore, the ionic-strength dependence of the pK{sub a}`s followed the trends reported in the literature, viz. pK{sub a} values decrease with increasing ionic strength until they reach a minimum at about IS = 0.5M. At still higher IS, pK{sub a}`s increase as the ionic strength rises to 3M. The known pK{sub a}`s of all titratable groups in a protein were used with the IST to give a first approximation of how the protein net charge varies with pH at high ionic strength. A comparison of the titration curves based on the IST with experimental lysozyme and {alpha}-chymotrypsin titration data indicates acceptable agreement at IS = 0.1M. However, comparison of measured and calculated titration curves at IS = 1M and IS = 3M indicates only quantitative agreement.

  7. Determination of metal ions by high-performance liquid chromatographic separation of their hydroxamic acid chelates

    SciTech Connect

    Palmieri, M.D.; Fritz, J.S.

    1987-09-15

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV), Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.

  8. Influence of phosphate ions on buffer capacity of soil humic acids

    NASA Astrophysics Data System (ADS)

    Boguta, P.; Sokołowska, Z.

    2012-02-01

    The object of this study was to determine change of natural buffer capacity of humic acids by strong buffering agents, which were phosphate ions. Studies were carried out on the humic acids extracted from peat soils. Additional information was obtained by determination of water holding capacity, density, ash and pH for peats and optical parameter Q4/6 for humic acids. Humic acid suspensions exhibited the highest buffer properties at low pH and reached maximum at pH ~ 4. Phosphates possessed buffer properties in the pH range from 4.5 to 8.0. The maximum of buffering was at pH~6.8 and increased proportionally with an increase in the concentration of phosphate ions. The study indicated that the presence of phosphate ions may strongly change natural buffer capacity of humic acids by shifting buffering maximum toward higher pH values. Significant correlations were found for the degree of the secondary transformation with both the buffer capacity and the titrant volume used during titration.

  9. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode

    NASA Astrophysics Data System (ADS)

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.

  10. [Determination of trace haloacetic acids in drinking water using ion chromatography coupled with solid phase extraction].

    PubMed

    Sun, Yingxue; Huang, Jianjun; Gu, Ping

    2006-05-01

    The combined solid phase extraction (SPE)-ion chromatography (IC) method was developed for the analysis of trace haloacetic acids (HAAs) in drinking water. The tested HAAs included monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA). For trace determination of HAAs in real drinking water samples, conditions of LiChrolut EN SPE cartridge were investigated for HAAs preconcentration and matrix elimination. Elution was carried out by 2 mL of sodium hydroxide (10 mmol/L) with the flow rate of 2 mL/min. The Dionex IonPac AS16 column (250 mm x 4 mm i. d.), a high capacity and hydroxide-selective anion-exchange column designed for the determination of polarizable anions, was chosen for chromatographic separation. HAAs were analyzed with a concentration gradient of NaOH with the flow rate of 0.8 mL/min and detected by suppressed conductivity. A 500 microL sample loop was used. The detection limits of this SPE-IC method for MCAA, DCAA, DBAA and TCAA were 0.38-1.69 microg/L and MBAA was 12.5 microg/L under 25-fold preconcentration. The results demonstrate that the method is suitable for the analysis of trace haloacetic acids in drinking water.

  11. [Ion pair-HPLC of some aromatic amino- and hydroxycarboxylic acids].

    PubMed

    Jira, T; Beyrich, T; Reinhardt, K

    1988-06-01

    Various factors influencing the ion-pair-HPLC separation of some aromatic amino- and hydroxycarbon acids were described and discussed. Distinct effects of the ion pair formation of organic acids with quarternary alkylammonium salts (CTAB) are recognized on condition that the carboxylic group is not blocked by intramolecular H-bonding or partial betain structure. If the carboxylic group is unconnected the retention time increases depending on the pka of the acid with increasing pH if no complete ionization exists. In order to separate similar compounds at low retention time with distinct resolution an organic modifier of suitable strength and high selectivity have to be added to the mobile phase. PMID:3212029

  12. Effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Hirai, Nobumitsu; Yamamoto, Yui

    2015-10-01

    The effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution has been investigated. It was found that "the specific anodic oxidation peak" appears at the cathodic scan in cyclic voltammogram of lead electrode in sulfuric acid solution containing Li2SO4, K2SO4, Na2SO4, Rb2SO4, or Cs2SO4. The height of the specific anodic oxidation peak varies with the alkaline sulfate in the solution; K2SO4 >> Na2SO4 > Cs2SO4 > Rb2SO4 > Li2SO4. It should be note that alkaline ions exist in lead sulfate formed on lead electrode in sulfuric acid solution containing potassium sulfate when the electrode was immersed in the solution at the rest potential for more than 1 h.

  13. Acid Rain and Friendly Neighbors. The policy dispute between Canada and the United States

    SciTech Connect

    Schmandt, J.; Roderick, H.

    1986-01-01

    Acid Rain and Friendly Neighbors is a source book that summarizes the results of the various studies of acid rain and traces the issues historically. Contents: Part One: The Search for a Bilateral Agreement. Acid rain is different; The nature and effects of acid rain: a comparison of assessments; U.S.-Canadian negotiations on acid rain; Part Two: Domestic Policy Development. Canada's acid rain policy: federal and provincial roles; The U.S. policy response to acid rain; Environmental and economic interests in Canada and the United States; Part Three: Supportive Structures. The international joint commission: the role it might play; Lessons from the Great Lakes water quality agreements; Supporting structures for resolving environmental disputes among friendly neighbors.

  14. Effects of nitrogen oxides, sulfur dioxide, and ferric ions on the corrosion of mild steel in concentrated sulfuric acid

    NASA Astrophysics Data System (ADS)

    Andersen, Terrell N.; Vanorden, Naola; Schlitt, W. Joseph

    1980-08-01

    Effects of nitrate ions, nitrous acid, sulfur dioxide, and ferric ions on the corrosion of mild steel in unstirred, concentrated sulfuric acid were determined in laboratory tests. Nitrate and nitrous acid at levels up to 1000 ppm accelerate corrosion. At concentrations greater than 1000 ppm nitrate passivates the steel. Sulfur dioxide and ferric ions have no detectable influence on the corrosion. Reaction mechanisms are presented to explain the observed effects. The impact of nitrogen oxides on the storage and handling of sulfide smelter by-product acid is discussed.

  15. Proton and metal ion binding to natural organic polyelectrolytes-II. Preliminary investigation with a peat and a humic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.

  16. The Oxidation of Ascorbic Acid by Hexacyanoferrate(III) Ion in Acidic Aqueous Media.

    ERIC Educational Resources Information Center

    Martins, Luis J. A.; da Costa, J. Barbosa

    1988-01-01

    Describes a kinetic and mechanistic investigation of ascorbic acid by a substitution-inert complex in acidic medium suitable for the undergraduate level. Discusses obtaining the second order rate constant for the rate determining step at a given temperature and comparison with the value predicted on the basis of the Marcus cross-relation. (CW)

  17. HPLC-MS investigations of acidic contaminants in ammunition wastes using volatile ion-pairing reagents (VIP-LC-MS).

    PubMed

    Schmidt, Torsten C; Buetehorn, Ulf; Steinbach, Klaus

    2004-02-01

    In order to hyphenate ion pairing chromatography and MS detection we used several types of formates as volatile ion pairing reagents (IPRs) instead of common tetraalkylammonium salts, as these salts tend to precipitate in the ion source. The formates were prepared by mixing formic acid with the corresponding amine. Both tributyl- and trihexylammonium formate proved to be valuable IPRs for the separation of acidic compounds like nitrobenzoic acids, nitrobenzenesulfonic acids and nitrated phenols. Due to the weaker retention of the ion-pairs with trialkylammonium formates compared with tetraalkylammonium compounds, either less organic modifier or a higher concentration of the IPR had to be used. With negative atmospheric pressure chemical ionization mass spectrometry and electrospray ionization mass spectrometry it was possible to unambiguously identify several acidic oxidation products of 2,4,6-trinitrotoluene (TNT) in ammunition wastewater and soil extracts. 2-amino-4,6-dinitrobenzoic acid was often found to be the main metabolite of TNT in such water samples.

  18. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  19. Formation of complex precursors of amino acids by irradiation of simulated interstellar media with heavy ions

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Suzuki, N.; Taniuchi, T.; Kaneko, T.; Yoshida, S.

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as meteorites and comets Amino acids were identified in the extracts from Murchison meteorite and other carbonaceous chondrites It is hypothesized that these compounds are originally formed in ice mantles of interstellar dusts ISDs in molecular clouds by cosmic rays and ultraviolet light UV Formation of amino acid precursors by high energy protons or UV irradiation of simulated ISDs was reported by several groups The amino acid precursors were however not well-characterized We irradiated a frozen mixture of methanol ammonia and water with heavy ions to study possible organic compounds abiotically formed in molecular clouds by cosmic rays A mixture of methanol ammonia and water was irradiated with carbon beams 290 MeV u from a heavy ion accelerator HIMAC of National Institute of Radiological Sciences Japan Irradiation was performed either at room temperature liquid phase or at 77 K solid phase The products were characterized by gel filtration chromatography GFC FT-IR pyrolysis PY -GC MS etc Amino acids were analyzed by HPLC and GC MS after acid hydrolysis or the products Amino acids such as glycine and alanine were identified in the products in both the cases of liquid phase and solid phase irradiation Energy yields G-values of glycine were 0 014 liquid phase and 0 007 solid phase respectively Average molecular weights of the products were estimated as to 2300 in both the case Aromatic hydrocarbons N-containing heterocyclic

  20. The crystal structure of plant acetohydroxy acid isomeroreductase complexed with NADPH, two magnesium ions and a herbicidal transition state analog determined at 1.65 A resolution.

    PubMed Central

    Biou, V; Dumas, R; Cohen-Addad, C; Douce, R; Job, D; Pebay-Peyroula, E

    1997-01-01

    Acetohydroxy acid isomeroreductase catalyzes the conversion of acetohydroxy acids into dihydroxy valerates. This reaction is the second in the synthetic pathway of the essential branched side chain amino acids valine and isoleucine. Because this pathway is absent from animals, the enzymes involved in it are good targets for a systematic search for herbicides. The crystal structure of acetohydroxy acid isomeroreductase complexed with cofactor NADPH, Mg2+ ions and a competitive inhibitor with herbicidal activity, N-hydroxy-N-isopropyloxamate, was solved to 1.65 A resolution and refined to an R factor of 18.7% and an R free of 22.9%. The asymmetric unit shows two functional dimers related by non-crystallographic symmetry. The active site, nested at the interface between the NADPH-binding domain and the all-helical C-terminus domain, shows a situation analogous to the transition state. It contains two Mg2+ ions interacting with the inhibitor molecule and bridged by the carboxylate moiety of an aspartate residue. The inhibitor-binding site is well adjusted to it, with a hydrophobic pocket and a polar region. Only 24 amino acids are conserved among known acetohydroxy acid isomeroreductase sequences and all of these are located around the active site. Finally, a 140 amino acid region, present in plants but absent from other species, was found to make up most of the dimerization domain. PMID:9218783

  1. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    NASA Astrophysics Data System (ADS)

    Popescu (Hoştuc), Ioana-Carmen; Petru, Filip; Humelnicu, Ionel; Mateescu, Marina; Militaru, Ecaterina; Humelnicu, Doina

    2014-10-01

    Radioactive pollution is a significant threat for the people’s health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives’ utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.

  2. Modification of Hydroxyapatite with Ion-Selective Complexants: 1-Hydroxyethane-1,1-diphosphonic Acid

    PubMed Central

    2015-01-01

    Hydroxyapatite (HAP) was modified with 1-hydroxyethane-1,1-diphosphonic acid (HEDP), and its effect on divalent metal ion binding was determined. HAP was synthesized from calcium hydroxide and phosphoric acid. After calcination, it was modified with HEDP, and the influence of time and temperature on the modification was investigated. HEDP incorporation increased as its initial solution concentration increased from 0.01 to 0.50 M. Unmodified and modified HAP were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and specific surface area analysis. Ca/P ratios, acid capacities, and phosphorus elemental analyses gave the effect of modification on composition and surface characteristics. A high reaction temperature produced new phosphonate bands at 993, 1082, and 1144 cm–1 that indicated the presence of HEDP. HAP modification at a high temperature–long reaction time had the highest HEDP loading and gave the sharpest XRD peaks. The emergence of new HAP–HEDP strands was observed in SEM images for treated samples while EDS showed high phosphorus contents in these strands. Modified HAP had a high acid capacity from the additional P–OH groups in HEDP. The P(O)OH groups maintain their ability to bind metal ions within the HAP matrix: contacting the modified HAP with 10–4 N nitrate solutions of five transition metal ions gives an affinity sequence of Pb(II) > Cd(II) > Zn(II) > Ni(II) > Cu(II). This result is comparable to that of commercially available di(2-ethylhexyl)phosphoric acid, a common solvent extractant, and the trend is consistent with the Misono softness parameter of metal ion polarizabilities. PMID:25678741

  3. Water ICE: Ion Exclusion Chromatography of Very Weak Acids with a Pure Water Eluent.

    PubMed

    Liao, Hongzhu; Shelor, C Phillip; Dasgupta, Purnendu K

    2016-05-01

    Separation of ions or ionizable compounds with pure water as eluent and detecting them in a simple fashion has been an elusive goal. It has been known for some time that carbonic acid can be separated from strong acids by ion chromatography in the exclusion mode (ICE) using only water as the eluent. The practice of water ICE was shown feasible for very weak acids like silicate and borate with a dedicated element specific detector like an inductively coupled plasma mass spectrometer (ICPMS), but this is rarely practical in most laboratories. Direct conductometric detection is possible for H2CO3 but because of its weak nature, not especially sensitive; complex multistep ion exchange methods do not markedly improve this LOD. It will clearly be impractical in acids that are weaker still. By using a permeative amine introduction device (PAID, Anal. Chem. 2016 , 88 , 2198 - 2204 ) as a conductometric developing agent, we demonstrate that a variety of weak acids (silicate, borate, arsenite, cyanide, carbonate, and sulfide) cannot only be separated on an ion exclusion column, they can be sensitively detected (LODs 0.2-0.4 μM). We observe that the elution order is essentially the same as that on a nonfunctionalized poly(styrene-divinylbenzene) column using 1-10% acetonitrile as eluent and follows the reverse order of the polar surface area (PSA) of the analyte molecules. PSA values have been widely used to predict biological transport of pharmaceuticals across a membrane but never to predict chromatographic behavior. We demonstrate the application of the technique by measuring the silicate and borate depth profiles in the Pacific Ocean; the silicate results show an excellent match with results from a reference laboratory. PMID:27075932

  4. Complexation of Hg (II) ions with humic acids of tundra soils

    NASA Astrophysics Data System (ADS)

    Vasilevich, Roman

    2013-04-01

    Humic acids (HA) play an important role in processes of heavy metals migration, controlling their geochemical streams in environment. Accumulative and detoxification abilities of HA to heavy metals are realized by means of formation of steady complexes salycylate and pyrocatechin types. Modern researches show that HA of the Arctic and Subarctic areas are poorly enriched by aromatic frames, so and metalbinding centres. The work purpose is to study interaction mechanisms of Hg (II) ions with HA and to define tread possibilities of a tundra soils humic acids. It is established that binding ability of Hg (II) ions depends on concentration of an element, on quantity of functional groups in peripheral and nuclear parts of HA molecule as well as on a solution pH. coomplexation proceeds at pH 2.5-3.5 efficiently. On the basis of kinetic models it is shown that HA interaction with Hg (II) ions, at microconcentration of a pollutant (0.025-5.0 mkmol/dm3), has a zero order of reaction. Rate of a reaction does not depend on initial components concentration and is defined by process of Hg (II) ions diffusion to organic ligands. High correlation of a HA sorption capacity to Hg (II) ions is observed: with the nitrogen content and maintenance of amino groups (according to a 13C-NMR, element composition) and negative correlation - with degree of HA aromaticity. It testifies to primary binding of Hg (II) ions by amino-acid fragments of a HA molecule peripheral part. When concentration of Hg (II) ions increases, binding proceeds on carboxylic and phenolic groups of a molecule nuclear part. Higher order of kinetic models reaction and FTIR spectroscopy data testify to it. Comparison of FTIR spectra of HA preparations and mercury humates, shows that Hg (II) ions binding in humate complexes is carried out mainly by -COOH. Reduction of a spectral line intensity not ionized -COOH at 1700-1720 sm-1 and intensity increases of dissymetric valency vibration at 1610-1650 sm-1 diagnose increase

  5. Development Status of a Power Processing Unit for Low Power Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.; Lafontaine, Eric M.

    2000-01-01

    An advanced breadboard Power Processing Unit (PPU) for a low power ion propulsion system incorporating mass reduction techniques was designed and fabricated. As a result of similar output current requirements, the discharge supply was also used to provide the neutralizer heater and discharge heater functions by using three relays to switch the output connections. This multi-function supply reduces to four the number of power converters needed to produce the required six electrical outputs. Switching frequencies of 20 and 50 kHz were chosen as a compromise between the size of the magnetic components and switching losses. The advanced breadboard PPU is capable of a maximum total output power of 0.47 kW. Its component mass is 0.65 kg and its total mass 1.9 kg. The total efficiency at full power is 0.89.

  6. Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid.

    PubMed

    Yan, Bo; Tao, Li-Zhi; Liang, Yu; Xu, Bo-Qing

    2014-06-01

    Gas-phase dehydration of lactic acid (LA) to acrylic acid (AA) was investigated over alkali-exchanged β zeolite (M(x)Na(1-x)β, M=Li(+), K(+), Rb(+), or Cs(+)) of different exchange degrees (x). The reaction was conducted under varying conditions to understand the catalyst selectivity for AA production and trends of byproduct formation. The nature and exchange degree of M(+) were found to be critical for the acid-base properties and catalytic performance of the exchanged zeolite. K(x)Na(1-x)β of x=0.94 appeared to be the best performing catalyst whereas Li(x)Na(1-x)β and Naβ were the poorest in terms of AA selectivity and yield. The AA yield as high as 61 mol % (selectivity: 64 mol %) could be obtained under optimized reaction conditions for up to 8 h over the best performing K0.94Na0.06β. The acid and base properties of the catalysts were probed, respectively by temperature-programmed desorption (TPD) of adsorbed NH3 and CO2, and were related to the electrostatic potentials of the alkali ions in the zeolite, which provided a basis for the discussion of the acid-base catalysis for sustainable AA formation from LA.

  7. Proposal for a novel method of precisely determining the atomic mass unit by the accumulation of ions

    NASA Astrophysics Data System (ADS)

    Gläser, Michael

    1991-10-01

    An experiment for direct measurement of the atomic mass unit is proposed. A mononuclidic ion flux is collected and accumulated to an amount that can be weighed with high accuracy. Simultaneously, the ion current is measured and integrated. By means of voltage and resistance references based on the Josephson and the quantum Hall effect, the mass is then related to atomic mass by frequency counting over a certain time interval. This experiment may enable a new, physical definition of the kilogram.

  8. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  9. Fermentation and recovery of glutamic acid from palm waste hydrolysate by Ion-exchange resin column.

    PubMed

    Das, K; Anis, M; Azemi, B M; Ismail, N

    1995-12-01

    Glutamic acid produced from palm waste hydrolysate by fermentation with Brevibacterium lactofermentum ATCC 13869 is produced with a remarkably high yield compared with that produced from pure glucose as a carbon source. The produce yield is 70 g/L with glucose, wherease, when palm waste hydrolysate is the fermentation medium in the same bioreactor under same conditions, it is 88 g/L. The higher yield may be attributed to the fact that this organism has the ability to convert sugars other than only glucose present in the hydrolysate. Bioreactor conditions most conducive for maximum production are pH 7.5, temperature of 30 degrees rmentation period of 48 h, inoculum size 6%, substrate concentration of 10 g per 100 mL, yeast extract 0.5 g per 100 mL as a suitable N source, and biotin at a concentration of 10 pg/L. Palm waste hydrolysate used in this study was prepared by enzymic saccharification of treated palm press fiber under conditions that yielded a maximum of 30 g/L total reducing sugars. Glutamic acid from fermentation broth was recovered by using a chromatographic column (5cm x 60 cm) packed with a strong ion-exchange resin. The filtered broth containing glutamic acid and other inorganic ions was fed to the fully charged column. The broth was continuously recycled at a flow rate of 50 mL/min (retention time of 55 min) until glutamic acid was fully adsorbed on the column leaving other ions in the effluent. Recovery was done by eluting with urea and sodium hydroxide for total displacement of glutamic acid from the resin. The eluent containing 88 g/L of glutamic acid was concentrated by evaporation to obtain solid crystals of the product. (c) 1995 John Wiley & Sons, Inc.

  10. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  11. Micro/nanofabrication of poly(L-lactic acid) using focused ion beam direct etching

    NASA Astrophysics Data System (ADS)

    Oyama, Tomoko Gowa; Hinata, Toru; Nagasawa, Naotsugu; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi; Taguchi, Mitsumasa

    2013-10-01

    Micro/nanofabrication of biocompatible and biodegradable poly(L-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachment properties.

  12. Fragmentation of amino acids induced by collisions with low-energy highly charged ions

    NASA Astrophysics Data System (ADS)

    Piekarski, D. G.; Maclot, S.; Domaracka, A.; Adoui, L.; Alcamí, M.; Rousseau, P.; Díaz-Tendero, S.; Huber, B. A.; Martín, F.

    2014-04-01

    Fragmentation of amino acids NH2-(CH2)n-COOH (n=1 glycine; n=2 β-alanine and n=3 γ-aminobutyric acid GABA) following collisions with slow highly charged ions has been studied in the gas phase by a combined experimental and theoretical approach. In the experiments, a multi-coincidence detection method was used to deduce the charge state of the molecules before fragmentation. Quantum chemistry calculations have been carried out in the basis of the density functional theory and ab initio molecular dynamics. The combination of both methodologies is essential to unambiguously unravel the different fragmentation pathways.

  13. Permeating protons contribute to tachyphylaxis of the acid-sensing ion channel (ASIC) 1a.

    PubMed

    Chen, Xuanmao; Gründer, Stefan

    2007-03-15

    The homomeric acid-sensing ion channel 1a (ASIC1a) is a H+-activated ion channel with important physiological functions and pathophysiological impact in the central nervous system. Here we show that homomeric ASIC1a is distinguished from other ASICs by a reduced response to successive acid stimulations. Such a reduced response is called tachyphylaxis. We show that tachyphylaxis depends on H+ permeating through ASIC1a, that tachyphylaxis is attenuated by extracellular Ca2+, and that tachyphylaxis is probably linked to Ca2+ permeability of ASIC1a. Moreover, we provide evidence that tachyphylaxis is probably due to a long-lived inactive state of ASIC1a. A deeper understanding of ASIC1a tachyphylaxis may lead to pharmacological control of ASIC1a activity that could be of potential benefit for the treatment of stroke.

  14. Use of supplements containing folic acid among women of childbearing age--United States, 2007.

    PubMed

    2008-01-11

    Neural tube defects (NTDs) are serious birth defects of the brain (anencephaly) and spine (spina bifida) that affect approximately 3,000 pregnancies each year in the United States. In 1992, the U.S. Public Health Service recommended that all women of childbearing age in the United States capable of becoming pregnant consume 400 microg of folic acid daily to reduce their risk for having a pregnancy affected by NTDs. To assess awareness, knowledge, and behavior related to folic acid among women of childbearing age (aged 18-45 years), CDC analyzed the results of a national survey conducted annually by the Gallup Organization during the period 2003-2007. This report summarizes the results of that analysis, which indicated that, among all women of childbearing age, those aged 18-24 years had the least awareness regarding folic acid consumption (61%), the least knowledge regarding when folic acid should be taken (6%), and the lowest reported daily use of supplements containing folic acid (30%). Because women in this age group account for nearly one third of all births in the United States, promotion of folic acid consumption should be targeted to this population.

  15. Use of supplements containing folic acid among women of childbearing age--United States, 2007.

    PubMed

    2008-01-11

    Neural tube defects (NTDs) are serious birth defects of the brain (anencephaly) and spine (spina bifida) that affect approximately 3,000 pregnancies each year in the United States. In 1992, the U.S. Public Health Service recommended that all women of childbearing age in the United States capable of becoming pregnant consume 400 microg of folic acid daily to reduce their risk for having a pregnancy affected by NTDs. To assess awareness, knowledge, and behavior related to folic acid among women of childbearing age (aged 18-45 years), CDC analyzed the results of a national survey conducted annually by the Gallup Organization during the period 2003-2007. This report summarizes the results of that analysis, which indicated that, among all women of childbearing age, those aged 18-24 years had the least awareness regarding folic acid consumption (61%), the least knowledge regarding when folic acid should be taken (6%), and the lowest reported daily use of supplements containing folic acid (30%). Because women in this age group account for nearly one third of all births in the United States, promotion of folic acid consumption should be targeted to this population. PMID:18185493

  16. Fixed-site ion exchanger for liquid chromatographic determination of multifunctional carboxylic acids

    SciTech Connect

    Cassidy, R.M.; Elchuk, S.

    1985-03-01

    Reversed phases coated with a permanently sorbed ion exchanger and indirect UV detection have been investigated for the determination of simple and multifunctional carboxylic acids in chemical cleaning solutions. The advantages of being able to vary both the ion-exchange capacity and the hydrophobic interactions on these types of ion exchangers for the optimization of resolution and detection are illustrated, and the selection of optimum separation conditions is discussed. Dissolved iron interferes with the analysis due to photochemical, redox, and kinetic effects but good recoveries can be obtained after reduction of the iron with hydroxylamine and complexation with 1,2-diaminocyclohexanetetraacetic acid. Detection limits (3 x base line noise) for oxalate, citrate, ethylenediaminetetraacetate, and hydroxyethylenediaminetriacetate are 0.6-20 ..mu..g x mL/sup -1/ for a 20-..mu..L sample, and relative standard deviations are 3 to % in the 75-350 ..mu..g x mL/sup -1/ range. Analysis results for reactor decontamination solutions containing up to 250 ..mu..g x mL/sup -1/ of iron agree with results obtained by other techniques, and it is shown that this technique should also be useful for determination of metal ions in the samples. A determination of the above reagents in the presence of Fe(II) and Ni(II) takes 7 to 12 min after a 5 to 10 min reduction step. Cr(III) forms nonlabile complexes with ethylenediaminetetraacetic acid, and its presence will cause low results for this acid. 17 references, 4 figures, 6 tables.

  17. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    PubMed

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  18. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions.

    PubMed

    Peng, Zhou; Pilo, Alice L; Luongo, Carl A; McLuckey, Scott A

    2015-10-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  19. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    PubMed

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer.

  20. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-06-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  1. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    PubMed

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor. PMID:25619126

  2. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    PubMed

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer. PMID:27061365

  3. A Metal-Organic Framework Containing Unusual Eight-Connected Zr–-Oxo Secondary Building Units and Orthogonal Carboxylic Acids for Ultra-sensitive Metal Detection

    SciTech Connect

    Carboni, Michaël; Lin, Zekai; Abney, Carter W.; Zhang, Teng; Lin, Wenbin

    2015-08-21

    Two metal-organic frameworks (MOFs) with Zr-oxo secondary building units (SBUs) were prepared by using p,p'-terphenyldicarboxylate (TPDC) bridging ligands pre-functionalized with orthogonal succinic acid (MOF-1) and maleic acid groups (MOF-2). Single-crystal X-ray structure analysis of MOF-1 provides the first direct evidence for eight-connected SBUs in UiO-type MOFs. In contrast, MOF-2 contains twelve-connected SBUs as seen in the traditional UiO MOF topology. These structural assignments were confirmed by extended X-ray absorption fine structure (EXAFS) analysis. The highly porous MOF-1 is an excellent fluorescence sensor for metal ions with the detection limit of <0.5 ppb for Mn2+ and three to four orders of magnitude greater sensitivity for metal ions than previously reported luminescent MOFs.

  4. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion.

    PubMed

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2015-01-01

    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread.

  5. Force Field for Mg(2+), Mn(2+), Zn(2+), and Cd(2+) Ions That Have Balanced Interactions with Nucleic Acids.

    PubMed

    Panteva, Maria T; Giambaşu, George M; York, Darrin M

    2015-12-17

    Divalent metal ions are of fundamental importance to the function and folding of nucleic acids. Divalent metal ion-nucleic acid interactions are complex in nature and include both territorial and site specific binding. Commonly employed nonbonded divalent ion models, however, are often parametrized against bulk ion properties and are subsequently utilized in biomolecular simulations without considering any data related to interactions at specific nucleic acid sites. Previously, we assessed the ability of 17 different nonbonded Mg(2+) ion models to reproduce different properties of Mg(2+) in aqueous solution including radial distribution functions, solvation free energies, water exchange rates, and translational diffusion coefficients. In the present work, we depart from the recently developed 12-6-4 potential models for divalent metal ions developed by Li and Merz and tune the pairwise parameters for Mg(2+), Mn(2+), Zn(2+), and Cd(2+) binding dimethyl phosphate, adenosine, and guanosine in order to reproduce experimental site specific binding free energies derived from potentiometric pH titration data. We further apply these parameters to investigate a metal ion migration previously proposed to occur during the catalytic reaction of the hammerhead ribozyme. The new parameters are shown to be accurate and balanced for nucleic acid binding in comparison with available experimental data and provide an important tool for molecular dynamics and free energy simulations of nucleic acids where these ions may exhibit different binding modes.

  6. Force Field for Mg2+, Mn2+, Zn2+ and Cd2+ Ions That Have Balanced Interactions with Nucleic Acids

    PubMed Central

    Panteva, Maria T.; Giambaşu, George M.; York, Darrin M.

    2016-01-01

    Divalent metal ions are of fundamental importance to the function and folding of nucleic acids. Divalent metal ion - nucleic acid interactions are complex in nature and include both territorial, as well as site specific binding. Commonly employed non-bonded divalent ion models, however, are often parametrized against bulk ion properties and are subsequently utilized in biomolecular simulations without considering any data related to interactions at specific nucleic acid sites. Previously, we assessed the ability of 17 different non-bonded Mg2+ ion models to reproduce different properties of Mg2+ in aqueous solution including radial distribution functions, solvation free energies, water exchange rates and translational diffusion coefficients. In the present work, we depart from the recently developed 12-6-4 potential models for divalent metal ions developed by Li and Merz and tune the pairwise parameters for Mg2+, Mn2+, Zn2+ and Cd2+ binding dimethyl phosphate, adenosine and guanosine in order to reproduce experimental site specific binding free energies derived from potentiometric pH titration data. We further apply these parameters to investigate a metal ion migration previously proposed to occur during the catalytic reaction of the hammerhead ribozyme. The new parameters are shown to be accurate and balanced for nucleic acid binding in comparison with available experimental data, and provide an important tool for molecular dynamics and free energy simulations of nucleic acids where these ions may exhibit different binding modes. PMID:26583536

  7. Using problem based learning and guided inquiry in a high school acid-base chemistry unit

    NASA Astrophysics Data System (ADS)

    McKinley, Katie

    The purpose of this investigation was to determine if incorporating problem based learning and guided inquiry would improve student achievement in an acid base unit for high school chemistry. The activities and labs in the unit were modified to be centered around the problem of a fish kill that students investigated. Students also participated in guided inquiry labs to increase the amount of critical thinking and problem solving being done in the classroom. The hypothesis was that the implementation of problem based learning and guided inquiry would foster student learning. Students took a pre-test and post-test on questions covering the objectives of the acid base unit. These assessments were compared to determine the effectiveness of the unit. The results indicate that the unit was effective in increasing student performance on the unit test. This study also analyzed the process of problem based learning. Problem based learning can be an effective method of engaging students in inquiry. However, designing an effective problem based learning unit requires careful design of the problem and enough structure to assure students learn the intended content.

  8. Inhibition of acid sensing ion channel by ligustrazine on angina model in rat.

    PubMed

    Zhang, Zhi-Gang; Zhang, Xiao-Lan; Wang, Xian-Yue; Luo, Zhu-Rong; Song, Jing-Chun

    2015-01-01

    Ligustrazine, a compound extracted from roots of Ligusticum chuanxiong, is widely used in Chinese traditional medicine to treat cardiac and cerebrovascular diseases and pain, including angina. The mechanism(s) of ligustrazine's effect to reduce angina is not clear. Angina is mediated by cardiac afferent sensory neurons. These neurons display a large acid-evoked depolarizing sodium current that can initiate action potentials in response to acidification that accompanies myocardial ischemia. Acid-sensing ion channels (ASICs) mediate this current. Here we tested the hypothesis that ligustrazine reduces ischemia-induced cardiac dysfunction and acid-evoked pain by an action to inhibit ASIC-mediated current. The effects of ligustrazine to attenuate ischemia-induced ST-segment depression, T wave changes, and myocardial infarct size in hearts of anesthetized rats were determined. Effects of ligustrazine on currents mediated by ASICs expressed in cultured Chinese hamster ovary cells, and effects of the drug on acid-induced nociceptive behavior and acid-induced currents in isolated dorsal root ganglions cells were measured. Ligustrazine significantly attenuated acid-induced ASIC currents, reduced cardiac ischemia-induced electrical dysfunction and infarct size, and decreased the nociceptive response to injection of acid into the paw of the rat hindlimb. The ASIC channel inhibitor A-317567 similarly reduced electrical dysfunction, infarct size, and nociceptive behavior in the rat. Inhibition of ASICs by ligustrazine may explain at least in part the beneficial effects of the drug that are observed in patients with ischemic heart disease and angina. PMID:26692925

  9. Stereochemical Sequence Ion Selectivity: Proline versus Pipecolic-acid-containing Protonated Peptides

    NASA Astrophysics Data System (ADS)

    Abutokaikah, Maha T.; Guan, Shanshan; Bythell, Benjamin J.

    2016-10-01

    Substitution of proline by pipecolic acid, the six-membered ring congener of proline, results in vastly different tandem mass spectra. The well-known proline effect is eliminated and amide bond cleavage C-terminal to pipecolic acid dominates instead. Why do these two ostensibly similar residues produce dramatically differing spectra? Recent evidence indicates that the proton affinities of these residues are similar, so are unlikely to explain the result [Raulfs et al., J. Am. Soc. Mass Spectrom. 25, 1705-1715 (2014)]. An additional hypothesis based on increased flexibility was also advocated. Here, we provide a computational investigation of the "pipecolic acid effect," to test this and other hypotheses to determine if theory can shed additional light on this fascinating result. Our calculations provide evidence for both the increased flexibility of pipecolic-acid-containing peptides, and structural changes in the transition structures necessary to produce the sequence ions. The most striking computational finding is inversion of the stereochemistry of the transition structures leading to "proline effect"-type amide bond fragmentation between the proline/pipecolic acid-congeners: R (proline) to S (pipecolic acid). Additionally, our calculations predict substantial stabilization of the amide bond cleavage barriers for the pipecolic acid congeners by reduction in deleterious steric interactions and provide evidence for the importance of experimental energy regime in rationalizing the spectra.

  10. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure

    PubMed Central

    D'Atri, Valentina; Porrini, Massimiliano; Rosu, Frédéric; Gabelica, Valérie

    2015-01-01

    Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section ΩEXP. Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting ΩCALC are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with ΩEXP determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial. © 2015 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26259654

  11. Multi-shell model of ion-induced nucleic acid condensation.

    PubMed

    Tolokh, Igor S; Drozdetski, Aleksander V; Pollack, Lois; Baker, Nathan A; Onufriev, Alexey V

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregationfree energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregationfree energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNAcondensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NAcondensation lends support to proposed NAcondensation picture based on the multivalent "ion binding shells."

  12. Multi-shell model of ion-induced nucleic acid condensation

    NASA Astrophysics Data System (ADS)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding

  13. Multi-shell model of ion-induced nucleic acid condensation.

    PubMed

    Tolokh, Igor S; Drozdetski, Aleksander V; Pollack, Lois; Baker, Nathan A; Onufriev, Alexey V

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregationfree energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregationfree energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNAcondensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NAcondensation lends support to proposed NAcondensation picture based on the multivalent "ion binding shells

  14. Acids and Alkalis. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 9.

    ERIC Educational Resources Information Center

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on: (1) the uses of acids and bases (alkalis) in students' everyday lives, stressing their…

  15. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X− = Cl−, Br−) generates ethyl halides via halogen atom abstraction from FeXn3−n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ≥0.05 M X−. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M−1 s−1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M−1 s−1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  16. The Prebiotic Synthesis of Ethylenediamine Monoacetic Acid, The Repeating Unit of Peptide Nucleic Acids

    NASA Technical Reports Server (NTRS)

    Nelson, Kevin E.; Miller, Stanley L.

    1992-01-01

    The polymerization of ribonucleic acids or their precursors constitutes an important event in prebiotic chemistry. The various problems using ribonucleotides to make RNA suggest that there may have been a precursor. An attractive possibility are the peptide nucleic acids (PNA). PNAs are nucleotide analogs that make use of a polymer of ethylenediamine monoacetic acid (EDMA or 2-amninoethyl glycine) with the bases attached by an acetic acid. EDMA is an especially attractive alternative to the ribose phosphate or deoxyribose phosphate backbone because it contains no chiral centers and is potentially prebiotic, but there is no reported prebiotic synthesis. We have synthesized both EDMA and ethylenediamine diacetic acid (EDDA) from the prebiotic compounds ethylenediamine, formaldehyde, and hydrogen cyanide. The yields of EDMA range from 11 to 79% along with some sEDDA and uEDDA. These reactions work with concentrations of 10(exp -1)M and as low as 10(exp -4)M, and the reaction is likely to be effective at even lower concentrations. Ethylenediamine is a likely prebiotic compound, but it has not yet been demonstrated, although compounds such as ethanolamine and cysteamine have been proven to be prebiotic. Under neutral pH and heating at l00 C, EDMA is converted to the lactam, monoketopiperazine (MKP). The cyclization occurs and has an approximate ratio of MKP/EDMA = 3 at equilibrium. We have measured the solubilities of EDMA center dot H20 as 6.4 m, EDMA center dot HCl center dot H20 as 13.7 m, and EDMA center dot 2HCl center dot H20 as 3.4 m. These syntheses together with the high solubility of EDMA suggest that EDMA would concentrate in drying lagoons and might efficiently form polymers. Given the instability of ribose and the poor polymerizability of nucleotides, the prebiotic presence of EDMA and the possibility of its polymerization raises the possibility that PNAs are the progenitors of present day nucleic acids. A pre-RNA world may have existed in which PNAs or

  17. Acid-base assessment: when and how to apply the Henderson-Hasselbalch equation and strong ion difference theory.

    PubMed

    Constable, Peter D

    2014-07-01

    The Henderson-Hasselbalch equation is probably the most famous equation in biology but is more descriptive than mechanistic. The traditional approach to acid-base assessment using the Henderson-Hasselbalch equation provides a clinically useful and accurate method when plasma protein concentrations are within the reference range. The simplified strong ion approach is a mechanistic acid-base model that can provide new insight into complicated acid-base disturbances. The simplified strong ion approach should be used to evaluate acid-base balance whenever plasma protein concentrations are abnormal.

  18. A novel sea anemone peptide that inhibits acid-sensing ion channels.

    PubMed

    Rodríguez, Armando Alexei; Salceda, Emilio; Garateix, Anoland Georgina; Zaharenko, André Junqueira; Peigneur, Steve; López, Omar; Pons, Tirso; Richardson, Michael; Díaz, Maylín; Hernández, Yasnay; Ständker, Ludger; Tytgat, Jan; Soto, Enrique

    2014-03-01

    Sea anemones produce ion channels peptide toxins of pharmacological and biomedical interest. However, peptides acting on ligand-gated ion channels, including acid-sensing ion channel (ASIC) toxins, remain poorly explored. PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by gel filtration, ion-exchange and reversed-phase chromatography followed by biological evaluation on ion channels of isolated rat dorsal root ganglia (DRG) neurons using patch clamp techniques. PhcrTx1 partially inhibited ASIC currents (IC50∼100 nM), and also voltage-gated K(+) currents but the effects on the peak and on the steady state currents were lower than 20% in DRG neurons, at concentrations in the micromolar range. No significant effect was observed on Na(+) voltage-gated currents in DRG neurons. The N-terminal sequencing yielded 32 amino acid residues, with a molecular mass of 3477 Da by mass spectrometry. No sequence identity to other sea anemone peptides was found. Interestingly, the bioinformatic analysis of Cys-pattern and secondary structure arrangement suggested that this peptide presents an Inhibitor Cystine Knot (ICK) scaffold, which has been found in other venomous organisms such as spider, scorpions and cone snails. Our results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASIC and, with much lower potency, on Kv channels. Moreover, this is the first report of an ICK peptide in cnidarians, suggesting that the occurrence of this motif in venomous animals is more ancient than expected.

  19. Clinical assessment of acid-base status: comparison of the Henderson-Hasselbalch and strong ion approaches.

    PubMed

    Constable, Peter D.

    2000-01-01

    The traditional approach for clinically assessing acid-base status uses the Henderson-Hasselbalch equation to categorize 4 primary acid-base disturbances: respiratory acidosis (increased PCO2), respiratory alkalosis (decreased PCO2), metabolic acidosis (decreased extracellular base excess or actual HCO3- concentration), and metabolic alkalosis (increased extracellular base excess or actual HCO3- concentration). The anion gap is calculated to detect unidentified anions in plasma. This approach works well clinically and is recommended for use whenever serum total protein, albumin, and phosphate concentrations are approximately normal. However, because the Henderson-Hasselbalch approach is more descriptive than mechanistic, when these concentrations are markedly abnormal the Henderson-Hasselbalch equation frequently provides erroneous information as to the cause of an acid-base disturbance. The new quantitive physicochemical approach to evaluating acid-base balance uses the simplified strong ion model to categorize 6 primary acid-base disturbances: respiratory acidosis (increased PCO2), respiratory alkalosis (decreased PCO2), strong ion acidosis (decreased strong ion difference), strong ion alkalosis (increased strong ion difference), nonvolatile buffer ion acidosis (increased plasma concentrations of albumin, globulins, or phosphate), and nonvolatile buffer ion alkalosis (decreased plasma concentrations of albumin, globulins, or phosphate). The strong ion gap is calculated to detect unidentified anions in plasma. The simplified strong ion approach works well clinically and is recommended for use whenever serum total protein, albumin, or phosphate concentrations are markedly abnormal. The simplified strong ion approach is mechanistic and is therefore well suited for describing the cause of any acid-base disturbance.

  20. Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Shim, Jimin; Bae, Ki Yoon; Kim, Hee Joong; Lee, Jin Hong; Kim, Dong-Gyun; Yoon, Woo Young; Lee, Jong-Chan

    2015-12-21

    Solid polymer electrolytes (SPEs) for all-solid-state lithium-ion batteries are prepared by simple one-pot polymerization induced by ultraviolet (UV) light using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as an ion-conducting monomeric unit and tannic acid (TA)-based crosslinking agent and plasticizer. The crosslinking agent and plasticizer based on natural resources are obtained from the reaction of TA with glycidyl methacrylate and glycidyl poly(ethylene glycol), respectively. Dimensionally stable free-standing SPE having a large ionic conductivity of 5.6×10(-4)  Scm(-1) at room temperature can be obtained by the polymerization of PEGMA into P(PEGMA) with a very small amount (0.1 wt %) of the crosslinking agent and 2.0 wt % of the plasticizer. The ionic conductivity value of SPE with a crosslinked structure is one order of magnitude larger than that of linear P(PEGMA) in the waxy state.

  1. Determination of hippuric acid in human urine by ion chromatography with conductivity detection.

    PubMed

    Zhao, Fuyong; Wang, Zonghua; Wang, Hui; Ding, Mingyu

    2011-02-01

    A simple, rapid, precise and eco-friendly ion chromatography (IC) method for the determination of hippuric acid (HA) in human urine was proposed in this paper. The separation was carried out an anion exchange column with 2.0 mmol L⁻¹ Na₂CO₃ + 2.0 mmol L⁻¹ NaHCO₃ as mobile phase at the flow-rate 0.7 mL min⁻¹. A suppressed conductivity detector was used and the detection limit was 1.0 μg L⁻¹ (S/N=3) for hippuric acid. The analysis time for one run was 30 min under the optimized IC condition. The recovery of hippuric acid was 93.2-98.0% while the relative standard deviation (RSD) was 1.4-2.3% by seven measurements.

  2. Evaluation of environmental factors affecting yields of major dissolved ions of streams in the United States

    USGS Publications Warehouse

    Peters, Norman E.

    1984-01-01

    The seven major dissolved ions in streams-sodium, potassium, magnesium, calcium, chloride, sulfate, and bicarbonate and their sum dissolved solids from 56 basins in the conterminous United States and Hawaii were correlated with bedrock type, annual precipitation, population density, and average stream temperature of their respective basins through multiple linear-regression equations to predict annual yields. The study was restricted to basins underlain by limestone, sandstone, or crystalline rock. Depending on the constituent, yields ranged from about 10 to 100,000 kilograms per square kilometer. Predicted yields were within 1 order of magnitude of measured yields. The most important factor in yield prediction was annual precipitation, which accounted for 58 to 71 percent of all yields. Rock type was second in importance. Yields of magnesium, calcium, bicarbonate, and dissolved solids from limestone basins were 4 to 10 times larger than those from sandstone or crystalline basins as a result of carbonate weathering. Population density was an ineffective indicator of all constituents except sodium and chloride; it accounted for 13 percent of the annual sodium yield and 20 percent of the annual chloride yield. Average stream temperature was significant only for calcium and bicarbonate in limestone basins. Its relationship with yields was consistently negative. Either carbonate dissolution increases at low temperatures, or weathering in northern basins, which contain glacial deposits and have the lowest stream temperatures, is greater than in southern basins. Average ion contributions from atmospheric deposition accounted for 30 percent of the sodium and chloride and 60 percent of the sulfate in annual yields. The amount of sulfate derived from atmospheric contributions was higher in sandstone and crystalline basins (65 and 80 percent, respectively) than limestone basins (38 percent). This disparity is attributed to the lack of available sulfate in crystalline rock

  3. Determination of trace inorganic anions in weak acids by single-pump column-switching ion chromatography.

    PubMed

    Zhu, Haibao; Chen, Huadong; Zhong, Yingying; Ren, Dandan; Qian, Yaling; Tang, Hongfang; Zhu, Yan

    2010-08-01

    Ion chromatography has been proposed for the determination of three common inorganic anions (chloride, nitrate, and sulfate) in nine weak acids (tartaric acid, citric acid, formic acid, acetic acid, metacetonic acid, butyric acid, butanedioic acid, hexafluorophosphoric acid, and salicylic acid) using a single pump, two valves, a single eluent, and a single conductivity detector. The present system uses ion exclusion, concentrator, and anion-exchange columns connected in series via 6-port and 10-port valves in a Dionex ICS-2100 ion chromatograph. The valves were switched for the determination of three inorganic anions from weak acids in a single chromatographic run. Sample matrices of weak acids with a series of concentrations can be investigated. Complete separations of the previously mentioned anions are demonstrated within 40 min. Under the optimum conditions, the relative standard deviation values ranged from 1.3 to 3.8%. The detection limits of the three inorganic anions (S/N = 3) were in the range of 0.3-1.7 microg/L. The recoveries were in the range of 75.2-117.6%. With this system, automation for routine analysis, short analysis time, and low cost can be achieved.

  4. Effects of ion substitution on bile acid-dependent and -independent bile formation by rat liver.

    PubMed Central

    Van Dyke, R W; Stephens, J E; Scharschmidt, B F

    1982-01-01

    To characterize the transport mechanisms responsible for formation of canalicular bile, we have examined the effects of ion substitution on bile acid-dependent and bile acid-independent bile formation by the isolated perfused rat liver. Complete replacement of perfusate sodium with choline and lithium abolished taurocholate-induced choleresis and reduced biliary taurocholate output by greater than 70%. Partial replacement of perfusate sodium (25 of 128 mM) by choline reduced bile acid-independent bile formation by 30% and replacement of the remaining sodium (103 mM) by choline reduced bile acid-independent bile formation by an additional 64%. In contrast, replacement of the remaining sodium (103 mM) by lithium reduced bile acid-independent bile formation by only an additional 20%, while complete replacement of sodium (128 mM) by lithium reduced bile formation by only 17%, and lithium replaced sodium as the predominant biliary cation. Replacement of perfusate bicarbonate by Tricine, a zwitterionic amino acid buffer, decreased bile acid-independent bile formation by greater than or equal to 50% and decreased biliary bicarbonate output by approximately 60%, regardless of the accompanying cation. In separate experiments, replacement of sodium by lithium essentially abolished Na,K-ATPase activity measured either as ouabain-suppressible ATP hydrolysis in rat liver or kidney homogenates, or as ouabain-suppressible 86Rb uptake by cultured rat hepatocytes. These studies indicate that bile acid(taurocholate)-dependent bile formation by rat liver exhibits a specific requirement for sodium, a finding probably attributable to the role(s) of sodium in hepatic sodium-coupled taurocholate uptake and/or in maintenance of Na,K-ATPase activity. The surprising finding that bile acid-independent bile formation was substantially unaltered by complete replacement of sodium with the permeant cation lithium does not appear to be explained by Na,K-ATPase-mediated lithium transport. Although

  5. Enhancement of L(+)-Lactic Acid Production of Immobilized Rhizopus Oryzae Implanted by Ion Beams

    NASA Astrophysics Data System (ADS)

    Fan, Yonghong; Yang, Yingge; Zheng, Zhiming; Li, Wen; Wang, Peng; Yao, Liming; Yu, Zengliang

    2008-02-01

    Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 × 1015 ions/cm2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38°C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.

  6. Analysis of carbohydrates and amino acids in vegetable waste waters by ion chromatography.

    PubMed

    Arienzo, Michele; De Martino, Antonio; Capasso, Renato; Di Maro, Antimo; Parente, Augusto

    2003-01-01

    High-performance anion exchange chromatography coupled with pulsed amperometric detection was used for the quantitative determination of total and free sugars in olive oil mill waste waters (OMWW). Automated amino acid ion chromatography was employed to analyse total and free amino acids in the same OMWW. Sugars were analysed in samples pre-purified by means of a three-step purification procedure involving: (i) methanol precipitation of OMWW; (ii) dialysis of the obtained solid and liquid fractions; and (iii) chromatographic purification on RP18 phase followed by Amberlite resin. The amino acids were determined directly in samples obtained from the first two steps performed for sugar analysis. The analysis carried out with the reported methodologies allowed the quantitative determination of total sugars and amino acids and the differentiation between their free and bound forms. The sugars determined were arabinose, fructose, galactose, glucose, rhamnose, xylose, galacturonic and glucuronic acids, and the amino acids were Asp, Glu, Thr, Ser, Pro, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe, Lys, His, Arg and Cys. Asn, Gin, and Trp were not detected. The technological, biotechnological and environmental advantages arising from this analytical methodology applied to OMWW are briefly discussed.

  7. DDQ-promoted dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones by a radical ion mechanism.

    PubMed

    Ding, Ye; Huang, Zhangjian; Yin, Jian; Lai, Yisheng; Zhang, Shibo; Zhang, Zhiguo; Fang, Lei; Peng, Sixun; Zhang, Yihua

    2011-09-01

    A novel and facile DDQ-mediated dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones is described. The formation of lactones proceeds by a radical ion mechanism, which has been established by DPPH˙-mediated chemical identification, ESR spectroscopy and an enol intermediate trapping. PMID:21766102

  8. [Determination of organic acids and inorganic anions by gradient ion chromatography].

    PubMed

    Liu, Z; Liu, K; Shen, D; Song, Q; Mou, S; Feng, Y

    1997-07-01

    The chromatographic conditions for separation and detection of organic acids and inorganic anions by gradient ion chromatography with suppressed conductivity detection were studied. The optimized gradient programs were established. Ion chromatography were performed with a DX-100 chromatograph (DIONEX). The separation column is IonPac-AS11. Compared with NaHCO3/Na2CO3 and Na2B4O7, NaOH was the optimal eluent. The effect of organic modifier was also studied. Among methanol, 2-propanol and acetonitrile, methanol can make ion pairs such as malate and succinate, malonate and tartrate gaining baseline resolution. By using ion exchange separation, Cl-, NO3-, malate, succinate, malonate, tartrate, SO4(2-), oxalate were eluted between 5 mmol/L NaOH-16% CH3OH and 10 mmol/L NaOH-16% CH3OH in 25 min. A mobile phase composed of 30 mmol/L NaOH, 50% CH3OH and D.I. water was chosen to elute two groups of organic acids and inorganic anions: (1) quinate, formate, Cl-, malate, malonate, oxalate, citrate, isocitrate, aconitate; (2) lactate, Cl-, SO4(2-), tartrate, PO4(3-), citrate, isocitrate, aconitate. The detection limits (S/N = 3) were 0.1625 (quinate), 0.0691 (formate), 0.0115 (Cl-), 0.0886 (malate), 0.0591 (malonate), 0.0263 (oxalate), 0.1147 (citrate), 0.2017 (isocitrate), 0.3656 (cis-aconitate), 0.1045 (trans-aconitate), 0.1950 (lactate), 0.0729 (tartrate), 0.0224 (SO4(2-)) and 0.0692 (PO4(3-)) mg/L. The relative standard deviations were lower than 11.9% (n = 7) and the correlation coefficients ranged from 0.9212 for Cl- to 0.9999 for formate. The method was applied to determine the organic acids and inorganic anions of beverages and citric acids fermenting-medium. The results were satisfactory.

  9. Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions.

    PubMed

    Gupta, Vinod Kumar; Agarwal, Shilpi; Singh, Prerna; Pathania, Deepak

    2013-10-15

    Acrylic acid grafted cellulosic Luffa cylindrical fiber was utilized for the removal of methylene blue and metal ions from the water system using batch process. The grafted sample used was found to demonstrate a maximum grafting efficiency of 90.8% under concentrations of 0.432×10(-3) mol/L, temperature of 35 °C, time of 60 min and pH of 7.0 respectively. The remarkable improvement in thermal properties of the grafted sample was observed. The formation of new bands in FTIR spectra of grafted sample confirmed the grafting of acrylic acid onto the cellulosic fiber. The maximum adsorption capacity of dye onto adsorbent was observed to be 62.15 mg g(-1) at 175 min. A maximum removal of 45.8% was observed for Mg(2+) as compared to other metal ions. High values of correlation coefficient for methylene blue (0.995) and metal ions such as Mg(2+) (0.996), Ni(2+) (0.995), Zn(2+) (0.996) confirmed the applicability of Langmuir isotherm that assumed a monolayer coverage and uniform activity distribution on the adsorbent surface.

  10. Highly selective inorganic crystalline ion-exchange material for Sr{sup 2+} in acidic solutions

    SciTech Connect

    Nenoff, T.M.; Miller, J.E.; Thoma, S.G.; Trudell, D.E.

    1996-12-01

    We report a novel antimony titanate ion exchange material, stable in highly acidic conditions and selective to strontium against competing cations, with possible applications at Defense Waste Sites. Its development was based on good selectivity for Cs and Sr by the CSTs and literature information on the ion exchange properties of antimony compounds. This new material has been tested for the selective removal of parts per million level concentrations of Sr{sup 2+} ions from solutions with a pH in the range of 1 M HNO{sub 3} tO 5.7 M Na{sup +}/0.6 M OH{sup -} (with the most important results in the highly acidic regimes). This doped titanate has been characterized with an array of techniques, including equilibrium distribution coefficient (K{sub d}) determinations over a wide pH range, power X-ray diffraction, TEM, BET, direct-current plasma (DCP), and thermal analyses. 13 refs., 2 figs., 2 tabs.

  11. Study of coagulation processes of selected humic acids under copper ions influence*

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja; Sokolowska, Zofia

    2013-04-01

    Humic acids have limited sorption capacity and big dose of metal or other mineral component which can be sorbed on humic acids, can cause saturation of negative, surface charge of humic acids leading to destabilization of dissolved humic acids compounds. Destabilisation can be observed as coagulation and floculation proces of humic acids. However there are a lot of mechanisms which causing precipitation of humic acids. Thereby, in order to full description of coagulation process, different methods should be applied. Ordinarily, humic acids coagulation is studied by measurement of absorbance, transmittance or carbon loss in solution. Meanwhile, very significant information is also variation of metal content in soil solution and information whether metal goes to precipitate together with humic acids or stays in dissolved form in solution. So, that, from one side, processes of stronger accumulation of metal can lead to soil degradation and micronutrient deficiency for plants. However, there is also possibility to stay metal in solution in toxic and bioavailable form for plants. Main aim of this paper was to study coagulation process of different humic acids extracted from mucking peats under copper ions influence at adjusted pH to 5. In order to this, four peaty-muck soils were taken from selected places in east part of Poland (meadows and river valleys). These soils differed by humification degree, secondary transformation, density and pH. At next step, humic acids were extracted from soils using sodium hydroxide (NaOH) extractant. After exact purification by washing with HF-HCl mixture and water, humic acids were liofilized. Solutions of humic acids were prepared at concentration 40 mg/dm3 with addition of different amount of copper ions to obtain final concentration of Cu(II) ranged from 0-40mg/dm3. After 24 hours solutions were investigated using measurements of absorbance at 470nm (UV-VIS spectrometer Jasco V-530), measurements of organic carbon in solution

  12. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    PubMed

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange.

  13. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    PubMed

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange. PMID:27082258

  14. Covalent and non-covalent binding in the ion/ion charge inversion of peptide cations with benzene-disulfonic acid anions.

    PubMed

    Stutzman, John R; Luongo, Carl A; McLuckey, Scott A

    2012-06-01

    Protonated angiotensin II and protonated leucine enkephalin-based peptides, which included YGGFL, YGGFLF, YGGFLH, YGGFLK and YGGFLR, were subjected to ion/ion reactions with the doubly deprotonated reagents 4-formyl-1,3-benzenedisulfonic acid (FBDSA) and 1,3-benzenedisulfonic acid (BDSA). The major product of the ion/ion reaction is a negatively charged complex of the peptide and reagent. Following dehydration of [M + FBDSA-H](-) via collisional-induced dissociation (CID), angiotensin II (DRVYIHPF) showed evidence for two product populations, one in which a covalent modification has taken place and one in which an electrostatic modification has occurred (i.e. no covalent bond formation). A series of studies with model systems confirmed that strong non-covalent binding of the FBDSA reagent can occur with subsequent ion trap CID resulting in dehydration unrelated to the adduct. Ion trap CID of the dehydration product can result in cleavage of amide bonds in competition with loss of the FBDSA adduct. This scenario is most likely for electrostatically bound complexes in which the peptide contains both an arginine residue and one or more carboxyl groups. Otherwise, loss of the reagent species from the complex, either as an anion or as a neutral species, is the dominant process for electrostatically bound complexes. The results reported here shed new light on the nature of non-covalent interactions in gas phase complexes of peptide ions that can be used in the rationale design of reagent ions for specific ion/ion reaction applications. PMID:22707160

  15. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  16. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

    SciTech Connect

    Ugawa, Shinya Ishida, Yusuke; Ueda, Takashi; Yu, Yong; Shimada, Shoichi

    2008-03-14

    Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K{sup +} (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC{sub 50} (inhibition constant) = approximately 48.3 {mu}M) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction.

  17. Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1

    PubMed Central

    Hiatt, A. J.

    1967-01-01

    Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506

  18. Structural Domains Underlying the Activation of Acid-Sensing Ion Channel 2a

    PubMed Central

    Schuhmacher, Laura-Nadine; Srivats, Shyam; Smith, Ewan St. John

    2015-01-01

    The acid-sensing ion channels (ASICs) are a family of ion channels expressed throughout the mammalian nervous system. The principal activator of ASICs is extracellular protons, and ASICs have been demonstrated to play a significant role in many physiologic and pathophysiologic processes, including synaptic transmission, nociception, and fear. However, not all ASICs are proton-sensitive: ASIC2a is activated by acid, whereas its splice variant ASIC2b is not. We made a series of chimeric ASIC2 proteins, and using whole-cell electrophysiology we have identified the minimal region of the ASIC2a extracellular domain that is required for ASIC2 proton activation: the first 87 amino acids after transmembrane domain 1. We next examined the function of different domains within the ASIC2b N-terminus and identified a region proximal to the first transmembrane domain that confers tachyphylaxis upon ASIC2a. We have thus identified domains of ASIC2 that are crucial to channel function and may be important for the function of other members of the ASIC family. PMID:25583083

  19. Neutrophil chemotaxis and arachidonic acid metabolism are not linked: evidence from metal ion probe studies

    SciTech Connect

    Turner, S.R.; Turner, R.A.; Smith, D.M.; Johnson, J.A.

    1986-03-05

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup 3 +/, Zn/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/ and Cu/sup 2 +/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-met-leu-phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid release. In contrast to previous reports, no correlation between AA metabolism and chemotaxis was demonstrated, suggesting that these 2 processes are not linked.

  20. Colorimetric Detection of Cadmium Ions Using DL-Mercaptosuccinic Acid-Modified Gold Nanoparticles.

    PubMed

    Chen, Na; Chen, Jun; Yang, Jing-Hua; Bai, Lian-Yang; Zhang, Yu-Ping

    2016-01-01

    A colorimetric assay has been developed for detection of Cd²⁺ utilizing DL-mercaptosuccinic acid-modified gold nanoparticles (MSA-AuNPs). The method showed good selectivity for Cd²⁺ over other metal ions. As a result, the linear relationships (r > 0.9606) between concentration 0.07 mM and 0.20 mM for cadmium ion were obtained. The detection limit was as low as 0.07 mM by the naked eye. The effect of pH on the aggregation was optimized. The MSA-AuNPs probe could be used to detect Cd²⁺ in an aqueous solution based on the aggregation-induced color change of MSA-AuNPs. PMID:27398533

  1. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions.

    PubMed

    Huang, Xiujie; Shen, Jing; Qian, Xueren

    2013-10-15

    To mitigate the negative effect of filler addition on paper strength and improve filler retention, filler modification with hydrogen bonding polymers (e.g., starch) or their composites is an interesting research topic. Differing from previous reports, the concept related to the deposition of starch/oleic acid complexes on precipitated calcium carbonate (PCC) with the aid of calcium ions was demonstrated. The introduction of calcium ions resulted in effective starch deposition. As a result of filler modification, filler retention and the tensile strength of the filled paper were simultaneously improved essentially due to the aggregation of PCC particles in filler modification process as well as improved filler bondability. The concept demonstrated in this brief study may provide an alternative approach to filler bondability enhancement for improved papermaking performances.

  2. A mini-review on functional nucleic acids-based heavy metal ion detection.

    PubMed

    Zhan, Shenshan; Wu, Yuangen; Wang, Lumei; Zhan, Xuejia; Zhou, Pei

    2016-12-15

    Recent years have witnessed great progress in developing functional nucleic acids (FNAs)-based sensors for the detection of heavy metal ion. In this review, four types of the FNAs that most widely-used in heavy metal ions detection were briefly introduced and a dozen of recently published review articles which summarized those FNAs-based sensors were introduced. Particularly, according to the degree of automation and system integration, those FNAs-based sensors which belong to the lab-on-a-chip (LOC) category were reviewed in more detail by classifying them into six types such as microfluidic LOC system, microchip, lateral flow dipstick, personal glucose meter, microfluidic paper-based analytical devices (μPADs) and disc-based analytical platform. After gave a brief description of the sensing strategies, properties, advantages or disadvantages of these FNAs-based sensors, existing problems and future perspectives were also discussed. PMID:27395020

  3. Novel Insights into Acid-Sensing Ion Channels: Implications for Degenerative Diseases

    PubMed Central

    Zhou, Ren-Peng; Wu, Xiao-Shan; Wang, Zhi-Sen; Xie, Ya-Ya; Ge, Jin-Fang; Chen, Fei-Hu

    2016-01-01

    Degenerative diseases often strike older adults and are characterized by progressive deterioration of cells, eventually leading to tissue and organ degeneration for which limited effective treatment options are currently available. Acid-sensing ion channels (ASICs), a family of extracellular H+-activated ligand-gated ion channels, play critical roles in physiological and pathological conditions. Aberrant activation of ASICs is reported to regulate cell apoptosis, differentiation and autophagy. Accumulating evidence has highlighted a dramatic increase and activation of ASICs in degenerative disorders, including multiple sclerosis, Parkinson’s disease, Huntington’s disease, intervertebral disc degeneration and arthritis. In this review, we have comprehensively discussed the critical roles of ASICs and their potential utility as therapeutic targets in degenerative diseases. PMID:27493834

  4. A mini-review on functional nucleic acids-based heavy metal ion detection.

    PubMed

    Zhan, Shenshan; Wu, Yuangen; Wang, Lumei; Zhan, Xuejia; Zhou, Pei

    2016-12-15

    Recent years have witnessed great progress in developing functional nucleic acids (FNAs)-based sensors for the detection of heavy metal ion. In this review, four types of the FNAs that most widely-used in heavy metal ions detection were briefly introduced and a dozen of recently published review articles which summarized those FNAs-based sensors were introduced. Particularly, according to the degree of automation and system integration, those FNAs-based sensors which belong to the lab-on-a-chip (LOC) category were reviewed in more detail by classifying them into six types such as microfluidic LOC system, microchip, lateral flow dipstick, personal glucose meter, microfluidic paper-based analytical devices (μPADs) and disc-based analytical platform. After gave a brief description of the sensing strategies, properties, advantages or disadvantages of these FNAs-based sensors, existing problems and future perspectives were also discussed.

  5. The Interaction of Positively-charged Ions with Nucleic Acid Systems

    NASA Technical Reports Server (NTRS)

    Pollack, Lois

    2003-01-01

    The successful development of extremely low background sample cells for x-ray scattering studies has enabled experiments designed to elucidate some of the fundamental physical interactions involved in macromolecular folding. Microfabrication techniques were used to fabricate low volume (50 micro-liter) sample cells with silicon nitride membranes (sub micron in thickness) as x-ray windows. Scientifically, these studies focus on the interaction of negatively charged nucleic acid systems, RNA and DNA, with their surrounding (positively charged) ion atmospheres. Understanding the structure of the ion atmosphere and its influence on the shape/conformation of the macromolecule will help reveal the underlying physical forces employed by nature in the self-assembly of these important molecules.

  6. Novel Insights into Acid-Sensing Ion Channels: Implications for Degenerative Diseases.

    PubMed

    Zhou, Ren-Peng; Wu, Xiao-Shan; Wang, Zhi-Sen; Xie, Ya-Ya; Ge, Jin-Fang; Chen, Fei-Hu

    2016-08-01

    Degenerative diseases often strike older adults and are characterized by progressive deterioration of cells, eventually leading to tissue and organ degeneration for which limited effective treatment options are currently available. Acid-sensing ion channels (ASICs), a family of extracellular H(+)-activated ligand-gated ion channels, play critical roles in physiological and pathological conditions. Aberrant activation of ASICs is reported to regulate cell apoptosis, differentiation and autophagy. Accumulating evidence has highlighted a dramatic increase and activation of ASICs in degenerative disorders, including multiple sclerosis, Parkinson's disease, Huntington's disease, intervertebral disc degeneration and arthritis. In this review, we have comprehensively discussed the critical roles of ASICs and their potential utility as therapeutic targets in degenerative diseases. PMID:27493834

  7. Tannic-Acid-Coated Polypropylene Membrane as a Separator for Lithium-Ion Batteries.

    PubMed

    Pan, Lei; Wang, Haibin; Wu, Chaolumen; Liao, Chenbo; Li, Lei

    2015-07-29

    To solve the wetting capability issue of commercial polypropylene (PP) separators in lithium-ion batteries (LIBs), we developed a simple dipping surface-coating process based on tannic acid (TA), a natural plant polyphenol. Fourier transform infrared and X-ray photoelectron measurements indicate that the TA is coated successfully on the PP separators. Scanning electron microscopy images show that the TA coating does not destroy the microporous structure of the separators. After being coated with TA, the PP separators become more hydrophilic, which not only enhances the liquid electrolyte retention ability but also increases the ionic conductivity. The battery performance, especially for power capability, is improved after being coated with TA. It indicates that this TA-coating method provides a promising process by which to develop an advanced polymer membrane separator for lithium-ion batteries.

  8. Characteristics of acidic lakes in the eastern United States (journal version)

    SciTech Connect

    Landers, D.H.; Eilers, J.M.; Brakke, D.F.; Kellar, P.E.

    1988-01-01

    Acidic lakes are found in many regions of the world and are especially common in those regions of the temperate northern hemisphere that have received high levels of acidic deposition during the last several decades. The National Lake Survey was a one-time fall sampling of lakes in regions of the United States suspected of containing lakes susceptible to acidic deposition. The sample lakes were statistically selected from all lakes identified on medium-scale topographic maps to permit population estimates to be calculated of the characteristics of lakes in the target populations in the regions surveyed. Acidic lakes were defined as those lakes with acid-neutralizing capacity (ANC) < or = 0 (as determined by Gran analysis). This definition is limiting in that only the lakes with no remaining ANC are included. It is clear that lakes with ANC > 0 may be acidic based on pH; however, the rationale for defining other or additional categories of acidic lakes is beyond the scope of the presentation.

  9. Use of vitamins containing folic acid among women of childbearing age--United States, 2004.

    PubMed

    2004-09-17

    Neural tube defects (NTDs) are serious birth defects of the spine (spina bifida) and brain (anencephaly), affecting approximately 3,000 pregnancies each year in the United States. Periconceptional consumption of the B vitamin folic acid reduces the occurrence of NTDs by 50%-70%. To prevent these defects, the U.S. Public Health Service (1992) and Institute of Medicine (1998) issued separate recommendations that all women capable of becoming pregnant consume 400 micro g of folic acid daily, and the Food and Drug Administration mandated fortification of cereal grain products with folic acid to increase women's daily intake. Fortification of the U.S. food supply with folic acid has resulted in a 26% reduction in NTDs. However, even with fortification, not all women receive adequate levels of folic acid from their diets. Therefore, increasing the use of vitamins containing folic acid remains an important component of NTD prevention. To monitor the use of vitamins containing folic acid among women of childbearing age, the Gallup Organization has conducted a series of surveys for the March of Dimes Birth Defects Foundation since 1995. This report presents results from the 2004 survey, which indicated that although no substantial increase in the proportion of women who use vitamins containing folic acid daily occurred during 1995-2003, a substantial increase was observed in 2004, with 40% of women aged 18-45 years reporting daily consumption of a vitamin containing folic acid. This report also presents information about women's dieting behaviors. Regardless of dieting status, public health programs should stress the importance of women in their childbearing years consuming 400 micro g of folic acid daily through supplements, fortified foods, and a diet containing folate-rich foods.

  10. Elution profiles of lanthanides with α-hydroxyisobutyric acid by ion exchange chromatography using fine resin.

    PubMed

    Trikha, Rahul; Sharma, Bal Krishan; Sabharwal, Kanwal Nain; Prabhu, Krishan

    2015-11-01

    Experiments were carried out using a strong acid cation exchange resin with a particle size of 75-150 μm, termed as "fine resin" in hydrogen ion form for the elution of individual lanthanides Sm, Eu, Gd, Tb, and Dy that are produced as fission products in the spent nuclear fuel and generated in the effluent during reprocessing of spent nuclear fuel. Batch experiments were carried out to study the effect of concentration of nitric acid on distribution coefficient. The distribution coefficient values for these individual lanthanides were determined in nitric acid medium in the concentration range of 0.01-4.0 N. Uptake of each individual lanthanide by resin was increased with increased nitric acid concentration from 0.01 to 0.5 N and remained similar from 0.5 to 1.0 N and decreased thereafter up to 4.0 N. Column experiments were also carried out using the same resin to study the parameters like pH of the eluent, flow rate, and resin bed height under isocratic elution conditions for eluting lanthanide elements using α-hydroxyisobutyric acid as eluent. The results of this study have indicated the possibility for the elution of individual lanthanides.

  11. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    SciTech Connect

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  12. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    PubMed

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  13. Parallel transport of an organic acid by solid-phase and macropore diffusion in a weakly basic ion exchanger

    SciTech Connect

    Yoshida, Hiroyuki; Takatsuji; Wataru

    2000-04-01

    The parallel transport of an organic acid by solid-phase and macropore diffusion within a porous ion exchanger was studied by measuring equilibrium isotherms and uptake curves for adsorption of acetic acid and lactic acid on a weakly basic ion exchanger, DIAION WA30. Experimental adsorption isotherms were correlated by the Langmuir equation. The Langmuir equilibrium constant of acetic acid was close to that of lactic acid, and the saturation capacity of acetic acid was about 84% that of lactic acid. Intraparticle effective diffusivity D{sub eff} was determined using the homogeneous Fickian diffusion model. The value of D{sub eff} for acetic acid was about 1.5 times lactic acid. Because D{sub eff} increased with linearly increasing bulk phase concentration C{sub 0}, D{sub eff} was separated to the solid-phase diffusivity D{sub s} and the macropore diffusivity D{sub P} by applying the parallel diffusion model. The model agreed well with the experimental curves. The values of D{sub S} and D{sub P} for acetic acid were about 2 and 1.5 times those of lactic acid, respectively. The acetic acid and the lactic acid may be separated by the difference of the diffusion rates.

  14. Formation of Amino Acid Precursors by Bombardment of Interstellar Ice Analogs with High Energy Heavy Ions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Mita, Hajime; Yoshida, Satoshi; Shibata, Hiromi; Enomoto, Shingo; Matsuda, Tomoyuki; Fukuda, Hitoshi; Kondo, Kotaro; Oguri, Yoshiyuki; Kebukawa, Yoko

    2016-07-01

    A wide variety of organic compounds have been detected in extraterrestrial bodies. It has been recognized that carbonaceous chondrites contain pristine amino acids [1]. There are several scenarios of the formation of such extraterrestrial amino acids or their precursors. Greenberg proposed a scenario that complex organic compounds were formed in interstellar ices in dense clouds, which were brought into solar system small bodies when the solar system was formed [2]. The ice mantles of interstellar dust particles (ISDs) in dense clouds are composed of H2O, CO, CH3OH, CH4, CO2, NH3, etc. In order to verify the scenario, a number of laboratory experiments have been conducted where interstellar ice analogs were irradiated with high-energy particles [3,4] or UV [5,6], and formation of complex organic compounds including amino acid precursors were detected in the products. Though ion-molecular reactions in gaseous phase and surface reactions on the ice mantles have been studied intensively, much less works on cosmic rays-induced reaction have been reported. In order to study possible formation of complex molecules in interstellar ices, frozen mixtures of water, methanol and ammonia with various mixing ratios were irradiated with high-energy heavy ions such as carbon ions (290 MeV/u) and neon ions (400 MeV/u) from HIMAC, NIRS, Japan. For comparison, gaseous mixtures of water, ammonia, carbon monoxide, carbon dioxide, and/or methane were irradiated with protons (2.5 MeV) from a Tandem accelerator, Tokyo Tech, Japan. Amino acids in the products were determined by cation exchange HPLC after acid hydrolysis. Products, both before and after acid hydrolysis, were also characterized by FT-IR and other techniques. Amino acids were detected in the hydrolyzed products after mixture of CH3OH, NH3 and H2O with various mixing ratios were irradiated with heavy ions, including when their mixing ratio was set close to the reported value of the interstellar ices (10:1:37). In the HIMAC

  15. Charge as you like! Efficient manipulation of negative ion net charge in electrospray ionization of proteins and nucleic acids.

    PubMed

    Ganisl, Barbara; Taucher, Monika; Riml, Christian; Breuker, Kathrin

    2011-01-01

    Acidic proteins and nucleic acids such as RNA are most readily ionized in electrospray ionization (ESI) operated in negative-ion mode. The multiply deprotonated protein or RNA ions can be used as precursors in top- down mass spectrometry. Because the performance of the dissociation method used critically depends on precursor ion negative net charge, it is important that the extent of charging in ESI can be manipulated efficiently. We show here that (M - nH)(n-) ion net charge of proteins and RNA can be controlled efficiently by the addition of organic bases to the electrosprayed solution. Our study also highlights the fact that ion formation in ESI in negative mode is only poorly understood. PMID:22006635

  16. Introduction of multiphosphonate ligand to peptide nucleic acid for metal ion conjugation

    PubMed Central

    Aiba, Yuichiro; Honda, Yuta; Han, Yue; Komiyama, Makoto

    2012-01-01

    Peptide nucleic acid (PNA) is one of the most widely used synthetic DNA analogs. Conjugation of functional molecules to PNA is very effective to further widen its potential applications. For this purpose, here we report the synthesis of several ligand monomers and introduced them to PNA. These ligand-modified PNAs attract cerium ion and are useful for site-selective DNA hydrolysis. It should be noted that these ligands on PNA are also effective even under the conditions of invasion complex. PMID:22772037

  17. Inhibition of acid sensing ion channel by ligustrazine on angina model in rat

    PubMed Central

    Zhang, Zhi-Gang; Zhang, Xiao-Lan; Wang, Xian-Yue; Luo, Zhu-Rong; Song, Jing-Chun

    2015-01-01

    Ligustrazine, a compound extracted from roots of Ligusticum chuanxiong, is widely used in Chinese traditional medicine to treat cardiac and cerebrovascular diseases and pain, including angina. The mechanism(s) of ligustrazine’s effect to reduce angina is not clear. Angina is mediated by cardiac afferent sensory neurons. These neurons display a large acid-evoked depolarizing sodium current that can initiate action potentials in response to acidification that accompanies myocardial ischemia. Acid-sensing ion channels (ASICs) mediate this current. Here we tested the hypothesis that ligustrazine reduces ischemia-induced cardiac dysfunction and acid-evoked pain by an action to inhibit ASIC-mediated current. The effects of ligustrazine to attenuate ischemia-induced ST-segment depression, T wave changes, and myocardial infarct size in hearts of anesthetized rats were determined. Effects of ligustrazine on currents mediated by ASICs expressed in cultured Chinese hamster ovary cells, and effects of the drug on acid-induced nociceptive behavior and acid-induced currents in isolated dorsal root ganglions cells were measured. Ligustrazine significantly attenuated acid-induced ASIC currents, reduced cardiac ischemia-induced electrical dysfunction and infarct size, and decreased the nociceptive response to injection of acid into the paw of the rat hindlimb. The ASIC channel inhibitor A-317567 similarly reduced electrical dysfunction, infarct size, and nociceptive behavior in the rat. Inhibition of ASICs by ligustrazine may explain at least in part the beneficial effects of the drug that are observed in patients with ischemic heart disease and angina. PMID:26692925

  18. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  19. Catchment and atmospheric effects on acidity of lakes in the northeastern United States

    SciTech Connect

    Davis, R.B.; Anderson, D.S.; Rhodes, T.E.

    1995-06-01

    Sedimentary evidence from 12 lakes in northeastern United States reveals that both catchment and atmospheric processes have caused changes in lake acidity. Diatom remains indicate pH 5.2 to 5.8 (one lake 6.8) for one to two centuries before impacts on the catchment by Euro-americans. These low-alkalinity lakes were very sensitive to altered fluxes of base cations and acids. Several lakes increased in pH by 0.2 to 0.6 unit in the 1800s and early 1900s when their catchments were logged. Re-acidification of some of the lakes was initially due to forest succession. Older sediment from one of the lakes also shows alkalization by natural disturbance, and acidification paralleling forest succession. However, much of the recent acidification, to uniquely low levels by the 1970s is due to high sulfur deposition.

  20. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  1. The dichotomized role for acid sensing ion channels in musculoskeletal pain and inflammation

    PubMed Central

    Sluka, Kathleen A.; Gregory, Nicholas S.

    2015-01-01

    Chronic muscle pain affects between 11–24% of the world’s population with the majority of people experiencing musculoskeletal pain at some time in their life. Acid sensing ion channels (ASICs) are important sensors of modest decreases in extracellular pH that occur within the physiological range. These decreases in extracellular pH occur in response to inflammation, fatiguing exercise,, and ischemia. Further, injection of acidic saline into muscle produces enhanced nociceptive behaviors in animals and pain in human subjects. Of the different types of ASICs, ASIC3 and ASIC1 have been implicated in transmission of nociceptive information from the musculoskeletal system. The current review will provide an overview of the evidence for ASIC3 and ASIC1 in musculoskeletal pain in both inflammatory and non-inflammatory models. PMID:25582293

  2. Identification of acid-sensing ion channels in adenoid cystic carcinomas

    SciTech Connect

    Ye Jinhai; Gao Jun; Wu Yunong; Hu Yongjie; Zhang Chenping . E-mail: yjh98001@sjtu.edu.cn; Xu Tianle . E-mail: tlxu@ion.ac.cn

    2007-04-20

    Tissue acidosis is an important feature of tumor. The response of adenoid cystic carcinoma (ACC) cells to acidic solution was studied using whole-cell patch-clamp recording in the current study. An inward, amiloride-sensitive Na{sup +} current was identified in cultured ACC-2 cells while not in normal human salivary gland epithelial cells. Electrophysiological and pharmacological properties of the currents suggest that heteromeric acid-sensing ion channels (ASICs) containing 2a and 3 may be responsible for the proton-induced currents in the majority of ACC-2 cells. Consistent with it, analyses of RT-PCR and Western blotting demonstrated the presences of ASIC2a and 3 in ACC-2 cells. Furthermore, we observed the enhanced expression of ASIC2a and 3 in the sample of ACC tissues. These results indicate that the functional expression of ASICs is characteristic feature of ACC cells.

  3. Cooperative Aspects of Small Ion, Small Molecule Interactions with Nucleic Acids

    PubMed Central

    Hughes, Floyd

    1970-01-01

    Ionic conductivity measurements vs. temperature were made on KCl solutions of K-polyriboadenylic acid + K-polyribouridylic acid (K-poly-A + K-poly-U) in regions of temperature and composition where the helix-coil transition occurred. It was possible to relate the measurements to a differential helix-to-coil binding of K+ to nucleotide. The results were, within experimental error, the same as those obtained from a limited number of differential KCl activity coefficient measurements and from a theoretical interpretation of polymer free-boundary electrophoretic mobilities. It was concluded that the alkali ion-phosphate interaction in polynucleotides must be regarded as cooperative in nature and several criteria for recognition of such phenomena were given. A brief outline for a proposed statistical mechanical model for binding was presented. PMID:5475728

  4. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase.

    PubMed

    Poully, Jean-Christophe; Vizcaino, Violaine; Schwob, Lucas; Delaunay, Rudy; Kocisek, Jaroslav; Eden, Samuel; Chesnel, Jean-Yves; Méry, Alain; Rangama, Jimmy; Adoui, Lamri; Huber, Bernd

    2015-08-01

    Collisions between O(3+) ions and neutral clusters of amino acids (alanine, valine and glycine) as well as lactic acid are performed in the gas phase, in order to investigate the effect of ionizing radiation on these biologically relevant molecular systems. All monomers and dimers are found to be predominantly protonated, and ab initio quantum-chemical calculations on model systems indicate that for amino acids, this is due to proton transfer within the clusters after ionization. For lactic acid, which has a lower proton affinity than amino acids, a significant non-negligible amount of the radical cation monomer is observed. New fragment-ion channels observed from clusters, as opposed to isolated molecules, are assigned to the statistical dissociation of protonated molecules formed upon ionization of the clusters. These new dissociation channels exhibit strong delayed fragmentation on the microsecond time scale, especially after multiple ionization.

  5. Acid-base and ion balance in fishes with bimodal respiration.

    PubMed

    Shartau, R B; Brauner, C J

    2014-03-01

    The evolution of air breathing during the Devonian provided early fishes with bimodal respiration with a stable O2 supply from air. This was, however, probably associated with challenges and trade-offs in terms of acid-base balance and ionoregulation due to reduced gill:water interaction and changes in gill morphology associated with air breathing. While many aspects of acid-base and ionoregulation in air-breathing fishes are similar to water breathers, the specific cellular and molecular mechanisms involved remain largely unstudied. In general, reduced ionic permeability appears to be an important adaptation in the few bimodal fishes investigated but it is not known if this is a general characteristic. The kidney appears to play an important role in minimizing ion loss to the freshwater environment in the few species investigated, and while ion uptake across the gut is probably important, it has been largely unexplored. In general, air breathing in facultative air-breathing fishes is associated with an acid-base disturbance, resulting in an increased partial pressure of arterial CO2 and a reduction in extracellular pH (pHE ); however, several fishes appear to be capable of tightly regulating tissue intracellular pH (pHI ), despite a large sustained reduction in pHE , a trait termed preferential pHI regulation. Further studies are needed to determine whether preferential pHI regulation is a general trait among bimodal fishes and if this confers reduced sensitivity to acid-base disturbances, including those induced by hypercarbia, exhaustive exercise and hypoxia or anoxia. Additionally, elucidating the cellular and molecular mechanisms may yield insight into whether preferential pHI regulation is a trait ultimately associated with the early evolution of air breathing in vertebrates.

  6. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.

    PubMed

    Sener, Gulsu; Uzun, Lokman; Denizli, Adil

    2014-01-01

    A facile colorimetric sensor array for detection of multiple toxic heavy metal ions (Hg(2+), Cd(2+), Fe(3+), Pb(2+), Al(3+), Cu(2+), and Cr(3+)) in water is demonstrated using 11-mercaptoundecanoic acid (MUA)-capped gold nanoparticles (AuNPs) and five amino acids (lysine, cysteine, histidine, tyrosine, and arginine). The presence of amino acids (which have functional groups that can form complexes with metal ions and MUA) regulates the aggregation of MUA-capped particles; it can either enhance or diminish the particle aggregation. The combinatorial colorimetric response of all channels of the sensor array (i.e., color change in each of AuNP and amino acid couples) enables naked-eye discrimination of all of the metal ions tested in this study with excellent selectivity.

  7. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.

    PubMed

    Sener, Gulsu; Uzun, Lokman; Denizli, Adil

    2014-01-01

    A facile colorimetric sensor array for detection of multiple toxic heavy metal ions (Hg(2+), Cd(2+), Fe(3+), Pb(2+), Al(3+), Cu(2+), and Cr(3+)) in water is demonstrated using 11-mercaptoundecanoic acid (MUA)-capped gold nanoparticles (AuNPs) and five amino acids (lysine, cysteine, histidine, tyrosine, and arginine). The presence of amino acids (which have functional groups that can form complexes with metal ions and MUA) regulates the aggregation of MUA-capped particles; it can either enhance or diminish the particle aggregation. The combinatorial colorimetric response of all channels of the sensor array (i.e., color change in each of AuNP and amino acid couples) enables naked-eye discrimination of all of the metal ions tested in this study with excellent selectivity. PMID:25330256

  8. Use of dietary supplements containing folic acid among women of childbearing age--United States, 2005.

    PubMed

    2005-09-30

    Neural tube defects (NTDs) are serious birth defects of the spine (spina bifida) and brain (anencephaly), affecting approximately 3,000 pregnancies each year in the United States. Daily periconceptional consumption of 400 mug of folic acid, as recommended by the Public Health Service (PHS) since 1992, reduces the occurrence of NTDs by 50%-70%. The Food and Drug Administration ordered mandatory fortification with folic acid of U.S. cereal grain products, beginning in 1998. However, despite a 26% reduction in NTDs, not all women of childbearing age receive adequate levels of folic acid from their diets. Therefore, increasing the number of women who take dietary supplements containing 400 mug of folic acid daily remains an important component of NTD prevention. This report summarizes results from the 2005 March of Dimes Gallup survey, which determined a decrease in the proportion of childbearing-aged women who reported taking folic acid in dietary supplements daily, from 40% in 2004 to 33% in 2005, returning to a level consistent with that reported during 1995-2003. These results emphasize the need for innovative programs to increase folic acid consumption to further reduce NTDs.

  9. Use of folic acid-containing supplements among women of childbearing age--United States, 1997.

    PubMed

    1998-02-27

    Each year in the United States, approximately 4000 pregnancies result in spina bifida or anencephaly. Babies born with spina bifida usually survive, often with serious disability, but anencephaly is invariably fatal. The B vitamin folic acid can reduce the occurrence of spina bifida and anencephaly by at least 50% when taken daily before conception and during early pregnancy. In 1992, the Public Health Service (PHS) recommended that all women of childbearing age who are capable of becoming pregnant consume 400 microg of folic acid daily. This report summarizes findings from a survey conducted during January and February 1997 and indicates that only one third of women of childbearing age consume a supplement containing the recommended amount of folic acid daily.

  10. Structure-forming units of amino acid maleates. Case study of L-valinium hydrogen maleate.

    PubMed

    Rychkov, Denis; Arkhipov, Sergey; Boldyreva, Elena

    2016-02-01

    A new salt of L-valinium hydrogen maleate was used as an example to study structure-forming units in amino acid maleates. This compound was crystallized, its structure solved from single-crystal X-ray diffraction data, and the phase purity of the bulk powder sample confirmed by X-ray powder diffraction and FT-IR spectra. The stability of the new salt was analyzed using density functional theory and PIXEL calculations with focus on the C(2)2(12) structure-forming crystallographic motif. This motif was of particular interest as it is common for almost all maleates. The exceptionally high ability of maleic acid to form salts with various amino acids was rationalized. PMID:26830808

  11. Continuous ion-exclusion chromatography system for acid/sugar separation

    SciTech Connect

    Springfield, R.M.; Hester, R.D.

    1999-04-01

    A simulated moving bed ion exclusion chromatography system was constructed for the continuous separation of the components in an aqueous feed solution of sucrose and sulfuric acid. A system of 18 columns was arrayed about a central manifold system. Each column was packed with approximately 820 mL of porous cationic exchange resin. The system was designed for the flexibility to use fluid recycle loops and unrestricted placement of all inlet and outlet streams. Monitoring and control functions were performed using a Camile 2000 process controller integrated with a custom-built control computer. The aqueous feed solution, usually containing 10 wt.% sucrose and 10 wt.% sulfuric acid, was generally introduced into the system at a rate of roughly 2 L/hr. Approximately 4 L/hr of water was used to elute materials through the separation system. After optimization, the separation system allowed greater than 95% recovery of the feed sucrose in an exit stream containing 8.8 wt.% sucrose and 98% recovery of the feed acid in a second exit stream containing 5 wt.% acid.

  12. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.

    PubMed

    Wang, Yanliang; Deng, Weiping; Wang, Binju; Zhang, Qinghong; Wan, Xiaoyue; Tang, Zhenchen; Wang, Ye; Zhu, Chun; Cao, Zexing; Wang, Guichang; Wan, Huilin

    2013-01-01

    The direct transformation of cellulose, which is the main component of lignocellulosic biomass, into building-block chemicals is the key to establishing biomass-based sustainable chemical processes. Only limited successes have been achieved for such transformations under mild conditions. Here we report the simple and efficient chemocatalytic conversion of cellulose in water in the presence of dilute lead(II) ions, into lactic acid, which is a high-value chemical used for the production of fine chemicals and biodegradable plastics. The lactic acid yield from microcrystalline cellulose and several lignocellulose-based raw biomasses is >60% at 463 K. Both theoretical and experimental studies suggest that lead(II) in combination with water catalyses a series of cascading steps for lactic acid formation, including the isomerization of glucose formed via the hydrolysis of cellulose into fructose, the selective cleavage of the C3-C4 bond of fructose to trioses and the selective conversion of trioses into lactic acid. PMID:23846730

  13. Soil water samplers in ion balance studies on acidic forest soils

    SciTech Connect

    Rasmussen, L.; Joergensen, P.; Kruse, S.

    1986-04-01

    During the last years an increasing consciousness has appeared of the injurious effects of acid rain on the forest ecosystems both in Europe and North America. At several localities ion balance studies have been implemented in order to evaluate the impact of the atmospheric deposition of acidic substances and heavy metals on the forest ecosystem. In many localities the leaching of material to the ground water or output from the ecosystem has to be determined by means of tensiometer measurements and soil water sampling. Many different soil water samplers are available on the market and they show useful applicability under the given circumstances. But in many cases soil water samples taken with different equipment give incommensurable results leading to differing explanations of the effects of acid precipitation on elements and their cycling in the ecosystem. The purpose of the present study is twofold. Firstly, the sorption characteristics of different types of soil water samplers are examined under acidic soil conditions both by installation in the field and by laboratory experiments. Secondly, a new method is introduced for current and constant soil water sampling under varying soil suctions in the unsaturated zone.

  14. Physical Property Requirements of Ion-exchange Polymer Membranes for Acid-base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Thayer, Peter; Jorne', Jacob; Anthamatten, Mitchell

    2013-03-01

    Flow batteries offer feasible solutions to grid-scale storage of intermittent power. We are developing a new type of flow battery that reversibly controls an acid-base neutralization reaction. The battery consists of two highly reversible hydrogen gas electrodes that are exposed to low and high pH process streams. A brine solution runs between the acid and base streams and is separated by cationic and anionic exchange membranes. For both charge and discharge phases, hydrogen gas is produced at one electrode and consumed at the other. During charging, an external potential is applied across the two electrodes to electrochemically produce acid and base from the fed brine solution. Discharge involves electrochemical neutralization of acid and base streams, resulting in current flow through an external load. Several charge and discharge cycles were performed to demonstrate proof of concept. Experiments were conducted to determine the physical property requirements of the ionic exchange polymer layers. Properties including ion conductivity, permselectivity, and membrane stability will be discussed.

  15. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    NASA Astrophysics Data System (ADS)

    Türk, Hülya; Genişel, Mucip; Erdal, Serkan

    2016-04-01

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K+/Na+ ratio was reduced by salt stress, ALA application changed this ratio in favor of K+. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  16. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes

    SciTech Connect

    Baconguis, Isabelle; Gouaux, Eric

    2012-07-29

    Acid-sensing ion channels (ASICs) are voltage-independent, amiloride-sensitive channels involved in diverse physiological processes ranging from nociception to taste. Despite the importance of ASICs in physiology, we know little about the mechanism of channel activation. Here we show that psalmotoxin activates non-selective and Na+-selective currents in chicken ASIC1a at pH7.25 and 5.5, respectively. Crystal structures of ASIC1a–psalmotoxin complexes map the toxin binding site to the extracellular domain and show how toxin binding triggers an expansion of the extracellular vestibule and stabilization of the open channel pore. At pH7.25 the pore is approximately 10Å in diameter, whereas at pH5.5 the pore is largely hydrophobic and elliptical in cross-section with dimensions of approximately 5 by 7Å, consistent with a barrier mechanism for ion selectivity. These studies define mechanisms for activation of ASICs, illuminate the basis for dynamic ion selectivity and provide the blueprints for new therapeutic agents.

  17. Investigation of metal ion extraction and aggregate formation combining acidic and neutral organophosphorous reagents

    SciTech Connect

    Braatz, A.D.; Nilsson, M.; Ellis, R.; Antonio, M.

    2013-07-01

    In the present study, we investigate how varying mixtures of tri-n-butyl phosphate (TBP) and dibutyl phosphate (HDBP) results in enhanced extraction of lanthanum(III), La{sup 3+}, and dysprosium(III), Dy{sup 3+}. Water and metal ion extraction were carefully monitored as a function of TBP:HDBP mole ratio.In addition to these techniques, EXAFS was used to determine the coordination environment of the metal ion in this system. To produce the necessary signal, a concentration of 1.25*10{sup -3} M La{sup 3+} and Dy{sup 3+} was used. Although previous studies of synergistic extraction of metal cations using combinations of neutral and acidic reagents explain the enhanced extraction by increased dehydration of the metal ion and the formation of mixed extractant complexes, our evidence for the increased water extraction coupled with the aggregate formation suggests a reverse micellar aspect to synergism in the system containing TBP and HDBP. It is quite possible that both of these phenomena contribute to our system behavior. The EXAFS data shows that, based on coordination numbers alone, several possible structures may exist. From this study, we cannot provide a definitive answer as to the nature of extraction in this system or the exact complex formed during extraction.

  18. [Acid-sensing ion channels as a target for neuroprotection: acidotoxicity revisited].

    PubMed

    Wang, Jing-Jing; Xu, Tian-Le

    2016-08-25

    Protons are widespread in cells and serve a variety of important functions. In certain pathological conditions, acid-base balance was disrupted and therefore excessive protons were generated and accumulated, which is termed acidosis and proved toxic to the organism. In the nervous system, it has been reported that acidosis was a common phenomenon and contributed to neuronal injury in various kinds of neurological diseases, such as ischemic stroke, multiple sclerosis and Huntington's disease. Acid-sensing ion channels (ASICs) is the key receptor of protons and mediates acidosis-induced neuronal injury, but the underlying mechanism remains unclear. Traditionally, Ca(2+) influx through homomeric ASIC1a channels has been considered to be the main cause of acidotoxicity. Recent research showed that extracellular protons trigger a novel form of necroptosis in neurons via ASIC1a-mediated serine/threonine kinase receptor interaction protein 1 (RIP1) activation, independent of ion-conducting function of ASIC1a. In addition, ASIC1a was found in mitochondria and regulated mitochondrial permeability transition-dependent neuronal death. In this article, we will review the recent progresses on the mechanisms underlying ASIC-mediated neuronal death and discuss ASIC modulators involved in this process. PMID:27546501

  19. Molecular mechanism of the assembly of an acid-sensing receptor ion channel complex.

    PubMed

    Yu, Yong; Ulbrich, Maximilian H; Li, Ming-Hui; Dobbins, Scott; Zhang, Wei K; Tong, Liang; Isacoff, Ehud Y; Yang, Jian

    2012-01-01

    Polycystic kidney disease (PKD) family proteins associate with transient receptor potential (TRP) channel family proteins to form functionally important complexes. PKD proteins differ from known ion channel-forming proteins and are generally thought to act as membrane receptors. Here we find that PKD1L3, a PKD protein, functions as a channel-forming subunit in an acid-sensing heteromeric complex formed by PKD1L3 and TRPP3, a TRP channel protein. Single amino-acid mutations in the putative pore region of both proteins alter the channel's ion selectivity. The PKD1L3/TRPP3 complex in the plasma membrane of live cells contains one PKD1L3 and three TRPP3. A TRPP3 C-terminal coiled-coil domain forms a trimer in solution and in crystal, and has a crucial role in the assembly and surface expression of the PKD1L3/TRPP3 complex. These results demonstrate that PKD subunits constitute a new class of channel-forming proteins, enriching our understanding of the function of PKD proteins and PKD/TRPP complexes. PMID:23212381

  20. High performance ion chromatography of haloacetic acids on macrocyclic cryptand anion exchanger.

    PubMed

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Horvath, Krisztian; Perrachon, Daniela; Prelle, Ambra; Tófalvi, Renáta; Sarzanini, Corrado; Hajós, Péter

    2008-04-11

    A new high performance ion chromatographic method has been developed for the separation of the nine chlorinated-brominated haloacetic acids (HAAs) that are the disinfection by-products of chlorination of drinking water, using a macrocycle-based adjustable-capacity anion-exchange separator column (IonPac Cryptand A1). A gradient method based on theoretical and experimental considerations has been optimized in which 10 mM NaOH-LiOH step gradient was performed at the third minute of the analysis. The optimized method allowed us to separate the nine HAAs and seven possibly interfering inorganic anions in less than 25 min with acceptable resolution. The minimum concentrations detectable for HAAs were between 8.0 (MBA) and 210 (TBA) microg L(-1), with linearity included between 0.9947 (TBA) and 0.9998 (MBA). To increase sensitivity, a 25-fold preconcentration step on a reversed phase substrate (LiChrolut EN) has been coupled. Application of this method to the analysis of haloacetic acids in real tap water samples is illustrated.

  1. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  2. [Separation of zoledronic acid and its related substances by ion-pair reversed-phase high performance liquid chromatography].

    PubMed

    Zhang, Xiaoqing; Jiang, Ye; Xu, Zhiru

    2004-07-01

    A rapid and simple ion-pair reversed-phase high performance liquid chromatographic method (HPLC) has been established for the routine analysis of zoledronic acid and its related substances. The chromatographic conditions were optimized based on the satisfactory separation of zoledronic acid from imidazol-1-ylacetic acid, their retention times and peak shape. The excellent separation of zoledronic acid from its related substances, including the remaining imidazol-1-ylacetic acid used in the synthesis of zoledronic acid and other impurities of oxidation and decomposition, was achieved within 9 min on a Hypersil C8 column with UV detection at 220 nm. The mobile phase was a mixture of methanol (20%) and 5 mmo/L phosphate buffer (80%) that contains 6 mmol/L tetrabutylammonium bromide. The resolution factor of zoledronic acid from its adjacent peak was more than 2.5. This is a simple and rapid method for the routine assay of zoledronic acid.

  3. Fragmentation of D- and L-enantiomers of amino acids through interaction with 3He2+ ions

    NASA Astrophysics Data System (ADS)

    Smirnov, O. V.; Basalaev, A. A.; Boitsov, V. M.; Vyaz'min, S. Yu.; Orbeli, A. L.; Dubina, M. V.

    2014-11-01

    The relative cross section of processes attendant on the capture of an electron by 12-keV 3He2+ ions are measured by time-of-flight mass spectrometry for leucine (C6H13NO2), methionine (C5H11NO2S), and glutmic acid (C5H9NO4) molecules. No differences between the formation relative cross sections of different fragment ions for the D- and L-enantiomeric forms of the amino acids are revealed. The spectrum of glutamic acid fragments taken at temperatures above 110°C is explained by decomposition of the acid with the formation of pyroglutamic acid (C5H7NO3) and water. The results are compared with published data on fragmentation of the same molecules via electron-impact ionization.

  4. Mechanistic study of the reaction of L-ascorbic acid with hexacyanometalate(III) ions of iron(III), ruthenium(III), and osmium(III) in aqueous acidic solution at elevated pressures

    SciTech Connect

    Kagayama, Nobuyoshi; Sekiguchi, Mitsuhiro; Inada, Yasuhiro; Takagi, Hideo D.; Funahashi, Shigenobu )

    1994-04-27

    Oxidation reactions of L-ascorbic acid by three hexacyanometalate(III) ions in aqueous acidic media are studied at elevated pressures. Kinetic parameters characterizing two parallel paths involving ascorbic acid (H[sub 2]Asc) and ascorbate ion (HAsc[sup [minus

  5. Blockade of acid sensing ion channels attenuates the exercise pressor reflex in cats

    PubMed Central

    Hayes, Shawn G; Kindig, Angela E; Kaufman, Marc P

    2007-01-01

    Although thin fibre muscle afferents possess acid sensing ion channels (ASICs), their contribution to the exercise pressor reflex is not known. This lack of information is partly attributable to the fact that there is no known selective in vivo antagonist for ASICs. Although amiloride has been shown to antagonize ASICs, it also has been shown to antagonize voltage-gated sodium channels, thereby impairing impulse conduction in sensory nerves. Our aim was to test the hypothesis that lactic acid accumulation in exercising muscle acted on ASICs located on thin fibre muscle afferents to evoke the metabolic component of the exercise pressor reflex. To test this hypothesis, we determined in decerebrate cats if amiloride attenuated the pressor and cardioaccelerator responses to static contraction, to tendon stretch and to arterial injections of lactic acid and capsaicin. We found a dose of amiloride (0.5 μg kg−1; i.a.) that attenuated the pressor and cardioaccelerator responses to both contraction and lactic acid injection, but had no effect on the responses to stretch and capsaicin. A higher dose of amiloride (5 μg kg−1, i.a.) not only blocked the pressor and cardioaccelerator responses to lactic acid and contraction, but also attenuated the responses to stretch and to capsaicin, manoeuvers in which ASICs probably play no significant role. In addition, we found that the low dose of amiloride (0.5 μg kg−1) had no effect on the responses of muscle spindles to tendon stretch and to succinylcholine, whereas the high dose (5 μg kg−1) attenuated the responses to both. Our data suggest the low dose of amiloride used in our experiments selectively blocked ASICs, whereas the high dose blocked ASICs and impulse conduction in muscle afferents. We conclude that ASICs play a role in the metabolic component of the exercise pressor reflex. PMID:17395635

  6. Acid-base and metal-ion binding properties of the RNA dinucleotide uridylyl-(5'-->3')-[5']uridylate (pUpU3-).

    PubMed

    Knobloch, Bernd; Suliga, Danuta; Okruszek, Andrzej; Sigel, Roland K O

    2005-07-01

    It is well known that Mg2+ and other divalent metal ions bind to the phosphate groups of nucleic acids. Subtle differences in the coordination properties of these metal ions to RNA, especially to ribozymes, determine whether they either promote or inhibit catalytic activity. The ability of metal ions to coordinate simultaneously with two neighboring phosphate groups is important for ribozyme structure and activity. However, such an interaction has not yet been quantified. Here, we have performed potentiometric pH titrations to determine the acidity constants of the protonated dinucleotide H2(pUpU)-, as well as the binding properties of pUpU3- towards Mg2+, Mn2+, Cd2+, Zn2+, and Pb2+. Whereas Mg2+, Mn2+, and Cd2+ only bind to the more basic 5'-terminal phosphate group, Pb2+, and to a certain extent also Zn2+, show a remarkably enhanced stability of the [M(pUpU)]- complex. This can be attributed to the formation of a macrochelate by bridging the two phosphate groups within this dinucleotide by these metal ions. Such a macrochelate is also possible in an oligonucleotide, because the basic structural units are the same, despite the difference in charge. The formation degrees of the macrochelated species of [Zn(pUpU)]- and [Pb(pUpU)]- amount to around 25 and 90 %, respectively. These findings are important in the context of ribozyme and DNAzyme catalysis, and explain, for example, why the leadzyme could be selected in the first place, and why this artificial ribozyme is inhibited by other divalent metal ions, such as Mg2+.

  7. Dilute nitric or nitrous acid solution containing halide ions as effective media for pure gold dissolution.

    PubMed

    Hojo, Masashi; Yamamoto, Masahiko; Okamura, Kei

    2015-08-14

    The greatly enhanced oxidation ability of dilute aqueous nitric acid (0.10-2.0 mol L(-1)) containing bromide and iodide salts as well as chloride salts has been examined based on the dissolution kinetics of pure gold at 30-60 °C. It has been found that bromide salts are more effective than chloride salts in gaining the ability of dissolving gold in dilute aqueous nitric acid solution. At 60 °C, a piece of gold-wire (ca. 20 mg) is dissolved in 20 mL of as low as 0.10 mol L(-1) HNO3 solution containing 1.0-5.0 mol L(-1) NaBr and the dissolution rate constant, log(k/s(-1)), increases linearly (from -5.78 to -4.52) with the increasing NaBr concentration. The addition of organic solvents, such as acetonitrile and acetic acid, causes acceleration of gold dissolution in LiBr and NaBr solutions. With increasing MeCN contents, for instance, the log(k/s(-1)) value of 0.10 mol L(-1) HNO3 solution containing 2.0 mol L(-1) NaBr increases linearly from -5.30 to -4.61 at 30% (v/v) MeCN. The bromide salts affect the gold dissolution rate constant in the order of KBr < NaBr < LiBr < CaBr2. With increasing NaI concentration (0.20-3.0 mol L(-1)), some acceleration in log(k/s(-1)) of 0.50 or 1.0 mol L(-1) HNO3 solution has been observed; however, the slope of acceleration as the function of NaI concentration is much smaller than that of NaCl or NaBr. The gold dissolution ability has been examined also for nitrous acid containing chloride and bromide ions at 35 °C. The NaNO2 solution containing twice or more amounts of HX (X = Cl, Br) gives the maximum efficiency for gold dissolution, according to the log(k/s(-1)) values of the mixed solutions of NaNO2 (0.10-2.0 mol L(-1)) and HX of various concentrations. The influence of oxidation by dilute nitric and nitrous acids on the gold dissolution is discussed from the standpoint of the redox potentials in "modified" aqueous solutions and not of the changes in the activity coefficients of ions.

  8. Use of weak acids to determine the bulk diffusion limitation of H+ ion conductance through the gramicidin channel.

    PubMed Central

    Decker, E R; Levitt, D G

    1988-01-01

    The addition of 2 M formic acid at pH 3.75 increased the single channel H+ ion conductance of gramicidin channels 12-fold at 200 mV. Other weak acids (acetic, lactic, oxalic) produce a similar, but smaller increase. Formic acid (and other weak acids) also blocks the K+ conductance at pH 3.75, but not at pH 6.0 when the anion form predominates. This increased H+ conductance and K+ block can be explained by formic acid (HF) binding to the mouth of the gramicidin channel (Km = 1 M) and providing a source of H+ ions. A kinetic model is derived, based on the equilibrium binding of formic acid to the channel mouth, that quantitatively predicts the conductance for different mixtures of H+, K+, and formic acid. The binding of the neutral formic acid to the mouth of the gramicidin channel is directly supported by the observation that a neutral molecule with a similar structure, formamide (and malonamide and acrylamide), blocks the K+ conductance at pH 6.0. The H+ conductance in the presence of formic acid provides a lower bound for the intrinsic conductance of the gramicidin channel when there is no diffusion limitation at the channel mouth. The 12-fold increase in conductance produced by formic acid suggests that greater than 90% of the total resistance to H+ results from diffusion limitation in the bulk solution. PMID:2449253

  9. Enhanced capacity of chitosan for transition-metal ions in sulphate-sulphuric acid solutions.

    PubMed

    Muzzarelli, R A; Rocchetti, R

    1974-11-01

    Batch measurements have shown that the collection yields of chitosan for chromium(III), iron(III), nickel, copper(II), zinc and mercury(II) from sulphuric acid solutions are higher when the solutions contain ammonium sulphate, or when chitosan conditioned in ammonium sulphate is used, particularly at pH 3.0 and 5.0. The contrary is verified for the oxy-anions vanadate, chromate and molybdate. Manganese is never collected. At pH 1.0 no collection occurs. A procedure for recycling chromatographic columns includes fixation of Cu or Ni from a sulphate solution at pH 3-5 on sulphate-conditioned chitosan, and elution with 0.1M sulphuric acid/0.1M ammonium sulphate at pH 1.0; the presence of sulphate in the eluent obviates the detrimental effect of sulphuric acid on the next cycle. Sulphate is the favoured counter-ion of the chelated cations and its action produces shorter chromatographic bands. The interaction of sulphate with chitosan is discussed in terms of crystallinity and steric distribution of the protonated amino-groups in the polymer. Data on the new diethylaminohydroxypropylcellulose are included. PMID:18961577

  10. Uranyl ion uptake capacity of poly (N-isopropylacrylamide/maleic acid) copolymeric hydrogels prepared by gamma rays

    NASA Astrophysics Data System (ADS)

    Kam, Erol; Taşdelen, Betul; Osmanlioglu, A. Erdal

    2012-06-01

    The effect of gel composition, absorbed dose and pH of the solution on the uranyl ion uptake capacity of N-isopropylacrylamide/maleic acid copolymeric hydrogels containing 0-3 mol% of maleic acid at 48 kGy have been investigated. Uranyl uptake capacity of hydrogels are found to increase from 18.5 to 94.8 mg [UO22+]/g dry gel as the mole % of maleic acid content in the gel structure increased from 0 to 3. The percent swelling, equilibrium swelling and diffusion coefficient values have been evaluated for poly(N-isopropylacrylamide/maleic acid) hydrogels at 500 ppm of uranyl nitrate solution.

  11. A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer.

    PubMed

    Redruello, Begoña; Ladero, Victor; Del Rio, Beatriz; Fernández, María; Martin, M C; Alvarez, Miguel A

    2017-02-15

    This paper reports a novel UHPLC method for simultaneously quantifying nine biogenic amines, 21 amino acids, and ammonium ions, in beer. Precision values of standard curves slopes were lower than 3.4% and recovery was between 85% and 106%, indicating the absence of matrix effect. Linear calibration curves were obtained for analyte concentrations between two and four orders of magnitude (R(2)>0.996). Repeatability tests returned mean variations of 3.2% and 0.5% for beer and a standard solution, respectively. Sensitivity ranged between 0.03mg/L and 0.63mg/L for the biogenic amines, and 0.05mg/L and 5.19mg/L for other compounds. Original data on the habitual presence of ethanolamine in beers are presented. The method allows for more samples to be assayed per unit time, it uses less solvent than other techniques and therefore reduces costs and the associated waste. It could be a valuable tool for monitoring the safety and quality of beers. PMID:27664616

  12. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  13. Evidence linking large reductions in acid rain to sulfur emissions cuts in the eastern United States

    SciTech Connect

    Bowersox, V.C.; Lynch, J.A.; Grimm, J.W.

    1997-12-31

    Concentrations of sulfate (SO{sub 4}{sup 2{minus}}) and free acidity (H{sup +}) in precipitation decreased by 10 to 25 percent over large areas of the eastern US in 1995. These decreases were extraordinary in magnitude and spatial extent, compared to the 1983--1994 record of observations from the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). In contrast, nitrate, ammonium, and calcium concentrations generally increased in 1995. What`s more, the H+ and SO{sub 4}{sup 2{minus}} declines were highly correlated (R{sup 2} = 0.72), indicating a reduction of acid rain. The largest concentration decreases in both ions occurred in and downwind of the Ohio River Valley. This is the same area where the 1990 Clean Air Act Amendments (CAAA) set limits on SO{sub 2} emissions from 110 affected sources, 63 in states bordering the Ohio River Valley. Phase 1 of the CAAA required these limits be met by January 1, 1995. Indeed, sulfur dioxide emissions from Phase 1 sources dropped 40% in 1995 compared to 1994. This was a nearly 19% reduction in overall emissions in the 21 states with Phase 1 sources. Based on their analysis of emissions and NADP/NTN precipitation chemistry data, they infer that the substantial declines in acid rain in the eastern US in 1995 occurred because of large reductions in SO{sub 2} emissions in the same region.

  14. Does closure of acid-sensing ion channels reduce ischemia/reperfusion injury in the rat brain?★

    PubMed Central

    Wang, Jie; Xu, Yinghui; Lian, Zhigang; Zhang, Jian; Zhu, Tingzhun; Li, Mengkao; Wei, Yi; Dong, Bin

    2013-01-01

    Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain and various intracranial diseases. However, the mechanism associated with expression of these channels remains unclear. This study sought to observe the expression characteristics of permeable Ca2+-acid-sensing ion channels during different reperfusion inflows in rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic injury group. Western blot assays and immunofluorescence staining results exhibited that when compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/l expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid artery flow was close to normal, and the pH value improved. Results verified that adaptive reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, significantly reduce Ca2+ influx, inhibit calcium overload, and diminish Ca2+ toxicity. The effects of adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were better than that of one-time ischemia/reperfusion. PMID:25206411

  15. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies

    USGS Publications Warehouse

    Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C.

    2001-01-01

    North America and Europe are in the midst of a large-scale experiment. Sulfuric and nitric acids have acidified soils, lakes, and streams, thereby stressing or killing terrestrial and aquatic biota. It is therefore critical to measure and to understand the recovery of complex ecosystems in response to decreases in acidic deposition. Fortunately, the NADP, CASTNet, and AIRMoN-dry networks are in place to measure anticipated improvements in air quality and in atmospheric deposition. Unfortunately, networks to measure changes in water quality are sparse, and networks to monitor soil, vegetation, and fish responses are even more limited. There is an acute need to assess the response of these resources to decreases in acid loading. It would be particularly valuable to assess the recovery of aquatic biota - which respond directly to acid stress - to changes in surface water chemistry (Gunn and Mills 1998). We used long-term research from the HBEF and other sites across the northeastern United States to synthesize data on the effects of acidic deposition and to assess ecosystem responses to reductions in emissions. On the basis of existing data, it is clear that in the northeastern United States ??? reductions of SO2 emissions since 1970 have resulted in statistically significant decreases in SO42- in wet and bulk deposition and in surface waters ??? emissions of NOX and concentrations of NO3- in wet and bulk deposition and in surface waters have shown no increase or decrease since the 1980s ??? estimates of NH3 emissions are uncertain, although atmospheric deposition of NH4+ remains important for forest management and stream NO3- loss ??? acidic deposition has accelerated the leaching of base cations from soils, thus delaying the recovery of ANC in lakes and streams from decreased emissions of SO2 (at the HBEF the available soil Ca pool appears to have declined 50% over the past 50 years) ???sulfur and N from atmospheric deposition have accumulated in forest soils across

  16. Studies on the ion-association of methylene blue and salicylic acid in neat and mixed binary solvents

    NASA Astrophysics Data System (ADS)

    Basu, Soumen; Ghosh, Sujit Kumar; Kundu, Subrata; Nath, Sudip; Panigrahi, Sudipa; Praharaj, Snigdhamayee; Pal, Tarasankar

    2005-05-01

    Thiazine dye, methylene blue forms 1:1 ion-associate with salicylic acid in aqueous phase and the ion-associate can be extracted in a series of non-polar non-coordinating solvent systems. The influence of different parameters on the process of ion-association has been studied. The suitability of a number of phenolic precursors for the formation of ion-associate with methylene blue has been tested. Charge-transfer absorption band of the dye molecules in relation to ion-pair has been followed in a sequence of neat and mixed binary solvents and the dependence of the absorption maxima has been found to correlate well with the solvent polarity.

  17. Analysis of Underivatized Amino Acids in Geological Samples Using Ion-Pairing Liquid Chromatography and Electrospray Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, De-Ling; Beegle, Luther W.; Kanik, Isik

    2008-04-01

    The capability of detecting biomarkers, such as amino acids, in chemically complex field samples is essential to establishing the knowledge required to search for chemical signatures of life in future planetary explorations. However, due to the complexities of in situ investigations, it is important to establish a new analytical scheme that utilizes a minimal amount of sample preparation. This paper reports the feasibility of a novel and sensitive technique, which has been established to quantitate amino acids in terrestrial crust samples directly without derivatization using volatile ion-pairing liquid chromatography and tandem mass spectrometry equipped with an electrospray ionization source. Adequate separation of 20 underivatized amino acids was achieved on a C18 capillary column within 26 min with nonafluoropentanoic acid (NFPA) as ion-pairing reagent. Each amino acid was identified from its retention time as well as from its characteristic parent-to-daughter ion transition. Using tandem mass spectrometry as a detection technique allows co-elution of some amino acids, as it is more specific than traditional spectrophotometric methods. In the present study, terrestrial samples collected from 3 different locations were analyzed for their water-extractable free amino acid contents, following the removal of metal and organic interferences via ion exchange procedures. This is the first time that amino acids in geological samples were directly determined quantitatively without complicated derivatization steps. Depending on the amino acid, the detection limits varied from 0.02 to 5.7 pmol with the use of a 1 μl sample injection loop.

  18. Analysis of underivatized amino acids in geological samples using ion-pairing liquid chromatography and electrospray tandem mass spectrometry.

    PubMed

    Liu, De-Ling; Beegle, Luther W; Kanik, Isik

    2008-04-01

    The capability of detecting biomarkers, such as amino acids, in chemically complex field samples is essential to establishing the knowledge required to search for chemical signatures of life in future planetary explorations. However, due to the complexities of in situ investigations, it is important to establish a new analytical scheme that utilizes a minimal amount of sample preparation. This paper reports the feasibility of a novel and sensitive technique, which has been established to quantitate amino acids in terrestrial crust samples directly without derivatization using volatile ion-pairing liquid chromatography and tandem mass spectrometry equipped with an electrospray ionization source. Adequate separation of 20 underivatized amino acids was achieved on a C(18) capillary column within 26 min with nonafluoropentanoic acid (NFPA) as ion-pairing reagent. Each amino acid was identified from its retention time as well as from its characteristic parent-to-daughter ion transition. Using tandem mass spectrometry as a detection technique allows co-elution of some amino acids, as it is more specific than traditional spectrophotometric methods. In the present study, terrestrial samples collected from 3 different locations were analyzed for their water-extractable free amino acid contents, following the removal of metal and organic interferences via ion exchange procedures. This is the first time that amino acids in geological samples were directly determined quantitatively without complicated derivatization steps. Depending on the amino acid, the detection limits varied from 0.02 to 5.7 pmol with the use of a 1 microl sample injection loop. PMID:18393689

  19. Application of hydrophilic interaction chromatography retention coefficients for predicting peptide elution with TFA and methanesulfonic acid ion-pairing reagents.

    PubMed

    Wujcik, Chad E; Tweed, Joseph; Kadar, Eugene P

    2010-03-01

    Hydrophilic retention coefficients for 17 peptides were calculated based on retention coefficients previously published for TSKgel silica-60 and were compared with the experimental elution profile on a Waters Atlantis HILIC silica column using TFA and methanesulfonic acid (MSA) as ion-pairing reagents. Relative peptide retention could be accurately determined with both counter-ions. Peptide retention and chromatographic behavior were influenced by the percent acid modifier used with increases in both retention and peak symmetry observed at increasing modifier concentrations. The enhancement of net peptide polarity through MSA pairing shifted retention out by nearly five-fold for the earliest eluting peptide, compared with TFA. Despite improvements in retention and efficiency (N(eff)) for MSA over TFA, a consistent reduction in calculated selectivity (alpha) was observed. This result is believed to be attributed to the stronger polar contribution of MSA masking and diminishing the underlying influence of the amino acid residues of each associated peptide. Finally, post-column infusion of propionic acid and acetic acid was evaluated for their potential to recover signal intensity for TFA and MSA counter-ions for LC-ESI-MS applications. Acetic acid generally yielded more substantial signal improvements over propionic acid on the TFA system while minimal benefits and some further reductions were noted with MSA.

  20. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries.

    PubMed

    Nayaka, Girish Praveen; Pai, Karkala Vasantakumar; Manjanna, Jayappa; Keny, Sangita J

    2016-05-01

    New organic acid mixtures have been investigated to recover the valuable metal ions from the cathode material of spent Li-ion batteries. The cathodic active material (LiCoO2) collected from spent Li-ion batteries (LIBs) is dissolved in mild organic acids, iminodiacetic acid (IDA) and maleic acid (MA), to recover the metals. Almost complete dissolution occurred in slightly excess (than the stoichiometric requirement) of IDA or MA at 80°C for 6h, based on the Co and Li released. The reducing agent, ascorbic acid (AA), converts the dissolved Co(III)- to Co(II)-L (L=IDA or MA) thereby selective recovery of Co as Co(II)-oxalate is possible. The formation of Co(III)- and Co(II)-L is evident from the UV-Vis spectra of the dissolved solution as a function of dissolution time. Thus, the reductive-complexing dissolution mechanism is proposed here. These mild organic acids are environmentally benign unlike the mineral acids. PMID:26709049

  1. The Kinetic Aspects of the Interaction of Nitrite Ions with Sulfanilic Acid and 1-Naphthylamine in Aqueous and Micellar Media

    NASA Astrophysics Data System (ADS)

    Korneeva, O. I.; Chernova, R. K.; Doronin, S. Yu.

    2008-04-01

    The kinetics of the reaction of nitrite ions with sulfanilic acid and 1-naphthylamine in aqueous and micellar (sodium dodecyl sulfate) media was studied step-by-step. The diazotization of sulfanilic acid with the nitrite ion was found to occur virtually instantaneously. Anionic surfactant micelles did not influence the rate of this reaction. The calculated effective rate constants and activation energies of the azo coupling reaction between synthesized sulfophenyldiazonium and 1-naphthylamine showed that the passage from water into the micellar medium decelerated the reaction. It was found that sodium dodecyl sulfate micelles played the role of a reagent separator.

  2. Environmental and biological monitoring in a lead acid battery manufacturing unit in India.

    PubMed

    Ravichandran, B; Ravibabu, K; Raghavan, S; Krishnamurthy, V; Rajan, B K; Rajmohan, H R

    2005-07-01

    An environmental and biological monitoring of a lead acid battery manufacturing unit was carried out to measure the respirable particulate matter, lead content in working atmosphere and blood lead levels of workers employed in different sections. The results showed high mean air lead concentration in buffing (1444.45 microg/m(3)), plate cutting (430.14 microg/m(3)) and pasting (277.48 microg/m(3)) sections. The mean blood lead levels of employees in these sections were also higher than the values prescribed by ACGIH.

  3. Simultaneous ion-exclusion/cation-exchange chromatography of anions and cations in acid rain waters on a weakly acidic cation-exchange resin by elution with sulfosalicylic acid.

    PubMed

    Tanaka, K; Ohta, K; Haddad, P R; Fritz, J S; Miyanaga, D A; Hu, W; Hasebe, K

    2000-07-01

    A simple, selective, and sensitive method for the simultaneous determination of anions (sulfate, nitrate, and chloride) and cations (sodium, ammonium, potassium, magnesium, and calcium) in acid rain waters was developed using ion-exclusion/ cation-exchange chromatography with conductimetric detection. A weakly acidic cation-exchange resin column (Tosho TSKgel OA-PAK-A) and a sulfosalicylic acid-methanol-water eluent was used. With a mobile phase comprising 1.25 mM sulfosalicylic acid in methanol-water (7.5:92.5) at 1.2 ml/min, simultaneous separation and detection of the above anions and cations was achieved in about 30 min. Linear calibration plots of peak area versus concentration were obtained over the concentration ranges 0-1.0 mM for anions (R=0.9991) and 0-0.5 mM for cations (R=0.9994). Detection limits calculated at S/N=3 ranged from 4.2 to 14.8 ppb for the anions and from 2.4 to 12.1 ppb for the cations. The reproducibility of retention times was 0.14-0.15% relative standard deviation (RSD) for anions and 0.18-0.31% for cations, and reproducibility of chromatographic peak areas was 1.22-1.75% RSD for anions and 1.81-2.10% for cations. The method was applied successfully to the simultaneous determination of anions and cations in aerosols transported from mainland China to central Japan, as determined by a meteorological satellite data analyzer.

  4. Cannabinoids Inhibit Acid-Sensing Ion Channel Currents in Rat Dorsal Root Ganglion Neurons

    PubMed Central

    Qiu, Chun-Yu; Cai, Qi; Zou, Pengcheng; Wu, Heming; Hu, Wang-Ping

    2012-01-01

    Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration–response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids. PMID:23029075

  5. Effect of N-terminal glutamic acid and glutamine on fragmentation of peptide ions.

    PubMed

    Godugu, Bhaskar; Neta, Pedatsur; Simón-Manso, Yamil; Stein, Stephen E

    2010-07-01

    A prominent dissociation path for electrospray generated tryptic peptide ions is the dissociation of the peptide bond linking the second and third residues from the amino-terminus. The formation of the resulting b(2) and y(n-2) fragments has been rationalized by specific facile mechanisms. An examination of spectral libraries shows that this path predominates in diprotonated peptides composed of 12 or fewer residues, with the notable exception of peptides containing glutamine or glutamic acid at the N-terminus. To elucidate the mechanism by which these amino acids affect peptide fragmentation, we synthesized peptides of varying size and composition and examined their MS/MS spectra as a function of collision voltage in a triple quadrupole mass spectrometer. Loss of water from N-terminal glutamic acid and glutamine is observed at a lower voltage than any other fragmentation, leading to cyclization of the terminal residue. This cyclization results in the conversion of the terminal amine group to an imide, which has a lower proton affinity. As a result, the second proton is not localized at the N-terminus but is readily transferred to other sites, leading to fragmentation near the center of the peptide. Further confirmation was obtained by examining peptides with N-terminal pyroglutamic acid and N-acetyl peptides. Peptides with N-terminal proline maintain the trend of forming b(2) and y(n-2) because their ring contains an imine rather than imide and has sufficient proton affinity to retain the proton at the N-terminus.

  6. Quantification of fluoride in food by microwave acid digestion and fluoride ion-selective electrode.

    PubMed

    Rocha, René A; Rojas, Dayana; Clemente, María Jesús; Ruiz, Antonio; Devesa, Vicenta; Vélez, Dinoraz

    2013-11-13

    To quantify fluoride in food it is necessary to extract the fluoride from the matrix. Dry ashing (alkali fusion) and facilitated diffusion are the methods most commonly used, but their application requires lengthy treatments. The present study proposes the use of a microwave oven and 7 mol/L nitric acid for simple, rapid digestion of foods for fluoride analysis. The analyte is subsequently quantified by fluoride ion-selective electrode. The various steps of the method were optimized and an in-house validation was performed. The limit of quantification (0.130 mg/kg), trueness (92%), recovery (84-101%), and precision (1-8%) were determined. These analytical characteristics are satisfactory and show the suitability of the method for analysis of fluoride in foods of various kinds. The method's ease of application and the use of equipment normally found in food analysis laboratories may help to further increase research on fluoride concentrations in foods consumed by the population.

  7. Translational strategies for neuroprotection in ischemic stroke - focusing on Acid Sensing Ion Channel 1a

    PubMed Central

    O'Bryant, Zaven; Vann, Kiara T.; Xiong, Zhi-Gang

    2014-01-01

    Ischemic stroke contributes to the majority of brain injuries and remains to be a leading cause of death and long-term disability. Despite the devastating pathology and high incidence of disease, there remain only few treatment options (tPA and endovascular procedures), which may be hampered by time dependent administration among a variety of other factors. Promising research of glutamate receptor antagonists has been unsuccessful in clinical trial. But, the mechanism by which glutamate receptors initiate injury by excessive calcium overload has spurred investigation of new and potentially successful candidates for stroke therapy. Acid sensing ion channels (ASICs) may contribute to poor stroke prognosis due to localized drop in brain pH, resulting in excessive calcium overload, independent of glutamate activation. Accumulating studies targeting ASICs have underscored the importance of understanding inhibition, regulation, desensitization and trafficking of this channel and its role in disease. This review will discuss potential directions in translational ASIC research for future stroke therapies. PMID:24390970

  8. Determination of chloroacetic acids in drinking water using suppressed ion chromatography with solid-phase extraction.

    PubMed

    Yoshikawa, Kenji; Soda, Yuko; Sakuragawa, Akio

    2009-12-01

    Suppressed ion chromatography with a conductivity detector was developed for the determination of trace amounts of underivatized chloroacetic acids (CAAs). When sodium carbonate and methanol were used as a mobile phase, the simultaneous determination of each CAA took approximately 25 min. The linearity, reproducibility and detection limits were determined for the proposed method. For the solid-phase extraction step, the effects of the pH of the sample solution, sample volume and the eluting agent were tested. Under the optimized extracting conditions, the average recoveries for CAAs spiked in tap water were 83-107%, with an optimal preconcentration factor of 20. The reproducibility of recovery rate for CAAs was 1.2-3.8%, based upon 6 repetitions of the recovery experiments.

  9. Ion-pair association and acid-base equilibria in nonaqueous capillary electrophoresis of weakly basic compounds.

    PubMed

    Carabias-Martínez, Rita; Rodríguez-Gonzalo, Encarnación; Hernández-Méndez, Jesús; Cruz, Edith Miranda; Domínguez-Alvarez, Javier

    2006-02-01

    CE in nonaqueous media was used to study the migrating behavior of two weakly basic s-triazine pesticides and one of their metabolites. The target pesticides were selected to be representative for each of the two main groups: propazine and deethylatrazine for the chloro-s-triazines group and ametryn for the methylthio-s-triazines group. To elucidate the phenomena involved, systematic studies were carried out in the different organic media studied. Absolute mobilities were determined in 50% v/v methanol (MeOH)/ACN by extrapolation of the effective mobilities to zero ionic strength in the presence of different concentrations of perchloric acid. Conductivity measurements performed in MeOH and 50 and 20% v/v methanol/ACN permitted the evaluation of the associations of the components of the BGE. The effects of ionic strength on the actual mobilities of the compounds were determined in the presence of perchloric acid and SDS in different organic media. Two different ion-pair equilibria were considered: one due to the presence of perchlorate anions present in the BGE and second that from the added dodecyl sulfate anions. Bearing in mind that these weakly basic compounds can exhibit ion-pair and acid-base equilibria, the acid-base and ion-pair parasite reaction coefficients were determined. Finally, the effects of ionic strength, ion-pair interactions and acid-base properties on the effective electrophoretic mobilities of the analytes are discussed.

  10. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  11. Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Z.; Urso, R. G.; Baratta, G. A.; Brucato, J. R.; Palumbo, M. E.; Strazzulla, G.

    2016-01-01

    Context. Formamide (NH2HCO) and isocyanic acid (HNCO) have been observed as gaseous species in several astronomical environments such as cometary comae and pre- and proto-stellar objects. A debate is open on the formation route of those molecules, in particular if they are formed by chemical reactions in the gas phase and/or on grains. In this latter case it is relevant to understand if the formation occurs through surface reactions or is induced by energetic processing. Aims: We present arguments that support the formation of formamide in the solid phase by cosmic-ion-induced energetic processing of ices present as mantles of interstellar grains and on comets. Formamides, along with other molecules, are expelled in the gas phase when the physical parameters are appropriate to induce the desorption of ices. Methods: We have performed several laboratory experiments in which ice mixtures (H2O:CH4:N2, H2O:CH4:NH3, and CH3OH:N2) were bombarded with energetic (30-200 keV) ions (H+ or He+). FTIR spectroscopy was performed before, during, and after ion bombardment. In particular, the formation of HNCO and NH2HCO was measured quantiatively. Results: Energetic processing of ice can quantitatively reproduce the amount of NH2HCO observed in cometary comae and in many circumstellar regions. HNCO is also formed, but additional formation mechanisms are requested to quantitatively account for the astronomical observations. Conclusions: We suggest that energetic processing of ices in the pre- and proto-stellar regions and in comets is the main mechanism to produce formamide, which, once it is released in the gas phase because of desorption of ices, is observed in the gas phase in these astrophysical environments.

  12. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end. PMID:26077317

  13. Supramolecular complexes obtained from the interaction of violuric acid with manganese ion and nitrogenous ligands

    NASA Astrophysics Data System (ADS)

    Garcia, Humberto C.; Diniz, Renata; Speziali, Nivaldo L.; de Oliveira, Luiz Fernando C.

    2014-07-01

    This work describes the synthesis, spectroscopic characterization (Raman and infrared) and structural arrangement of three new supramolecular complexes named [Mn(H2Vi)2(H2O)4)](bpy)2(1), [Mn(bpa)2(H2O)4](H2Vi)2(2) and [Mn(bpp)2(H2Vi)2]·(bpp)2(H2O)2(3); these compounds have been obtained making use of different building blocks such as 4,4‧-bipyridyne (bpy), 1,2-bis(4-pyridyl)ethane (bpa) and 4,4‧-trimethylene-dipyridine (bpp) acting as spacers with violuric acid and manganese ion, presenting behavior related to processes of molecular self-assembling and self-organization, very common in studies of supramolecular systems. In all these compounds the violurate anion appears in the crystalline arrangement as monodentate, anionic and chelate forms for 1, 2 and 3, respectively. The important to note is that monodentate coordination in 1 and chelate in 3 through O2 and O3 oxygen atoms from the oxime group can be considered the first example in literature involving violuric acid, both in coordination or interaction with manganese ion. Moreover, it can be seen a good agreement between the structural results and the spectroscopic data; for instance the presence of an intense band in the Raman spectrum around 1603 and 1012 cm-1 in all obtained compounds, assigned to the ν(CC)/ν(CN) and ν(ring)modes of the pyridyl ligand, respectively. Other important band can be observed in 1031 cm-1 only for compound 3, assigned to the ν(Nsbnd O) mode of the violurate ligand; the band at 1284 cm-1 referring to the ν(Ndbnd O) mode, very characteristic of violurate species is not seen in the spectrum, thus confirming the coordination of this building block by the oxime moiety.

  14. Laboratory study of isocyanic acid ions: Rotational spectroscopy of NCO-, H2NCO+, and HNCOH+

    NASA Astrophysics Data System (ADS)

    Lattanzi, Valerio; Gottlieb, Carl A.; Thaddeus, Patrick; Thorwirth, Sven; McCarthy, Michael C.

    2015-01-01

    We report detection of protonated isocyanic acid in two isomeric forms, H2NCO+ and HNCOH+, by high-resolution spectroscopy. The two ions were first observed at centimeter wavelengths by Fourier Transform (FT) microwave spectroscopy, in a discharge through HNCO heavily diluted in hydrogen in the throat of a supersonic nozzle. Spectroscopic constants derived from the two lowest rotational transitions of both isomers agree very well with those derived from theoretical structures computed at the coupled cluster level of theory. In the same molecular beam, the fundamental rotational transition of NCO- was observed with well-resolved nitrogen quadrupole hyperfine structure. Detection of NCO- and H2NCO+ in our beam was subsequently confirmed by observation of several millimeter-wave transitions in a low pressure discharge through cyanogen and water. The spectroscopic constants of NCO- obtained earlier by infrared laser spectroscopy are in good agreement with the highly accurate constants derived here. Owing to the high abundance of HNCO in many galactic molecular sources, both ions are excellent candidates for astronomical detection in the radio band.

  15. Effect of heavy metal ions on neutrophil arachidonic acid metabolism and chemotaxis

    SciTech Connect

    Smith, D.M.; Turner, S.R.; Johnson, J.A.; Turner, R.A.

    1986-05-01

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism, protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup +3/, Zn/sup +2/, Cr/sup +3/, Mn/sup +2/, and Cu/sup +2/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored both qualitatively by thin-layer chromatography of /sup 3/H-AA metabolities and quantitatively by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-Met-Leu-Phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid production. In contrast to previous reports, the data obtained using Au/sup +3/ and Cu/sup +2/ demonstrates no correlation between AA metabolism and chemotaxis, suggesting that these 2 processes are not linked.

  16. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated.

  17. Acid Sensing Ion Channels (ASICs) in NS20Y cells - potential role in neuronal differentiation.

    PubMed

    O'Bryant, Zaven; Leng, Tiandong; Liu, Mingli; Inoue, Koichi; Vann, Kiara T; Xiong, Zhi-Gang

    2016-01-01

    Cultured neuronal cell lines can express properties of mature neurons if properly differentiated. Although the precise mechanisms underlying neuronal differentiation are not fully understood, the expression and activation of ion channels, particularly those of Ca(2+)-permeable channels, have been suggested to play a role. In this study, we explored the presence and characterized the properties of acid-sensing ion channels (ASICs) in NS20Y cells, a neuronal cell line previously used for the study of neuronal differentiation. In addition, the potential role of ASICs in cell differentiation was explored. Reverse Transcription Polymerase Chain Reaction and Western blot revealed the presence of ASIC1 subunits in these cells. Fast drops of extracellular pH activated transient inward currents which were blocked, in a dose dependent manner, by amiloride, a non-selective ASIC blocker, and by Psalmotoxin-1 (PcTX1), a specific inhibitor for homomeric ASIC1a and heteromeric ASIC1a/2b channels. Incubation of cells with PcTX1 significantly reduced the differentiation of NS20Y cells induced by cpt-cAMP, as evidenced by decreased neurite length, dendritic complexity, decreased expression of functional voltage gated Na(+) channels. Consistent with ASIC1a inhibition, ASIC1a knockdown with small interference RNA significantly attenuates cpt-cAMP-induced increase of neurite outgrowth. In summary, we described the presence of functional ASICs in NS20Y cells and demonstrate that ASIC1a plays a role in the differentiation of these cells. PMID:27342076

  18. Cesium removal from liquid acidic wastes with the primary focus on ammonium molybdophosphate as an ion exchanger: A literature review

    SciTech Connect

    Miller, C.J.

    1995-03-01

    Many articles have been written concerning the selective removal of cesium from both acidic and alkaline defense wastes. The majority of the work performed for cesium removal from defense wastes involves alkaline feed solutions. Several different techniques for cesium removal from acidic solutions have been evaluated such as precipitation, solvent extraction, and ion exchange. The purpose of this paper is to briefly review various techniques for cesium removal from acidic solutions. The main focus of the review will be on ion exchange techniques, particularly those involving ammonium molybdophosphate as the exchanger. The pertinent literature sources are condensed into a single document for quick reference. The information contained in this document was used as an aid in determining techniques to evaluate cesium removal from the acidic Idaho Chemical Processing Plant waste matrices. 47 refs., 2 tabs.

  19. Electron capture dissociation product ion abundances at the X amino acid in RAAAA-X-AAAAK peptides correlate with amino acid polarity and radical stability.

    PubMed

    Vorobyev, Aleksey; Ben Hamidane, Hisham; Tsybin, Yury O

    2009-12-01

    We present mechanistic studies aimed at improving the understanding of the product ion formation rules in electron capture dissociation (ECD) of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry. In particular, we attempted to quantify the recently reported general correlation of ECD product ion abundance (PIA) with amino acid hydrophobicity. The results obtained on a series of model H-RAAAAXAAAAK-OH peptides confirm a direct correlation of ECD PIA with X amino acid hydrophobicity and polarity. The correlation factor (R) exceeds 0.9 for 12 amino acids (Ile, Val, His, Asn, Asp, Glu, Gln, Ser, Thr, Gly, Cys, and Ala). The deviation of ECD PIA for seven outliers (Pro is not taken into consideration) is explained by their specific radical stabilization properties (Phe, Trp, Tyr, Met, and Leu) and amino acid basicity (Lys, Arg). Phosphorylation of Ser, Thr, and Tyr decreases the efficiency of ECD around phosphorylated residues, as expected. The systematic arrangement of amino acids reported here indicates a possible route toward development of a predictive model for quantitative electron capture/transfer dissociation tandem mass spectrometry, with possible applications in proteomics.

  20. Ion-solvent and ion-ion interactions of phosphomolybdic acid in aqueous solution of catechol at 298.15, 308.15, and 318.15 K

    NASA Astrophysics Data System (ADS)

    Roy, M. N.; Sah, R. S.; Pradhan, P. P.; Roy, P. K.

    2009-11-01

    Apparent molar volume ( V Ø) and viscosity B-coefficients were measured for phosphomolybdicacid in aqueous solution of catechol from solution density ( ρ) and viscosity ( η) at 298.15, 308.15, and 318.15 K at various solute concentrations. The experimental density data were evaluated by Masson equation and the derived data were interpreted in terms of ion-solvent and ion-ion interactions. The viscosity data have been analyzed using Jones-Dole equation and the derived parameters, B and A, have been interpreted in terms of ion-solvent and ion-ion interactions respectively. The structure-making or breaking capacity of the solute under investigation has been discussed in terms of sign of ( δ 2 V {Ø/o}/ δT 2) P . The activation parameters of viscous flow were determined and discussed by application of transition state theory.

  1. The Energetic Heavy Ion Sensor (EHIS) for GOES-R: Accelerator Calibrations of Flight Unit 1

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2014-12-01

    The Energetic Heavy Ion Sensor (EHIS) instruments for GOES-R will provide high resolution measurement of energetic ions (Solar energetic particles and cosmic rays) from hydrogen (H) through nickel (Ni) for space weather monitoring and scientific research. Measurements are taken in five approximately logarithmically spaced energy intervals from 10-200 MeV/u for hydrogen and helium (He) and comparable penetrations for heavier elements. The Angle Detecting Inclined Sensors (ADIS) technique is used to provide single element resolution by determining the angle of incidence with a very simple telescope design using Si solid state detectors. The ADIS system also facilitates on-board event identification of ion species. During high flux conditions, EHIS can identify the elemental composition of ~2000 events per seconds. Elemental charge histograms are compiled on-board and reported via telemetry once per minute providing an unprecedented combination of statistical resolution and high cadence. The first of four flight instruments (FM1) has been completed. FM1 underwent heavy ion accelerator calibration at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF) at Michigan State University in February 2013, and proton calibration at the Massachusetts General Hospital's (MGH) Burr Proton Therapy Center in April 2013. The heavy ion calibration included both Ni primary and secondary fragments runs down to H. Results of these calibration runs will be presented.

  2. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    PubMed

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts.

  3. Quantifying the ion atmosphere of unfolded, single-stranded nucleic acids using equilibrium dialysis and single-molecule methods

    PubMed Central

    Jacobson, David R.; Saleh, Omar A.

    2016-01-01

    To form secondary structure, nucleic acids (NAs) must overcome electrostatic strand–strand repulsion, which is moderated by the surrounding atmosphere of screening ions. The free energy of NA folding therefore depends on the interactions of this ion atmosphere with both the folded and unfolded states. We quantify such interactions using the preferential ion interaction coefficient or ion excess: the number of ions present near the NA in excess of the bulk concentration. The ion excess of the folded, double-helical state has been extensively studied; however, much less is known about the salt-dependent ion excess of the unfolded, single-stranded state. We measure this quantity using three complementary approaches: a direct approach of Donnan equilibrium dialysis read out by atomic emission spectroscopy and two indirect approaches involving either single-molecule force spectroscopy or existing thermal denaturation data. The results of these three approaches, each involving an independent experimental technique, are in good agreement. Even though the single-stranded NAs are flexible polymers that are expected to adopt random-coil configurations, we find that their ion atmosphere is quantitatively described by rod-like models that neglect large-scale conformational freedom, an effect that we explain in terms of the competition between the relevant structural and electrostatic length scales. PMID:27036864

  4. Studies of endothelial monolayer formation on irradiated poly-L-lactide acid with ions of different stopping power and velocity

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Ibañez, Irene L.; Behar, Moni; Grasselli, Mariano; Bermúdez, Gerardo García

    2015-12-01

    In this work we study cell viability, proliferation and morphology of bovine aortic endothelial cells (BAEC) cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. In a previous study comparing ions beams with the same stopping power we observed an increase in cell density and a better cell morphology at higher ion velocities. In the present work we continued this study using heavy ions beam with different stopping power and ion velocities. To this end thin films of 50 μm thickness were irradiated with 2 MeV/u and 0.10 MeV/u ion beams provided the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The results suggest that a more dense and elongated cell shapes, similar to the BAEC cells on the internal surface of bovine aorta, was obtained for stopping power of 18.2-22.1 MeV cm2 mg-1 and ion velocity of 2 MeV/u. On the other hand, for low ion velocity 0.10 MeV/u the cells present a more globular shapes.

  5. SBA-15 mesoporous silica free-standing thin films containing copper ions bounded via propyl phosphonate units - preparation and characterization

    NASA Astrophysics Data System (ADS)

    Laskowski, Lukasz; Laskowska, Magdalena; Jelonkiewicz, Jerzy; Dulski, Mateusz; Wojtyniak, Marcin; Fitta, Magdalena; Balanda, Maria

    2016-09-01

    The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUID magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined.

  6. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  7. Quantitation of orotic acid in urine using isotope dilution-selected ion gas chromatography-mass spectrometry.

    PubMed

    Chen, Jie; Bennett, Michael J

    2010-01-01

    The measurement of urinary orotic acid excretion is an important test for establishing a diagnosis of hereditary orotic aciduria, a genetic defect of pyrimidine biosynthesis. Measurement of secondary urinary orotic acid elevation is also an important clinical test for the differential diagnosis of hyperammonemia due to some of the primary disorders of the urea cycle including ornithine transcarbamylase (OTC) deficiency, and the hyperornithinemia-hyperammonemia-homocitrullinemia (HHH) syndrome. Low levels of orotic acid are observed in carbamylphosphate synthetase (CPS) defects. This method utilizes a stable-isotope labeled internal standard (1, 3-(15)N-orotic acid), which is added to the standards, controls, and patient samples prior to extraction. Interference from urea is removed by incubation of samples with urease and the orotic acid is derivatized by trimethylsilylation. Quantitation is made against an eight-point standard curve using specific selected ions from both the labeled and unlabeled orotic acid. PMID:20077096

  8. Distribution of Components in Ion Exchange Materials Taken from the K East Basin and Leaching of Ion Exchange Materials by Nitric/Hydrofluoric Acid and Nitric/Oxalic Acid

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.; Hoopes, F.V.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of mixed nitric/hydrofluoric acid followed by mixed nitric/oxalic acid leach treatments to decontaminate ion exchange materials that have been found in a number of samples retrieved from K East (KE)Basin sludge. The ion exchange materials contain organic ion exchange resins and zeolite inorganic ion exchange material. Based on process records, the ion exchange resins found in the K Basins is a mixed-bed, strong acid/strong base material marketed as Purolite NRW-037. The zeolite material is Zeolon-900, a granular material composed of the mineral mordenite. Radionuclides sorbed or associated with the ion exchange material can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). Elutriation and washing steps are designed to remove the organic resins from the K Basin sludge. To help understand the effects of the anticipated separation steps, tests were performed with well-rinsed ion exchange (IX) material from KE Basin floor sludge (sample H-08 BEAD G) and with well-rinsed IX having small quantities of added KE canister composite sludge (sample KECOMP). Tests also were performed to determine the relative quantities of organic and inorganic IX materials present in the H-08 K Basin sludge material. Based on chemical analyses of the separated fractions, the rinsed and dry IX material H-08 BEAD G was found to contain 36 weight percent inorganic material (primarily zeolite). The as-received (unrinsed) and dried H-08 material was estimated to contain 45 weight percent inorganic material.

  9. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

    PubMed

    Zeng, Xianlai; Li, Jinhui; Shen, Bingyu

    2015-09-15

    With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle.

  10. Acid-sensing ion channels promote the inflammation and migration of cultured rat microglia.

    PubMed

    Yu, Xiao-Wei; Hu, Zhuang-Li; Ni, Ming; Fang, Peng; Zhang, Pei-Wei; Shu, Qing; Fan, Hua; Zhou, Hai-Yun; Ni, Lan; Zhu, Ling-Qiang; Chen, Jian-Guo; Wang, Fang

    2015-03-01

    Microglia, the major immune cells in central nervous system, act as the surveillance and scavenger of immune defense and inflammatory response. Previous studies suggest that there might be close relationship between acid-sensing ion channels (ASICs) and inflammation, however, the exact role of ASICs in microglia during inflammation remains elusive. In the present study, we identified the existence of ASICs in the primary cultured rat microglia and explored their functions. By using reverse transcriptase polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), western blotting, and immunofluorescence experiments, we demonstrated that ASIC1, ASIC2a, and ASIC3 were existed in cultured and in situ rat microglia. After lipopolysaccharide (LPS) stimulation, the expressions of microglial ASIC1 and ASIC2a were upregulated. Meanwhile, ASIC-like currents and acid-induced elevation of intracellular calcium were increased, which could be inhibited by the nonspecific ASICs antagonist amiloride and specific homomeric ASIC1a blocker PcTx1. In addition, both inhibitors reduced the expression of inflammatory cytokines, including inducible nitric oxide synthase and cyclooxygenase 2 stimulated by LPS. Furthermore, we also observed significant increase in the expression of ASIC1 and ASIC2a in scrape-stimulated microglial migration. Amiloride and PcTx1 prevented the migration by inhibiting ERK phosphorylation. Taken together, these results suggest that ASICs participate in neuroinflammatory response, which will provide a novel therapeutic strategy for controlling the inflammation-relevant neuronal diseases.

  11. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant.

    PubMed

    Li, Li; Ge, Jing; Wu, Feng; Chen, Renjie; Chen, Shi; Wu, Borong

    2010-04-15

    In this work, a hydrometallurgical process based on leaching is applied to recover cobalt and lithium from spent lithium ion batteries (LIBs). Citric acid and hydrogen peroxide are introduced as leaching reagents and the leaching of cobalt and lithium with a solution containing C(6)H(8)O(7) x H(2)O is investigated. When both C(6)H(8)O(7) x H(2)O and H(2)O(2) are used an effective recovery of Li and Co as their respective citrates is possible. The leachate is characterized by scanning electron micrography (SEM) and X-ray diffraction (XRD). The proposed procedure includes the mechanical separation of metal-containing particles and a chemical leaching process. Conditions for achieving a recovery of more than 90% Co and nearly 100% Li are achieved experimentally by varying the concentrations of leachant, time and temperature of the reaction as well as the starting solid-to-liquid ratio. Leaching with 1.25 M citric acid, 1.0 vol.% hydrogen peroxide and a S:L of 20 g L(-1) with agitation at 300 rpm in a batch extractor results in a highly efficient recovery of the metals within 30 min of the processing time at 90 degrees C. This hydrometallurgical process is found to be simple, environmentally friendly and adequate for the recovery of valuable metals from spent LIBs.

  12. Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice.

    PubMed

    Urbano, Francisco J; Lino, Noelia G; González-Inchauspe, Carlota M F; González, Laura E; Colettis, Natalia; Vattino, Lucas G; Wunsch, Amanda M; Wemmie, John A; Uchitel, Osvaldo D

    2014-02-15

    Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a (-/-) knockout). Our results showed that 1) ASIC1a (-/-) female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2) spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice.

  13. Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice

    PubMed Central

    Lino, Noelia G.; González-Inchauspe, Carlota M. F.; González, Laura E.; Colettis, Natalia; Vattino, Lucas G.; Wunsch, Amanda M.; Wemmie, John A.; Uchitel, Osvaldo D.

    2013-01-01

    Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a −/− knockout). Our results showed that 1) ASIC1a −/− female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2) spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice. PMID:24336653

  14. Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a.

    PubMed

    Li, Xiaoyu; Fei, Jianchun; Lei, Zhen; Liu, Kejing; Wu, Jianbo; Meng, Tao; Yu, Jingui; Li, Jingxin

    2014-08-01

    Acid-sensing ion channels (ASICs) are extracellular pH sensors activated by protons, which influence retinal activity and phototransduction. Among all ASICs, ASIC1a is abundantly expressed in the retina and involved in normal retinal activity. Chloroquine, which has been used in the treatment of malaria, rheumatoid arthritis and systemic lupus erythematosus, has been shown to be toxic to the retina. However, the underlying mechanisms remain unclear. In this study, we investigated the role of chloroquine in phototransduction by measuring the electroretinogram (ERG). The effect of chloroquine on acid-evoked currents in either isolated rat retinal ganglion neurons (RGNs) or Chinese hamster ovary (CHO) cells transfected with ASIC1a were assessed using a whole-cell patch-clamp technique. Chloroquine reduced the b-wave of scotopic 0.01 and photopic 3.0 and amplitudes of oscillatory potentials (OPs), an effect which was almost completely reversed by PcTx1, an ASIC1a-specific channel blocker. Further, patch-clamp experiments demonstrated that chloroquine reduced the peak current amplitude and prolonged the activation and desensitization of ASIC1a currents. These chloroquine-induced effects on the kinetics of ASIC 1a were dose-, pH- and Ca(2+)-dependent. Taken together, these results demonstrate that chloroquine affects vision conduction by directly modifying the kinetics of ASIC1a. Such a mechanism, may, in part, explain the retinal toxicity of chloroquine.

  15. Acid-sensing ion channel 2 (asic 2) and trkb interrelationships within the intervertebral disc

    PubMed Central

    Cuesta, Antonio; Viña, Eliseo; Cabo, Roberto; Vázquez, Gorka; Cobo, Ramón; García-Suárez, Olivia; García-Cosamalón, José; Vega, José A

    2015-01-01

    The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. They express acid-sensing ion channels (ASICs), gated by extracellular protons and mechanical forces, as well as neurotrophins and their signalling receptors. In the nervous tissues some neurotrophins regulate the expression of ASICs. The expression of ASIC2 and TrkB in human normal and degenerated IVD was assessed using quantitative-PCR, Western blot, and immunohistochemistry. Moreover, we investigated immunohistochemically the expression of ASIC2 in the IVD of TrkB-deficient mice. ASIC2 and TrkB mRNAs were found in normal human IVD and both increased significantly in degenerated IVD. ASIC2 and TrkB proteins were also found co-localized in a variable percentage of cells, being significantly higher in degenerated IVD than in controls. The murine IVD displayed ASIC2 immunoreactivity which was absent in the IVD of TrkB-deficient mice. Present results demonstrate the occurrence of ASIC2 and TrkB in the human IVD, and the increased expression of both in pathological IVD suggest their involvement in IVD degeneration. These data also suggest that TrkB-ligands might be involved in the regulation of ASIC2 expression, and therefore in mechanisms by which the IVD cells accommodate to low pH and hypertonicity. PMID:26617738

  16. Integrated li-ion ultracapacitor with lead acid battery for vehicular start-stop

    NASA Astrophysics Data System (ADS)

    Manla, Emad

    Advancements in automobile manufacturing aim at improving the driving experience at every level possible. One improvement aspect is increasing gas efficiency via hybridization, which can be achieved by introducing a feature called start-stop. This feature automatically switches the internal combustion engine off when it idles and switches it back on when it is time to resume driving. This application has been proven to reduce the amount of gas consumption and emission of greenhouse effect gases in the atmosphere. However, the repeated cranking of the engine puts a large amount of stress on the lead acid battery required to perform the cranking, which effectively reduces its life span. This dissertation presents a hybrid energy storage system assembled from a lead acid battery and an ultracapacitor module connected in parallel. The Li-ion ultracapacitor was tested and modeled to predict its behavior when connected in a system requiring pulsed power such as the one proposed. Both test and simulation results show that the proposed hybrid design significantly reduces the cranking loading and stress on the battery. The ultracapacitor module can take the majority of the cranking current, effectively reducing the stress on the battery. The amount of cranking current provided by the ultracapacitor can be easily controlled via controlling the resistance of the cable connected directly between the ultracapacitor module and the car circuitry.

  17. Proteolytic cleavage of human acid-sensing ion channel 1 by the serine protease matriptase.

    PubMed

    Clark, Edlira B; Jovov, Biljana; Rooj, Arun K; Fuller, Catherine M; Benos, Dale J

    2010-08-27

    Acid-sensing ion channel 1 (ASIC1) is a H(+)-gated channel of the amiloride-sensitive epithelial Na(+) channel (ENaC)/degenerin family. ASIC1 is expressed mostly in the central and peripheral nervous system neurons. ENaC and ASIC function is regulated by several serine proteases. The type II transmembrane serine protease matriptase activates the prototypical alphabetagammaENaC channel, but we found that matriptase is expressed in glioma cells and its expression is higher in glioma compared with normal astrocytes. Therefore, the goal of this study was to test the hypothesis that matriptase regulates ASIC1 function. Matriptase decreased the acid-activated ASIC1 current as measured by two-electrode voltage clamp in Xenopus oocytes and cleaved ASIC1 expressed in oocytes or CHO K1 cells. Inactive S805A matriptase had no effect on either the current or the cleavage of ASIC1. The effect of matriptase on ASIC1 was specific, because it did not affect the function of ASIC2 and no matriptase-specific ASIC2 fragments were detected in oocytes or in CHO cells. Three matriptase recognition sites were identified in ASIC1 (Arg-145, Lys-185, and Lys-384). Site-directed mutagenesis of these sites prevented matriptase cleavage of ASIC1. Our results show that matriptase is expressed in glioma cells and that matriptase specifically cleaves ASIC1 in heterologous expression systems. PMID:20601429

  18. [MOLECULAR EVOLUTION OF ION CHANNELS: AMINO ACID SEQUENCES AND 3D STRUCTURES].

    PubMed

    Korkosh, V S; Zhorov, B S; Tikhonov, D B

    2016-01-01

    An integral part of modern evolutionary biology is comparative analysis of structure and function of macromolecules such as proteins. The first and critical step to understand evolution of homologous proteins is their amino acid sequence alignment. However, standard algorithms fop not provide unambiguous sequence alignments for proteins of poor homology. More reliable results can be obtained by comparing experimental 3D structures obtained at atomic resolution, for instance, with the aid of X-ray structural analysis. If such structures are lacking, homology modeling is used, which may take into account indirect experimental data on functional roles of individual amino-acid residues. An important problem is that the sequence alignment, which reflects genetic modifications, does not necessarily correspond to the functional homology. The latter depends on three-dimensional structures which are critical for natural selection. Since alignment techniques relying only on the analysis of primary structures carry no information on the functional properties of proteins, including 3D structures into consideration is very important. Here we consider several examples involving ion channels and demonstrate that alignment of their three-dimensional structures can significantly improve sequence alignments obtained by traditional methods.

  19. Interactions of Phenolic Acids, Metallic Ions and Chelating Agents on Auxin-Induced Growth

    PubMed Central

    Tomaszewski, Miroslaw; Thimann, Kenneth V.

    1966-01-01

    By growth experiments in indoleacetic acid-1-14C (IAA), and determination of the 14CO2 evolved, it has been shown directly that polyphenols synergize IAA-induced growth by counteracting IAA decarboxylation. Sinapic and ferulic acids act like polyphenols. Endogenous polyphenols doubtless exert the same influence in intact plants. Monophenols stimulate the decarboxylation of IAA under conditions where they depress growth. When Mn++ is present as well, this effect is enhanced. All these growth effects are paralleled by effects on the isolated IAA oxidizing enzyme of Avena. EDTA acts like the polyphenols in depressing the decarboxylation of IAA, and not synergizing with the growth induced by naphthalene-acetic acid (NAA) and 2,4-D. However, since EDTA synergizes with IAA for growth even at optimal IAA concentrations, its growth promotion probably involves an additional effect. DIECA inhibits powerfully the destruction of IAA, but without causing much growth promotion, apparently because its decomposition products inhibit respiration. Mn++ aloné stimulates the decarboxylation of IAA, i.e. this ion promotes the IAA oxidase in vivo as it does in vitro. Nevertheless, it does not inhibit elongation, but at relatively high concentrations even stimulates it, both at low and high IAA levels. Since Mn++ also promotes the growth induced by NAA and 2,4-D, its growth action cannot rest primarily on modifying the metabolism of the auxins. Cobalt somewhat decreases the decarboxylation of IAA, but this cannot explain its growth promotion, since Co++, like Mn++, stimulates elongation even at optimal IAA concentrations, and acts with NAA just as well as with IAA. Ferrous ion, on the other hand, acts like the polyphenols. Floating pea stem sections exude enough organic matter to support bacteria which after 7 hours cause considerable decarboxylation of IAA. Avena coleoptile sections have a comparable though smaller effect after 12 hours. The present experiments, with those of others

  20. Regulation of the synthesis of barley aleurone. cap alpha. -amylase by gibberellic acid and calcium ions

    SciTech Connect

    Jones, R.L.; Carbonell, J.

    1984-09-01

    The effects of gibberellic acid (GA/sub 3/) and calcium ions on the production of ..cap alpha..-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA/sub 3/ or CA/sup 2 +/ show qualitative and quantitative changes in hydrolase production following incubation in either GA/sub 3/ or CA/sup 2 +/ or both. In cubation in H/sub 2/O or CA/sup 2 +/ results in the production of low levels of ..cap alpha..-amylase or acid phosphatase. The addition of GA/sub 3/ to the incubation medium causes 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of CA/sup 2 +/ at 10 millimolar causes a further 8- to 9-fold increase in ..cap alpha..-amylase release and a 75% increase in phosphatase release. Production of ..cap alpha..-amylase isoenzymes is also modified by the levels of GA/sub 3/ and CA/sup 2 +/ in the incubation medium. ..cap alpha..-amylase 2 is produced under all conditions of incubation, while ..cap alpha..-amylase 1 appears only when layers are incubated in GA/sub 3/ or GA/sub 3/ plus CA/sup 2 +/. The synthesis of ..cap alpha..-amylases 3 and 4 requires the presence of both GA/sub 3/ and CA/sup 2 +/ in the incubation medium. Laurell rocket immunoelectrophoresis shows that two distinct groups of ..cap alpha..-amylase antigens are present in incubation media of aleurone layers incubated with both GA/sub 3/ and CA/sup 2 +/, while only one group of antigens is found in media of layers incubated in GA/sub 3/ alone. Strontium ions can be substituted for CA/sup 2 +/ in increasing hydrolase production, although higher concentrations of Sr/sup 2 +/ are requried for maximal response. We conclude that GA/sub 3/ is required for the production of ..cap alpha..-amylase 1 and that both GA/sub 3/ and either CA/sup 2 +/ or Sr/sup 2 +/ are required for the production of isoenzymes 3 and 4 of barley aleurone ..cap alpha..-amylase. 22 references, 8

  1. [Determination of succinic acid in desvenlafaxine succinate by high performance ion-exclusion chromatography and high performance ion-exchange chromatography].

    PubMed

    Zong, Yanping; Li, Jinghua; Sun, Wei; Liu, Guixia; Lu, Jinghua; Shan, Guangzhi

    2016-02-01

    New methods were developed for the determination of succinic acid in desvenlafaxine succinate (DVS) by high performance ion-exclusion chromatography (HPIEC) and high performance ion-exchange chromatography (HPIC). HPIEC and HPIC methods were used separately to determinate the succinic acid in DVS. With HPIEC, the sample was diluted with 2. 50 x 10(-3) mol/L sulfuric acid solution and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIEC directly without any further pretreatment. The analytical column was Phenomenex Rezex ROA-organic Acid H+(8%) (300 mmx7. 8 mm). The mobile phase was 2. 50x10(-3) mol/L sulfuric acid solution at the flow rate of 0. 5 mL/min. The column temperature was set at 40 °C, and the detection wavelength was 210 nm. The injection volume was 10 KL. The assay was quantified by external standard method. With HPIC, the sample was diluted with ultrapure water and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIC directly without any further pretreatment. The analytical column was Dionex IonPac AS11-HC (250 mm x 4 mm) with a guard column IonPacAG11-HC (50 mm x 4 mm). Isocratic KOH elute generator was used at the flow rate of 1. 0 mL/min. The detection was performed by a Dionex suppressed (DIONEX AERS 500 4-mm) conductivity detector. The injection volume was 10 µL. The content computation was performed with peak area external reference method. The results of HPIEC method for succinic acid were 28. 8%, 28. 9% and 28. 9%, while the results of HPIEC method were 28. 2%, 28. 6% and 28. 6%. The results of HPIEC and HPIC methods were not significantly different. The two methods can both be used to determine the contents of succinic acid in DVS. The surveillance analytical method should be chosen according to the situation. PMID:27382725

  2. [Determination of succinic acid in desvenlafaxine succinate by high performance ion-exclusion chromatography and high performance ion-exchange chromatography].

    PubMed

    Zong, Yanping; Li, Jinghua; Sun, Wei; Liu, Guixia; Lu, Jinghua; Shan, Guangzhi

    2016-02-01

    New methods were developed for the determination of succinic acid in desvenlafaxine succinate (DVS) by high performance ion-exclusion chromatography (HPIEC) and high performance ion-exchange chromatography (HPIC). HPIEC and HPIC methods were used separately to determinate the succinic acid in DVS. With HPIEC, the sample was diluted with 2. 50 x 10(-3) mol/L sulfuric acid solution and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIEC directly without any further pretreatment. The analytical column was Phenomenex Rezex ROA-organic Acid H+(8%) (300 mmx7. 8 mm). The mobile phase was 2. 50x10(-3) mol/L sulfuric acid solution at the flow rate of 0. 5 mL/min. The column temperature was set at 40 °C, and the detection wavelength was 210 nm. The injection volume was 10 KL. The assay was quantified by external standard method. With HPIC, the sample was diluted with ultrapure water and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIC directly without any further pretreatment. The analytical column was Dionex IonPac AS11-HC (250 mm x 4 mm) with a guard column IonPacAG11-HC (50 mm x 4 mm). Isocratic KOH elute generator was used at the flow rate of 1. 0 mL/min. The detection was performed by a Dionex suppressed (DIONEX AERS 500 4-mm) conductivity detector. The injection volume was 10 µL. The content computation was performed with peak area external reference method. The results of HPIEC method for succinic acid were 28. 8%, 28. 9% and 28. 9%, while the results of HPIEC method were 28. 2%, 28. 6% and 28. 6%. The results of HPIEC and HPIC methods were not significantly different. The two methods can both be used to determine the contents of succinic acid in DVS. The surveillance analytical method should be chosen according to the situation.

  3. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    PubMed

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena. PMID:23895531

  4. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    PubMed

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  5. Simultaneous determination of three chloroacetic acids, three herbicides, and 12 anions in water by ion chromatography.

    PubMed

    Luo, Ximing; Chen, Liang; Zhao, Yanqing

    2015-09-01

    An ion chromatography method was developed for the simultaneous detection of three soluble herbicides (glyphosate, bentazone and picloram), three chlorine disinfection byproducts (monochloroacetic acid, dichloroacetic acid and trichloroacetic acid) and 12 anions in water (Cl(-), Br(-), SO4(2-), CO3(2-), ClO3(-), ClO4(-), BrO3(-), PO4(3-), NO2(-), NO3(-), CH3COO(-) and COO(-)). High linearity (r(2) > 0.996) was observed for all target analytes for each respective concentration range. The limit of detection and limit of quantitation were between 0.21-0.85 and 0.06-25.46 μg/L, respectively. However, the interference effect of Cl(-), NO3(-) , SO4 (2-) and CO3(2-) on some target analytes must be considered during the analysis. Sample pre-treatment by a hydrogen column (H-column) required to reduce the negative effect of CO3(2-). Additionally, sample pre-treatment by a sliver-hydrogen column (Ag-H-column) is required when Cl(-) > 100 mg/L and SO4(2-) < 50 mg/L, and pre-treatment by both a barium column (Ba-column) and an H-column is required when Cl(-) > 100 mg/L and SO4(2-) > 50 mg/L. When Cl(-) > 100 mg/L, SO4(2-) > 50 mg/L and CO3(2-) > 20 mg/L, the sample pre-treatment by either an Ag-H-Ba-column or an Ag-H-column and Ba-column is required to minimize interference.

  6. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain.

    PubMed

    Bohlen, Christopher J; Chesler, Alexander T; Sharif-Naeini, Reza; Medzihradszky, Katalin F; Zhou, Sharleen; King, David; Sánchez, Elda E; Burlingame, Alma L; Basbaum, Allan I; Julius, David

    2011-11-17

    Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH < 6.5), MitTx massively potentiates (>100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception. PMID:22094702

  7. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain.

    PubMed

    Bohlen, Christopher J; Chesler, Alexander T; Sharif-Naeini, Reza; Medzihradszky, Katalin F; Zhou, Sharleen; King, David; Sánchez, Elda E; Burlingame, Alma L; Basbaum, Allan I; Julius, David

    2011-11-16

    Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH < 6.5), MitTx massively potentiates (>100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception.

  8. Chemical Speciation Analysis of Sports Drinks by Acid-Base Titrimetry and Ion Chromatography: A Challenging Beverage Formulation Project

    ERIC Educational Resources Information Center

    Drossman, Howard

    2007-01-01

    Students have standardized a sodium hydroxide solution and analyzed commercially available sports drinks by titrimetric analysis of the triprotic citric acid, dihydrogen phosphate, and dihydrogen citrate and by ion chromatography for chloride, total phosphate and citrate. These experiments are interesting examples of analyzing real-world food and…

  9. Measuring Gas-Phase Basicities of Amino Acids Using an Ion Trap Mass Spectrometer: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.

    2005-01-01

    An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.

  10. Measurements of tropospheric nitric acid over the western United States and northeastern Pacific Ocean

    SciTech Connect

    LeBel, P.J.; Vay, S.A. ); Huebert, B.J. ); Schiff, H.I.; Hastie, D.R. ); Van Bramer, S.E. )

    1990-06-20

    During the August-September 1986 GTE/CITE 2 aircraft mission, more than 240 measurements of nitric acid (HNO{sub 3}) were made in the free troposphere as well as in the boundary layer over the northeastern Pacific Ocean and western continental United States. Marine HNO{sub 3} measurement results were strikingly similar to results from GAMETAG and other past atmospheric field experiments. The marine boundary layer HNO{sub 3} average, 62 parts per trillion by volume (pptv), was one third lower than the marine free tropospheric average, 108 pptv, suggesting that the boundary layer is a sink for tropospheric nitric acid, probably by dry deposition. Nitric acid measurements on a nighttime continental flight gave a free tropospheric average of 218 pptv, substantially greater than the daytime continental free tropospheric five-flight average of 61 pptv. However, the nighttime results may have been influenced by highly convective conditions that existed from thunderstorms in the vicinity during that night flight. Our continental boundary layer HNO{sub 3} average of 767 pptv is an order of magnitude greater than the free tropospheric average, indicating that the boundary layer is a source of free tropospheric HNO{sub 3}. The distribution of continental boundary layer HNO{sub 3} data, from averages of 123 pptv over rural Nevada and Utah to 1,057 pptv in the polluted San Joaquin Valley of California suggests a close tie between boundary layer HNO{sub 3} and anthropogenic activity.

  11. Correlation between stabilities of uranyl ion complexes with various monocarboxylic acids and Hammett-Taft substituent constants

    SciTech Connect

    Poluektov, N.S.; Perfil'ev, V.A.; Meshkova, S.B.; Mishchenko, V.T.

    1987-01-01

    A correlation has been observed between the stabilities of uranyl ion complexes (1:1 composition) and the substituent inductive constants in formic and acetic acid derivatives. For substituents which are not directly involved in couples formation the parameters of the Hammett-Taft equation log K/sub 1/ = A + B have the following values: A = 1.311, B = -2.360. For substituents which form a coordination bond with the uranyl ion, A = 7.0077 and B = - 17.321. In the case of complexes formed between the uranyl ion and salicylic acid and its derivatives, there is a correlation between complex stability and sigma/sub m/ and sigma/sub p/ substituent constants for the meta- and para-positions, respectively (A = 12.72, B = -4.41).

  12. Positional isomeric tunable two Co(II) 6-connected 3-D frameworks with pentanuclear to binuclear units: structures, ion-exchange and magnetic properties.

    PubMed

    Han, Min-Le; Duan, Ya-Ping; Li, Dong-Sheng; Wang, Hai-Bin; Zhao, Jun; Wang, Yao-Yu

    2014-11-01

    Two new Co(II) based metal-organic frameworks, namely {[Co5(μ3-OH)2(m-pda)3(bix)4]·2ClO4}n (1) and {[Co2(p-pda)2(bix)2(H2O)]·H2O}n (2), were prepared by hydrothermal reactions of Co(II) salt with two isomeric dicarboxyl tectons 1,3-phenylenediacetic acid (m-pda) and 1,4-phenylenediacetic acid (p-pda), along with 1,3-bis(imidazol-L-ylmethyl)benzene (bix). Both complexes 1 and 2 have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). 1 shows a 6-connected 3-D pcu cationic framework with pentanuclear [Co5(μ3-OH)2(COO)6(bix)2](2+) units, while 2 exhibits a 6-connected 3-D msw net based on [Co2(μ2-H2O)(COO)2](2+) clusters. The results indicate that the different dispositions of the carboxylic groups of dicarboxylates have an important effect on the overall coordination frameworks. Perchlorate anions in 1 can be partly exchanged by thiocyanate and azide anions, however they are unavailable to nitrate anions. Magnetic susceptibility measurements indicate that both 1 and 2 show weak antiferromagnetic interactions between the adjacent Co(II) ions. PMID:25190003

  13. Fortification of corn masa flour with folic acid in the United States: an overview of the evidence

    PubMed Central

    Hamner, Heather C.; Tinker, Sarah C.

    2015-01-01

    Corn masa flour, used to make products such as corn tortillas, is a staple food for Hispanic populations residing in the United States, particularly among Mexican Americans and Central Americans. Research has indicated that Hispanic women in the United States continue to be at a higher risk of having a neural tube defect–affected pregnancy than women of other races/ethnicities, even after the introduction of folic acid fortification of cereal grain products labeled as “enriched.” Corn masa flour has, therefore, been suggested as a potential food vehicle for folic acid in the United States. This paper explores the potential impact that folic acid fortification of corn masa flour could have on the Hispanic population in the United States. PMID:24494975

  14. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  15. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    PubMed

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  16. Removal and recovery of metal ions from acid mine drainage using lignite--A low cost sorbent.

    PubMed

    Mohan, Dinesh; Chander, Subhash

    2006-10-11

    Acid mine drainage (AMD), has long been a significant environmental problem resulting from the microbial oxidation of iron pyrite in presence of water and air, affording an acidic solution that contains toxic metal ions. The main objective of this study was to remove and recover metal ions from acid mine drainage (AMD) by using lignite, a low cost sorbent. Lignite has been characterized and used for the AMD treatment. Sorption of ferrous, ferric, manganese, zinc and calcium in multi-component aqueous systems was investigated. Studies were performed at different pH to find optimum pH. To simulate industrial conditions for acid mine wastewater treatment, all the studies were performed using single and multi-columns setup in down flow mode. The empty bed contact time (EBCT) model was used for minimizing the sorbent usage. Recovery of the metal ions as well as regeneration of sorbent was achieved successfully using 0.1 M nitric acid without dismantling the columns. PMID:16784810

  17. [Simultaneous determination of 16 organic acids in feed additives by on-line enrichment and ion chromatography-mass spectrometry].

    PubMed

    Xiong, Zhiyu; Dong, Ying; Zhou, Hongbin; Yu, Yang; Li, Jing; Sun, Li

    2014-02-01

    A novel analytical method for simultaneous determination of sixteen organic acids by on-line enrichment and ion chromatography-mass spectrometry (IC-MS) was developed. Online enrichment and separation of the organic acids were performed by ion chromatography on a homemade enrichment column and a homemade separation column. The qualitative and quantitative analyses of the organic acids were performed by mass spectrometry in selected ion monitoring (SIM) mode on the basis of atmospheric pressure chemical ionization (APCI) source in negative mode. The sample of 200 microL was injected for the analysis, and the on-line enrichment time was 3 min. The sodium hydroxide solution was used as a gradient elution system. The two columns made it possible to have a low limit of detection due to the good enrichment and separation capability. The sixteen organic acids were separated completely within 30 min. All curves showed good linearity within the test concentration ranges. The limits of detection (LODs) were between 0.01 and 0.22 mg/L, and the average recoveries were between 70.6% and 110.8%. The relative standard deviations (RSDs) were less than 6.3%. The results indicate that this method is simple, rapid, sensitive and accurate for the determination of the organic acids in feed additives.

  18. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions.

    PubMed

    Sarjit, Amreeta; Wang, Yi; Dykes, Gary A

    2015-04-01

    Gallic acid has been suggested as a potential antimicrobial for the control of Campylobacter but its effectiveness is poorly studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gallic acid against Campylobacter jejuni (n = 8) and Campylobacter coli (n = 4) strains was determined. Gallic acid inhibited the growth of five C. jejuni strains and three C. coli strains (MIC: 15.63-250 μg mL(-1)). Gallic acid was only bactericidal to two C. coli strains (MBC: 125 and 62.5 μg mL(-1)). The mechanism of the bactericidal effect against these two strains (and selected non-susceptible controls) was investigated by determining decimal reduction times and by monitoring the loss of cellular content and calcium ions, and changes in cell morphology. Gallic acid did not result in a loss of cellular content or morphological changes in the susceptible strains as compared to the controls. Gallic acid resulted in a loss of calcium ions (0.58-1.53 μg mL(-1) and 0.54-1.17 μg mL(-1), respectively, over a 180 min period) from the susceptible strains but not the controls. Gallic acid is unlikely to be an effective antimicrobial against Campylobacter in a practical sense unless further interventions to ensure an effective bactericidal mode of action against all strains are developed.

  19. The bile acid-sensitive ion channel (BASIC), the ignored cousin of ASICs and ENaC.

    PubMed

    Wiemuth, Dominik; Assmann, Marc; Gründer, Stefan

    2014-01-01

    The DEG/ENaC gene family of ion channels is characterized by a high degree of structural similarity and an equally high degree of diversity concerning the physiological function. In humans and rodents, the DEG/ENaC family comprises 2 main subgroups: the subunits of the epithelial Na(+) channel (ENaC) and the subunits of the acid sensing ion channels (ASICs). The bile acid-sensitive channel (BASIC), previously known as BLINaC or INaC, represents a third subgroup within the DEG/ENaC family. Although BASIC was identified more than a decade ago, very little is known about its physiological function. Recent progress in the characterization of this neglected member of the DEG/ENaC family, which is summarized in this focused review, includes the discovery of surprising species differences, its pharmacological characterization, and the identification of bile acids as putative natural activators.

  20. Spectrophotometric determination and removal of unchelated europium ions from solutions containing Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates.

    PubMed

    Elshan, N G R Dayan; Patek, Renata; Vagner, Josef; Mash, Eugene A

    2014-11-01

    Europium chelates conjugated with peptide ligands are routinely used as probes for conducting in vitro binding experiments. The presence of unchelated Eu ions in these formulations gives high background luminescence and can lead to poor results in binding assays. In our experience, the reported methods for purification of these probes do not achieve adequate removal of unchelated metal ions in a reliable manner. In this work, a xylenol orange-based assay for the quantification of unchelated metal ions was streamlined and used to determine levels of metal ion contamination as well as the success of metal ion removal on attempted purification. We compared the use of Empore chelating disks and Chelex 100 resin for the selective removal of unchelated Eu ions from several Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates. Both purification methods gave complete and selective removal of the contaminant metal ions. However, Empore chelating disks were found to give much higher recoveries of the probes under the conditions used. Related to the issue of probe recovery, we also describe a significantly more efficient method for the synthesis of one such probe using Rink amide AM resin in place of Tentagel S resin.

  1. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    PubMed

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  2. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling

    NASA Astrophysics Data System (ADS)

    Duncan, Kyle D.; Volmer, Dietrich A.; Gill, Chris G.; Krogh, Erik T.

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H]-) ions with limited selective fragmentation. However, carboxylates cationized with Ba2+ have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba]+ precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH]+ and [BaOH]+). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  3. Separation of clavulanic acid from fermented broth of amino acids by an aqueous two-phase system and ion-exchange adsorption.

    PubMed

    da Silva, Clovis Sacardo; Cuel, Maressa Fabiano; Barreto, Verônica Orlandin; Kwong, Wu Hong; Hokka, Carlos O; Barboza, M

    2012-02-15

    The clavulanic acid is a substance which inhibits the β-lactamases used with penicillins for therapeutic treatment. After the fermentation, by-products of low molecular weight such as amino acids lysine, histidine, proline and tyrosine are present in the fermented broth. To remove these impurities the techniques of extraction by an aqueous two-phase system of 17% polyethylene glycol molecular weight 600 and 15% potassium phosphate were used for a partial purification. A subsequent ion-exchange adsorption was used for the recuperation of the clavulanic acid of the top phase and purification getting a concentration factor of 2 and purification of 100% in relation to the amino acids lysine, histidine, proline and tyrosine.

  4. Seasonal variations in acid-neutralizing capacity in 13 northeast United States headwater streams

    NASA Astrophysics Data System (ADS)

    Dewalle, David R.; Davies, Trevor D.

    1997-04-01

    Variations in acid-neutralizing capacity (ANC) in 13 streams in the Adirondack, Catskill, and Northern Appalachian Plateau regions of the northeast United States were related to discharge, time of year, and seasonal variations in cation and anion concentrations using periodic regression analysis, ANC varied significantly with both discharge and time of year in 12 streams. Generation of ANC seasonal variations, being dependent upon the precise timing and magnitude of seasonal variations in cation and anion concentrations, was unique to each stream. Greatest seasonal ANC variations occurred in streams where seasonal variations in major anion and cation concentrations were completely out of phase. Maximum errors that could occur because of extrapolation of ANC data from one time of year to another were equal to or greater than maximum errors due to extrapolation of ANC from one discharge to another.

  5. Sub-unit structure and specificity of methionyl-transfer-ribonucleic acid synthetase from Escherichia coli

    PubMed Central

    Bruton, C. J.; Hartley, B. S.

    1968-01-01

    1. The purification of methionyl-transfer-RNA synthetase from Escherichia coli by a modified technique gives a 16% yield of a protein that appears homogeneous by the criteria of disc gel electrophoresis, ultracentrifugation and end-group analysis. 2. The molecular weight is 96000 and the protein consists of two sub-units of 48000, which appear to be identical. The amino acid composition and thiol content are reported. 3. Kinetic data are reported for analogues of methionine and for pure t-RNAF and t-RNAM, which are respectively the methionine transfer RNA that can exist in the formylmethionyl form and the one that can exist only in the methionyl form. The enzyme binds and acylates both species of transfer RNA identically. PMID:4874971

  6. Evidence of sulphur and nitrogen deposition signals at the United Kingdom Acid Waters Monitoring Network sites.

    PubMed

    Cooper, D M

    2005-09-01

    Some recent studies of trends in sulphate in surface waters have alluded to possible lag effects imposed by catchment soils, resulting in discrepancies between trends in deposition and run-off. To assess the extent of these possible effects in the UK, sulphate concentration data from the United Kingdom Acid Waters Monitoring Network (AWMN) sites are compared with estimates of sulphur deposition at each site. From these data, input-output budgets are computed at an annual time scale. The estimated budgets suggest a close association between catchment sulphur inputs and outputs at an annual scale, with well-balanced annual budgets at most sites, indicative of only minor lag effects. A similar analysis of the AWMN site nitrogen budget shows little evidence of an association between nitrogen inputs and outputs at this time scale.

  7. Dissociation of nitric acid at an aqueous surface: Large amplitude motions in the contact ion pair to solvent-separated ion pair conversion.

    PubMed

    Wang, Shuzhi; Bianco, Roberto; Hynes, James T

    2010-08-01

    Beyond its fundamental interest, the acid dissociation of nitric acid (HNO(3)) at an aqueous interface is of importance in a wide variety of atmospheric contexts. Here we present a Car-Parrinello molecular dynamics (CPMD) study of the second step of this process, the formation, via proton transfer (PT), of a solvent-separated ion pair (SSIP) from a contact ion pair (CIP) of the hydronium (H(3)O(+)) and the nitrate (NO) ions. This reaction represents an extension of our earlier CPMD study of the first PT step to produce the CIP from molecular HNO(3) at various locations at and below the aqueous surface (S. Wang, R. Bianco and J. T. Hynes, J. Phys. Chem. A, 2009, 113, 1295); it is important in establishing the ionic distribution in the aqueous interfacial region, with potential consequences for heterogeneous reactions occurring in that region. We focus on the large amplitude, microscopic level motions-such as the hydrogen-bonding coordination number changes around the proton-donating and -accepting species-which are key for the CIP --> SSIP PT conversion. PMID:20498901

  8. New aspects in fragmentation of peptide nucleic acids: comparison of positive and negative ions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ziehe, Matthias; Grossmann, Tom N; Seitz, Oliver; Linscheid, Michael W

    2009-04-01

    The use of peptide nucleic acids (PNAs) is steadily increasing in biochemistry and diagnostics. So far, PNAs have mostly been investigated using cationic conditions in mass spectrometry. Furthermore, the use of fragmentation techniques developed for peptides and proteins like infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) has barely been examined. However, especially the fragmentation behavior of PNA oligomers in negative ion mode is of high importance, due to the ability to interact with nucleic acids which are almost exclusively analyzed in the negatively charged state. In the current study PNA fragmentations under cationic and anionic conditions were investigated and different fragmentation techniques like collision-induced dissociation (CID), IRMPD and ECD were applied. Especially when using CID and IRMPD, amide bonds were broken, whereas ECD resulted in the elimination of nucleobases. Differences were also observed between positive and negative ionization, while the sequence coverage for the negative ions was superior to positive ions. The fragmentation behavior using IRMPD led to almost complete sequence coverage. Additionally, in anions the interesting effect of multiple eliminations of HNCO was found. PMID:19280610

  9. Separation of membranes from acid-solubilized fish muscle proteins with the aid of calcium ions and organic acids.

    PubMed

    Liang, Yong; Hultin, Herbert O

    2005-04-20

    Calcium chloride, and to a lesser extent MgCl2, aided in the separation of membranes by centrifugation from cod (Gadus morhua) muscle homogenates solubilized at pH 3 in the presence of citric acid or malic acid but not lactic acid. Adding citric acid and Ca2+ before solubilizing the cod muscle homogenates was needed for the effect. At 1 mM citric acid, 70-80% of the phospholipid and 25-30% of the protein were removed at 10 mM Ca2+. At 8 mM Ca2+, citric acid showed an optimal effect on phospholipid removal at 5 mM with 90% of the phospholipid and 35% of the protein removed. The treatment with citric acid and Ca2+ was also effective in separating the membrane from solubilized herring (Clupea harengus) muscle homogenate. Ca2+ and citric acid might exert their influence by disconnecting linkages between membranes and cytoskeletal proteins.

  10. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    PubMed

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.

  11. Structure of Acid-Sensing Ion Channel 1 at 1.9 angstrom Resolution and Low pH

    SciTech Connect

    Jasti,J.; Furukawa, H.; Gonzales, E.; Gouaux, E.

    2007-01-01

    Acid-sensing ion channels (ASICs) are voltage-independent, proton-activated receptors that belong to the epithelial sodium channel/degenerin family of ion channels and are implicated in perception of pain, ischaemic stroke, mechanosensation, learning and memory. Here we report the low-pH crystal structure of a chicken ASIC1 deletion mutant at 1.9 Angstroms resolution. Each subunit of the chalice-shaped homotrimer is composed of short amino and carboxy termini, two transmembrane helices, a bound chloride ion and a disulphide-rich, multidomain extracellular region enriched in acidic residues and carboxyl-carboxylate pairs within 3 Angstroms, suggesting that at least one carboxyl group bears a proton. Electrophysiological studies on aspartate-to-asparagine mutants confirm that these carboxyl-carboxylate pairs participate in proton sensing. Between the acidic residues and the transmembrane pore lies a disulphide-rich 'thumb' domain poised to couple the binding of protons to the opening of the ion channel, thus demonstrating that proton activation involves long-range conformational changes.

  12. Spectroscopic study of Mg(II) ion influence on the autoxidation of gallic acid in weakly alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Nikolić, G. M.; Veselinović, A. M.; Nikolić, R. S.; Mitić, S. S.

    2011-12-01

    Gallic acid autoxidation in weakly alkaline aqueous solutions was studied by UV-Vis spectrophotometry and ESR spectroscopy under various conditions. Lowering the pH value from 10 to 8.5 probably changes the mechanism of the autoxidation reaction as evidenced by the different time variations of UV-Vis spectra of solutions. The presence of Mg(II) ions greatly influences the autoxidation reaction at pH 8.5. Although the UV-Vis spectral changes with time follow the similar pattern during the gallic acid autoxidation at pH 10 and at pH 8.5 in the presence of Mg(II) ions, some small differences indicate that Mg(II) ions not only affect the electron density of absorbing species but also influence the overall mechanism of the autoxidation reaction. ESR spectra of free radials formed during the initial stage of gallic acid autoxidation at pH 8.5 in the presence of Mg(II) ions were recorded. Computer simulation of ESR spectra allows partial characterization of these free radicals.

  13. Characterizing the interaction between uranyl ion and fulvic acid using regional integration analysis (RIA) and fluorescence quenching.

    PubMed

    Zhu, Bingqi; Ryan, David K

    2016-03-01

    The development of chemometric methods has substantially improved the quantitative usefulness of the fluorescence excitation-emission matrix (EEM) in the analysis of dissolved organic matter (DOM). In this study, Regional Integration Analysis (RIA) was used to quantitatively interpret EEMs and assess fluorescence quenching behavior in order to study the binding between uranyl ion and fulvic acid. Three fulvic acids including soil fulvic acid (SFA), Oyster River fulvic acid (ORFA) and Suwannee River fulvic acid (SRFA) were used and investigated by the spectroscopic techniques. The EEM spectra obtained were divided into five regions according to fluorescence structural features and two distinct peaks were observed in region III and region V. Fluorescence quenching analysis was conducted for these two regions with the stability constants, ligand concentrations and residual fluorescence values calculated using the Ryan-Weber model. Results indicated a relatively strong binding ability between uranyl ion and fulvic acid samples at low pH (log K value varies from 4.11 to 4.67 at pH 3.50). Fluorophores in region III showed a higher binding ability with fewer binding sites than in region V. Stability constants followed the order, SFA > ORFA > SRFA, while ligand concentrations followed the reverse order, SRFA > ORFA > SFA. A comparison between RIA and Parallel Factor Analysis (PARAFAC) data treatment methods was also performed and good agreement between these two methods (less than 4% difference in log K values) demonstrates the reliability of the RIA method in this study. PMID:26736183

  14. Patterns of acid deposition variability in the Eastern United States, 1981-84

    USGS Publications Warehouse

    Lins, H.F.; Lanfear, K.J.; Schertz, T.L.

    1987-01-01

    An increase in pH and a decrease in sulfate concentration of precipitation were recorded at National Atmospheric Deposition Program and National Trends Network (NADP/NTN) monitoring sites in the Eastern United States between 1981 and 1984. The decline in acidity, however, was not spatially or temporally uniform. The range in acidity and sulfate concentrations decreased during the four-yr period. Variations in the area of constant pH surfaces take the general form of area reductions in both the lower (pH 4.01-4.40) and upper (pH 4.91-5.40) range of values with concomitant area increases in the middle (pH 4.41-4.90) range. The pattern for sulfate is simpler, with area increases occurring in the lower (1.0-1.9 mg/L) range, decreases in the upper (2.5-4.4 mg/L) range, with approximate stability in the middle (2.0-2.4 mg/L) range of values. (Author 's abstract)

  15. Characterization of hybrid plasmids carrying individual ribosomal ribonucleic acid transcription units of Escherichia coli.

    PubMed Central

    Kenerley, M E; Morgan, E A; Post, L; Lindahl, L; Nomura, M

    1977-01-01

    We have screened the strains with ColE1 hybrid plasmids constructed by Clarke and Carbon (Cell 9:91-99, 1976) for the presence of ribosomal ribonucleic acid (rRNA) genes on the plasmids and identified 16 strains whose plasmids carry rRNA genes. The structures of these 16 plasmids were compared by heteroduplex analysis, and the plasmids were classified into six groups on the basis of their chromosomal origins. Homology with known transducing-phage deoxyribonucleic acids and genetic mapping have assigned locations on the Escherichia coli chromosome to three of the six groups. These are rrnB near rif at 88 min, rrnC near ilvE at 83 min, and rrnD near aroE at 71 min. A fourth group is probably rrnA at 85 min (T. Ikemura and M. Nomura, Cell, 11:779-793, 1977). We conclude that the minimum number of rRNA transcription units per haploid chromosomes is seven, that is, the six groups identified in this work plus a known operon (rrnE near metA at 89 min) that we failed to find among the hybrid plasmids. This heteroduplex analysis also suggests that there are only two kinds of rRNA operons with respect to their spacer region; three of the six rRNA operon groups studied here have one kind, whereas the remaining three have the other kind. Images PMID:336613

  16. Temperature Rise Induced by Light Curing Unit Can Shorten Enamel Acid-Etching Time

    PubMed Central

    Najafi Abrandabadi, Ahmad; Sheikh-Al-Eslamian, Seyedeh Mahsa; Panahandeh, Narges

    2015-01-01

    Objectives: The aim of this in-vitro study was to assess the thermal effect of light emitting diode (LED) light curing unit on the enamel etching time. Materials and Methods: Three treatment groups with 15 enamel specimens each were used in this study: G1: Fifteen seconds of etching, G2: Five seconds of etching, G3: Five seconds of etching plus LED light irradiation (simultaneously). The micro shear bond strength (μSBS) of composite resin to enamel was measured. Results: The mean μSBS values ± standard deviation were 51.28±2.35, 40.47±2.75 and 50.00±2.59 MPa in groups 1, 2 and 3, respectively. There was a significant difference between groups 1 and 2 (P=0.013) and between groups 2 and 3 (P=0.032) in this respect, while there was no difference between groups 1 and 3 (P=0.932). Conclusion: Simultaneous application of phosphoric acid gel over enamel surface and light irradiation using a LED light curing unit decreased enamel etching time to five seconds without compromising the μSBS. PMID:27559352

  17. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possible implications for epilepsy.

    PubMed

    Ievglevskyi, O; Isaev, D; Netsyk, O; Romanov, A; Fedoriuk, M; Maximyuk, O; Isaeva, E; Akaike, N; Krishtal, O

    2016-08-01

    Acid-sensing ion channels (ASICs) play an important role in numerous functions in the central and peripheral nervous systems ranging from memory and emotions to pain. The data correspond to a recent notion that each neuron and many glial cells of the mammalian brain express at least one member of the ASIC family. However, the mechanisms underlying the involvement of ASICs in neuronal activity are poorly understood. However, there are two exceptions, namely, the straightforward role of ASICs in proton-based synaptic transmission in certain brain areas and the role of the Ca(2+)-permeable ASIC1a subtype in ischaemic cell death. Using a novel orthosteric ASIC antagonist, we have found that ASICs specifically control the frequency of spontaneous inhibitory synaptic activity in the hippocampus. Inhibition of ASICs leads to a strong increase in the frequency of spontaneous inhibitory postsynaptic currents. This effect is presynaptic because it is fully reproducible in single synaptic boutons attached to isolated hippocampal neurons. In concert with this observation, inhibition of the ASIC current diminishes epileptic discharges in a low Mg(2+) model of epilepsy in hippocampal slices and significantly reduces kainate-induced discharges in the hippocampus in vivo Our results reveal a significant novel role for ASICs.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377725

  18. Distribution of acid-sensing ion channel 3 in the rat hypothalamus.

    PubMed

    Meng, Q-Y; Wang, W; Chen, X-N; Xu, T-L; Zhou, J-N

    2009-03-31

    Acid-sensing ion channels (ASICs), the members of the epithelial sodium channel/degenerin (ENaC/DEG) superfamily, are proton-gated voltage-insensitive cation channels. Six ASIC subunits have been identified and characterized in the mammalian nervous system so far. Of these subunits, ASIC3 has been shown to be predominantly expressed in the peripheral nervous system of rodents and implicated in mechnosensation, chemosensation and pain perception. Little is known on ASIC3 in the brain. We thus employed reverse transcription-polymerase chain reaction (RT-PCR) and Western blot to examine the expression of ASIC3 in various rat brain regions, including hippocampus, amygdala, caudate putamen, prefrontal cortex, and hypothalamus. Specific attention was paid to the distribution of ASIC3 in the hypothalamus of rats by using immunohistochemistry. ASIC3 immunoreactivity showed a widespread pattern throughout the hypothalamus, with the highest density in paraventricular nucleus, supraoptic nucleus, suprachiasmatic nucleus, arcuate nucleus, dorsomedial nucleus, median preoptic nucleus, ventromedial preoptic nucleus, and dorsal tuberomammillary nucleus. This study may contribute to the understanding of ASIC3 functions in the CNS. PMID:19356693

  19. Nicotinic acid is a common regulator of heat-sensing TRPV1-4 ion channels.

    PubMed

    Ma, Linlin; Lee, Bo Hyun; Clifton, Heather; Schaefer, Saul; Zheng, Jie

    2015-03-10

    Nicotinic acid (NA, a.k.a. vitamin B3 or niacin) can reduce blood cholesterol and low-density lipoproteins whereas increase high-density lipoproteins. However, when NA is used to treat dyslipidemias, it causes a strong side effect of cutaneous vasodilation, commonly called flushing. A recent study showed that NA may cause flushing by lowering activation threshold temperature of the heat-sensitive capsaicin receptor TRPV1 ion channel, leading to its activation at body temperature. The finding calls into question whether NA might also interact with the homologous heat-sensitive TRPV2-4 channels, particularly given that TRPV3 and TRPV4 are abundantly expressed in keratinocytes of the skin where much of the flushing response occurs. We found that NA indeed potentiated TRPV3 while inhibited TRPV2 and TRPV4. Consistent with these gating effects, NA lowered the heat-activation threshold of TRPV3 but elevated that of TRPV4. We further found that activity of TRPV1 was substantially prolonged by extracellular NA, which may further enhance the direct activation effect. Consistent with the broad gating effect on TRPV1-4 channels, evidence from the present study hints that NA may share the same activation pathway as 2-aminoethoxydiphenyl borate (2-APB), a common agonist for these TRPV channels. These findings shed new light on the molecular mechanism underlying NA regulation of TRPV channels.

  20. Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms

    PubMed Central

    Liu, Ming-Gang; Li, Hu-Song; Li, Wei-Guang; Wu, Yan-Jiao; Deng, Shi-Ning; Huang, Chen; Maximyuk, Oleksandr; Sukach, Volodymyr; Krishtal, Oleg; Zhu, Michael X.; Xu, Tian-Le

    2016-01-01

    The exact roles of acid-sensing ion channels (ASICs) in synaptic plasticity remain elusive. Here, we address the contribution of ASIC1a to five forms of synaptic plasticity in the mouse hippocampus using an in vitro multi-electrode array recording system. We found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term potentiation (LTP) induction by either single or repeated high frequency stimulation or theta burst stimulation in the CA1 region. However, these treatments did not affect hippocampal long-term depression induced by low frequency electrical stimulation or (RS)-3,5-dihydroxyphenylglycine. We also show that ASIC1a exerts its action in hippocampal LTP through multiple mechanisms that include but are not limited to augmentation of NMDA receptor function. Taken together, these results reveal new insights into the role of ASIC1a in hippocampal synaptic plasticity and the underlying mechanisms. This unbiased study also demonstrates a novel and objective way to assay synaptic plasticity mechanisms in the brain. PMID:26996240

  1. Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Chronic Epileptogenesis.

    PubMed

    Yang, Feng; Sun, Xiaolong; Ding, Yinxiu; Ma, Hui; Yang, Tangpeng Ou; Ma, Yue; Wei, Dong; Li, Wen; Xu, Tianle; Jiang, Wen

    2016-01-01

    Unraveling mechanisms underlying epileptogenesis after brain injury is an unmet medical challenge. Although histopathological studies have revealed that reactive astrogliosis and tissue acidosis are prominent features in epileptogenic foci, their roles in epileptogenesis remain unclear. Here, we explored whether astrocytic acid-sensing ion channel-1a (ASIC1a) contributes to the development of chronic epilepsy. High levels of ASIC1a were measured in reactive astrocytes in the hippocampi of patients with temporal lobe epilepsy (TLE) and epileptic mice. Extracellular acidosis caused a significant Ca(2+) influx in cultured astrocytes, and this influx was sensitive to inhibition by the ASIC1a-specific blocker psalmotoxin 1 (PcTX1). In addition, recombinant adeno-associated virus (rAAV) vectors carrying a GFAP promoter in conjunction with ASIC1a shRNA or cDNA were generated to suppress or restore, respectively, ASIC1a expression in astrocytes. Injection of rAAV-ASIC1a-shRNA into the dentate gyrus of the wide type TLE mouse model resulted in the inhibition of astrocytic ASIC1a expression and a reduction in spontaneous seizures. By contrast, rAAV-ASIC1a-cDNA restored astrocytic ASIC1a expression in an ASIC1a knock-out TLE mouse model and increased the frequency of spontaneous seizures. Taken together, our results reveal that astrocytic ASIC1a may be an attractive new target for the treatment of epilepsy. PMID:27526777

  2. Acid-sensing ion channels contribute to the metaboreceptor component of the exercise pressor reflex

    PubMed Central

    McCord, Jennifer L.; Tsuchimochi, Hirotsugu; Kaufman, Marc P.

    2009-01-01

    The exercise pressor reflex is evoked by both mechanical and metabolic stimuli arising in contracting skeletal muscle. Recently, the blockade of acid-sensing ion channels (ASICs) with amiloride and A-316567 attenuated the reflex. Moreover, amiloride had no effect on the mechanoreceptor component of the reflex, prompting us to determine whether ASICs contributed to the metaboreceptor component of the exercise pressor reflex. The metaboreceptor component can be assessed by measuring mean arterial pressure during postcontraction circulatory occlusion when only the metaboreceptors are stimulated. We examined the effects of amiloride (0.5 μg/kg), A-317567 (10 mM, 0.5 ml), and saline (0.5 ml) on the pressor response to and after static contraction while the circulation was occluded in 30 decerebrated cats. Amiloride (n = 11) and A-317567 (n = 7), injected into the arterial supply of the triceps surae muscles, attenuated the pressor responses both to contraction while the circulation was occluded and to postcontraction circulatory occlusion (all, P < 0.05). Saline (n = 11), however, had no effect on the pressor responses to contraction while the circulation was occluded or to postcontraction circulatory occlusion (both, P > 0.79). Our findings led us to conclude that ASICs contribute to the metaboreceptor component of the exercise pressor reflex. PMID:19465550

  3. Optimizing mass spectrometric detection for ion chromatographic analysis. I. Common anions and selected organic acids.

    PubMed

    Wang, Jinyuan; Schnute, William C

    2009-11-01

    We describe a systematic method of optimizing mass spectrometric (MS) detection for ion chromatographic (IC) analysis of common anions and three selected organic acids using response surface methodology (RSM). RSM was utilized in this study because it minimized the number of experiments required to achieve the optimum MS response and included the interactions between individual parameters for multivariable optimization. Five MS parameters, including probe temperature, nebulizer gas, assistant makeup flow, needle voltage and cone voltage, were screened and systematically optimized by two steps. Central composite design (CCD) was used to design the experiment points and a quadratic model was applied to fit the experimental data. Analysis of variance (ANOVA) was carried out to evaluate the validity of the statistical model and to determine the most significant parameters for MS response. The optimum MS conditions for each analyte were summarized and the method optimum condition was achieved by applying desirability function. Our observation showed good agreements between statistically predicted optimum response and the responses collected at the predicted optimum condition. Operable range of each parameter (with normalized MS response greater than 0.8 for each analyte) was provided for general anionic IC/MS applications.

  4. Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Chronic Epileptogenesis

    PubMed Central

    Yang, Feng; Sun, Xiaolong; Ding, Yinxiu; Ma, Hui; Yang, Tangpeng Ou; Ma, Yue; Wei, Dong; Li, Wen; Xu, Tianle; Jiang, Wen

    2016-01-01

    Unraveling mechanisms underlying epileptogenesis after brain injury is an unmet medical challenge. Although histopathological studies have revealed that reactive astrogliosis and tissue acidosis are prominent features in epileptogenic foci, their roles in epileptogenesis remain unclear. Here, we explored whether astrocytic acid-sensing ion channel-1a (ASIC1a) contributes to the development of chronic epilepsy. High levels of ASIC1a were measured in reactive astrocytes in the hippocampi of patients with temporal lobe epilepsy (TLE) and epileptic mice. Extracellular acidosis caused a significant Ca2+ influx in cultured astrocytes, and this influx was sensitive to inhibition by the ASIC1a-specific blocker psalmotoxin 1 (PcTX1). In addition, recombinant adeno-associated virus (rAAV) vectors carrying a GFAP promoter in conjunction with ASIC1a shRNA or cDNA were generated to suppress or restore, respectively, ASIC1a expression in astrocytes. Injection of rAAV-ASIC1a-shRNA into the dentate gyrus of the wide type TLE mouse model resulted in the inhibition of astrocytic ASIC1a expression and a reduction in spontaneous seizures. By contrast, rAAV-ASIC1a-cDNA restored astrocytic ASIC1a expression in an ASIC1a knock-out TLE mouse model and increased the frequency of spontaneous seizures. Taken together, our results reveal that astrocytic ASIC1a may be an attractive new target for the treatment of epilepsy. PMID:27526777

  5. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards.

  6. Comparison of three strong ion models used for quantifying the acid-base status of human plasma with special emphasis on the plasma weak acids.

    PubMed

    Anstey, Chris M

    2005-06-01

    Currently, three strong ion models exist for the determination of plasma pH. Mathematically, they vary in their treatment of weak acids, and this study was designed to determine whether any significant differences exist in the simulated performance of these models. The models were subjected to a "metabolic" stress either in the form of variable strong ion difference and fixed weak acid effect, or vice versa, and compared over the range 25 < or = Pco(2) < or = 135 Torr. The predictive equations for each model were iteratively solved for pH at each Pco(2) step, and the results were plotted as a series of log(Pco(2))-pH titration curves. The results were analyzed for linearity by using ordinary least squares regression and for collinearity by using correlation. In every case, the results revealed a linear relationship between log(Pco(2)) and pH over the range 6.8 < or = pH < or = 7.8, and no significant difference between the curve predictions under metabolic stress. The curves were statistically collinear. Ultimately, their clinical utility will be determined both by acceptance of the strong ion framework for describing acid-base physiology and by the ease of measurement of the independent model parameters.

  7. Avogadro constant and ion accumulation: steps towards a redefinition of the SI unit of mass

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Gläser, Michael

    2003-08-01

    This paper summarizes the activities of the several national metrology institutes and one transnational institute in replacing the kilogram artefact by the mass of a certain number of atoms. This task is based on two different experiments: a very accurate determination of the Avogadro constant, NA, and the accumulation of decelerated gold ions, which lead to the atomic mass of silicon and gold respectively. The relative uncertainties reached so far are in the first case two parts in 107, and in the latter of the order of 1% due to the early state of the research work.

  8. Meteorological support to the West German-United States Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Westfall, R. R.; Chamberlain, L. W.

    1972-01-01

    The objective of the Barium Ion Cloud Project was to study a barium ionized cloud released at an altitude of 5 earth radii. Accurate forecasting of weather conditions to prevail during the experiment period was critical to the project success. Good seeing conditions were required at all optical sites during the experiment. All meteorological support was the responsibility of the National Weather Service at Wallops Station, Virginia. Preliminary results confirm the scientists' theories of the magnetic fields and the existence of electric fields in the magnetosphere.

  9. Combined effects of lanthanum ion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings.

    PubMed

    Wen, Kejia; Liang, Chanjuan; Wang, Lihong; Hu, Gang; Zhou, Qing

    2011-07-01

    Rare earth elements (REEs) have been accumulated in the agricultural environment. Acid rain is a serious environmental issue. In the present work, the effects of lanthanum ion (La(3+)) and acid rain on the growth, photosynthesis and chloroplast ultrastructure in soybean seedlings were investigated using the gas exchange measurements system, chlorophyll fluorometer, transmission electron microscopy and some biochemical techniques. It was found that although the growth and photosynthesis of soybean seedlings treated with the low concentration of La(3+) was improved, the growth and photosynthesis of soybean seedlings were obviously inhibited in the combined treatment with the low concentration of La(3+) and acid rain. At the same time, the chloroplast ultrastructure in the cell of soybean seedlings was destroyed. Under the combined treatment with the high concentration of La(3+) and acid rain, the chloroplast ultrastructure in the cell of soybean seedlings was seriously destroyed, and the growth and of photosynthesis were greatly decreased compared with those of the control, the single treatment with the high concentration of La(3+) and the single treatment with acid rain, respectively. The degree of decrease and destruction on chloroplast ultrastructure depended on the increases in the concentration of La(3+) and acid rain (H(+)). In conclusion, the combined pollution of La(3+) and acid rain obviously destroyed the chloroplast ultrastructure of cell and aggravated the harmful effect of the single La(3+) and acid rain on soybean seedlings. As a new combined pollutant, the harmful effect of REEs ions and acid rain on plant should be paid attention to.

  10. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    NASA Astrophysics Data System (ADS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials.

  11. Formulation and physicochemical properties of macro- and microemulsions prepared by interfacial ion-pair formation between amino acids and fatty acids

    SciTech Connect

    Woo, G.T.P.

    1987-01-01

    Emulsions were prepared by dissolving an amino acid in the aqueous phase and a fatty acid in the oil phase of the emulsions. When the two phases were mixed, the amino acid and fatty acid formed an ion pair at the oil-water interface which stabilized one phase as small droplets within the other to give a stable emulsion. NMR spectra indicated protonation on the amino groups when a carboxylic acid was added to an aqueous solution of an amino acid. Various hydrocarbons and mineral oil could be emulsified into oil-in-water emulsions with a high volume ratio containing up to 75% internal oil phase. Vegetable oils such as soybean oil, safflower seed oil and cottonseed oil were emulsified to a lesser extent. Both oil-in-water and water-in-oil emulsions could be formed with the same emulsifying agents depending on the phase volume ratio and the order of addition of oil phase to water phase or the reverse. Particle size measurements using laser light-scattering techniques indicated an oil-in-water emulsion mixed by a magnetic stirring bar had an internal droplet size in the range of 0.1 to 0.3 micron. Such emulsions were stable at 50/degrees/ and 60/degrees/C for three to six months. In addition to the macroemulsions described above, completely clear water-in-oil microemulsions can be prepared from the above systems by the addition of long-chain fatty alcohols such as oleyl alcohol. Clear regions of such clear microemulsions were characterized. Microemulsion systems suitable for tertiary oil recovery were also studied. Clear microemulsions prepared by ion-pairing between ammonia and hexanoic acid could contain octane or tetradecane in the form of oil-in-water or water-in-oil microemulsions at a wide range of oil to aqueous ratio.

  12. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (˜0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to ˜9.7 NCPS pptv-1), but because of a much lower and more stable background (3 ± 4 compared to a range of ˜2 × 103 to ˜6 × 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from <12 to 94 pptv (median 34 pptv), were marginally higher at night than during day, and correlated with nitrogen oxide (NOx = NO + NO2) mixing ratios and submicron particle volume. The ratios of HNCO to NOx observed are within the range of emission ratios reported for gasoline-powered motor vehicles.

  13. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry.

    PubMed

    Brent, Lacey C; Reiner, Jessica L; Dickerson, Russell R; Sander, Lane C

    2014-08-01

    The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.

  14. Simultaneous determination of amino acids and carbohydrates in culture media of Clostridium thermocellum by valve-switching ion chromatography.

    PubMed

    Fa, Yun; Yang, Haiyan; Ji, Chengshuai; Cui, He; Zhu, Xinshu; Du, Juan; Gao, Jun

    2013-10-10

    An improved method for the simultaneous determination of 20 amino acids and 7 carbohydrates using one-valve switching after injection, ion chromatography, and integrated pulsed amperometric detection is proposed. The resolution of the amino acids and carbohydrates in the cation trap column was investigated. In addition, parameters including flow liquid type, flow rate, concentration, and valve-switch timing were optimized. The method is time-saving, effective, and accurate for the simultaneous separation of amino acids and carbohydrates, with a mean correlation coefficient of >0.99 and repeatability of 0.5-4.6% for eight replicates. The method was successfully applied in the analysis of amino acids and carbohydrates in aseptic media and in extracellular culture media of three phenotypes of Clostridium thermocellum.

  15. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles

    NASA Astrophysics Data System (ADS)

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-05-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  16. A multinuclear NMR relaxation study of the interaction of divalent metal ions with L-aspartic acid.

    PubMed

    Khazaeli, S; Viola, R E

    1984-09-01

    Carbon-13 spin-lattice relaxation times, T1, have been measured for aqueous solutions of L-aspartic acid, L-alanine, O-phospho-L-serine, and 2-mercapto-L-succinic acid in the presence of the paramagnetic metal ions, Cu2+ and Mn2+, and Mg2+ as a diamagnetic control, at ambient temperature and neutral pH. Nitrogen-15, oxygen-17 and proton relaxation times were also obtained for L-aspartic acid and phosphorus-31 relaxation times for O-phospho-L-serine under similar conditions. The structures of these complexes in solution were determined from the various metal ion-nuclei distances calculated from the paramagnetically-induced relaxation. These results indicate that the Cu2+ interaction with L-aspartic acid is through alpha-amino and beta-carboxyl groups while Mn2+ coordinates most strongly through alpha- and beta-carboxyl groups, with the possibility of a weak interaction through the amino group. An examination of the coordination of these divalent metal ions to an analog of L-aspartic acid in which the beta-carboxyl group is replaced by a phosphate group (O-phospho-L-serine) indicated that Cu2+ coordination is now probably through the alpha-amino and phosphate groups, while this analog is a monodentate ligand for Mn2+ coordinating through the phosphate group. Removal of the beta-carboxyl group (L-alanine) also results in Cu2+ coordination through the alpha-carboxyl and alpha-amino groups, and the same ligand interactions are observed with Mn2+. Replacement of the alpha-amino group of L-aspartic acid with an -SH group (2-mercapto-L-succinate) is sufficient to eliminate any specific coordination with either Cu2+ or Mn2+. PMID:6491655

  17. Micro/nanofabrication of poly({sub L}-lactic acid) using focused ion beam direct etching

    SciTech Connect

    Oyama, Tomoko Gowa; Nagasawa, Naotsugu; Taguchi, Mitsumasa; Hinata, Toru; Washio, Masakazu; Oshima, Akihiro; Tagawa, Seiichi

    2013-10-14

    Micro/nanofabrication of biocompatible and biodegradable poly({sub L}-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachment properties.

  18. Supramolecular architectures from the self-assembly of lanthanide ions with 6-hydroxypicolinic acid and 1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Sun, Chang-Yan; Jin, Lin-Pei

    2005-05-01

    Three new lanthanide complexes, [La(HpicO) 3(phen)(H 2O)] n ( 1) and Ln 3(picO) 4(phen) 3(H 2O) 2·HpicO·0.5H 2O (Ln=Er ( 2), Yb ( 3)) were synthesized by the hydrothermal reactions and characterized by single crystal X-ray diffraction, elemental analysis and IR spectrum. In complex 1, each La(III) ion is 10-coordinated and HpicO - ligands link the metal ions into 1D zigzag chains. Complexes 2 and 3 are isomorphous, and there are three crystallographically independent Ln(III) ions in the asymmetric unit. The N-H⋯O and O-H⋯O hydrogen bonds and π-π stacking interactions in these complexes result in the formation of 3D supramolecular architectures.

  19. Di- and triarylmethylium ions as probes for the ambident reactivities of carbanions derived from 5-benzylated Meldrum's acid.

    PubMed

    Chen, Xi; Tan, Yue; Berionni, Guillaume; Ofial, Armin R; Mayr, Herbert

    2014-08-25

    The kinetics of the reactions of carbocations with carbanions 1 derived from 5-benzyl-substituted Meldrum's acids 1-H (Meldrum's acid = 2,2-dimethyl-1,3-dioxane-4,6-dione) were investigated by UV/Vis spectroscopic methods. Benzhydryl cations Ar2CH(+) added exclusively to C-5 of the Meldrum's acid moiety. As the second-order rate constants (kC) of these reactions in DMSO followed the linear free-energy relationship lg k = sN (N+E), the nucleophile-specific reactivity parameters N and sN for the carbanions 1 could be determined. In contrast, trityl cations Ar3C(+) reacted differently. While tritylium ions of low electrophilicity (E<-2) reacted with 1 through rate-determining β-hydride abstraction, more Lewis acidic tritylium ions initially reacted at the carbonyl oxygen of 1 to form trityl enolates, which subsequently reionized and eventually yielded triarylmethanes and 5-benzylidene Meldrum's acids by hydride transfer. PMID:25099696

  20. Ion and acid-base balance in three species of Amazonian fish during gradual acidification of extremely soft water.

    PubMed

    Wilson, R W; Wood, C M; Gonzalez, R J; Patrick, M L; Bergman, H L; Narahara, A; Val, A L

    1999-01-01

    Sensitivity to acid water was assessed in three species of Amazonian fish that encounter naturally acidic blackwaters to differing degrees in the wild: tambaqui (Colossoma macropomum), matrincha (Brycon erythropterum), and tamoatá (Hoplosternum littorale), in decreasing order of occurrence in blackwater. Fish were exposed to a graded reduction in water pH, from pH 6 to 5 to 4 to 3.5, followed by return to pH 6. Fish were exposed to each new pH for 24 h. During these exposures, net transfers of ions (Na+, K+, Cl-, and Ca2+) and acid-base equivalents to and from the external water were used as physiological indicators of acid tolerance. Exposure to pH 5 had a minimal effect on net ion fluxes. Significant net losses of all ions (except Ca2+) were recorded in all three species during the first few hours of exposure to pH 4. However, ion balance was usually restored within 18 h at pH 4. Exposure to pH 3.5 caused even greater ion losses in all three species and proved to be acutely lethal to tamoatá. Matrincha sustained irreversible physiological damage at pH 3.5, as ion fluxes did not recover following return to pH 6 and there was some mortality. Tambaqui suffered the least ionoregulatory disturbances at pH 3.5 and was the only species to make a full recovery on return to pH 6. In all species, there was a tendency for ammonia excretion to increase at low water pH, but even at pH 3.5, there was no significant net uptake of acid from the water. Overall, there was a strong relationship between the magnitude of ionic disturbances and the lethality of exposure to low pH. The relative insensitivity of the ionoregulatory system of tambaqui to low pH indicates that this is a feature of fish native to blackwater systems rather than one that is common to all Amazon fish.

  1. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a

    PubMed Central

    Duanmu, Wang-sheng; Cao, Liu; Chen, Jing-yu; Ge, Hong-fei; Hu, Rong; Feng, Hua

    2016-01-01

    Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury. PMID:27212927

  2. Cysteamine-induced inhibition of acid neutralization and the increase in hydrogen ion back-diffusion in duodenal mucosa

    SciTech Connect

    Ohe, K.; Okada, Y.; Fujiwara, T.; Inoue, M.; Miyoshi, A.

    1982-03-01

    To investigate the possible impairment of defensive mechanisms in cysteamine-induced duodenal ulceration, the effect of cysteamine on the neutralization of acid by the duodenum and the back-diffusion of hydrogen ions into the duodenal mucosa has been studied. The results obtained were as follows. (1) The intraduodenal pH started to decrease between 3 and 4 hr after cysteamine injection. (2) By perfusion of the duodenal loop excluding the opening of bile and pancreatic ducts, the amount of hydrogen ions (H+) neutralized was found to be significantly lower in cysteamine-treated animals than in the controls. (3) the back-diffusion of luminal H+ into the duodenal mucosa, estimated by measuring the H+ disappearance from the test solution including 100 mM HCl, was significantly increased by cysteamine. From these findings, it has been concluded that cysteamine reduces the resistance of duodenal mucosa to acid coming from the stomach.

  3. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups.

    PubMed

    Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar

    2015-11-28

    The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties. PMID:26489595

  4. Design of a Modular 5-kW Power Processing Unit for the Next-Generation 40-cm Ion Engine

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bond, Thomas; Okada, Don; Pyter, Janusz; Wiseman, Steve

    2002-01-01

    NASA Glenn Research Center is developing a 5/10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard poster processing unit is being designed and fabricated. The design includes a beam supply consisting of four 1.1 kW power modules connected in parallel, equally sharing the output current. A novel phase-shifted/pulse-width-modulated dual full-bridge topology was chosen for its soft-switching characteristics. The proposed modular approach allows scalability to higher powers as well as the possibility of implementing an N+1 redundant beam supply. Efficiencies in excess of 96% were measured during testing of a breadboard beam power module. A specific mass of 3.0 kg/kW is expected for a flight PRO. This represents a 50% reduction from the state of the art NSTAR power processor.

  5. High-performance ion-exclusion/cation-exchange chromatography of anions and cations in acid rain waters on a weakly acidic cation-exchange resin.

    PubMed

    Tanaka, K; Ohta, K; Haddad, P R; Fritz, J S; Miyanaga, A; Hu, W; Hasebe, K; Lee, K P; Sarzanini, C

    2001-06-22

    A new method for the simultaneous determination of anions (sulfate, nitrate, and chloride) and cations (sodium, ammonium, potassium, magnesium, and calcium) in acid rain waters was investigated using high-performance ion-exclusion/cation-exchange chromatography with conductimetric detection on a separation column packed with a polymethacrylate-based weakly acidic cation-exchange resin in the hydrogen-form and an eluent comprising 1.5 mM sulfosalicylic acid-6 mM 18-crown-6 at pH 2.6, operated at 1.5 ml/min. Effective separation and highly sensitive conductimetric detection for the anions and the cations was achieved in about 14 min. Since the ionic balance (equivalents of anions/equivalents of cations) of acid rain waters of different pH (4.40-4.67) ranged from 0.97 to 0.94, evaluation of the water quality of acid rain was possible. This method was successfully applied to the simultaneous determination of the anions and the cations in acid rain transported from mainland China and North Korea to central Japan monitored by a meteorological satellite data analyzer.

  6. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    PubMed

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine. PMID:26304742

  7. [Effects of thiourea on pH and availability of metal ions in acid red soil].

    PubMed

    Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong

    2014-03-01

    Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.

  8. Functional reconstitution of the. gamma. -aminobutyric acid transporter from synaptic vesicles using artificial ion gradients

    SciTech Connect

    Hell, J.W.; Edelmann, L.; Hartinger, J.; Jahn, R. )

    1991-12-24

    The {gamma}-aminobutyric acid transporter of rat brain synaptic vesicles was reconstituted in proteoliposomes, and its activity was studied in response to artificially created membrane potentials or proton gradients. Changes of the membrane potential were monitored using the dyes oxonol VI and 3,3{prime}-diisopropylthiodicarbocyanine iodide, and changes of the H{sup +} gradient were followed using acridine orange. An inside positive membrane potential was generated by the creation of an inwardly directed K{sup +} gradient and the subsequent addition of valinomycin. Under these conditions, valinomycin evoked uptake of ({sup 3}H)GABA which was saturable. Similarly, ({sup 3}H)glutamate uptake was stimulated by valinomycin, indicating that both transporters can be driven by the membrane potential. Proton gradients were generated by the incubation of K{sup +}-loaded proteoliposomes in a buffer free of K{sup +} or Na{sup +} ions and the subsequent addition of nigericin. Proton gradients were also generated via the endogenous H{sup +} ATPase by incubation of K{sup +}-loaded proteoliposomes in equimolar K{sup +} buffer in the presence of valinomycin. These proton gradients evoked nonspecific, nonsaturable uptake of GABA and {beta}-alanine but not of glycine in proteoliposomes as well as protein-free liposomes. Therefore, transporter activity was monitored using glycine as an alternative substrate. Proton gradients generated by both methods elicited saturable glycine uptake in proteoliposomes. Together, these data confirm that the vesicular GABA transporter can be energized by both the membrane potential and the pH gradient and show that transport can be achieved by artificial gradients independently of the endogenous proton ATPase.

  9. New transition metal ion complexes with benzimidazole-5-carboxylic acid hydrazides with antitumor activity.

    PubMed

    Galal, Shadia A; Hegab, Khaled H; Kassab, Ahmed S; Rodriguez, Mireya L; Kerwin, Sean M; el-Khamry, Abdel-Mo'men A; el-Diwani, Hoda I

    2009-04-01

    Metal complexes of 2-methyl-1H-benzimidazole-5-carboxylic acid hydrazide (4a; L(1)) and its Schiff base 2-methyl-N-(propan-2-ylidene)-1H-benzimidazole-5-carbohydrazide (5a; L(2)) with transition metal ions e.g., copper, silver, nickel, iron and manganese were prepared. The complexes formed were 1:1 or 1:2 M:L complexes and have the structural formulae [Cu(L(1))Cl(H(2)O)]Cl x 3 H(2)O (6), [Ag(L(1))NO(3)(H(2)O)] (7), [Ni(L(1))Cl(2)(H(2)O)(2)] x H(2)O (8), [Fe(L(1))Cl(3)(H(2)O)] x 3 H(2)O (9) and [Mn(L(1))(2)Cl(H(2)O)]Cl x 3 H(2)O (10) for ligand L(1), and [Cu(L(2))Cl(2)(H(2)O)(2)] x H(2)O (11), [Ag(L(2))(2)]NO(3) x H(2)O (12), [Ni(L(2))(2)Cl(2)] x 5 H(2)O (13), [Fe(L(2))(2)Cl(2)]Cl x 2 H(2)O (14) and [Mn(L(2))Cl(2)(H(2)O)(2)] x H(2)O (15) for ligand L(2). The antitumor activity of the synthesized compounds has been studied. The silver complex 7 was found to display cytotoxicity (IC(50)=2 microM) against both human lung cancer cell line A549 and human breast cancer cell line MCF-7. PMID:18752870

  10. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung-Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao-Qing

    2014-12-18

    For LiMO2 (M=Co, Ni, Mn) cathode materials, lattice parameters, a(b), contract during charge. Here we report such changes in opposite directions for lithium molybdenum trioxide (Li2MoO3). A ‘unit cell breathing’ mechanism is proposed based on crystal and electronic structural changes of transition metal oxides during charge-discharge. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of the metal-metal bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking metal-oxygen bond as controlling factor in ‘normal’ materials. The cation mixing caused by migration of molybdenum ions at higher oxidation state provides the benefits of reducing the c expansion range in the early stage of charging and suppressing the structure collapse at high voltage charge. These results may open a new strategy for designing layered cathode materials for high energy density lithium-ion batteries.

  11. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung-Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao-Qing

    2014-11-01

    For LiMO2 (M=Co, Ni, Mn) cathode materials, lattice parameters, a(b), contract during charge. Here we report such changes in opposite directions for lithium molybdenum trioxide (Li2MoO3). A ‘unit cell breathing’ mechanism is proposed based on crystal and electronic structural changes of transition metal oxides during charge-discharge. Metal-metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of the metal-metal bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking metal-oxygen bond as controlling factor in ‘normal’ materials. The cation mixing caused by migration of molybdenum ions at higher oxidation state provides the benefits of reducing the c expansion range in the early stage of charging and suppressing the structure collapse at high voltage charge. These results may open a new strategy for designing layered cathode materials for high energy density lithium-ion batteries.

  12. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  13. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE PAGES

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials.more » The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  14. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol

    NASA Astrophysics Data System (ADS)

    Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Tsai, Ying I.

    The distribution of nano/micron dicarboxylic acids and inorganic ions in size-segregated suburban aerosol of southern Taiwan was studied for a PM episode and a non-episodic pollution period, revealing for the first time the distribution of these nanoscale particles in suburban aerosols. Inorganic species, especially nitrate, were present in higher concentrations during the PM episode. A combination of gas-to-nuclei conversion of nitrate particles and accumulation of secondary photochemical products originating from traffic-related emissions was likely a crucial cause of the PM episode. Sulfate, ammonium, and oxalic acid were the dominant anion, cation, and dicarboxylic acid, respectively, accounting for a minimum of 49% of the total anion, cation or dicarboxylic acid mass. Peak concentrations of these species occurred at 0.54 μm in the droplet mode during both non-episodic and PM episode periods, indicating an association with cloud-processed particles. On average, sulfate concentration was 16-17 times that of oxalic acid. Oxalic acid was nevertheless the most abundant dicarboxylic acid during both periods, followed by succinic, malonic, maleic, malic and tartaric acid. The mass median aerodynamic diameter (MMAD) of oxalic acid was 0.77 μm with a bi-modal presence at 0.54 μm and 18 nm during non-episodic pollution and an MMAD of 0.67 μm with mono-modal presence at 0.54 μm in PM episode aerosol. The concomitant formation of malonic acid and oxalic acid was attributed to in-cloud processes. During the PM episode in the 5-100 nm nanoscale range, an oxalic acid/sulfate mass ratio of 40.2-82.3% suggested a stronger formation potential for oxalic acid than for sulfate in the nuclei mode. For total cations (TC), total inorganic anions (TIA) and total dicarboxylic acids (TDA), major contributing particles were in the droplet mode, with least in the nuclei mode. The ratio of TDA to TIA in the nuclei mode increased greatly from 8.40% during the non-episodic pollution

  15. Central metal ion exchange in a coordination polymer based on lanthanide ions and di(2-ethylhexyl)phosphoric acid: exchange rate and tunable affinity.

    PubMed

    Tasaki-Handa, Yuiko; Abe, Yukie; Ooi, Kenta; Tanaka, Mikiya; Wakisaka, Akihiro

    2014-01-01

    In this paper the exchange of lanthanide(III) ions (Ln(3+)) between a solution and a coordination polymer (CP) of di(2-ethylhexyl)phosphoric acid (Hdehp), [Ln(dehp)3], is studied. Kinetic and selectivity studies suggest that a polymeric network of [Ln(dehp)3] has different characteristics than the corresponding monomeric complex. The reaction rate is remarkably slow and requires over 600 h to reach in nearly equilibrium, and this can be explained by the polymeric crystalline structure and high valency of Ln(3+). The affinity of the exchange reaction reaches a maximum with the Ln(3+) possessing an ionic radius 7% smaller than that of the central Ln(3+), therefore, the affinity of the [Ln(dehp)3] is tunable based on the choice of the central metal ion. Such unique affinity, which differs from the monomeric complex, can be explained by two factors: the coordination preference and steric strain caused by the polymeric structure. The latter likely becomes predominant for Ln(3+) exchange when the ionic radius of the ion in solution is smaller than the original Ln(3+) by more than 7%. Structural studies suggest that the incoming Ln(3+) forms a new phase though an exchange reaction, and this could plausibly cause the structural strain.

  16. The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue.

    PubMed

    Monteith, D T; Evans, C D

    2005-09-01

    The United Kingdom Acid Waters Monitoring Network (AWMN) was established in 1988 to determine the ecological impact of acidic emissions control policy on acid-sensitive lakes and streams. AWMN data have been used to explore a range of causal linkages necessary to connect changes in emissions to chemical and, ultimately, biological recovery. Regional scale reductions in sulphur (S) deposition have been found to have had an immediate influence on surface water chemistry, including increases in acid neutralising capacity, pH and alkalinity and declines in aluminium toxicity. These in turn can be linked to changes in the aquatic biota which are consistent with "recovery" responses. A continuation of the current programme is essential in order to better understand apparent non-linearity between nitrogen (N) in deposition and runoff, the substantial rise in organic acid concentrations, and the likely impacts of forecast climate change and other potential constraints on further biological improvement.

  17. The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue.

    PubMed

    Monteith, D T; Evans, C D

    2005-09-01

    The United Kingdom Acid Waters Monitoring Network (AWMN) was established in 1988 to determine the ecological impact of acidic emissions control policy on acid-sensitive lakes and streams. AWMN data have been used to explore a range of causal linkages necessary to connect changes in emissions to chemical and, ultimately, biological recovery. Regional scale reductions in sulphur (S) deposition have been found to have had an immediate influence on surface water chemistry, including increases in acid neutralising capacity, pH and alkalinity and declines in aluminium toxicity. These in turn can be linked to changes in the aquatic biota which are consistent with "recovery" responses. A continuation of the current programme is essential in order to better understand apparent non-linearity between nitrogen (N) in deposition and runoff, the substantial rise in organic acid concentrations, and the likely impacts of forecast climate change and other potential constraints on further biological improvement. PMID:15944036

  18. Determination of trace levels of haloacetic acids and perchlorate in drinking water by ion chromatography with direct injection.

    PubMed

    Liu, Yongjian; Mou, Shifen

    2003-05-16

    Disinfection by products of haloacetic acids and perchlorate pose significant health risks, even at low microg/l levels in drinking water. A new method for the simultaneous determination of nine haloacetic acids (HAAs) and perchlorate as well as some common anions in one run with ion chromatography was developed. The HAAs tested included mono-, di-, trichloroacetic acids, mono, di-, tribromoacetic acids, bromochloroacetic acid, dibromochloroacetic acid, and bromodichloroacetic acid. Two high-capacity anion-exchange columns, a carbonate-selective column and a hydroxide-selective hydrophilic one, were used for the investigation. With the carbonate-selective column, the nine HAAs as well as fluoride, chloride, nitrite, nitrate, phosphate and sulfate could be well separated and determined in one run. With the very hydrophilic column and a gradient elution of sodium hydroxide, methanol and deionized water, the nine HAAs, fluoride, chloride, nitrite, nitrate as well as perchlorate could be simultaneously determined in one run within 34 min. The detection limits for HAAs were between 1.11 and 9.32 microg/l. For perchlorate, it was 0.60 microg/l.

  19. Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance.

    PubMed

    Siggaard-Andersen, O; Fogh-Andersen, N

    1995-01-01

    Stewart in 1983 (Can J Physiol Pharmacol 1983: 61: 1444) reintroduced plasma buffer base under the name "strong ion difference" (SID). Buffer base was originally introduced by Singer and Hastings in 1948 (Medicine (Baltimore) 1948: 27: 223). Plasma buffer base, which is practically equal to the sum of bicarbonate and albuminate anions, may be increased due to an excess of base or due to an increased albumin concentration. Singer and Hastings did not consider changes in albumin as acid-base disorders and therefore used the base excess, i.e., the actual buffer base minus the buffer base at normal pH and pCO2, as measure of a non-respiratory acid-base disturbance. Stewart and followers, however, consider changes in albumin concentration to be acid-base disturbances: a patient with normal pH, pCO2, and base excess but with increased plasma buffer base due to increased plasma albumin concentration get the diagnoses metabolic (strong ion) alkalosis (because plasma buffer base is increased) combined with metabolic hyperalbuminaemic acidosis. Extrapolating to whole blood, anaemia and polycytaemia should represent types of metabolic alkalosis and acidosis, respectively. This reveals that the Stewart approach is absurd and anachronistic in the sense that an increase or decrease in any anion is interpreted as indicating an excess or deficit of a specific acid. In other words, a return to the archaic definitions of acids and bases as being the same as anions and cations. We conclude that the acid-base status (the hydrogen ion status) of blood and extracellular fluid is described in terms of the arterial pH, the arterial pCO2, and the extracellular base excess. It is measured with a modern pH-blood gas analyser. The electrolyte status of the plasma is a description of the most important electrolytes, usually measured in venous blood with a dedicated electrolyte analyser, i.e., Na+, Cl-, HCO3-, and K+. Albumin anions contribute significantly to the anions, but calculation

  20. Collision-induced dissociation of fatty acid [M - 2H + Na]- ions: charge-directed fragmentation and assignment of double bond position.

    PubMed

    Thomas, Michael C; Altvater, Jens; Gallagher, Thomas J; Nette, Geoffrey W

    2014-11-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] (-) ions. In the current manuscript, the CID behavior of these [M - 2H + Na] (-) ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF](-) ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na](-) ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na](-) ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆(9,12,15)18:3, ∆(6,9,12)18:3, and ∆(5,8,11)18:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  1. Collision-Induced Dissociation of Fatty Acid [M - 2H + Na]- Ions: Charge-Directed Fragmentation and Assignment of Double Bond Position

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Altvater, Jens; Gallagher, Thomas J.; Nette, Geoffrey W.

    2014-08-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] - ions. In the current manuscript, the CID behavior of these [M - 2H + Na] - ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF]- ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na]- ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na]- ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆9,12,1518:3, ∆6,9,1218:3, and ∆5,8,1118:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  2. P Limitation and Microbial Biogeochemistry in Acidic Forest Soils of the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Deforest, J. L.; Burke, D. J.; Elliot, H. L.; Kluber, L. A.; Carrino-Kyker, S. R.

    2010-12-01

    In forest ecosystems with acidic soils, such as many hardwood forests of the Northeastern United States, net primary productivity should be limited by phosphorus (P) because P is biologically less available at pH < 5 and nitrogen (N) has become more abundant in response to anthropogenic inputs. However, previous studies have failed to demonstrate widespread P limitation in temperate forests that have naturally acidic soil or are exposed to chronic acid deposition; such findings are contrary to biogeochemical expectations. We hypothesize that many eastern forests possess an underlying P limitation not realized at the ecosystem level. Instead, shifts in the composition, structure and function of soil microbial communities compensate by acquiring more P from organic sources and P limitation is therefore not manifested at the aboveground (plant) level. To test this hypothesis, we manipulated soil pH and P availability in 72 20 x 40 m mature hardwood forest plots across northeastern (glaciated) and southeastern (unglaciated) Ohio beginning in late summer 2009. Ten months after treatment initiation, soil pH has increased from 4.5 to 5.5 and soil P has increased from 3 to ~25 mg P/kg soil on glaciated soils and from 0.5 to ~5 mg P/kg soil on unglaciated soils. To quantify treatment responses, we measured the activity of soil extracellular enzymes associated with liberation of P, N, and C from organic matter, as well as pools of N and N cycling processes. We saw no significant effects of our treatments on pools of available ammonium or nitrate, nor did we see effects on net N mineralization and net nitrification rates. However, glaciated soils had significantly greater nitrate pools and higher N cycling rates than older unglaciated soils. Nitrogen and C cycling enzymes in treatment plots were not significantly different than control plots, but N-acetylglucosaminidase activity (N acquisition) was significantly greater in the unglaciated soils and β-glucosidase and

  3. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters.

    PubMed

    Thomas, Jikku M; He, Siqin; Larriba-Andaluz, Carlos; DePalma, Joseph W; Johnston, Murray V; Hogan, Christopher J

    2016-08-17

    We applied an atmospheric pressure differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer to examine the stability, mass-mobility relationship, and extent of hydration of dimethylamine-sulfuric acid cluster ions, which are of relevance to nucleation in ambient air. Cluster ions were generated by electrospray ionization and were of the form: [H((CH3)2NH)x(H2SO4)y](+) and [(HSO4)((CH3)2NH)x(H2SO4)y](-), where 4 ≤ x ≤ 8, and 5 ≤ y ≤ 12. Under dry conditions, we find that positively charged cluster ions dissociated via loss of both multiple dimethylamine and sulfuric acid molecules after mobility analysis but prior to mass analysis, and few parent ions were detected in the mass spectrometer. Dissociation also occurred for negative ions, but to a lesser extent than for positive ions for the same mass spectrometer inlet conditions. Under humidified conditions (relative humidities up to 30% in the DMA), positively charged cluster ion dissociation in the mass spectrometer inlet was mitigated and occurred primarily by H2SO4 loss from ions containing excess acid molecules. DMA measurements were used to infer collision cross sections (CCSs) for all identifiable cluster ions. Stokes-Millikan equation and diffuse/inelastic gas molecule scattering predicted CCSs overestimate measured CCSs by more than 15%, while elastic-specular collision model predictions are in good agreement with measurements. Finally, cluster ion hydration was examined by monitoring changes in CCSs with increasing relative humidity. All examined cluster ions showed a modest amount of water molecule adsorption, with percentage increases in CCS smaller than 10%. The extent of hydration correlates directly with cluster ion acidity for positive ions. PMID:27485283

  4. Updated estimates of neural tube defects prevented by mandatory folic Acid fortification - United States, 1995-2011.

    PubMed

    Williams, Jennifer; Mai, Cara T; Mulinare, Joe; Isenburg, Jennifer; Flood, Timothy J; Ethen, Mary; Frohnert, Barbara; Kirby, Russell S

    2015-01-16

    In 1992, the U.S. Public Health Service recommended that all women capable of becoming pregnant consume 400 µg of folic acid daily to prevent neural tube defects (NTDs). NTDs are major birth defects of the brain and spine that occur early in pregnancy as a result of improper closure of the embryonic neural tube, which can lead to death or varying degrees of disability. The two most common NTDs are anencephaly and spina bifida. Beginning in 1998, the United States mandated fortification of enriched cereal grain products with 140 µg of folic acid per 100 g. Immediately after mandatory fortification, the birth prevalence of NTD cases declined. Fortification was estimated to avert approximately 1,000 NTD-affected pregnancies annually. To provide updated estimates of the birth prevalence of NTDs in the period after introduction of mandatory folic acid fortification (i.e., the post-fortification period), data from 19 population-based birth defects surveillance programs in the United States, covering the years 1999-2011, were examined. After the initial decrease, NTD birth prevalence during the post-fortification period has remained relatively stable. The number of births occurring annually without NTDs that would otherwise have been affected is approximately 1,326 (95% confidence interval = 1,122-1,531). Mandatory folic acid fortification remains an effective public health intervention. There remain opportunities for prevention among women with lower folic acid intakes, especially among Hispanic women, to further reduce the prevalence of NTDs in the United States. PMID:25590678

  5. Determination of underivatised sterols and bile acid trimethyl silyl ether methyl esters by gas chromatography-mass spectrometry-single ion monitoring in faeces.

    PubMed

    Keller, Sylvia; Jahreis, Gerhard

    2004-12-25

    A method for quantification of total faecal sterols and bile acids (BAs) in human stool by using gas chromatography-mass spectrometry-single ion monitoring (GC-MS-SIM) is described. Cholesterol, coprostanol, coprostanone, cholestanol, iso-lithocholic acid (iso-LCA), lithocholic acid (LCA), iso-deoxycholic acid (iso-DCA), deoxycholic acid (DCA), chenodeoxycholic acid (CDCA), cholic acid (CA), and 12-oxo-deoxycholic acid (12-oxo-DCA) in faeces of 86 healthy subjects were determined. The sample preparation for sterol analysis requires hydrolysis and liquid extraction from matrix, but no derivatisation. The GC-flame ionisation detection (FID) and total ion current (TIC) in GC-MS were not sufficient for sterol and BA determination, whereas selectivity and specificity of the GC-MS-SIM ensured the analysis of sterols and BAs in faeces. PMID:15556534

  6. Acid-rain monitoring in east Asia with a portable-type ion-exclusion-cation-exchange chromatographic analyzer.

    PubMed

    Tanaka, K; Ohta, K; Haddad, P R; Fritz, J S; Lee, K P; Hasebe, K; Ieuji, A; Miyanaga, A

    1999-07-30

    A monitoring system consisting of a portable-type conductimetric ion-exclusion-cation-exchange chromatographic (CEC) analyzer and a meteorological satellite data analyzer has been investigated for the evaluation of the effects of acid precipitation on natural and urban environments in East Asia. The portable ion-exclusion-CEC analyzer uses a polymethacrylate-based weakly acidic cation-exchange resin column in the H(+)-form and a weak-acid eluent (tartaric acid-methanol-water) and is applied for the simultaneous determination of anions (SO4(2)-, NO3-, and Cl-) and cations (Na+, NH4+, K+, Mg2+, and Ca2+) in precipitation transported from mainland China to central Japan, as mapped by the meteorological satellite data analyzer. Linear calibration graphs of peak area versus concentration for anions and cations were observed in the concentration range 0-1.0 mM for the anions and 0-0.5 mM for the cations. Detection limits at a signal-to-noise ratio of 3 were in the range 5.18-12.1 ppb for the anions and 6.58-16.5 ppb for the cations. The practical utility of this monitoring system is presented.

  7. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon.

    PubMed

    Senapati, Satyajyoti; Slouka, Zdenek; Shah, Sunny S; Behura, Susanta K; Shi, Zonggao; Stack, M Sharon; Severson, David W; Chang, Hsueh-Chia

    2014-10-15

    We present a novel low-cost biosensor for rapid, sensitive and selective detection of nucleic acids based on an ionic diode feature of an anion exchange nanoporous membrane under DC bias. The ionic diode feature is associated with external surface charge inversion on the positively charged anion exchange nanomembrane upon hybridization of negatively charged nucleic acid molecules to single-stranded oligoprobes functionalized on the membrane surface resulting in the formation of a cation selective monolayer. The resulting bipolar membrane causes a transition from electroconvection-controlled to water-splitting controlled ion conductance, with a large ion current signature that can be used to accurately quantify the hybridized nucleic acids. The platform is capable of distinguishing two base-pair mismatches in a 22-base pairing segment of microRNAs associated with oral cancer, as well as serotype-specific detection of dengue virus. We also show the sensor' capability to selectively capture target nucleic acids from a heterogeneous mixture. The limit of detection is 1 pM for short 27 base target molecules in a 15-min assay. Similar hybridization results are shown for short DNA molecules as well as RNAs from Brucella and Escherichia coli. The versatility and simplicity of this low-cost biosensor should enable point-of-care diagnostics in food, medical and environmental safety markets.

  8. A borinic acid polymer with fluoride ion- and thermo-responsive properties that are tunable over a wide temperature range.

    PubMed

    Wan, Wen-Ming; Cheng, Fei; Jäkle, Frieder

    2014-08-18

    A new type of smart borinic acid polymer with luminescence and multiple stimuli-responsive properties is reported. In DMSO with small amounts of water, the homopolymer PBA shows a tunable upper critical solution temperature (UCST). As the amount of water increases from 0 to 2.5 % (v/v), the UCST rises linearly from 20 °C to 100 °C (boiling point of water). Thus, the thermal responsive behavior can be tuned over a wide temperature range. Furthermore, polymer solutions in DMSO show a reversible response to fluoride ions, which can be correlated to the presence of the Lewis acidic borinic acid groups. Upon addition of fluoride, the polymer becomes soluble because the functional R2BOH groups are converted into ionic [R2BF2](-) groups, but turns insoluble again upon addition of H2O, which reverses this process.

  9. Carboxylic acids in the rural continental atmosphere over the eastern United States during the Shenandoah Cloud and Photochemistry Experiment

    NASA Astrophysics Data System (ADS)

    Talbot, Robert W.; Mosher, Byard W.; Heikes, Brian G.; Jacob, Daniel J.; Munger, J. William; Daube, Bruce C.; Keene, William C.; Maben, John R.; Artz, Richard S.

    1995-05-01

    The Shenandoah Cloud and Photochemistry Experiment (SCAPE) was conducted during September 1990 in the rural continental atmosphere at a mountain top site (1014 m) in Shenandoah National Park, Virginia. We report here the extensive set of trace gas measurements performed during clear sky periods of SCAPE, with particular focus on the carboxylic acids, formic, acetic, and pyruvic. Median mixing ratios were 5.4 and 2.1 parts per billion by volume (ppbv) for formic and acetic acid, respectively, and they did not exhibit the diurnal variation characteristic of low-elevation sites. Mixing ratios of formic acid often approached or exceeded 10 ppbv, which are the largest values yet reported for the nonurban troposphere. Over the rural eastern United States, formic and acetic acid appear to have significant nonphotochemical sources. Secondary production from suspected pathways appears to be relatively unimportant. The observed lack of correlation between formic and acetic acid with peroxide species argues against a significant source from permutation reactions of peroxy radicals. In addition, model calculations using the SCAPE data indicate minimal production of carboxylics from olefin/O3 oxidation reactions. The tight correlation (r2 = 0.88) between mixing ratios of formic and acetic acid is strongly suggestive of a commonality in their sources. The seasonal cycle of carboxylic acids in the atmosphere and precipitation over the eastern United States is evidence that combustion emissions are not a principal source of these species. It appears that direct biogenic emissions from vegetation and soils cannot be ruled out as important sources. In particular, the correlation between the seasonal variation of formic and acetic acid and the ambient temperature is consistent with a soil microbial source. Similar conclusions were reached for pyruvic acid, with its mixing ratio ranging 4-266 parts per trillion by volume (pptv) (median = 63) and most likely supported by biogenic

  10. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing capacity streams

    SciTech Connect

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E. )

    1991-04-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probably sources of current acidity in acidic and low acid-neutralizing capacity (ANC) streams in the eastern US. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small (<30 km{sup 2}) forested watersheds in the Mid-Atlantic Highlands (an estimated 1,950 km of stream length) and in the Mid-Atlantic Coastal Plain (1,250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1,180 km of acidic stream length, and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4,590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4,380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  11. Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veres, Patrick; Roberts, James M.; Burling, Ian R.; Warneke, Carsten; de Gouw, Joost; Yokelson, Robert J.

    2010-12-01

    Emissions from 34 laboratory biomass fires were investigated at the combustion facility of the U.S. Department of Agriculture Fire Sciences Laboratory in Missoula, Montana. Gas-phase organic and inorganic acids were quantified using negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), open-path Fourier transform infrared spectroscopy (OP-FTIR), and proton-transfer-reaction mass spectrometry (PTR-MS). NI-PT-CIMS is a novel technique that measures the mass-to-charge ratio (m/z) of ions generated from reactions of acetate (CH3C(O)O-) ions with inorganic and organic acids. The emission ratios for various important reactive acids with respect to CO were determined. Emission ratios for isocyanic acid (HNCO), 1,2 and 1,3-benzenediols (catechol, resorcinol), nitrous acid (HONO), acrylic acid, methacrylic acid, propionic acid, formic acid, pyruvic acid, and glycolic acid were measured from biomass burning. Our measurements show that there is a significant amount of HONO in fresh smoke. The NI-PT-CIMS measurements were validated by comparison with OP-FTIR measurements of HONO and formic acid (HCOOH) and with PTR-MS measurements of HCOOH.

  12. The influence of the major ions of seawater on the adsorption of simple organic acids by goethite

    NASA Astrophysics Data System (ADS)

    Balistrieri, Laurie S.; Murray, James W.

    1987-05-01

    The adsorption of oxalic, phthalic, salicylic, and lactic acids on goethite from 0.53 M NaCl and from synthetic major ion seawater is examined to determine the effect of Mg, Ca, and SO 4 on the adsorption behavior of the organic compounds. The comparison shows that organic acid adsorption is suppressed in seawater relative to the NaCl system. Successive additions of SO 4, Mg, and Ca in their natural ionic proportions found in seawater to 0.53 M NaCl indicate that sulfate suppresses the adsorption of all the organic acids, especially in the low pH range. The addition of Mg also suppresses the adsorption of oxalic and phthalic acids while the addition of Ca suppresses lactic acid adsorption. The effect of SO 4, Mg, and Ca on the adsorption of the organic acids is due to competition for available binding sites and the formation of solution complexes which either do not adsorb or weakly adsorb.

  13. Evidence for Role of Acid-Sensing Ion Channels in Nucleus Ambiguus Neurons: Essential Differences in Anesthetized versus Awake Rats

    PubMed Central

    Brailoiu, G. Cristina; Deliu, Elena; Altmann, Joseph B.; Chitravanshi, Vineet; Brailoiu, Eugen

    2014-01-01

    Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely-labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca2+ concentration by promoting Ca2+ influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats. PMID:24752669

  14. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column.

    PubMed

    Fasciano, Jennifer M; Mansour, Fotouh R; Danielson, Neil D

    2016-07-01

    Ion exclusion chromatography (IELC) of short chain aliphatic carboxylic acids is normally done using a cation exchange column under standard HPLC conditions but not in the ultra-HPLC (UHPLC) mode. A novel IELC method for the separation of this class of carboxylic acids by either HPLC or UHPLC utilizing a C18 column dynamically modified with sodium dodecyl sulfate has been developed. The sample capacity is estimated to be near 10 mM for a 20 µL injection or 0.2 µmol using a 150 × 4.6 mm column. The optimum mobile phase determined for three standard mixtures of organic acids is 1.84 mM sulfuric acid at pH 2.43 and a flow rate of 0.6 mL/min. Under optimized conditions, a HPLC separation of four aliphatic carboxylic acids such as tartaric, malonic, lactic and acetic can be achieved in under 4 min and in <2 min in the UHPLC mode at 2.1 mL/min. A variety of fruit juice and soft drink samples are analyzed. Stability of the column as measured by the retention order of maleic and fumaric acid is estimated to be ∼4,000 column volumes using HPLC and 600 by UHPLC. Reproducible chromatograms are achieved over at least a 2-month period. This study shows that the utility of a C18 column can be easily extended when needed to IELC under either standard or UHPLC conditions.

  15. Data on recovery of 21 amino acids, 9 biogenic amines and ammonium ions after spiking four different beers with five concentrations of these analytes.

    PubMed

    Redruello, Begoña; Ladero, Victor; Del Rio, Beatriz; Fernández, María; Martín, M Cruz; Alvarez, Miguel A

    2016-12-01

    A novel chromatographic method for the simultaneous analysis of nine biogenic amines, 21 amino acids and ammonium ions in beer has been recently described in "A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer" (Redruello et al., 2017) [1]. The present article provides recovery data of the 31 analytes after spiking four different beers with five concentrations of each analyte (15, 30, 60, 120 and 240 µM). PMID:27689128

  16. Lewis Acid-Catalyzed Indole Synthesis via Intramolecular Nucleophilic Attack of Phenyldiazoacetates to Iminium Ions

    PubMed Central

    Zhou, Lei; Doyle, Michael P.

    2009-01-01

    Lewis acids catalyze the cyclization of methyl phenyldiazoacetates with an ortho-imino group, prepared from o-aminophenylacetic acid, to give 2,3-substituted indoles in quantitative yields. PMID:19904905

  17. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  18. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

    PubMed Central

    2016-01-01

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr2+, Fe3+, Nd3+, and Am3+, from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  19. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework.

    PubMed

    Demir, Selvan; Brune, Nicholas K; Van Humbeck, Jeffrey F; Mason, Jarad A; Plakhova, Tatiana V; Wang, Shuao; Tian, Guoxin; Minasian, Stefan G; Tyliszczak, Tolek; Yaita, Tsuyoshi; Kobayashi, Tohru; Kalmykov, Stepan N; Shiwaku, Hideaki; Shuh, David K; Long, Jeffrey R

    2016-04-27

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  20. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework.

    PubMed

    Demir, Selvan; Brune, Nicholas K; Van Humbeck, Jeffrey F; Mason, Jarad A; Plakhova, Tatiana V; Wang, Shuao; Tian, Guoxin; Minasian, Stefan G; Tyliszczak, Tolek; Yaita, Tsuyoshi; Kobayashi, Tohru; Kalmykov, Stepan N; Shiwaku, Hideaki; Shuh, David K; Long, Jeffrey R

    2016-04-27

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity.

  1. Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions.

    PubMed

    Zhao, Chenfei; Chen, Shawn B; Seidel, Daniel

    2016-07-27

    Two catalysts, an amine HCl salt and a bisthiourea, work in concert to enable the generation of oxocarbenium ions under mild conditions. The amine catalyst generates an iminium ion of sufficient electrophilicity to enable 1,2-attack by an alcohol. Catalyst turnover is achieved by amine elimination with concomitant formation of an oxocarbenium intermediate. The bisthiourea catalyst accelerates all of the steps of the reaction and controls the stereoselectivity via anion binding/ion pair formation. This new concept was applied to direct catalytic enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes. PMID:27396413

  2. Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions.

    PubMed

    Zhao, Chenfei; Chen, Shawn B; Seidel, Daniel

    2016-07-27

    Two catalysts, an amine HCl salt and a bisthiourea, work in concert to enable the generation of oxocarbenium ions under mild conditions. The amine catalyst generates an iminium ion of sufficient electrophilicity to enable 1,2-attack by an alcohol. Catalyst turnover is achieved by amine elimination with concomitant formation of an oxocarbenium intermediate. The bisthiourea catalyst accelerates all of the steps of the reaction and controls the stereoselectivity via anion binding/ion pair formation. This new concept was applied to direct catalytic enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes.

  3. Sensitivity and selectivity of switchable reagent ion soft chemical ionization mass spectrometry for the detection of picric acid.

    PubMed

    Agarwal, Bishu; González-Méndez, Ramón; Lanza, Matteo; Sulzer, Philipp; Märk, Tilmann D; Thomas, Neil; Mayhew, Chris A

    2014-09-18

    We have investigated the reactions of NO(+), H3O(+), O2(+), and Kr(+) with picric acid (2,4,6 trinitrophenol, C6H3N3O7, PiA) using a time-of-flight mass spectrometer with a switchable reagent ion source. NO(+) forms a simple adduct ion PiA·NO(+), while H3O(+) reacts with PiA via nondissociative proton transfer to form PiAH(+). In contrast, both O2(+) and Kr(+) react with PiA by nondissociative charge transfer to produce PiA(+). For Kr(+), we also observe dissociation of PiA, producing NO2(+) with a branching percentage of approximately 40%. For the reagent ions H3O(+) and O2(+) (and operating the drift tube with normal laboratory air), we find that the intensities of the PiAH(+) and PiA(+) ions both exhibit a peak at a given drift-tube voltage (which is humidity dependent). This unusual behavior implies a peak in the detection sensitivity of PiA as a function of the drift-tube voltage (and hence E/N). Aided by electronic-structure calculations and our previous studies of trinitrotoluene and trinitrobenzene, we provide a possible explanation for the observed peak in the detection sensitivity of PiA.

  4. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.

    PubMed

    López-Neira, Juan Pablo; Galicia-Hernández, José Mario; Reyes-Coronado, Alejandro; Pérez, Elías; Castillo-Rivera, Francisco

    2015-05-01

    The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration. This scenario was confirmed by solving numerically Maxwell equations, showing an increase of 1 order of magnitude in the local electric scattered field when the Gd(3+) ion is located in between a gold dimer compared with naked gold nanoparticles.

  5. Calcium and potassium ion binding by tobacco mosaic virus ribonucleic acid.

    PubMed

    Gastfriend, H H; Lauffer, M A

    1983-11-15

    Calcium and potassium ion titration experiments were performed on solutions of tobacco mosaic virus RNA using ion-specific electrodes. The data obtained were analyzed using Scatchard and Klotz plots for the number of binding sites per nucleotide (n), and the apparent stability constant for complex formation, beta Me. The experimental design also allowed for the determination of the number of protons released per metal ion bound, chi. The calcium ion titration in water yielded values of 0.45 for n, 6.03 for log beta Ca and 0.24 for chi. When this titration was repeated in 0.01 M-KCl, the values were found to be 0.11 for n, 5.08 for log beta Ca and zero for chi. An aqueous potassium titration was also performed, with values for n, log beta K and chi of 0.25, 2.96 and less than 0.10, respectively.

  6. Acid rain: ionic correlations in the eastern United States, 1980-1981.

    PubMed

    Gorham, E; Martin, F B; Litzau, J T

    1984-07-27

    Hydrogen ions in precipitation are correlated much more closely with sulfate than with nitrate, whereas ammonium ions are correlated more closely with nitrate than with sulfate. Target loadings of 14 to 16 kilograms of wet sulfate deposition per hectare per year, instead of 20 as suggested hitherto, are probably necessary to produce average pH values of 4.6 to 4.7, the approximate boundary levels for damage to aquatic ecosystems. Cluster analysis reveals that there are three linked groups of ions related to air pollution, agriculture, and sea spray.

  7. UV-Visible Spectroscopy Detection of Iron(III) Ion on Modified Gold Nanoparticles With a Hydroxamic Acid

    NASA Astrophysics Data System (ADS)

    Karami, C.; Alizadeh, A.; Taher, M. A.; Hamidi, Z.; Bahrami, B.

    2016-09-01

    The present work describes the preparation of gold nanoparticles (AuNPs) functionalized with hydroxamic acid and the use of them in UV-visible spectroscopy detection of iron(III) ions. The prepared AuNPs were thoroughly characterized by using UV-visible spectroscopy, TEM, and 1H NMR techniques. The newly synthesized hydroxamic acid-AuNPs are brown in color due to the intense surface plasmon absorption band centered at 527 nm. In the presence of Fe(III), the surface plasmon absorption band is centered at 540 nm. However, the sensitivity of hydroxamic acid-AuNPs towards other metal ions such as Mg(II), Ca(II), Ag(I), Cu(II), Mn(II), Cr(II), Ni(II), Co(II),Fe(II), Hg(II), and Pb(II) can be negligible. This highly selective sensor allows a direct quantitative assay of Fe(III) with a UVvisible spectroscopy detection limited to 45.8 nM.

  8. New Insight into Metal Ion-Driven Catalysis of Nucleic Acids by Influenza PA-Nter.

    PubMed

    Kotlarek, Daria; Worch, Remigiusz

    2016-01-01

    PA subunit of influenza RNA-dependent RNA polymerase deserves constantly increasing attention due to its essential role in influenza life cycle. N-terminal domain of PA (PA-Nter) harbors endonuclease activity, which is indispensable in viral transcription and replication. Interestingly, existing literature reports on in vitro ion preferences of the enzyme are contradictory. Some show PA-Nter activity exclusively with Mn2+, whereas others report Mg2+ as a natural cofactor. To clarify it, we performed a series of experiments with varied ion concentrations and substrate type. We observed cleavage in the presence of both ions, with a slight preference for manganese, however PA-Nter activity highly depended on the amount of residual, co-purified ions. Furthermore, to quantify cleavage reaction rate, we applied fluorescence cross-correlation spectroscopy (FCCS), providing highly sensitive and real-time monitoring of single molecules. Using nanomolar ssDNA in the regime of enzyme excess, we estimated the maximum reaction rate at 0.81± 0.38 and 1.38± 0.34 nM/min for Mg2+ and Mn2+, respectively. However, our calculations of PA-Nter ion occupancy, based on thermodynamic data, suggest Mg2+ to be a canonical metal in PA-Nter processing of RNA in vivo. Presented studies constitute a step toward better understanding of PA-Nter ion-dependent activity, which will possibly contribute to new successful inhibitor design in the future.

  9. New Insight into Metal Ion-Driven Catalysis of Nucleic Acids by Influenza PA-Nter

    PubMed Central

    Kotlarek, Daria; Worch, Remigiusz

    2016-01-01

    PA subunit of influenza RNA-dependent RNA polymerase deserves constantly increasing attention due to its essential role in influenza life cycle. N-terminal domain of PA (PA-Nter) harbors endonuclease activity, which is indispensable in viral transcription and replication. Interestingly, existing literature reports on in vitro ion preferences of the enzyme are contradictory. Some show PA-Nter activity exclusively with Mn2+, whereas others report Mg2+ as a natural cofactor. To clarify it, we performed a series of experiments with varied ion concentrations and substrate type. We observed cleavage in the presence of both ions, with a slight preference for manganese, however PA-Nter activity highly depended on the amount of residual, co-purified ions. Furthermore, to quantify cleavage reaction rate, we applied fluorescence cross-correlation spectroscopy (FCCS), providing highly sensitive and real-time monitoring of single molecules. Using nanomolar ssDNA in the regime of enzyme excess, we estimated the maximum reaction rate at 0.81± 0.38 and 1.38± 0.34 nM/min for Mg2+ and Mn2+, respectively. However, our calculations of PA-Nter ion occupancy, based on thermodynamic data, suggest Mg2+ to be a canonical metal in PA-Nter processing of RNA in vivo. Presented studies constitute a step toward better understanding of PA-Nter ion-dependent activity, which will possibly contribute to new successful inhibitor design in the future. PMID:27300442

  10. A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography.

    PubMed

    Tsai, Ying I; Hsieh, Li-Ying; Weng, Tzu-Hsiang; Ma, Yu-Chien; Kuo, Su-Ching

    2008-09-19

    This paper describes a novel gradient elution ion chromatographic method using a Dionex AS11 system for the determination of low molecular weight dicarboxylic acids (low-M(w) DCAs) in background atmospheric aerosol. Interference with the oxalic acid peak from sulfate in background PM(2.5) aerosol, 15.8 times the oxalic acid concentration, was remedied by removing sulfate using a barium cartridge, whilst interference with the malonic acid peak from carbonate was reduced by using a carbonate removal device. An alternative remedy to sulfate interference was use of an AS14 system using isocratic eluent, and this produced good resolution of oxalic acid from a high sulfate peak. In both the AS11 and the AS14 system, linear correlation coefficients were at all times >0.9990 with excellent linear range, the recoveries ranged from 92.8 to 106%, with relative standard deviation of 3.67-6.30%, whilst method detection limits (MDLs) ranged from 0.36microgL(-1) for malic acid to 3.87microgL(-1) for maleic acid. These data indicate that the analytical methods developed herein produce excellent separation efficiency and good determination of low-M(w) DCAs with satisfactory accuracy, recoveries, and MDLs. Samples left at room temperature (20 degrees C) for 300min in a simulation of the 'waiting time' involved in the proposed IC analysis decayed to between 86% (oxalic acid) and 39% (succinic and malonic acids) of their original concentration, whilst at 4 degrees C concentrations remained at 96-101% of original, indicating that maintaining samples at a low temperature prior to injection into the IC analyzer is vital for obtaining accurate results when analyzing low-M(w) DCAs. Oxalic acid was found to be the most prevalent low-M(w) DCA in background aerosol, comprising 57% of the total low-M(w) DCAs and 0.959% of the PM(2.5) aerosol mass, followed by succinic acid and malonic acid.

  11. Immunohistochemical localization of acid-sensing ion channel 2 (ASIC2) in cutaneous Meissner and Pacinian corpuscles of Macaca fascicularis.

    PubMed

    Cabo, R; Gálvez, M A; San José, I; Laurà, R; López-Muñiz, A; García-Suárez, O; Cobo, T; Insausti, R; Vega, J A

    2012-05-16

    Acid-sensing ion channel 2 (ASIC2) is a member of the degenerin/epithelial sodium channel superfamily, presumably involved mechanosensation. Expression of ASIC2 has been detected in mechanosensory neurons as well as in both axons and Schwann-like cells of cutaneous mechanoreceptors. In these studies we analysed expression of ASIC2 in the cutaneous sensory corpuscles of Macaca fascicularis using immunohistochemistry and laser confocal-scanner microscopy. ASIC2 immunoreactivity was detected in both Meissner and Pacinian corpuscles. It was found to co-localize with neuron-specific enolase and RT-97, but not with S100 protein, demonstrating that ASIC2 expression is restricted to axons supplying mechanoreceptors. These results demonstrate for the first time the presence of the protein ASIC2 in cutaneous rapidly adapting low-threshold mechanoreceptors of monkey, suggesting a role of this ion channel in touch sense.

  12. Two Isomers of Protonated Isocyanic Acid: Evidence for an Ion-Molecule Pathway for HNCO ↔ HOCN Isomerization.

    PubMed

    Lattanzi, Valerio; Thorwirth, Sven; Gottlieb, Carl A; McCarthy, Michael C

    2012-12-01

    Ion-molecule reactions are thought to play a crucial role in the formation of metastable isomers, but relatively few protonated intermediates beyond HNCH(+) have been characterized at high spectral resolution. We present here laboratory measurements of the rotational spectra of protonated isocyanic acid in two isomeric forms, the ground state H2NCO(+) with C2v symmetry and a low-lying bent chain HNCOH(+), guided by coupled cluster calculations of their molecular structure. Somewhat surprisingly, HNCOH(+) is found to be more abundant than H2NCO(+), even though this metastable isomer is calculated to lie approximately 15-20 kcal/mol higher in energy. In the same way that HCNH(+) serves as a key intermediate in ion-molecule reactions that form HNC via dissociative electron recombination in cold dense interstellar molecular clouds, HNCOH(+) may play an analogous role in the conversion of HNCO to HOCN.

  13. Two Isomers of Protonated Isocyanic Acid: Evidence for an Ion-Molecule Pathway for HNCO-HOCN Isomerization

    NASA Astrophysics Data System (ADS)

    Lattanzi, V.; Thorwirth, S.; Gottlieb, C. A.; McCarthy, M. C.

    2012-11-01

    Ion-molecule reactions are thought to play a crucial role in the formation of metastable isomers, but relatively few protonated intermediates beyond HNCH+ have been characterized at high spectral resolution. We present here laboratory measurements of the rotational spectra of protonated isocyanic acid in two isomeric forms, the ground state H2NCO+ with C2v symmetry and a low-lying bent chain HNCOH+, guided by coupled cluster calculations of their molecular structure. Somewhat surprisingly, HNCOH+ is found to be more abundant than H2NCO+, even though this metastable isomer is calculated to lie approximately 15-20 kcal/mol higher in energy. In the same way that HCNH+ serves as a key intermediate in ion-molecule reactions that form HNC via dissociative electron recombination in cold dense interstellar molecular clouds, HNCOH+ may play an analogous role in the conversion of HNCO to HOCN.

  14. Two Isomers of Protonated Isocyanic Acid: Evidence for an Ion-Molecule Pathway for HNCO ↔ HOCN Isomerization.

    PubMed

    Lattanzi, Valerio; Thorwirth, Sven; Gottlieb, Carl A; McCarthy, Michael C

    2012-12-01

    Ion-molecule reactions are thought to play a crucial role in the formation of metastable isomers, but relatively few protonated intermediates beyond HNCH(+) have been characterized at high spectral resolution. We present here laboratory measurements of the rotational spectra of protonated isocyanic acid in two isomeric forms, the ground state H2NCO(+) with C2v symmetry and a low-lying bent chain HNCOH(+), guided by coupled cluster calculations of their molecular structure. Somewhat surprisingly, HNCOH(+) is found to be more abundant than H2NCO(+), even though this metastable isomer is calculated to lie approximately 15-20 kcal/mol higher in energy. In the same way that HCNH(+) serves as a key intermediate in ion-molecule reactions that form HNC via dissociative electron recombination in cold dense interstellar molecular clouds, HNCOH(+) may play an analogous role in the conversion of HNCO to HOCN. PMID:26290966

  15. Impact of Cu(2+) ions on the structure of colistin and cell-free system nucleic acid degradation.

    PubMed

    Stokowa-Sołtys, Kamila; Kasprowicz, Aleksandra; Wrzesiński, Jan; Ciesiołka, Jerzy; Gaggelli, Nicola; Gaggelli, Elena; Valensin, Gianni; Jeżowska-Bojczuk, Małgorzata

    2015-10-01

    Colistin and transition metal ions are commonly used as feed additives for livestock animals. This work presents the results of an analysis of combined potentiometric and spectroscopic (UV-vis, EPR, CD, NMR) data which lead to conclude that colistin is able to effectively chelate copper(II) ions. In cell-free system the oxidative activity of the complex manifests itself in the plasmid DNA destruction with simultaneous generation of reactive OH species, when accompanied by hydrogen peroxide or ascorbic acid. The degradation of RNA occurs most likely via a hydrolytic mechanism not only for complexed compound but also colistin alone. Therefore, huge amounts of the used antibiotic for nontherapeutic purposes might have a potential influence on livestock health.

  16. Early smelter sites: A neglected chapter in the history and geography of acid rain in the United States

    NASA Astrophysics Data System (ADS)

    Quinn, M.-L.

    Dominant spatial and temporal theories of acid rain in the U.S. are identified, followed by brief comments on how historical data have generally been used in modern acid rain research. A frequently-cited 1982 article by E.B. Cowling is examined, one that has influenced much thinking on the history of acid rain. The article overlooks early American smelters, however, and the role they played in the true history and geography of acid rain in the United States. Continuing with this theme, a connection is established between acid rain and turn-of-the-century smelter smoke problems. Literature on the latter subject is discussed, and American and German examples are given. A beginning is then made on writing acid rain's neglected chapter, focusing on Tennessee's Copper Basin (Ducktown District) where copper smelting dates back to the 1850s. A short historical overview of this area's smelting operations is given, with particular attention to the air pollution and other environmental problems resulting from large emissions of sulfur dioxide. Five additional early smelter sites for potential study are mentioned as well. The paper concludes with some observations regarding the way in which expanded research of early smelter sites could affect the general perception of acid rain in the U.S. It is also suggested that such research might contribute to a better atmosphere for making decisions and policies pertaining to the phenomenon as it exists today.

  17. Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes.

    PubMed

    Deshmukh, Dhananjay K; Kawamura, Kimitaka; Deb, Manas K

    2016-10-01

    The size distributions of aerosols can provide evidences for their sources and formation processes in the atmosphere. Size-segregated aerosols (9-sizes) were collected in urban site (Raipur: 21.2°N and 82.3°E) in central India during winter of 2012-2013. The samples were analyzed for dicarboxylic acids (C2-C12), ω-oxocarboxylic acids (ωC2-ωC9), pyruvic acid and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC), water-soluble OC (WSOC) and inorganic ions. Diacids showed a predominance of oxalic acid (C2) followed by succinic and azelaic acid whereas ω-oxoacids exhibited a predominance of glyoxylic acid and glyoxal was more abundant than methylglyoxal in all the sizes. Diacids, ω-oxoacids and α-dicarbonyls showed bimodal size distribution with peaks in fine and coarse modes. High correlations of fine mode diacids and related compounds with potassium and levoglucosan suggest that they were presumably due to a substantial contribution of primary emission from biomass burning and secondary production from biomass burning derived precursors. High correlations of C2 with higher carbon number diacids (C3-C9) suggest that they have similar sources and C2 may be produced via the decay of its higher homologous diacids in fine mode. Considerable portions of diacids and related compounds in coarse mode suggest that they were associated with mineral dust particles by their adsorption and photooxidation of anthropogenic and biogenic precursors via heterogeneous reaction on dust surface. This study demonstrates that biomass burning and dust particles are two major factors to control the size distribution of diacids and related compounds in the urban aerosols from central India. PMID:27414241

  18. Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs

    PubMed Central

    Cai, Feng; Wang, Feng; Hong, Xin; Xie, Xin-Hui; Shi, Rui; Xie, Zhi-Yang; Wu, Xiao-Tao

    2016-01-01

    Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were isolated and cultured followed by immunofluorescent staining and Western-blot analysis for ASIC1a. Intracellular calcium ([Ca2+]i) was determined by Ca2+-imaging using Fura-2-AM. Cell necrosis, apoptosis, and senescence following acid exposure were determined using lactate dehydrogenase (LDH) release assay, annexin V-fluorescein isothiocyanate/propidium iodide dual-staining and cell cycle analysis, respectively, followed by Western-blot analysis for apoptosis-related proteins (Bax, Bcl-2, and caspase-3) and senescence-related proteins (p53, p21, and p16). Effects of treatment with psalmotoxin-1 (PcTX1, blocker of ASIC1a) on [Ca2+]i and cell survival were investigated. Results: ASIC1a was detected in healthy NPCs, and its expression was significantly higher in degenerated cells. When NPCs were treated with PcTX1, acid-induced increases in [Ca2+]i were significantly inhibited. PcTX1 treatment also resulted in decreased LDH release, cell apoptosis and cell cycle arrest in acid condition. Acid exposure decreased the expression of Bcl-2 and increased the expression of Bax, cleaved caspase-3 and senescence-related proteins (p53, p21, and p16), which was inhibited by PcTX1. Conclusion: The present findings suggest that further understanding of ASIC1a functionality may provide not only a novel insight into intervertebral disc biology but also a novel therapeutic target for intervertebral disc degeneration. PMID:27746861

  19. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Li; Qu, Wenjie; Zhang, Xiaoxiao; Lu, Jun; Chen, Renjie; Wu, Feng; Amine, Khalil

    2015-05-01

    A hydrometallurgical method involving natural organic acid leaching has been developed for recovery of lithium and cobalt from the cathode active materials in spent lithium-ion batteries. Succinic acid is employed as leaching agent and H2O2 as reductant. The cobalt and lithium contents from the succinic acid-based treatment of spent batteries are determined by inductively coupled plasma-optical emission spectroscopy to calculate the leaching efficiency. The spent LiCoO2 samples after calcination and the residues after leaching are characterized by X-ray diffraction and scanning electron microscopy. The results show that nearly 100% of cobalt and more than 96% of lithium are leached under optimal conditions: succinic acid concentration of 1.5 mol L-1, H2O2 content of 4 vol.%, solid-to-liquid ratio of 15 g L-1, temperature of 70 °C, and reaction time of 40 min. Results are also given for fitting of the experimental data to acid leaching kinetic models.

  20. Folding study of Venus reveals a strong ion dependence of its yellow fluorescence under mildly acidic conditions.

    PubMed

    Hsu, Shang-Te Danny; Blaser, Georg; Behrens, Caroline; Cabrita, Lisa D; Dobson, Christopher M; Jackson, Sophie E

    2010-02-12

    Venus is a yellow fluorescent protein that has been developed for its fast chromophore maturation rate and bright yellow fluorescence that is relatively insensitive to changes in pH and ion concentrations. Here, we present a detailed study of the stability and folding of Venus in the pH range from 6.0 to 8.0 using chemical denaturants and a variety of spectroscopic probes. By following hydrogen-deuterium exchange of (15)N-labeled Venus using NMR spectroscopy over 13 months, residue-specific free energies of unfolding of some highly protected amide groups have been determined. Exchange rates of less than one per year are observed for some amide groups. A super-stable core is identified for Venus and compared with that previously reported for green fluorescent protein. These results are discussed in terms of the stability and folding of fluorescent proteins. Under mildly acidic conditions, we show that Venus undergoes a drastic decrease in yellow fluorescence at relatively low concentrations of guanidinium chloride. A detailed study of this effect establishes that it is due to pH-dependent, nonspecific interactions of ions with the protein. In contrast to previous studies on enhanced green fluorescence protein variant S65T/T203Y, which showed a specific halide ion-binding site, NMR chemical shift mapping shows no evidence for specific ion binding. Instead, chemical shift perturbations are observed for many residues primarily located in both lids of the beta-barrel structure, which suggests that small scale structural rearrangements occur on increasing ionic strength under mildly acidic conditions and that these are propagated to the chromophore resulting in fluorescence quenching.

  1. Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials.

    PubMed

    Nitanan, Todsapon; Akkaramongkolporn, Prasert; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2013-05-01

    In this study, poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) blended with polyvinyl alcohol (PVA) was electrospun and then subjected to thermal crosslinking to produce PSSA-MA/PVA ion exchange nanofiber mats. The cationic drug neomycin (0.001, 0.01, and 0.1%, w/v) was loaded onto the cationic exchange fibers. The amount of neomycin loaded and released and the cytotoxicity of the fiber mats were analyzed. In vivo wound healing tests were also performed in Wistar rats. The results indicated that the diameters of the fibers were on the nanoscale (250 ± 21 nm). The ion exchange capacity (IEC) value and the percentage of water uptake were 2.19 ± 0.1 mequiv./g-dry fibers and 268 ± 15%, respectively. The loading capacity was increased upon increasing the neomycin concentration. An initial concentration of 0.1% (w/v) neomycin (F3) showed the highest loading capacity (65.7 mg/g-dry fibers). The neomycin-loaded nanofiber mats demonstrated satisfactory antibacterial activity against both Gram-positive and Gram-negative bacteria, and an in vivo wound healing test revealed that these mats performed better than gauze and blank nanofiber mats in decreasing acute wound size during the first week after tissue damage. In conclusion, the antibacterial neomycin-loaded PSSA-MA/PVA cationic exchange nanofiber mats have the potential for use as wound dressing materials.

  2. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control.

    PubMed

    Kwak, E-J; Lim, S-I

    2004-08-01

    The color intensities was determined of Maillard reaction products (MRPs) prepared by heating each of five sugars (maltose, fructose, glucose, arabinose, and xylose) with each of 12 amino acids (aspartic acid, glutamic acid, alanine, leucine, isoleucine, valine, proline, serine, cysteine, phenylalanine, arginine, and lysine). The remaining percentages of glucose and rate of change of color intensity due to the addition of a metal ion and NaCl were monitored for nine MRPs that had been formed between glucose and each of nine amino acids (aspartic acid, glutamic acid, alanine, valine, serine, cysteine, phenylalanine, arginine, and lysine). Model MRPs were prepared in a block heater at 100 degrees C for 1-12 h with the pH value controlled at 6.5. The resulting color intensity of each MRPs formed from the basic amino acids was greater due to the higher reactivity than those from the acidic amino acids. The remaining percentage of glucose in each MRPs from the basic amino acids was lower than those from the acidic amino acids. The MRPs from the nonpolar amino acids showed an intermediate color intensity and remaining percentages of glucose between those formed from the basic and acidic amino acids. Browning tended to be accelerated in the presence of metal ions, especially Fe2+ and Cu2+, although it was affected by the property of the amino acid and heating time as well as by the type of metal ion. On the other hand, browning was greatly inhibited by a high concentration of NaCl.

  3. Impact of citric acid and calcium ions on acid solubilization of mechanically separated turkey meat: effect on lipid and pigment content.

    PubMed

    Hrynets, Y; Omana, D A; Xu, Y; Betti, M

    2011-02-01

    Increased demand for poultry products has resulted in an increased availability of by-products, such as the neck, back, and frame, that can be processed into mechanically separated poultry meat. The major problems with mechanically separated poultry meat are its high lipid content, color instability, and high susceptibility to lipid oxidation. The present work was undertaken to determine the effect of different concentrations of citric acid and calcium ions on protein yield, color characteristics, and lipid removal from protein isolates prepared using an acid-aided extraction process. Six levels of citric acid (0, 2, 4, 6, 8, and 10 mmol/L) and 2 levels of calcium chloride (0 and 8 mmol/L) were examined. The entire experiment was replicated 3 times, resulting in 36 extractions (3 × 6 × 2). The highest (P < 0.05) protein yield was found for the treatment with 6 mmol/L of citric acid. In general, all the combinations removed an average of 90.8% of the total lipids from mechanically separated turkey meat, ranging from 86.2 to 94.7%. The lowest amount (1.14%) of total lipids obtained was for samples treated with 4 mmol/L of citric acid. Maximum removal of neutral lipids (96.5%) and polar lipids (96.4%) was attained with the addition of 6 and 2 mmol/L of citric acid, respectively. Polar lipid content was found to be significantly (P = 0.0045) affected by the presence of calcium chloride. The isolated proteins were less (P < 0.05) susceptible to lipid oxidation compared with raw mechanically separated turkey meat. The most efficient removal of total heme pigment was obtained with the addition of 6 or 8 mmol/L of citric acid. Addition of calcium chloride had a negative effect on total pigment content. The study revealed that acid extractions with the addition of citric acid resulted in substantial removal of lipids and pigments from mechanically separated turkey meat, improved stability of the recovered proteins against lipid oxidation, and appreciable protein recovery

  4. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  5. Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues.

    PubMed

    Kim, Hwan Myung; Cho, Bong Rae

    2009-07-21

    Optical imaging with fluorescence microscopy is a vital tool in the study of living systems. The most common method for cell imaging, one-photon microscopy (OPM), uses a single photon of higher energy to excite the fluorophore. However, two-photon microscopy (TPM), which uses two photons of lower energy as the excitation source, is growing in popularity among biologists because of several distinct advantages. Using TPM, researchers can image intact tissue for a long period of time with minimum interference from tissue preparation artifacts, self-absorption, autofluorescence, photobleaching, and photodamage. However, to make TPM a more versatile tool in biology, researchers need a wider variety of two-photon probes for specific applications. In this Account, we describe a series of two-photon probes that we developed that can visualize the distribution of intracellular metal ions, acidic vesicles, and lipid rafts in living cells and tissues. The development of these probes requires a significant two-photon cross section for the bright image and receptors (sensing moieties) that triggers the emission of the two-photon excited fluorescence upon binding with the ions or membrane in the living system. These probes also must be sensitive to the polarity of the environment to allow selective detection of cytosolic and membrane-bound probes. In addition, they need to be cell-permeable, water-soluble for the staining of cells and tissues, and highly photostable for long-term imaging. The resulting probes-AMg1 (Mg(2+)), ACa1-ACa3 (Ca(2+)), AZn1 and AZn2 (Zn(2+)), AH1, AH2, and AL1 (acidic vesicles), and CL2 (membrane)-use 2-acetyl-6-aminonaphthalene as the fluorophore and receptors for the target ions or membrane. All of these two-photon turn-on probes can detect the intracellular free metal ions, acidic vesicles, and lipid rafts at 100-300 microm depth in live tissues. Moreover, with ACa1-AM, we could simultaneously visualize the spontaneous Ca(2+) waves in the somas of

  6. Separation of zinc and nickel ions in a strong acid through liquid-liquid extraction.

    PubMed

    Park, Young Jun; Fray, Derek J

    2009-04-15

    Many solid wastes contain both zinc and nickel at the same time. For recycling or recovery of metals, it is essential to separate materials. Among those materials, zinc and nickel are very difficult to be separated because there is not so much difference in the chemical and physical properties. This paper focuses on the separation of zinc and nickel ions in a diluted aqua regia solution. Liquid-liquid extraction by TBP, Cyanex 272 and Cyanex 301 was used and a distribution coefficient (D), a separation factor (S) and a relative purity (R) were induced to evaluate the degree of separation. All of the extractions were proportional to the concentration of the extractants, and zinc ions were extracted more easily than nickel ions. Among the extractants, Cyanex 301 showed the best characteristics regarding Zn/Ni separation. In particular, the extraction of zinc ions in the range of pHions was less than 20 wt.%, when 100 vol.% Cyanex 301 was used. The maximum S(Zn,Ni) value was about 21,700 at pH 6.0 and the highest relative purity (R) of zinc was about 99 wt.% without a pH control, pH -1.1. PMID:18675511

  7. Geochemical investigations of selected Eastern United States watersheds affected by acid deposition.

    USGS Publications Warehouse

    Bricker, O.P.

    1986-01-01

    The effects of acid deposition on surface waters in eastern USA watersheds of similar size, physiography, climate and land-use are related to the composition of the underlying bedrock. Watersheds developed on greenstone, calcareous shale, sandstone, granite and schist differ in their ability to neutralize acid rain; consequently, stream acidity is similar to that of precipitation. Watersheds developed on granite and schist are intermediate in their capacity to neutralize acid deposition. Bedrock composition appears to be the major property controlling surface-water chemistry in these systems; hydrological flowpaths and the nature of surficial materials and vegetation also influence chemical responses to acid deposition in watersheds. 453This and the following 10 abstracts are for papers forming a thematic set on geochemical aspects of acid rain. -P.Br.

  8. A natural protecting group strategy to carry an amino acid starter unit in the biosynthesis of macrolactam polyketide antibiotics.

    PubMed

    Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2011-11-16

    Macrolactam antibiotics are an important class of macrocyclic polyketides that contain a unique nitrogen-containing starter unit. In the present study, a set of starter biosynthetic enzymes in the macrolactam antibiotic vicenistatin was characterized. We found that the protection-deprotection strategy of the aminoacyl-ACP intermediate was critical in this system. On the basis of bioinformatics, the described pathway is also proposed as a common method for carrying amino acids in the biosynthesis of other macrolactam antibiotics. PMID:22010945

  9. Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Adiguzel, Nezaket

    2012-09-01

    Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mgg(-1) and for Cu(II) 6.15 and 17.8 mgg(-1) dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmolg(-1) for Ni(II) and 0.162 mmolg(-1) for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters. PMID:22608134

  10. The pharmacology and therapeutic potential of small molecule inhibitors of acid-sensing ion channels in stroke intervention

    PubMed Central

    Leng, Tian-dong; Xiong, Zhi-gang

    2013-01-01

    In the nervous system, a decrease in extracellular pH is a common feature of various physiological and pathological processes, including synaptic transmission, cerebral ischemia, epilepsy, brain trauma, and tissue inflammation. Acid-sensing ion channels (ASICs) are proton-gated cation channels that are distributed throughout the central and peripheral nervous systems. Following the recent identification of ASICs as critical acid-sensing extracellular proton receptors, growing evidence has suggested that the activation of ASICs plays important roles in physiological processes such as nociception, mechanosensation, synaptic plasticity, learning and memory. However, the over-activation of ASICs is also linked to adverse outcomes for certain pathological processes, such as brain ischemia and multiple sclerosis. Based on the well-demonstrated role of ASIC1a activation in acidosis-mediated brain injury, small molecule inhibitors of ASIC1a may represent novel therapeutic agents for the treatment of neurological disorders, such as stroke. PMID:22820909

  11. Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium-Ion Batteries.

    PubMed

    Wang, Ying; Wang, Caiyun; Wang, Yijing; Liu, Huakun; Huang, Zhenguo

    2016-07-27

    Reduced graphene oxide, an intensively investigated material for Li-ion batteries, has shown mostly unsatisfactory performance in Na-ion batteries, since its d-spacing is believed to be too small for effective insertion/deinsertion of Na(+) ions. Herein, a facile method was developed to produce boron-functionalized reduced graphene oxide (BF-rGO), with an enlarged interlayer spacing and defect-rich structure, which effectively accommodates the sodiation/desodiation and provides more active sites. The Na/BF-rGO half cells exhibit unprecedented long cycling stability, with ∼89.4% capacity retained after 5000 cycles (0.002% capacity decay per cycle) at 1000 mA·g(-1) current density. High specific capacity (280 mAh·g(-1)) and great rate capability were also delivered in the Na/BF-rGO half cells. PMID:27349132

  12. Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium-Ion Batteries.

    PubMed

    Wang, Ying; Wang, Caiyun; Wang, Yijing; Liu, Huakun; Huang, Zhenguo

    2016-07-27

    Reduced graphene oxide, an intensively investigated material for Li-ion batteries, has shown mostly unsatisfactory performance in Na-ion batteries, since its d-spacing is believed to be too small for effective insertion/deinsertion of Na(+) ions. Herein, a facile method was developed to produce boron-functionalized reduced graphene oxide (BF-rGO), with an enlarged interlayer spacing and defect-rich structure, which effectively accommodates the sodiation/desodiation and provides more active sites. The Na/BF-rGO half cells exhibit unprecedented long cycling stability, with ∼89.4% capacity retained after 5000 cycles (0.002% capacity decay per cycle) at 1000 mA·g(-1) current density. High specific capacity (280 mAh·g(-1)) and great rate capability were also delivered in the Na/BF-rGO half cells.

  13. Occurrence of acid precipitation on the West Coast of the United States

    SciTech Connect

    Powers, C.F.; Rambo, D.L.

    1981-01-01

    Compilation of published and unpublished data shows acid precipitation to be more widespread in the Pacific coastal states than is generally recognized. Although information is scattered and discontinuous, precipitation is definitely acidic in the Los Angeles Basin and north-central California and in the Puget Sound region in Washington. Acid-rain occurrences were observed in western and eastern Oregon, but data are inadequate for regional generalization. New stations currently being established in Washington and Oregon, largely in response to the recently renewed activity of Mount St. Helens, will greatly facilitate assessment of precipitation acidity in the Northwest.

  14. The occurrence of acid precipitation on the west coast of the United States.

    PubMed

    Powers, C F; Rambo, D L

    1981-06-01

    Compilation of published and unpublished data shows acid precipitation to be more widespread in the Pacific coastal states than is generally recognized. Although information is scattered and discontinuous, precipitation is definitely acidic in the Los Angeles Basin and north-central california, and in the Puget Sound region in Washington. Acid rain occurrences have been observed in western and eastern Oregon, but data are inadequate for regional generalization. New stations currently being established in Washington and Oregon, largely in resposnse to the recently renewed activity of Mount St. Helens, will greatly facilitate assessment of precipitation acidity in the Northwest.

  15. Interaction of gold nanoparticles mediated by captopril and S-nitrosocaptopril: the effect of manganese ions in mild acid medium.

    PubMed

    Iglesias, Emilia; Prado-Gotor, Rafael

    2015-01-01

    We report herein results regarding reactivity and assembly of citrate-capped gold nanoparticles (AuNPs) mediated by captopril (cap) and S-nitrosocaptopril (NOcap), two angiotensin converting enzyme inhibitors and antihypertensive agents. The results were compared with that of cysteine (Cys), a thiol-containing amino acid found in plasma. The interparticle interactions were characterized by monitoring the evolution of the surface plasmon resonance band using the spectrophotometric method. The original gold nanoparticles were efficiently modified by small amounts of Mn(+2) ions, which are adsorbed onto the surface of 15.4 nm citrate-capped gold nanoparticles, giving rise to manganese-gold nanoparticles (Mn-AuNPs) that, in mild acid medium, have proved to be highly sensitive and a rapid colorimetric detection method for thiols. Depending on the concentration of the Mn(+2) ions the aggregation of AuNPs can be rapidly induced. The kinetics of the assembly process has been studied. Good first-order kinetics has been observed, with the exception of captopril-mediated nanoparticle aggregation at low concentration of either cap or acid. The rate of Cys-mediated assembly of gold nanoparticles in aqueous 10 mM acetic acid is more than 20-times faster than pure AuNPs and concentrations of Cys as low as 34 nM can be detected in less than 40 min under conditions of stable Mn-AuNPs. Similar effects were observed with cap or NOcap. The assembly-disassembly reversibility is shown with cap and NOcap and depends highly on pH.

  16. Seasonal and rainfall-type variations in inorganic ions and dicarboxylic acids and acidity of wet deposition samples collected from subtropical East Asia

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Wu, Pei-Ling

    2011-07-01

    malonic acid to succinic acid (M:S ratio) indicated that both traffic and secondary photochemical reactions are major contributors to all but TOC Rain, for which the M:S ratio of 4.54 indicates a relative abundance of pollutants from secondary photochemical reactions. An ion balance (IB) ratio analysis demonstrated the validity of the results in this research.

  17. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. PMID:26618263

  18. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles.

    PubMed

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-05-20

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  19. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles.

    PubMed

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. PMID:27197574

  20. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.

    PubMed

    Chen, Xiangping; Zhou, Tao

    2014-11-01

    In this paper, a hydrometallurgical process has been proposed to recover valuable metals from spent lithium-ion batteries in citric acid media. Leaching efficiencies as high as 97%, 95%, 94%, and 99% of Ni, Co, Mn, and Li were achieved under the optimal leaching experimental conditions of citric acid concentration of 2 mol L(-1), leaching temperature of 80 °C, leaching time of 90 min, liquid-solid ratio of 30 ml g(-1), and 2 vol. % H2O2. For the metals recovery process, nickel and cobalt were selectively precipitated by dimethylglyoxime reagent and ammonium oxalate sequentially. Then manganese was extracted by Na-D2EHPA and the manganese-loaded D2EHPA was stripped with sulfuric acid. The manganese was recovered as MnSO4 in aqueous phase and D2EHPA could be reused after saponification. Finally, lithium was precipitated by 0.5 mol L(-1) sodium phosphate. Under their optimal conditions, the recovery percentages of Ni, Co, Mn, and Li can reach 98%, 97%, 98%, and 89%, respectively. This is a relatively simple route in which all metal values could be effectively leached and recovered in citric acid media.

  1. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment.

  2. Probing metal ion complexation with salicylic acid and its derivatives with excited state proton transfer and luminescence anisotropy

    SciTech Connect

    Wang, Z.; Friedrich, D.M.; Ainsworth, C.C.

    1996-10-01

    Salicylic acid and its derivatives in which the phenolic proton is preserved show a characteristic dual fluorescence: one band in the UV, due to a {open_quotes}normal{close_quotes} excited state emission, and the other in the visible range, is assigned to excited state intramolecular proton transfer (ESIPT). The transition energy, quantum yield and fluorescence lifetime as well as fluorescence anisotropy are sensitive to the solvent environment, temperature and properties of the substituents (complexation) at the phenolic and carboxylic oxygens. The ESIPT band disappears in molecules in which the intramolecular hydrogen bond between phenolic hydrogen and the carbonyl oxygen is prohibited. In this work, the complexation of Na(I), Ca(II), Al(III) and La(III) with salicylic acid, 3-hydroxybenzoic acid, methylsalicylate and anisic acid in both aqueous and non-aqueous solvents has been studied by absorption and steady state luminescence spectroscopy, picosecond to nanosecond luminescence lifetimes and luminescence anisotropy measurements in a range of solvent and in ethanol at 77 K. Speciation in these complex systems, binding characteristics between the metal ion and the ligand, and ligand-centered energetics are discussed in terms of the spectroscopic properties, luminescence and anisotropy decay kinetics.

  3. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.

    PubMed

    Chen, Xiangping; Zhou, Tao

    2014-11-01

    In this paper, a hydrometallurgical process has been proposed to recover valuable metals from spent lithium-ion batteries in citric acid media. Leaching efficiencies as high as 97%, 95%, 94%, and 99% of Ni, Co, Mn, and Li were achieved under the optimal leaching experimental conditions of citric acid concentration of 2 mol L(-1), leaching temperature of 80 °C, leaching time of 90 min, liquid-solid ratio of 30 ml g(-1), and 2 vol. % H2O2. For the metals recovery process, nickel and cobalt were selectively precipitated by dimethylglyoxime reagent and ammonium oxalate sequentially. Then manganese was extracted by Na-D2EHPA and the manganese-loaded D2EHPA was stripped with sulfuric acid. The manganese was recovered as MnSO4 in aqueous phase and D2EHPA could be reused after saponification. Finally, lithium was precipitated by 0.5 mol L(-1) sodium phosphate. Under their optimal conditions, the recovery percentages of Ni, Co, Mn, and Li can reach 98%, 97%, 98%, and 89%, respectively. This is a relatively simple route in which all metal values could be effectively leached and recovered in citric acid media. PMID:25378255

  4. Determination of phytic acid and inositol pentakisphosphates in foods by high-performance ion chromatography.

    PubMed

    Chen, Qingchuan

    2004-07-28

    A high-performance anion exchange chromatographic method was adapted for the quantitative determination of phytic acid and inositol pentakisphosphate isomers (excluding enantiomers) in foods. Because of the cost and limited availability of inositol phosphate standards, a phytic acid sodium salt standard was used for the calculation of an average relative response factor for the quantification of inositol pentakisphosphate isomers, and the purity of phytic acid sodium salt standard was also accurately established. The detection limits (S/N = 3) for phytic acid and inositol pentakisphosphates were in the range of 1.5-3.4 microM (0.1-0.2 microg/100 microL). This method has been successfully applied to the determination of phytic acid and inositol pentakisphosphates in a variety of beans and nuts after extraction with 0.5 M HCl and cleanup with solid phase extraction cartridges. The results demonstrated that there was a strong correlation between either the phytic acid content or the total content of phytic acid together with inositol pentakisphosphates and the total dietary fiber content in the group of all raw dry beans and in the group of raw dry black beans but not in the group of raw dry red kidney beans, which was probably due to the insufficient number of the raw dry red kidney bean samples. PMID:15264889

  5. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column.

    PubMed

    Fasciano, Jennifer M; Mansour, Fotouh R; Danielson, Neil D

    2016-07-01

    Ion exclusion chromatography (IELC) of short chain aliphatic carboxylic acids is normally done using a cation exchange column under standard HPLC conditions but not in the ultra-HPLC (UHPLC) mode. A novel IELC method for the separation of this class of carboxylic acids by either HPLC or UHPLC utilizing a C18 column dynamically modified with sodium dodecyl sulfate has been developed. The sample capacity is estimated to be near 10 mM for a 20 µL injection or 0.2 µmol using a 150 × 4.6 mm column. The optimum mobile phase determined for three standard mixtures of organic acids is 1.84 mM sulfuric acid at pH 2.43 and a flow rate of 0.6 mL/min. Under optimized conditions, a HPLC separation of four aliphatic carboxylic acids such as tartaric, malonic, lactic and acetic can be achieved in under 4 min and in <2 min in the UHPLC mode at 2.1 mL/min. A variety of fruit juice and soft drink samples are analyzed. Stability of the column as measured by the retention order of maleic and fumaric acid is estimated to be ∼4,000 column volumes using HPLC and 600 by UHPLC. Reproducible chromatograms are achieved over at least a 2-month period. This study shows that the utility of a C18 column can be easily extended when needed to IELC under either standard or UHPLC conditions. PMID:27006111

  6. Estimates of critical acid loads and exceedances for forest soils across the conterminous United States.

    PubMed

    McNulty, Steven G; Cohen, Erika C; Moore Myers, Jennifer A; Sullivan, Timothy J; Li, Harbin

    2007-10-01

    Concern regarding the impacts of continued nitrogen and sulfur deposition on ecosystem health has prompted the development of critical acid load assessments for forest soils. A critical acid load is a quantitative estimate of exposure to one or more pollutants at or above which harmful acidification-related effects on sensitive elements of the environment occur. A pollutant load in excess of a critical acid load is termed exceedance. This study combined a simple mass balance equation with national-scale databases to estimate critical acid load and exceedance for forest soils at a 1-km(2) spatial resolution across the conterminous US. This study estimated that about 15% of US forest soils are in exceedance of their critical acid load by more than 250eqha(-1)yr(-1), including much of New England and West Virginia. Very few areas of exceedance were predicted in the western US.

  7. Estimates of critical acid loads and exceedances for forest soils across the conterminous United States.

    PubMed

    McNulty, Steven G; Cohen, Erika C; Moore Myers, Jennifer A; Sullivan, Timothy J; Li, Harbin

    2007-10-01

    Concern regarding the impacts of continued nitrogen and sulfur deposition on ecosystem health has prompted the development of critical acid load assessments for forest soils. A critical acid load is a quantitative estimate of exposure to one or more pollutants at or above which harmful acidification-related effects on sensitive elements of the environment occur. A pollutant load in excess of a critical acid load is termed exceedance. This study combined a simple mass balance equation with national-scale databases to estimate critical acid load and exceedance for forest soils at a 1-km(2) spatial resolution across the conterminous US. This study estimated that about 15% of US forest soils are in exceedance of their critical acid load by more than 250eqha(-1)yr(-1), including much of New England and West Virginia. Very few areas of exceedance were predicted in the western US. PMID:17629382

  8. Stochastic pumping of ions based on colored noise in bacterial channels under acidic stress

    NASA Astrophysics Data System (ADS)

    López, M. Lidón; Queralt-Martín, María; Alcaraz, Antonio

    2016-07-01

    Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells.Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02638a

  9. The Ka Values of Water and the Hydronium Ion for Comparison with Other Acids.

    ERIC Educational Resources Information Center

    Campbell, Mark L.; Waite, Boyd A.

    1990-01-01

    Provided is a rebuttal to an argument concerning the use of Ka values for water and the hydronium ion. The derivation of new values as a result of the treatment of the water as the solvent and using a Raoult's Law standard state is discussed. (CW)

  10. In situ measurements of atmospheric nitrous acid by chemical ionization mass spectrometry using chloride ion transfer reactions.

    PubMed

    Hirokawa, Jun; Kato, Takehiro; Mafuné, Fumitaka

    2009-10-15

    Recently, chemical ionization mass spectrometry (CIMS) has been widely applied to the in situ measurements of atmospheric trace species. In this article, we propose a new chemical ionization scheme using a chloride ion transfer reaction from SO(2)Cl(-) as the reagent ion and discuss the applicability of this technique to the detection of nitrous acid (HONO) in the atmosphere. From laboratory investigations, the detection sensitivity was found to depend on the flow rate of SO(2) introduced into the ion source region and the pressure inside the chemical ionization region, which suggests that the chemical ionization reaction is reversible. The detection sensitivity was well described in terms of the forward and backward rates. The present limit of detection is estimated to be 60 parts per trillion by volume (pptv) for an integration time of 1 min. Improvement of the CIMS instrument would enable the measurements of the daytime level of HONO, which might be less than 50 pptv. In addition, the possibility of the interference is discussed from thermodynamic considerations based on ab initio calculations, and the effects of the sampling artifacts are experimentally quantified.

  11. Identifying the Types of Ion Channel-Targeted Conotoxins by Incorporating New Properties of Residues into Pseudo Amino Acid Composition

    PubMed Central

    Wu, Yun

    2016-01-01

    Conotoxins are a kind of neurotoxin which can specifically interact with potassium, sodium type, and calcium channels. They have become potential drug candidates to treat diseases such as chronic pain, epilepsy, and cardiovascular diseases. Thus, correctly identifying the types of ion channel-targeted conotoxins will provide important clue to understand their function and find potential drugs. Based on this consideration, we developed a new computational method to rapidly and accurately predict the types of ion-targeted conotoxins. Three kinds of new properties of residues were proposed to use in pseudo amino acid composition to formulate conotoxins samples. The support vector machine was utilized as classifier. A feature selection technique based on F-score was used to optimize features. Jackknife cross-validated results showed that the overall accuracy of 94.6% was achieved, which is higher than other published results, demonstrating that the proposed method is superior to published methods. Hence the current method may play a complementary role to other existing methods for recognizing the types of ion-target conotoxins. PMID:27631006

  12. Identifying the Types of Ion Channel-Targeted Conotoxins by Incorporating New Properties of Residues into Pseudo Amino Acid Composition.

    PubMed

    Wu, Yun; Zheng, Yufei; Tang, Hua

    2016-01-01

    Conotoxins are a kind of neurotoxin which can specifically interact with potassium, sodium type, and calcium channels. They have become potential drug candidates to treat diseases such as chronic pain, epilepsy, and cardiovascular diseases. Thus, correctly identifying the types of ion channel-targeted conotoxins will provide important clue to understand their function and find potential drugs. Based on this consideration, we developed a new computational method to rapidly and accurately predict the types of ion-targeted conotoxins. Three kinds of new properties of residues were proposed to use in pseudo amino acid composition to formulate conotoxins samples. The support vector machine was utilized as classifier. A feature selection technique based on F-score was used to optimize features. Jackknife cross-validated results showed that the overall accuracy of 94.6% was achieved, which is higher than other published results, demonstrating that the proposed method is superior to published methods. Hence the current method may play a complementary role to other existing methods for recognizing the types of ion-target conotoxins. PMID:27631006

  13. Identifying the Types of Ion Channel-Targeted Conotoxins by Incorporating New Properties of Residues into Pseudo Amino Acid Composition

    PubMed Central

    Wu, Yun

    2016-01-01

    Conotoxins are a kind of neurotoxin which can specifically interact with potassium, sodium type, and calcium channels. They have become potential drug candidates to treat diseases such as chronic pain, epilepsy, and cardiovascular diseases. Thus, correctly identifying the types of ion channel-targeted conotoxins will provide important clue to understand their function and find potential drugs. Based on this consideration, we developed a new computational method to rapidly and accurately predict the types of ion-targeted conotoxins. Three kinds of new properties of residues were proposed to use in pseudo amino acid composition to formulate conotoxins samples. The support vector machine was utilized as classifier. A feature selection technique based on F-score was used to optimize features. Jackknife cross-validated results showed that the overall accuracy of 94.6% was achieved, which is higher than other published results, demonstrating that the proposed method is superior to published methods. Hence the current method may play a complementary role to other existing methods for recognizing the types of ion-target conotoxins.

  14. Tunicate-Inspired Gallic Acid/Metal Ion Complex for Instant and Efficient Treatment of Dentin Hypersensitivity.

    PubMed

    Prajatelistia, Ekavianty; Ju, Sung-Won; Sanandiya, Naresh D; Jun, Sang Ho; Ahn, Jin-Soo; Hwang, Dong Soo

    2016-04-20

    Dentin hypersensitivity is sharp and unpleasant pains caused by exposed dentinal tubules when enamel outside of the tooth wears away. The occlusion of dentinal tubules via in situ remineralization of hydroxyapatite is the best method to alleviate the symptoms caused by dentin hypersensitivity. Commercially available dental desensitizers are generally effective only on a specific area and are relatively toxic, and their performance usually depends on the skill of the clinician. Here, a facile and efficient dentin hypersensitivity treatment with remarkable aesthetic improvement inspired by the tunicate-self-healing process is reported. As pyrogallol groups in tunicate proteins conjugate with metal ions to heal the torn body armor of a tunicate, the ingenious mechanism by introducing gallic acid (GA) as a cheap, abundant, and edible alternative to the pyrogallol groups of the tunicate combined with a varied daily intake of metal ion sources is mimicked. In particular, the GA/Fe(3+) complex exhibits the most promising results, to the instant ≈52% blockage in tubules within 4 min and ≈87% after 7 d of immersion in artificial saliva. Overall, the GA/metal ion complex-mediated coating is facile, instant, and effective, and is suggested as an aesthetic solution for treating dentin hypersensitivity. PMID:26867019

  15. Synthesis of highly photoluminescent carbon dots via citric acid and Tris for iron(III) ions sensors and bioimaging.

    PubMed

    Zhou, Ming; Zhou, Zhulong; Gong, Aihua; Zhang, Yan; Li, Qijun

    2015-10-01

    In this work, high quantum yield and strong photoluminescent carbon quantum dots (C-QDs) are successfully synthesized via a facile and green hydrothermal method using citric acid and Tris as precursors. The as-synthesized C-QDs with a quantum yield (QY) as high as 52% were characterized by UV, FT-IR, TEM, XPS and fluorescence spectroscope. TEM results show that C-QDs are mono-dispersed spherical particles and the diameter distribution of C-QDs is 2.8±1.1 nm. The extraordinary photoluminescent properties and low cytotoxicity of C-QDs were obtained through optical property characterization and cytotoxicity assay. In addition, we found that the as-prepared C-QDs had a high affinity for Fe(3+) ions and the response toward Fe(3+) ions was highly linear (R(2)=0.997) over the concentration range from 2 to 50 μM, which could provide an effective platform for portable detection of Fe(3+) ions. Also, it is demonstrated that the photoluminescent C-QDs display hypotoxicity and are biocompatible for use as biosensors in living cells.

  16. In situ measurements of atmospheric nitrous acid by chemical ionization mass spectrometry using chloride ion transfer reactions.

    PubMed

    Hirokawa, Jun; Kato, Takehiro; Mafuné, Fumitaka

    2009-10-15

    Recently, chemical ionization mass spectrometry (CIMS) has been widely applied to the in situ measurements of atmospheric trace species. In this article, we propose a new chemical ionization scheme using a chloride ion transfer reaction from SO(2)Cl(-) as the reagent ion and discuss the applicability of this technique to the detection of nitrous acid (HONO) in the atmosphere. From laboratory investigations, the detection sensitivity was found to depend on the flow rate of SO(2) introduced into the ion source region and the pressure inside the chemical ionization region, which suggests that the chemical ionization reaction is reversible. The detection sensitivity was well described in terms of the forward and backward rates. The present limit of detection is estimated to be 60 parts per trillion by volume (pptv) for an integration time of 1 min. Improvement of the CIMS instrument would enable the measurements of the daytime level of HONO, which might be less than 50 pptv. In addition, the possibility of the interference is discussed from thermodynamic considerations based on ab initio calculations, and the effects of the sampling artifacts are experimentally quantified. PMID:19746928

  17. Immobilized chiral tropine ionic liquid on silica gel as adsorbent for separation of metal ions and racemic amino acids.

    PubMed

    Qian, Guofei; Song, Hang; Yao, Shun

    2016-01-15

    Tropine-type chiral ionic liquid with proline anion was immobilized on silica gel by chemical modification method for the first time, which was proved by elemental, infrared spectrum and thermogravimetric analysis. Secondly, the performance of this kind of ionic liquid-modified silica gel was investigated in the adsorption of some metal ions, which included Cu(2+), Fe(3+), Mn(2+) and Ni(2+). Then the effects of time, initial concentration and temperature on adsorption for Cu(2+) ions were studied in detail, which was followed by the further research of adsorption kinetics and thermodynamics. The adsorption could be better described by pseudo-second-order kinetics model and that the process was spontaneous, exothermic and entropy decreasing. In the mode of 'reuse after adsorption', the ionic liquid-modified silica gel with saturated adsorption of Cu(2+) was finally used in resolution of racemic amino acids for the first time. The static experiment showed that adsorption rate of two enantiomers was obviously different. Inspired by this, the complex was packed in chromatographic column for the separation of racemic amino acids and d-enantiomers were firstly eluted by water or ethanol. Steric hindrance was found as one of key influencing factors for its effect on the stability of the complex.

  18. Determination of trace-level haloacetic acids in drinking water by ion chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Yongjian; Mou, Shifen; Chen, Dengyun

    2004-06-11

    A new method for the determination of nine haloacetic acids (HAAs) with ion chromatography (IC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) was developed. With the very hydrophilic anion-exchange column and steep gradient of sodium hydroxide, the nine HAAs could be well separated in 15 min. After suppression with an ASRS suppressor that was introduced in between IC and ICP-MS, the background was much decreased, the interference caused by sodium ion present in eluent was removed, and the sensitivities of HAAs were greatly improved. The chlorinated and brominated HAAs could be detected as 35ClO and 79Br without interference of the matrix due to the elemental selective ICP-MS. The detection limits for mono-, di-, trichloroacetic acids were between 15.6 and 23.6 microg/l. For the other six bromine-containing HAAs, the detection limits were between 0.34 and 0.99 microg/l. With the pretreatment of OnGuard Ag cartridge to remove high concentration of chloride in sample, the developed method could be applied to the determination of HAAs in many drinking water matrices.

  19. On-line cation exchange for suppression of adduct formation in negative-ion electrospray mass spectrometry of nucleic acids.

    PubMed

    Huber, C G; Buchmeiser, M R

    1998-12-15

    One major difficulty in the analysis of nucleic acids by electrospray mass spectrometry is represented by the affinity of the polyanionic sugar-phosphate backbone for nonvolatile cations, especially ubiquitous sodium and potassium ions. A simple on-line sample preparation system comprising a microflow pumping system and 45 x 0.8-mm-i.d. microcolumns packed with weak or strong cation-exchange resins is described for the efficient removal of cations from nucleic acid samples. Samples were analyzed by flow injection analysis at a 3-5 microL/min flow of 10 mM triethylamine in 50% water-50% acetonitrile. After on-line desalting, mass spectra of oligonucleotides revealed no significant sodium adduct peaks. Moreover, signal-to-noise ratios were greatly enhanced compared to direct injection of the samples. Electrospray mass spectrometry with on-line sample preparation allowed accurate molecular mass determinations of picomole amounts of crude oligonucleotide preparations ranging in size from 8 to 80 nucleotides within a few minutes. The good linearity of the calibration plot (R2 = 0.9988) over at least 2 orders of magnitude and a relative standard deviation in peak areas of less than 9% permitted the sensitive quantitative measurement of oligonucleotides in a concentration range of 0.2-20 microM with selected-ion monitoring. Finally, the on-line sample preparation system was evaluated for the mass spectrometric analysis of complex oligonucleotide mixtures. PMID:9868919

  20. Immobilized chiral tropine ionic liquid on silica gel as adsorbent for separation of metal ions and racemic amino acids.

    PubMed

    Qian, Guofei; Song, Hang; Yao, Shun

    2016-01-15

    Tropine-type chiral ionic liquid with proline anion was immobilized on silica gel by chemical modification method for the first time, which was proved by elemental, infrared spectrum and thermogravimetric analysis. Secondly, the performance of this kind of ionic liquid-modified silica gel was investigated in the adsorption of some metal ions, which included Cu(2+), Fe(3+), Mn(2+) and Ni(2+). Then the effects of time, initial concentration and temperature on adsorption for Cu(2+) ions were studied in detail, which was followed by the further research of adsorption kinetics and thermodynamics. The adsorption could be better described by pseudo-second-order kinetics model and that the process was spontaneous, exothermic and entropy decreasing. In the mode of 'reuse after adsorption', the ionic liquid-modified silica gel with saturated adsorption of Cu(2+) was finally used in resolution of racemic amino acids for the first time. The static experiment showed that adsorption rate of two enantiomers was obviously different. Inspired by this, the complex was packed in chromatographic column for the separation of racemic amino acids and d-enantiomers were firstly eluted by water or ethanol. Steric hindrance was found as one of key influencing factors for its effect on the stability of the complex. PMID:26711153

  1. Separation of selected transition metals by capillary chelation ion chromatography using acetyl-iminodiacetic acid modified capillary polymer monoliths.

    PubMed

    Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett

    2012-08-01

    Capillary housed laurylmethacrylate-co-ethylene dimethacrylate (LMA-co-EDMA) polymer monoliths were fabricated, functionalised with varying amounts of vinyl azlactone, followed by immobilisation of iminodiacetic acid (IDA), forming a range of acetyl-iminodiacetic acid (AIDA) functionalised monoliths, applied to the chelation ion chromatographic separation of selected transition and heavy metals. A number of monoliths of varying length and ligand density were prepared, resulting in increased cation retention and chromatographic resolution on those displaying the highest capacity. Ligand density and related column capacity were confirmed visually using scanning capacitively coupled contactless conductivity detection (sC(4)D) techniques. Column temperature studies to determine retention mechanism and the effect of temperature on the retention of Mn(II), Cd(II) and Cu(II) was investigated, showing an increase in retention with increased temperature for Cd(II) and Cu(II), whilst a decrease in retention was obtained for Mn(II). Isocratic capillary chelation ion chromatographic separations of Mn(II), Cd(II) and Cu(II) were obtained, with dual peak detection demonstrated using combined on-column C(4)D detection and UV-Visible detection following the post-capillary column reaction of the eluted metals with 4-(2-pyridylazo) resorcinol (PAR).

  2. Synthesis of methyl tert-butyl ether catalyzed by acidic ion-exchange resins. Influence of the proton activity

    SciTech Connect

    Panneman, H.J.; Beenackers, A.A.C.M.

    1995-12-01

    The catalytic activity of various strong acid ion-exchange resins on the synthesis of methyl tert-butyl ether (MtBE) from methanol and isobutene has been investigated. Relative to Amberlyst 15, Kastel CS 381 and Amberlyst CSP have similar rate constants, whereas Duolite ES 276 and Amberlyst XE 307 have significantly higher and Duolite C26 and Duolite C16P substantially lower rate constants. All resins show a great decrease in catalytic activity if part of the protons is exchanged by sodium ions. At 10% proton capacity the rate constants per equivalent acid are reduced by a factor of 9 (for Amberlyst Xe 307 and Kastel Cs 381) to more than a factor 20 for Amberlyst 15 and Duolite ES 276, resulting in 100--200 times lower MtBE production rates. Depending on the catalyst applied, mass transfer limitations start to occur between 50 and 80 C. Values of the effective diffusion coefficient of isobutene varied between 0.4 {times} 10{sup {minus}9} and 4.1 {times} 10{sup {minus}9} m{sup 2}/s at 80 C.

  3. A new method for the removal of toxic metal ions from acid-sensitive biomaterial

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1997-06-01

    A new method (competitive adsorption method) for the removal of toxic heavy metals from acid-sensitive biomaterials was proposed and it was applied to the removal of cadmium from the midgut gland (MG) of scallop, Patinopecten yessoensis. Insolubilized humic acid, which has been developed in the laboratory, was used as a competitive adsorbent. A metal-complexation model was used to determine the adsorption characteristics of cadmium onto MG. Furthermore, the model was applied to the competitive adsorption system. The results showed that the competitive adsorption method enabled the simultaneous removal of toxic cadmium from both liquid and MG phase under mild acidic condition (pH 5).

  4. A field test of the effect of acidic rain on ion balance in a woodland salamander

    SciTech Connect

    Frisbie, M.P.; Wyman, R.L. )

    1994-06-01

    Earlier laboratory studies demonstrated that red-backed salamanders, Plethodon cinereus, are susceptible to osmotic disruption by low pH substrates. In natural systems, however, acidic input from precipitation may be mediated by soils before it impacts salamanders. We tested the effect of acidic rain on sodium balance in salamanders by confining individuals in enclosure in two forest types (hemlock, beech) for 34 d. Enclosures received artificial rain of either pH 3 or 5 every 3-4 d. Soils inside enclosures in the hemlock forest were more acidic than those in the beech forest at the outset. At termination, [H[sup +

  5. Ion Irradiation of Sulfuric Acid: Implications for its Stability on Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.

    2010-01-01

    The Galileo near-infrared mapping spectrometer (NIMS) detected regions on Europa's surface containing distorted H2O bands. This distortion likely indicates that there are other molecules mixed with the water ice. Based on spectral comparison, some of the leading possibilities are sulfuric acid, salts. or possibly H3O(+). Previous laboratory studies have shown that sulfuric acid can be created by irradiation of H2OSO2 mixtures, and both molecules are present on Europa. In this project, we were interested in investigating the radiation stability of sulfuric acid (H2SO4) and determining its lifetime on the surface of Europa.

  6. Dental erosion and sulfuric ion exposure levels in individuals working with sulfuric acid in lead storage battery manufacturing plant measured with mouth-rinse index.

    PubMed

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    To investigate dental erosion in employees working with sulfuric acid at a lead storage battery manufacturing plant and level of personal exposure to sulfuric ions, we measured sulfuric ion concentrations in the mouth rinse of those employees. We also measured exposure levels from air samples obtained from 2 employees from the same plant who did not work with sulfuric acid using a portable air sampler. At the same time, we collected and compared their mouth rinses with those from other employees. More specifically, we measured and compared sulfuric ion, calcium, and magnesium concentrations, along with pH levels from the mouth rinse of these two groups. Positive correlations were found between sulfuric ion and calcium concentrations (r=0.61, p<0.005), calcium and magnesium concentrations (r=0.61, p<0.005), Ca/Mg and calcium concentrations (r=0.64, p<0.005), and sulfuric ion and magnesium concentrations (r=0.55, p<0.005). Negative correlations were found between sulfuric ion concentrations and pH levels (r=-0.31, p<0.01), and magnesium concentrations and pH levels (r=-0.32, p<0.01). This suggests that mouth rinse from employees working with sulfuric acid could function as an indicator of sulfuric ion concentration in the work environment. Furthermore, this could lead to the development of a more accurate indicator of individual exposure.

  7. The role of calcium ions in the photocatalytic oxidation of humic acid at neutral pH.

    PubMed

    Mariquit, Eden G; Salim, Chris; Hinode, Hirofumi

    2008-10-01

    Humic acids (HAs) are natural organic matter derived from the decomposition of plant, algal, and microbial materials. They belong to the group of the most predominant type of natural organic matter present in ground and surface waters. HAs affect the mobility and bioavailability of aquatic contaminants. However, if they are left unremoved from the water before water treatment processes, they can form carcinogenic disinfection by-products, such as trihalomethanes, haloacetic acids, and other halogenated disinfection by-products, that can pose a threat to human beings. An advanced oxidation process using UV light and a commercially available titanium dioxide was used to oxidize HA at a pH that is similar to that of natural water. The effect of adding calcium ions to the adsorption and the photocatalytic oxidation of HAs was studied. The effect of varying the TiO(2) load was also investigated. The experiment was done using a photochemical batch reactor equipped with a mercury lamp emitting light with wavelengths of 310-580 nm. The absorbances by the samples were determined at wavelengths of 254 nm and 436 nm, which represent the aromatic-compound content of and the color of the solution, respectively. Results indicated calcium ions have an effect on both the adsorption and the photocatalytic oxidation of HA at a pH within 8.0 +/- 0.5. Calcium ions facilitated adsorption of HA onto the surface of TiO(2) and resulted to faster photocatalytic oxidation. The data were plotted with respect to the normalized absorbances and irradiation time. PMID:18991939

  8. A bidentate Lewis acid with a telluronium ion as an anion-binding site

    NASA Astrophysics Data System (ADS)

    Zhao, Haiyan; Gabbaï, François P.

    2010-11-01

    The search for receptors that can selectively capture small and potentially toxic anions in protic media has sparked a renewed interest in the synthesis and anion-binding properties of polydentate Lewis acids. Seeking new paradigms to enhance the anion affinities of such systems, we synthesized a bidentate Lewis acid that contains a boryl and a telluronium moiety as Lewis acidic sites. Anion-complexation studies indicate that this telluronium borane displays a high affinity for fluoride in methanol. Structural and computational studies show that the unusual fluoride affinity of this bidentate telluronium borane can be correlated with the formation of a B-F --> Te chelate motif supported by a strong lone-pair(F) --> σ*(Te-C) donor-acceptor interaction. These results, which illustrate the viability of heavier chalcogenium centres as anion-binding sites, allow us to introduce a novel strategy for the design of polydentate Lewis acids with enhanced anion affinities.

  9. Studies on the inhibitory effects of caffeoylquinic acids on monocyte migration and superoxide ion production.

    PubMed

    Peluso, G; De Feo, V; De Simone, F; Bresciano, E; Vuotto, M L

    1995-05-01

    Three caffeoylquinic acids, isolated from the Peruvian plants Tessaria integrifolia and Mikania cordifolia that are used medicinally as anti-inflammatory agents, were tested for their activities on monocyte migration and superoxide anion production. 3,5-Di-O-caffeoylquinic and 4,5-di-O-caffeoylquinic acids exhibited an appreciable anti-inflammatory activity in vitro, while the tricaffeoyl derivative was inactive.

  10. High-Resolution Electrospray Ionization/Ion Mobility Spectrometer for Detection of Abiotic Amino Acids

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Terrell, C. A.; Kim, H.; Kanik, I.

    2003-01-01

    One of the primary goals of the current NASA thrust in Astrobiology is the detection and identification of organic molecules as part of an in-situ lander platform on the surface of Mars or Europa. The identification of these molecules should help determine whether indigenous organisms exist on the surface of Mars or in an undersea environment on Europa. In addition, a detailed organic chemical inventory of surface and near surface molecules will help elucidate the possibilities of life elsewhere in the Universe. Terrestrial life has, as its backbone, the family of molecules known as the amino acids (AA), and while AA can be found in the terrestrial environments as part of more complex molecules, such as peptides, and proteins, they also exist as individual molecules due to of the hydrolyses of biopolymers. In terrestrial biochemistry, there are 20 principal amino acids which are necessary for life. However, some forms of these molecules can be found in nature synthesized via abiotic process. For example, they are known to exist extraterrestrially as a component of carbonaceous meteorites. The idea that amino acids are readily created by abiotic means has been demonstrated by their positive identification in the Murchison CM2 meteorite, which fell in 1969. This meteorite was analyzed before contamination by terrestrial microbes could result. Three laboratories individually tested parts of the meteorite and concluded that the amino acids present in them were indigenous to the meteorite because, among other reasons, they had equal L- and D- enantiomers. Final identification of the constituents of the Murchison included 33 amino acids which have no known biotic source, 11 amino acids which have limited distribution and 8 (Glycine, Alanine, Valine, Proline, Leucine, Isoleucine, Aspartic Acid, and Glutamic Acid), which readily occur in terrestrial proteins.

  11. Enriched boric acid for PWR application: Cost evaluation study for a twin-unit PWR

    SciTech Connect

    Battaglia, J.A.; Waters, R.M.; von Hollen, J.M.; Lamatia, L.A.; Bergmann, C.A.; Ditommaso, S.M. . Nuclear and Advanced Technology Div.)

    1989-09-01

    In the nuclear industry boric acid dissolved in the reactor coolant is used as a soluble reactivity control agent. Reactivity control in nuclear plants is also provided by neutron absorbing control rods. This neutron absorbing duty is distributed between the control rods and soluble boric acid in such a way as to provide the most economical split. Typically, the control rods take care of rapid reactivity changes and the boric acid handles the slower long term control of reactivity by varying the boric acid concentrations within the reactor coolant. In PWR reactor plants the dissolved boric acid is referred to as a soluble poison or chemical shim due to the high capacity for thermal neutron capture exhibited by the boron-10 isotope contained in the boric acid molecule. This slow reactivity change or chemical shim control would otherwise have to be performed using control rods, a much more expensive proposition. Reactivity changes are controlled by the B-10 isotope by virtue of its very high cross section (3837 barns) for thermal neutron absorption. However, natural boron contains only 20 atom percent of the B-10 isotope and essentially all the remaining 80 percent as the B-11 isotope. The B-11 isotope of cross section .005 barns is essentially of no use as a neutron absorber. Since B-11 makes up the bulk of the total boron present and contributes little to the nuclear operation it would seem logical to eliminate this isotope of boron from the boric acid molecule. In so doing boric acid concentration in operating PWR plants need only be a fraction of that existing to accomplish identical nuclear operations. However, to achieve the elimination of B-11 from NBA (Natural Boric Acid) an isotope separation must be performed. 4 refs., 25 figs., 17 tabs.

  12. The acquisition of Clostridium tyrobutyricum mutants with improved bioproduction under acidic conditions after two rounds of heavy-ion beam irradiation

    PubMed Central

    Zhou, Xiang; Yang, Zhen; Jiang, Ting-Ting; Wang, Shu-Yang; Liang, Jian-Ping; Lu, Xi-Hong; Wang, Liang

    2016-01-01

    End-product inhibition is a key factor limiting the production of organic acid during fermentation. Two rounds of heavy-ion beam irradiation may be an inexpensive, indispensable and reliable approach to increase the production of butyric acid during industrial fermentation processes. However, studies of the application of heavy ion radiation for butyric acid fermentation engineering are lacking. In this study, a second 12C6+ heavy-ion irradiation-response curve is used to describe the effect of exposure to a given dose of heavy ions on mutant strains of Clostridium tyrobutyricum. Versatile statistical elements are introduced to characterize the mechanism and factors contributing to improved butyric acid production and enhanced acid tolerance in adapted mutant strains harvested from the fermentations. We characterized the physiological properties of the strains over a large pH value gradient, which revealed that the mutant strains obtained after a second round of radiation exposure were most resistant to harsh external pH values and were better able to tolerate external pH values between 4.5 and 5.0. A customized second round of heavy-ion beam irradiation may be invaluable in process engineering. PMID:27426447

  13. The acquisition of Clostridium tyrobutyricum mutants with improved bioproduction under acidic conditions after two rounds of heavy-ion beam irradiation.

    PubMed

    Zhou, Xiang; Yang, Zhen; Jiang, Ting-Ting; Wang, Shu-Yang; Liang, Jian-Ping; Lu, Xi-Hong; Wang, Liang

    2016-01-01

    End-product inhibition is a key factor limiting the production of organic acid during fermentation. Two rounds of heavy-ion beam irradiation may be an inexpensive, indispensable and reliable approach to increase the production of butyric acid during industrial fermentation processes. However, studies of the application of heavy ion radiation for butyric acid fermentation engineering are lacking. In this study, a second (12)C(6+) heavy-ion irradiation-response curve is used to describe the effect of exposure to a given dose of heavy ions on mutant strains of Clostridium tyrobutyricum. Versatile statistical elements are introduced to characterize the mechanism and factors contributing to improved butyric acid production and enhanced acid tolerance in adapted mutant strains harvested from the fermentations. We characterized the physiological properties of the strains over a large pH value gradient, which revealed that the mutant strains obtained after a second round of radiation exposure were most resistant to harsh external pH values and were better able to tolerate external pH values between 4.5 and 5.0. A customized second round of heavy-ion beam irradiation may be invaluable in process engineering. PMID:27426447

  14. Lanthanide ion exchange properties of a coordination polymer consisting of di(2-ethylhexyl) phosphoric acid and trivalent metal ions (Ce3+, Fe3+, or Al3+).

    PubMed

    Ooi, Kenta; Tasaki-Handa, Yuiko; Abe, Yukie; Wakisaka, Akihiko

    2014-03-28

    Three kinds of coordination polymers ([M(dehp)3], M = Ce, Fe, or Al) were prepared by mixing the sodium form (Na(dehp)) of di(2-ethylhexyl) phosphoric acid and MCl3 in an ethanol-water binary mixture. They have monoclinic crystalline structure with similar lattice parameters. The lanthanide ion (Ln(3+) = La(3+), Sm(3+), Dy(3+), or Yb(3+)) exchange properties were studied in a 20 : 80 vol% ethanol-water binary mixture containing 2 mM Ln(NO3)3 at room temperature. The rate of Ln(3+) adsorption is relatively slow; it requires over 3 weeks to reach equilibrium. [M(dehp)3] has different Ln(3+) affinities depending on the kind of central metal ions: the affinity order at 3 week adsorption is Yb(3+) < La(3+) < Dy(3+) < Sm(3+) for [Ce(dehp)3], La(3+) < Sm(3+) < Dy(3+) < Yb(3+) for [Fe(dehp)3], and La(3+) < Sm(3+), Dy(3+), Yb(3+) for [Al(dehp)3]. The difference in affinity order can be explained by two factors: the coordination preference and steric strain caused by the polymeric structure. The chemical and structural analyses suggested that the Ln(3+) adsorption progresses first by the central M(3+)/Ln(3+) exchange, followed by a morphological change to a rod-like or fibrous form by a solid phase reaction. In the case of [Fe(dehp)3], the eluted Fe(3+) may be hydrolyzed and precipitated as amorphous iron hydroxide.

  15. Diglycolamic acid modified silica gel for the separation of hazardous trivalent metal ions from aqueous solution.

    PubMed

    Suneesh, A S; Syamala, K V; Venkatesan, K A; Antony, M P; Vasudeva Rao, P R

    2015-01-15

    The surface of the silica gel was modified with diglycolamic acid moieties and the product (Si-DGAH) was characterized by elemental analysis, TG-DTA, (1)H and (29)Si NMR and scanning electron microscopy (SEM). The adsorption behavior of hazardous americium (III) and europium (III) in Si-DGAH was studied from aqueous nitric acid medium to examine the feasibility using the modified silica for the separation of Am(III) and Eu(III) from aqueous wastes. In this context, the effect of various parameters such as the duration of equilibration, and concentrations of europium, nitric acid, sodium nitrate and diethylenetriaminepentaacetic acid (DTPA) in aqueous phase, on the distribution coefficient (K(d)) of Am(III) and Eu(III) was investigated. The distribution coefficient of ∼10(3) mL/g (>99.9% extraction) was obtained for both Am(III) and Eu(III) at pH 3, and the K(d) values decreased with increase in the concentration of nitric acid. Rapid kinetics of extraction in the initial stages of equilibration, followed by the establishment of equilibrium occurred within 30 min. The extraction data were fitted into Langmuir adsorption model and the apparent europium extraction capacity was determined. Europium loading capacity of the sorbent was determined at various feed pH by column method. The study indicated the possibility of using diglycolamic acid-modified silica for the separation of Eu(III) and Am(III) from aqueous wastes. PMID:25454425

  16. Soil-calcium depletion linked to acid rain and forest growth in the eastern United States

    USGS Publications Warehouse

    Lawrence, Gregory B.; Huntington, T.G.

    1999-01-01

    Since the discovery of acid rain in the 1970's, scientists have been concerned that deposition of acids could cause depletion of calcium in forest soils. Research in the 1980's showed that the amount of calcium in forest soils is controlled by several factors that are difficult to measure. Further research in the 1990's, including several studies by the U.S. Geological Survey, has shown that (1) calcium in forest soils has decreased at locations in the northeastern and southeastern U.S., and (2) acid rain and forest growth (uptake of calcium from the soil by roots) are both factors contributing to calcium depletion.

  17. Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes.

    SciTech Connect

    Robinson, H.; Gao, Y.-G.; Sanishvili, R.; Joachimiak, A.; Wang, A. H.-J.; Univ. of Illinois; Northwestern Univ.

    2000-01-01

    Magnesium ions play important roles in the structure and function of nucleic acids. Whereas the tertiary folding of RNA often requires magnesium ions binding to tight places where phosphates are clustered, the molecular basis of the interactions of magnesium ions with RNA helical regions is less well understood. We have refined the crystal structures of four decamer oligonucleotides, d(ACCGGCCGGT), r(GCG)d(TATACGC), r(GC)d(GTATACGC) and r(G)d(GCGTATACGC) with bound hexahydrated magnesium ions at high resolution. The structures reveal that A-form nucleic acid has characteristic [Mg(H2O)6]2+ binding modes. One mode has the ion binding in the deep major groove of a GpN step at the O6/N7 sites of guanine bases via hydrogen bonds. Our crystallographic observations are consistent with the recent NMR observations that in solution [Co(NH3)6]3+, a model ion of [Mg(H2O)6]2+, binds in an identical manner. The other mode involves the binding of the ion to phosphates, bridging across the outer mouth of the narrow major groove. These [Mg(H2O)6]2+ ions are found at the most negative electrostatic potential regions of A-form duplexes. We propose that these two binding modes are important in the global charge neutralization, and therefore stability, of A-form duplexes.

  18. Strong Relationships in Acid-Base Chemistry - Modeling Protons Based on Predictable Concentrations of Strong Ions, Total Weak Acid Concentrations, and pCO2.

    PubMed

    Ring, Troels; Kellum, John A

    2016-01-01

    Understanding acid-base regulation is often reduced to pigeonholing clinical states into categories of disorders based on arterial blood sampling. An earlier ambition to quantitatively explain disorders by measuring production and elimination of acid has not become standard clinical practice. Seeking back to classical physical chemistry we propose that in any compartment, the requirement of electroneutrality leads to a strong relationship between charged moieties. This relationship is derived in the form of a general equation stating charge balance, making it possible to calculate [H+] and pH based on all other charged moieties. Therefore, to validate this construct we investigated a large number of blood samples from intensive care patients, where both data and pathology is plentiful, by comparing the measured pH to the modeled pH. We were able to predict both the mean pattern and the individual fluctuation in pH based on all other measured charges with a correlation of approximately 90% in individual patient series. However, there was a shift in pH so that fitted pH in general is overestimated (95% confidence interval -0.072-0.210) and we examine some explanations for this shift. Having confirmed the relationship between charged species we then examine some of the classical and recent literature concerning the importance of charge balance. We conclude that focusing on the charges which are predictable such as strong ions and total concentrations of weak acids leads to new insights with important implications for medicine and physiology. Importantly this construct should pave the way for quantitative acid-base models looking into the underlying mechanisms of disorders rather than just classifying them. PMID:27631369

  19. Strong Relationships in Acid-Base Chemistry – Modeling Protons Based on Predictable Concentrations of Strong Ions, Total Weak Acid Concentrations, and pCO2

    PubMed Central

    Kellum, John A.

    2016-01-01

    Understanding acid-base regulation is often reduced to pigeonholing clinical states into categories of disorders based on arterial blood sampling. An earlier ambition to quantitatively explain disorders by measuring production and elimination of acid has not become standard clinical practice. Seeking back to classical physical chemistry we propose that in any compartment, the requirement of electroneutrality leads to a strong relationship between charged moieties. This relationship is derived in the form of a general equation stating charge balance, making it possible to calculate [H+] and pH based on all other charged moieties. Therefore, to validate this construct we investigated a large number of blood samples from intensive care patients, where both data and pathology is plentiful, by comparing the measured pH to the modeled pH. We were able to predict both the mean pattern and the individual fluctuation in pH based on all other measured charges with a correlation of approximately 90% in individual patient series. However, there was a shift in pH so that fitted pH in general is overestimated (95% confidence interval -0.072–0.210) and we examine some explanations for this shift. Having confirmed the relationship between charged species we then examine some of the classical and recent literature concerning the importance of charge balance. We conclude that focusing on the charges which are predictable such as strong ions and total concentrations of weak acids leads to new insights with important implications for medicine and physiology. Importantly this construct should pave the way for quantitative acid-base models looking into the underlying mechanisms of disorders rather than just classifying them. PMID:27631369

  20. Gas phase reaction of substituted isoquinolines to carboxylic acids in ion trap and triple quadrupole mass spectrometers after electrospray ionization and collision-induced dissociation.

    PubMed

    Thevis, Mario; Kohler, Maxie; Schlörer, Nils; Schänzer, Wilhelm

    2008-01-01

    Within the mass spectrometric study of bisubstituted isoquinolines that possess great potential as prolylhydroxylase inhibitor drug candidates (e.g., FG-2216), unusually favored gas-phase formations of carboxylic acids after collisional activation were observed. The protonated molecule of [(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid was dissociated, yielding the 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid methyleneamide cation. Subsequent dissociation caused the nominal elimination of 11 u that resulted from the loss of HCN and concomitant addition of oxygen to the product ion, which formed the protonated 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid. The preference of this structure under mass spectrometric conditions was substantiated by tandem mass spectrometry analyses using the corresponding methyl ester (1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid methyl ester) that eliminated methylene (-14 u) upon collisional activation. Moreover, the major product ion of 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid, which resulted from the loss of water in MS3 experiments, restored the precursor ion structure by re-addition of H2O. Evidences for these phenomena were obtained by chemical synthesis of proposed gas-phase intermediates, H/D exchange experiments, high-resolution/high accuracy mass spectrometry at MSn level, and "ping-pong" analyses (MS7, in which the precursor ion was dissociated and the respective product ion isolated to regenerate the precursor ion for repeated dissociation. Based on these results, dissociation pathways for [(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid were suggested that can be further utilized for the characterization of structurally related compounds or metabolic products in clinical, forensic, or doping control analysis.